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Some research on the folded Petersen cube networks have been published for the past several years due to its
favourite properties. In this paper, we consider the fault-tolerant hamiltonicity and the fault-tolerant hamil-
tonian connectivity of the folded Petersen cube networks. We use FPQn,k to denote the folded Petersen
cube networks of parameters n and k. In this paper, we show that FPQn,k − F remains hamiltonian for
any F ⊆ V (FPQn,k) ∪ E(FPQn,k) with |F | ≤ n + 3k − 2 and FPQn,k − F remains hamiltonian con-
nected for any F ⊆ V (FPQn,k) ∪ E(FPQn,k) with |F | ≤ n + 3k − 3 if (n, k) /∈ {(0, 1)} ∪ {(n, 0) | n is
a positive integer}. Moreover, this result is optimal.

Keywords: hamiltonian; hamiltonian connected; folded Petersen cube networks

2000 AMS Subject Classification: 05C45; 05C75; 05C85; 05C90; 68M10

1. Introduction

A large number of forms of topology have been proposed and studied for multicomputer inter-
connection networks. Such a form of topology is usually modelled as an undirected graph, where
the set of vertices represents the processors and the set of edges represents the bidirectional com-
munication links between the processors. The existing static interconnection networks include
linear arrays, rings, meshes, complete binary trees, X-trees, full-ringed binary trees, tree machines,
pyramids, fat trees [16], hypercubes [18], meshes of trees, cube-connected cycles [17], de Bruijn
networks [19], and so on. For general surveys on multicomputer networks, refer to [13,14].
Among these networks, the hypercube family has been popular because of such properties as
symmetry, regularity, high fault-tolerance, logarithmic degree and diameter, and selfrouting and
simple broadcasting schemes. Also, several commercial multicomputer architectures (e.g., Intel
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58 C.-K. Lin et al.

iPSC/2, NCUBE/10, and connection machine CM-2) use the hypercube topology for intercon-
necting processors. Nevertheless, new networks are being proposed and analysed with regard to
their applicability and enhanced topological or performance properties.

It is almost impossible to design a network that is optimum from all aspects. One has to design a
suitable network depending on the requirements of its properties. The hamiltonian property is one
of the major requirements in designing the topology of a network. For example, ‘Token Passing’
approach is used in some distributed operation systems. Interconnection network requires the
presence of hamiltonian cycles in the structure to meet this approach. Fault-tolerance is another
major requirement in the designing of network topology. Thus, the fault-tolerant hamiltonicity is
studied [9–12]. The fault-tolerant hamiltonicity of a network and the fault-tolerant hamiltonian
connectivity for the same network are also studied [6–8,21].

In this paper, a network is represented as a loopless undirected graph. For graph definitions
and notations, we follow [1]. G = (V , E) is a graph if V is a finite set and E is a subset of
{(u, v) | (u, v) is an unordered pair of V }. We say that V is the vertex set and E is the edge set.
Two vertices u and v are adjacent if (u, v) ∈ E. The degree of a vertex u of G, degG(u), is the
number of edges incident with u. We use δ(G) to denote min{degG(x) | x ∈ V (G)}. A graph G

is k-regular if degG(x) = k for any vertex in G. A path, 〈v0, v1, v2, . . . , vk〉, is an ordered list of
distinct vertices such that vi and vi+1 are adjacent for 0 ≤ i ≤ k − 1. The length of a path P is the
number of edges in P . The distance between two vertices u and v in G is the length of a shortest
path joining them. The diameter of a graph G is the distance between the farthest points in G.

A path is a hamiltonian path if its vertices are distinct and span V . A cycle is a path with at
least three vertices such that the first vertex is the same as the last vertex. A cycle is a hamiltonian
cycle if it traverses every vertex of G exactly once. A graph is hamiltonian if it has a hamiltonian
cycle. We will use Kn to denote the complete graph with n vertices and use Cn to denote the cycle
graph with n vertices.

