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1 Introduction

The inflationary universe is a central phenomena derived from the astronomical observations
aim to test, and to understand how the universe might have evolved from a general initial
condition into its present state of large-scale isotropy and homogeneity together with an
almost flat spectrum of near-Gaussian fluctuations. There should be a brief moment of
accelerated expansion during the epoch of the early universe [1]. It has been shown that a
simple physically-motivated inflationary scenario can be induced by the acceleration driven
by a scalar field with a constant potential. It can also be driven by a higher derivative
pure gravity models with natural graceful exit. It is therefore important to find out whether
universal acceleration and asymptotic approach to the de Sitter metric always occurs in
these models. In fact, a series of cosmic no-hair theorems of varying strengths and degrees of
applicability have been proved in support of certain constraints on the field parameters for its
occurrence [2–8]. The conformal equivalence between these higher-order theories in vacuum
and general relativity in the presence of a scalar field has also been shown in ref. [9–11].

In particular, it was shown that when quadratic terms are added to the Lagrangian of
general relativity then new types of cosmological solution arise when Λ > 0 which have no
counterparts in general relativity in the Bianchi type II and type VIh spaces. [12]. Theses
solutions inflate anisotropically and do not approach the de Sitter spacetime at large times.
They hence provide counter-examples to the expectation that a cosmic no-hair theorem will
continue to hold in simple higher-order extensions of general relativity. Other consequences
of these higher-order theories have also been studied in [13–17].

A pure gravity theory which is quadratic in the scalar curvature and the Ricci tensor
was considered in ref. [12] for the model consists of the 4-dimensional gravitational action

SBH =
1

2

∫

d4x
√

g L =
1

2

∫

d4x
√

g
(

R + αR2 + βRµνRµν − 2Λ
)

. (1.1)

The Einstein equations can be shown to be [12]

Hµν ≡ Gµν + Φµν + Λgµν = 0, (1.2)
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where Gµν ≡ Rµν − Rgµν/2 and

Φµν ≡ 2αR

(

Rµν − 1

4
Rgµν

)

+ (2α + β)
(

gµνD2 − DµDν

)

R

+βD2

(

Rµν − 1

2
Rgµν

)

+ 2β

(

Rµσνρ −
1

4
gµνRσρ

)

Rσρ. (1.3)

Here the tensor Φµν incorporates the deviation from regular Einstein gravity related to the
coupling constants α and β.

A new classes of exact solutions are found in a spatially homogeneous universes of the
Bianchi types II (BII) space given by the metric

ds2
II = −dt2 + e2bt

[

dx +
a

2
(zdy − ydz)

]2
+ ebt(dy2 + dz2), (1.4)

where

a2 =
11 + 8Λ(11α + 3β)

30β
, b2 =

8Λ(α + 3β) + 1

30β
. (1.5)

Here a and b are some constant functions of α, β and Λ. These solutions are spacetime
homogeneous with a 5-dimensional isotropy group. They have a one-parameter family of
4-dimensional Lie groups [18–20]. Interesting discussions related to these solutions can be
found in ref. [12].

Note that the no-hair theorem for Einstein gravity states that the presence of a positive
cosmological constant drives the late-time evolution towards the de Sitter spacetime for
Bianchi types I − V III spaces [6] if the matter sources obey the strong-energy condition. It
has also been shown that the cosmic no-hair theorem cannot be proved and counter-examples
exist if this condition dose not hold exactly [7, 21–24].

The Bianchi type solutions given above inflate in the presence of a positive cosmological
constant Λ. They are, however, neither de Sitter, nor asymptotically de Sitter. Note that it
has been shown that this solution is also a solution to a Brans-Dicke type scalar tensor theory
in the Bianchi type II background space. It is shown, however, that these anisotropically
inflating solutions are not stable under field perturbations [25].

