
13

Modeling and Analysis of Core-Centric
Network Processors

YI-NENG LIN, YING-DAR LIN, and KUO-KUN TSENG

National Chiao Tung University

and

YUAN-CHENG LAI

National Taiwan University of Science and Technology

Network processors can be categorized into two types, the coprocessors-centric model in which the

data-plane is handled by coprocessors, and the core-centric model in which the core processes most

of the data-plane packets yet offloading some tasks to coprocessors. While the former has been

properly explored over various applications, researches regarding the latter remain limited. Based

on the previous experience of prototyping the virtual private network (VPN) over the IXP425 net-

work processor, this work aims to derive design implications for the core-centric model performing

computational intensive applications. From system and IC vendors’ perspectives, the continuous-

time Markov chain and Petri net simulations are adopted to explore this architecture. Analytical

results prove to be quite inline with those of the simulation and implementation. With subse-

quent investigation we find that appropriate process run lengths can improve the effective core

utilization by 2.26 times, and by offloading the throughput boosts 7.5 times. The results also

suggest single process programming since context switch overhead impacts considerably on the

performance.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application Based Systems]:

Real-Time and Embedded Systems, Microprocessor/Microcomputer Applications; C.4 [Perfor-
mance of Systems]: Design Studies, Modeling Techniques

General Terms: Performance, Verification

Additional Key Words and Phrases: Network processor, embedded system, modeling, core-centric,

simulation

ACM Reference Format:
Lin, Y.-N., Lin, Y.-D., Tseng, K.-K., and Lai, Y.-C. 2009. Modeling and analysis of core-centric

network processors. ACM Trans. Embedd. Comput. Syst. 8, 2, Article 13 (January 2009), 15 pages.

DOI = 10.1145/1457255.1457260 http://doi.acm.org/10.1145/1457255.1457260

This work was supported in part by the Program for Promoting Academic Excellence of Universities

of Taiwan National Science Council, and in part by Intel and Chung-Hua Telecom.

Authors’ addresses: Y.-N. Lin, Y.-D. Lin, and K.-K. Tseng, National Chiao Tung University; email:

ynlin@cs.netu.edu.tw; Y.-C. Lai, National Taiwan University of Science and Technology.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1539-9087/2009/01-ART13 $5.00 DOI 10.1145/1457255.1457260 http://doi.acm.org/

10.1145/1457255.1457260

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

13:2 • Y.-N. Lin et al.

1. INTRODUCTION

Networking applications offering extra security and content-aware processing
features demand more powerful hardware platforms to achieve high perfor-
mance. For computational intensive applications such as the virtual private net-
work (VPN) [Braun et al. 1999], general-purpose processors are often adopted;
however, the cost is considerable while the throughput is not satisfactory, due to
the heavy cryptographic operations. Rather, the application-specific integrated
circuits (ASICs) [Smith 1997] can meet the performance requirement with a
circuitry designed for both networking and cryptographic processing. Nonethe-
less, the lack of adaptability makes it less appealing.

Network processors [Lekkas 2003] have been embraced as an alternative
to tackle the above-mentioned problems for their core-processor/coprocessors–
based architecture, on which control and data-plane processing are separated
for efficiency, and their reprogrammability for functional adaptations. The core
processor can perform complicated operations, and is thus responsible for con-
trol messages, while a number of multithreaded coprocessors, having specif-
ically designed instructions for networking purposes, are employed for mass
data-plane processing. This kind of architecture, referred to as the coprocessors-
centric model, is frequently applied as a core device which requires moderate
configurability but high scalability [Lin 2003; Clark et al. 2004; Comer and
Martynov 2006; Lin et al. 2007; Tan et al. 2004]. When implementing an edge
device that deals with relatively mild traffic volume, both control and data-
plane packets are processed by the core processor. This is referred to as the
core-centric model. Nonetheless, routinelike and computational intensive tasks
such as receiving, transmission, and en/decyption can still be offloaded to cer-
tain application-specific coprocessors [Lin et al. 2005].

