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國立交通大學財務金融研究所博士班 

中文摘要 

本研究主要利用計量分析探討兩個財務市場的重要議題。第一個議題是財務市場

波動，利用 HAR 及 MIDAS 迴歸模型探討已實現變幅波動的預測績效，研究

結果發現已實現變幅波動較已實現波動有效，將波動分為連續與跳躍作為迴歸子

預測未來的波動幾乎較利用其他不同變異的迴歸子其 MSE 為最小，並檢定出在

已實現變幅波動下短期的跳躍會產生結構性的改變。此外，並以  HAR 及 

MIDAS 迴歸模型為涵蓋迴歸，將已實現變幅波動分成連續與跳躍部份，探討此

二者及隱含波動對已實現變幅波動的資訊內涵，研究結果顯示隱含波動對已實現

變幅波動具有很高的資訊內涵，連續部份提供與隱含波動部份相同的資訊內涵，

然而跳躍部份無法對已實現變幅波動提供任何有用的資訊；若僅考慮隱含波動與

樣本外預測，則隱含波動亦提供較大的資訊內涵。第二個議題是利用門檻迴歸模

型檢驗基金經理人的選股及擇時能力，實證結果顯示傳統的 Henriksson 及 

Merton (1981) 模型為我們所提的門檻迴歸模型之特例，利用傳統的迴歸模型會

低估擇時能力，而門檻迴歸模型能產生較為正確的推論。 

 

 

關鍵字：已實現變幅波動、涵蓋迴歸、資訊內涵、共同基金、門檻模型 
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ABSTRACT 

 
This dissertation consists of two separate issues.  
The first issue is to discuss the forecasting performance of HAR and MIDAS 
regression models of realized range-based volatility; we focus on the S&P 500 index. 
The empirical results show that the realized range-based volatility is more efficient 
than the realized return-based volatility; the regressors consisting of the continuous 
sample path and jump variability measures in the HAR and MIDAS regressions 
predict the future realized range volatilities, and thus dominate almost in all MSE 
terms. In addition, the realized range-based regressions are significant for short-run 
volatility forecasting, but the realized return-based regressions are almost invariant to 
jumps. Furthermore, we will employ the HAR and MIDAS regressions as 
encompassing regressions to examine the information content of the continuous and 
jump components of the realized range-based volatility, and the additional 
information content of the implied volatility as an additional regressor. We use the 
VIX as the measure of the implied volatility. We find that the implied volatility has a 
high information content and the past continuous components feature relevant 
information content by the implied volatility. Besides, the jump components do not 
contribute to future valuable information. 
The second issue is to detect mutual fund market timing abilities, using the threshold 
regression model. The empirical results show that the traditional Henriksson and 
Merton (1981) model is only a special case within our model, and we demonstrate the 
potential bias of using the traditional model, arguing that it tends to underestimate the 
market-timing effect. Indeed, we find that the use of the traditional market timing test 
may provide misleading results in some circumstances; thus, our proposed threshold 
model provides more accurate inferences on the market-timing effects of mutual 
funds.  
 
Keywords: realized range-based volatility; HAR regression; MIDAS regression;  
          VIX; information content; mutual fund; threshold regression 
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Chapter 1  Introduction 
 

Applied econometric methods will be used for the estimations and forecasts of 

important financial quantities, analyses of economic outcomes and market behaviors. 

This dissertation will employ econometric analyses to focus on two important issues 

in the financial market, including volatility forecasting and mutual fund performance 

evaluation. 

     The first issue in this dissertation is to discuss the predicting volatility. Volatility 

forecasting of financial asset returns is important for derivative pricing, asset 

allocation, and risk management. Most of the previous studies used the realized 

volatility to predict volatility; and Forsberg and Ghysels (2007) explored different 

variations as regressors to predict the realized volatility, using the heterogeneous 

autoregressive and the mixed data sampling regressions. Because the realized 

range-based estimation of integrated variance has been proved to be more efficient, 

we are motivated to predict this realized range-based volatility. By following Forsberg 

and Ghysels (2007), we use the heterogeneous autoregressive and mixed data 

sampling regressions to examine whether future volatility is well predicted by the past 

realized range-based variations, realized range bipower variations , and so on. 

     In addition, most of the previous studies have documented the information 

content of the implied volatility. They always focus on whether the implied volatility 

has the additional information content of historical volatility; the realized volatility is 

always used as the historical volatility. We will employ the heterogeneous 

autoregressive regressions and mixed data sampling regressions as encompassing 

regressions to examine the information content of the continuous and jump 

components of the realized range-based volatility, and the additional information 

content of the implied volatility as an additional regressor. Besides, we use the 
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Chicago Board Options Exchange volatility index new VIX as the measure of the 

implied volatility. The new VIX is based on S&P 500 index options and adopts the 

model-free volatility expectation. 

The second issue examined in this dissertation is to detect mutual fund market 

timing abilities by the threshold regression model. Investment performance and the 

market timing of mutual funds continue to receive considerable attention by both 

academics and market practitioners, with a variety of evaluation techniques having 

been proposed and implemented over the years. This chapter proposes a new method 

to test mutual fund performance and market timing through the application of 

threshold regression techniques. The idea is that fund managers may adopt different 

trading strategies when they perceive different market conditions. As fund managers 

may not uniformly use the sign of the market return to capture the direction of market 

movement, it is natural to conjecture that a fund manager’s trading behavior changes 

when the market return is above or below a certain threshold level, which varies 

across managers of different funds. 