Note that from the point of view of an effective theory of gravity, an action with
quadratic curvature terms as the one considered here, should be understood as some per-
turbative correction to Einstein gravity suitable in some energy scale. Theories quadratic in
the curvature give field equations which are higher order than two in time derivatives and
generally have run away solutions. The runaway solutions are supposed to be unphysical
because they grow with time scales which are beyond the limits of validity of the theory.
Thus, in this context not all solutions have physical significance [27]. Note that the BH
expanding solution does not have a limit in general relativity (e.g. it is not defined for β →
0). An isotropic example of this is the Starobinsky inflation [28]. We will show in this paper
that the anisotropically expanding BH solution (1.4) with constraints (1.5) is in fact unstable
under field perturbations.

Due to the complexity of the equations of motion it was difficult to extract the stability
information for these non-perturbative solutions in the higher derivative models. We will start
with a compact and model-independent formula for the field equations [26] in the Bianchi
type II background space. Anisotropic perturbations can therefore be performed more easily
in this approach. As a result, we will show that the system always admits unstable modes
for all x ≡ a2/b2. In addition, we will also show that unstable mode also exists if 3α+β < 0.
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Consequently, we will be able to show that these new classes of anisotropically expanding
solutions are not stable solutions in the Bianchi type II space.

This paper will be organized as follows: (i) We will first present a model-independent
formulae for the field equations in a BII metric space. These new set of equations can be
shown to agree with the Htt = 0 and H11 = 0 components of the eq. (1.2) for the quadratic
curvature model (1.1). It can also be verified directly that BH solutions are also solutions to
these new equations. (ii) Anisotropically perturbations can be obtained by perturbing these
two field equations against any BII background metric. The model-independent, linear order
perturbation equations will be presented accordingly. (iii) A complete set of perturbation
equations against the BH background metric solutions (1.4) can therefore be obtained di-
rectly. (iv) As a result, we end up with a polynomial equation of degree 6 for the perturbation
equations. Fortunately, this polynomial can be factorized and some useful information can
thus be extracted for the stability analysis. (v) Finally, we can show that unstable modes
always exist for these perturbations. Therefore, the BH solution is always unstable against
these anisotropic perturbations. Conclusions will also be drawn at the end of this paper.

2 Stability conditions for the higher derivative BH solutions

2.1 The BII Metric and the field equations

The BH solution (1.4) can also be written as, in a more familiar form,

ds2 = −dt2 + a2
1(t)dr2 + gmndxmdxn (2.1)

with (x0, x1, x2, x3) = (t, r, z, φ), a2
1(t) = exp[bt]/a2 and a2

2(t) = exp[2bt]/a2 where a and b
denote some constant functions of α and β given by the eq. (1.5). Here

gmn =

(

a2
2(t) ra2

2(t)
ra2

2(t) a2
1(t) + r2a2

2(t)

)

. (2.2)

The Lagrangian of the system L(Ḣi,Hi, E) can be shown to be function of Ḣi,Hiand E only
in the BII background space. For example, R = 2(2A + B + C + 2D) with A = Ḣ1 + H2

1 ,
B = Ḣ2 + H2

2 , C = H2
1 − 3Eand D = H1H2 + E as shorthanded notation. Here Hi = ȧi/ai

denote the Hubble parameters and E ≡ a2
2/(4a

4
1) denotes a function of the scale factors ai.

Another example is that the effective Lagrangian of the higher derivative model (1.1) given by

L =
1

2

(

R + αR2 + βRµνRµν − 2Λ
)

(2.3)

can be shown to be:

L = (2A + B + C + 2D) + 2α(2A + B + C + 2D)2

+
β

2

[

(2A + B)2 + 2(A + C + D)2 + (B + 2D)2
]

− Λ. (2.4)

as functional of the scale factors Ḣi,Hiand E.
The perturbation equations can be derived from perturbing the field equations Hµ

ν = 0
given by eq. (1.2) in the presence of the BII background space. The formal derivation is quite
complicate. Fortunately, there is a more illuminating and simple method by perturbing the
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field equations derived from varying the effective action given by (2.4). The final expressions
for the field equation Ht

t = 0 and H1
1 = 0 can be shown to be:

D0L ≡ L + Hi

(

∂

∂t
+ 3H

)

Li − HiLi − ḢiL
i = 0, (2.5)

