國立交通大學

生化工程所

碩士論文

大環配位子 ONO2A 之穩定常數研究與 其鑭系金屬錯合物之水解磷酸酯鍵效力

The Stability Constants of Lanthanide Complexes of ONO2A and the Promotion of BNPP Hydrolysis by Lanthanide Complexes of ONO2A

> 研究生:吴幸怡 指導教授:張 正 教授

中華民國九十六年一月

學生:吴幸怡

指導教授:張正 博士

國立交通大學生化工程研究所 碩士班

摘要

鋼系金屬是正三價的金屬,其本身及錯合物是屬於好的路易士酸,且 已經被證實用在DNA、RNA及磷酸雙酯鍵的切割效果,是這些生物分子的 有效切割劑。先前,我們發表過LnDO2A⁺的配位特性以及在水解BNPP之 磷酸雙酯鍵的動力學效應^{2,36,40}。為了可以利用三價的鑭系金屬錯合物來 設計更好而有效的人造核酸水解酶、去氧核醣核酸水解酶,我們合成過一 些多胺含氧多酸基的大環配位子,這樣的大環配位子比線性結構的異構物 高更能形成穩定的鑭系金屬錯合物。

在本篇論文中,我們發表合成ONO2A(二氮一氧九元環二乙酸基)大 環,並計算其與鑭系金屬形成錯合物時的穩定常數。在我們實驗比較後得 到的結果是,大致上三價鑭系金屬與大環的穩定常數隨著鑭系金屬原子序 的增加而增加。對於任一個鑭系金屬離子而言,其穩定常數在三種九元環 異構物的排序:LnNO2A⁺>LnONO2A⁺>LnPhNO2A⁺。

此外,在本論文中也研究LnONO2A⁺ (Ln = Eu³⁺, Yb³⁺)水解BNPP 的動力學效應。將動力學實驗速率結果套入我們所導出的單體-雙體反應模 式中,我們可以觀察單體與雙體在水解BNPP時的水解常數 ($k_1 \ Qk_2$)還 有單體-雙體的形成常數 (K_f)。

The Stability Constants of Lanthanide Complexes of ONO2A and the Promotion of BNPP Hydrolysis by Lanthanide Complexes of ONO2A

Student : Hsin-Yi Wu

Adviser : Dr. C. Allen Chang

Institute of Biochemical Engineering

National Chiao Tung University

Abstract

The cationic trivalent lanthanide (Ln³⁺) ions and complexes are good Lewis acids and have been demonstrated to be effective DNA, RNA, and phosphodiester compounds' cleavage agents. Previously we have reported the coordination properties of LnDO2A+ and their kinetic behaviors of BNPP phosphodiester bond hydrolysis.^{2, 36, 40} To help designing better effective artificial nucleases and ribonucleases employing trivalent lanthanide complexes, we have synthesized several macrocyclic polyaza-oxa polycarboxylate ligands which forms more stable complexes than their linear structural analogues.

thesis, we report the synthesis of ONO2A In this (1-oxa-4,7-diazacyclononane-4,7-diacetic acid) and the stability constants of its lanthanide complexes. In general, the stability constants of trivalent lanthanide complexes of a given ligand increase with increasing lanthanide atomic number. For a given lanthanide ion, the stability constant follow the order: LnNO2A⁺ > LnONO2A⁺ > LnPhNO2A⁺.

Also, we study the kinetics of BNPP hydrolysis by LnONO2A⁺, where Ln = Eu³⁺, Yb³⁺. By fitting the rate data to a monomer-dimer reaction model, we could obtain the monomer and the dimer BNPP hydrolysis constants (k_1 and k_2) and the monomer-dimer formation constants (K_f).

誌謝

剛進入張正老師實驗室的時候,對於這個領域完全陌生,很幸運的在 這裡有一起學習、教導我的學長姐、學弟妹們。因為這裡的人事物,讓我 有一個值得回憶的碩士生活。

今天能夠畢業,完成我的研究,要感謝張正老師的指導、實驗上的建 議、生活上的關心。還有張家靖老師的寒喧、關心。以及諸位口試委員的 寶貴意見、指導。

我也要感謝一路支持跟陪伴我的翊帆,因為他,我的生活充满意義! 此外,政憲、志祥、郁頻、業琳、玉淳、健葒、岳輝、明慧、萬利、 秉博等等,在我的研究生活裡,幫助我跟我一起討論、一起努力、一起娛 樂的朋友,我也都要感謝。

最後,我要感謝我的家人以及十多年情誼的老朋友們,謝謝你們一直 給我信心,讓我完成學業,希望你們一起分享我的喜悅!

1111111

Ţ	頁次
中文摘要	. i
英文摘要	ii
誌謝	iii
目錄	iv
第一章 緒論	1
前言	1
又獻 凹顧	, 18
第二章 配位子 ONO2A 的合成	19
1,5-bis(p-toluenesulfonato)-3-oxapentane 之合成	19
N,N'-bis(p-toluenesulfonyl)ethane-1,2-diamine 之合成	20
1-oxa-4,7-bis(p-toluenesulfonyl)-4,7-diazacyclonane 之合成	21
1-oxa-4,7-diazacyclonane · 2HBr 之合成	24
1-oxa-4,7-diazacyclononane-4,7-diacetic acid・2HBr 之合成	26
第三章 配位子 ONO2A 質子化常數之研究	31
配位子 ONO2A 溶液之配製	31
配位子 ONO2A 溶液濃度之標定	32
配位子質子化常數之滴定原理	36
配位子 ONO2A 之質子化常數	39
ONO2A 質子化常數之計算結果	39
不同配位子之質子化常數	41
第四章 配位子 ONO2A 奥鑭系金屬穩定常數之研究	42
配位子穩定常數之滴定原理	42

金屬陽離子濃度之標定方法	44
金屬陽離子濃度之標定原理	46
金屬陽離子濃度之標定步驟	48
配製溶液	48
標定濃度	51
配位子 ONO2A 與鑭系金屬之穩定常數	52
實驗方法	52
實驗結果	53
第五章 配位子 ONO2A 與鑭系金屬錯合物之動力學研究	58
反應動力學之實驗原理	58
LnONO2A ⁺ 反應動力學之實驗方法	60
溶液的配製	60
動力學實驗步驟	62
LnONO2A ⁺ 動力學實驗結果	64
CeONO2A ⁺ 不同 pH 值下監測吸收光譜	64
CeONO2A ⁺ 不同 pH 值下監測 281 nm 吸收光譜	65
CeONO2A ⁺ pH 9.8 監測 281 nm 吸收光譜(濃度效應)	67
EuONO2A ⁺ 不同 pH 值下水解 BNPP 動力實驗	69
EuONO2A ⁺ pH 9.0 水解 BNPP 濃度效應	71
EuONO2A ⁺ 不同 pH 值雷射光譜實驗	75
YbONO2A ⁺ 不同 pH 值下水解 BNPP 動力實驗	76
YbONO2A ⁺ pH 8.5 水解 BNPP 級數動力實驗	78
YbONO2A ⁺ pH 8.5 水解 BNPP 濃度效應	79
第六章 討論與未來展望	81
参考文獻	83
附錄	86

第一章 緒論

※ 前言

在生命系統中每一個生化反應都牽扯到酵素(enzyme;酶)的催化, 因此生命的延續跟酵素反應息息相關。酵素主要成分是蛋白質(protein), 蛋白質的來源又是由 DNA (deoxyribonucleic acid)上面的基因密碼 (genetic code)轉錄成 mRNA (messenger ribonucleic acid),再轉譯 成蛋白質。上述的所有生物聚合體 (biopolymers)的穩定與否,就非常重 要。一般而言,在中性 pH 值、25°C 的環境之下,水解 DNA 之磷酸雙酯 鍵(phospodiester bond)的半生期可以達 13 萬年之久,RNA 的磷酸雙 酯鍵水解半生期則為4年左右,蛋白質的胜肽鍵 (peptide bond)水解半 生期則約為7年。然而,一旦 DNA 發生突變(mutation)需要修補(repair), 或是蛋白質功能不再,需要被分解,在生理條件的時間尺度,這些生物聚 合體的分解就需要被催化,此時就需要水解酶(hydrolase)來促進 DNA、 RNA 或蛋白質的分解¹,人造核酸水解酶(artificial nuclease/ribonuclease) 就是想針對目標生物聚合體的分解而被設計產生。

天然的限制酶(nature restriction nuclease)有一些先天上的限制, 包括分離純化不易且成本高、認知的序列辨識區常只有 4-6 個鹼基,核醣 核酸長鏈會被切割成很多小片段,造成辨識度不足,在各式病毒性及癌症 疾病猖獗的今日,應用在基因醫學治療的效果有限^{1,3}。

要設計人造限制酶(artificial restriction nuclease)的前提,需要了解 DNA及RNA水解機制。在最早(1950s)對於核酸水解的機制主要是著 重在 RNA 的水解機構。因為 RNA 其五碳糖的第二位置上有一氫氧基 (2'-OH),這個氫氧基在反應機制中被認為扮演極重要的角色;目前被廣 泛接受水解 RNA 的反應機制包括兩個步驟,轉酯反應(transesterification) 和水解反應。在第一個步驟的轉酯反應中,RNA 上五碳糖的 2'-OH 會先 解離脫掉氫質子 (deprotonation),並形成強親核基(nucleophile)alkoxide, 之後 alkoxide 會攻擊五碳糖 3'端磷酸酯鍵之磷原子,形成 2',3'-cyclic phosphate;在第二個步驟的水解反應中,2',3'-cyclic phosphate 會水解 為 2'-phosphate 及 3'-phosphate,至此完成整個水解反應。然在轉酯反應 中,可能會形成一個雙三角椎 (trigonal bipyrimide) 之過渡態³,RNA 水 解機構如 (圖 1-1.)。

RNA 因為有其結構上的優勢,形成 alkaline instability³,水解的速率 很快。相對的 DNA 的五碳糖的 2'-H,使得 DNA 的水解過程中所需要的親 核基就必須由外界提供;此外,外來的親核基帶負電,而磷酸酯鍵也帶負 電,同性相斥的結果,會使得 DNA 水解反應更不容易進行,也因此 DNA 在自然界可以穩定存在萬年以上。 DNA 的酵素水解通常是依照下列雨步驟,如(圖 1-2.)所示:

(1)藉由外來的親核基攻擊在磷原子上,例如:外來的 OH⁻,形成五配 位的中間物 (pentacoordinated intermediate)。

(2)移除 2'-deoxyribonucleotide 位置上的 5'-OH ,且 P-O 鍵斷裂。此步驟是反應的速率決定步驟。而在非酵素水解反應中,在 3'端 P-O 鍵的分裂也會發生⁴。

天然的核酸酶和限制酶是非常具有專一性,但是卻有鍵結過強的缺點, 加上 DNA 水解不易,RNA 水解速率是比 DNA 快 $10^5 \sim 10^6$ 倍。因此除了 參考 RNA 水解的反應特性外,觀察自然界中的水解 DNA 酵素也是一項很 好的選擇。最有名的兩個例子: alkaline phosphatase、purple acid phosphatase。以*E. coli.* alkaline phosphatase 為例 (圖 1-3.),其是有兩 個 Zn^{2+} 金屬中心的雙核酵素,兩個 Zn^{2+} 金屬彼此相距約 3.9Å,可不專一 催化任意磷酸酯鍵。它是由兩個步驟催化 DNA 的水解:當雙金屬離子固 定住 DNA 序列時,一個 Zn^{2+} 會活化親核基 Ser_{102} ,另一個 Zn^{2+} 則穩定五 配位過渡態所產生離去基 (leaving group) 的氧原子電荷 (圖 1-4.)^{1,5,6}。

【圖 1-4.】 Escherichia coli alkaline phosphatase 催化磷酸酯鍵的五配位過渡態⁶

由此可知水解 DNA 或 RNA 的磷酸雙酯鍵如果有金屬離子的加入,就 會更有效率,實際上生物體的酵素的確都需要金屬離子才能發揮其功用。 金屬離子在催化水解磷酸雙酯鍵反應的角色主要是⁵(如圖 1-5.):

(a)和水配位後並解離形成金屬氫氧根離子(metal-bound hydroxy anion),金屬氫氧根離子當作是一個路易士鹼(Lewis base)來拔除 2'-OH 上的氫,使其成為 2'-O 強親核基,攻擊五碳糖 3'端磷酸酯鍵之磷原子;

(b) 配位在 2'-OH 的氧原子上,吸引氧原子上電子雲,使 2'-OH 的氫更 容易解離,以形成 2'-O⁻親核基 (metal stabilized oxyanion);

(C)轉酯過程中所形成的五配位中間物或過渡態,會由於金屬靜電相吸 而提供其穩定性;

(d) 配位在離去基(leaving group)上,穩定離去基,使反應朝向水解 方向進行。

【圖 1-5.】 金屬催化轉酯或水解的可能機制

在親核基攻擊的反應部分,可用來幫助加速水解反應的金屬離子包括 Mg^{2+} 、 Ca^{2+} 、 Fe^{3+} 、 Ni^{2+} 、 Cu^{2+} 、 Pb^{2+} 、 Ln^{3+} (鑭系金屬離子)、 UO^{2+} (二氧化鈾離子)和 Th salts(釷鹽)等;非金屬離子 H⁺、OH⁻、amines (氨類)和其他含氮化合物⁷。

由過渡金屬離子和鑭系金屬離子所形成之錯合物的人造切割試劑中, RNA、DNA 的水解以鑭系金屬離子(Ln³⁺)對於是最有效率的,且 RNA 水解反應速率會隨著鑭系金屬的原子序增加而遞增,Tm³⁺、Yb³⁺和 Lu³⁺ 等離子是較有效率的;Ce⁴⁺被認知是最有效率的 DNA 水解促進劑⁴。

雖然鑭系金屬離子在水溶液下是很有效率的 DNA 切割試劑,但其在 高 pH 值的水溶液下會產生沈澱⁸,且會對生物體產生毒性;因此設計出一 種錯合物是可保有鑭系金屬的水解切割能力,且不具有生物毒性及安全性, 是科學家努力的方向。為設計出對鑭系金屬有較高親和力的配位子,我們 參照 MRI (magnetic resonance imaging) 核磁共振造影試劑的設計⁹, 發現大環配位子遠比線性配位子對鑭系金屬所形成的錯合物較穩定,更發 現到當配位子中在氮原子上有 carboxymethyl group (乙酸基) 的鍵結,可 提供一個帶中性或正電的錯合物之設計方法。

【圖 1-6.】 目前 FDA 通過的 MRI 試劑⁹

目前有不少團隊致力於人造磷酸水解酶的研究,也都有重要的發現,循著這些研究我們可以更了解不同切割劑的特性與應用。

※ 文獻回顧

◎<u>Breslow</u> et al.

