
國 立 交 通 大 學 
 

管理科學系 

 

博 士 論 文 

No. 046 

 

 

 

已實現波動度於動態期貨避險之應用 

Applications of Realized Volatility for Futures Hedging 

 

 

 

 

 

 

研 究 生：賴雨聖 

指導教授：許和鈞  教授 

 

 

 

中 華 民 國 九 十 八 年 十 一 月 



國 立 交 通 大 學 
 

管理科學系 

 

博 士 論 文 

No. 046 

 

 

 

已實現波動度於動態期貨避險之應用 

Applications of Realized Volatility for Futures Hedging 

 

 

 

研 究 生：賴雨聖 

研究指導委員會：沈華榮  教授 

                謝國文  教授 

                鍾惠民  教授 

指導教授：許和鈞  教授 

 

 

 

中 華 民 國 九 十 八 年 十 一 月 



已實現波動度於動態期貨避險之應用 

Applications of Realized Volatility for Futures Hedging 

 

 

 

研 究 生：賴雨聖          Student：Yu-Sheng Lai 

指導教授：許和鈞          Advisor：Her-Jiun Sheu 

 

 

國 立 交 通 大 學 

管 理 科 學 系 

博 士 論 文 

 

 

 
A Dissertation 

Submitted to Department of Management Science 

College of Management 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of  

Doctor of Philosophy 

in 

 

Management 

 

November 2009 

 

Hsin-Chu, Taiwan, Republic of China 

 

 

中華民國九十八年十一月 



 i 

已實現波動度於動態期貨避險之應用已實現波動度於動態期貨避險之應用已實現波動度於動態期貨避險之應用已實現波動度於動態期貨避險之應用 

 

研究生：賴雨聖                                                  指導教授：許和鈞 

國立交通大學管理科學系博士班 

 

中文摘要中文摘要中文摘要中文摘要 

本論文旨在應用已實現波動度(realized volatility)於動態避險議題上。首先我們提出新的

以高頻日內資訊為基礎之多變量波動度模式，並將此模式應用至動態避險比率之估計上。在

實證分析上，我們以美國S&P 500期貨為研究對象，探討此新的避險模式是否可以改進期貨避

險之績效。與傳統以低頻資訊為基礎之避險模式比較後發現，新的避險模式不但可以大幅降

低投資組合在樣本外之風險暴露額，並可為避險者產生正面的經濟價值。探究其主因，主要

是因為已實現波動度可以較報酬率平方(return squares)提供更精確之波動度估計值，以致在波

動度(或是避險比率)的預測上將得以較傳統方式有較佳的表現。 

此外我們亦探討如何將此方法應用於事後(ex-post)避險績效之評估上。將Andersen et al. 

(2005, 2006)之研究成果應用至期貨避險議題上，我們建構之已實現避險比率得以用於評估各

種事前(ex-ante)避險模式之預測能力，同時漸進理論並提供衡量避險比率精確度之方法。另

者，已實現避險效果亦可用於衡量期貨避險之績效。 

本論文最後探討已實現避險比率之動態性質。藉由門檻自我迴歸模式之分析，我們得以

研究避險比率是否存在門檻效果並探討其在不同狀態下之動態性質。應用Hansen (1996)提出

之拔靴檢定方法，我們發現門檻效果確實存在於已實現避險比率中。當避險比率高(低)於門

檻變數的情況下，避險比率本身將會有較低(高)的波動度。門檻效果以及正向自我迴歸現象

的存在均顯示避險比率應是與時變動(time-varying)的，因此實證結果支持動態避險比率假說。 

藉由日內高頻資料的應用，已實現波動度提供我們一個不需模式設定(model-free)的方法

來估計不可觀測到的波動度指標。本論文的研究成果指出，高頻日內資料的使用將可為許多

財務上的議題，例如資產配置或期貨避險等，開啟另一嶄新的研究題材。 

 

關鍵辭：動態避險比率；多變量波動度模式；已實現波動度；避險績效。 
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Applications of Realized Volatility for Futures Hedging 

 

Student: Yu-Sheng Lai                                           Advisor: Her-Jiun Sheu 

Department of Management Science 

National Chiao Tung University 

 

Abstract 

The dissertation applies the realized volatility (RV) approach to the futures hedging problem. Firstly, 

we propose a new class of multivariate volatility models encompassing RV estimates to estimate the 

risk-minimizing hedge ratio, and compare the performance of the proposed models with those 

generated by return-based models. In an out-of-sample context with a daily rebalancing approach, 

the empirical results show that improvement can be substantial when switching from daily to 

intraday. This essentially comes from the advantage that the intraday-based RV potentially can 

provide more accurate daily covariance matrix estimates than RV utilizing daily prices.  

Next, we describe ex-post measures for assessing ex-ante hedge ratio estimates. Applying the 

realized beta framework of Andersen et al. (2005, 2006), the realized hedge ratio, realized hedging 

effectiveness, and the asymptotic confidence interval are constructed. The realized hedge ratio, 

which is consistent with the integrated hedge ratio, provides a natural benchmark for assessing the 

forecasting ability of any ex-ante hedge ratio estimates. Meanwhile, the asymptotic distribution 

provides insights into the precision of the realized hedge ratio. Furthermore, the realized hedging 

effectiveness provides an ex-post estimate for the integrated hedging effectiveness. 

Then, the dynamics of the realized hedge ratio is investigated via a two-regime Self-Exciting 

Threshold Autoregressive (SETAR) model. The SETAR is tackled with a linear Autoregressive 

(AR) model if the threshold effect is not significant. Empirical results conclude the realized daily 

hedge ratio is characterized as regime-dependent dynamics and is likely to be positively 

autocorrelated so that the usual assumption of constant hedge ratio seems inappropriate.  

The RV approach, which utilizes finer information in intraday high-frequency data, provides a 

direct and consistent technique for estimating the latent volatility without the need for relying on 

explicit models. Our investigation may provoke further study on the benefits of utilizing intraday 

information in volatility modeling, which is relevant to asset allocating and futures hedging. 

 

Keywords: Dynamic hedge ratio; Multivariate volatility model; Realized volatility; Hedging 

performance. 
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Chapter 1. Introduction 

 

 

1.1. Motivation 

 

Futures contracts are important hedging instruments for hedgers. By taking opposite positions 

in spot and futures markets, the price risk of a spot position can be reduced. Hence, theoretical 

and empirical aspects of a futures hedge have been the focus of much academic research. At 

the theoretical level, the hedging theories have shown that a hedge is the optimal when a 

hedger uses an optimal hedge ratio, e.g., Johnson (1960). Traditionally, this hedge ratio is de-

rived by the portfolio approach via an expected-utility maximization scheme.
1
 With some ad-

ditional restrictions, the minimum-variance hedge ratio, which is equivalent to the covariance 

of spot and futures over the variance of futures, is generally the optimal, e.g., Benninga et al. 

(1983). Due to the simplicity, this preference-free hedge ratio is easily to be implemented so 

that it has been widely adopted in the empirical studies.  

At the empirical level, a considerable amount of studies on futures hedging have focused on 

modeling the joint distribution of spot and futures prices and applying the results to estimate 

the optimal hedge ratio. While the early studies assume that the hedge ratio is constant over 

time (e.g., Ederington, 1979), recent studies have documented that the joint distribution, and 

hence the hedge ratio, should be time dependent due to the time-varying nature of risks (e.g., 

Kroner & Sultan, 1993).
2
 Since then, varieties of multivariate volatility techniques have been 

applied. Baillie and Myers (1991), Myers (1991), Kroner and Sultan (1993), Brooks et al. 

(2002), Lien et al. (2002), and Lien and Yang (2006) are examples of studies that apply gen-

                                                 
1
 On the other hand, the development of stochastic dominance theory has also facilitated the implementation of a 

futures hedge. An overview of this application could be found in Lien and Tse (2002). 
2
 With the aim of reducing risk, this hedge ratio is equivalent to the ratio of the conditional covariance between 

spot and futures over the conditional variance of futures. 
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eralized autoregressive conditional heteroscedasticity (GARCH) models.
3
 As a result, the 

central issue in the context of a dynamic hedge is to provide the conditional covariance matrix 

forecast that can characterize the dynamics of the distribution more realistically. 

Conventionally, the standard GARCH conditional covariance matrix forecast is simply 

specified as some functions of its past values as well as outer product of past daily or weekly 

returns.
4
 In other words, by only utilizing daily or weekly price information, this category of 

volatility models provides relatively convenient and traceable method to give the forecast. 

Nevertheless, even with correctly specified models, it has been shown that the GARCH-type 

forecasts do not fully mimic the properties of integrated covariance matrix, which serves as an 

ideal theoretical ex-post benchmark for assessing the quality of ex-ante covariance matrix 

forecasts (see Andersen et al, 2006). One possible reason of this imperfect forecast may come 

from that the low frequency data do not fully convey all the relevant information so that the 

outer product of past returns itself is a nosy proxy of the multivariate volatility.  

To judge the success of a futures hedge, the hedging effectiveness (HE) of Ederington 

(1979) has been extensively adopted in the empirical studies as a benchmark for hedging per-

formance and as a measure to select the best hedging method. This traditional measure defines 

the effectiveness of a hedge by calculating the percentage reduction from the variance of the 

spot position to the variance of the hedged portfolio. Empirical results on futures hedging us-

ing this unconditional HE has shown that the simple ordinary-least-square (OLS) regression 

method generally has a best performance in sample, and the superiority of this OLS method is 

also supported by some out-of-sample comparisons.
5
 For example, Kroner and Sultan (1993) 

                                                 
3
 In addition to the GARCH framework, other studies use stochastic volatility models (e.g., Lien & Wilson, 

2001). 
4
 The standard multivariate GARCH models specify the conditional covariance matrix by either generalizing the 

univariate GARCH models of Bollerslev (1986) or by combining some univariate GARCH models. The former 

includes the VECH model of Bollerslev et al. (1988) and the BEKK (Baba-Engle-Kraft-Kroner) model of Engle 

and Kroner (1995). The latter includes the constant conditional correlation (CCC) model of Bollerslev (1990), 

the dynamic conditional correlation (DCC) model of Engle (2002), and the copula-based GARCH model of Pat-

ton (2004, 2006). A review of a wide range of multivariate GARCH models is referred to Bauwens et al. (2006). 
5
 It is noted that the variance-based hedging effectiveness is the focus of this study although Cotter and Hanly 
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indicate that the OLS method outperforms all other constant hedge methods in a 

within-sample context; and, Lien et al. (2002) indicate that the OLS hedge even can beat the 

constant conditional correlation GARCH (CCC-GARCH) hedge in an out-of-sample context. 

Lien (2005a,b, 2008, 2009) shows that the OLS hedge tends to outperform others, such as the 

naïve, error correction (EC), or the GARCH hedges, for within-sample comparisons because 

the hedging effectiveness of Ederington (1979) only considers the proportional reductions in 

the unconditional variance. Hence, whether the dynamic hedge can surpass the static OLS is 

still studied both theoretically and empirically, although the literature has identified with the 

hedge ratio should be time varying as the new information has arrived to the market (e.g., 

Kroner & Sultan, 1993). 

 

1.2. Dynamic Futures Hedge and Hedging Effectiveness 

 

Consider a one-period futures hedging problem. Suppose an investor (hedger) who longs a 

fixed spot portfolio at beginning would like to reduce the price risk of the spot at the end of 

the period. To achieve this goal, he may go to a futures market to short a proportion of futures 

contracts. Usually, nearby contracts are used due to liquidity concerns. Let tS  and tF  be 

the logarithmic prices of spot and futures, respectively, at time t ; and, tβ  be a hedge ratio, 

which is defined by the amount of futures per unit spot, at time t . Then the realization on the 

hedged portfolio return for the hedging period (from time t  to 1t + ) is given by 

 , 1 , 1 , 1p t s t t f tr r rβ+ + += −  (1.1) 

where , 1 1s t t tr S S+ += −  is the return for holding the spot, and , 1 1f t t tr F F+ += −  is the re-

turn for holding the futures. Note that the hedge ratio is an unknown decision variable for the 

                                                                                                                                                         

(2006) argue that the chosen (unconditional) risk measures that are used in calculating the hedging effectiveness 

has important implications in determining the best hedging method when the hedgers have their specific aims. 

With the use of an extensive set of risk measures, including variance, semi-variance, lower partial moments, 

value at risk, and conditional value at risk (or called expected shortfall), they find that the best hedging method is 

sensitive to the specific risk measures.  
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hedger so that it needs to be estimated via some models.
6
  

Assume that the hedger would like to choose the optimal futures holdings by maximizing 

the expected (mean-variance) utility function: 

 , 1 , 1 , 1( | ; , ) ( | ) var( | )p t t t p t t p t tEU r E r rβ γ γ+ + +Φ = Φ − Φ  (1.2) 

at time t  with the degree of risk aversion 0γ > , where the expectation and the variance 

operators are calculated conditional on the set of all available information tΦ  at time t  

(Kroner & Sultan, 1993). With some mathematical derivations, the optimal hedge ratio equals 

to 

 
, 1 , 1 , 1*

, 1

( | ) 2 cov( , | )

2 var( | )

f t t s t f t t

t

f t t

E r r r

r

γ
β

γ

+ + +

+

Φ + Φ
=

Φ
 (1.3) 

When the expected return for holding futures is zero (i.e. , 1( | ) 0f t tE r + Φ = ) or the degree of 

risk aversion is high (γ →∞ ), the expected utility-maximizing problem simplifies to the 

(conditional) variance-minimizing problem: 

 , 1min var( | ; )
t

p t t tr
β

β+ Φ  (1.4) 

and the optimal hedge ratio (or minimum-variance hedge ratio) is formulated as 

 
, 1 , 1*

, 1

cov( , | )

var( | )

s t f t t

t

f t t

r r

r
β

+ +

+

Φ
=

Φ
 (1.5) 

The derivation of this hedge ratio is generally valid for von-Neumann Morgenstern utility 

functions for () 0U ′ ⋅ >  and () 0U ′′ ⋅ <  (Benninga et al., 1983). This simplified hedge ratio 

only depends on conditional second moments of spot and futures, and therefore, one central 

issue in the context of a dynamic hedge is to provide the conditional covariance matrix fore-

                                                 
6
 Traditional approach to commodity futures hedging adopts the naïve strategy, which suggests a hedger who 

longs a unit of spot position should sell a unit of futures today and then buy the contracts back when he sells the 

spot. A perfect hedge is achieved when the spot and futures prices both move by the same amount; however, in 

practice, it is found that the prices usually do not have identical co-movements.  
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casts that can characterize the dynamics of the second moments more realistically.  