To sum up, the dissertation provides some insights into the issues of volatility 

forecasting and mutual fund performance evaluation. With these points in mind, the 

research results will provide us with the empirical evidences to comprehend the 

occasion of some distinctive phenomena in financial markets. 
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Chapter 2  On the Forecasting Performance of HAR and 

MIDAS Regression Models 

of Realized Range-Based Volatility 

  

1 Introduction 

Volatility forecasting of financial asset returns is important for derivative pricing, 

asset allocation, and risk management. The latent volatility is unobservable, so the 

observable proxies are used; in this study, we will use the realized variance (Andersen 

et al. (2001)) and the realized range variance (Parkinson (1980)). In recent years, with 

the availability of high frequency financial market data, the previous studies showed 

that the use of high-frequency data is beneficial in predicting volatility. The 

return-based estimation is the realized variance (RV), which is the sum of the squared 

returns over non-overlapping intervals within a sampling period. The theory states 

that the RV is an unbiased and efficient estimator (Andersen et al. (2001)), converges 

in probability to the quadratic variation (QV) as the sampling frequency tends to 

infinity (Barndorff-Nielsen and Shephard (2002)), and has the persistent properties 

(Andersen et al. (2003)). In practice, market microstructure effects pose the RV to 

become biased and inconsistent (Bandi et al. (2005, 2006), Aït-Sahalia et al. (2005) 

and Hansen et al. (2005)). An alternative way of range-based estimation is the realized 

range variance (RRV), which is based on the difference between the maximum and 

minimum prices observed during a certain period. Cristensen and Podolskij (2005) 

derived that the RRV has the theoretical properties similar to Barndorff-Nielsen and 

Shephard (2002) for RV, and it is a more efficient volatility estimator than the realized 

volatility (Parkinson (1980) and Martens et al. (2007)) because it is formed from the 
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entire process. Most authors explored the univariate persistent properties, using the 

RV or RRV to predict volatility. The regressions of the heterogeneous autoregressive 

(HAR) by Corsi (2004) and of mixed data sampling (MIDAS) by Ghysels et al. (2006) 

were considered to be some variations as regressors to predict future increments in 

quadratic variations. These two models are able to reproduce the memory persistence 

observed in the data and to reduce the number of parameters to estimate; and their 

prediction powers were proved to outperform ARFIMA. 

     Furthermore, in high-frequency data, discrete jumps may affect returns, so the 

jump component appears to account for a proportion of quadratic variation. In this 

chapter, we consider a continuous time stochastic volatility jump-diffusion model for 

the asset returns. An asymptotic distribution theory for the jump test was derived by 

Barndorff-Nielsen and Shephard (2006), which is based on the ratio of RV and 

bipower variation (BPV), suitably normalized. Moreover, similar tests based on RRV 

were derived by Christensen and Podolskij (2006). Furthermore, Andersen et al. (2007) 

suggested the use of the bipower variation as the predictor of volatility, because jump 

components are “noise” and not helpful in predicting future volatility. The HAR and 

MIDAS regressions allow us to compare the forecasting abilities of different 

regressors and to choose the predictors with the best predicting ability. In this chapter, 

we will use RV, RRV, and BPV, etc. as regressors to predict latent volatilities. 

In this chapter, our purpose is to forecast volatility. Most of the previous studies 

used the RV to predict volatility, and Forsberg and Ghysels (2007) explored different 

variations as regressors to predict the realized volatility, using the HAR and MIDAS 

regressions. Because the realized range-based estimation of integrated variance has 

been proved to be more efficient, we are motivated to predict this realized 

range-based volatility. By following Forsberg and Ghysels (2007), we use HAR and 

MIDAS regressions to examine whether future volatility is well predicted by past 



 5

realized range-based variations, realized range bipower variations (RBV), and so on. 

The results show that the realized range-based variance is more efficient and the 

results are the same as the previous studies. The regressors consisting of the 

continuous sample path and jump variability measures (CJ) in the HAR and MIDAS 

regressions predict the future realized range volatilities, and thus dominate almost in 

all mean square error (MSE) terms. In addition, in the in-sample forecasting, the 

relative decreasing ratio of MSE of HAR-RRV (MIDAS-RRV) regressions are almost 

larger than that of HAR-RV (MIDAS-RV); and in the out-of sample forecasting, the 

MSE of HAR-RRV and MIDAS-RRV regressions are small. Moreover, the realized 

range-based regressions are significant for short-run volatility forecasting, but the 

realized return-based regressions are almost invariant to jumps. Hence, our empirical 

results show that by using of the HAR and MIDAS regressions to predict latent 

volatility under different variations, the realized range-based variance is a good 

volatility proxy. 

The remainder of this chapter is organized as follows. In section 2, we discuss 

various volatility measures and predict volatility regressions. In section 3, we present 

the data and the empirical results of HAR and MIDAS regressions for the S&P 500 

cash index to predict RV and RRV. Section 4 concludes the article. 