從 alkaline phosphatase 發現到金屬 Zn^{2+} 有催化的功能,1986 年, Breslow 團隊就設計含氮大環,錯合 Zn^{2+} ,切割 DPPNPP (diphenyl *p*-nitrophenyl phosphate),在 pH 8.7 的 CH₃CN (aq) 下,催化的活性物質 zinc hydroxide complex 會產生,水解效率提高¹⁰。其團隊早期主要的三 個大環 (圖 1-7.),衍生物 1、2 在相同的實驗條件下,反應速率可以比沒 有官能基的 3 快 9 或 20 倍以上。顯示這些輔助官能基具有一般鹼基的功 能,可促進催化反應,稱為雙官能基催化(bifunctional catalysis)(圖 1-8.) 11。

【圖 1-7.】 Breslow 團隊研究的含氣大環衍生物¹²

【圖 1-8.】 酵素與金屬的雙官能基催化 11

1986~1990, Hendry and Sargeson 發表以 Co³⁺及 lr³⁺與四元的單體 錯合的催化金屬,發現 lr³⁺比 Co³⁺體積來得大,反應過程環的包覆性 (closure)會較差,因此催化速率比 Co³⁺的錯合物慢。但是環的開闔與 否,並不是那麼重要,在生物體酵素催化反而傾向開放性的結構,且生物 中常用來催化的金屬 Mg²⁺、Zn²⁺都是比 lr³⁺還大的金屬。所以此團隊提出 來的催化機制比較不符合生物體的酵素催化機制 ¹³。

【圖 1-9.】 Hendry and Sargeson 利用 O^{18} 追蹤其 Ir^{3+} 錯合物水解磷酸鍵的機制 ¹¹

©<u>Krämer</u>

1996年, Krämer 團隊以雙官能基催化反應機構為基礎設計配位子(圖 1-10.)^{12,14}。其結構是由兩個吡啶環(bpy)構成,並在吡啶環2的位置 上接上烷基胺(alkylamine)作為胺基酸的類比物。兩種配位子,一個胺 基上接有氫,另一個則以甲基取代。兩者均配位上 Cu²⁺形成 L¹Cu、L³Cu。

 $L^1Cu \cdot L^3Cu$ 水解 BNPP(bis(*p*-nitrophenyl) phosphate)的結果, L^1Cu 的水解速率比 L^3Cu 快上 1000 倍,而(bpy)Cu 則和 L^3Cu 的速率相當。這 主要的原因可能是 BNPP 的磷酸雙酯鍵與 L^1Cu 金屬配位並以氫鍵與一個 胺基酸連結,這樣電荷穩定的狀態下受質在合適的方位被 Cu-OH 的親核 基攻擊(圖 1-10.)¹²。

【圖 1-10.】 Krämer 的 BNPP 切割劑 ^{12,}L¹Cu K_{cat}=4.4 x 10⁻³;L³Cu K_{cat}=4 x 10⁻⁶。

從 1993 年起,Burstyn 提出 (Cu[9]aneN₃Cl₂) 以三氮九元環的配位 子與Cu²⁺錯合,水解BNPP,並以HPLC 分析水解後的產物為 *p*-nitrophenyl phosphate 及 *p*-nitrophenolate¹⁵。水解後的動力學發現,催化級數只有 0.5, 金屬的配位水在 pH 7.3 始解離,水解反應上升。Burstyn 認為水解反應過 程單體形成雙體(圖 1-11.)的平衡常數 K_{f} =1220 M⁻¹,因此具有活性的單 體比例下降,反應級數下降 ¹⁶。

【圖 1-11.】 Burstyn Cu[9]aneN₃Cl₂水解 BNPP 反應平衡式¹⁶

Burstyn 等又陸續合成 Cu[9-11]aneN₃X₂,水解 BNPP 實驗結果,環 穴越大,水解速率就會增加,從九元環到十一元環速率常數增加了 8 倍, 並發現雙體形成常數 K₄隨之下降(表 1-1.)。而在分析金屬錯合物結晶圖, 環穴越大,金屬離子就越深入環穴中心,N-Cu-N 的鍵角就越大,相對 Cu 的兩個配位水鍵角會減小,大環錯合物在水溶液中形成雙體的立體阻礙變 大,單體的比例升高,水解反應自然增快¹⁷。

	pKal ^a	$K_{\rm f} ({ m M}^{-1})^c$	$k (M^{-1/2} s^{-1})^c$
Cu([9]aneN ₃) ²⁺	7.3 ^b	13000	2.0×10^{-4}
Cu([10]aneN3) ²⁺	7.6	5300	4.0×10^{-4}
Cu([11]aneN ₃) ²⁺	8.2	2700	16×10^{-4}

【表 1-1.】 Burstyn Cu[9-11]aneN₃Cl₂水解 BNPP 之常數¹⁷

為了增加大環的立體障礙,Burstyn 在其九元環的氮上加上三個異丙基(圖 1-12.)¹⁸,Cu(*i*-Pr₃[9]aneN₃)²⁺環穴中心金屬鍵角更大,雙體的形成常數更小,反應速率也更快,可達九元環的 60 倍以上(表 1-2.)。

OMorrow et al.

天然的酵素多半有兩個以上的金屬參與催化反應,例如 alkaline phosphate。因此除了單核金屬錯合物,多核金屬錯合也被重視,1998 年 Morrow 就以此為概念,採用了 Burstyn 發展的三氮九元環來做雙體的研 究,利用苯環橋接了兩個三氮九元環,合成了兩種雙體配位子¹⁹(圖 1-13.)。 滴定得知雙體在 pH 7.3 時主要活性物種為(Cu₂L(OH)₂²⁺),因此在 pH 7.3 條件下水解 GpppG 得到的假一次速率常數²⁰,兩種雙體的速率都是單體 的 100 倍左右。Morrow 觀察到隨著 L³ 雙體濃度上升,反應速率剛開始是 二次趨勢,而高濃度處則有飽和的現象。所以他推測 L³ 雙體奧 GpppG 反 應有 2:1 與 1:1 的反應機制(圖 1-14.),而套入到此模型計算出 L³ 2:1 組 合的假一次速率常數為 L³ 1:1 組合的 20 倍。而 L² 雙體則只有 2:1 的反應 組成,假一次速率常數為 4.3×10⁵ s⁻¹。

【圖 1-13.】 Morrow 合成的兩種雙體, *m*-xylene、*p*-xylene¹⁹

$$\begin{split} & \text{GpppG} + \text{Cu}_2\text{L} \xrightarrow{K_{\text{m1}}} \text{GpppG} - \text{Cu}_2\text{L} \xrightarrow{k_p} \text{P} \\ & \text{GpppG} - \text{Cu}_2\text{L} \xrightarrow{K_{\text{m2}}} \text{GpppG} - (\text{Cu}_2\text{L})_2 \xrightarrow{k_q} \text{P} \\ & k_o = \frac{k_p K_{\text{m1}}[\text{Cu}_2\text{L}] + k_q K_{\text{m1}} K_{\text{m2}}[\text{Cu}_2\text{L}]^2}{1 + K_{\text{m1}}[\text{Cu}_2\text{L}] + K_{\text{m1}} K_{\text{m2}}[\text{Cu}_2\text{L}]^2} \end{split}$$

【圖 1-14.】 Morrow 雙體反應模型

2003 年 Morrow^{21, 25} 將兩個三氮九元環使用 1, 3-dibromo-2-propanol 連接合成新的雙核配位子 Zn₂(L2O) (圖 1-15.)。滴定實驗結果,相關設 計的雙體配位子與兩當量的 Zn²⁺都有極佳的錯合效果。而動力學實驗從水 解 HPNP (2-hydroxypropyl-4-nitrophenyl phosphate)的結果顯示, Zn₂(L2O)的二級反應常數是 Zn[9]aneN₃ 的 120 倍。這結果支持了 Zn₂(L2O) 的兩個金屬離子可藉由協同作用來穩定 HPNP 的中間過渡態的 假設,大幅增加了水解速率 (圖 1-15.)。

除了專注在雙核水解反應之外, Morrow 在早期就曾經研究過過渡金屬、 鑭系金屬與六配位的配位子水解 RNA,結果發現鑭系金屬錯合物(圖 1-16.) 具有非常高的熱力學穩定性²²。此外, Morrow 團隊還發表了單純使用鑭 系金屬離子來進行 RNA 的轉酯催化反應,反應性亦比過渡金屬離子快很 多,推測是因為鑭系金屬具有更高的路易士酸的特性^{23,26}。

Ln = La, Eu, Gd, Tb, Lu

【圖 1-16.】 Morrow 鑭系金屬與六配位的配位子²²

陸續, Morrow 發表許多配位子與鑭系金屬的活性或動力學研究。1996 年²⁴, 八配位的 TCMC 以及七配位的 NBAC (圖 1-17.)。以 TCMC 與十 配位的 La³⁺錯合後,具有水解 RNA 結構的效果,而與九配位的 Eu³⁺錯合 後就失去了活性。另外將 NBAC 與 Eu³⁺錯合,則具有水解效果。所以推 測,金屬錯合物必須具有兩個配位水,才能發揮催化水解反應的效果。接 著發表其他以 Cyclen 為基礎的鑭系金屬大環配位子 (圖 1-17.)。藉由改 變氮原子上所接的官能基,希望能展現更優秀的水解效果,而其中 THED 水解 mRNA 的 5'Cap 結構有顯著效率²⁶。

【圖 1-17.】 Morrow 之 Cyclen 衍生物與 Ln³⁺配位(TCMC、NBAC、THED、s-THP、TCMC)^{24,26}

⊚<u>Gunnlaugsson</u> et al.

2005 年 Gunnlaugsson 團隊發表以 Cyclen 為基礎的 La³⁺及 Eu³⁺大環 錯合物²⁷,進行水解 HPNP 的實驗,觀察到 La³⁺錯合物的催化速率會隨著 pH 值上升,在 pH 8.5 後則下降。但是 Eu³⁺的錯合物並沒有此現象。推測 應該是 La³⁺有兩個配位水,比 Eu³⁺多了一個配位水,造成 pH 上升後兩個 配位水皆解離而失去反應活性,因此 La³⁺的錯合物水解 HPNP 會隨 pH 值 改變,而 Eu³⁺錯合物的水解反應則無關 pH 值 (圖 1-18.)。

而我們實驗室近年來主要以三氮九元環以及四氮十二元環的衍生物 並配合鑭系金屬來進行人工水解酶的研究。利用加上乙酸基的大環配位子, 與鑭系金屬錯合後,金屬錯合物就會為電中性或帶正電,負電性的磷酸酯 鍵就會與之結合反應。實驗室研究的大環,我們都有特定的簡稱,各簡稱 的大環結構請見附錄 (1.)。

近年我們對於DO2A (1,4,7,10-tetraazacyclododecane-1,7-bis(acetic acid))為主的大環錯合物之動力學研究已有相當的了解,在前人的研究中, 觀察到DO2A是一個具有熱力學穩定性以及動力學情性(Kinetically inert) 的錯合物²⁸,與鑭系金屬的錯合穩定常數皆很高(LogK > 13),是非常好 的金屬錯合物。而本實驗室已經研究了不同鑭系金屬與DO2A錯合後的水 解效率,實驗發現以EuDO2A⁺有最優秀的催化能力²。而與EuK21DA⁺ (K21DA:1,7-diaza-4,10,13-trioxacyclopentadecane-N,N'-diacetic acid)、 EuEDDA⁺(EDDA: ethylenediamine-N,N'-diacetic acid)(圖1-19.)錯合 物水解BNPP能力做比較,觀察到配位水越多水解效果越好。

【圖 1-19.】 Eu³⁺與不同配位子之配位關係與配位水數量²

接著選擇 NO2A (1,4,7-triazacyclododecane-1,4-bis(acetic acid)) 以減少配位數為目標進行研究,希望能保持金屬錯合物的穩定常數並且增

加配位水數量,以達到更好的水解效果。另外為了防止多體錯合物的生成, 我們也加入了具有立體張力的取代基來抑制多體的產生,但是因為取代基 限制太多,反而錯合鑭系金屬的穩定常數很低。得到的結果是,NO2A的 確容易形成雙體。在水解 BNPP 的動力學實驗中,YbNO2A⁺級數小於1, 而 EuNO2A⁺級數則大於 1。這也許是 Eu³⁺在產生不具有活性雙體前,會 有比單體更具有活性的雙體結構產生²⁹。

在大環配位子的研究中,除了常用的氮原子做為供電子基(donor) 以外,也有人研究用氧原子替換氮原子的大環配位子,發現對於金屬離子 的選擇性增強,也就是比起替換前的大環配位子對於不同的金屬離子穩定 常數增加或減少,而大環錯合物的構型也會有所改變^{30,31,32}。