Assume that the 2 1×  vector of returns ( ), ,,t s t f tR r r ′=  follows the discrete-time process: 

 
1 2

t t t tR M Z= +Ω ,  1,2, ,t T= …  (1.6) 

where 1( | )t t tM E R −≡ Φ  and 1var( | )t t tR −Ω ≡ Φ  represent the 2 1×  conditional mean 

vector and 2 2×  conditional covariance matrix of tR , respectively; , ,( , )t s t f tZ η η ′=  is an 

2 1×  vector of serially uncorrelated disturbances with ( )tE Z = 0  and ( )=var tZ I . Note 

that tM  consists of individual conditional means, and tΩ  consists of individual conditional 

variance 2
,i tσ  ( ,i s f= ) in the diagonal and conditional covariance ,sf tσ  in the off-diagonal. 

This decomposition is of much popular with the empirical success of multivariate volatility 

models, e.g. the multivariate GARCH-type models; and, over years, a large body of studies 

has applied these models to estimate the dynamic hedge ratio, e.g., Kroner and Sultan (1993), 

and among many others.  

To judge the success of these methods, the hedging effectiveness (HE) of Ederington (1979) 

has been extensively adopted as a benchmark for the hedging performance.
7
 The measure de-

fines the effectiveness of a futures hedge by calculating the percentage reduction from the 

variance of the spot position to the variance of the hedged portfolio, or  

 
, 1

, 1

var( )
HE 1

var( )
p t

s t

r

r

+

+

≡ −  (1.7) 

where the realization on the hedged portfolio return , 1p tr +  equals to *
, 1 , 1s t t f tr rβ+ +− ; , 1s tr +  

and , 1f tr +  represent realizations of spot and futures returns, respectively; var()⋅  denotes the 

variance operator. Based on this performance measure, a hedging method is deemed better 

than others if it can generate a higher HE or equivalently a smaller , 1var( )p tr +  for the hedged 

portfolio.  

 

                                                 
7
 In addition to the statistical measure, alternative economic measures are also discussed, such as the 

Sharpe-type hedging performance of Howard and DAَntonio (1984) and the economic value of Lence (1995). 
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1.3. Integrated Covariance Estimation using Intraday Data 

 

The availability of intraday high-frequency data for many financial assets has benefited the 

measurement of realizations on the unobserved latent volatility process. Without through 

standard time series techniques, e.g., the GARCH models, the realized volatility (RV) ap-

proach has provided a consistent model-free estimate of the price volatility over a given dis-

crete-time interval. To illustrate, suppose the 2 1×  vector of (spot-futures) returns is arisen 

from the continuous-time diffusion process: 

 ( ) ( ) ( ) ( )dP t M t dt t dW t= +Σ , [0, ]t T∈  (1.8) 

where ( ) { ( ), ( )}P t S t F t ′=  represents the 2 1×  vector of logarithmic prices; ( )M t  repre-

sents the 2 1×  instantaneous drifts; ( )tΣ  represents the 2 2×  instantaneous positively 

definite diffusion matrix that consists of individual instantaneous variance 2( )i tσ  ( ,i s f= ) 

in the diagonal and instantaneous covariance ( )sf tσ  in the off-diagonal; ( )W t  represents 

the 2 1×  vector of independent standard Brownian motions. Over the [ , ]t t−�  time inter-

val, the return for the continuous-time model is defined as 

 ( , ) ( ) ( ) ( ) ( ) ( )
t t

t t
R t P t P t M s ds s dW s

− −
= − − = + Σ∫ ∫

� �

� �  (1.9) 

When 1=� , it represents the one period return from time 1t −  to t . As compared with the 

discrete-time representation, the conditional mean vector and covariance matrix are replaced 

by the corresponding integrated mean and covariance process with the innovation driven by 

the continuously evolving standard Brownian motion. As a result, the integrated covariance 

matrix for the one-period, which is formulated by 

 
1

ICov( ) ( ) ( )
t

t
t s s ds

−
′= Σ Σ∫  (1.10) 

is closely related to the conditional covariance matrix in the discrete-time framework so that 

the integrated variance (covariance) has been served as an ideal ex-post benchmark for as-
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sessing the quality of ex-ante variance (covariance) forecasts (Andersen et al., 2006). 

The availability of intraday high-frequency data has provided a way to estimate the inte-

grated covariance matrix. Define the realized covariance matrix for the time interval [ 1, ]t t−  

as 

 
1/

1

RCov( , ) ( 1 , ) ( 1 , )
j

t R t j R t j
=

′= − + ⋅ − + ⋅∑
�

� �� ��  (1.11) 

As the sampling frequency of returns goes to infinity, the bivariate realized covariation con-

verges to the corresponding bivariate integrated covariation: 

 RCov( , ) ICov( )t t→� , 0→�  (1.12) 

Details of the proof are referred to Andersen et al. (2001a, 2001b, 2003), and 

Barndorff-Nielsen and Shephard (2004). For notation simplicity, hereafter, we denote ,RVs t  

and ,RVf t  the realized variance of the spot and the futures, respectively; and RCovt  the 

realized spot-futures covariance, at time t  using the �  equally sampled discrete-time re-

turns.  

 

1.4. Research Objectives 

 

The objective of this dissertation is to apply the model-free RV approach to the one-period 

hedging problem. To do so, there are three topics to be investigated in the following article.  

Firstly, a large number of empirical studies on futures hedge have concerned with the con-

ventional multivariate GARCH-type models, which only utilize daily (weekly) price informa-

tion, in estimating the dynamic hedge ratio. With the use of intraday information, Chapter 2 

presents alternative discrete-time multivariate volatility models encompassing the elements of 

realized covariance in estimating the dynamic hedge ratio. In addition, the benefits on the dy-

namic hedge over those conventional methods using return-based volatility models are com-
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pared based on an extensive set of statistical and economical performance measures.  

Next, applying the realized beta framework of Andersen et al. (2005, 2006), Chapter 3 ex-

tends the framework to analyze the hedging problem. With the availability of intraday data, it 

is shown that the realized hedge ratio and realized hedging effectiveness provide alternative 

ex-post benchmarks for evaluating the performance of ex-ante hedging methods. Furthermore, 

an empirical example is also exhibited in this chapter.  

Finally, with the construction of realized daily hedge ratio series, the dynamics of the hedge 

ratio is analyzed in Chapter 4. The importance of this analysis is that the insight into the 

hedge ratio behavior may further the development of dynamic hedge ratio models. Moreover, 

a two-regime threshold autoregressive model is also applied to detect the regime-switching 

feather of the ratio. If the feature is appeared in the hedge ratio, the argument of time-varying 

hedge ratio is further supported by the evidence.  

  

1.5. Organization of the Dissertation 

 

The organization of the dissertation is depicted in Figure 1.1 and briefly introduced as follows. 

Chapter 1 introduces the dissertation with the organization. Chapter 2 proposes a new class of 

discrete-time multivariate volatility models encompassing the elements of realized covariance 

matrix to estimate the risk-minimizing hedge ratio, and compare the performance with those 

generated by return-based volatility models. Chapter 3 presents a RV-based method for ana-

lyzing the one-period hedging problem with an illustrated example. Chapter 4 assesses the 

dynamics of realized daily hedge ratios. Chapter 5 concludes the dissertation with suggestions 

for the future research.  
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Figure 1.1 Organization of the Dissertation 
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Chapter 2. The Incremental Value of a Futures Hedge 

using Realized Volatility 

 

This chapter proposes a new class of multivariate volatility models encompassing RV esti-

mates to estimate the risk-minimizing hedge ratio, and compare the hedging performance of 

the proposed models with those generated by return-based models. In an out-of-sample con-

text with a daily rebalancing approach, based on an extensive set of statistical and economic 

performance measures, the empirical results show that improvement can be substantial when 

switching from daily to intraday. This essentially comes from the advantage that the intra-

day-based RV potentially can provide more accurate daily covariance matrix estimates than 

RV utilizing daily prices. Finally, this study also analyzes the effect of hedge horizon on 

hedge ratio and hedging effectiveness for both the in-sample and the out-of-sample data. 

 

 

2.1. Research Problem and Objective 

 

It has been shown that most of the latent GARCH models fail to satisfactorily describe the 

high kurtosis, small first-order autocorrelation of squared returns, and slow decay of the 

autocorrelation of squared returns toward zero that have been observed in many daily or 

weekly financial returns (e.g., Carnero et al., 2004).
9
 The search for alternative volatility 

techniques has motivated scholars to exploit information in intraday high-frequency data (e.g., 

Anderson & Bollerslev, 1998; Andersen et al., 2003; Barndorff-Nielsen & Shephard, 2004; 

Hayashi & Yoshida, 2005; Voev & Lunde, 2007). This so-called RV approach provides a di-

rect and consistent technique to estimate the latent volatility process without the need for re-

                                                 
9
 To capture the high kurtosis of returns and low first-order autocorrelation of return squares simultaneously, 

GARCH models often require a high persistence and/or leptokurtic conditional distributions when they are fitted 

to the financial time series (Carnero et al., 2004). The restrictions on GARCH then severely restrict the allowed 

dynamic dependence of the volatility. 
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lying on explicit models.
10

 Therefore, it has served as an ex-post benchmark for assessing the 

quality of any ex-ante volatility forecasts (e.g., Andersen et al, 2006). In forecasting future 

volatility, studies have shown that RV can provide more accurate forecasts than methods using 

daily squared returns (e.g., Blair et al., 2001). Recently, RV has been employed to explore the 

economic value (EV) of investment by Fleming et al. (2003), Bandi et al. (2008), and De 

Pooter et al. (2008).
11

 They find that the EV is substantial when switching from daily to in-

traday returns, even without applying bias-correction techniques in constructing realized es-

timates. As a result, the superiority of RV-based investment may result because it takes into 

account finer intraday information and thus potentially provides more accurate daily covari-

ance matrix estimates or forecasts than methods utilizing daily prices. 

This study attempts to improve the performance of a risk-minimizing futures hedge when 

the intraday-based RV approach is incorporated into forecasting the relevant covariance ma-

trix. It is not clear, however, whether the accurate RV is used or not may differentiate the 

performance of a futures hedge. To address this issue, a new RV-based method is demon-

strated in this study. The proposed method builds on the bivariate error correction model by 

employing the flexible CCC-GARCH error structure of Kroner and Sultan (1993). The ad-

vantage of extending their model is that it can capture the long-run cointegration relationship 

and the time-varying second moments simultaneously when the dynamics of the joint distri-

bution is specified. Moreover, when the leverage effect and/or the dynamic correlation are re-

vealed, the asymmetric volatility and/or the dynamic conditional correlation (DCC) models 

can also be incorporated into this method. These desirable properties thus provide a more 

                                                 
10

 Generally, in the absence of market microstructure and non-synchronous trading (Epps effect), a daily meas-

ure of variance is computed as the sum of the squared intraday equidistant returns, and a daily measure of co-

variance is obtained by summing the products of intraday equidistant returns, for the given trading day. For a re-

view of the RV refers to McAleer and Medeiros (2008). 
11

 For example, Fleming et al. (2003) show how a risk-averse investor would be willing to pay 50 to 200 basis 

points per year to capture the multivariate volatility forecasts based on intraday returns instead of daily returns in 

the context of investment decisions on three actively traded futures contracts (S&P 500 index, Treasury bonds, 

and gold). It is assumed that the investor follows a volatility-timing strategy, which rebalances his portfolio only 

when the estimated conditional covariance matrix of the daily returns changes. This case treats the expected 

daily returns as time-invariant. 
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convenient way to lodge the realized covariance matrix in the GARCH error structures as 

compared with the rolling estimators of Fleming et al. (2003), Bandi et al. (2008), and De 

Pooter et al. (2008). The RV-based method, which uses finer volatility proxies in estimating 

and forecasting the conditional covariance matrix, is expected to provide better descriptions 

on the spot-futures dynamics and the resulting hedge ratios than methods using squared return 

shocks. 

In the empirical analyses, the RV-based hedge ratios are calculated in an out-of-sample 

context spanning the period of December 19, 2003 and March 31, 2009 for the highly traded 

S&P 500 index futures contracts. we compare the performance of the RV-based hedge with 

the return-based GARCH and the OLS hedges using an extensive set of statistical and eco-

nomic measures. The comparisons are conducted for both short and long hedgers. To antici-

pate the results, this study finds that the RV-based hedge can substantially outperform the re-

turn-based GARCH and/or the static OLS hedges especially during the surge in volatility pe-

riod. Then the RV-based method is applied to examine the effect of hedging horizon (ranges 

from one week to three month) on hedge ratio and hedging effectiveness. The results show 

that hedge ratio tends to increase and to approach unity (i.e., naïve hedge ratio) with the 

length of hedging horizon; and, hedging effectiveness tends to increase as the length of hedg-

ing horizon increases. The rest of the chapter is organized as follows. First, we present the 

conventional hedging method and demonstrate the RV-based method. Next, we present the 

data and their properties with the empirical results. Finally, the last section concludes the 

study. 