 

2 The Methodology 

2.1 Construction of volatility measures 

Let the logarithmic price of financial assets at time t  be denoted by ( )p t and follow 

the continuous-time jump diffusion process 

( ) ( ) ( ) ( ) ( ) ( )dp t t dt t dw t t dq tμ σ κ= + + ,                  (1) 

where ( )tμ and ( )tσ are the drift and instantaneous volatility, ( )w t is the standardized 

Brownian motion, ( )q t is a counting process with time-varying intensity ( )tλ , . .i e  
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[ ( ) 1] ( )P dq t t dtλ= = , and ( )tκ is the jump size. The quadratic variation process for a 

sequence of partitions is defined by 

    
1

2
1

0
[ ]( ) plim ( ( ) ( ))

n

j j
j

p t p s p s
−

+
=

= −∑ ,                       

where 0 10 ns s s t= < < < =" and 1sup { } 0j j js s+ − → for n →∞ . The quadratic 

variation for the cumulative return process, , ( ) ( )t t HQV p t H p t+ ≡ + − , is then 

    2 2
, ( ) ( )

t H

t t H t
t s t H

QV s ds sσ κ
+

+
< ≤ +

≡ + ∑∫ .                   (2) 

Hence, the quadratic variation from time t  to time t H+ consists of the integrated 

volatility of the continuous sample path component ( 2 ( )
t H

t
s dsσ

+

∫ ) and the summation 

of the squared jumps between time t  and time t H+ .  

Let daily returns be denoted by , 1 ( ) ( 1)t tr p t p t− = − − , where the time index t  

refers to daily sampling. When the data is sampled at a higher frequency, M times in 

a day, we will denote the intraday returns and ranges as:  

( 1)
, ( 1 ) ( 1 ),   1, ,j j

t j M Mr p t p t j M−= − + − − + = " ;            

and    { }
( 1), , ,

max
i i

M M
pi m t ss t

s p p
−Δ Δ ≤ ≤

= − ,                            

where , ,pi ms Δ Δ  represents that each range is based on the corresponding m  returns. 

The realized variance and the realized ranged-based variance over day t  are defined 

as 

    2
,

1

M

t t j
j

RV r
=

=∑ ,                                     (3) 

                * 2
, ,

12,

1 M
m

t pi m
im

RRV s
λ Δ Δ

=

= ∑ ,                             (4) 

where ( ), , ,   and j
j m W mE s j R m Nλ = < ∞ ∀ ∈ ∈ 1, and W  is the Brownian motion. In 

                                                 
1 There is no explicit formula for ,j mλ , but it is computed to any degree of accuracy from simulations. 
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addition, from time t  to time t H+ , the realized variance is , 1,
1

H

t t H t i t i
i

RV RV+ + − +
=

= ∑ . 

As the theory of quadratic variation is applied, the realized variance converges 

uniformly in probability to the increment of the quadratic variation process as the 

sampling frequency of the underlying returns increases. That is,  

    , ,
P

t t H t t HRV QV+ +⎯⎯→ .                             (5) 

The above equation means that the realized variation ,t t HRV +  is a consistent estimator 

of the quadratic variation ,t t HQV + . Other measures of realized within-day price 

variance are based on the realized power variation, which is denoted by 

   , 1 ,
1

M

t t t j
j

RPV r+
=

= ∑ .                                     

One is also called the realized bipower variation,   

   ( ), 1 , (1 ) ,2 1
2

( )   , 0
M

M
t t t j k t jM k

j k
BPV k r r kπ

+ − +− −
= +

= ⋅ ≥∑ ,              (6) 

in which two absolute returns of every other ( 1)k +  days multiply together while the 

other is the tripower variation, 

   
( ) ( )

4
3

4
3

2
3

4
3

3
, 1 , 2(1 ) , (1 ) ,2(1 )

1 2(1 )

7
6
1
2

( ) ,

( )                           0,   2 ,
( )

M
M

t t t j k t j k t jM k
j k

TPV k M r r r

k

μ

μ

−
+ − + − +− +

= + +

=

Γ
≥ = ⋅

Γ

∑
   (7) 

in which three absolute returns of every other ( 1)k +  days multiply together and is 

raised to 4
3  power (Barndorff-Nielsen and Shephard (2002, 2004)). 

As noted by Barndorff-Nielsen and Shephard (2004) and Andersen, Bollerslev, 

and Diebold (2004), there are some results: 

   
1 2

, 1lim ( ) ( )
t

P
t tM t

BPV k s dsσ
+

+→∞
⎯⎯→∫ ,                         (8) 

   
1

4
, 1lim ( ) ( )

t
P

t tM t
TPV k s dsσ

+

+→∞
⎯⎯→∫ .                          (9) 

Under Barndorff-Nielsen and Shephard’s (2006) joint asymptotic distribution, there 
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are some results as follows, 

   
, 1

, 1 , 1

2 ( )
3

~ (0,1)
t t

t t t t

TPV k

RV QV
N

+

+ +

⋅

−
,                              

   
1

2

1

2 , 1

1
2 , 1

( ) ( )
~ (0,1)

( 1) ( )

t

t t t

t t

M RPV k s ds
N

M RV k

π

π

σ
+

−

+

−

+

−

−
∫ ,                 

   
2

1
2

, 1

4 , 1

( ) ( )
~ (0,1)

( 5) ( )

t

t t t

t t

BPV k s ds
N

TPV kπ

σ

π

+

+

+

−

+ −
∫ .                      

     As noted by the notion of Barndorff-Nielsen and Shephard (2004), combining 

the results of equations (5) and (8), the jumps in the underlying prices may  

consistently be estimated by 

   2
, 1 , 1

1

lim( ) ( )t t t tM
t s t

RV BPV sκ+ +→∞
< < +

− = ∑ ,            (10) 

but in a given finite sample, the difference between RV and BPV may be negative. 