因此,決定將以前研究的三氮九元環 NO2A 其中一個氮以氧取代,合成新的配位子 ONO2A(1-oxa-4,7-diazacyclononane-4,7-diacetic acid)。

◎研究 ONO2A 的熱力學以及與鑭系金屬錯合之配位化學。

第二章 配位子 ONO2A 的合成

※ 1,5-bis(p-toluenesulfonato)-3-oxapentane 之合成

* 合成圖:

入完成。接著再將所有的反應物以電動攪拌子強力攪拌 10 小時。

- 攪拌完的產物為白色的乳狀物,經減壓過濾可以得到白色的粉末固體, 以大量的二次水及酒精沖洗2~3次。
- 完成後產物加入有450 ml的熱酒精燒杯中加熱,持續攪拌到完全溶解後,蓋上保鮮膜,靜置冷卻、冷藏。12 小時後,得白色細針狀結晶,為1,5-bis(p-toluenesulfonato)-3-oxapentane。
- 5. 減壓過濾結晶,真空乾燥後,稱重保存。
- 產率:90% 熔點:79 ℃~81 ℃

※ N,N'-bis(p-toluenesulfonyl)ethane-1,2-diamine 之合成

* <u>合成圖</u>:

* 實驗方法:

- 取 80 ml 的二次水及 0.30 mole 的 NaOH(約 40.00 g), 一起加入 500 ml 的圓底燒瓶中,攪拌溶解,再加入 0.10 mole 的 ethylene diamine (約 6.01 g), 持續冰浴攪拌拔氣。
- 2. 取 0.20 mole (約 38.13 g) 的 p-toluenesulfonyl chloride, 將之溶於 200 ml 的乙醚,置入等壓分液漏斗,再逐滴加入上述的 ethylene diamine 溶液,持續攪拌反應,約在 3~4 小時內加入完成。接著再將 所有的反應物裝置電動攪拌子強力攪拌 10 小時。
- 攪拌完的產物為白色的霜狀物,經減壓過濾可以得到白色的粉末固體, 以大量的二次水及酒精沖洗2~3次。
- 完成後產物加入有450ml的熱酒精燒杯中加熱,持續攪拌到完全溶解, 蓋上保鮮膜,靜置冷卻、冷藏。12小時後,得白色長片針狀結晶。
- 減壓過濾結晶,為 N,N'-bis(p-toluenesulfonyl)ethane-1,2-diamine, 真空乾燥後,稱重保存。
- 產率:88% 熔點:160 ℃~163 ℃

※ 1-oxa-4,7-bis(p-toluenesulfonyl)-4,7-diazacyclonane 之合成

根據 *Macrocycle Synthesis - A Practical Approach* (David Parcker, Oxford University Press,1996)³³內容所提供的方法。

合成圖:

*

NHTs TsHN όTs όTs N,N'-bis(p-toluenesulfonyl)ethane-1,2-diamine 1,5-bis(p-toluenesulfonato)-3-oxapentane Cs₂CO₃ DMF 1-oxa-4,7-bis(p-toluenesulfonyl)-4,7-dia 1,10-dioxa-4,7,13,16-tetra(p-toluenesulfonyl)-4,7,13,16-tetraazacyclooctadecane cyclonane 材料: * 100 m Dimethylformamide (DMF) 300 ml Dicloromethane (CH₂Cl₂) 100 ml Toluene 50 ml Hexane Diethyl ether 50 ml $K_2CO_3 \cdot MgSO_4$ Cs_2CO_3 8.26 g (25.4 mmole) 1,5-bis(p-toluenesulfonato)-3-oxapentane 5.00 g (12.1 mmole) 4.44 g (12.1 mmole) N,N'-bis(p-toluenesulfonyl)ethane-1,2-diamine

* 實驗方法:

- 取 5.00 g 的 1,5-bis(p-toluenesulfonato)-3-oxapentane 加入 50 ml
 DMF 於 250 ml 圓底瓶中,再加入 8.26 g 的 Cs₂CO₃,溶液呈白色, 攪拌反應。
- 取 4.44 g 的 N,N'-bis(p-toluenesulfonyl)ethane-1,2-diamine,溶於 50 ml DMF 中,溶液呈透明狀,再倒入等壓分液漏斗,緩緩滴入 1,5-bis(p-toluenesulfonato)-3-oxapentane 溶液中,約歷時 3-4 個小時, 期間不斷攪拌混合。
- 混合好的反應物在室溫下,攪拌反應 19個小時。再加熱到 60 ℃,反應 2個小時。
- 4. 以減壓濃縮儀(水浴 75 ℃,壓力 1.0 mmHg)抽乾 DMF 溶劑。得到 白色偏黃的產物。將產物溶在 100 ml 的二次水,會有一些無法溶解的 懸浮物,再加入 100 ml 的 CH₂Cl₂(可以 CHCl₃取代)萃取,此時所 有未溶的懸浮物都溶解。以分液漏斗分離有機層,約反覆萃取 3 次。
- 5. 萃取液中加入 2.00 g 的 MgSO4, 乾燥有機層,約半個小時。
- 6. 過濾掉 MgSO4,將濾液以減壓濃縮儀抽乾,得淡黃色固體。
- 7. 將所得的淡黃色固體加入 100 ml 的 toluene,置於燒杯中加熱,所有 的溶液呈黃色澄清,加熱過程中有部份無法溶解的白色粉末,將之濾 出,應該是 18-ring 的 1,10-dioxa-4,7,13,16-tetra(p-toluenesulfonyl)-

4,7,13,16-tetraazacyclooctadecane,對整個反應而言,這是附產物。

8. 濾液則再持續加熱,讓 toluene 的量減少,約剩下 40 ml。

- 溶液靜置於室溫下,約1小時就有結晶出現。冷藏溶液10小時後, 濾得產物,為1-oxa-4,7-bis(p-toluenesulfonyl)-4,7-diazacyclonane。
- 10. 真空乾燥後,稱重保存。
- 產率:60% 熔點:196 ℃~198 ℃

m

* 討論:

- 這個合環的步驟,曾經多次試過要用實驗室常用的 NaH 拔氫,但是結 果都未成功,沒有大環生成或是僅有及少量的產物。以 CS₂CO₃ 為反 應劑,則合環的效力提高很多,且步驟簡單,唯所需的實驗成本較高。
- 2. 整個反應的過程中,會有另一個 18-ring 的產物,會減低所要的 1-oxa-4,7-bis(p-toluenesulfonyl)-4,7-diazacyclonane 的產率,但是, 可以由調整反應時間來降低這個損失,尤其是加熱反應的這個步驟, 時間越長,產生的 18-ring 大環比例會越高。

11111

※ 1-oxa-4,7-diazacyclonane · 2HBr 之合成

根據 J. Chem Research (M), 1985, 3501-3509³⁴的實驗方法。

* 合成圖:

- 將 8.77 g 的 1-oxa-4,7-bis(p-toluenesulfonyl)-4,7-diazacyclonane、
 9.42 g 的 phenol、58.2 ml 的 HBr / Acetate 33%一起加到 250 ml 的
 圓底瓶中,油浴 100 ℃,架設冷卻迴流裝置,迴流管上方出口以玻璃
 棉塞住,減低酸蒸氣揮發量,反應 48 小時。整個反應物呈現酒紅色。
- 反應結果產物為暗紅色,將產物到入250 ml的燒杯中,0 ℃冰浴冷卻, 並加入350 ml的冰乙醚,攪拌子攪拌30 分鐘,開始有暗紅色的黏稠 固體附在瓶壁上。

- 3. 倒掉乙醚,再以乾淨的乙醚清洗產物,最後再以丙酮清洗一次。
- 加入80 ml的二次水,此時產物全溶解於水中,呈粉紅色液體,再加入少量活性碳脫色。
- 過濾掉活性碳,得黃色的液體,以減壓濃縮儀將之抽乾,得紅褐色的 黏稠物。
- 將所得的紅褐色黏稠產物加入 50 ml 的熱甲醇,再加入等量的乙醚, 此時溶液會呈白霧狀,靜置冷卻,移至冰箱中 10 小時,再結晶。過 濾得產物。

202

7. 真空乾燥後,稱重保存。

熔點:200℃~

- 產率:68%
- * <u>討論</u>:

Phenol 及 HBr / Acetate 的揮發性極強,必須在抽風櫥操作。原本會 將冷卻迴流裝置再接管子到 NaOH 水溶液中,以消除過多的酸蒸氣, 然一旦反應圓底瓶內的壓力不足,會造成 NaOH 倒抽入圓底瓶內,嚴 重影響實驗,經過多次調整都會有這種狀況。因此,仍以塞玻璃棉在 迴流管上方出口為佳。

※ 1-oxa-4,7-diazacyclononane-4,7-diacetic acid · 2HBr 之合成

根據 J. Chem Research (M), 1985, 3501-3509³⁴的實驗方法。

* <u>合成圖</u>:

1-oxa-4,7-diazacyclononane-4,7-diacetic acid · 2HBr

* <u>材料</u>:

- 1-oxa-4,7-diazacyclonane · 2HBr 2.92 g (0.010 mole) NaOH 1.60 g (0.040 mole) Ether 100 ml $Ba(OH)_2 \cdot 8H_2O$ 13.32 g (0.030 mole) Bromoacetic acid 4.17 g H_2SO_4 12 ml (2.5 M) Acetone 30 ml Bromic acid Ethanol 實驗方法 * 1-oxa-4,7-diazacyclonane · 2HBr 取 2.92 g, 溶於 3 ml 的二次水, 呈 1.
 - 白色混濁,加入 1.60g的 NaOH 攪拌溶解,溶液變成淡粉紅色透明, 倒入分液漏斗中。
- 以 20 ml 的乙醚加入分液漏斗中萃取,取有機層,共5次。水層有白色的顆粒混雜。
- 將乙醚萃取液以減壓濃縮儀抽乾,得透明略黃的稠狀物,為 1-oxa-4,7-diazacyclonane。
- 1-oxa-4,7-diazacyclonane 溶於 10 ml 二次水中置於單頸圓底瓶,加入 13.32 g 的 Ba(OH)₂ · 8H₂O,瓶口塞橡膠塞, 0 ℃冰浴攪拌。
- 5. 取 4.17 g 的 bromoacetic acid 溶在 5 ml 的二次水中,置入針筒中, 再從橡膠塞頭將針頭插入,緩緩將 bromoacetic acid 的水溶液加入反 應物中,總共約歷時至少 1 個小時加完,持續冰浴。根據 Le Chatelier's

Principle,冰浴得以使9-ring上-NH的H被移除的放熱反應持續進行,以利接上-CH₂COOH。

- 加完 bromoacetic acid 後,再將單頸瓶口以氮氣球封住,於室溫下反應 48 小時,原本的反應溶液呈白色粉狀液體,過了一天後,呈現淡 黃色的透明液狀。
- 反應結束後,加入12ml的2.5MH₂SO₄,立即有白色粉末出現,將所 有反應物加熱沸騰後,靜置冷卻,會有BaSO₄的白色沉澱。
- 8. 以玻璃濾膜漏斗,先加入一層活性碳粉,以二次水讓粉體聚結,再緩緩倒入圓底瓶內的液體,盡量將圓底瓶的殘留物以二次水沖出。靜置, 等白色 BaSO4 粉狀物在玻璃漏斗中大部份沉澱後,再進行減壓過濾。 過濾後得澄清的濾液。
- 以減壓濃縮儀抽乾濾液,得 1-oxa-4,7-diazacyclononane-4,7-diacetic acid 之紅褐色的膏狀物。
- 10. 將紅褐色的 1-oxa-4,7-diazacyclononane-4,7-diacetic acid 膏狀產物 加入 30 ml 的丙酮,攪拌 30 分鐘,會成灰白色粉狀固體。過濾掉丙酮, 再以乾淨丙酮沖洗,最後將固體風乾或抽乾。
- 將所得的粉狀固體加入適量的3.0 N HBr 溶解,再加入等量的熱酒精, 溶液呈橘紅色,靜置冷卻後置入冰箱中一天,再結晶。
- 12. 過濾再結晶固體,並以95%的酒精清洗。
- 13. 以減壓濃縮儀將結晶乾燥,得到白色固體,即為我們所需的產物—
 1-oxa-4,7-diazacyclononane-4,7-diacetic acid · 2HBr,稱重保存。

產率:66% 熔點:195 ℃~196 ℃

EA: Anal. Calcd for C₁₀H₁₈N₂O₅ • 2HBr • 0.75H₂O:
N% • 6.65; C% • 28.49; H% • 5.14
Found: N% • 6.94; C% • 28.49; H% • 5.29(附錄(6.))

MS(ESI+):M/Z 247.2(M+H)⁺(附錄(5.))