 

2.2. The Conventional Hedging Models 

 

Kroner and Sultan (1993) have proposed a bivariate GARCH error correction model for mod-

eling the joint distribution of spot and futures. As such, the most prominent application of this 
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model is to estimate time-varying hedge ratios. The econometric model for the daily returns 

conditioning on the set of all relevant information 1t−Φ  at time 1t −  can be described as 

 
, 0 1 1 1 ,

, 0 1 1 1 ,

( )

( )

s t s s t t s t

f t f f t t f t

r S F

r S F

α α δ ε

α α δ ε

− −

− −

= + − +

= + − +
 (2.1) 

 
,

1
,

| (0, )
s t

t t
f t

N H
ε

ε −

   Φ   
∼  (2.2) 

where 1 1( )t tS Fδ− −−  is the error correction term (ECT). The incorporation of ECT in the 

conditional mean equations is essential, especially in currency and equity markets (see Park & 

Switzer, 1995; Brooks et al., 2002; Choudhry, 2003). The residual vector , ,( , )s t f tε ε ′  is postu-

lated as a bivariate normal distribution with a 2 1×  zero mean vector and a 2 2×  

time-varying covariance matrix 

 

1/2 1/2
, , , ,

1/2 1/2
, , , ,

0 1 0

10 0

s t sf t s t s t

t t t

sf t f t f t f t

h h h h
H D RD

h h h h

ρ

ρ

      
      = = =      
            

 (2.3) 

where ,sf th  is a covariance, and ,s th  and ,f th  are conditional variances for the spot and fu-

tures returns, respectively, and ρ  is the time-invariant correlation coefficient between them. 

That is, the model applies the CCC estimator of Bollerslev (1990) to model and forecast the 

bivariate conditional covariance matrix. 

The expressions of the conditional variances ,s th  and ,f th  in Equation (2.3) are typically 

thought of as univariate GARCH-type models. For example, the GARCH(1,1) structure in-

troduced by Bollerslev (1986) for the returns can be specified as 

 

2
, 0 1 , 1 2 , 1

2
, 0 1 , 1 2 , 1

s t s s s t s s t

f t f f f t f f t

h h

h h

β β β ε

β β β ε

− −

− −

= + +

= + +
 (2.4) 

When the leverage effect is revealed, asymmetric volatility models are commonly formulized, 

such as the GJR (Glosten-Jagannathan-Runkle) model of Glosten et al. (1993). This simply 

modifies the standard GARCH(1,1) model with an additional ARCH (autoregressive condi-
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tional heteroscedasticity) term conditional on the sign of the past innovation. The conditional 

volatilities of Equation (2.4) are then reformulated as 

 

2 2
, 0 1 , 1 2 , 1 3 , 1 , 1

2 2
, 0 1 , 1 2 , 1 3 , 1 , 1

( 0)

( 0)

s t s s s t s s t s s t s t

f t f f f t f f t f f t f t

h h I

h h I

β β β ε β ε ε

β β β ε β ε ε

− − − −

− − − −

= + + + <

= + + + <
 (2.5) 

where ()I ⋅  denotes an indicator function. For estimating the constant correlation coefficient, 

the ever-popular rolling estimator uses equal weight to all past T  return innovations: 

 
, ,1

2 2
, ,1 1

ˆ [ 1,1]
( )( )

T

s t f tt

T T

s t f tt t

ε ε
ρ

ε ε

=

= =

= ∈ −
∑

∑ ∑
 (2.6) 

To fit in with reality, however, the conditional correlation coefficient can be relaxed to vary 

with time (Engle, 2002; Tse & Tsui, 2002). That is, the conditional covariance matrix of 

Equation (2.3) is generalized to the DCC formulation: 

 

1/2 1/2
, , , ,

1/2 1/2
, , , ,

0 1 0

10 0

s t sf t s t t s t

t t t t

tsf t f t f t f t

h h h h
H DRD

h h h h

ρ

ρ

      
      = = =      
            

 (2.7) 

The evolution of tρ  in this paper is analogous to the univariate GARCH equation: 

 
, ,1

1 2 1 1 2
2 2
, ,1 1

(1 )
( )( )

M

s t h f t hh
t t M M

s t h f t hh h

η η
ρ θ θ ρ θ ρ θ

η η

− −=
−

− −= =

= − − + +
∑

∑ ∑
 (2.8) 

where 1θ  and 2θ  are non-negative with 1 2 1θ θ+ ≤ ; the sample size 2M =  for estimat-

ing the sample correlation coefficient with 1/2
, , ,/i t h i t h i t hhη ε− − −=  ( ,i s f= ) follows Tse and 

Tsui (2002); ρ  is the unconditional correlation between spot and futures.  

Given the null hypothesis that the set of all relevant information 1t−Φ  is observed with 

correctly specified models, these CCC or DCC models with the ECT describe the dynamic 

nature of spot-futures distributions. In particular, this GARCH class of volatility (correlation) 

models provides simple ways to forecast the bivariate volatility by using actual return innova-

tions and the estimated hedge ratio by minimizing the risk of the hedged portfolio return at 

time t  is given by  
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 *ˆ
tβ = , 1

ˆ
sf th + / , 1

ˆ
f th +  (2.9) 

where , 1
ˆ
sf th +  and , 1

ˆ
f th +  are the covariance and variance forecasts using Equations (2.3) or 

(2.7). In brief, Equations (2.1) through (2.9) then construct the conventional hedge ratio mod-

els, namely, the ECT-GARCH-CCC model (Equations (2.1)-(2.4), (2.6), and (2.9)), the 

ECT-GARCH-DCC model (Equations (2.1)-(2.2), (2.4), and (2.7)-(2.9)), the ECT-GJR-CCC 

model (Equations (2.1)-(2.3), (2.5)-(2.6), and (2.9)), and the ECT-GJR-DCC model (Equa-

tions (2.1)-(2.2), (2.5), and (2.7)-(2.9)).  

 

2.3. Alternative Models using Realized Volatility 

 

To explore the incremental value of a RV-based hedge, the realized variance and/or correla-

tion are encompassed within the conventional CCC and DCC models with the ECT specifica-

tion. Following the previous specifications, the RV-based GARCH(1,1) volatility can be ex-

pressed as 

 
, 0 1 , 1 2 , 1

, 0 1 , 1 2 , 1

RV

RV

s t s s s t s s t

f t f f f t f f t

h h

h h

β β β

β β β

− −

− −

= + +

= + +
 (2.10) 

where each , 1RVi t−  ( ,i s f= ) is defined by summing up � -minute squared returns at time 

1t − . Analogously, the RV-based GJR(1,1) model can be reformulated as 

 
, 0 1 , 1 2 , 1 3 , 1 , 1

, 0 1 , 1 2 , 1 3 , 1 , 1

RV RV ( 0)

RV RV ( 0)

s t s s s t s s t s s t s t

f t f f f t f f t f f t f t

h h I

h h I

β β β β ε

β β β β ε

− − − −

− − − −

= + + + <

= + + + <
 (2.11) 

That is, the right-hand side squared residuals in the conventional GARCH or GJR models are 

replaced by realized variances. To encompass the realized correlation 

1/2
1 1 , 1 , 1RCorr RCov (RV RV )t t s t f t− − − −=  within the conditional correlation dynamics, Equa-

tion (2.8) can be modified as 

 1 2 1 1 2 1(1 ) RCorrt t tρ θ θ ρ θ ρ θ− −= − − + +  (2.12) 
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where the realized covariance 1RCovt−  is defined by cumulating the cross-products of the 

intraday spot and futures returns at time 1t − . For estimating the constant correlation in the 

RV-based CCC model, however, the sample mean of the realized correlations should be a bi-

ased estimate due to non-synchronous trading (Epps effect) and/or market microstructure 

noise (see, e.g., Hayashi & Yoshida, 2005; Voev & Lunde, 2007). To simplify the estimation 

process, the rolling estimator of Equation (2.6) is still adopted. Then, these modifications 

construct a new class of RV-based hedge ratio models, namely, the ECT-RV-GARCH-CCC 

model (Equations (2.1)-(2.3), (2.6), (2.9), and (2.10)), the ECT-RV-GARCH-DCC model 

(Equations (2.1)-(2.2), (2.7), (2.9), (2.10), and (2.12)), the ECT-RV-GJR-CCC model (Equa-

tions (2.1)-(2.3), (2.6), (2.9), and (2.11)), and the ECT-RV-GJR-DCC model (Equations 

(2.1)-(2.2), (2.7), (2.9), and (2.11)-(2.12)).  

To estimate the parameters in the RV-based or the conventional CCC or DCC models, we 

follow the two-step estimation procedure of Bollerslev (1990) and Engle (2002). Since this 

class of multivariate volatility models has separate parameters, it can be estimated easily and 

consistently in two steps.
12

 With the normality assumption of Equation (2.2), we can maxi-

mize each volatility term with the conditional mean in the first step: 

 ˆ argmax{ ( )}
ii V iLϑ ϑ=  (2.13) 

where ( , , )i i iϑ α β δ=  and 
iV
L  denote the Gaussian quasi-likelihood function for asset i , 

and then maximize the correlation term: 

 θ̂ ˆargmax{ ( | )}CL θ ϑ=  (2.14) 

in the second step, CL  represents the Gaussian quasi-likelihood function of the correlation 

part, and θ ρ=  for the CCC and 1 2( , )θ θ θ=  for the DCC. Without the normality assump-

                                                 
12

 Engle and Granger (1987) indicate that a cointegration system could consistently be estimated via a two-step 

estimator, where both steps require only single equation least squares, so that we can estimate the DCC-type 

models with the ECT by using the two-step procedure of Bollerslev (1990) and Engle (2002). 
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tion, these estimators still have the quasi-maximum likelihood (QML) interpretation. 

 

2.4. Empirical Analyses 

 

Data Descriptions 

The performance of the RV-based hedging method is examined empirically on the S&P 500 

index futures contracts traded on Chicago Mercantile Exchange (CME). The sample period is 

from January 1, 1998 to March 31, 2009, which covers the period of subprime mortgage crisis. 

We obtain the daily closing (settlement) prices for the spot (futures) from the Datastream and 

the intraday transaction prices for them from Tick Data Inc.
13

 Note that this study rolls the 

nearest month contract to the next month when the daily volume of the current contract is ex-

ceeded. Specifically, daily and intraday prices of all days corresponding to U.S. public holi-

days are removed. Hence, there are 2828 trading days for the period examined.  

Table 2.1 reports the diagnostic checks on the distribution properties of the daily spot (fu-

tures) returns, which are calculated as differenced natural logarithmic daily closing (settle-

ment) prices. The results of unit root and cointegration tests are shown in Panel A, and sum-

mary statistics on the returns are reported in Panel B. The augmented Dickey-Fuller tests 

show that the spot and futures log-prices have a unit root, but their first-differenced series are 

stationary. The Johansen trace statistic indicates that the spot and futures prices are cointe-

grated with the cointegrating parameter ˆ 1δ ≈ . The unconditional distributions of the uni-

variate returns reveal non-normality, as evidenced by the non-zero skewness, high kurtosis, 

and significant Jarque-Bera statistics. Panel C provides the autocorrelation functions (ACF) as 

well as the Ljung-Box statistics of the squared (cross-product) daily returns. The first-order 

ACF ranges from 0.1970 to 0.4093 but decays slowly toward zero. Based on the empirical 

                                                 
13

 The intraday transaction observations consist of open, high, low, and close prices at the one-minute sampling 

frequency. 
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evidences and the findings of Carnero et al. (2004), the conventional GARCH models may be 

inadequate to describe the spot-futures volatility dynamics, hence, it is not clear whether the 

inadequacy may damage the performance of a futures hedge. 

 

TABLE 2.1 Data Description: Daily Price Returns 

Indices Statistics 
Panel A: Unit root and cointegration tests 

 
ADF 

 (price) 
ADF 

 (return) 
Trace δ̂    

Spot -1.36
* -42.15

*   
Futures -1.36

* -42.40
* 

84.97
* 0.9841

* 
  

Panel B: Summary statistics of returns 
 Mean Std. Dev. Skewness Kurtosis Correlation JB 

Spot -0.0001
* 0.0138

* -0.1280
* 10.5955

* 6798.74
* 

Futures -0.0001
* 0.0141

* 0.0369
* 12.4322

* 
0.9760

* 
10480.13

* 
Panel C: Autocorrelation functions of squared (cross-product) returns 

 ACF(1) ACF(2) ACF(3) ACF(4) ACF(5) 2(10)Q  

Spot 0.3661
* 0.1785

* 0.2935
* 0.3307

* 0.2982
* 2230.80

* 
Futures 0.4093

* 0.1692
* 0.2526

* 0.3000
* 0.2516

* 2032.04
* 

Spot-Futures 0.1970
*
 0.4310

*
 0.1727

*
 0.3139

*
 0.3488

*
 1279.50

*
 

Notes:  The daily spot (futures) returns are calculated as differenced natural logarithmic closing (settlement) 

prices where public holidays are removed. The sample period for the prices runs from January 1, 1998 to March 

31, 2009 and the sample size for each is 2828. The values in rows ADF, Trace, JB, ACF(k), and 
2(10)Q  are sta-

tistics of the augmented Dickey-Fuller unit root test, the Johansen cointegration test, the Jarque-Bera normality 

test, the order k autocorrelation of squared returns, and the Ljung-Box test for the serial correlations in the 

squared returns. δ̂  is the estimated cointegrating parameter. 
*
 indicate significance at the 5% level.  

