

Note

A note on triangle-free distance-regular graphs with $a_2\neq 0$ *

Yeh-jong Pan, Chih-wen Weng

Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 300, ROC

article info abstract

Article history: Received 12 September 2007 Available online 9 August 2008

Keywords: Distance-regular graphs Classical parameters

Let *Γ* denote a distance-regular graph with classical parameters (D, b, α, β) and $D \ge 3$. Assume the intersection numbers $a_1 = 0$ and $a_2 \neq 0$. We show that the intersection number c_2 is either 1 or 2, and if $c_2 = 1$, then $(b, \alpha, \beta) = (-2, -2, ((-2)^{D+1} - 1)/3)$.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Brouwer, Cohen, and Neumaier invented the term classical parameters (D, b, α, β) to describe the intersection numbers of most known families of distance-regular graphs [3, p. ix, p. 193]. All classical parameters *(D, b,α,β)* of distance-regular graphs with *b* = 1 are classified by Y. Egawa, A. Neumaier and P. Terwilliger in a sequence of papers (see [3, p. 195] for a detailed description). For $b < -1$, the classification is done in the case $c_2 = 1$, $a_2 > a_1 > 1$, $D \geq 4$ [14], and in the case $a_1 \neq 0$, $c_2 > 1$, $D \geqslant 4$ [15]. For the case $a_1 = 0$, Miklavič shows the graph is 1-*homogeneous* [6]. A. Jurišić, J. Koolen, and Š. Miklavič study distance-regular graphs in the cases $a_1 = 0$, $a_2 = 0$, without the assumption of classical parameters, but instead with an additional assumption that the graphs have an eigenvalue multiplicity equal to the valency, and they almost classify such graphs [5]. In this note, we study distance-regular graphs with classical parameters (D, b, α, β) , $D \geqslant 3$, $a_1 = 0$, and $a_2 \neq 0$ (hence $b < -1$ by [7, Lemma 3.3]). We prove $c_2 \le 2$, and if $c_2 = 1$ then $(b, \alpha, \beta) = (-2, -2, ((-2)^{D+1} - 1)/3)$. Note that Witt graph M_{23} is the only known example of such graph with $c_2 = 1$ and the class of Hermitian forms graphs Her₂(*D*) is the only known family satisfying the conditions with $c_2 = 2$.

First we review some definitions and basic concepts concerning distance-regular graphs. See Bannai and Ito [1] or Terwilliger [10,11] for more background information.

Let $\Gamma = (X, R)$ denote a finite undirected, connected graph without loops or multiple edges with vertex set *X*, edge set *R*, distance function *∂*, and diameter *D* := max{*∂(x, y)* | *x, y* ∈ *X*}.

 $\textstyle{\raisebox{1pt}{\scriptsize{*}}}$ Research partially supported by the NSC grant 96-2628-M-009-015 of Taiwan, ROC. *E-mail addresses:* yjpan@mail.tajen.edu.tw, yjp.9222803@nctu.edu.tw (Y. Pan).

For a vertex $x \in X$ and an integer $0 \le i \le D$, set $\Gamma_i(x) := \{ z \in X \mid \partial(x, z) = i \}$. The valency $k(x)$ of a vertex $x \in X$ is the cardinality of $\Gamma_1(x)$. The graph Γ is called *regular* (with *valency k*) if each vertex in *X* has valency *k*.

A graph *Γ* is said to be *distance-regular* whenever for all integers 0 *h,i, j D*, and all vertices *x*, *y* ∈ *X* with ∂ (*x, y*) = *h*, the number

$$
p_{ij}^h = \big| \Gamma_i(x) \cap \Gamma_j(y) \big|
$$

is independent of *x*, *y*. The constants p_{ij}^h are known as the *intersection numbers* of *Γ*.