Hence, when we follow the suggestion of Andersen, Bollerslev, and Diebold (2007), 

they truncated the actual empirical measurements at zero, 

   , 1 , 1 , 1max( ,0)t t t t t tJ RV BPV+ + +≡ − ,           (11) 

to ensure that all of the estimates are non-negative. However, the 1
2

, 1t tJ +  also had an 

unreasonably large number of non-zero small positive value. They proposed that these 

small jumps were treated as measurement errors, associating with only large values as 

jump components. Following Barndorff-Nielsen and Shephard (2004b), the joint 

asymptotic distribution of the realized volatility and bipower variation measures 

results in the following test statistics, 

   
, 1 , 1

, 1

, 1
2
, 1

( ( ) ( ))
( )

1 ( )2
4 ( )

(0,1)
(( ) 5) max(1, )

t t t t
t t

t t

t t

RV k BPV k
RV k

t TPV k

BPV k

Z M N
π π

+ +

+

+

+

−

+ = ⋅
+ − ⋅

∼ .         (12) 

Huang and Tauchen (2005) found that the statistics in equation (12) also had a 

sensible power against other empirically calibrated stochastic volatility jump diffusion 

models. Using equation (12), Andersen, Bollerslev, and Diebold (2007) identified the 
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jump variation as, 

   , 1 1 , 1 , 1( )( )t t t t t t tJ I Z RV BPVα+ + + += > Φ − ,                     (13) 

and the continuous component variation was estimated as the residual,  

   , 1 1 , 1 1 , 1( ) ( )t t t t t t t tC I Z RV I Z BPVα α+ + + + += ≤ Φ ⋅ + > Φ ⋅ ,          (14) 

where ( )I ⋅  denotes the indicator function, ( )Φ ⋅  is the standard cumulated normal 

distribution ( 1( )α α−Φ = Φ ), and α  is a significant level of the bipower test and we 

will use 0.999α =  throughout the chapter. From the definitions in equations (13) 

and (14), we ensure that the continuous variation and jump variation sum to the total 

realized variation, . .i e  , 1 , 1 , 1t t t t t tRV C J+ + += + .  

     Similar results were shown by Christensen and Podolskij (2006a, 2006b). As 

noted by Christensen and Podolskij (2006a, 2006b), 

 * 2 2

0
12,

1( )
Mt

m P
t i

im

RRV s ds Jσ
λ =

⎯⎯→ + ⋅∑∫ , as M →∞ , 

. .i e , *m
tRRV  is inconsistent. Hence, they modified the intraday high-low statistic to 

make it consistent with the quadratic variation. The realized range-based bipower 

variation with parameter 2( , )r s R+∈  is defined as2: 

   ( )
2

, ,

1
1 1 1

( , ), , , ( 1) , ,
1

r s

r m s m

M
m r s
r s t pi m p i m

i

RBV M s sλ λ

+
−

−
Δ Δ + Δ Δ

=

= ∑ , 

then 2
(1,1), 0

( )
tm m p

t tRBV RBV s dsσ≡ ⎯⎯→∫ , as M →∞ . Hence, the new range based 

estimator, *
2, 2,(1 )m m m

t m t m tRRV RRV RBVλ λ≡ + − , is consistent with quadratic variation, 

. .i e , 2 2

0
1

( )
Mt

m P
t i

i

RRV s ds Jσ
=

⎯⎯→ +∑∫ .   

Furthermore, using the bivariate distribution of ( ,  )m m
t tRRV RBV  and the delta- 

method, Christensen and Podolskij (2006b) found the jump detection statistic,  

                                                 
2 I maintain some notations used by Christensen and Podolskij (2006b) throughout the chapter. 
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4

0

( ) (0,1)
( )

m m
dt t

t

m u

M RRV RBV N
s dsν σ

−
⎯⎯→

∫
,                 

where 2
2, ( 2 )R B RB

m m m m mν λ= Λ +Λ − Λ , 
2

4, 2,
2
2,

m mR
m

m

λ λ
λ
−

Λ = , 
2 2 4
2, 1, 2, 1,

4
1,

2 3m m m mB
m

m

λ λ λ λ
λ

+ −
Λ = , and 

2
3, 1, 2. 1,

2
2, 1,

2 2c c c cRB
c

c c

λ λ λ λ
λ λ
−

Λ = . In addition, they adopted the modified ratio-statistic to 

improve the size properties in finite samples. The modified ratio-statistic is 

   
( )
{ }

*

* 2

1
1

( )

1
(0,1)

max ,

m
t

m
t

m
t

m
t

RBV
RRV d

t
RQQ

tRBVm

M
Z N

ν
+

−
= ⎯⎯→ ,                (15) 

where 4
1,

3

, , ( 1) , , ( 2) , , ( 3) , ,
1

m

M
m M
t pi m p i m p i m p i m

i

RQQ s s s sλ

−

Δ Δ + Δ Δ + Δ Δ + Δ Δ
=

= ∑  and 4

0
( )

t
m p
tRQQ s dsσ⎯⎯→∫ .  

 

2.2 Predicting volatility models 

In this study, we will explore MIDAS regression model, which was introduced by 

Ghysels et al. (2002, 2006) and HAR regression model, which was suggested by Corsi 

(2004), to predict volatility from t  to t H+ , where H  is the prediction horizon in 

days. 

     The multi-period realized variances, which were constructed by Andersen et al. 

(2007), were defined as the normalized sum of the one-period realized variances, 

   1
, 1 2 , 1 1( ),   t t H t t t H t t tRV H RV RV RV RV RV−
+ + + + + += + + + ≡" ,        

where 1,  5,  10,  15,  and 20H = . H is the prediction horizon in days, in the 

empirical analysis, as one day, weekly, bi-weekly, tri-weekly, and monthly. In addition, 

we will follow Forsberg et al. (2007), using RV and its standard deviation and log 

form to predict volatility. 