A hamiltonian graph G is k fault-tolerant hamiltonian if G − F remains hamiltonian for every
F ⊂ V (G) ∪ E(G) with |F | ≤ k. The fault-tolerant hamiltonicity HF(G) is defined to be the
maximum integer k such that G is k fault-tolerant hamiltonian if G is hamiltonian and is undefined
otherwise. Clearly, HF(G) ≤ δ(G) − 2 if HF(G) is defined.A graph G is hamiltonian connected
if there exists a hamiltonian path joining any two vertices of G. All hamiltonian connected graphs
except the complete graphs K1 and K2 are hamiltonian. A graph G is k fault-tolerant hamiltonian
connected if G − F remains hamiltonian connected for every F ⊂ V (G) ∪ E(G) with |F | ≤ k.
The fault-tolerant hamiltonian connectivity HFK(G) is defined to be the maximum integer
k such that G is k fault-tolerant hamiltonian connected if G is hamiltonian connected and is
undefined otherwise. It can be checked that HFK(G) ≤ δ(G) − 3 only if HFK(G) is defined and
|V (G)| ≥ 4. There are a lot of studies on fault-tolerant hamiltonicity and fault-tolerant hamiltonian
connectivity [6–12,21].

In [5], the performance of the hamiltonian property in faulty networks is discussed.
Huang et al. [11] introduced the term, fault-tolerant hamiltonian connected. The Petersen graph
[1] is a 3-regular graph with 10 vertices and diameter 2 as compared with the three-dimensional
hypercube, which is a 3-regular graph with eight vertices and diameter 3. The folded Petersen
cube networks are motivated by the Petersen graph. In this paper, we consider the fault-tolerant
hamiltonicity and the fault-tolerant hamiltonian connectivity of the folded Petersen cube networks.

The k-dimensional folded Petersen network, FPk , is constructed by an iterative Cartesian
product on the Petersen graph.The folded Petersen network is then generalized into folded Petersen
cube network, FPQn,k . The graph FPQn,k is defined as a product of FPk and the n-dimensional
binary hypercube, Qn. The number of vertices in FPk is 10k , whereas there are 2n × 10k vertices in
FPQn,k , which is therefore more scalable than FPk . It turns out that FPQn,k and even its special
derivations FPQ0,k = FPk and FPQn−3,1 = HPn, called the n-dimensional hyper Petersen
network originally proposed by Das et al. [4], are better than the comparable-size hypercubes and
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International Journal of Computer Mathematics 59

several other networks with respect to the usual metrics (such as degree, diameter, connectivity,
packing density, or cost) of a multicomputer architecture.

In this paper, we prove that HF(FPQn,k) = n + 3k − 2 and HFK(FPQn,k) = n + 3k − 3
if (n, k) /∈ {(0, 1)} ∪ {(n, 0) | n is a positive integer}. Moreover, FPQ0,1 is neither hamiltonian
nor hamiltonian connected. Furthermore, FPQn,0 is hamiltonian but not hamiltonian connected
if n > 1; FPQ1,0 is hamiltonian connected but hamiltonian.

In the following section, we give the definition of the folded Petersen cube networks. In
Section 3, we present some mathematical preliminary. In Section 4, we prove our main result. In
the final section, we give a discussion of our work.

2. Folded Petersen cube networks

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The cartesian product of G1 and G2,
denoted by G1 × G2, is the graph with vertex set V1 × V2 such that (u1, v1) is joined to (u2, v2) if
and only if either u1 = u2 and v1 is joined to v2 in G2 or v1 = v2 and u1 is joined to u2 in G1. For
any graph G and any positive integer k, we define Gk = G if k = 1 and Gk = Gk−1 × G if k > 1.

For any positive integer, the n-dimensional hypercube Qn is defined as Q1 = K2 and Qn =
Qn−1 × Q1. Thus, Qn = Kn

2 . The Petersen graph P , shown in Figure 1(a), is a graph with 10 ver-
tices having an outer 5-cycle, an inner 5-cycle, and five spokes joining them. The folded Petersen
cube network FPQn,k is defined as Qn × P k . In particular, FPQ0,k = P k and FPQn,0 = Qn.
The graph FPQ0,2 = P 2 is shown in Figure 1(b).

The topology of an interconnection network plays an important role in the performance of a
distributed system. Various network topologies are in use and have their respective advantages
and disadvantages. A good network topology should be one with a small diameter. Regularity
and symmetry are some other qualities, which a good network topology is expected to possess.
Some of the well-known network topologies in use are the ring topology, the hypercube, the
cube-connected cycles, and so on. The Petersen graph is a 3-regular graph with 10 vertices and of
diameter 2. Compared with this graph, the three-dimensional hypercube is a 3-regular graph with

Figure 1. The Petersen graph P and (b) a schematic representation of P .
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60 C.-K. Lin et al.