Several studies have acknowledged the feasibility of adopting these mod-
els in packet processing for applications such as DiffServ, VPN, Cryptographic
algorithms, and intrusion detection and prevention (IDP). In addition to eval-
uation through implementing both models to discover system bottlenecks [Lin
2003; Clark et al. 2004; Comer and Martynov 2006; Lin et al. 2007; Tan et al.
2004; Lin et al. 2005], mathematical modeling [Crowley and Bear 2002; Wolf
and Franklin 2006; Lu and Wang 2006] is favored for the coprocessors-centric
model in order to unveil design implications, which are unlikely to observe
through real benchmarking. Though, analytical resort for the emerging core-
centric model is yet unattempted.

In this article, we analyze the untapped core-centric network processors by
modeling the IXP425 performing VPN. The IXP425 [Intel IXP425] employs
an XScale core processor in charge of general packet processing and coproces-
sors executing receiving, transmission, and cryptographic operations. Analyti-
cal models of two schemes, the busy-waiting (BW) scheme and interrupt-driven
(ID) scheme, are developed using the continuous time Markov chain, a method
widely adopted for modeling complex systems. In the BW scheme, the core
hands over the intermediate results to the coprocessor for application-specific
processing and waits for the coprocessor to finish. This primitive approach, in
which the core wastes a significant time waiting, is used by some operating

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

Modeling and Analysis of Core-Centric Network Processors • 13:3

systems, for instance NetBSD, to cooperate with coprocessors. The BW scheme
is then revised and extended to the ID scheme. In this scheme the multiprocess
mechanism is incorporated and the core switches, with overhead in terms of
delay, to another process when offloading certain task to a coprocessor or after
a certain process run length. This technique is realized in NetBSD by enabling
the OCF (Open Crypto Framework) option. Though busy-waiting overhead is
significantly alleviated, efficiency of the core in this scheme is subject to not
only the context switch overhead but also process run lengths among multiple
processes. The inappropriate process run lengths could lead to poor allocation
of computational resource.

Besides the analytical models, a simulation framework is developed for in-
specting internal characteristics of the system, which oftentimes cannot be
obtained from real implementations due to the limitation of the monitoring
facilities and from mathematical analysis due to enormous state space. With
these established analytical and simulation models, we try to reveal some de-
sign implications for future core-centric NPs. Since the core is frequently found
to be the bottleneck [Lin et al. 2005], the main track of the investigation focuses
on mechanisms to improve (1) the core efficiency and (2) overall performance.
We study techniques for the former by analyzing the process run length and
context switch overhead, and for the latter through exploring the benefits from
offloading. The modeling framework and design implications are believed to be
useful in rapid system prototyping.

This article is organized as follows. Section 2 briefs the overview of the core-
centric IXP425 network processor system and describes architectural assump-
tions. We elaborate the analytical models and simulation design in Sections 3
and 4, respectively. Section 5 presents the results and observations. Some con-
clusive remarks of this article are made in Section 6.

2. BACKGROUND

2.1 Performance Model Overview

The core of IXP425 is an XScale processor handling system initialization and
software objects execution. Three buses interconnected by two bridges provide
the connectivity among components on IXP425. To assist the XScale core in
processing networking packets, two coprocessors, named network processor en-
gines (NPEs), are used for providing functions such as MAC filtering and CRC
checking/generation, in cooperate with an encryption/decryption coprocessor.
Our analytical models for the processing flow are based on the implementation
of VPN over the IXP425 network processor. As shown in Figure 1, the process-
ing flow can be summarized into five processing stages which are (1) receiving,
(2) IPSec preprocessing, (3) en/decryption, (4) IP processing, and finally
(5) transmission. Notably the shadowed blocks (i.e., tasks #1, #3, and #5)
are offloaded to corresponding coprocessors, namely, the receiving coprocessor,
computational coprocessor, and transmission coprocessor, respectively, whereas
tasks #2 and #4 are handled by the core through multiprogramming and context
switching.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

13:4 • Y.-N. Lin et al.