     The HAR-RV models have been introduced by Corsi (2004), and they can 

capture the long memory property of the realized variance. The model is defined as  
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   , 1 0 1, 5, 20, , 1t t D t t W t t M t t t tRV X X Xα α α α ε+ − − − += + + + + ,           (16) 

in which , ,  , and X RV BPV C CJ= . Similarly, the HAR-RRV model is as follows 

   , 1 0 1, 5, 20, , 1t t D t t W t t M t t t tRRV X X Xα α α α ε+ − − − += + + + + ,           (17) 

where , ,  , and X RRV RBV C CJ= . Andersen et al. (2007) defined the HAR-RV-CJ 

model, which explores the separation of tRV  into the continuous part tC  and jump 

part tJ . This separation was suggested by Barndorff-Nielsen et al. (2004). The 

HAR-RV-CJ model and the HAR-RRV-CJ are shown below 

   1, 5, 20,

1, 5, 20,

, 0

,                 
t t t t t t

t t t t t t

t t H CD CW CM

JD JW JM t t H

RV C C C

J J J

α α α α

α α α ε
− − −

− − −

+

+

= + + +

+ + + +
,           (18) 

   1, 5, 20,

1, 5, 20,

, 0

,                 
t t t t t t

t t t t t t

t t H CD CW CM

JD JW JM t t H

RRV C C C C

J J J

α α α α

α α α ε
− − −

− − −

+

+

= + + +

+ + + +
.           (19) 

Besides, following Forsberg and Ghysels (2007), we will consider the HAR-RV 1
2 -X 1

2  

(HAR-RRV 1
2 -X 1

2 ) model, and the HAR- ln RV- ln X (HAR- ln RRV- ln X) model,  

with ( ), ( ),  , and X RV RRV BPV RBV C CJ= . The models are as follows, 

   1 1 1 1 1
2 2 2 2 2

20 ,, 1 , 1 0 1, 5, , 1( )
t tt t t t D t t W t t M t tRV RRV X X Xα α α α ε
−+ + − − += + + + + ,     (20) 

   , ,

0 1, 5, 20, ,

ln (ln )
             ln ln ln

t t H t t H

D t t W t t M t t t t H

RV RRV
X X Xα α α α ε

+ +

− − − += + + + +
, (21) 

   
1 1 1 1 1

2 2 2 2 2

20 ,

1 1 1
2 2 2

20 ,

, 1 , 1 0 1, 5,

1, 5, , 1

( )

                        
t t

t t

t t t t CD t t CW t t CM

JD t t JW t t JM t t

RV RRV C C C

J J J

α α α α

α α α ε
−

−

+ + − −

− − +

= + + +

+ + + +
,         (22) 

            
, ,

0 1, 5, 20,

1, 5, 20, ,

ln (ln )
             ln ln ln
             ln ln ln

t t H t t H

CD t t CW t t CM t t

JD t t JW t t JM t t t t H

RV RRV
C C C

J J J
α α α α
α α α ε

+ +

− − −

− − − +

= + + +

+ + + +

,    (23) 

where ( ), 1 2

1 2 1 1 2 1 2 1 2...
t t H t t t HX H X X X
+ + +

−
+= + + + and ( )1

, 1ln ln ... lnt t H t t HX H X X−
+ + += + + . 

   The differences between MIDAS and HAR regressions models are the lagged 

regressors and their weights. The MIDAS regression is introduced by Ghysels et al. 
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(2002, 2005). MIDAS regressions can run parsimoniously parameterized regressors of 

the data observed at different frequencies. Ghysels et al. (2006) used the MIDAS 

regressions to predict volatility. In my present chapter, I followed their method. The 

MIDAS-RV and MIDAS-RRV models can be written as 

   max

, 1 2 1,0
( , , )k

t t H H H t k t k t Hk
RV b k Xμ φ θ θ ε+ − − − +=

= + +∑ ,            (24) 

   max

, 1 2 1,0
( , , )k

t t H H H t k t k t Hk
RRV b k Xμ φ θ θ ε+ − − − +=

= + +∑ ,           (25) 

where 
max

max 1 2
1 2

max 1 21

( ; , ) ( ; , )  
( ; , )k

k

f k kb k
f k k

θ θθ θ
θ θ

=

=
∑

, ( ) 21
11

1 2
1 2

1
( ; , )

( , )
x x

f x
θθ

θ θ
β θ θ

−− −
= , and 

( ) ( )
( )
1 2

1 2
1 1

 
 ( , )

θ θ
β θ θ

θ θ
Γ Γ

=
Γ +

, with ( ),  ( ),  , and X RV RRV BPV RBV C CJ= . For all the 

MIDAS regressions, we use max 50k = 3, and we fix 1θ =14. As noted by Forsberg et al. 

(2007), we will consider the MIDAS-RV 1
2 -X 1

2 model, and the MIDAS- ln RV- ln X  

model, with ,  ,  , and X RV BPV C CJ= . The models are as follows, 

   1 1max2 2

1,, 1 20
( , , )

t k t k

k
t t H H H t Hk

RV b k Xμ φ θ θ ε
− − −+ +=

= + +∑ ,              (26) 

   max

, 1 2 1,0
ln( ) ( , , ) ln( )k

t t H H H t k t k t Hk
RV b k Xμ φ θ θ ε+ − − − +=

= + +∑ ;       (27) 

and under the MIDAS-RRV 1
2 -X 1

2  and MIDAS- ln RRV- ln X, the ,t t HRV +  is replaced 

by ,t t HRRV + , and the ,t t HBPV +  is replaced by ,t t HRBV +  in the equations (26), (27). 