NMR (D₂O, 500M HZ):(附錄(2.)、(3.)、(4.))

$$\label{eq:hardenergy} \begin{split} ^1&H:\delta\ 3.292\ ,\ \delta\ 3.302\ ,\ \delta\ 3.312\ (\ triplet\)\ ;\ \delta\ 3.446\ (\ single\)\ ;\ \delta\ 3.793\ ,\\ &\delta\ 3.803\ ,\ \delta\ 3.813\ (\ triplet\)\ ;\ \delta\ 3.942\ (\ single\)\ ;\ \delta\ 4.870\ (\ single\)\ \end{split}$$

- * 討論:
- 1. Ba(OH)₂ 溶水性低,加入反應物水溶液中,會呈糊狀,因此不易反應 完全。反應完後如果要去除多餘的 Ba(OH)₂,可用過濾的方式,但是 這樣產物也可能一起被濾掉,解決方法是加入過量的 H₂SO₄。H₂SO₄ 可以中和未反應的 Ba(OH)₂,且因為 9-ring 本身也可能跟 Ba²⁺錯合, 加入過量的 H₂SO₄,也可以將 Ba²⁺逼出。
- BaSO4的粉體很細,可能不容易濾掉,經多次試驗,都會隨著濾液流出,因此在玻璃膜漏斗鋪上活性碳粉,發現比較可以阻檔 BaSO4粉末濾出。此外,過濾過程中濾液也可以被脫色。
- 以HBr 再結晶的過程,是最容易失敗的,如果加入過濃的HBr,產物 不易溶解;加入太多太稀的HBr,產率及結晶的結果都會變差。經驗 上,大約是加到剛好可以溶解產物的HBr,再加入等量的熱酒精一起 再結晶。
- 結晶的晶體不可以以無水酒精清洗,因為可能會將雜質逼出。而如果 是用含水太多的酒精,就會損失產物。適量比例的酒精及水,可以將

水溶性及有機的雜質去除,因此用95%的酒精清洗。再結晶後的濾液,可以抽乾收集,多批的濾液,可以再結晶出產物。

ONO2A 的 NMR 圖譜分析,及產物送測交大貴重儀器中心的 NMR-2D 結果,分析各峰值的對應 ONO2A 的結構如下³⁰。其餘請見附錄(2.)、
 (3.)、(4.)。

【圖 2-1.】ONO2A 2D NMR 相對應的元素位置
第三章 配位子 ONO2A 質子化常數之研究

※ 配位子 ONO2A 溶液之配製

m

根據送測元素分析儀 Heraeus CHN-O Rapid 的結果(見附錄(6.)),
N%, 6.94; C%, 28.49; H%, 5.29。加上合成 ONO2A 鹽類的過程,
得合理推測合成後 ONO2A 鹽酸應該有 HBr 及結晶水。經過多種的可能組
合推算, 鹽類應為 ONO2A・2HBr・0.75H₂O,計算得分子量為 421.58。

稱取 0.4216 g 的 ONO2A · 2HBr · 0.75H₂O_(s),溶於少量二次水,加 入定量瓶中,補二次水達 20 ml,為 50.0 mM 的 ONO2A_(aq)母液。再取 4 ml 的 ONO2A_(aq)母液,定量瓶稀釋達 20 ml,為 10 mM 之 ONO2A_(aq)。

11.11

※ 配位子 ONO2A 溶液濃度之標定

配好的配位子 ONO2A(aq)為求精準,需以標準程序標定濃度。

* 標定方法:

- 配製一級標準酸 KHP (potassium hydrogen phthalate)溶液:
 取多量的 KHP_(s),置於 70 ℃烘箱中 3 小時,乾燥。稱取 2.042 g 之
 KHP_(s),以二次水溶解,加入 100 ml 定量瓶,配成 0.10 M 的 KHP_(aq)
 標準液。
- 配製 TMAOH(tetramethylammonium hydroxide, (CH₃)₄NOH)溶液:
 取 22.73 ml 的 TMAOH_(aq) (~1.1 M)母液,加入 50 ml 的定量瓶,以二次水稀釋,得約 0.50 M 的 TMAOH_(aq),為滴定用之鹼液。

配好的鹼液裝置到 702 SM Titrino, Metrohm 中, 鹼液瓶的蓋子除了 流通的管線外,還要再接上一瓶的鹼石灰 (eg., Sodalime, Merck), 以除去空氣中過多的水氣及二氧化碳,維持鹼液的濃度。另外,滴定 槽接循環水流,控制溫度在 25±0.1 ℃。

滴定槽內加入 0.50 ml 的 KHP_(aq)標準液,在補二次水達 5.0 ml,攪拌
子攪拌平衡,以 Metrodata TiNet 2.4,Metrohm 軟體為滴定計量。
TMAOH_(aq)與 KHP_(aq)之滴定為一般的酸鹼平衡,設定值為 V step:
0.004 ml; signal drift: 5 mv/min; equilibrium time: 100 s。由 0.50 ml
的 0.10 M KHP_(aq)所需的 TMAOH_(aq)體積計算標定 TMAOH_(aq)的濃度。

3. 配製 TMACI (tetramethylammonium chloride, (CH₃)₄NCI) 溶液:

取多量的 TMACl_(s), 置於 70 ℃烘箱中 3 小時, 乾燥。稱取 4.38 g 之 TMACl_(s), 二次水溶解, 加入 20 ml 定量瓶, 配成 2.0 M 的 TMACl_(aq), 為所需之離子強度劑。

離子強度的計算方法:

4. 以TMAOH_(aq)標定配位子 ONO2A 溶液:

在滴定槽中加入 1000 µI ONO2A (aq); 250 µI TMACI (aq); 3750 µI 二 次水,配成體積 5 ml,配位子濃度 2.0 mM,µ=0.10 M 之滴定溶液, 控制溫度在 25±0.1 ℃,攪拌子攪拌平衡。

滴定前,電極先以pH 7.00;pH 4.01;pH 9.95 三個標準液做校正, pH(as)=7.0±0.10;slope=0.999~0.985。

以 TMAOH_(aq)滴定,Metrodata TiNet 2.4,Metrohm 軟體計量,設定 值為 V step : 0.001 ml ; signal drift : 1 mv/min ; equilibrium time : 200 s。 滴定超過5個ONO2A當量的TMAOH_(aq),會在約3當量的TMAOH_(aq)
 體積,產生一個反曲點(圖 3-1.)。

5. 以TMAOH_(aq)標定配位子 CuONO2A 溶液:

因為合成的過程中,生成配位子溴酸鹽,一個 ONO2A 不一定有整數個 HBr。為求精確,還要再以 Cu²⁺錯合標定,以交叉確定 ONO2A_(aq)的濃度。

配體積 5 ml,配位子濃度 2.0 mM,µ=0.10 M 之滴定溶液:取 1000 µl ONO2A _(aq)、已標定濃度的 CuSO_{4(aq)} (標定方法及原理見第四章), 過量 5%,即 10.50 mmole、225.0 µl TMACI_(aq),補足二次水達 5 ml, 控制溫度在 25±0.1 ℃,攪拌子攪拌平衡。

以 TMAOH_(aq)滴定,Metrodata TiNet 2.4,Metrohm 軟體計量,設定 值為 V step : 0.001 ml;signal drift:1 mv/min;equilibrium time:200 S。

滴定超過5個 ONO2A 當量的 TMAOH_(aq),會在約4 當量的 TMAOH_(aq) 體積,產生一個反曲點(圖 3-1.)。

moles of TMAOH / moles of ligand

【圖 3-1.】 ONO2A 及 CuONO2A 酸鹼滴定曲線

(例) ONO2A_(aq)濃度計算:

ONO2A 在滴定了 0.0601 ml TMAOH,產生反曲點。CuONO2A 則在 滴定了 0.0801 ml TMAOH,產生反曲點。

根據錯合的原理,推測兩者反曲點之間相差1個當量的H⁺。

標定之 TMAOH_(aq)=0.4745 M

(0.0801 - 0.0601) ×0.4745=1 ml ONO2A _(aq)的毫莫耳數

ONO2A (ag)=9.4900 mM

如果以 ONO2A 在滴定了 0.0601 ml TMAOH,產生的反曲點做為 3 個當量的 H⁺,則 ONO2A (aq)=9.5058 mM

兩種方法標定 ONO2A(aq)濃度在誤差範圍內 (0.16%),因此認定合成

化學反應中,當中心離子 A 開始與反應物 B 進行反應,一連串的平衡 反應就會接著進行,而形成物種 AB_i (*i*=1,2,3...)。

$$h = \frac{(\text{total dissocial hydrogen ion concentrat ion bound to ligand species})}{(\text{total ligand concentrat ion})}$$
$$= \frac{[HL] + 2[H_2L] + 3[H_3L] + \dots + n[H_nL]}{[L] + [HL] + [H_2L] + \dots + [H_nL]}$$
$$= \frac{\sum_{i=1}^{n} i[H_iL]}{\sum_{i=0}^{n} [H_iL]} = \frac{\sum_{i=1}^{n} iK_{H_iL}^H[H]^i}{\sum_{i=0}^{n} K_{H_iL}^H[H]^i} \text{ where } K_{H_0L}^H = 1 \qquad \vec{x} \quad (5.)$$

溶液中總氫離子濃度[H],,包含未鍵結與鍵結(free and bound)的部份,因此在溶液中的質量平衡式為:

$$[H]_{i} = \sum i [H_{i}L] + [H^{+}] - [OH^{-}] \qquad \exists (6.)$$

 $\sum i[H_iL]$:與配位子鍵結的氫離子濃度(the total bound hydrogen ion concentration)

 $[H^+]$: 從配位子解離出的自由氫離子濃度 (the total free hydrogen ion concentration)

[*OH*⁻]: 氫離子濃度的校正因子 (the correction term for hydrogen ion concentration formed by the dissociation of water)

在滴定的過程中,持續將強鹼加入溶液中,所以氫離子的總濃度會下降,此時[H],也可以寫成:

n:配位子質子化總數(number of protonation sites on the ligand) [L]:配位子總濃度(total ligand concentration)

[H],:溶液中氫離子總濃度(total hydrogen ion concentration in the solution)

V: 體積校正因子(a volume concentration factor for dilution)

b:滴定過程中所加鹼的量

根據式 (6.)、式 (7.) 可得:

將式(8.)除上配位子總濃度後,得到平均質子數h:

若取 half-integral a 值(mole of base / mole of ligand)為 $K^{^{_{\!H_nL}}}$ 值,

代入式 (5.) 便可以得到
$$h_{theoreticd} = \frac{\sum_{i=1}^{n} i[H_i L]}{\sum_{i=0}^{n} [H_i L]}$$
,且與實驗值所得到的 $h_{theoretical}$

存在一個標準偏差值,利用電腦反覆取點運算後可找出最小偏差,同時也可找出正確的 $K^{H}_{H_{nL}}$ (質子化常數)。

將ONO2A_(aq)及TMAOH_(aq)滴定的結果(圖 3-2.),以Microsoft EXCEL 軟體處理,取前 60~70 點的數據,再輸入 Martell PKAS 程式,鍵入標定 後的 TMAOH_(aq)濃度及 ONO2A_(aq) 毫莫耳數,即可得到配位子 ONO2A 之質子化常數 (Log*K*_i)。

【圖 3-2.】ONO2A 濃度 2.0 mM, µ=0.10 M (TMACI) 體積 5.0 ml,以 TMAOH 滴定之結果

	實驗值	參考資料 ³⁰	參考資料 ³⁴
Log <i>K</i> 1	10.61 (±0.05)	10.57 (±0.01)	10.8
Log <i>K</i> ₂	4.96 (±0.15)	4.02 (±0.08)	
Log <i>K</i> ₃	2.50 (±0.03)	1.8 (±0.3)	
Log <i>K</i> ₄	1.71 (±0.02)	<1	

【表 3-1.】ONO2A 質子化常數

m

根據 Delgado et al.³⁰,利用 NMR 滴定,找出 ONO2A 的質子化順序 (圖 3-3.),第一個質子化 (LogK₁) 是在 ONO2A 任一個 N 上,第二個質 子化的位置,則是尚未質子化的 N 上的 COO⁻,再來是另一個 N 上的 COO⁻, 最後才是另一個 N。

但是根據林玉淳學姐分子模擬⁴¹ 以及 ONO 本身的質子化常數³⁰、乙酸根及三級氮的鹼度,分析結果應該是水溶液下 pH 7 時,大環上的兩個 N 就會部分質子化,最後質子化的則是兩個酸基。

11111

*	不同	配位子之	.質子化常數	:
---	----	------	--------	---

	ONO2A	NO2A ²⁹	PhNO2A ²⁹	ODO2A ³⁵	ONO ³⁰
Log <i>K</i> 1	10.61 (±0.05)	$11.24(\pm 0.09)$	$10.69(\pm 0.02)$	$10.88(\pm 0.02)$	9.68
Log <i>K</i> ₂	4.96 (±0.15)	$6.42(\pm 0.07)$	$5.56(\pm 0.07)$	$5.96(\pm 0.11)$	5.45
Log <i>K</i> ₃	2.50 (±0.03)	$3.03(\pm 0.13)$	$3.02(\pm 0.05)$	$2.85(\pm 0.13)$	
Log <i>K</i> ₄		$2.04(\pm 0.10)$			
$\Sigma p K_{a}$	18.07	22.73	19.27	19.69	15.13

【表 3-2.】相關不同配位子之質子化常數。

PhNO2A (1-phenethyl-4,7-bis(tert-butoxycarbonylmethyl)-1,4,7-triazacyclononane);

ODO2A (1-oxa-4,7,10-triazacyclononane-4,10-diacetic acid)

ONO (1-oxa-4,7-diazacyclononane)

因為如果環上N質子化後,會跟尚未質子化的COO形成內分子氫鍵³⁰,會穩定整個分子的結構,因此加了酸基的ONO2A之LogK₁會比ONO的值來得高。如果就整個分子而言,N與COO產生的氫鍵最強,大於O。因此,蔡政憲學長所做的NO2A其LogK₁的數值比ONO2A來得高。

若與 ODO2A³⁵相比,因為十二元環的內部質子化的情況影響因子較 多,因此 LogK₁ 又比 ONO2A 數值大些。

第四章 配位子 ONO2A 與鑭系金屬穩定常數之研究

※ 配位子穩定常數之滴定原理

當一金屬離子 M與一配位子 L 鍵結,其穩定常數的平衡式為:

 K_{M} :金屬離子錯合物的穩定常數(stability constant)

K^H_{MHL}:金屬離子錯合物的質子化常數
 LogK^H_{MHL}可利用取 a 值為 0.5, 0.15...附近幾點加以運算,若求出其間的標準差小於 0.05 便可作為正確的 LogK^H_{MHL}。