Fig. 1. Processing flow and task allocation of the VPN application over IXP425: physical and

logical views.

2.2 Architectural Assumptions

Some coprocessors may incorporate multiple hardware threads [Intel IXP2400]
to alleviate memory access latency by switching out the processor control from
a thread to another when issuing a memory access. Nevertheless, hardware
multithreading requires duplicate register sets which increase the cost, and
is helpful only for memory-access intensive applications such as DiffServ and
IDP. Therefore, in this work we assume single thread in each coprocessor since
VPN is computational intensive, rather than memory-access intensive. Buffer
space for each processing stage is also encompassed, except for the BW scheme,
which needs no buffer between the core and the computational coprocessor.

3. ANALYTICAL MODEL

3.1 The Busy-Waiting Scheme

In this scheme, no buffer is present between the core and computational co-
processor. Therefore, the core has to wait on the signal of completion before it
can resume execution. For example, when the core finishes the IPSec prepro-
cessing, the result is passed (offloaded) to the computational coprocessor for
en/decryption and is thereafter again handed over to the core for IP process-
ing. In this regards, the core and the computational coprocessor can be seen
as different processes in a logical CORE processor, since only one of them can
be active anytime. The scheme can further be simplified as a series of queues
consisting of three servicing stations, as shown in Figure 2. In this abstrac-
tion, all stations are independent M/M/1/∞ models, and the departure-time
distribution from a queue is identical to the interarrival-time distribution of
another. The utilizations of the receiving and transmission coprocessors are

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

Modeling and Analysis of Core-Centric Network Processors • 13:5

Fig. 2. The BW scheme.

trivial, whereas for CORE it can be derived as

UCORE = μR

(TCore A + Tcop + TCore B)−1
, (1)

where μR denotes the mean arrival rate at the CORE which is the same with the
mean departure rate from the receiving coprocessor. TCore A, Tcop, and TCore B
represent the processing time for IPSec preprocessing, en/decryption and IP
processing, respectively. Finally, we can obtain the utilizations for core and
computational coprocessor as

UCore = UCORE × TCore A + TCore B

TCore A + TCop + TCore B
, and (2)

UCop = UCORE − UCore, respectively, (3)

since the CORE consists of the both Core processor and computational copro-
cessor.

3.2 The Interrupt-Driven Scheme

Contrasted with BW, in the ID scheme the core passes the results from IPSec
preprocessing to the computational coprocessor and resumes without being
blocked. To realize this concept, two processes need to be forked in the core
for IPSec preprocessing and IP processing, respectively, and buffer is required
between the core and coprocessor. When the IPSec preprocessing is done and the
packet is passed to the coprocessor’s buffer, the core switches, with a switching
delay TD, to the other process for performing IP-related operations so that the
core is not stalled; context switches also occur after a certain period of process
run length. To reflect this enhancement, a processor control switch, referred to
as PCS, is adopted to capture activities of the two processes. According to the
above descriptions we can formally define a state of the system as

ST = (R, A, C, B, T, S),

where R, A, C, B, and T denote the queue lengths for the five processing stages,
namely, receiving, IPSec preprocessing referred to as Core A, en/decryption re-
ferred to as Cop, IP processing referred to as Core B, and transmission, while
S denotes the PCS. As shown in Figure 3, S = 0/S = 1 means the core
is processing packets at Core A/Core B; it then switches to an intermediate

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

13:6 • Y.-N. Lin et al.

Fig. 3. The interrupt-driven model.

Table I. Notations for the Analytical Models

— λ denotes mean packet arrival rate.

— TS0 denotes the mean run length of PCS at Core A.

— TS1 denotes the mean run length of PCS at Core B.

— λS0 denotes the mean switching rate of PCS from 0 to 1. λS0 = 1/TS0.

— λS1 denotes the mean switching rate of PCS from 1 to 0. λS1 = 1/TS1.

— TD denotes the mean context switch delay.

— λD denotes 1/TD
— μX denotes the mean service rate of processing stage X .