 

2.3 Conditional models 

We will show whether the jump will make the structural breaks in conditional 

variance process or not. The structural change is modeled by allowing the dynamics to 

be different, if the bipower jump test indicates a jump at time t . The conditional 

                                                 
3 Ghysels (2006) showed that using longer lags ( . .i e , 50k > ) resulted in little effect over the results. 
4 This will give us declining weights in the lag polynominal. 
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model is given by  

   , 0 0 1, 5,

20, ,

( ) ( ) ( )

               ( )

J J J
t t H t D D t t t W W t t t

J
M M t t t t t H

RV D D X D X

D X

α α α α α α

α α ε
+ − −

− +

= + + + + +

+ + +
,    (28) 

where tD  is the indicated variable, in which 1tD = , if the bipower jump test 

indicates a jump at time t . , ,  and X RV BPV C= . We employ the similar approach 

for its standard deviation and log form regressions. In the realized range-based 

variance, the RV replaces the RRV , and the BPV is replaced by RBV. We will test 

the null 0 0: 0J J J J
D W MH α α α α= = = = , using the Chow Test. If the null 0H  is rejected, 

it represents that the jump will result in the structural breaks. 

 

2.4 Evaluation measures 

Patton (2006) showed that the mean square error (MSE) loss function is robust with 

regards to the volatility proxy used. In this chapter, we will use the MSE as a 

comparing criterion. In the realized return-based volatility, let ,t t HRV +  denote the true 

value of the RV  for the H  days, and let m ,t t HRV +  denote the predicted value of the 

dependent variable. In the realized range-based volatility, RV  is replaced by RRV . 

Then the MSE is given by 

   m1 2
,,1

( )N
i i Hi i Hi

MSE N RV RV−
++=

= −∑ ,                         

where N  is the number of forecasts. As denoted by Forsberg and Ghysels (2007), in 

order to be able to compare the MSE from the regressions, we undo the 

transformation, . .i e , the MSE of the RV  in standard deviation and log form are 

respectively given by 

   m 1
21 2 2
,,1

( ( ) )N
i i Hi i Hi

MSE N RV RV−
++=

= −∑ ,                       

           m1 2
,,1

( exp(ln ))N
i i Hi i Hi

MSE N RV RV−
++=

= −∑ .                    
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Using these measures, we can compare the models with different transformations of 

the dependent variable.  

     Moreover, we will compare both the HAR and MIDAS models. Because the 

dependent variables are not identical, we will compare their relative decreasing ratio 

of MSE. 

 

3 Data and empirical results 

3.1 Data descriptions 

This study employs 5-minute intra-day data of the S&P 500 index securities. The 

intraday data are obtained from Tick Data Inc., covering the period from January 1, 

1995 to March 31, 2005, and consisting of 2535 days with 78 intra-day 5-minute 

observations. Table 1 shows that the descriptive statistics of the data. Panel A 

represents the descriptive statistics of the realized return-based variation. Panel B 

represents the descriptive statistics of the realized range-based variation. 10LB  

reports the Liung-Box test statistics for up to the tenth order serial correlation. tRV  

denotes the realized variance, tRRV  is the realized range-based variance; tC is the 

continuous part, and tJ  is the jump part of tRV  (or tRRV ) as separated by the 

bipower jump test of Barndorff-Nielsen and Shephard (2004a). For the bipower jump 

test, a significance level 0.999α =  is used, and the critical value of 10LB is 18.3070. 

 ( )t tBPV RBV  denotes the realized bipower (realized range bipower) variation. 

     Table 1 shows that the realized range-based variation is a more efficient 

volatility estimator than the realized return-based variation because the standard 

deviation of tRRV  is smaller than the standard deviation of tRV . But note that the 

means of the realized range-based variations are smaller than the realized variations, 

. .i e , using the realized range-based variations to estimate the latent volatility will 

induce a downward bias. This is because the price path is not observed continuously. 
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The observed minimum and maximum price over- and underestimates the true 

minimum and maximum, respectively. Studying the LB  statistics, the tRV  ( tRRV ) 

exhibits the highest degree of serial correlation for all the transformations, which 

denote that these volatility measures have higher persistence. 

 

3.2 In-sample empirical results 

In Table 2, we examine the in-sample fit for the HAR regressions of the realized 

variance (HAR-RV) and the realized range-based variance (HAR-RRV), using the 

S&P 500 cash index data set. Panel B and C denote the standard deviation and log 

transformation of the variances respectively. We focus on five different prediction 

horizons, one day, one, two, three and four weeks, corresponding to ,t t HRV +  and 

,t t HRRV +  for 1,  5,  10,  15,  and 20H =  respectively. For both the HAR-RV and the 

HAR-RRV regressions, comparing across prediction horizons, the MSE is always the 

lowest when the horizon is two weeks, thus indicating that the MSE for the two weeks 

prediction horizon is more precise than the other horizons. Furthermore, the relative 

decreasing ratios of the mean square errors of HAR-RRV regressions are always 

larger than those of the HAR-RV regressions. That is to say, using the realized 

range-based volatility to predict the latent volatility proxy is more precise than the 

realized volatility. 

     In Table 3, we examine the in-sample fit for the MIDAS regressions of the 

realized variance (MIDAS-RV) and the realized range-based variance (MIDAS-RRV), 

using the S&P 500 cash index data set. We can obtain similar results as the above ones. 