 

 

To construct the realized (co-)variance for the alternative method, the intraday futures 

prices after 3:00 p.m. Chicago time for each day t  are dropped since the futures market 

closes fifteen minutes later than the spot market.
14

 we divide the contemporaneous time sec-

tion across the markets, which runs from 8:30 a.m. until 3:00 p.m. (390 minutes), into m  

(non-overlapping) intervals of equal lengths 390/m≡�  such that the times 1j jt t −= +�  

for 1, ,j m= …  with 0t =8:30 a.m. Chicago time. The log close transaction price at time 

jt  is denoted as ( )jp t , then the equidistant intraday returns on day t , 1( ) ( )
jt j jr p t p t −≡ − , 

                                                 
14

 The (floor) trading section for the S&P 500 index futures on the CME runs from 8:30 a.m. Chicago time until 

3:15 p.m. Chicago time. 
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for 2, ,j m= … ; and, the first period ( 1j = ) intraday return is defined as the difference be-

tween the log close and open transaction prices during that time interval. With these mathe-

matical definitions, the realized variance is then defined as ( ) 2
1, ,RV

j

m m
ji t i tr=≡ ∑  for ,i s f= , 

and the realized covariance is defined as ( )
1 , ,RCov

j j

m m
jt s t f tr r=≡ ∑ , for each day t .  

This study uses fifteen-minute intraday prices ( 26m = ) to construct the realized 

(co-)variance estimates, and summarizes their descriptive statistics in Table 2.2. Since only 

observations during the floor trading section are sampled, the average realized variances are 

smaller than the corresponding unconditional variances obtained from daily returns. For ex-

ample, the average value of the realized variance estimates for the S&P 500 cash index is 

1.11e-4, which is about 58% of the unconditional variance 1.90e-4 calculated from Table 2.1. 

To measure the realized variance (covariance) for the whole day, the squared (cross-product) 

overnight returns can further be incorporated into the realized estimators (Martens, 2002; 

Fleming et al., 2003, Hansen & Lunde, 2005; De Pooter et al., 2008). For the realized correla-

tions, the average level for the S&P 500 (about 0.95) shows slight bias toward zero as com-

pared with the corresponding unconditional correlation estimates (about 0.98) using Equation 

(2.6). According to Hayashi and Yoshida (2005) and Voev and Lunde (2007), the biasness 

may come from the non-synchronous trading and/or the market microstructure noise, but it 

can be corrected using some bias-correction techniques.
15

 The ACF of these realized esti-

mates are also reported in Table 2.2. It shows that these realized second moments reveal con-

siderable persistency. However, the ACF of the realized variance (covariance) is higher than 

the corresponding ACF of squared (cross-product) returns in Table 2.1. For example, in the 

spot market, the ACF(1) of the realized variance is about 0.66, which is higher than the 

ACF(1) of the squared returns in Table 2.1 by about 0.37. It is expected that the behavior dif-

ference between the realized variance (covariance) and squared (cross-product) returns should 

                                                 
15

 We do not adjust for the biases in the empirical analyses because the bias-correction procedures do not guar-

antee a positive definite realized covariance matrix estimates; see, De Pooter et al. (2008) for discussions. 
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produce different volatility (covariance) estimates and forecasts based on the alternative and 

the conventional methods. 

 

TABLE 2.2 Data Description: Realized Variance, Covariance, and Correlation 

Summary Statistics Autocorrelation Functions Realized 

Estimates Mean Median Min Max ACF(1) ACF(2) ACF(3) ACF(4) ACF(5) 

,RVs t  1.11e-4 5.40e-5 3.00e-6 0.0053 0.6550  0.6632 0.5424 0.5995 0.5357 

,RVf t  1.20e-4 5.90e-5 3.00e-6 0.0055 0.6558 0.6677 0.5442 0.6050 0.5467 

RCovt  1.11e-4 5.40e-5 3.00e-6 0.0054 0.6573 0.6710 0.5460 0.6080 0.5451 

RCorrt  0.9506 0.9595 0.2855 0.9986 0.3993 0.3823 0.3999 0.3863 0.4036 

Notes:  The sample period for these (daily) realized estimates, which are constructed from fifteen-minute equi-

distant intraday returns, spans the period of January 1, 1998 to March 31, 2009, and the sample size is 2828. It is 

noted that the futures returns after 3:00 p.m. Chicago time for each day are dropped since the futures markets 

close fifteen minutes later than the spot markets. The ACF(k) indicates the sample autocorrelation function of the 

realized estimates corresponding to lags k=1,2,…5. The upper and lower confidence bounds of the ACF with the 

5% confidence level are 0.0375 and -0.0375, respectively.  

 

 

Estimation Results 

Table 2.3 presents the estimation results of the return-based and the RV-based GARCH mod-

els. Panel A shows the conditional mean and variance estimates, and Panel B shows the con-

ditional correlation estimates. Given the evidence of the cointegration relationship between 

the spot and futures (in Table 2.1), the restricted ECT, 1 1( )t tS F− −− , is parameterized in the 

conditional mean equations to avoid the loss of long-run information; though, all 1fα  are in-

significant different from zero (Park & Switzer, 1995; Brooks et al., 2002). The insignificance 

of 0 fα  and 1fα  coefficients show the expected returns of futures should be zero, meaning 

the minimum variance hedge is generally the expected utility maximization hedge (Baillie & 

Myers, 1991; Kroner & Sultan, 1993). 
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TABLE 2.3 Estimation Results of RV-Based and Return-Based Models 

Return-Based RV-Based 

ECT-GARCH ECT-GJR ECT-RV-GARCH ECT-RV-GJR 
Parameters / 

Statistics 
CCC DCC CCC DCC CCC DCC CCC DCC 

Panel A: Estimates of conditional mean and conditional variance equations 

0sα  -1.88e-5 

(-0.07) 

-0.0004 

(-1.72) 

-0.0004 

(-1.64) 

-0.0004 

(-1.95) 

1sα  -0.1035 

(-2.54) 

-0.0880 

(-2.76) 

-0.0947 

(-2.40) 

-0.1010 

(-2.58) 

0sβ  1.13e-6 

(5.91) 

1.31e-6 

(7.02) 

6.76e-6 

(7.57) 

4.79e-6 

(7.09) 

1sβ  0.9173 

(121.28) 

0.9258 

(113.79) 

0.7702 

(33.59) 

0.8261 

(45.93) 

2sβ  0.0774 

(10.68) 

0.0001 

(0.01) 

0.2297 

(9.10) 

0.0773 

(4.22) 

3sβ  
-   

0.1311 

(10.52) 
-   

0.1929 

(7.01) 

0 fα  0.0005 

(2.23) 

1.12e-5 

(0.05) 

0.0002 

(0.73) 

0.0001 

(0.36) 

1fα  0.0440 

(1.03) 

0.0065 

(0.19) 

0.0613 

(1.52) 

0.0486 

(1.23) 

0fβ  1.36e-6 

(6.99) 

1.45e-6 

(7.67) 

7.33e-6 

(8.24) 

5.30e-6 

(7.65) 

1fβ  0.9121 

(117.37) 

0.9217 

(114.13) 

0.7325 

(28.70) 

0.7958 

(39.87) 

2fβ  0.0812 

(10.98) 

0.0001 

(0.01) 

0.2674 

(9.44) 

0.0915 

(4.29) 

3fβ  
-   

0.1379 

(10.86) 
-   

0.2251 

(7.51) 

Panel B: Estimates of constant (dynamic) conditional correlation processes 

1θ  
- 

0.2537 

(3.24) 
- 

0.1416 

(2.50) 
- 

0.9929 

(660.87) 
- 

0.9932 

(687.19) 

2θ  
- 

0.0374 

(7.59) 
- 

0.0515 

(8.61) 
- 

0.0018 

(4.43) 
- 

0.0018 

(4.49) 

sfρ ( sfρ ) 0.9732 

(2821.10) 
0.9716 

0.9719 

(2728.50) 
0.9700 

0.9736 

(3036.90) 
0.9675 

0.9728 

(2932.00) 
0.9667 

Notes:  The entries (in the parentheses) are the Gaussian QML estimates (and their asymptotic t-statistics) of 

return-based and RV-based models, where parameters are estimated via a two-step estimation method. This 

method first estimates : ( , )i i iϑ α β=  for ,i s f=  by maximizing the Gaussian quasi-likelihood function 

1 21 1 1
2 2 2, , , 0 1 1 11 1

( ) ln 2 ln [ ( )]
i

T T

T TV i i t i t i t i i t tt t
L h h r S Fϑ π α α−

− −= =
= − − − − − −∑ ∑ , then estimates θ  by maxi-

mizing the ˆiϑ -based quasi-likelihood function 1

1
ˆ ˆ( | ) ln ( ; )

T

TC t tt
L fθ ϑ ε θ

=
= ∑ , where ( )tf θ  represents the 

conditional probability density function of the standard bivariate normal distribution. 
**

indicates significance at 

the 5% level.  

 

 

While the estimates of the conditional mean equations are similar, the results in the condi-

tional variance and/or correlation equations are quite different. Concerning the result of the 

conventional models, the insignificance of the 2iβ  shows the symmetric GARCH specifica-

tion seems more suitable for the data. The persistence of the GARCH for the spot and futures 
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are about 0.9947 and 0.9933, respectively, which suggests the conditional volatilities reveal 

high persistence. For the correlation equations, the inferences conclude that the DCC is held. 

Hence, the empirical evidence using daily information indicates the ECT-GARCH-DCC 

model fits reasonably well to the S&P 500 market. Then turn to the estimation results of the 

RV-based models. The significance of 3iβ  suggests that the asymmetry in volatility are re-

vealed. A positive 3iβ  shows that the impact of a positive return shock on the current volatil-

ity is smaller than that of a negative return shock of the same magnitude. Particularly, the per-

sistence of volatility implied by the RV-based models is about 0.9999, which is higher than 

the persistence implied by the return-based models. Besides the persistence, the weight on the 

persistence parameters between the two methods also differs. Taking the spot volatility as an 

example, the return-based GARCH estimates of 1iβ  ( 2iβ ) is about 0.91 (0.08), whereas the 

RV-based GARCH estimates of 1iβ  ( 2iβ ) is about 0.77 (0.23). The higher weight on the 2iβ  

using RV-based GARCH indicates that past RV may provide more information in predicting 

the current volatility than those using lagged daily return squares. For the conditional correla-

tion equations, the significance of 1θ  and 2θ  for the S&P 500 indicates the null of 

mean-reverting DCC hypothesis is held. In addition, the higher persistence of the RV-based 

correlation than the return-based one is also observed form the empirical evidence. It shows 

that the persistence of correlation implied by the RV-based models is about 0.99, which is 

much higher than the persistence (ranges from 0.19 to 0.29) implied by the return-based mod-

els. Thus, the empirical evidence using RV indicates the ECT-RV-GJR-DCC model seems 

suitable to the S&P 500 data. Figure 2.1 compares the conditional volatility and correlation 

estimates using the two methods. We report the best-fitted models among them to save space. 

It is evident that the RV-based second moment estimates are not equal to those of the re-

turn-based models. Essentially, the difference should come from the dynamics difference be-

tween the RV and the return squares. 
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FIGURE 2.1 In-Sample Comparisons on Volatility and Correlation Estimates: RV-Based vs. 

Return-Based Methods 

 

 

RV-based Hedge Ratios and their Hedging Performances 

We now turn to analyze the performance of a futures hedge using the RV approach. Since the 

hedging decision has to be made ex-ante, the evaluation is conducted in an out-of-sample 

context using a rollover method.
16

 To do so, this study splits the full sample period into two: 

the in-sample period (from January 1, 1998 to December 18, 2003; 1500 observations), and 

the out-of-sample period (from December 19, 2003 to March 31, 2009; 1328 observations). 

Each model is estimated with the use of the in-sample data and then re-estimated with a daily 

rollover in the out-of-sample period, keeping the estimation sample size of 1500 (fixed). This 

                                                 
16

 This rollover method is also used in Lien et al. (2002) and Lien and Yang (2006). 
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rollover method is continued for all the 1328 out-of-samples. The estimated hedge ratios as 

indicated in Equation (2.9) for each model are subsequently constructed, and the correspond-

ing realized portfolio returns for both the short ( , 1 , 1 , 1p t s t t f tr r rβ+ + += − ) and the long 

( , 1 , 1 , 1p t s t t f tr r rβ+ + +=− + ) hedges are calculated. In addition to the dynamic models specified 

in the previous sections, we also evaluate the performance of the static OLS method based on 

this rollover method. Particularly, to see whether the RV-based models can provide a superior 

hedging performance during the crisis, the results before (Period I: December 19, 2003 

through September 28, 2007, 950 observations) and during (Period II: October 1, 2007 

through March 31, 2009, 378 observations) that period are separately reported.  

Table 2.4 exhibits some diagnostic statistics of the hedge ratios; and, Figure 2.2 plots the 

dynamic hedge ratios.
17

 On average, the RV-based hedge ratios are larger (smaller) than the 

conventional return-based hedge ratios in Period I (II); however, they have smaller variation 

in both the periods. The ADF tests on the hedge ratios illustrate the unit-root hypothesis is re-

jected at the 5% level except for the results based on the OLS (in both periods) and the 

ECT-GARCH-CCC (in period II) models.
18

 The study also reports the ACF values of these 

out-of-sample hedge ratios up to lag five. It is apparent that, the ACF of the RV-based hedge 

ratios is smaller but decays more quickly than the ACF of the return-based hedge ratios.  