— bufX denotes the buffer size of processing stage X .

state S = 2/S = 3 after a run length of TS0/TS1, and waits for TD to finish
the context switch. Parameters used in the analytical model are described in
Table I.

Even with the multiprocess mechanism, the core could still be busy-waiting
for (1) packet arrivals from its predecessor and (2) available buffer slots in its
successor to which the processing result is passed. In this way, the effective core
utilization, which is derived by subtracting the busy-waiting overhead from
overall core utilization, suffers. Therefore, the PCS should be manipulated well
to avoid these situations by (1) setting appropriate run lengths TS0 and TS1 so
that the processing resource is reasonably distributed, and (2) characterizing
appropriate transition conditions so as to ensure that context switches are per-
formed upon those conditions. All possible transitions are listed in Table II and
explained as follows.

As presented in Table II, all transitions for the five processing stages can
be classified into (1) arrival, in which packets are received from the network
or predecessor, and (2) departure, in which packets are passed to the succes-
sor or transmitted. The only stage having an arrival rate is the receiver (λ),
while others do not because arrivals are activated by their predecessors. To
hand over the processed result to the next thread, it is necessary that the suc-
cessor has available buffer space (X < bufR) to accommodate the processed
results. Besides the buffer space requirement in the successor, when acting as
a predecessor, the Core A and Core B have to additionally acquire the processor
control, namely, the PCS, in order to perform packet processing. A PCS value
of 0/1 means Core A/Core B controls the processor. The PCS starts to switch
from 0 or 1 if (1) the run length has been reached (TS0 for Core A and TS1 for
Core B), or (2) the corresponding active stage (either Core A or Core B in which

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

Modeling and Analysis of Core-Centric Network Processors • 13:7

Table II. State transitions in the ID scheme

Component Transition Type Condition(s) Rate

Receiving arrival R < bufR λ

departure A < bufA μR

Core A arrival follower of Rec n/a

departure PCS = 0, C < bufC μA

Cop arrival follower of Core A n/a

departure B < bufB μC

Core B arrival follower of Cop n/a

departure PCS = 1, T < bufT μB

Transmission arrival follower of Core B n/a

departure n/a μT

PCS

0 => 2

A > 0, B > 0 λS1

(A = 0, B > 0) or C = bufC ∞
(B = 0) or T = bufT 0

2 => 1 n/a λD

1 => 3

A > 0, B > 0 λS2

(A > 0, B = 0) or T = bufT ∞
(A = 0) or C = bufC 0

3 => 0 n/a λD

Fig. 4. Example state transitions of the interrupt-driven model.

the PCS resides) does not have any packet but the other does. No switching will
occur if (1) the target stage to which PCS is going to switch has no packets or
(2) the successor of the target stage has no buffer left. When the PCS switches
from 0 to 1 or from 1 to 0, a context switch delay TD is counted.

Figure 4 depicts an example state whose buffer size equals to 3 for each
stage, and the corresponding transitions in which five are transiting into the
state and others are transiting out from the state. While the inbound and out-
bound transitions are comprehensible, special note needs to be taken for the
PCS, namely, the PCS in the example state never transits from 0 to 1. This
is because the Core B cannot pass the processed packet to the transmission
stage, which is already full. The transition of PCS from 0 to 1 simply con-
tributes to the unnecessary overhead and, therefore, is considered an invalid
transition.

4. PETRI NET SIMULATION ENVIRONMENT

Tools have been available for simulating architectures similar to NPs
[Nussbaum et al. 2004; Davis et al. 2005]. Though accurate, they focus mainly

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

13:8 • Y.-N. Lin et al.

Fig. 5. Petri net for the ID scheme.

on the low-level configuration, such as cache structure, and lack flexibility in
task allocation. In this section, we describe the construction of the simulation
environment based on the timed and colored Petri nets (CPNs) [Murata 1989;
Zuberek et al. 1998] which captures well component-level activities. It is used
to validate the analytical model discussed in the previous section as well as to
observe possible hints for future NP design.