D1L ≡ 2L − 4E∂EL +

(

∂

∂t
+ 3H

)2

Li −
(

∂

∂t
+ 3H

)

Li = 0. (2.6)

Here Li ≡ δL/δHi, Li ≡ δL/δḢiand 3H ≡ 2H1 + H2. We can also show that the BH
solution does solve above equations. Note that we need to restore the lapse function d(t)
(−dt2 → −d2(t)dt2) before varying the gtt component for the Htt = 0 field equation [26]. This
is because that the gtt information has been removed from the BII metric (2.1) by a time
coordinate redefinition for convenience in the literature. We need to restore the lapse function
in order to reconstruct the field equations Htt = 0 [26]. Once the variation is done, we can set
d(t) = 1 after replacing the effect of d(t) by Hi through a correspondence relations between
the field variables. In addition, the other nonvanishing components of the field equations
H i

j = 0 can be shown to be derivable from the field equations (2.5) and (2.6) following the
Bianchi identity DµGµ

ν = 0 and the generalized energy momentum conservation law. Note
also that we can easily show that the field equations (1.2) and (1.3) agree with eqs. (2.5)
and (2.6) for the BH model (1.1).

2.2 Anisotropic metric perturbations

For convenience, we will write ai(t) = exp[bAi(t)]/a for the general BII metric and δAi =
ki exp[bνt] for the metric perturbations against the BII background metric with Ai(t) = A0

i =
constant. For example, (A0

1, A
0
2) = (1/2, 1) stands for the BH background solution of the

action (1.1). We will first derive a set of model-independent perturbation equations in an
arbitrary background metric space with Ai(t) = A0

i . As a result, the parameter bν will stand
for the decay (or expansion) constant of the perturbation mode given by δAi = ki exp[bνt].
We will show that positive modes with ν > 0 always exist for the perturbations against the
expanding BH background metric solution. Therefore, this will prove that the BH solutions
are always unstable.

By writing he perturbation equations δD0L and δD1L can be shown to be:

D0δA0 =

(

I1 + 2J − 2K I2 + J + K
F1 + 2G − 2H F2 + G + H

)(

δA1

δA2

)

≡
(

B11 B12

2b2B21 2b2B22

)(

δA1

δA2

)

= 0, (2.7)

which also defines the matrix components Bij. Here

Ij = bHiL
ijν3 +

(

HiL
i
j + 2bHiL

ij − HiL
j
i

)

ν2 +

(

2Lj + 2HiL
i
j −

1

b
HiLij

)

ν , (2.8)

J =
1

b
HiL

iν , (2.9)

K =
x

2
(bHiL

i
Eν + LE + 2bHiL

i
E − HiLiE) , (2.10)

Fi = L1iν4 +
1

b
(L1

i + 4bL1i − Li
1)ν

3 +
1

b2
(2Li + 4b2L1i + 4bL1

i − a2Li
E − L1i − 2bLi

1)ν
2

+
1

b3

(

2Li + 4b2L1
i − a2LiE − 2bL1i

)

ν , (2.11)
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G =
1

b2

[

L1ν2 +

(

4L1 − 1

b
L1

)

ν

]

, (2.12)

H =
x

2

[

L1
Eν2 +

(

4L1
E − 1

b
L1E

)

ν + 4L1
E − 2

b2
LE − xLEE − 2

b
L1E

]

(2.13)

are functions of the field parameters. Moreover, we have also defined Lij =
δ2L/δḢiδḢj |Ai(t)=A0

i

, Li
j = δ2L/δḢiδHj |Ai(t)=A0

i

, Lij = δ2L/δHiδHj |Ai(t)=A0

i

, Li
E =

δ2L/δḢiδE |Ai(t)=A0

i

, LiE = δ2L/δHiδE |Ai(t)=A0

i

, LE = δL/δE |Ai(t)=A0

i

and LEE =

δ2L/(δE)2 |Ai(t)=A0

i

for convenience. The differential equations can be restored by replac-

ing each ν with ∂t/b. In addition, we have extracted the scale parameter 2b2 from the matrix
components in eq. (2.7) when we define B21 and B22. Note also that the matrix eq. (2.7)
is a model-independent close form of the stability equations for any anisotropically evolving
solutions in the BII background space.