 

                                                 
17

 Since the CCC-based hedge ratios are similar to the DCC-based ones, we do not plot them to save space. 
18

 This agrees with the finding of Lien et al. (2002), who report that the out-of-sample GARCH hedge ratios are 

stationary. 
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FIGURE 2.2 Out-of-Sample Hedge Ratios: RV-Based vs. Return-Based Methods 

 

 

  Table 2.5 presents several statistics on the realizations of the hedged portfolio returns. Con-

sidering the hedging performance using standard deviation (Std. Dev.), the results show that 

the RV-based method yields an average sample volatility of 0.1730% (0.4284%) for the Pe-

riod I (II), which is smaller than the 0.1745% (0.4404%) of the conventional method. That is, 

the improvement of the RV-based method over the return-based method is about 0.90% and 

2.74% for the Period I and Period II, respectively. Particularly, the RV-based method even can 

surpass the simple OLS method during the crisis while the return-based GARCH method does 

not.
19

 Besides the Std. Dev., two alternatives, namely the value-at-risk (VaR) and the ex-

                                                 
19

 Lien et al. (2002) indicate that the out-of-sample CCC-GARCH hedge does not outperform the OLS hedge in 

the S&P 500 market, where their data were extracted for the period of January 1988 through June 1998. However, 
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pected shortfall (ES), are also included in the comparisons since the evaluation results may 

change if performance criteria other than traditional measures are applied (Cotter & Hanly, 

2006).
20

 The result shows that using the RV-based method generally can provide a better 

performance in managing portfolio VaR and ES especially during the crisis period. In addition, 

in Period II, the improvement of RV-based method over the conventional method tends to 

enlarge when the percentile has moved toward 99%. For example, on average, the improve-

ment of long hedges in VaR(0.95), ES(0.95), VaR(0.99), and ES(0.99) is about 2.53%, 8.33%, 

20.82%, and 11.43% (the percentage change in VaR and ES reduction), respectively; and they 

all can surpass the simple OLS method whereas the return-based models cannot. For the per-

formance in Period I, it seems that the RV-based method is inferior to the conventional 

method. In this period, it is observed that the OLS hedge has the best performance in most of 

the cases. Hence, the empirical evidences conclude that the RV-based hedges are more useful 

than the return-based hedges in managing portfolio risk especially during the surge of volatil-

ity period. 

 

                                                                                                                                                         

Cotter and Hanly (2006) show that the CCC-GARCH hedge can beat the OLS hedge in the S&P 500 market in 

terms of variance reduction, where their data were extracted for the period of January 1998 through December 

2003. 
20

 The VaR is defined by the negative of the thα  empirical percentile of the realizations on hedged portfolio 

returns, i.e., 1
, 1

ˆVaR( ) ( ; )n p tF rα α−
+= − , where ˆnF  denotes the empirical distribution of the hedged portfolio 

returns using the n  realized observations. A major shortcoming with the VaR is that it is not a coherent risk 

measure (Artzner et al., 1999). Hence, the ES measure has received some attention recently. The ES summarizes 

the negative of the average returns on the portfolio given that the hedged portfolio return has exceeded its thα  

empirical percentile, or , 1 , 1 , 1
ˆES( ) ( | VaR( ; ))n p t p t p tE r r rα α+ + +=− ≤− , where ˆnE  represents the sample aver-

age operator. This gives the hedger additional information about both the probability of losses and possible mag-

nitude of losses beyond the thα  percentile. 
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TABLE 2.4 Summary Statistics of Out-of-Sample Hedge Ratios 

ECT-GARCH ECT-RV-GARCH ECT-GJR ECT-RV-GJR 
Statistics 

CCC DCC CCC DCC CCC DCC CCC DCC 
OLS 

Panel A: Period I (December 19, 2003 ~ September 28, 2007, 950 observations) 

Mean 0.9820 0.9761 0.9908 0.9864 0.9906 0.9828 0.9890 0.9840 0.9602 

Std. Dev. 0.0415 0.0427 0.0246 0.0242 0.0438 0.0474 0.0442 0.0438 0.0108 

Min 0.8314 0.8037 0.8795 0.8749 0.8321 0.7523 0.8028 0.7979 0.9393 

Max 1.0859 1.0778 1.0771 1.0707 1.1562 1.1494 1.1692 1.1613 0.9789 

ADF -7.1189 -9.5666 -15.5897 -15.6399 -7.1890 -12.7961 -16.1559 -16.1489 -1.8493 

ACF(1) 0.9036 0.8353 0.6509 0.6453 0.8990 0.7332 0.6529 0.6503 0.9962 

ACF(2) 0.8272 0.7486 0.4817 0.4735 0.8457 0.6382 0.5309 0.5287 0.9924 

ACF(3) 0.7585 0.6850 0.3343 0.3264 0.7859 0.6064 0.4783 0.4756 0.9986 

ACF(4) 0.6996 0.6335 0.2570 0.2487 0.7344 0.6017 0.4358 0.4333 0.9848 

ACF(5) 0.6500 0.5886 0.2206 0.2104 0.6798 0.5334 0.4030 0.3985 0.9810 

Panel B: Period II (October 1, 2007 ~ March 31, 2009, 378 observations) 

Mean 1.0123 1.0065 0.9761 0.9714 1.0329 1.0264 0.9704 0.9651 0.9807 

Std. Dev. 0.0405 0.0401 0.0319 0.0317 0.0542 0.0532 0.0480 0.0477 0.0081 

Min 0.8965 0.8923 0.8923 0.8888 0.9168 0.9120 0.8228 0.8181 0.9648 

Max 1.1236 1.1176 1.0793 1.0723 1.1992 1.1785 1.1308 1.1204 1.0077 

ADF -3.1989 -3.4508 -6.4422 -6.4631 -3.9150 -4.0537 -7.4427 -7.4055 -1.8333 

ACF(1) 0.9493 0.9411 0.8037 0.8026 0.9263 0.9211 0.7518 0.7536 0.9858 

ACF(2) 0.8988 0.8878 0.6263 0.6239 0.8623 0.8549 0.6081 0.6090 0.9704 

ACF(3) 0.8464 0.8347 0.4938 0.4908 0.8067 0.7973 0.4836 0.4839 0.9510 

ACF(4) 0.8004 0.7897 0.3729 0.3690 0.7504 0.7419 0.4093 0.4091 0.9303 

ACF(5) 0.7619 0.7509 0.2658 0.2617 0.6902 0.6789 0.2968 0.2963 0.9123 

Notes:  The ADF indicates the augmented Dickey-Fuller unit root test based on trend stationary AR model, where the 5% critical values for Period I and II are -3.4150 and 

-3.4234, respectively. The ACF(k) indicates the sample autocorrelation function of the hedge ratios corresponding to lags k. Their 95% confidence bonds for Period I and II 

are [-0.0649, 0.0649] and [-0.1029, 0.1029], respectively.  
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TABLE 2.5 Out-of-Sample Comparisons of Hedging Performance: Statistical Evaluations 

Short Hedge Long Hedge 

Models 
Std. Dev. 

(×10
-2

) 
VaR(.95) 

(×10
-2

) 

ES(.95) 

(×10
-2

) 

VaR(.99) 

(×10
-2

) 

ES(.99) 

(×10
-2

) 

VaR(.95) 

(×10
-2

) 

ES(.95) 

(×10
-2

) 

VaR(.99) 

(×10
-2

) 

ES(.99) 

(×10
-2

) 

Panel A: Period I (December 19, 2003 ~ September 28, 2007, 950 observations) 

ECT-GARCH-CCC 0.1753 0.2917 0.4305 0.4859 0.7269 0.2493 0.3592 0.4476 0.5557 

ECT-RV-GARCH-CCC 0.1729 

(-0.0024) 

0.2719 

(-0.0198) 

0.4220 

(-0.0085) 

0.5037 

(+0.0178) 

0.7291 

(+0.0022) 

0.2444 

(-0.0049) 

0.3677 

(+0.0085) 

0.4781 

(+0.0305) 

0.6005 

(+0.0448) 

ECT-GARCH-DCC 0.1750 0.2888 0.4280 0.4848 0.7143 0.2495 0.3591 0.4323 0.5570 

ECT-RV-GARCH-DCC 0.1727 

(-0.0023) 

0.2719 

(-0.0169) 

0.4206 

(-0.0074) 

0.5022 

(+0.0174) 

0.7238 

(+0.0095) 

0.2461 

(-0.0034) 

0.3668 

(+0.0077) 

0.4767 

(+0.0444) 

0.5990 

(+0.0420) 

ECT-GJR-CCC 0.1740 0.2830 0.4251 0.4760 0.7247 0.2498 0.3577 0.4165 0.5560 

ECT-RV-GJR-CCC 0.1732 

(-0.0008) 

0.2699 

(-0.0131) 

0.4087 

(-0.0164) 

0.4891 

(+0.0131) 

0.7266 

(+0.0019) 

0.2563 

(+0.0065) 

0.3754 

(+0.0177) 

0.4635 

(+0.0470) 

0.5852 

(+0.0292) 

ECT-GJR-DCC 0.1738 0.2860 0.4208 0.4987 0.7064 0.2494 0.3606 0.4656 0.5663 

ECT-RV-GJR-DCC 0.1730 

(-0.0008) 

0.2700 

(-0.0160) 

0.4074 

(-0.0134) 

0.4875 

(-0.0112) 

0.7224 

(+0.0160) 

0.2553 

(+0.0059) 

0.3746 

(+0.0140) 

0.4635 

(-0.0021) 

0.5831 

(+0.0168) 

OLS 0.1719 0.2719 0.4213 0.4845 0.7059 0.2493 0.3533 0.4142 0.5526 

Panel B: Period II (October 1, 2007 ~ March 31, 2009, 378 observations) 

ECT-GARCH-CCC 0.4378 0.6735 1.0276 1.1741 1.6902 0.7315 1.0899 1.5817 1.6778 

ECT-RV-GARCH-CCC 0.4241 

(-0.0137) 

0.7007 

(+0.0272) 

1.0166 

(-0.0110) 

1.2711 

(+0.0970) 

1.4693 

(-0.2209) 

0.7125 

(-0.0190) 

1.0128 

(-0.0771) 

1.2146 

(-0.3671) 

1.5001 

(-0.1777) 

ECT-GARCH-DCC 0.4367 0.6807 1.0274 1.1885 1.6829 0.7213 1.0853 1.5714 1.6599 

ECT-RV-GARCH-DCC 0.4250 

(-0.0117) 

0.6991 

(+0.0184) 

1.0178 

(-0.0096) 

1.2924 

(+0.1039) 

1.4838 

(-0.1991) 

0.7222 

(+0.0009) 

1.0091 

(-0.0762) 

1.2231 

(-0.3483) 

1.4931 

(-0.1668) 

ECT-GJR-CCC 0.4447 0.6908 1.0240 1.2684 1.6324 0.7365 1.1332 1.4526 1.6762 

ECT-RV-GJR-CCC 0.4316 

(-0.0131) 

0.7013 

(+0.0105) 

1.0646 

(+0.0406) 

1.2761 

(+0.0077) 

1.4530 

(-0.1794) 

0.7055 

(-0.0310) 

1.0194 

(-0.1138) 

1.1723 

(-0.2803) 

1.4649 

(-0.2113) 

ECT-GJR-DCC 0.4425 0.6799 1.0225 1.2839 1.6275 0.7553 1.1207 1.4315 1.6574 

ECT-RV-GJR-DCC 0.4328 

(-0.0097) 

0.7143 

(+0.0344) 

1.0677 

(+0.0452) 

1.2908 

(+0.0069) 

1.4654 

(-0.1621) 

0.7299 

(-0.0254) 

1.0189 

(-0.1018) 

1.1703 

(-0.2612) 

1.4510 

(-0.2064) 

OLS 0.4357 0.6855 1.0752 1.2734 1.5828 0.7193 1.0316 1.3290 1.6004 

Notes:  The values in columns Std. Dev., VaR, and ES are standard deviation, value-at-risk, and expected shortfall of the realized hedged portfolio returns. The entries in the 

parentheses are the relative values of the improvement of the alternative over the conventional hedge ratio models. The bold values are the best hedging model based on each 

risk measure.  
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TABLE 2.6 Out-of-Sample Comparisons of Hedging Performance: EV Gains 

Short Hedge Long Hedge 
Benchmark Alternative 

1γ =  3γ =  7γ =  10γ =  1γ =  3γ =  7γ =  10γ =  

Panel A: Period I (December 19, 2003 ~ September 28, 2007, 950 observations) 

ECT-GARCH-CCC ECT-RV-GARCH-CCC 0.1556  0.1572  0.1604  0.1629  -0.1539  -0.1522  -0.1490  -0.1465  

ECT-GARCH-DCC ECT-RV-GARCH-DCC 0.1250  0.1267  0.1299  0.1324  -0.1234  -0.1217  -0.1184  -0.1159  

ECT-GJR-CCC ECT-RV-GJR-CCC 0.2061  0.2067  0.1926  0.1946  -0.2056  -0.2051  -0.2041  -0.2033  

ECT-GJR-DCC ECT-RV-GJR-DCC 0.1754  0.1758  0.1769  0.1777  -0.1748  -0.1743  -0.1732  -0.1725  

OLS ECT-RV-GARCH-CCC 0.0230 0.0223 0.0209 0.0199 -0.0237 -0.0243 -0.0257 -0.0267 

OLS ECT-RV-GARCH-DCC 0.0371 0.0366 0.0356 0.0348 -0.0376 -0.0381 -0.0391 -0.0398 

OLS ECT-RV-GJR-CCC 0.1009 0.1001 0.0983 0.0970 -0.1018 -0.1027 -0.1045 -0.1058 

OLS ECT-RV-GJR-DCC 0.1156 0.1148 0.1134 0.1123 -0.1163 -0.1170 -0.1185 -0.1196 

OLS ECT-GARCH-CCC -0.1326 -0.1349 -0.1395 -0.1430 0.1302 0.1279 0.1233 0.1198 

OLS ECT-GARCH-DCC -0.0879 -0.0901 -0.0943 -0.0976 0.0858 0.0836 0.0793 0.0761 

OLS ECT-GJR-CCC -0.1052 -0.1066 -0.0943 -0.0976 0.1038 0.1024 0.0996 0.0975 

OLS ECT-GJR-DCC -0.0598 -0.0610 -0.0635 -0.0654 0.0585 0.0573 0.0547 0.0529 

Panel B: Period II (October 1, 2007 ~ March 31, 2009, 378 observations) 