For convenience, set $c_i := p^i_{1i-1}$ for $1 \leq i \leq D$, $a_i := p^i_{1i}$ for $0 \leq i \leq D$, $b_i := p^i_{1i+1}$ for $0 \leq i \leq D-1$, $k_i := p_{ii}^0$ for $0 \leq i \leq D$, and set $b_D := 0$, $c_0 := 0$, $k := b_0$. Note that k is the valency of \varGamma . It follows immediately from the definition of p_{ij}^h that $b_i\neq 0$ for $0\leqslant i\leqslant D-1$ and $c_i\neq 0$ for $1\leqslant i\leqslant D.$ Moreover

$$
k = a_i + b_i + c_i \quad \text{for } 0 \leq i \leq D,
$$
\n
$$
(1.1)
$$

and

$$
k_i = \frac{b_0 \cdots b_{i-1}}{c_1 \cdots c_i} \quad \text{for } 1 \leqslant i \leqslant D. \tag{1.2}
$$

A *strongly regular graph* is a distance-regular graph with diameter 2. We quote a lemma about strongly regular graphs which will be used in the next section.

Lemma 1.1. *(See [2, Theorem 19, p. 276].) Let* $Ω$ *be a strongly regular graph with valency k which has* $k^2 + 1$ *vertices. Then k* ∈ {2*,* 3*,* 7*,* 57}*.*

Let *Γ* be a distance-regular graph with diameter *D*. *Γ* is said to have *classical parameters (D, b, α, β)* whenever the intersection numbers of *Γ* satisfy

$$
c_i = \begin{bmatrix} i \\ 1 \end{bmatrix} \left(1 + \alpha \begin{bmatrix} i-1 \\ 1 \end{bmatrix} \right) \quad \text{for } 0 \le i \le D,
$$
 (1.3)

$$
b_i = \left(\begin{bmatrix} D \\ 1 \end{bmatrix} - \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \left(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \quad \text{for } 0 \leq i \leq D,
$$
 (1.4)

where

$$
\begin{bmatrix} i \\ 1 \end{bmatrix} := 1 + b + b^2 + \dots + b^{i-1}.
$$
 (1.5)

Suppose *Γ* has classical parameters (D, b, α, β) . Combining (1.3)–(1.5) with (1.1), we have

$$
a_i = \begin{bmatrix} i \\ 1 \end{bmatrix} \left(\beta - 1 + \alpha \left(\begin{bmatrix} D \\ 1 \end{bmatrix} - \begin{bmatrix} i \\ 1 \end{bmatrix} - \begin{bmatrix} i-1 \\ 1 \end{bmatrix} \right) \right) \quad \text{for } 0 \leq i \leq D. \tag{1.6}
$$

A subgraph *Δ* of *Γ* is called *weak-geodetically closed* whenever for any vertices *x, y* ∈ *Δ* with ∂ (*x, y*) = *i,*

 $\Gamma_1(x) \cap (\Gamma_i(y) \cup \Gamma_{i-1}(y)) \subseteq \Delta$.

Weak-geodetically closed subgraphs are called *strongly closed subgraphs* in [9]. Let *t* be a positive integer. *Γ* is said *t*-*bounded*, whenever for any integer $0 \le i \le t$, and any two vertices *x*, $y \in X$ with $\partial(x, y) = i$, *x*, *y* are contained in a regular weak-geodetically closed subgraph $\Delta(x, y)$ of diameter *i*. Furthermore by [13, Theorem 4.6], *Δ(x, y)* is a distance-regular graph with intersection numbers

$$
a_j(\Delta(x, y)) = a_j(\Gamma),\tag{1.7}
$$

$$
c_j(\Delta(x, y)) = c_j(\Gamma), \tag{1.8}
$$

$$
b_j(\Delta(x, y)) = b_j(\Gamma) - b_i(\Gamma) \tag{1.9}
$$

for $0 \leq j \leq i$. We need the following three lemmas in the proof of our main theorem.

Lemma 1.2. *(See [15, Lemma 4.10].) Let Γ denote a distance-regular graph with classical parameters (D, b,α,β). Let Δ be a regular weak-geodetically closed subgraph of Γ . Then Δ is distance-regular with classical parameters (t, b,* α *,* β' *), where t denotes the diameter of* Δ *, and* $\beta' = \beta + \alpha(\begin{bmatrix} D \\ 1 \end{bmatrix} - \begin{bmatrix} t \\ 1 \end{bmatrix})$ *.*

Lemma 1.3. *(See [14, Lemma 4.1(iii)].) Let Γ denote a distance-regular graph with classical parameters* (D, b, α, β) and $D \geqslant 3$. Assume Γ is D-bounded. Then

$$
b^{3D-3i-4}(b+1-c_2)(\alpha(b^D+1)+\beta(b-1)) \ge 0
$$
\nfor $1 \le i \le D-2$.