2.3 Perturbation equations in the BH background metric space

By identifying the background metric (A0
1(t), A

0
2(t)) = (1/2, 1) we can compute the parame-

ters Ij, Fj , J,K,Gand H of the BH model with L given by (2.3). In addition, we note that
there is an identity relating the parameters α1 ≡ αb2, β1 ≡ βb2and x ≡ a2/b2:

1 = [x − 11, 3x − 3]. (2.14)

Here [A,B] ≡ Aα1+Bβ1. This follows directly from the constraints in eq. (1.5). This formula
is useful in cancelling all the α and β independent terms in the perturbation equations.

We can also write the perturbation equation (2.7) as

D1δA1 ≡
(

B11/2 B12

B21/2 B22

)(

2δA1

δA2

)

=

(

I1/2 + J − K I2 + J + K
(F1/2 + G − H)/2b2 (F2 + G + H)/2b2

)(

2δA1

δA2

)

= 0, (2.15)

after identifying the BH solutions with a2
1(t) = exp[bt]/a2 and a2

2(t) = exp[2bt]/a2. Note that
nontrivial solution δAi exists, from the eq. (2.15), only when

detD1 = det

(

B11/2 B12

B21/2 B22

)

= det

(

B11/2 B12 + B11/2
B21/2 B22 + B21/2

)

≡ det

(

A11 A12ν
A21 A22ν

)

= 0. (2.16)

Note that the ν-independent terms only appear in the functions K and H. Therefore the
ν-independent terms are eliminated by writing A12ν = B12 +B11/2 and A22ν = B22 +B21/2.
As a result, the determinant detD1 can be derived from the definition

(

A11 A12ν
A21 A22ν

)

=

(

I1/2 + J − K I1/2 + I2 + 2J
(F1/2 + G − H)/2b2 (F1/2 + F2 + 2G)/2b2

)

. (2.17)

Therefore, nontrivial solutions exist only when detD1 = (A11A22 − A12A21)ν = 0.

– 5 –
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The parameters Ii, Fi, J,K,G and H of the BH model can be shown to be:

I1 = 2[16, 5]ν3 + 2[28, 9]ν2 − 2[30, 3x + 8]ν , (2.18)

I2 = 2[8, 3]ν3 + [36, 13]ν2 − 2[18, 3x + 5]ν , (2.19)

J = 12[0, x]ν , (2.20)

K = [−8x, 0]ν + 3x[2, 1] , (2.21)

b2F1 = 4[8, 3]ν4 + 16[8, 3]ν3 + 8[2x + 11, 5]ν2 + 4[10x − 20, 3x − 4]ν , (2.22)

b2F2 = 4[4, 1]ν4 + 18[4, 1]ν3 + 2[4x + 28, 8 − x]ν2 + 8[3x − 6, x − 1]ν , (2.23)

b2G = 2[0, 5x − 1]ν2 + 2[0, 7x − 2]ν , (2.24)

b2H = −4x[2, 1]ν2 − 4x[3, 2]ν + 2x[4 − 2x,−3 − 6x] . (2.25)

Note that we have extracted the scale parameters 1/b2 from the functions Fi, G and H for
convenience in writing above list. We can therefore derive the following matrix components
for the model (1.1):

A11 = [16, 5]ν3 + [28, 9]ν2 + [8x − 30, 9x − 8]ν − 3x[2, 1] , (2.26)

A12 = [32, 11]ν2 + [64, 22]ν + [−66, 15x − 18] , (2.27)

A21 = [8, 3]ν4 + [32, 12]ν3 + [8x + 22, 7x + 9]ν2

+2[8x − 10, 7x − 3]ν + x[2x − 4, 6x + 3] , (2.28)

A22 = [16, 5]ν3 + [68, 21]ν2 + [8x + 50, 9x + 16]ν

+[22x − 44, 21x − 12]. (2.29)