ECT-GARCH-CCC ECT-RV-GARCH-CCC -1.0951  -1.0714  -1.0241  -0.9887  1.1187  1.1423  1.1896  1.2251  

ECT-GARCH-DCC ECT-RV-GARCH-DCC -1.0760  -1.0558  -1.0152  -0.9849  1.0963  1.1166  1.1571  1.1875  

ECT-GJR-CCC ECT-RV-GJR-CCC -1.5027  -1.4799  -1.4340  -1.3995  1.5257  1.5486  1.5946  1.6289  

ECT-GJR-DCC ECT-RV-GJR-DCC -1.4798  -1.4625  -1.4283  -1.4025  1.4969  1.5141  1.5483  1.5740  

OLS ECT-RV-GARCH-CCC -0.2879 -0.2678 -0.2277 -0.1977 0.3079 0.3279 0.3680 0.3981 

OLS ECT-RV-GARCH-DCC -0.3628 -0.3443 -0.3072 -0.2795 0.3813 0.3998 0.4368 0.4646 

OLS ECT-RV-GJR-CCC 0.1916 0.1987 0.2131 0.2239 -0.1844 -0.1772 -0.1628 -0.1521 

OLS ECT-RV-GJR-DCC 0.1068 0.1120 0.1222 0.1300 -0.1017 -0.0965 -0.0863 -0.0786 

OLS ECT-GARCH-CCC 0.8072 0.8036 0.7964 0.7910 -0.8108 -0.8144 -0.8216 -0.8270 

OLS ECT-GARCH-DCC 0.7132 0.7115 0.7080 0.7054 -0.7150 -0.7168 -0.7203 -0.7229 

OLS ECT-GJR-CCC 1.6943 1.6786 1.6471 1.6234 -1.7101 -1.7258 -1.7574 -1.7810 

OLS ECT-GJR-DCC 1.5866 1.5745 1.5505 1.5325 -1.5986 -1.6106 -1.6346 -1.6526 

Notes:  The table shows the basis point fees per day that an hedger with the quadratic utility and the constant relative risk aversion of γ  would willing to pay to switch the 

benchmark to the alternative strategies. Note that the effect of transaction costs on the hedging performance is excluded.  
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In addition to statistical evaluations, hedgers may wish to understand the economic gains of 

a futures hedge using the intraday-based RV approach. As a result, the EV, 

, 1
ˆ ( ; )b

n p tE U r γ+ , 1
ˆ ( EV; )a

n p tE U r γ+= − , gives an amount that the hedger would be willing to 

sacrifice each day to switch from the benchmark strategy to the alternative strategy, where 

ˆ
nE  represents the sample average operator (Lence, 1995). Note that the mean-variance utility 

function , 1 , 1( ) ( ) var( )p t p tEU E r rγ γ+ += −  is specified with the degree of risk aversion 

0γ > .
21

 The advantage of using EV is that it further accounts for the hedger’s risk prefer-

ence. This study considers four different levels of risk aversion 1, 3,7,10γ =  to assess the 

performance gains across hedgers.
22

 The results for each model and each period examined are 

summarized in Table 2.6.
23

  

Table 2.6 illustrates that the RV-based hedges can substantially outperform the static OLS 

and/or the return-based dynamic GARCH hedges in terms of EV gains. For short hedges in 

Period I, the RV-based method generates positive EV gains over the conventional and the 

OLS methods, while the EV of the return-based GARCH method over the OLS is negative. 

Taking 1γ =  as an example, the average EV of the RV-based hedges surpasses the re-

turn-based GARCH (OLS) hedges by about 0.17 (0.07) basis points per day, while the aver-

age EV gain of the return-based GARCH method over the OLS is about -0.10 basis points per 

day. For long hedges, however, it is observed that the RV-based method not only underper-

forms the return-based GARCH method but also loses the static OLS method in Period I. 

Since the expected hedged portfolio returns , 1( )p tE r +  for short and long hedges have the 

same magnitude but with opposite sign, the benefits for short hedging using RV should be 

harmful to the long hedge when the hedgers have the quadratic utility form. Then examining 

                                                 
21

 The utility function is also considered in Kroner and Sultan (1993) and Lien and Yang (2006). 
22

 This specification on risk aversion follows Patton (2004), who considers 1,3,7,10,20γ =  for asset allocat-

ing. In addition, Lien and Yang (2006) assume that the risk aversion to be 4 in measuring the expected utility of a 

futures hedge. 
23

 Given risk aversion γ , the EV of the alternative over the benchmark model is obtained by solving the 

nonlinear equation: , 1 , 1 , 1 , 1( ) var( ) ( EV) var( EV)b b a a

p t p t p t p tE r r E r rγ γ+ + + +− = − − −  with the use of the 

out-of-sample hedged portfolio returns. 
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the performance in Period II, the average EV gain over the conventional method by the 

RV-based method for long (short) hedges is about 1.35 (-1.24) basis points per day. As com-

pared with the OLS method, it is observed that the ECT-RV-GARCH-based 

(ECT-RV-GJR-based) models for long (short) hedges can generate positive EV gains in the 

period. Clearly, a short (long) hedger with the mean-variance utility would prefer using the 

RV-based method for his/her hedging activity in Period I (II). Moreover, it is evident that the 

EV gains of the RV-based models differentiate across hedgers with different risk aversions. 

The EV of the alternative method surpasses the conventional method because it increases as 

the risk aversion of the hedger increases. That is, a hedger with a higher risk aversion in the 

S&P 500 market can benefit more when he/she uses the RV-based models in hedging.  

 

Hedge Horizon, Hedge Ratio, and Hedging Effectiveness 

As we have discussed the results based on a daily hedging horizon, since individuals and in-

stitutions may not have the same hedging horizon for their specific purposes, the RV-based 

method is further applied to study the effect of hedging horizon on hedge ratio and hedging 

effectiveness. A few studies have found that hedge ratio depends on the hedging horizon and 

approaches unity (i.e., naïve hedge ratio) for a longer horizon; and, hedging effectiveness 

tends to increase as the length of hedging horizon increases (see, for example, Ederington, 

1979; Geppert, 1995; Chen et al., 2004; Lien and Shrestha, 2007).
24

 It is noted that, however, 

this result has never been examined empirically using the RV-based and the return-based 

GARCH methods. Thus, this study analyzes the relationships of the dynamic methods for six 

hedging horizons: 1-week (1W), 2-week (2W), 3-week (3W), 1-month (1M), 2-month (2M), 

and 3-month (3M), and the in-sample and out-of-sample results are plotted in Panel (a)-(b) 

                                                 
24

 For example, the findings are supported by Ederington (1979), Geppert (1995), and Lien and Shrestha (2007). 

These studies use the OLS technique, the cointegration method, and the wavelet analysis, respectively, to study 

the effect of hedging horizon length on the minimum-variance hedge ratio and the hedging effectiveness of Ed-

erington (1979). 
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and (c)-(d) of Figure 2.3, respectively.
25

 Panel (a) and (c) show the hedge ratio tends to in-

crease and to approach unity with increase of the length of hedging horizon. For the in-sample 

case, the conventional hedge ratio is likely to exceed the alternative hedge ratio except the 3W 

and the 1M horizons. For the out-of-sample study, however, the alternative generally has 

higher hedge ratio estimates but not for the 3W and the 3M cases. In terms of hedging per-

formance, Panel (b) and (d) plot the effect of hedging horizon on the hedging effectiveness as 

shown by Ederington (1979), which is estimated by calculating the percentage reduction in 

the variance of the naked spot portfolio. It is apparent that the hedging effectiveness increases 

with the length of hedging horizon, but the degree of hedging effectiveness does not approach 

one. For the out-of-sample analysis, the RV-based method generally outperforms the conven-

tional method in terms of the hedging effectiveness for shorter horizons (within 2 weeks), but 

fail to outperform the conventional method for longer horizons.
26

 As a result, to achieve a 

better hedging performance, it is suggested that hedgers should use more futures contracts for 

hedging when their hedging horizon is no longer than 2 weeks.  

 

 

 

 

                                                 
25

 Lien and Shrestha (2007) indicate that there are two ways to incorporate hedging horizon in estimating hedge 

ratio. One way is to derive an optimal hedge ratio that explicitly depends on hedging horizon based on some 

models, such as the model of Geppert (1995). The other way is to estimate the hedge ratio by matching the data 

frequency with the hedging horizon, such as the approach used by Chen et al. (2004). In this study, we use the 

non-overlapping approach of Chen et al. (2004) that matches the data frequency to estimate the hedge ratio and 

the resulting hedging effectiveness. The figures plot the average values of the empirical results based on the 

conventional and the alternative models mentioned in the previous sections. 
26

 It should be noted that, however, the sample size used to estimate hedge ratio and hedging effectiveness de-

creases quickly with hedging horizon length (e.g., there are only 20 out-of-sample estimates for 3M hedging ho-

rizon). Hence, the results for longer horizons, such as 2M and 3M, may not be reliable because a lower fre-

quency results in a substantial reduction in the sample size (see, e.g., Lien & Shrestha, 2007). 



 - 33 - 

 

FIGURE 2.3 The Effect of Hedge Horizon on Hedge Ratio and Hedging Effectiveness: 

RV-Based (Solid) vs. Return-Based (Dash) Methods 
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Chapter 3. An Application of Realized Regression 

 to the Hedging Problem 

 

This chapter presents a high-frequency based method for analyzing the one-period futures 

hedging problem. Applying the realized regression, the realized hedge ratio is constructed; 

meanwhile, the R-squared coefficient provides an ex-post performance measure. The asymp-

totic theory enables us to assess the parameter estimation risk of the hedge ratios. An empiri-

cal study is conducted on the S&P 500 index and their hedging performance is compared to 

the conventional hedge ratios. Moreover, impacts of the market microstructure effect on the 

realized hedge ratio and the effect of the parameter estimation risk on the corresponding 

hedging performance are discussed. 

 

 

3.1. Research Problem and Objective 

 

Under the specification of one-factor capital asset pricing model, Andersen et al. (2005, 2006) 

gave the concept of integrated beta, which is defined as the ratio between the integrated co-

variance of the market and the thi  individual stocks and the integrated market variance,  

and further studied the macroeconomic determinants and dynamics of the systematic risk via 

the realized beta approach. Applying the results to the one-period hedging problem, the aim of 

this chapter attempts to show that the usefulness of the realized beta approach for analyzing 

the problem.  

With some assumptions in the underlying price processes, the integrated hedge ratio is de-

fined firstly. The estimator, realized hedge ratio, is consistent with the integrated hedge ratio, 

and the estimate is achieved by applying the realized regression of Barndorff-Nielsen and 

Shephard (2004), using larger data sets of intraday returns. Meanwhile, the asymptotic distri-
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bution provides insights into the precision of the realized hedge ratio. Furthermore, the real-

ized hedging effectiveness provides an ex-post estimate for the integrated hedging effective-

ness. This realized method is then applied to the S&P 500 market spanning the period of 

January 2000 and December 2004 by assuming a weekly (Wednesday-based) hedging horizon. 

Moreover, its performance is compared to the conventional hedging models. 

Analyzing the hedging problem using the proposed method has the following advantages. 

First, the realized hedge ratio provides explicitly continuous evaluation in the integrated 

hedge ratio without assuming discrete-time multivariate volatility models or time variations in 

the hedge ratio dynamics. Meanwhile, the ex-post realizations further enable us to study the 

properties within the hedge ratio. Second, the conventional hedge ratio is estimated by the 

parameter certainty equivalent (PCE) procedure. Substituting sample estimates of models’ 

parameters, the estimated hedge ratio neglects the issue of parameter estimation risk (Lence & 

Hayes, 1994a,b; Shi & Irwin, 2005). In contrast, the asymptotic confidence interval allows 

exploring the estimation risk at the empirical level. Third, the integrated volatility corresponds 

closely to the conditional volatility for discrete-time returns. Thus, the realized hedging effec-

tiveness provides an ex-post measure for conditional hedging effectiveness, as compared with 

the unconditional version of Ederington (1979). 

The empirical findings are summarized as follows. First, 15-minute returns may be suitable 

for constructing realized weekly hedge ratios for the S&P 500 index. The market microstruc-

ture effect leads the realized hedge ratio downward-biased when the sampling frequency cho-

sen is high, such as 5-minute returns. Second, the realized weekly hedge ratio is generally su-

perior to other conventional hedge ratios; meanwhile, the GARCH hedge ratios do not per-

form better than the OLS estimate, based on realized hedging effectiveness measures. They 

are evaluated for the in-sample and out-of-sample period. Third, a regression analysis indi-

cates that the realized hedging effectiveness is lower if the realized weekly hedge ratio be-

comes imprecise. The implication is that the parameter estimation risk is important when 
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hedgers make hedging decisions. Therefore, the estimation risk should be incorporated into 

the hedging models (Lence and Hayes, 1994a, 1994b; Shi and Irwin, 2005). The rest of this 

chapter is organized as follows. Next, we present the concept of integrated hedge ratio and 

integrated hedging effectiveness, and further apply the realized regression of 

Barndorff-Nielsen and Shephard (2004) to have the estimates. This is followed by illustrating 

an empirical example; and finally, the chapter is concluded in the last section. 