We adopt the event-driven CPN-Tools [Ratzer 2003] as our simulator. The
features it supports, including the colored tokens, stochastic functions, and hi-
erarchical editing, provide efficiency in the construction of timed and colored
Petri nets corresponding to our model. As shown in Figure 5, the net of the ID
scheme contains five processing stages presented as transitions (Rec, Core A,
cop, Core B, and Trans). Each of them is associated with a control token in-
dicating the availability of the processing resource and equipped with a place
representing buffers, namely, B0, B1, IF out, IF in, and B2. The size of the
buffers is configured in other five places (i.e., B0′, B1′, IF out′, IF in′, and B2′,
respectively) by marking them with a number of initial tokens. The following
description exemplifies a sample processing flow.

When a packet arrives at the receiving coprocessor, B0, with the interarrival
time being exponentially distributed with mean 1/λ, one token in B0′ is con-
sumed indicating the occupation of a buffer slot. Once the receiving coprocessor
is available (namely, the R tok place contains a token), the packet is processed
for PRμsec and then passed to the Core A stage if room (B1′ > 0), while the
tokens go back to R tok and B0′, respectively. If the token in P tok is available,
meaning Core B is not executing, Core A will start to process the packet for
PAμsec and then offloads en/decryption operations to the computational copro-
cessor which takes for PCμsec. Notably, the token returning to P tok costs addi-
tional TDμsec for context switch overhead. Similar procedures apply to Core B
and the transmission coprocessor which last for PB and PT μsec, respectively.
The net of the BW scheme can be built similarly except that no buffer is present
between Core A and Cop and between Cop and Core B, i.e., both IF out′ and
IF in′ are excluded from the net. Though the nets quite resemble the analytical

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

Modeling and Analysis of Core-Centric Network Processors • 13:9

Table III. Processing Time of the Tasks Evaluated in a Real

Implementation. Process Run Lengths and Context Switch are to

be Configured

Task Processing Time (μ sec /pkt)

(1) Receiving (Rec) 27.3

(2) IPSec preprocessing (Core A) 31

(3) En/decryption (Cop) 12.6

(4) IP processing (Core B) 49

(5) Transmission (Trans) 27.3

Fig. 6. Run length (TS0 = TS1) vs. core utilization under an input load of 35 Mbps.

models, some differences exist. First, the processing time of each stage is de-
terministic in simulation yet exponentially distributed in the analysis. Second,
the run lengths of Core A and Core B cannot be configured due to the limitation
of the tool in simulation.

5. EVALUATION

In this section we first validate the analytical model against simulations and
implementation benchmark. We then evaluate the core-centric network proces-
sors of the ID and BW schemes, trying to identify design implications.

5.1 System Parameter Determination

Parameter settings for the analytical model as well as the simulation are listed
in Table III. Then we try to find the most appropriate process run length for
PCS. To rule out the interference of context switch overhead, TD is configured to
a value close to zero. As Figure 6 presents, compared to the normal run length
of 6,666μsec [Microsoft], when choosing 100μsec, we can have 2.26 times im-
provement on the effective core utilization while consuming 20.5% less compu-
tational resource. Busy-waiting overhead, which is the difference of the overall
core utilization and the effective core utilization, is significantly alleviated.
This is credited to the frequent switching that helps avoid much backlog, and
therefore possible stall, at components.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

13:10 • Y.-N. Lin et al.

Fig. 7. Analytical model validation against the simulation and real implementation.