2.4 Stability conditions

Note that detD ≡ detD1/ν = A11A22 − A12A21 = 0 is a polynomial equation of degree 6 in
ν. The coefficients of this polynomial equation also depends on the choices of α and β. In
fact the polynomial equation A11A22 − A12A21 = 0 can be factorized as

detD = −2F (ν)β1

[

6ν2 + 12ν + x − 11, 2ν2 + 4ν + 3x − 3
]

= 0 (2.30)

with
F (ν) = 2ν4 + 8ν3 + (5x + 7)ν2 + 2(5x − 1)ν + 15x(x + 1) (2.31)

as a polynomial of degree 4. F (ν) = 0 can be solved by noting that

8F (ν) = [4∆1 + (5x − 1)]2 + (95x2 + 130x − 1) (2.32)

with ∆1 = ν2 + 2ν. Therefore the polynomial equation detD = 0 has 4 different solutions

ν = ν± ≡ −1 +
1

2

[

5 − 5x ±
√

1 − 130x − 95x2
]1/2

, (2.33)

ν = ν̃± ≡ −1 − 1

2

[

5 − 5x ±
√

1 − 130x − 95x2
]1/2

(2.34)

from the equation F (ν) = 0. There are also two additional solutions

ν = ν5 ≡ −1 +

[

2(3α1 + β1) − 1

2(3α1 + β1)

]1/2

, (2.35)

ν = ν6 ≡ −1 −
[

2(3α1 + β1) − 1

2(3α1 + β1)

]1/2

(2.36)

– 6 –
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from the equation

[

6ν2 + 12ν + x − 11, 2ν2 + 4ν + 3x − 3
]

= 1 + 2∆1(3α1 + β1) = 0. (2.37)

Note that there is a trivial solution ν = 0 and another un-physical solution β1 = 0.

3 Conclusions

The stability properties of these solutions can be shown to be helpful in determining whether
or not the BH solution is stable against small perturbations. Note that the system is stable
against any particular mode of the perturbations only when these perturbation solutions do
not obey the inequality ν > 0. It is apparent that unstable mode exists only when ν > 0. In
particular, it can be shown that ν = ν̃± and ν = ν6 are all stable models.

In addition, we can also show that the reality condition
√

1 − 130x − 95x2 ∈ R remains
valid only when a2/b2 = x ≤ x+ ≡ (12

√
6 − 13

√
5)/19

√
5 ∼ 0.0076495. Therefore, we can

show that

ν± = −1 +
1

2

[

5 − 5x ±
√

1 − 130x − 95x2
]1/2

> 0 (3.1)

provided that x < 1/5. Hence we conclude that ν± > 0 if 0 < a2/b2 = x < x+ because that
x+ < 1/5. In addition, we can also show that Re [ν± ] > 0 if x > x+. Since Re [ν± ] > 0
implies that ν± are oscillating divergent modes. Therefore the system is always unstable for
all x in the presence of the BII background solutions found in ref. [12].

Moreover, we can also show that

ν5 = −1 +

[

2(3α1 + β1) − 1

2(3α1 + β1)

]1/2

> 0 (3.2)

if 3α1 + β1 < 0. Therefore, an additional unstable mode ν5 > 0 exists if 3α1 + β1 < 0.
In conclusion, the whole classes of BH solutions admit three stable modes ν̃±, ν6 and

ν5 if 3α1 + β1 > 0. There are also two unstable modes ν± when we perturb the BH solutions
anisotropically in the BII background space. In addition, the ν5 mode becomes unstable
mode if 3α1 +β1 < 0. Therefore the system can only remain stable for a brief moment before
the unstable modes ν = ν± dominant the expanding process even if the energy conditions
are violated. In contrast to the stability conditions for the same anisotropically expanding
solutions found in the Brans-Dicke model [25], stable modes do exist in the higher derivative
models.

Acknowledgments

This research is supported in part by the NSC of Taiwan. We would like to thank the referee
for useful comments and suggestions.

References

[1] A.H. Guth, The Inflationary Universe: a Possible Solution to the Horizon and Flatness

Problems, Phys. Rev. D 23 (1981) 347 [SPIRES];
A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177 [SPIRES].