\n(1.10)

Lemma 1.4. *(See [7, Lemma 3.3] and [8, Theorem 1.3].) Let Γ denote a distance-regular graph with classical* p arameters (D, b, α , β) and D \geqslant 3. Assume the intersection numbers $a_1=$ 0 and $a_2\not=$ 0. Then the following (i) *and* (ii) *hold.*

(i) $\alpha < 0$ and $b < -1$. (ii) *Γ is* 3*-bounded.*

2. Main result

Let $\Gamma = (X, R)$ be a distance-regular graph which has classical parameters (D, b, α, β) with $D \geqslant 3$. Suppose the intersection numbers $a_1 = 0$ and $a_2 \neq 0$. Then $\alpha < 0$ and $b < -1$ by Lemma 1.4. Now we are ready to prove our main theorem.

Theorem 2.1. *Let Γ denote a distance-regular graph with classical parameters (D, b,α,β) and D* - 3*. Assume* the intersection numbers $a_1 = 0$ and $a_2 \neq 0$. Then $c_2 \leqslant 2$.

Proof. *Γ* is 3-bounded by Lemma 1.4. Let *Δ* be a weak-geodetically closed subgraph of *Γ* with diameter 3. Then \triangle has classical parameters $(3, b, \alpha, \beta')$, where $\beta' = \beta + \alpha (\begin{bmatrix} 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 1 \end{bmatrix})$ by Lemma 1.2. Applying $a_1 = 0$ to (1.6) and by (1.5) we have

$$
\beta' = 1 + \alpha - \alpha \begin{pmatrix} 3 \\ 1 \end{pmatrix} = 1 - \alpha b - \alpha b^2. \tag{2.1}
$$

Applying Lemma 1.3 to $\Gamma = \Delta$ with $D = 3$ and $i = 1$, we have

$$
b^{2}(b+1-c_{2})(\alpha(b^{3}+1)+\beta'(b-1)) \geqslant 0. \tag{2.2}
$$

Note that $b + 1 - c_2 < 0$ since $b < -1$. Combining this with inequality (2.2) we find

$$
\alpha(b^3 + 1) + \beta'(b - 1) \leq 0. \tag{2.3}
$$

Evaluating (2.3) using (2.1) we find

$$
\alpha b + \alpha + b - 1 \leqslant 0. \tag{2.4}
$$

Note that $\alpha b + \alpha + b - 1 = c_2 - 2$ by (1.3) and hence $c_2 \leq 2$. \Box

For the case $c_2 = 1$, we have the following result.

Theorem 2.2. *Let Γ denote a distance-regular graph with classical parameters (D, b,α,β) and D* - 3*. Assume the intersection numbers* $a_1 = 0$ *,* $a_2 \neq 0$ *, and* $c_2 = 1$ *. Then* $(b, \alpha, \beta) = (-2, -2, ((-2)^{D+1} - 1)/3)$ *.*

Proof. Combining $a_1 = 0$ and $c_2 = 1$ with (1.6), (1.3), and (1.5) we have

$$
\alpha = \frac{-b}{1+b},\tag{2.5}
$$

$$
\beta = \frac{b^{D+1} - 1}{b^2 - 1}.\tag{2.6}
$$

Let *Ω* ⊂ *Δ* be two weak-geodetically closed subgraphs of *Γ* with diameter 2 and 3 respectively. Note that *Ω* is a strongly regular graph with $a_1(\Omega) = 0$, $c_2(\Omega) = 1$ by (1.7) and (1.8). Combining this with (1.1) and (1.2) we have

$$
|\Omega| = 1 + k_1(\Omega) + k_2(\Omega) = 1 + (b_0(\Omega))^2.
$$

Hence

$$
b_0(\Omega) = 2, 3, 7, 57 \tag{2.7}
$$

by Lemma 1.1. Note that

$$
b_0(\Omega) = b_0 - b_2 = 1 + b + b^2 \tag{2.8}
$$

by (1.9), (1.4), (2.5), and (2.6). Solving (2.7) with (2.8) for integer *b <* −1 we have *b* = −2, −3, or −8. Note that

$$
k_3(\Delta) = \frac{(b_0 - b_3)(b_1 - b_3)(b_2 - b_3)}{c_1 c_2 c_3} \tag{2.9}
$$

by (1.2), (1.8), and (1.9). Evaluating (2.9) using (1.3)–(1.5), (2.5), and (2.6) we have

$$
k_3(\Delta) = \frac{b^3(b^2+1)(b^2+b+1)(b^3+b^2+2b+1)}{1-b}.
$$
\n(2.10)