eight vertices and of diameter 3. It has more vertices as compared with the three-dimensional
hypercube and of a smaller diameter. We call it the simple Petersen graph. As an extension,
Öhring and Das [15] introduce the k-dimensional folded Petersen graph, FPk , to be FPQ0,k . It
is observed that FPk possesses qualities of a good network topology for distributed systems with
large number of sites since it accommodates 10k vertices and is a symmetric, 3k-regular graph of
diameter 2k. Being an iterative Cartesian product on the Petersen graph, it is scalable. Moreover,
Öhring and Das [15] define the folded Petersen cube networks FPQn,k and show that a number
of standard topologies like linear arrays, rings, meshes, hypercubes, and so on can be embedded
into it. Recently, some research on the folded Petersen cube networks have been published for the
past several years due to its favourite properties [4,15,20].

Yet, to our knowledge, there is no study on the hamiltonian property on folded Petersen cube
networks. Perhaps, the difficulty is on the known result that the Petersen graph is not hamiltonian.
With the result of this paper, there are only two non-hamiltonian graphs in the family of folded
Petersen cube networks, namely FPQ1,0 and FPQ0,1.

3. Preliminary

We say a k-regular graph is super fault-tolerant hamiltonian if HF(G) = k − 2 and HFK(G) =
k − 3. Some interesting families of interconnection networks are proved to be super fault-tolerant
[9–11]. Chen et al. [2] observed the insight of the proofs of the aforementioned results and
proposed the following construction scheme.

Let G1 and G2 be two graphs with the same number of vertices. Let M be an arbitrary perfect
matching between the vertices of G1 and G2; i.e., M is a set of edges connecting the vertices of
G1 and G2 in a one to one fashion. For convenience, G1 and G2 are called components. Then,
G(G1, G2; M) is the graph with vertex set V (G(G1, G2; M)) = V (G1) ∪ V (G2) and edge set
E(G(G1, G2; M)) = E(G1) ∪ E(G2) ∪ M (see Figure 2 for an illustration).

Let H be a graph. Obviously, the Cartesian product H × K2 can be viewed as G(H, H ; M)

for some matching M . The Petersen graph P can be viewed as G(C5, C5; M) for some matching
M as shown in Figure 3.

Furthermore, P × C5 can be viewed as G(C5 × C5, C5 × C5; M) for some matching M (see
Figure 4 for an illustration).

The following two theorems are proved in [2].

THEOREM 1 Assume k ≥ 4. Let G1 and G2 be two k-regular super fault-tolerant hamiltonian
graphs and |V (G1)| = |V (G2)|. Then graph G(G1, G2; M) is (k − 1) fault-tolerant hamilto-
nian [2].

Figure 2. G(G1, G2; M).
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International Journal of Computer Mathematics 61

Figure 3. (a) A copy of C5, (b) another copy of C5, (c) the matching M , and (d) the Petersen graph P .

Figure 4. (a) A copy of C5 × C5, (b) another copy of C5 × C5, (c) the matching M , and (d) P × C5.

THEOREM 2 Assume k ≥ 5. Let G1 and G2 be two k-regular super fault-tolerant hamiltonian
graphs and |V (G1)| = |V (G2)|. Then graph G(G1, G2; M) is (k − 2) fault-tolerant hamiltonian
connected [2].

Combining Theorems 1 and 2, we have the following corollary.
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62 C.-K. Lin et al.

COROLLARY 1 Assume k ≥ 5. Let G1 and G2 be two k-regular super fault-tolerant hamiltonian
graphs and |V (G1)| = |V (G2)|. Then graph G(G1, G2; M) is (k + 1)-regular super fault-
tolerant hamiltonian connected.

Chen et al. [3] further extended their work by considering another construction scheme. Let r

and t be positive integers with r ≥ 3. Assume that G0, G1, . . . , Gr−1 are graphs with |V (Gi)| = t

for 0 ≤ i ≤ r − 1. We define H = G(G0, G1, . . . , Gr−1; M) with V (H) = ⋃r−1
i=0 V (Gi) and

E(H) = M ∪ ⋃r−1
i=0 E(Gi), where M = ⋃r−1

i=0 Mi,i+1 (mod r) with Mi,i+1 (mod r) is any arbitrary
perfect matching between V (Gi) and V (Gi+1 (mod r)), (see Figure 5 for an illustration). Let H be
any graph. Obviously, the Cartesian product H × C4 can be viewed as G(H, H, H, H ; M). The
following theorem is proved in [3].