 $LogK_{MHL}^{H}$ 由上述的方法求得後, K_{ML}便可利用電荷平衡 (charge balance)與質量平衡 (mass balance)求得: [L], : 配位子總濃度 (total ligand concentration) K_n : 配位子質子化常數 (protonation constant) [L], =[L]+[HL]+[H₂L]+····+[H_nL]+[MHL]+[ML] = (1+K₁[H]+K₁K₂[H]² + K₁K₂K₃[H]³ +····+K₁K₂K₃···K_n[H]ⁿ)[L]+(K_{MHL}^H[H]+1)[ML] = A₁[L]+X₁[ML] 式 (C.) 令, A₁ = (1+K₁[H]+K₁K₂[H]² + K₁K₂K₃[H]³ +····+K₁K₂K₃···K_n[H]ⁿ) X₁ = (K_{MHL}^H[H]+1) [M], : 金屬離子總濃度 (total metal ion concentration) [M], = [ML]+[MHL]+[M]=[ML]X₁+[M] 式 (D.) [H],:溶液中氫離子總濃度(total hydrogen ion concentration in the solution)

$$\begin{split} n &: \mathbb{R} de{\Phi} \mbox{$\stackrel{\circ}{$}$} \mb$$

※ 金屬陽離子濃度之標定方法

配位子對金屬離子的穩定常數,建立在配位子與金屬離子濃度的精準 度,當兩者的濃度被標準化過之後,所得的穩定常數才有意義。第三章已 經有標定配位子濃度的方法,金屬離子的濃度標定通常就是利用配位子與 之錯合前後的反應來決定。

例如 Na₂H₂EDTA (Disodium ethylene diaminetetraacetic acid),此 配位子試劑有四個酸基及兩個氣原子具有電子供給團,可以與金屬離子形 成穩定的六配位錯合物 (圖 4-1.),當所有金屬陽離子皆與配位子反應後, 即達滴定終點 (end point),其莫耳比率為 1:1。因此,Na₂H₂EDTA 時 常被拿來標定金屬離子濃度。

1.1.15

【圖 4-1.】 EDTA 與鈣離子形成六配位錯合物

標定金屬離子濃度的實驗,除了配位子試劑及金屬離子外,尚需金屬 離子指示劑(indicator)及緩衝溶液(buffer)。例如 Eriochrome Black T 在 pH 10.0 的金屬離子水溶液中為酒紅色,而當足量的 EDTA 與金屬離子 螯合反應後,溶液會由酒紅色轉為藍色,此時即達滴定終點。

利用 Na₂H₂EDTA 來標定金屬離子時,以下三種方法是較常被使用的:

- 直接滴定法 (direct titration method):
 大約有四十種的金屬陽離子可利用以知濃度的 Na₂H₂EDTA_(aq)及適合 的指示劑來直接滴定未知金屬離子溶液濃度。
- 反滴定法 (back titration method):
 先加過量的 Na₂H₂EDTA (aq) 到金屬溶液中,再利用標準的其他金屬溶液 (Zn²⁺、Mg²⁺)滴定過量的 Na₂H₂EDTA (aq) 達滴定終點。此方法適合以下幾種情況:(A)金屬離子與 Na₂H₂EDTA (aq)反應速率遲緩;(B) 無適合的金屬離子指示劑;(C) 金屬離子容易產生沉澱。
- 交換反應滴定法(exchange reaction titration method)):
 過量的 Zn-EDTA 或 Mg-EDTA 加入金屬溶液中,若欲分析的金屬與
 EDTA 形成更穩定的錯合物,則 Zn²⁺或 Mg²⁺會游離,再以標準的
 Na₂H₂EDTA (aq) 標定其濃度。此法適用於無適合指示劑可用時。

實驗中,所有用來與配位子 ONO2A 錯合的金屬溶液,濃度都是以 Na₂H₂EDTA 直接滴定法標定而得。 當金屬陽離子與配位子試劑莫耳數以 1:1 的比例混合之後,通常會 有下列的反應發生:

 $M^{+a} + Y^{-b} \leftrightarrow MY^{a-b}$

例如,Na₂H₂EDTA(H₂Y)與金屬陽離子在不同的 pH 值中有下列主要的反應平衡,式中 a 值決定 pH 值大小:

其中金屬離子錯合物的穩定常數為K_{MY}:

$$K_{MY} = \frac{[MY]}{[M][Y]} \qquad \vec{x} \quad (b.)$$

實驗過程中,為避免氫離子對金屬離子指示劑造成干擾,在標定金屬 離子時,pH值必須要維持一定的值。例如以 Na₂H₂EDTA 標定 Ca⁺²時, pH值要保持在 9.0~10.0 左右,其主要反應平衡式如下:

※ 金屬陽離子濃度之標定步驟

* 配製溶液:

1. 0.10 M Ca²⁺溶液的配製:

將過量 CaCO_{3(s)}放置在 100 ℃ 的烘箱 2~3小時,烘乾後秤取 1.009 g, 溶於少量的二次水中,小心地滴入 12.0 N HCl_(aq)將 CaCO_{3(s)}慢慢溶 解,最後以 100 ml 的定量瓶加二次水稀釋成 0.10 M 的 Ca²⁺_(aq),此為 標準濃度的 Ca²⁺_(aq)

2. 0.10 M Na₂H₂EDTA 溶液的配製:

秤取 18.613 g Na₂H₂EDTA (s),將之以二次水溶解後,用 100 ml 的定 量瓶稀釋成約 0.10 M 的 Na₂H₂EDTA (aq)。

- 3. 指示劑的配製:
 - ◇ Erichrome Black T (EBT): 取 Erichrome Black T (s) 0.20 g,以
 20 ml 的定量瓶稀釋成 1.0% Erichrome Black T (aq) °
 - ◇ Murexide:取 Murexide(s) 0.04g,用 20 ml 定量瓶加二次水稀釋 成 0.2% Murexide(aq)。
 - ◇ Xylenol Orange:取 Xylenol Orange tetrasodium salt (s) 0.20 g, 用 20 ml 定量瓶加二次水稀釋成 1.0% Xylenol Orange (ag) °

4. 緩衝溶液的配製:

緩衝溶液的配製根據 Henderson-Hasselbalch equation,

$$5.5 = 4.76 + \log \frac{[CH_3COO^-]}{[CH_3COOH]}$$
, $\frac{[CH_3COO^-]}{[CH_3COOH]} = 5.50$

 $取 \frac{5.50}{6.50} \times 0.10M \times 0.50L \times 82.03 \frac{g}{mole} = 3.47g$ 的 $CH_3COONa_{(s)}$,溶於 少量二次水中,再以

$$\frac{1}{6.50} \times 0.10M \times 0.50L \times 60.05 \frac{g}{mole} \div 1.049 \frac{g}{ml} = 0.44 \frac{ml}{ml}$$
的 CH₃COOH
(aq) 調整 pH 值到約 5.0~6.0,再補水至 500 ml。

5. 金屬陽離子溶液的配製:

◇ 過渡金屬離子 Ni²⁺、Cu²⁺、Zn²⁺、Cd²⁺溶液的配製:
 稱取足量的 Ni(NO₃)₂·XH₂O_{(s})、Cu(NO₃)₂·XH₂O_{(s})、Zn(NO₃)₂·XH₂O_{(s})、Cd(NO₃)₂·XH₂O_{(s}), *m*二次水配製成 100 mM 的 100 ml 水溶液。
 ◇ 鐦糸金屬離子 La³⁺、Ce³⁺、Pr³⁺、Nd³⁺、Sm³⁺、Eu³⁺、Gd³⁺、Tb³⁺、Dy³⁺、Ho³⁺、Er³⁺、Tm³⁺、Yb³⁺、Lu³⁺溶液的配製:
 稱取足量的 Ln(NO₃)₃·XH₂O_{(s}), *m*二次水配製成 20 mM 鑭糸金 屬離子 20 ml 水溶液。

* 標定濃度:

- 取 5 ml 0.10 M Ca²⁺(aq)及 15 ml 的 NH₃/NH₄⁺ 0.10 M pH 10.0 緩衝液, 加入小燒杯中,再加入兩滴 1.0% Erichrome Black T (aq)指示劑。以 EDTA (aq)滴定至小燒杯中,達當量點的時候,溶液由紫紅色變藍色。 此時,EDTA 與 Ca²⁺為 1:1 當量錯合,紀錄 EDTA (aq)滴定的體積。 由多次滴定的當量點體積平均值推算出精確的 EDTA (aq) 濃度。
- 取 1 ml 標定過的 EDTA (aq) 及 5 ml NH₃/NH₄⁺ 0.10 M pH 7.0~8.0 緩 衝液,混合於小燒杯中,加入兩滴 0.2% Murexide (aq) 指示劑,將過 渡金屬離子等 (Ni²⁺、Cu²⁺、Zn²⁺、Cd²⁺) 溶液滴定至燒杯中,到達 當量點時,溶液分別由粉紅色變為藍紫色、藍色、黃色、橙色,紀錄 過渡金屬離子溶液滴定的體積,由多次滴定的當量點體積平均值以1: 1 當量計算 Ni²⁺ (aq)、Cu²⁺ (aq)、Zn² (aq) ⁺、Cd²⁺ (aq) 的濃度。
- 3. 因為鑭系金屬在高 pH 值的水溶液環境下會產生 Ln(OH)₃ 的沉澱,故 標定其濃度的時候用低 pH 值的緩衝液。取 2 ml 的 Ln³⁺(aq),加入 8 ml CH₃COONa/CH₃COOH 0.10 M pH 5.0~6.0 緩衝液,再加入兩滴 1.0% Xylenol Orange (aq) 指示劑,此時的溶液為橙色的。以標定過的 EDTA (aq) 滴定,到達當量點時溶液變成亮黃色,紀錄 EDTA (aq) 滴定 的體積,由多次滴定的當量點體積平均值以 1:1 當量去計算 Ln³⁺ (aq) 的濃度。

※ 配位子 ONO2A 與鑭系金屬之穩定常數

* 實驗方法:

配體積 5 ml,配位子濃度 2.0 mM,Ln³⁺_(aq)濃度 2.0 mM(過量 5%), μ=0.10 M 之滴定溶液:

計算後取適量標定過已知濃度 ONO2A _(aq)、Ln³⁺_(aq), TMACI _(aq), 補足二 次水達 5.0 ml, 控制溫度在 25.0±0.1 ℃, 攪拌子攪拌平衡。

以 TMAOH_(aq)滴定,Metrodata TiNet 2.4,Metrohm 軟體計量,設定值為 V step:0.001 ml;signal drift:1 mv/min;equilibrium time:200 s。

滴定超過 5 個 ONO2A 當量的 TMAOH_(aq),會在約 4 當量的 TMAOH_(aq) 體積,產生一個反曲點(圖 4-2.)。

將 ONO2A (aq)及 Ln³⁺(aq)、TMAOH(aq)滴定的結果,以 Microsoft EXCEL 軟體處理,取前~80 點的數據,再輸入 Martell BEST 程式,鍵入標定後 的 TMAOH_(aq)濃度及 ONO2A (aq)毫莫耳數、Ln³⁺(aq) 毫莫耳數,即可得到 配位子 ONO2A 與特定鑭系金屬之穩定常數 (*K*_{ML})。

過渡金屬 Ni²⁺、Cu²⁺、Zn²⁺、Cd²⁺的滴定方式比照鑭系金屬。

* 實驗結果:

 鑭系金屬與配位子 ONO2A 之錯合滴定曲線,其他個別 Ln 與 ONO2A 錯合的滴定曲線請見附錄(7.):

【圖 4-2.】鑭系金屬與配位子 ONO2A 之錯合滴定曲線

【圖 4-3.】部分鑭系金屬、過渡金屬與配位子 ONO2A 之錯合滴定曲線

		NO0429		DOO 4 36
	UNU2A	NO2A-*	PhNO2A ⁻ °	DOZA
La ³⁺	7.25±0.21	8.95±0.08	6.29±0.07	10.94±0.14
Ce ³⁺	9.65 ±0.11	9.63±0.08	6.81±0.06	11.31±0.03
Pr ³⁺	10.03±0.04	10.18±0.05	7.07±0.09	12.00±0.10
Nd ³⁺	10.21±0.12	10.39±0.02	7.07±0.06	12.56±0.10
Sm ³⁺	10.47±0.01	10.87±0.07	7.56±0.01	12.93±0.01
Eu ³⁺	10.44±0.14	10.84±0.04	7.82±0.05	12.99±0.12
Gd ³⁺	10.18±0.05	10.74±0.14	7.63±0.16	13.06±0.04
Tb ³⁺	10.25±0.05	10.82±0.03	7.79±0.02	12.93±0.01
Dy ³⁺	10.22±0.01	10.84±0.03	7.83±0.24	13.13±0.05
Ho ³⁺	10.06±0.09	10.89±0.02	7.98±0.01	13.00±0.01
Er ³⁺	10.17±0.01	11.01±0.02	8.09±0.06	13.31±0.02
Tm ³⁺	10.28±0.05	11.24±0.04	8.22±0.03	13.19±0.11
Yb ³⁺	10.46±0.04	11.41±0.09	8.42±0.08	13.26±0.15
Lu ³⁺	10.25±0.07	11.56±0.01	8.42±0.01	13.16 ±0.18
Cu ³⁺	15.73±0.07	18.01±0.08	16.95±0.18	5
Zn ³⁺	13.94±0.11	17.10±0.12	15.78±0.01	2
Ni ³⁺	11.20±0.06	16.29±0.10	14.62±0.01	5
Cd ³⁺	11.08±0.04	13.76±0.05	13.06 ±0.01	

2. 鑭系金屬與配位子 ONO2A 之穩定常數 (K_{ML}):