– 7 –

http://dx.doi.org/10.1103/PhysRevD.23.347
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D23,347
http://dx.doi.org/10.1016/0370-2693(83)90837-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B129,177


J
C
A
P
0
1
(
2
0
0
9
)
0
2
2

[2] J.D. Barrow, Perturbations of a De Sitter Universe, in The Very Early Universe, G.
Gibbons, S.W. Hawking and S.T.C Siklos eds., Cambridge University Press,
Cambridge U.K. (1983) p. 267.

[3] W. Boucher and G.W. Gibbons, Cosmic baldness, in The Very Early Universe, G.
Gibbons, S.W. Hawking and S.T.C Siklos eds., Cambridge University Press,
Cambridge U.K. (1983) p. 273.

[4] A.A. Starobinsky, Isotropization of arbitrary cosmological expansion given an effective

cosmological constant, JETP Lett. 37 (1983) 66 [SPIRES].

[5] L.G. Jensen and J.A. Stein-Schabes, Is Inflation Natural?,
Phys. Rev. D 35 (1987) 1146 [SPIRES].

[6] R.W. Wald, Asymptotic behavior of homogeneous cosmological models in the presence

of a positive cosmological constant, Phys. Rev. D 28 (1983) 2118 [SPIRES].

[7] J.D. Barrow, Cosmic no hair theorems and inflation, Phys. Lett. B 187 (1987) 12
[SPIRES].

[8] J.D. Barrow, Graduated inflationary universes, Phys. Lett. B 235 (1990) 40 [SPIRES];
J.D. Barrow and P. Saich, The Behavior of intermediate inflationary universes,
Phys. Lett. B 249 (1990) 406 [SPIRES];
J.D. Barrow and A.R. Liddle, Perturbation spectra from intermediate inflation,
Phys. Rev. D 47 (1993) R5219 [astro-ph/9303011] [SPIRES];
A.D. Rendall, Intermediate inflation and the slow-roll approximation,
Class. Quant. Grav. 22 (2005) 1655 [gr-qc/0501072] [SPIRES].

[9] J.D. Barrow, The premature recollapse problem in closed inflationary universes,
Nucl. Phys. B 296 (1988) 697 [SPIRES].

[10] J.D. Barrow and S. Cotsakis, Inflation and the conformal structure of higher order

gravity theories, Phys. Lett. B 214 (1988) 515 [SPIRES].

[11] K.-i. Maeda, Towards the Einstein-Hilbert action via conformal transformation,
Phys. Rev. D 39 (1989) 3159 [SPIRES].

[12] J.D. Barrow and S. Hervik, Anisotropically inflating universes,
Phys. Rev. D 73 (2006) 023007 [gr-qc/0511127] [SPIRES].

[13] A.L. Berkin, Contribution of the Weyl tensor to R2 inflation,
Phys. Rev. D 44 (1991) 1020 [SPIRES].

[14] E. Bruning, D. Coule and C. Xu, Inflationary cosmology with a R + λTµνRµν/R
Lagrangian, Gen. Rel. Grav. 26 (1994) 1197 [gr-qc/9408025] [SPIRES].

[15] H.-J. Schmidt, Lectures on mathematical cosmology, gr-qc/0407095 [SPIRES].

[16] A.D. Linde, Eternally existing selfreproducing chaotic inflationary universe,
Phys. Lett. B 175 (1986) 395 [SPIRES];
A. Vilenkin, The Birth of Inflationary Universes, Phys. Rev. D 27 (1983) 2848
[SPIRES].