THEOREM 3 Assume that G0, G1, . . . , Gn−1 are k-regular super fault-tolerant hamiltonian with
the same number of vertices where n ≥ 3 and k ≥ 5. Then G(G0, G1, . . . , Gn−1; M) is a (k + 2)-
regular super fault-tolerant hamiltonian [3].

Theorems 1, 2, and 3 are useful to construct super fault-tolerant hamiltonian graphs. Yet, one
drawback of these theorems is that k = 4 is excluded. However, we have some difficulty to improve
Theorem 2 by including the case k = 4. For this reason, in this paper, we introduce the concept
of extendable 4-regular super fault-tolerant hamiltonian graph. A 4-regular super fault-tolerant
hamiltonian graph H is extendable if H − {x, y} remains hamiltonian connected for any x and y

such that (x, y) ∈ E(H).
The following lemma is proved by brute force. Here, we just state the result to reduce the

complexity.

Figure 5. H = G(G0, G1, . . . , Gr−1; M).
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LEMMA 1 Both P × Q1 and C5 × C5 are extendable 4-regular super fault-tolerant hamiltonian
graphs. However, C5 × C4 is a 4-regular super fault-tolerant hamiltonian but not extendable
graph.

THEOREM 4 Assume that G1 and G2 are extendable 4-regular super fault-tolerant hamilto-
nian graphs with |V (G1)| = |V (G2)|. Then G(G1, G2; M) is a 5-regular super fault-tolerant
hamiltonian.

Proof Since Gi is a 4-regular, |V (Gi)| ≥ 5. Obviously, G(G1, G2; M) is a 5-regular graph. By
Theorem 1, G(G1, G2; M) is a 3 fault-tolerant hamiltonian.

Now, we need to prove G(G1, G2; M) is 2 fault-tolerant hamiltonian connected. Let F be any
subset of V (G(G1, G2; M)) ∪ E(G(G1, G2; M)) with |F | ≤ 2. We need to find a hamiltonian
path in G(G1, G2; M) − F between all pairs of vertices in V (G(G1, G2; M)) − F .

We use Fi to denote F ∩ (V (Gi) ∪ E(Gi)) for i = 1, 2. Moreover, we use F0 to denote
F ∩ M . Obviously, |F | = |F0| + |F1| + |F2|. Let x be any vertex in V (G(G1, G2; M)). We use
x ′ to denote the vertex of V (G(G1, G2; M)) matched under M . Thus, x ′ in V (Gi) if and only
if x ∈ V (G3−i ), for i = 1, 2. By considering the symmetric role of G1 and G2, we have the
following cases.

Case 1 |Fi | ≤ 1 for i = 1, 2.

(a) u ∈ V (G1) and v ∈ V (G2). Since |V (Gi)| ≥ 5 and |F | ≤ 2, we can find an edge (x, x ′) ∈
M − F with x ∈ V (G1) − (F1 ∪ {u}) and x ′ ∈ V (G2) − (F2 ∪ {v}). Since G1 and G2 are
1 fault-tolerant hamiltonian connected, there exists a hamiltonian path R1 of G1 − F1 join-
ing u to x and there exists a hamiltonian path R2 of G2 − F2 joining x ′ to v. Obviously,
〈u, R1, x, x ′, R2, v〉 forms a hamiltonian path of G(G1, G2; M) − F joining u to v (see
Figure 6(a) for an illustration).

(b) {u, v} ⊂ V (G1). Since G1 is 1 fault-tolerant hamiltonian connected, there exists a hamiltonian
path R1 of G1 − F1 joining u to v. Thus, the length of R1 is at least |V (G1 − F1)| − 1.

Suppose that we can find an edge (x, y) in R1 such that {x ′, y ′, (x, x ′), (y, y ′)} ∩ F = ∅. We
can rewrite R1 as 〈u, R1

1, x, y, R2
1, v〉. Note the length of R1

1 is 0 if u = x and the length of R2
1 is

0 if y = v. Since G2 is 1 fault-tolerant hamiltonian connected, there exists a hamiltonian path R2

of G2 − F2 joining x ′ to y ′. Obviously, 〈u, R1
1, x, x ′, R2, y

′, y, R2
1, v〉 forms a hamiltonian path

of G(G1, G2; M) − F joining u to v (see Figure 6(b) for an illustration).
Suppose that we cannot find an edge (x, y) in R1 such that {x ′, y ′, (x, x ′), (y, y ′)} ∩ F = ∅.