5.2 Validation of the Analytical Model

In order to make the behavior of the simulation inline, the analytical model
and implementation, the context switch delay, TD, has been gradually adjusted.
We finally find that, with TD being very close to 0, the analytical results are
mostly within 1% of the simulation, as presented in Figure 7. The discrepancy
comes from different assumptions between the analysis and simulation. The
former assumes exponential distribution for the packet interarrival time and
instruction processing time, while the latter uses deterministic ones in order
to be realistic. It is implied that the context switch delay is minor in the im-
plementation, which is quite unreasonable, indicating that only one process in
the core is employed practically for both IPSec preprocessing and IP process-
ing. The utilization of the implementation is slightly higher (3%–4%) than the
analytical model due to the operating system overhead. The discrepancy no-
ticeably increases when being overloaded. It is also surprisingly learned that
the limited buffer size, which is configured to 3 in the analytical model, does not
influence the model accuracy when the load is under system capacity. As the
analytical model closely matches with the simulation and is configurable for
parameters such as process run lengths, we conduct the investigation mostly
through the former. The simulation is adopted only for large buffer sizes which
are frequently not feasible in the analytical model due to state-space explosion.

5.3 Differentiated Run Lengths

Run lengths have been shown to be influent on the system performance. Rather
than having the same run length for Core A and Core B, whose processing
times are different, it is sensible to differentiate them so as to distribute the
computational resource according to the load. Figure 8 presents the results
of the differentiation, in which TS0 is configured as 100μsec found appropriate
previously. It is learned that the system performance improves as TS1 increases.
While the largest advance occurs at TS1 = 200, minor improvement continues
even when TS1 = 6,666. This is credited to the conditions that force the PCS to
switch from 1. For example, the PCS switches immediately if the transmission
stage is full or if the Core B stage contains no packets, so that busy-waiting can
be avoided.

The BW scheme is also involved in this comparison, in which single process
is implemented in the Core, namely, no context switch occurs during execution.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

Modeling and Analysis of Core-Centric Network Processors • 13:11

Fig. 8. Benefits from differentiated run lengths for Core A and Core B. TS0 is configured as

100μsec.

Fig. 9. Core usage distribution for different context switch delays. The asterisk means TS0 and

TS1 are configured to 100 and 200μsec.

Surprisingly, it outperforms the ID scheme since (1) context switch overhead is
not present owing to the single process mechanism, and (2) the Cop is efficient
enough so that the Core spends limited time waiting.

5.4 Effect of the Context Switch Overhead

Though context switching is helpful in alleviating the busy-waiting overhead
and hiding memory access latency, for computational-intensive applications it
could jeopardize the performance, as Figure 9 explains. From the figure, we can
learn that a delay of 300μsec leads to low effective utilization (12%), but con-
siderable context switching and busy-waiting burdens (38% and 47%). As the
delay reduces, not only the core utilizes effectively, but also the overhead is less-
ened. The burden from busy-waiting can even be annihilated when TD = 10 and
TS0 and TS1 are further configured to 100 and 200μsec, respectively. However,
since a context switch delay of 10μsec is quite unrealistic for current XScale
core implementation (except for some coprocessors with hardware multithreads
[Intel IXP2400]), this result is also advising that system vendors adopt single

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

13:12 • Y.-N. Lin et al.

Fig. 10. Throughput of various offloading schemes. The clock rate of the XScale core in the imple-

mentation is 533MHz, as a reference for comparison.

process for handling multiple tasks. Though the process occupies large mem-
ory space, the cost is quite affordable for today’s memory technology, whereas
context switch overhead is substantially alleviated.

5.5 Benefit from Offloading

Offloading complex and routine tasks to specially designed coprocessors has
been an alternative to simply speeding up the core processor. However, the
benefit from offloading is not well investigated. Figure 10 demonstrates the gain
of doing cryptographic operations, which is the most time-consuming task, by (1)
multiplying the core clock rate, and through (2) offloading to the computational
coprocessor. The former includes (1) no speedup and (2) speedup for two, four,
and six times for the core processor, while the latter involves both ID and BW
schemes. As revealed in the figure, the throughput increases in direct proportion
to the speedups. Nonetheless, the ID scheme still outperforms the unoffloaded
one equipped with a core of six-time speedup resembling a 3.2GHz P4 processor.
Finally, we can see that the BW scheme scores the highest throughput, as
explained previously.