– 8 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JTPLA,37,66
http://dx.doi.org/10.1103/PhysRevD.35.1146
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D35,1146
http://dx.doi.org/10.1103/PhysRevD.28.2118
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D28,2118
http://dx.doi.org/10.1016/0370-2693(87)90063-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B187,12
http://dx.doi.org/10.1016/0370-2693(90)90093-L
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B235,40
http://dx.doi.org/10.1016/0370-2693(90)91007-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B249,406
http://dx.doi.org/10.1103/PhysRevD.47.R5219
http://xxx.lanl.gov/abs/astro-ph/9303011
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=astro-ph/9303011
http://dx.doi.org/10.1088/0264-9381/22/9/013
http://xxx.lanl.gov/abs/gr-qc/0501072
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0501072
http://dx.doi.org/10.1016/0550-3213(88)90040-5
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B296,697
http://dx.doi.org/10.1016/0370-2693(88)90110-4
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B214,515
http://dx.doi.org/10.1103/PhysRevD.39.3159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D39,3159
http://dx.doi.org/10.1103/PhysRevD.73.023007
http://xxx.lanl.gov/abs/gr-qc/0511127
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=gr-qc/0511127
http://dx.doi.org/10.1103/PhysRevD.44.1020
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D44,1020
http://dx.doi.org/10.1007/BF02106712
http://xxx.lanl.gov/abs/gr-qc/9408025
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=gr-qc/9408025
http://xxx.lanl.gov/abs/gr-qc/0407095
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0407095
http://dx.doi.org/10.1016/0370-2693(86)90611-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B175,395
http://dx.doi.org/10.1103/PhysRevD.27.2848
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D27,2848


J
C
A
P
0
1
(
2
0
0
9
)
0
2
2

[17] J.D. Barrow and F.J. Tipler, The anthropic cosmological principle, Oxford University
Press, Oxford U.K. (1986).

[18] J. Patera, R.T. Sharp, P. Winternitz and H. Zassenhaus, Invariants of real low

dimension Lie algebras, J. Math. Phys. 17 (1976) 986 [SPIRES].

[19] J. Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann. 319 (2001) 715;
Standard Einstein solvmanifolds as critical points, Quart. J. Math. 52 (2001) 463;
Finding Einstein solvmanifolds by a variational method, Math. Z. 241 (2002) 83;
Degenerations of Lie algebras and geometry of Lie groups, Diff. Geom. Appl. 18 (2003)
177.

[20] S. Hervik, Negatively curved left-invariant metrics on Lie groups, talk held at the CMS
Summer 2004 meeting, Halifax, NS, Canada.

[21] J.D. Barrow, The deflationary universe: an instability of the de Sitter universe,
Phys. Lett. B 180 (1986) 335 [SPIRES].

[22] J.D. Barrow, String-driven inflationary and deflationary cosmological models,
Nucl. Phys. B 310 (1988) 743 [SPIRES].

[23] J.D. Barrow, Deflationary universes with quadratic lagrangians,
Phys. Lett. B 183 (1987) 285 [SPIRES].

[24] N. Kaloper, Lorentz Chern-Simons terms in Bianchi cosmologies and the cosmic no

hair conjecture, Phys. Rev. D 44 (1991) 2380 [SPIRES].

[25] W.F. Kao, Anisotropically inflating universes in a scalar tensor theory, CTU preprint
(2008).

[26] W.F. Kao, Anisotropic perturbation of de Sitter space, Eur. Phys. J. C 53 (2008) 87
[SPIRES].

[27] E.E. Flanagan and R.M. Wald, Does backreaction enforce the averaged null energy

condition in semiclassical gravity?, Phys. Rev. D 54 (1996) 6233 [gr-qc/9602052]
[SPIRES].

[28] A.A. Starobinsky, A new type of isotropic cosmological models without singularity,
Phys. Lett. B 91 (1980) 99 [SPIRES].

– 9 –

http://dx.doi.org/10.1063/1.522992
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA,17,986
http://dx.doi.org/10.1016/0370-2693(86)91198-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B180,335
http://dx.doi.org/10.1016/0550-3213(88)90101-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B310,743
http://dx.doi.org/10.1016/0370-2693(87)90965-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B183,285
http://dx.doi.org/10.1103/PhysRevD.44.2380
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D44,2380
http://dx.doi.org/10.1140/epjc/s10052-007-0430-4
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA,C53,87
http://dx.doi.org/10.1103/PhysRevD.54.6233
http://xxx.lanl.gov/abs/gr-qc/9602052
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9602052
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B91,99

	Introduction
	Stability conditions for the higher derivative BH solutions
	The BII Metric and the field equations
	Anisotropic metric perturbations
	Perturbation equations in the BH background metric space
	Stability conditions

	Conclusions