Then R1 can be written as 〈u = x1, x2, x3, x4, x5 = v〉 and F is one of the following cases: (1)
{(x2, x

′
2), (x4, x

′
4)}, (2) {x ′

2, (x4, x
′
4)}, or (3) {(x2, x

′
2), x

′
4}. In this case, |V (G1)| = 5. Hence, G1

and G2 are isomorphic to the complete graph K5. Moreover, G(G1, G2; M) is isomorphic to the
Cartesian product of K5 and K2. In this case, we can find another hamiltonian path R′

1 joining u and
v as 〈u = x1, x2, x4, x3, x5 = v〉. Now, the edge (x3, x5) in R′

1 satisfies {x ′
3, x

′
5, (x3, x

′
3), (x5, x

′
5)} ∩

F = ∅. As in the previous case, we can find a hamiltonian path of G(G1, G2; M) − F joining u

to v (see Figure 6(c) for an illustration).

Case 2 |F1| = 2. Thus, |F0| = |F2| = 0.

(a) {u, v} ⊂ V (G1). Choose an element f ∈ F . Set F ′ = F − {f }. Thus, |F ′| = 1. Since G1 is
1 fault-tolerant hamiltonian connected, there exists a hamiltonian path R1 of G1 − F ′ joining
u to v. Note that f is in R1 if f is a vertex. However, f may not be in R1 if f is an edge. We
can write R1 as 〈u, R1

1, x, f, y, R2
1, u〉 if f is in R1. Note that the length of R1

1 is 0 if u = x

and the length of R2
1 is 0 if y = v. We can also write R1 as 〈u, R1

1, x, y, R2
1, u〉 by picking any
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64 C.-K. Lin et al.

Figure 6. Illustration for Theorem 4.

edge (x, y) ∈ R1 if f is not in R1. Since G2 is 1 fault-tolerant hamiltonian connected, there
exists a hamiltonian path R2 of G2 joining x ′ to y ′. Obviously, 〈u, R1

1, x, x ′, R2, y
′, y, R2

1, v〉
forms a hamiltonian path of G(G1, G2; M) − F joining u to v (see Figure 6(d),(e), and (f)
for an illustration).

(b) u ∈ V (G1) and v ∈ V (G2). Since G1 is a 2 fault-tolerant hamiltonian, there exists a hamilto-
nian cycle C of G1 − F . Since C can be traversed backward and forward, we can write
C as 〈u, R1, x, u〉 such that x ′ 
= v. Since G2 is 1 fault-tolerant hamiltonian connected,
there exists a hamiltonian path R2 of G2 joining x ′ to v. Obviously, 〈u, R1, x, x ′, R2, v〉
forms a hamiltonian path of G(G1, G2; M) − F joining u to v (see Figure 6(g) for an
illustration).

(c) {u, v} ⊂ V (G2). Suppose u′ /∈ F . Since G1 is a 2 fault-tolerant hamiltonian, there exists a
hamiltonian cycle C of G1 − F . Since C can be traversed backward and forward, we can write
C as 〈u′, R1, x, u′〉 such that x ′ 
= v. Since G2 is 1 fault-tolerant hamiltonian connected, there
exists a hamiltonian path R2 of G2 − {u} joining x ′ to v. Obviously, 〈u, u′, R1, x, x ′, R2, v〉
forms a hamiltonian path of G(G1, G2; M) − F joining u to v (see Figure 6(h) for an
illustration).

Suppose u′ ∈ F . Since G2 is 4-regular, there exists a neighbour x of u in G2 − {v} such
that x ′ /∈ F . Since G1 is a 2 fault-tolerant hamiltonian, there exists a hamiltonian cycle C of
G1 − F . Since C can be traversed backward and forward, we can write C as 〈x ′, R1, y

′, x ′〉 such
that y 
= v. Since u′ ∈ F , y 
= u. Since G2 is extendable, there exists a hamiltonian path R2 of
G2 − {u, x} joining y to v. Obviously, 〈u, x, x ′, R1, y

′, y, R2, v〉 forms a hamiltonian path of
G(G1, G2; M) − F joining u to v (see Figure 6(i) for an illustration).

The theorem is proved. �
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4. Main result

LEMMA 2 P k is a (3k)-regular super fault-tolerant hamiltonian if and only if k ≥ 2.