For both the MIDAS-RV and the MIDAS-RRV regressions, when we predict 

volatility for two or three weeks horizons, we can get more accurate predictions. The 

relative decreasing ratios of the mean square errors of MIDAS-RRV regressions are 
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always larger than those of the MIDAS-RV regressions, . .i e , using the realized 

range-based volatility to predict the latent volatility is more precise than the realized 

volatility. 

 

3.3 Conditional HAR models 

If there is a jump at time t , the jump would imply a different dynamic of the 

continuous part of the price process. Table 4 reports the result of the Chow test of the 

corresponding F  statistics and P values− . The realized range-based regressions 

are significant at one day and one week horizons, . .i e , the price process is not 

invariant to jumps at short-run volatility forecasting, but the realized return-based 

regressions are almost invariant to jumps. The results are similar when we model the 

realized return and range-based variances in the standard deviation and the log form, 

as reported in Table 4. 

Besides, by looking at the results in Table 5, there are similar results as the 

above ones. For both the conditional HAR-RV and the conditional HAR-RRV 

regressions, when we predict volatility for two or three weeks horizons, we can get 

more accurate predictions. In addition, the relative decreasing ratios of the mean 

square errors of HAR-RRV regressions are almost larger than those of the HAR-RV 

regressions, . .i e , using the realized range-based volatility of the conditional HAR 

regressions to predict the latent volatility, which is more precise than the realized 

volatility. 

 

3.4 Out-of-sample empirical results 

Table 6 and Table 7 report the out-of-sample results both for the HAR and MIDAS 

regressions of the realized volatility and the realized range-based volatility. We split 

the data into two parts: a sample part to estimate these two models and an 
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out-of-sample part for forecasting. In this study, we explore the rolling window 

analysis to predict the out-of-sample forecasting. The rolling window’s width is 2400 

observations and the windows are rolled through the sample once for at a time; there 

will be 135 rolling estimates for each parameter. Similarly, there will be 131 (one 

week), 126 (two weeks), 121 (three weeks), and 116 (four weeks) rolling estimates for 

each parameter respectively. Hence, the first in-sample period covers January 1, 1995 

to September 16, 2004, a total of 2400 days. For both the HAR and the MIDAS 

regressions, the mean square errors of the RRV are almost smaller than the RV 

regressions, and the results are the same as the above. 

 

4. Conclusions 

In this chapter, we employ the mixed data sampling regression and the heterogeneous 

autoregressive regression that are able to reproduce the memory persistence observed 

in the data, and easy to estimate; and the realized volatility and the realized 

range-based volatility measures have higher persistence. Using the MIDAS models 

and HAR models to predict volatility with the dependent variables, which are the 

realized volatility and the realized range-based volatility, we expect to find the most 

accurate way for forecasting volatility. From the empirical results, the realized 

range-based variance is more efficient; in the in-sample forecasting, the relative 

decreasing ratio of MSE of HAR-RRV (MIDAS-RRV) regressions are almost larger 

than that of HAR-RV (MIDAS-RV); and in the out-of sample forecasting, the MSE of 

HAR-RRV and MIDAS-RRV regressions are small. The regressors consisting of the 

continuous sample path and jump variability measures (CJ) in the HAR and MIDAS 

regressions predict the future realized range volatilities, and such dominates almost in 

all mean square error (MSE) terms. Furthermore, the realized range-based regressions 

are significant for short-run volatility forecasting, but the realized return-based 
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regressions are almost invariant to jumps. Hence, for our empirical results, using the 

HAR and MIDAS regressions to predict latent volatility, under different variations, 

and the realized range-based variance is a good volatility proxy. 
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Table 2.1  Descriptive statistics of S&P 500 1995/01/01 ~ 2005/03/31 
Panel A Realized return-based