【表 4-1.】ONO2A 及其他配位子與鑭系金屬、過渡金屬錯合之穩定常數

【圖 4-3.】本實驗室目前研究的九元環衍生物與鑭系金屬(依離子半徑)穩定常數關係圖 29

由結果可以發現,ONO2A 比 DO2A 的鑭系金屬 K_{ML}要來得小(表 4-1.), 原因是 DO2A 的環穴半徑較大,當金屬與之錯合的時候,穩定度會提高。 而如果單就九元環的衍生物,ONO2A 因為九元環上有一個 O 原子,造成 金屬與之錯合不穩定³⁰,相對而言,NO2A 就有較高的穩定常數。PhNO2A 則是因為其有一個苯基存在,造成金屬錯合時的立體障礙,因此穩定常數 是三個九元環衍生物裡錯合效果最差的。

整體看來,離子半徑越大,穩定常數的值會越低,這在立體空間的狀 況是可以理解的,穩定常數遵循著鑭系收縮的特性。

3. 鑭系金屬與配位子 ONO2A 之水解常數 (pK_h) :

	ONO2A	NO2A ²⁹	PhNO2A ²⁹	Ln ³⁺
La ³⁺	8.62±0.08	9.51±0.05	8.80±0.05	9.1400
Ce ³⁺	9.06±0.02	9.08±0.04	8.51±0.01	
Pr ³⁺	9.06 ±0.12	9.47±0.09	8.32±0.03	8.6300
Nd ³⁺	9.26 ±0.09	9.83±0.02	8.25±0.07	8.5100
Sm ³⁺	8.90±0.02	9.40±0.06	7.89±0.05	8.4200
Eu ³⁺	8.93±0.04	9.46±0.03	7.69±0.08	8.3900
Gd ³⁺	8.82±0.06	9.37±0.06	7.72±0.26	8.4300
Tb ³⁺	8.38±0.04	8.68±0.16	7.59±0.05	8.2400
Dy ³⁺	8.58±0.01	8.64±0.09	7.61±0.01	8.1800
Ho ³⁺	8.44±0.06	8.53±0.07	7.54±0.02	8.1200
Er ³⁺	8.37±0.01	8.40±0.10	7.42±0.01	8.0700
Tm ³⁺	8.22±0.01	8.54±0.09	7.33±0.01	8.0300
Yb ³⁺	7.95±0.02	8.50±0.09	7.17±0.03	8.0000
Lu ³⁺	7.97±0.03	8.52±0.15	7.25±0.02	7.9800

[【]圖 4-4.】本實驗室目前研究的九元環衍生物與鑭系金屬(依離子半徑)水解常數關係圖 29

水解常數與 LnONO2A⁺水解 BNPP 的動力學效應 pH 值有關。實驗室 所有九元環比較結果(圖 4-4.), LnONO2A⁺的水解常數介於 LnNO2A⁺、 LnPhNO2A⁺之間。

第五章 配位子 ONO2A 與鑭系金屬錯合物之動力學研究

※ 反應動力學之實驗原理

反應動力學的研究通常在定溫下進行,先配製已知組成的反應混合物, 並置於恆溫器中,維持反應環境。利用合適的測量方法測定反應物的濃度 減少或增加量與時間的函數關係。藉由這些濃度與時間的數據,可推導出 反應動力關係式;而在不同溫度下重複實驗,亦可得到速率與溫度間的關 係式。

反應速率通常以單位時間內反應物減少量或生成物增加量來表示,一 般以濃度對時間的之變化率來表示居多。以下列反應為例:

 $aA + bB \longrightarrow cC + dD$

 $R = -\frac{d[A]}{dt} = k_n [A]^{m1} [B]^{m2}$

此反應系的反應速率對反應物 A 而言為 m1 級 (m1 order),對反應物 B 而言為 m2 級 (m2 order),則此反應之總級數 n = m1+m2。m1 及 m2 是藉由實驗所決定,與反應物的係數 a 與 b 無關。

初始速率之決定方法(Determination of initial rate method): 改變 A 反應物之初濃度,而其他反應物濃度保持不變,並測定其初期速率 的變化(在反應物 5%範圍內的速率變化),可推定反應物之反應速率級數 m1;同理改變另一反應物 B 之初濃度,而其他反應物濃度保持不變,即 可得另一反應物之反應速率級數 m2。 假一級反應常數的測定:

假設 LnONO2A 水解 BNPP,是一個簡單的不可逆反應,亦即一當量 A 物質和一當量 B 物質反應後生成單一產物 P。

 $A + B \xrightarrow{k} P$

如果反應可一步完成,則反應速率和反應物個別的濃度成正比:

$$R = -\frac{d[A]}{dt} = k[A][B]$$

此反應對反應物A或B而言是一級反應,對整個反應而言為二級反應。若 我們將A的濃度放大,使[A]>>[B],那麼在反應中,A的濃度改變 即可忽略不記,我們可將k[A]視為一個常數K_{abs},而速率常數式可改寫為:

$$R = -\frac{d[B]}{dt} = k_{obs}[B]$$

如此我們可以用一級反應的方式來表示這個反應,對B而言即是假一次反應(pseudo-first-order reaction)。

m

11111

※ LnONO2A⁺反應動力學之實驗方法

* 溶液的配製:

1. LnONO2A⁺溶液的配製:

將標定過的 Ln³⁺(aq)(方法見第四章)與 ONO2A(aq)依所需 LnONO2A⁺ (aq) 濃度,計算取量,以1:1.02(過量 2%)莫耳數的比例混合,以 確保 LnONO2A⁺能完全錯合,不會有多餘的 Ln³⁺影響 BNPP 的水解。 再將兩者混合好的水溶液,緩緩滴入適量的 TMAOH (aq)(濃度視情況 而定),調整 LnONO2A⁺(aq)的 pH 值,當 Ln³⁺與 ONO2A 完全錯合後, pH 值應該在反曲點附近,因此每個 LnONO2A⁺所該錯合達到的 pH 值 決定於其滴定曲線。錯合完成後,pH 值應該會穩定,不會再降低,整 個錯合的時間約在 24~48 小時,若加溫,則可以加快錯合速率。達 穩定錯合 pH 值的金屬錯合溶液加入定量瓶中,以二次水補足,達到 所需的 LnONO2A⁺ (aq) 濃度

- TMACI (tetramethylammonium chloride, (CH₃)₄NCI) 溶液的配製:
 為離子強度劑,配製方法如第二章所述。
- 3. 緩衝溶液的配製:

選用的弱酸包含:

MPS $_{(s)}$ (3-Morpholinopropane sulfonic acid , p K_a =7.2) , TAPS $_{(s)}$ (3-[Tris(hydroxymethyl)methylamino]-1-propanesulfonic acid , p K_a =8.4) , CHES $_{(s)}$ (2-[N-Cyclohexylamino]-ethanesulfonic acid , p K_a =9.3) , CAPS $_{(s)}$ (3-[Cyclohexylamino]-1-propanesulfonic acid , p*K*_a=10.4)、CABS_(s)(4-[Cyclohexylamino]-1-butanesulfonic acid, p*K*_a=10.7)。根據 Henderson-Hasselbalch equation,加入 TMAOH_(aq), 配製 200 mM、pH 值為 7.0、7.5、8.0、8.5、9.0、9.5、10.0、10.5、 11.0 的緩衝液 20 ml。

4. BNPP (bis(p-nitrophenyl) phosphate sodium salt) 溶液的配製:

取用保存良好的 BNPP (s) (SIGMA, total impurities <0.05% free p-nitrophenol) 配製濃度為 20 mM 的 BNPP (aq)。為確定 BNPP 真正 的濃度,需用其吸光值來做濃度的標定。根據 ³⁷BNPP 的 λ_{max} =288 nm, ϵ =17.8×10³ dm³ mol⁻¹ cm⁻¹。利用配好的 20 mM BNPP (aq) 序列稀释 為 0.010 mM、0.025 mM、0.050 mM、0.075 mM、0.100 mM 的 2 ml 水 溶液, 置入 石 英比 色 管。以 Agilent HP 8453 UV-Visible Spectrophotometer 測量其 288 nm 的吸光值。得到吸光值與濃度成正 比關係 (圖 5-1.)。將所得的吸光值,套入 A = abc 公式中,得到平均的 濃度,即為標定過的 BNPP (aq) 濃度。配好的 BNPP (aq) 以微型離心管 分裝,置於避光的瓶子內,4℃冷藏。

【圖 5-1.】不同濃度的 BNPP 在 λ=288 nm 的吸光值

因此在動力學實驗上,我們以 BNPP 作為磷酸雙酯鍵的異構物,BNPP 被水解之後在 400 nm (*p*-nitrophenolate 的 λ_{max}=400 nm)的波長會 有吸光,偵測吸光值,可以計算水解的動力學效力。

【圖 5-2.】 BNPP 水解產生 p-nitrophenolate

- * 動力學實驗步驟
- 先將所需的比色管備妥(依據所需的測量的波長範圍,若是 UV 使用 石英比色管,VIS 則用塑膠比色管),加入二次水,以 Agilent HP 8453 UV-Visible Spectrophotometer 測定 blank 及操作 zero cell,依序晾乾 比色管備用,以 Agilent HP UV-Visible ChemStation Software 處理實 驗數據,先設定好吸光波長、實驗時間、檔案名稱等。
- 2. 在根據濃度計算體積,在各個比色管中依序加入:二次水、離子強度 劑 TMACl_(aq)、LnONO2A⁺_(aq)、BNPP_(aq),最後再加入緩衝液。 動力學實驗需要維持各個實驗組的離子強度,因此需要加入離子強度 劑 TMACl_(aq)。

以配製 1.0 mM YbONO2A⁺、µ 0.10 M、BNPP 0.10mM、50.0 mM pH 10.0 緩衝液之動力學反應溶液 1.0 ml 為例,離子強度的計算方法:

- # 1.0 mM YbONO2A⁺產生的離子強度:µ0.005 M
- # 50.0 mM pH 10.0 CAPS 緩衝液,根據 Henderson-Hasselbalch equation, 10.0=10.4+log [CAPS⁻]/[CAPS], [CAPS⁻]/[CAPS] = 0.398
 所以緩衝液產生的離子強度:µ (-1)²× 0.398/1.398×0.05=0.01423 M
 # 所需的 2.0 M TMACI (aq) 的體積:

 $\frac{(0.10 - 0.005 - 0.01423)}{\times 1000} \times 1000 = 40.385 \,\mu l$

m

3. 混合配好的動力學實驗反應溶液,比色管置入 Agilent HP 8453 UV-Visible Spectrophotometer,蓋上蓋子,開始隨時間監測吸光值。 實驗結束後將檔案及數據輸出處理。

numi

* LnONO2A⁺動力學實驗結果:

動力學實驗,首要觀察 CeONO2A⁺的全光譜(圖 5-3.),決定吸收波長。

由結果發現 CeONO2A⁺在 281 nm 有一個較高的吸收波峰,因此如果 隨時間監測 281 nm 的吸光值,可以得到 CeONO2A⁺在不同的 pH 之 下物種的消長。

【圖 5-3.】CeONO2A⁺的全光譜 {CeONO2A⁺} 1.0 mM¹, [buffer] 50.0 mM(MPS pH 7.0;TAPS pH 8.0;CHES pH 9.0;CAPS pH 10.0;CABS pH 11.0)[,]µ 0.1 M;[Ce³⁺] 1.0 mM TAPS pH 8.0;{ONO2A⁺} 1.0 mM TAPS pH 8.0

◆CeONO2A⁺不同 pH 值下監測 281 nm 吸收光譜:

因為不同的 pH 值會影響 LnONO2A⁺的活性,由吸收光譜(圖 5-4.) 看出來,pH 11.0的活性最大,但是約在 1600 秒開始吸光值急遽下降; 其次是 pH 10.0。反應的活性都會有其最大值,隨時間逐漸降低。

實驗後測定反應物之 pH 值,結果以 pH 11.0 的酸鹼度下降最多,實驗後 pH 值僅有 10.74,酸鹼度下降幅度依次遞減, pH 7.0 實驗後為 pH 6.85。

分析反應前段 500 秒 (圖 5-5.),以曲線的斜率視為每個 pH 值之 CeONO2A⁺活性 ($Rate = \frac{\Delta A}{\Delta t}$)。整體而言,CeONO2A⁺的活性超過 pH 9.0 後急速提升,這和 CeONO2A⁺的 pK_h (9.06±0.717) 吻合,高 pH 值環境下 CeONO2A⁺的配位水釋出 H⁺,活性增加。另取時間點 0 秒、 1000 秒、2000 秒、5000 秒、10000 秒的全光譜記錄 (見附錄 (8.)), 可以看出不同時間點每個酸鹼環境下 CeONO2A⁺的變化,尤以 pH 11.0、pH 10.0 為最。

觀察反應後溶液有白色沉澱,產生霧狀沉澱的時間點為吸光高峰值過後,且以高 pH 值的沉澱最多,低 pH 值的沉澱則不太明顯。推測應該 是因為當 CeONO2A⁺的配位水解離,CeONO2A⁺彼此之間形成聚合物 (polymer),才會造成反應後 pH 值降低,並形成沉澱,因此吸收光 譜的曲線看來,峰型都不是對稱的。

目前這樣看來,吸光值 281 nm 是什麼物質所造成的並不清楚,想要 探究是何種物質的話,將來可以將高 pH 值下產生的沉澱蒐集抽乾成 固體,送測質譜儀。

【圖 5-5.】CeONO2A⁺不同 pH 值下 281 nm 吸收光譜前 500 秒相對速率與 pH 值作圖
◆CeONO2A⁺ pH 9.8 監測 281 nm 吸收光譜(濃度效應):

m

高 pH 值之下,CeONO2A⁺會有較高的活性變化,認為甚至會形成聚 合物,因此選用 pH9.8 (CHES buffer)的反應環境,不會太早產生沉 澱又具有高 pH 值的效果。