Proof It is known that P is not hamiltonian. Hence, it is not hamiltonian connected. It is
observed that P 2 can be viewed as G(P × C5, P × C5; M). Moreover, P × C5 can be viewed
as G(C5 × C5, C5 × C5; M). By Lemma 1, C5 × C5 is an extendable 4-regular super fault-
tolerant hamiltonian. By Theorem 4, P × C5 is a 5-regular super fault-tolerant hamiltonian. By
Corollary 1, P 2 is a 6-regular super fault-tolerant hamiltonian. Assume that k is a positive inte-
ger with k ≥ 3. Again, P k can be viewed as G(P k−1 × C5, P

k−1 × C5; M). By Theorem 3,
P k−1 × C5 is a (3k − 1)-regular super fault-tolerant hamiltonian. By Theorems 1 and 2, P k is a
(3k)-regular super fault-tolerant hamiltonian. Thus, the lemma is proved. �

THEOREM 5 HF(FPQn,k) = n + 3k − 2 and HFK(FPQn,k) = n + 3k − 3 if (n, k) /∈
{(0, 1)} ∪ {(n, 0) | n is a positive integer}. Moreover, FPQ0,1 is neither hamiltonian nor hamil-
tonian connected. Furthermore, FPQn,0 is hamiltonian but not hamiltonian connected if n > 1;
FPQ1,0 is hamiltonian connected but not hamiltonian.

Proof By Lemma 2, HF(FPQ0,k) = 3k − 2 and HFK(FPQ0,k) = 3k − 3 if k ≥ 2. By
Lemma 1, HF(FPQ1,1) = 2 and HFK(FPQ1,1) = 1. By Lemma 1 and Theorem 4,
HF(FPQ2,1) = 3 and HFK(FPQ2,1) = 2. By Corollary 1, HF(FPQn,k) = n + 3k − 2 and
HFK(FPQn,k) = n + 3k − 3 if n ≥ 3 and k ≥ 1. Thus, HF(FPQn,k) = n + 3k − 2 and
HFK(FPQn,k) = n + 3k − 3 if (n, k) /∈ {(0, 1)} ∪ {(n, 0) | n is a positive integer}. Obviously,
FPQ0,1 is neither hamiltonian nor hamiltonian connected. Note that FPQn,0 is isomorphic to
Qn. It is known that Q1 is hamiltonian connected but not hamiltonian. Moreover, Qn is hamil-
tonian and there is no hamiltonian path of Qn joining any two vertices in the same partite set if
n ≥ 2. Thus, FPQn,0 is hamiltonian but not hamiltonian connected if n > 1. Since FPQ1,0 is
isomorphic to K2, FPQ1,0 is hamiltonian connected but not hamiltonian. �

We believe that our approach of this paper can be applied to the same problem on other
interconnection networks. Definitely, we can repeatedly apply Theorems 1, 2, and 3 to obtain the
result in this paper. However, we need a lot of efforts to check the base cases for the requirement
k ≥ 5 in Theorems 2 and 3. By introducing the concept of extendable 4-regular super fault-tolerant
hamiltonian graph, all difficulties have been overcome. Thus, it would be a great improvement if
Theorems 1, 2, and 3 remain true for smaller k.

Let H be the graph shown in Figure 7(a). Obviously, H is a 3-regular graph. By brute force, we
can check that H is a 3-regular super fault-tolerant hamiltonian. Let G1 and G2 be two copies of
H . Let G be the graph shown in Figure 7(b). Obviously, G = (G1, G2; M) for some matching M .

Figure 7. (a) The graph H and (b) the graph G.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

6:
26

 2
5 

A
pr

il 
20

14
 



66 C.-K. Lin et al.

By brute force, we can prove that G − {2, 12} is not hamiltonian. Thus, G is not a 2 fault-tolerant
hamiltonian.

Hence, the bound of k in Theorem 1 is optimal. Yet, we believe the bounds of k in Theorems 2
and 3 are optimal.

5. Conclusion

In this paper, we study the fault-tolerant hamiltonicity and fault-tolerant hamiltonian connec-
tivity on the folded Petersen cube graph. We prove that, HF(FPQn,k) = n + 3k − 2 and
HFK(FPQn,k) = n + 3k − 3 if (n, k) /∈ {(0, 1)} ∪ {(n, 0) | n is a positive integer}. We believe
that the approach of this paper can be used to obtain the fault-tolerant hamiltonicity of other
interconnection networks. Moreover, it is interesting to prove that the bounds of k in Theorems 2
and 3 are optimal.
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