 

3.2. Realized Hedge Ratio and Hedging Effectiveness 

 

To illustrate, assume the 2 1×  vector of spot-futures returns follows the continuous-time 

diffusion process as mentioned before. Based on the derivation of an optimal (risk-minimizing) 

futures hedge, the integrated hedge ratio over the time interval [ , 1]t t +  is formally defined 

as 

 
1 1

2
1 ( ) ( )

t t

t sf f
t t

s ds s dsβ σ σ
+ +

+ ≡ ∫ ∫  (3.1) 

Note this definition is also found in Harris et al. (2007). Extending the specification to the 

hedging effectiveness of Ederington (1979), the integrated hedging effectiveness is defined: 

 
* 1 1

2 * 2
1IHE 1 ( ; ) ( )t

t t

t p t s
t t

s ds s dsβ
σ β σ

+ +

+ ≡ − ∫ ∫  (3.2) 

It measures the percentage reduction in the integrated hedged portfolio variance for a particu-

lar (ex-ante) hedge ratio, *
tβ , with the integrated variance of the spot position. Since the inte-

grated (co-)variance is closely related to the conditional (co-)variance, the realized hedging 

effectiveness may be regarded as a measure for calculating the percentage reduction from the 

conditional variance of the spot position to the conditional variance of the hedged portfolio.  

Andersen et al. (2005, 2006) studied the macroeconomic determinants and dynamics of the 

systematic risk in the one-factor capital asset pricing model by using the realized beta ap-
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proach. The approach then provides an empirical framework for analyzing the hedging prob-

lem. Based on their results, the realized hedge ratio for the integrated hedge ratio could be es-

timated by using intraday high-frequency data as follows: 

 1 , 1 , 1
ˆ RCov RVt sf t f tβ + + += 1tβ +→ , 0→�  (3.3) 

and it provides a natural benchmark for assessing the forecasting ability of any ex-ante 

(risk-minimizing) hedge ratios. For example, the hedger may consider the loss functions, such 

as * * 2
1

ˆMSE( ) ( )t n t tEβ β β+≡ −  or * *
1

ˆMAE( ) | |t n t tEβ β β+≡ − , for the evaluation process. 

With the truth underlying integrated hedge ratio, the hedging methods are directly assessed by 

comparing relative size of the MSE and/or MAE without computing the realization on the 

hedged portfolio returns or gained utilities. In addition, for estimating the integrated hedging 

effectiveness, the realized hedging effectiveness for any particular *
tβ  gives the result: 

 
* *

1 , 1 , 1RHE 1 RV RVt t

t p t s t

β β

+ + += −
*

1IHE t

t

β

+→ , 0→�  (3.4) 

where 

 
* *
, 1 , 1 , 1 , 1RV RV RV 2 RCovt

p t s t f t t sf t

β
β+ + + += + −  (3.5) 

Barndorff-Nielsen and Shephard (2004) have discussed some issues in the realized meas-

ures. Focusing on the realized hedge ratio (beta) in the analysis, the realized regression 

method: 

 , 1 ,j j js t t f t tr rβ ε+= ⋅ + , 1, ,1/j = … �  (3.6) 

could be applied to estimate the integrated hedge ratio (beta). Note that the upper bound of the 

realized hedging effectiveness is equivalent to R-squared coefficient in the realized regression 

(Harris et al., 2007). In addition, the asymptotic property for the realized regression is also 

presented in Barndorff-Nielsen and Shephard (2004). They have shown that the asymptotic 

distribution of the integrated hedge ratio follows 
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 1 1

2
, 1

ˆ
(0,1)

RV

t t

f t t

N
g

β β+ +

−
+

−
∼

�

 (3.7) 

where  

 
1/ 1/ 1

2
1

1 1
t j j j

j j

g a a a
−

−
= =

= −∑ ∑
� �

�  and (3.8) 

 2
, , 1 ,

ˆ
j j jj s t f t t f ta r r rβ += −  (3.9) 

With the asymptotic distribution, the %α  asymptotic confidence interval for the integrated 

hedge ratio is constructed: 

 -2
1 1 /2 , 1

ˆ RVt t f t tz gαβ β+ + +∈ ± �  (3.10) 

With the interval, interval forecast ability of ex-ante hedge ratios could also be assessed via 

some designed loss functions.  

 

3.3. An Illustrated Example 

 

An example on the mid-week (Wednesday-base) futures hedge is presented in this section. 

The underlying assets contain the S&P 500 index and the S&P 500 futures traded on the CME. 

Data sets contain weekly and high frequency intraday prices spanning the period of January 1, 

2000 and December 31, 2004, provided by the Datastream and Tick Data Inc. The intraday 

price data are equidistant in time. The continuous price series for the futures are created when 

the 2nd month future volume exceeds the first future month volume. Moreover, the futures 

returns after 15:00 for each day are dropped because the futures market closes fifteen minutes 

later than the spot market. Then the realized weekly hedge ratio series is constructed using the 

transactions prices based on the previous tick method.  
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Sampling Frequencies and Realized Hedge Ratios 

The issue of sampling frequency chosen should be important for calculating the realized 

weekly hedge ratios. For example, due to the market microstructure noises, Barndorff-Nielsen 

and Shephard (2002) showed that the realized daily volatility is biased when the sampling fre-

quency is high. Thus, we study the properties of realized weekly hedge ratios against various 

sampling frequencies. Table 3.1 summarizes the statistics of realized weekly hedge ratios 

against five sampling frequencies, including 5-, 10-, 15-, 30-, and 60-minute. Applying these 

data sets to Equation (3.3), we have 261 realized weekly hedge ratios for each sampling 

method. The statistics in Table 3.1 conclude that all the hedge ratios exhibit time varying, 

left-skewed and leptokurtic. Moreover, the means of the realized hedge ratios are about 0.90 

except the result obtained from the 5-minute data. For example, a two-tail t statistic (-22.17) 

indicates that the mean of the 5-minute and the 15-minute realized hedge ratios are different at 

the 1% significance level. The preliminary analysis shows that the realized weekly hedge ra-

tios may be biased estimates for the integrated weekly hedge ratios if 5-minute returns are 

used. 

 

Table 3.1 Summary Statistics of Realized Hedge Ratios against Sampling Frequencies 

∆  (Minute) 5 10 15 30 60 

Min. 0.5552 0.6779 0.7554 0.4107 0.3273 

25
th

 0.7972 0.8749 0.8925 0.8678 0.8717 

50
th

 0.8332 0.9014 0.9219 0.9052 0.9286 

75
th

 0.8565 0.9206 0.9413 0.9419 0.9816 

Max 0.9319 0.9779 1.1448 1.0374 1.1261 

Mean 0.8229 0.8959 0.9176 0.8989 0.9218 

Std. Dev. 0.0535 0.0394 0.0409 0.0659 0.0920 

Skewness -1.3426 -1.1587 -0.0592 -2.0097 -1.5209 

Kurtosis 6.3308 6.6692 7.5263 14.4019 10.1414 

Obs. 261 261 261 261 261 

 

 

A proper sampling frequency for realized weekly hedge ratios may be addressed by plotting 
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the hedge ratio signature plot. This provides a visual trade-off between the accuracy and the 

precision of the realized weekly hedge ratio, and the spirit is similar to the volatility signature 

plot of Andersen et al. (2000). In this study, the accuracy is measured by the mean of the real-

ized weekly hedge ratios, and the precision is measured by the mean of the 95% asymptotic 

confidence intervals. Figure 3.1 shows the plot. It can be observed that the 95% asymptotic 

confidence interval narrows when the sampling frequency increases. That is, the realized 

hedge ratio becomes precise if a larger number of observations are used. The smallest two 

confidence intervals, 0.1147 and 0.1184, occur in the 5-minute and the 15-minute, respec-

tively, and the highest, 0.2401, occurs in the 60-minute. In balancing the accuracy and the 

precision of the realized weekly hedge ratio, it seems that the 15-minute hedge ratio is more 

reliable. 

 

 

Figure 3.1 Average Values of Realized Weekly Hedge Ratios and 95% Confidence Intervals 

drawn against Sampling Frequencies. 

 

The Impact of Parameter Estimation Risk 

Figure 3.2 plots (15-min) realized weekly hedge ratio and the corresponding upper bound of 

realized hedging effectiveness in panel (a) and panel (b), respectively. Note that the solid line 
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in panel (a) represents the realized weekly hedge ratio and the dotted lines represent its 95% 

asymptotic confidence intervals. It is observed that the realized hedge ratio, the confidence 

interval, and the realized hedging effectiveness are fluctuated with time as the market envi-

ronment changes. Their relationship is further built by the time-series regression: 

 
ˆRHE 0.7536 0.2477 0.8424ACI

           (18.77)     (5.76)    ( 14.06)

t t t tuβ= + − +

−
, 2 0.50R =   

The result shows that the realized (upper bound) hedging effectiveness is positively related to 

the level of the realized hedge ratio and negatively related to the asymptotic confidence inter-

val.
27

 The implication of the results is that the issue of parameter estimation risk for the 

hedge ratio should be important so that the risk should be incorporated into the hedging mod-

els (Lence & Hayes, 1994a,b; Shi & Irwin, 2005).  

 

 

Figure 3.2 (a) Realized Weekly Hedge Ratios with 95% Asymptotic Confidence Intervals;  

(b) Upper Bound of Realized Weekly Hedging Effectiveness 

                                                 
27

 As suggested by an anonymous referee, this positively relates to the realized hedge ratio follows from the 

definition of regression R-squared so that it should be regarded as a control variable in the analysis. 
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Performance Evaluation Results 

The benefit of using larger intraday data sets in estimating weekly hedge ratios is compared 

with conventional approaches, including the Naïve, the OLS, and the CCC-GARCH estimates. 

They are evaluated for both in-sample and out-of-sample, based on the proposed realized 

hedging effectiveness of Equation (3.4). The sample period, January 2000 to December 2003, 

is used for the in-sample estimation (209 weeks), which leaves one year for the out-of-sample 

comparisons (52 weeks). The comparison results are shown in Table 3.2. Since the estimation 

of the Naive, the OLS, and the CCC-GARCH hedge ratios are quite standard so that the result 

is not reported.
28

 The corresponding realized hedging effectiveness is then computed using 

five sampling frequencies, say, 5-, 10-, 15-, 30-, and 60-minute returns, to achieve a robust 

result.  

 

Table 3.2 Unconditional Sample Means of Realized Weekly Hedging Effectiveness 

�  (Minute) Naive OLS CCC-GARCH Realized 

In-sample (209 Obs.) 

5 0.7708 0.7830 0.7828 0.7984 

10 0.8828 0.8885 0.8877 0.8924 

15 0.9169 0.9210 0.9198 0.9245 

30 0.8857 0.8918 0.8911 0.8982 

60 0.9028 0.9074 0.9070 0.9111 

Out-of-sample (52 Obs.) 

5 0.7881 0.7995 0.7967 0.8135 

10 0.8920 0.8974 0.8954 0.9008 

15 0.9227 0.9267 0.9245 0.9297 

30 0.8887 0.8947 0.8922 0.9007 

60 0.9058 0.9103 0.9083 0.9137 

 

 

The result concludes that the realized hedge ratio yields the best performance for the 

in-sample; and, the superior OLS than the CCC-GARCH model agrees with previous re-

searches, see, e.g., Lien et al. (2002). For the out-of-sample evaluations, the one-step-ahead 

                                                 
28

 In the analysis, the OLS gives static estimates, 0.96, while the CCC-GARCH gives time-varying estimates 

ranging from 0.86 to 1.06.  
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forecasts for the Naïve, OLS, and CCC-GARCH methods are estimated using a rollover 

method. We keep the fixed estimation sample size 209 (observation for time 1T +  is incor-

porated and the observation for 1 is deleted) and three series of hedge ratio forecasts are then 

obtained. For the realized hedge ratios, the lagged one period realized hedge ratio is applied as 

the proxy for the one-step-ahead forecast. The average realized hedging effectiveness for each 

model is compared. It is concluded that the realized hedge ratio yields the best performance. 
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Chapter 4. Regime-Dependent Dynamics of a Futures Hedge 

 

A large number of prior studies have developed models for futures hedging. Constructed from 

high-frequency data and realized beta framework of Andersen et al. (2005, 2006), this chapter 

has analyzed the dynamics in the realized daily hedge ratio, which serves as an accurate esti-

mate for the integrated daily hedge ratio. Moreover, a two-regime threshold autoregressive 

model is applied to detect the regime-switching feather of the ratio. Empirical studies on two 

equity index futures show that the hedge ratio behaves in a regime-dependent dynamics and 

tends to be more volatile in the low regime than in the high regime. The result then supports 

the argument of time-varying hedge ratio.  