The number $k_3(\Delta)$ is not an integer when $b = -3$ or -8 . Hence $b = -2$ and $\alpha = -2$, $\beta =$ $((-2)^{D+1} - 1)/3$ by (2.5) and (2.6) respectively. $□$

Example 2.3. [4] Hermitian forms graph $\text{Her}_2(D)$ is a distance-regular graph with classical parameters (D, b, α, β) with $b = -2$, $\alpha = -3$, and $\beta = -(-2)^D - 1$, which has $a_1 = 0$, $a_2 \neq 0$, and $c_2 =$ $(1 + \alpha)(b + 1) = 2$. This is the only known class of examples that satisfies the assumptions of Theorem 2.1 with $c_2 = 2$.

Example 2.4. (See [12, p. 237].) Gewirtz graph is a distance-regular graph with diameter 2 and intersection numbers $a_1 = 0$, $a_2 = 8$, $k = 10$, which can be written as classical parameters (D, b, α, β) with $D = 2$, $b = -3$, $\alpha = -2$, and $\beta = -5$, so we have $c_2 = (b + 1)^2/2 = 2$. It is still open if there exists a class of distance-regular graphs with classical parameters $(D, -3, -2, (-1 - (-3)^D)/2)$ for $D \geqslant 3$.

Example 2.5. (See [3, Table 6.1].) Witt graph *M*²³ is a distance-regular graph with classical parameters (D, b, α, β) with $D = 3$, $b = -2$, $\alpha = -2$, and $\beta = 5$, which has $a_1 = 0$, $a_2 = 2$, and $c_2 = 1$. This is the only known example that satisfies the assumptions of Theorem 2.1 with $c_2 = 1$.

Acknowledgment

Theorem 2.2 is an anonymous referee's idea.

References

- [1] E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menlo Park, 1984.
- [2] B. Bollobás, Modern Graph Theory, Springer-Verlag, New York, 1998.
- [3] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
- [4] A.A. Ivanov, S.V. Shpectorov, Characterization of the association schemes of Hermitian forms over *G F (*22*)*, Geom. Dedicata 30 (1989) 23–33.
- [5] A. Jurišić, J. Koolen, Š. Miklavič, Triangle- and pentagon-free distance-regular graphs with an eigenvalue multiplicity equal to the valency, J. Combin. Theory Ser. B 94 (2) (2005) 245–258.
- [6] Š. Miklavič, Q -polynomial distance-regular graphs with $a_1 = 0$, European J. Combin. 25 (7) (2004) 911–920.
- [7] Y. Pan, M. Lu, C. Weng, Triangle-free distance-regular graphs, J. Algebraic Combin. 27 (2008) 23–34.
- [8] Y. Pan, C. Weng, 3-bounded property in a triangle-free distance-regular graph, European J. Combin. 29 (2008) 1634–1642.
- [9] H. Suzuki, On strongly closed subgraphs of highly regular graphs, European J. Combin. 16 (1995) 197–220.
- [10] P. Terwilliger, The subconstituent algebra of an association scheme (Part I), J. Algebraic Combin. 1 (1992) 363–388.
- [11] P. Terwilliger, A new inequality for distance-regular graphs, Discrete Math. 137 (1995) 319-332.
- [12] J.H. van Lint, R.M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 1992.
- [13] C. Weng, Weak-geodetically closed subgraphs in distance-regular graphs, Graphs Combin. 14 (1998) 275–304.
- [14] C. Weng, D-bounded distance-regular graphs, European J. Combin. 18 (1997) 211–229.
- [15] C. Weng, Classical distance-regular graphs of negative type, J. Combin. Theory Ser. B 76 (1999) 93–116.