測試不同的濃度的 CeONO2A⁺其吸光值的變化情形(圖 5-6.)。高濃 度的 281 nm 的吸光反應較高,且隨時間的變化速率較快。如果將前 2000 秒的變化斜率與濃度分別取對數值作圖,得到的結果(圖 5-7.) 吸光值在濃度 3.0 mM 及 2.5 mM 的上升變化不大,這可能是已經達 到 CeONO2A⁺分子間的最高碰撞的濃度,因此隨時間的物種變化速率 趨緩。因為 CeONO2A⁺的 281 nm 吸光反應極佳,超過 2000 秒後, 大部份的吸光值都已經超過 2 AU 了,可信度降低,且長時間實驗後, 開始有沉澱情形產生。

В

11111

【圖 5-6.】CeONO2A[†]不同濃度 pH 9.8 監測 281 nm 吸收光譜 {CeONO2A[†]} 1.0 mM ; 1.5 mM ; 2.0 mM ; 2.5 mM ; 3.0 mM [,] [buffer] 50.0 mM(CHES pH 9.8)[,] µ 0.1 M

實驗後 pH 值:1.0 mM (9.46)、1.5 mM (9.39)、2.0 mM (9.31)、2.5 mM (9.29)、3.0 mM (9.24)

【圖 5-7.】CeONO2A⁺不同濃度 pH 9.8 監測 281 nm 吸收光譜 前 2000 秒級數分析

◆EuONO2A⁺不同 pH 值下水解 BNPP 動力實驗:

由 400 nm 的吸收光譜(圖 5-8.)看來,反應速率最快的是 pH 11.0 的,再依次反應速率下降。而且 EuONO2A⁺水解 BNPP 的反應都會到 達一個高峰後,慢慢降下來。但是理論上 BNPP 被水解之後水溶液變 黃,反應下降,吸光值應該持平,EuONO2A⁺水解 BNPP 卻是會有吸 光值下降的情形。實驗後觀察反應溶液發現 EuONO2A⁺水解 BNPP 後,會有黃白色的沉澱產生,尤其是高 pH 值的部份,推測是 EuONO2A⁺與 BNPP 水解的 *p*-nitrophenolate 產物鍵結,並形成多核 的聚合物而沉澱,因此 400 nm 的吸光值才會逐漸下降。

水解 BNPP 的實驗,是觀察 *p*-nitrophenolate 的濃度變化,因此可以 藉由 *p*-nitrophenolate 的吸光值來決定 LnONO2A⁺水解反應速率。

$$A = \varepsilon bc \qquad Rate = \frac{\Delta c}{\Delta t} = \frac{\Delta A}{\Delta t} = \frac{slope}{\varepsilon} \quad when \quad b = 1cm$$

p-nitrophenolate 的 λ_{max} =400 nm,ε=18.7×10³ dm³ mol⁻¹ cm⁻¹。根據 假一次反應 (pseudo-first-order reaction),還可以求得 K_{obs} 。

ILIN

$$Rate = k_{obs} [BNPP] \qquad k_{obs} = \frac{slope}{\varepsilon [BNPP]}$$

以整個反應開始後前 3000 秒的反應速率對 pH 值作圖 (圖 5-9.),反 應速率是隨 pH 值的升高而增加,由於 EuONO2A⁺的 pK_h 為 8.93±0.04, 因此在 pH 大於 9.0 後,水解速率增加。若 EuONO2A⁺水解 BNPP 的 速率與 EuNO2A⁺比較,則略遜於 EuNO2A^{+。29} 如果將每個 pH 值下 EuONO2A⁺水解 BNPP 的 *k_{obs}*、EuONO2A⁺濃度 等代入下列公式²:

將 *k_{obs}*對 pH 作圖(圖 5-10.), 曲線為式(α.)。由 EuONO2A⁺水解 BNPP 的結果,算出 p*K_h*。圖 5-10.左邊是未採用 pH 11.0 所計算出來 的結果, p*K_h*=9.27;圖 5-10.右邊是不採用 pH 11.0、pH 10.5 所計算 出來的結果, p*K_h*=9.22。由 EuONO2A 錯合滴定曲線所得到的 p*K_h*=8.93,兩者差距約在 0.5 個 pH 值以內。

【圖 5-8.】EuONO2A⁺不同 pH 值環境水解 BNPP 動力實驗 {EuONO2A⁺} 1.0 mM[,] [buffer] 40.0 mM (MPS pH 7.5; TAPS pH 8.0、8.5; CHES pH 9.0、9.5; CAPS pH 10.0、10.5; CABS pH 11.0), [BNPP] 0.1 mM[,] μ 0.1 M; blank ddH₂O

實驗後 pH 值:pH 7.5 (7.45)、pH 8.0 (7.91)、pH 8.5 (8.40)、pH 9.0 (8.82)、pH 9.5 (9.35)、 pH 10.0 (9.75)、pH 10.5 (10.11)、pH 11.0 (10.47)

◆EuONO2A⁺pH 9.0 水解 BNPP 濃度效應:

不同濃度的 LnONO2A⁺水解 BNPP 的動力實驗,可以觀察 LnONO2A⁺的濃度對於水解反應的影響級數。

由不同 pH 值 EuONO2A⁺水解 BNPP 的反應看來, pH 9.0 的水解條件 最好,因為不會在短時間內產生沉澱影響水解結果。因此選用 pH 9.0 做為觀察 EuONO2A⁺水解 BNPP 的級數動力學實驗。

由結果(圖 5-11.)看出,如果遵循假一次反應(pseudo-first-order reaction)的反應條件,則 EuONO2A⁺反應濃度越高,水解 BNPP 效 果越好。但是如過從高濃度的水解情形,可以發現水解反應速率分為 兩階段,前300秒左右速率上升很快,過了300秒,則是另一種反應 狀況。低濃度(1.0 mM~2.4 mM),此種情形不甚明顯(附錄(9.)), 取前 5000 秒仍是很平穩的一次直線。由此現象看來,EuONO2A⁺水 解 BNPP 的反應涉及很多因子,而這些因子又受濃度不同的影響,並 不是一個簡單的水解反應。

高濃度(2.0 mM~8.0 mM)取反應後前300秒,同時對反應速率及 EuONO2A⁺濃度取對數值作圖,得到一線性關係,該曲線的斜率 (1.394)就是EuONO2A⁺pH9.0水解BNPP的級數。水解反應的級 數大於1,可以解釋EuONO2A⁺水解BNPP時在pH9.0環境下,有 較具活性的物種出現²,可能是 dimeric hydroxo-bridged active species [EuONO2A(H₂O)(µ-OH)]₂。這樣較高水解效果也算是Eu³⁺所 特有的,例如之前蔡政憲等學長的研究發現,EuNO2A⁺的水解能力也 是高於一個級數。

【圖 5-11.】EuONO2A⁺pH 9.0 水解 BNPP 級數動力實驗 {EuONO2A⁺} 8.0 mM、6.0 mM、4.0 mM、 3.0 mM、2.4 mM、2.0 mM、1.0 mM、[buffer] 75.0 mM (CHES pH 9.0)、[BNPP] 0.1 mM,µ 0.1 M; blank {EuONO2A⁺} 0 mM, [buffer] 75.0 mM (CHES pH 9.0)、[BNPP] 0.1 mM,µ 0.1 M 實驗後 pH 值:blank (8.99)、8.0 mM (8.86)、6.0 mM (8.88)、4.0 mM (8.90)、3.0 mM (8.92)、 2.4 mM (8.92)、2.0 mM (8.94)、1.0 mM (8.96)

我們將數據套用到單體-雙體反應動力學模型公式²:(Monomer-Dimer Reaction Model)

 $2EuONO2A^{+} \stackrel{k_{f}}{\rightarrow} (EuODO2A^{+})_{2} \cdot K_{f} = \frac{[(EuONO2A^{+})_{2}]}{[EuONO2A^{+}]^{2}}$ $EuONO2A^{+} + BNPP \stackrel{k_{1}}{\rightarrow} P \qquad (EuONO2A^{+})_{2} + BNPP \stackrel{k_{2}}{\rightarrow} P$ $Rate = k_{1}[EuONO2A^{+}][BNPP] + k_{2}[(EuONO2A^{+})_{2}][BNPP] =$ $= k_{1}[EuONO2A^{+}][BNPP] + k_{2}K_{f}[EuONO2A^{+}]^{2}[BNPP]$

 $k_{obs} = k_1 [EuONO2A^+]_T + k_2 K_f [EuONO2A^+]_T^2$

結果如圖 5-12. \pm , k_1 =0.002 M⁻¹s⁻¹; $K_{=}$ 1.04 M⁻¹; k_2 =0.27 M⁻¹s⁻¹。 EuDO2A² 的 $K_{=}$ 8.2 M⁻¹, 顯然, EuONO2A⁺的雙體形成在這個反應模 式看來, 不如 EuDO2A, 而 EuNO2A³⁸ 的 $K_{=}$ 0.5 M⁻¹ 又低於 EuONO2A⁺。 EuONO2A⁺的 $k_2 > k_1$, 表示在水解 BNPP 的反應上(EuONO2A⁺)₂ 的 效果比 EuONO2A⁺好。 如果討論另一個動力學模型,將單體與雙體跟 BNPP 結合的能力考慮 進去,套到單體-雙體平衡與受質平衡動力學模型(Monomer-Dimer Equilibrium and Complex-Substrate Pre-equilibrium Model):

 $EuONO2A^+ + BNPP \xrightarrow{k_{m1}} EuONO2A^+ - BNPP \xrightarrow{k_p} P$ $2EuONO2A^+ \xrightarrow{k'_f} (EuONO2A^+)_2$ $(EuONO2A^+)_2 + BNPP \xrightarrow{k_{m1}} (EuONO2A^+)_2 - BNPP \xrightarrow{k_q} P$ $Rate = k_p [EuONO2A^+ - BNPP] + k_q [(EuONO2A^+)_2 - BNPP]$ 計算的結果 (圖 5-12.右),得到單體、雙體與 BNPP 結合常數 $K_{m1} =$ $0.62 M^{-1} \cdot K_{m2} = 34.86 M^{-1}, 以及錯合中間物之一次速率常數 <math>k_p = 0.002$ $s^{-1} \cdot k_q = 0.050 s^{-1}$ 。可以看出來 (EuONO2A^+)_2和 BNPP 的結合反應較 佳,約 50 倍,且反應速率也略快 EuONO2A^+ 。但是 $K_{m2} = 0.16$,仍然 是形成 (EuONO2A^+)_2 的效果不佳。

兩種模組所推測出來 EuONO2A⁺水解 BNPP 的效果都差不多,且由圖 5-12.可以看出來趨勢線都與實驗結果相近。

【圖 5-12.】EuONO2A⁺pH 9.0 水解 BNPP 級數動力實驗

左: Monomer-Dimer Reaction Model

右: Monomer-Dimer Equilibrium and Complex-Substrate Pre-equilibrium Model

◆EuONO2A⁺不同 pH 值雷射光譜實驗:

 Eu^{3+} 與 ONO2A1:1 混合,激發波長 577~581 nm,⁵D₀→⁷F₂,不同 pH 值下雷射光譜³⁹,發現在 pH 6.0 及 pH 7.0 的波峰較為相近,但是 pH 7.0 還有一個小波峰與 Eu^{3+} 的位置類似。其餘 pH 8.0~pH 10.0 的 波長位置相近,以 pH 9.0 的強度最大。其餘不同時間點的實驗結果如 附錄 (10.)。

◆YbONO2A⁺不同 pH 值下水解 BNPP 動力實驗:

實驗結果,YbONO2A⁺高 pH 值狀態下,水解 BNPP 的速率會短時間 內爬升(圖 5-14.),但是因為配位水的數量較 EuONO2A⁺少,極快的 速率下就會形成 dimeric hydroxo-bridged inactive species² [YbONO2A(µ-OH)]₂。另外,從 YbONO2A⁺的滴定曲線所得的 pK_h值 (7.95±0.024),推測 YbONO2A⁺約 pH 8 以上配位水就解離了,因此 只要 pH 高過 8,形成不具活性的物種增加。而由切割 BNPP 的結果 看來,pH 9.0 以上很快就不具水解活性,實驗後也都會有黃白色沉澱 產生。反過來看低 pH 值的水解情況,速率極低(附錄(11.)),合適 的切割 BNPP 的酸鹼環境範圍不大。

【圖 5-14.]YbONO2A⁺不同 pH 值環境水解 BNPP 動力實驗 {YbONO2A⁺} 1.0 mM[•][buffer] 50.0 mM (TAPS pH 8.0 \ 8.5; CHES pH 9.0 \ 9.5; CAPS pH 10.0 \ 10.5; CABS pH 11.0)[•] [BNPP] 0.1 mM[•] μ 0.1 M; control {YbONO2A⁺} 0 mM[•] [buffer] 50.0 mM (CABS pH 11.0)[•] [BNPP] 0.1 mM[•] μ 0.1 M

實驗後 pH 值: pH 8.0 (7.93)、pH 8.5 (8.43)、pH 9.0 (8.91)、pH 9.5 (9.41)、pH 10.0 (9.80)、 pH 10.5 (10.24)、pH 11.0 (10.65)、control (10.75)

【圖 5-15.】YbONO2A⁺不同 pH 值環境水解 BNPP 動力實驗速率與 pH 值的關係

◆YbONO2A⁺pH 8.5 水解 BNPP 級數動力實驗:

根據 YbONO2A⁺不同 pH 值環境水解 BNPP 動力實驗,在 pH 8.5 環境下,以同濃度的 YbONO2A⁺水解不同濃度的 BNPP。

結果(圖 5-16.)發現反應時間內, BNPP 的濃度越高,400 nm 的吸 光值就越高,而高濃度的隨時間有漸漸趨緩的情形,也許是因為越來 越多的 YbONO2A⁺活性中心被 BNPP 佔住,與 BNPP 的碰撞效果更 低,因此反應速率漸緩。