The performance figures can be validated as follows. Let the capability of
the core be m cycles/sec, and the processing time for Core A, en/decryption and
Core B be x, y , and z cycles/Mbits, respectively. We can have

m
x + y + z

= 10 (Mbps), (4)

since the throughput of an ordinary core without offloading is 10 Mbps. More-
over, because the core, namely, XScale in the real implementation is the perfor-
mance bottleneck [Lin et al. 2005], we can also have

m
x + z

= T (Mbps), (5)

where T represents the throughput of the core executing Core A and Core B,
and therefore the throughput of the ID scheme as well. With Equations (4) and
(5) we can have

(5)

(4)
:

z + y + z
x + z

= T
10

. (6)

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

Modeling and Analysis of Core-Centric Network Processors • 13:13

Fig. 11. Core utilization for two buffer sizes under different input loads.

Since y : (x + z) = (31 + 49) : 12.6 ∼= 6.4, according to Table III, the throughput
T can finally be derived as

T = 10 × 1 + 6.4

1
= 74 (Mbps), (7)

which is very close to the one from the analytical model.

5.6 Effect of Buffer Sizes

As pointed out earlier in this section, the buffer size does not impact much
on the accuracy of the model. This is verified in Figure 11, which compares
two significantly different sizes, 3 and 1,000 where the latter case is performed
through simulation instead of analysis, due to large state space. From the figure
we can see that the core utilization is the same for both sizes when the input
load is below the system capability which is about 45 Mbps. This implies that
buffer sizes need not be large, as long as the load does not go beyond the system
capacity.

6. CONCLUSION AND FUTURE WORK

This work aims at deriving possible design implications for the core-centric
network processors through analytical modeling as well as Petri net simula-
tions. The computational intensive VPN application, which has some complex
but routine tasks, is adopted to explore the benefits from offloading to coproces-
sors. Two implementation schemes of the Core, namely, the busy-waiting and
interrupt-driven schemes, are introduced and compared. To date, this work is
the first research that practically models this emerging architecture.

The analytical model is verified to have behaviors closely inline with the
simulation (within 1%) and the implementation (within 3%–4%). Detailed in-
vestigations are then carried out on mechanisms that (1) exploit efficiently the
core processor which is usually the bottleneck and (2) improve the system per-
formance. Through both analytical and simulation measures, we observe that

—by adopting appropriate process run lengths, 2.26 times improvement on the
effective core utilization and 20.5% less consumption on the computational
resource can be achieved; better results can be obtained if run lengths of
stages are further differentiated according to the processing time;

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

13:14 • Y.-N. Lin et al.

—by reducing the context switch delay from 300μsec to 10μsec we can have 2.6
times advance on the effective core utilization, and the switching overhead
and busy-waiting time can be alleviated by as much as 90%; this observation
also strongly suggests the use of (1) a single process for multiple tasks or
(2) hardware multithreading, since 10μsec delay is normally unfeasible for
today’s multiprocess technique;

—the busy waiting scheme may be considered as long as the coprocessor is fast
enough;

—incorporating coprocessors for the bottleneck task, namely the en/
decryption, boosts the throughput for 7.5 times compared to that of single
core processor;

—buffer sizes need not be large, as long as the load has not gone beyond the
system capacity.

We believe the first three findings are useful for system vendors while the oth-
ers may interest IC vendors. Discovery and the modeling framework developed
in this study should be applicable to network processors of similar architecture
and beneficial to rapid system prototyping.

As a future direction, we plan to extend this approach by considering
memory-access intensive applications such as IDP (Intrusion Detection and
Prevention). In such extension, memory access operations can be offloaded to
coprocessors specifically designed with a wide memory bus. To further analyze
the potential memory bottleneck, the model can also involve multiple memory
modules or multiport memory to accommodate concurrent accesses.

REFERENCES

BRAUN, T., GÜNTER, M., KASUMI, M., AND KHALIL, I. 1999. Virtual private network architecture.

Tech. rep. California Technical Institute. IAM-99-001.