 

 

4.1. Research Problem and Objective 

 

A large number of studies have documented that the conventional regression-based static ap-

proach is inappropriate for futures hedge because the joint distribution of spot and futures 

prices is not constant through time.
30

 Henceforth, models for time-varying (or conditional) 

minimum-variance hedge ratios have emerged and been discussed. For example, the bivariate 

GARCH model of Baillie and Myers (1991) or the random coefficient autoregressive model 

of Bera et al. (1997) both lead estimates of dynamic hedge ratios. The latter directly estimates 

time-varying coefficients instead of conditional second moments so that different behavior 

may be appeared in the estimated hedge ratio. The insight into the hedge ratio behavior may 

further the development of dynamic hedge ratio models. Set against this background, we 

analysis the dynamic property in integrated daily hedge ratio via the realized beta framework 

of Andersen et al. (2005, 2006), which allows explicitly for approximating the integrated 

                                                 
30

 See, for example, Baillie and Myers (1991), Kroner and Sultan (1993), and among many others for evidences 

of this. 
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hedge ratio from underlying covariance and variance components.  

  Empirical studies are conducted on the S&P 500 and the NASDAQ 100 futures contracts. 

Using the intraday data for the spot and the futures over a six-year period from January 1, 

1999 to December 31, 2004, their realized daily hedge ratios are firstly constructed. To ex-

plore the possibility of nonlinear dynamics in the realized hedge ratio series, a two-regime 

Self-Exciting Threshold Autoregressive (SETAR) model is then considered in this paper. The 

two-regime SETAR is tackled with a linear Autoregressive (AR) model if the threshold effect 

is not significant. In testing the linear AR against the nonlinear SETAR models, a heteroske-

dasticity-consistent LM-based statistic of Hansen (1996) is applied via a bootstrap procedure. 

Empirical results conclude the realized daily hedge ratio is characterized as regime-dependent 

dynamics and is likely to be positively autocorrelated so that the usual assumption of constant 

hedge ratio seems inappropriate. In addition, the main effect of the regime demonstrates dif-

ferent variation in the daily-realized hedge ratio. That’s, the hedge ratio tends to be more vola-

tile in the low regime than in the high regime. The rest of the article is organized as follows. 

Next, we demonstrate the SETAR model and then elaborate on the realized daily hedge ratio. 

This is followed by providing the empirical evidence, and finally, the conclusion is presented 

in the last section.  

 

4.2. A Two-Regime SETAR Model 

 

To explore the dynamics in the integrated daily hedge ratio, consider the two-regime SETAR 

model with the form: 

 
0 1 1

0 1 1

( )1( )

( )1( )

t t m t m t d

t m t m t d t

y y y y

y y y e

α α α γ

β β β γ

− − −

− − −

= + + + ≤

+ + + + > +

�

�

 (4.1) 

where 1()⋅  is an indicator function; t dy −  is the threshold variable; γ  is the threshold pa-
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rameter. The autoregressive order is 1m ≥ , and the parameters jα  and jβ  are autoregres-

sive slopes. The SETAR is composed of two regime-dependent piecewise linear models for 

which the regime-switching dynamics is controlled by a lagged dependent variable. Hansen 

(1996) provided a heteroskedasticity-consistent LM-based statistic for testing the linearity 

against the nonlinear SETAR. As the threshold parameter is not identified under the null, the 

asymptotic distribution of the statistic is not standard and may be approximated by using a 

bootstrap procedure. In estimating the SETAR model, the sequential conditional least squares 

or the sequential conditional quasi-maximum likelihood method may be applied. The thresh-

old variable of Equation (4.1) is set as 1t d ty y
− −
≡  because it should provide relevant infor-

mation for hedgers when making hedging decisions.  

 

4.3. Realized Daily Hedge Ratios 

 

We investigate the dynamics of the integrated daily hedge ratio in the context of hedging with 

two stock index futures, namely the S&P 500 and the NASDAQ 100 (traded in CME), over a 

six-year period from January 1, 1999 to December 31, 2004. Applying the realized beta 

framework of Andersen et al. (2005, 2006) to this one-period hedging problem, the estimates 

of the integrated daily hedge ratios for each of the two index pairs are given by 

 , ,ˆ RCov RVt sf t f ty = ty→  (4.2) 

almost surely for all t  as the time between sampling observations 0→� . In this chapter, 

both the realized daily hedge ratio series are constructed from the transactions prices based on 

the previous tick method.
31

 The price data sets from the Tick Data Inc. are equidistant in time, 

and 5-minute sampling is often used in practice, see, Andersen et al. (2001a) for discussion. 

                                                 
31

 Several sampling methods have been proposed for constructing the intraday returns, such as the linear inter-

polation method of Andersen and Bollerslev (1997). One of the discussions of these methods can be referred to 

Hansen and Lunde (2006). 
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Specifically, for the futures contracts, the nearest month contract is rolled to the next month 

when the daily volume of the current contract is exceeded. Moreover, to construct the realized 

covariance, the futures returns after 15:00 for each day are dropped because the futures mar-

kets close fifteen minutes later than the spot markets. The 5-minute returns of the futures and 

the spot are used to calculate the realized daily hedge ratio for each product. Table 4.1 reports 

their descriptive statistics and dynamic dependence. The Phillips-Perron unit root tests con-

clude that the two realized daily hedge ratios are stationary, and the Ljung-Box Q statistics 

conclude that they are strongly autocorrelated. The preliminary analysis suggests that the re-

alized daily hedge ratio may be modeled as stationary (0)I  processes although the realized 

variance and covariance may be well approximated by a nonlinear fractionally cointegration 

(Andersen et al., 2006). 

 

Table 4.1 Statistics and Dynamic Dependences of Realized Daily Hedge Ratios 

Index S&P 500 NASDAQ 100 

Mean 0.801 0.804 

Std. Dev. 0.094 0.105 

Skewness -1.045 -1.268 

Kurtosis 4.878 5.367 

Q(5) 978.094 1525.645 

PP-AR test -2.466 -2.564 

PP-ARD test -25.470 -22.845 

PP-TS test -32.298 -26.208 

Observations 1508 1508 

Notes:  The Q(k) statistic (Ljung and Box, 1978) tests the null hypothesis of no autocorrelation up 

to order k. PP test is a nonparametric unit root test proposed by Phillips and Perron (1988); PP-AR 

test is based on zero drift AR(1) process; PP-ARD test is based on AR(1) model with drift; and 

PP-TS test is based on trend stationary AR(1) model. Statistics in bold indicate significance at the 

5% level. 

 

4.4. Empirical Results 

 

The bootstrap-calculated asymptotic p-value for the S&P 500 ( 0.05p = ) and the NASDAQ 

100 ( 0.02p = ) concludes that the null hypothesis of a single regime (no threshold effect) is 
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rejected at the 5% significance level.
32

 The least squares estimates of the threshold are 

ˆ 0.82γ =  and ˆ 0.79γ =  for the S&P 500 and the NASDAQ 100, respectively, where the 

optimal autoregressive orders for them is set by the Bayesian information criteria. The opti-

mal order for our data is 4 and 8 for the S&P 500 and the NASDAQ 100, respectively. The 

threshold principle divides the linear regression into two regimes by piecewise linear AR 

function depending on whether the previous realized daily hedge ratio has been exceeding the 

threshold estimate. Table 4.2 reports the parameter estimates for the two-regime SETAR mod-

els with heteroskedasticity consistent standard errors. Although the realized daily hedge ratio 

is likely to be positively autocorrelated, its variation in the two regimes behaves differently. It 

is observed that the realized hedge ratio tends to be more volatile in the low regime than in the 

high regime. As a result, the empirical results show the null of time-invariant hedge ratio hy-

pothesis seems inappropriate and thus support the argument of time-varying hedge ratios.  

 

Table 4.2 Two-regime SETAR estimates 

Index S&P 500  NASDAQ 100 

Regime 
1 0.821ty − ≤  

(794 Obs.) 

1 0.821ty − >  

(710 Obs.) 
 

1 0.790ty − ≤  

(519 Obs.) 

1 0.790ty − >  

(981 Obs.) 

Intercept 0.248 [0.035] 0.507 [0.074]  0.131 [0.040] 0.345 [0.056] 

1ty −  0.184 [0.047] 0.005 [0.071]  0.155 [0.062] 0.071 [0.051] 

2ty −  0.135 [0.033] 0.130 [0.041]  0.127 [0.048] 0.139 [0.030] 

3ty −  0.202 [0.036] 0.081 [0.036]  0.053 [0.046] 0.114 [0.034] 

4ty −  0.164 [0.037] 0.178 [0.045]  0.154 [0.052] 0.107 [0.036] 

5ty −  - -  0.158 [0.047] 0.060 [0.031] 

6ty −  - -  0.017 [0.054] 0.079 [0.033] 

7ty −  - -  0.025 [0.051] 0.027 [0.032] 

8ty −  - -  0.140 [0.043] -0.010 [0.035] 

std( )te  0.087 0.071  0.099 0.070 

R-squared 0.222 0.074  0.308 0.127 

Joint R-squared 0.265  0.376 

LM test  

(p-value) 

17.019 

(0.050) 
 

25.677 

(0.021) 

Notes:  Standard errors are in brackets. Statistics in bold indicate significance at the 5% level. 

 

 

 

                                                 
32

 The bootstrap replications 1,000 and the trimming percentage 15% are used, see Hansen (1996) for details.  
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Chapter 5. Conclusive Remarks 

 

The dissertation has presented the usefulness of intraday-based RV approach for estimating, 

evaluating, and investigating the one-period futures hedging problem. Firstly, Chapter 2 starts 

discussing the incremental value of a futures hedge using the RV approach. To do so, a new 

class of discrete-time multivariate volatility models encompassing the elements of realized 

covariance matrix for estimating the risk-minimizing hedge ratio is proposed. Then, the per-

formance of the RV-based models is compared with those generated by return-based models 

under an out-of-sample context with daily rebalancing approach. The empirical results have 

indicated that the improvement of switching from daily to intraday can be substantial, based 

on an extensive set of statistical and economical performance measures.  

Next, Chapter 3 has turn to the issue of performance evaluation on futures hedging. By ap-

plying of the RV approach, it has presented alternative ex-post measures for assessing the 

forecasting ability of any ex-ante hedge ratio estimates. With some assumptions in the under-

lying price processes, the realized (risk-minimizing) hedge ratio is shown to be consistent 

with the integrated (risk-minimizing) hedge ratio, and it can be estimated consistently using 

the realized regression of Barndorff-Nielsen and Shephard (2004). Meanwhile, the asymptotic 

distribution further provides insights into the precision of the hedge ratio. On the other hand, 

the realized hedging effectiveness offers an alternative ex-post estimate for the integrated 

hedging effectiveness. With these measures, hedgers may evaluate the performance of their 

hedging methods via some designed loss functions without only through the hedging effec-

tiveness of Ederington (1979).  

  At last, but not the last, Chapter 4 has assessed the dynamics of the realized daily hedge ra-

tio. A two-regime SETAR model is applied to detect the regime-switching feather of the 

hedge ratio. Empirical evidences on the two equity markets have shown that the threshold ef-

fect does exist, and the ratio is likely to be positively autocorrelated and tends to be more 
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volatile in the low regime than in the high regime. The empirical finding then supports the re-

gime-switching dynamic hedge; see, for example, Lee et al. (2006).  

  The availability of intraday high-frequency data for many financial assets has motivated the 

literature to develop methods for measuring, modeling, and forecasting daily volatility. Be-

sides the well-known RV estimator, the realized range estimator has also been considered in 

the literature for this purpose. Building on the high-low range (RR) estimator of Parkinson 

(1980), Martens and Van Dijk (2007) and Christensen and Podolskij (2007) have developed 

alternative intraday-based realized range estimator for estimating daily volatility, as follows: 

 ( ) 2

1

1
RR (log log )

4 log2 j j

m
m

t t t

j

H L
=

= −∑  (5.1) 

where the high price ( 1) 1sup
jt j i j t iH P− < < − +≡

� �
 and the low price ( 1) 1inf

jt j i j t iL P− < < − +≡
� �

. 

By means of sum of squared intraday price ranges, it has been shown that this RR estimator 

could provide more efficient estimate of daily volatility than the RV that only utilizes intraday 

price returns. Extending to the multivariate case, the estimate of covariance between assets 

using intraday data has been suggested by Bannouh et al. (2009), who combines the idea of 

Brandt and Diebold (2006) as well as the intraday high-low ranges to have the estimate. This 

so-called realized co-range estimator is formulated as follows: 

 ( ) ( ) 2 ( ) 2 ( )
, , ,

1
RRCov (RR RR RR )

2
m m m m

t p t i i t j j t

i j

λ λ
λλ

= − −  (5.2) 

where iλ  and 1j iλ λ= −  are the weights of a portfolio that contains assets i  and j ; 

( )
,RR m

p t  is the realized range of the portfolio, and ( )
,RR m

i t  and ( )
,RR m

j t  are the realized ranges 

of the individual assets.  

  With the realized (co-)range estimators, there are further extensions for forming the dy-

namic futures hedge. For example, based on the empirical study of volatility-timing strategy 

using the realized (co-)ranges, Bannouh et al. (2009) have shown that the covariance predic-
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tion using realized (co-)ranges outperforms the realized (co-)variances by about 60 basis 

points per annum after the transaction cost is taken into accounted. While utilizing realized 

(co-)variances for predicting the relevant (co-)variances in Chapter 2, the performance of a 

futures hedge that utilizes realized (co-)ranges is of much interest for further studies. The 

flexible CCC-GARCH error structure of Kroner and Sultan (1993) provides more flexible and 

easily ways to estimate the daily (co-)variances as compared with the rolling estimators of 

Fleming et al. (2003), Bandi et al. (2008), and De Pooter et al. (2008). Besides, the realized 

(co-)range estimators should provide alternative methods to evaluate the performance of a fu-

tures hedge. It is not clear whether the evaluation results using realized (co-)ranges is consis-

tent with the results that use realized (co-)variances as shown in Chapter 3.  
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