將反應的前 3000 秒的水解速率及 BNPP 濃度分別取對數值作圖,得 到 YbONO2A⁺pH 8.5 水解 BNPP 動力學, BNPP 的反應級數是一級 反應(附錄(12.)),亦符合我們 pseudo-first-order 的假設前提。

【圖 5-16.】YbONO2A⁺pH 8.5 水解 BNPP 級數動力實驗{YbONO2A⁺} 1.0 mM, [buffer] 50.0 mM (TAPS pH 8.5), [BNPP] 0.1 mM、0.2 mM、0.4 mM、0.8 mM、1.6 mM, µ 0.1 M; control {YbONO2A⁺} 1.0 mM, [buffer] 50.0 mM (TAPS pH 8.5), [BNPP] 0 mM, µ 0.1 M

實驗後 pH 值:0.1 mM(8.37)、0.2 mM(8.37)、0.4 mM(8.39)、0.8 mM(8.37)、1.6 mM(8.38)、 control (8.38) ◆YbONO2A⁺pH 8.5 水解 BNPP 濃度效應:

不同濃度的 YbONO2A⁺水解 BNPP 的結果 (圖 5-17.),發現結果並 不如預期的,濃度越高,初始速率反而越快。合理的解釋是因為 YbONO2A⁺在高濃度的時候形成 inactive [YbONO2A(µ-OH)]₂,因此 反應速率降低。而水解反應速率快的低濃度部分,也很快就產生沉澱 的情形,因此高峰值出現後,曲線就下降。

整體而言,YbONO2A⁺水解 BNPP 的反應因為因子複雜,不能夠套用 到我們提出的動力學模型中,目前看來也不是一個良好的切割劑。

【圖 5-17.】YbONO2A^{*}不同濃度水解 BNPP 動力實驗 {YbONO2A^{*}} 2.4 mM、2.0 mM、1.8 mM、 1.6 mM、1.4 mM、1.2 mM、1.0 mM、[buffer] 50.0 mM(TAPS pH 8.5), [BNPP] 0.1 mM,µ 0.1 M; blank {YbONO2A^{*}} 0 mM,[buffer] 50.0 mM(TAPS pH 8.5), [BNPP] 0.1 mM,µ 0.1 M 實驗後 pH 值: 2.4 mM(8.33)、2.0 mM(8.36)、1.8 mM(8.37)、1.6 mM(8.38)、1.4 mM(8.39)、 1.2 mM(8.40)、1.0 mM(8.41)、blank(8.45)

【圖 5-18.】YbONO2A⁺pH 8.5 水解 BNPP 級數動力實驗

第六章 結論與未來展望

※ 設計 ONO2A 主要是可以成為學長研究過的九元環的相似物,從質子化 常數的結果可以發現,ΣpKa值:NO2A>PhNO2A>ONO2A。

鑭系金屬錯合的穩定常數(K_{ML}):NO2A>ONO2A>PhNO2A。

水解 BNPP 的效力:EuNO2A>EuONO2A。

- ※ 設計人造水解酶的重點在於使用的金屬離子,金屬離子扮演路易士酸的 角色,強度越強,切割的效果越快,因此我們選擇鑭系金屬做為嵌合的 金屬。但是因為鑭系金屬活性大,合適的配位子就很重要了。原本以為 配位水的數量越多,水解 BNPP 的效果也越好^{2,40},因此設計帶正電、 配位水較多,且金屬離子錯合彈性大的 ONO2A。但是在滴定實驗、錯 合實驗中發現,含有一個 O 原子的 ONO2A 錯合能力更弱,而九元環 也相對比十二元環的錯合力更弱,換言之,鑭系金屬很容易因此而游離 出來。
- ※從水解 BNPP 的效果當中,發現因為配位水較多的關係,LnONO2A⁺ 很容易形成多核沉澱,水解的能力反而不佳。在這一方面的改進方法, 可以考慮在水溶液中加入 ethylene diamine 之類的,降低多核形成的可 能性。
- ※ 而且 EuONO2A⁺水解 BNPP 套入雙體模式,發現 EuONO2A⁺形成雙體 的時候,水解速率略快於單體。在這個基礎之下,我們可以設計以一些 官能基連接兩個 ONO2A,形成雙體,而不使用配位水作為鍵結的材料, 這樣應該可以增加 LnONO2A⁺在切割 BNPP 的應用性。這在 Burstyn、 Morrow 等人也有提出相同的概念。

※ 整體而言LnONO2A⁺並不是一個合適的人造水解酶,一系列研究下來, 認為還是十二元環的 DO2A 是最佳的 BNPP 切割劑。因此在未來可以 著重在較大環穴的配位子的合成,甚至可以在一個配位子上錯合兩個鑭 系金屬,達到雙核的水解效果。

參考文獻

- 1. Hegg, E. L.; Burstyn, J. N., *Coordination Chemistry Reviews* **1998**, 173, 133-165.
- 2. Chang, C. A.; Wu, B. H.; Kuan, B. Y., *Inorganic Chemistry* **2005**, 44, (19), 6646-6654.
- 3. Oivanen, M.; Kuusela, S.; Lönnberg, H., *Chemical Reviews* **1998**, 98, (3), 961-990.
- 4. Komiyama, M.; Takeda, N.; Shigekawa, H., Chemical Communications 1999, (16), 1443-1451.
- Kuimelis, R. G.; McLaughlin, L. W., *Chemical Reviews* 1998, 98, (3), 1027-1044.
- 6. Nikolic-Hughes, I.; O'Brien, P. J.; Herschlag, D., Journal of the American Chemical Society 2005, 127, (26), 9314-9315.
- Trawick, B. N.; Daniher, A. T.; Bashkin, J. K., *Chemical Reviews* 1998, 98, (3), 939-960.
- 8. Maldonado, A. L.; Yatsimirsky, A. K., Organic & Biomolecular Chemistry 2005, 3, (15), 2859-2867.
- Jebasingh, B.; Alexander, V., *Inorganic Chemistry* 2005, 44, (25), 9434-9443.
- 10. Gellman, S. H.; Petter, R.; Breslow, R., *Journal of the American Chemical Society* **1986**, 108, (9), 2388-2394.
- 11. Breslow, R.; Berger, D.; Huang, D. L., *Journal of the American Chemical Society* **1990**, 112, (9), 3686-3687.
- 12. Krämer, R., Coordination Chemistry Reviews 1999, 182, 243-261.
- 13. Hendry, P.; Sargeson, A. M., *Journal of the American Chemical Society* **1989,** 111, (7), 2521-2527.
- 14. Kövári, E.; Krämer, R., *Journal of the American Chemical Society* **1996**, 118, (50), 12704-12709.

- Burstyn, J. N.; Deal, K. A., *Inorganic Chemistry* **1993**, 32, (17), 3585-3586.
- Deal, K. A.; Burstyn, J. N., *Inorganic Chemistry* **1996**, 35, (10), 2792-2798.
- 17. Hegg, E. L.; Mortimore, S. H.; Cheung, C. L.; Huyett, J. E.; Powell, D. R.; Burstyn, J. N., *Inorganic Chemistry* **1999**, 38, (12), 2961-2968.
- Deck, K. M.; Tseng, T. A.; Burstyn, J. N., *Inorganic Chemistry* **2002**, 41, (4), 669-677.
- 19. McCue, K. P.; Voss, D. A.; Marks, C.; Morrow, J. R., *Journal of the Chemical Society-Dalton Transactions* **1998**, (18), 2961-2963.
- McCue, K. P.; Morrow, J. R., *Inorganic Chemistry* 1999, 38, (26), 6136-6142.
- 21. Iranzo, O.; Elmer, T.; Richard, J. P.; Morrow, J. R., *Inorganic Chemistry* **2003**, 42, (24), 7737-7746.
- Morrow, J. R.; Buttrey, L. A.; Shelton, V. M.; Berback, K. A., Journal of the American Chemical Society 1992, 114, (5), 1903-1905.
- 23. Morrow, J. R.; Buttrey, L. A.; Berback, K. A., *Inorganic Chemistry* **1992**, 31, (1), 16-20.

- 24. Amin, S.; Voss, D. A.; Horrocks, W. D.; Morrow, J. R., *Inorganic Chemistry* **1996**, **35**, (26), 7466-7467.
- Iranzo, O.; Richard, J. P.; Morrow, J. R., *Inorganic Chemistry* 2004, 43, (5), 1743-1750.
- 26. Baker, B. F.; Khalili, H.; Wei, N.; Morrow, J. R., *Journal of the American Chemical Society* **1997**, 119, (38), 8749-8755.
- Gunnlaugsson, T.; Davies, R. J. H.; Kruger, P. E.; Jensen, P.; McCabe, T.; Mulready, S.; O'Brien, J. E.; Stevenson, C. S.; Fanning, A. M., *Tetrahedron Letters* 2005, 46, (21), 3761-3766.
- Huskens, J.; Torres, D. A.; Kovacs, Z.; André, J. P.; Geraldes, C.; Sherry,
 A. D., *Inorganic Chemistry* **1997**, 36, (7), 1495-1503.
- 29. 蔡政憲, 鑭系金屬錯合物之熱力學與水解磷酸酯鍵之動力學研究, 國立交 通大學生物科技所, 2006, 碩士論文

- 30. Cabral, M. F.; Costa, J.; Delgado, R.; Dasilva, J.; Vilhena, M. F., *Polyhedron* **1990**, 9, (23), 2847-2857.
- 31. Hancock, R. D.; Thöm, V. J., *Journal of the American Chemical Society* **1982**, 104, (1), 291-292.
- 32. Rossiter, C. S.; Mathews, R. A.; Morrow, J. R., *Inorganic Chemistry* **2005**, 44, (25), 9397-9404.
- 33. David Parcker, *Oxford University Press*, **1996**, Macrocycle Synthesis A Practical Approach
- Ewin, G.; Hill, J. O., *Journal of Chemical Research-S* 1985, (11), 334-335.
- 35. 王翊帆,大環配位子ODO2A之穩定常數研究與其鑭系金屬錯合物之水解 磷酸酯鍵效力, 國立交通大學生化工程所, 2007, 碩士論文
- 36. Chang, C. A.; Chen, Y. H.; Chen, H. Y.; Shieh, F. K., *Journal of the Chemical Society-Dalton Transactions* **1998**, (19), 3243-3248.
- Schiller, A.; Scopelliti, R.; Severin, K., *Dalton Transactions* 2006, (32), 3858-3867.
- 38. 林俊傑, 鑭系金屬與大環多胺多酸基配位錯合物的合成、及其水解磷酸雙 酯鍵之效力的研究, 國立交通大學生物科技所, 2003, 碩士論文
- 39. Chang, C. A.; Liu, Y. L.; Chen, C. Y.; Chou, X. M., *Inorganic Chemistry* **2001**, 40, (14), 3448-3455.
- 40. 吴柏宏, 鑭系金屬離子錯合物水解磷酸酯鍵之動力學研究, 國立交通大學 生物科技所, 2003, 碩士論文
- 41. 林玉淳,大環配位子結構與質子化系統及鑭系金屬離子錯合物結構之分子 模擬,國立交通大學生物科技所,2006,碩士論文
- 42. Smith, R. M.; Martell, A. E., Critical Stability Constants. 1974-1989.

附錄(1.)

NO2A

1,4,7,10-tetraazacyclododecane-1,7-bis(acetic acid)

1,4,7-triazacyclododecane-1,4-bis(acetic acid)

1-oxa-4,7-diazacyclononane-4,7-diacetic acid 1-oxa-4,7,10-triazacyclononane-4,10-diacetic acid

1-oxa-4,7-diazacyclononane

附錄(2.)ONO2A ¹H NMR

附錄(3.)ONO2A ¹³C NMR

附錄(5.)ONO2A MASS(ESI+)

國立交通大學應用化學系

元素分析儀 Heraeus CHN-O Rapid 服務報告書

使用者姓名:吳幸怡 中心編號:950351			
服務單位:交大生科 張正實驗室 樣品名稱或代號:9ane-N2O-2A			
收件日期: 95	年 03 月 10	日完成日期:	95 年 03 月 21 日
分析結果:			
實驗値:	N%	C%	Н%
1.	7.06	28.52	5.32
2.	6.82	28.45	5.26
3.			
推測值:	11.38	48.77	7.37
本日所使用之 S	tandard : A		
(A)Acetanilide	(B)Atropin	(C)N-Anilin	
	N%	C%	H%
理論値:	10.36	71.09	6.71
測出值:	10.32	70.91	6.57
備註:			
費用核算:NCH:800元			
報告日期: 95 年 03 月 23 日			
洋明乌害(饮辛	F. W. to to	技術員答音:	技士
俄砳貝貝八敓早	· 訪有谷	1211月双早,	李
			明

附錄(7.) ONO2A 與鑭系金屬的錯合滴定曲線

附錄 (9.) EuONO2A⁺ pH 9.0 水解 BNPP 級數動力實驗

{EuONO2A⁺} 1.0 mM 、 1.2 mM 、 1.4 mM 、 1.6 mM 、 1.8 mM 、 2.0 mM 、 2.4 mM 、 [buffer] 50.0 mM (CHES pH 9.0), [BNPP] 0.1 mM , μ 0.1 M ; blank {EuONO2A⁺} 0 mM , [buffer] 50.0 mM(CHES pH 9.0), [BNPP] 0.1 mM , μ 0.1 M 實驗後 pH 值:blank (8.99)、 1.0 mM (8.95)、 1.2 mM (8.93)、 1.4 mM (8.93)、 1.6 mM (8.92)、

1.8 mM (8.93) • 2.0 mM (8.92) • 2.5 mM (8.91)

附錄(11.) YbONO2A⁺不同 pH 水解 BNPP 動力實驗

附錄(12.) YbONO2A⁺ pH 8.5 水解 BNPP 級數動力實驗