CLARK, C., LEE, W., SCHIMMEL, D., CONTIS, C. KONÉ, M., AND THOMAS, A. 2004. A hardware platform

for network intrusion detection and prevention. In Proceedings of the 3rd Workshop on Network
Processors and Applications (NP3), ACM, New York, NY.

COMER, D. AND MARTYNOV, M. 2006. Building experimental virtual routers with network proces-

sors. In Proceedings of the 2nd International Conference on Testbeds and Research Infrastruc-
tures for the Development of Networks and Communities (TRIDENTCOM). IEEE, Los Alamitos,

CA.

CROWLEY, P. AND BAER, J.-L. 2002. A modeling framework for network processor systems. In Pro-
ceedings of the Network Processor Workshop in Conjunction with the 8th International Symposium
on High Performance Computer Architecture (NP1). ACM, New York, NY.

DAVIS, J.D., FU, C., AND LAUDON, J. 2005. The RASE (rapid, accurate simulation environment) for

chip multiprocessors. In Proceedings of the Workshop on Design, Architecture and Simulation of
Chip Multiprocessors (dasCMP’05). ACM, New York, NY.

INTEL. IXP425 Network Processor. http://www.intel.com/design/network/products/npfamily/ixp425.

htm.

INTEL. IXP2400 Network Processor. http://www.intel.com/design/network/products/npfamily/

ixp2400.htm.

LEKKAS, P. C. 2003. Network Processors: Architectures, Protocols and Platforms (Telecom Engi-
neering). McGraw-Hill Professional, New York, NY.

LIN, Y.-D., LIN, Y.-N., YANG, S.-C., AND LIN, Y.-S. 2003. DiffServ Edge Routers over Network Pro-

cessors: Implementation and Evaluation. IEEE Network 17, 4, 28–34.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

Modeling and Analysis of Core-Centric Network Processors • 13:15

LIN, Y.-N., LIN, C.-H., LIN, Y.-D., AND LAI, Y.-C. 2005. VPN gateways over network processors:

implementation and evaluation. In Proceedings of the 11th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS’05). IEEE, Los Alamitos, CA.

LIN, Y.-N., CHANG, Y.-C., LIN, Y.-D., AND LAI, Y.-C. LAI. 2007. Resource allocation in network pro-

cessors for memory access intensive applications. J. Syst. Softw. 80, 7.

LU, J. AND WANG, J. 2006. Analytical performance analysis of network-processor-based applica-

tion designs. In Proceedings of the 15th International Conference on Computer Communications
and Networks (IC3N’06). IEEE, Los Alamitos, CA, 33–39.

MICROSOFT TECHNET. http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/core/

fned ana trrf.mspx?mfr=true.

MURATA, T. 1989. Petri nets: Properties, analysis and applications. Proc. IEEE 77, 4.

NUSSBAUM, D., FEDOROVA, A., AND SMALL, C. 2004. An overview of the Sam CMT simulator Kit.

Tech. rep. Sun Microsystems.

RATZER, A. V., ET AL. 2003. CPN tools for editing, simulating, and analysing coloured Petri nets.

In Proceedings of the International Conference on Applications and Theory of Petri Nets. Springer,

Berlin, Germany.

SMITH, J. M. S. 1997. Application-Specific Integrated Circuits. Addison-Wesley, Upper Saddle

River, NJ.

TAN, Z., LIN, C., YIN, H., AND LI, B. 2004. Optimization and benchmark of cryptographic algorithms

on network processors. IEEE Micro 24, 5, 55–69.

WOLF, T. AND FRANKLIN, M. K. 2006. Performance models for network processor design. IEEE
Trans. Parall. Distrib. Syst. 17, 6, 548–561.

ZUBEREK, W. M., GOVINDARAJAN, R., AND SUCIU, F. 1998. Timed colored Petri net models of dis-

tributed memory multithreaded multiprocessors. In Proceedings of Workshop on Practical Use of
Colored Petri Nets and Design/CPN. ACM, New York, NY.

Received July 2007; accepted March 2008

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 13, Publication date: January 2009.