 Mean St. Dev Skew Kurt Min Max 10LB  

tRV  0.8792  1.2114 9.5654 197.2392 0.0277 32.3951  4199.6178  

tC  0.8035  0.9845 4.5023 35.4207 0.0277 12.2312  6848.0977  

tJ  0.0757  0.5616 34.7844 1497.8044 0.0000 24.8401  4.3412  

tBPV  0.7463  0.9574 4.9252 41.7276 0.0281 12.7705  6856.5760  

1
2

tRV  0.8336  0.4295 2.0464 13.1757 0.1665 5.6917  10051.2788  
1

2
tC  0.7980  0.4084 1.6319 7.8198 0.1665 3.4973  10702.3322  
1

2
tJ  0.0931  0.2589 5.3464 62.9823 0.0000 4.9840  28.8587  

1
2

tBPV  0.7654  0.4008 1.7462 8.6065 0.1678 3.5736  10980.4914  

ln tRV  -0.5945  0.9596 -0.0090 3.0608 -3.5861 3.4780  12603.5280  

ln tC  -0.6873  0.9765 -0.0575 2.9382 -3.5861 2.5040  12677.0609  

ln( 1)tJ +  0.0489  0.1675 6.7823 79.1892 0.0000 3.2519  59.7342  

ln tBPV  -0.7779  0.9883 -0.0251 2.9318 -3.5703 2.5471  13156.5850  

Panel B Realized range-based
 Mean St. Dev Skew Kurt Min Max 10LB  

tRRV  0.7589  1.0791 14.6190 422.6160 0.0365 35.2861  3476.9151  

tC  0.6740  0.8816 8.7098 167.0704 0.0365 22.5290  5505.4818  

tJ  0.0849  0.3104 28.1328 1104.4405 0.0000 12.7571  58.2870  

tRBV  0.6477  0.8513 9.2516 188.7055 0.0374 22.5290  5375.3518  

1
2

tRRV  0.7785  0.3911 2.1817 17.5788 0.1911 5.9402  11308.8325  
1

2
tC  0.7326  0.3706 1.8761 11.7264 0.1911 4.7465  12130.6048  
1

2
tJ  0.1759  0.2323 2.6193 23.8600 0.0000 3.5717  300.0182  

1
2

tRBV  0.7186  0.3623 1.9040 12.2177 0.1933 4.7465  12177.7777  

ln tRRV  -0.7210  0.9379 0.0094 2.8980 -3.3103 3.5635  14373.9498  

ln tC  -0.8478  0.9473 0.0517 2.7497 -3.3103 3.1148  14842.8362  

ln( 1)tJ +  0.0686  0.1348 5.7459 69.4079 0.0000 2.6216  335.6110  

ln tRBV  -0.8842  0.9429 0.0535 2.7622 -3.2871 3.1148  14924.9842  

Note: The table shows that the S&P 500 cash index securities cover the period from January 1, 1995 to 
March 31, 2005, consisting of 2535 days with 78 intra-day 5-minute observations. Panel A represents the 
descriptive statistics of the realized return-based variations. Panel B represents the descriptive statistics of 
the realized range-based variations. 10LB  reports the Liung-Box test statistic for up to the tenth order 

serial correlation. tRV  denotes the realized variance, tRRV  is the realized range-based variance; tC is 
the continuous part, and tJ  is the jump part of tRV  (or tRRV ) as separated by the bipower jump test of 
Barndorff-Nielsen and Shephard (2004a). The bipower jump tests a significant level at 0.999α = ; and the 

critical value of 10LB is 18.3070. ( )t tBVP RBV  denotes the realized bipower (realized range bipower) 
variation. In Panel A, the first part describes the tRV , the next describes the square root transformation, 
and the last describes the log transformations of the variables. Panel B replaces tRRV  to tRV . 
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Table 2.2  In-sample results S&P 500 1995/01/01 ~ 2005/03/31: HAR 
Panel A HAR-RV HAR-RRV 
Horizon RV BPV C CJ RRV RBV C CJ 
MSE      
1 day 0.9258  0.8394  0.8429 0.8389 0.7902 0.7545 0.7478  0.7140  

 (0.2358) (0.3071) (0.3042) (0.3075) (0.2677) (0.3008) (0.3070) (0.3383) 

1 week 0.4256  0.4178  0.4091 0.4047 0.3198 0.3167 0.3151  0.3077  

 (0.6487) (0.6551) (0.6623) (0.6659) (0.7036) (0.7065) (0.7080) (0.7149) 

2 weeks 0.2930  0.2684  0.2736 0.2681 0.2033 0.1897 0.1895  0.1861  

 (0.7581) (0.7784) (0.7741) (0.7787) (0.8116) (0.8242) (0.8244) (0.8275) 

3 weeks 0.3002  0.2831  0.2931 0.2899 0.2032 0.1982 0.1979  0.1945  

 (0.7522) (0.7663) (0.7580) (0.7607) (0.8117) (0.8163) (0.8166) (0.8198) 

4 weeks 0.3155  0.3028  0.3014 0.2855 0.2114 0.2043 0.2022  0.1997  

 (0.7396) (0.7500) (0.7512) (0.7643) (0.8041) (0.8107) (0.8126) (0.8149) 

Panel B 1
2HAR-RV 1

2HAR-RRV  
Horizon 1

2RV 1
2BPV  1

2C 1
2(CJ) 1

2RRV 1
2RBV 1

2C  1
2(CJ)  

MSE      
1 day 0.8964  0.8432  0.8503 0.8495 0.7560 0.7338 0.7295  0.7192  

 (0.2600) (0.3039) (0.2981) (0.2987) (0.2994) (0.3200) (0.3240) (0.3335) 

1 week 0.4059  0.4026  0.3980 0.3960 0.3041 0.3036 0.3031  0.3004  

 (0.6649) (0.6677) (0.6715) (0.6731) (0.7182) (0.7187) (0.7191) (0.7216) 

2 weeks 0.2878  0.2655  0.2678 0.2639 0.2022 0.1903 0.1900  0.1885  

 (0.7624) (0.7808) (0.7789) (0.7822) (0.8126) (0.8236) (0.8239) (0.8253) 

3 weeks 0.2944  0.2810  0.2896 0.2869 0.1998 0.1972 0.1960  0.1945  

 (0.7570) (0.7680) (0.7609) (0.7632) (0.8148) (0.8173) (0.8184) (0.8198) 

4 weeks 0.3121  0.2990  0.2975 0.2841 0.2091 0.2023 0.2006  0.1952  

 (0.7424) (0.7532) (0.7544) (0.7655) (0.8062) (0.8125) (0.8141) (0.8191) 

Panel C HAR- ln RV HAR- ln RRV  
Horizon ln RV ln BPV  lnC ln( )CJ ln RRV ln RBV lnC  ln( )CJ  
MSE      
1 day 0.9112  0.8797  0.8898 0.8887 0.7507 0.7364 0.7351  0.7302  

 (0.2478) (0.2738) (0.2655) (0.2664) (0.3043) (0.3176) (0.3188) (0.3233) 

1 week 0.4068  0.3981  0.3998 0.3952 0.3023 0.2998 0.3000  0.2958  

 (0.6642) (0.6714) (0.6700) (0.6738) (0.7199) (0.7222) (0.7220) (0.7259) 

2 weeks 0.3040  0.2893  0.2875 0.2818 0.2129 0.2035 0.2029  0.2040  

 (0.7491) (0.7612) (0.7627) (0.7674) (0.8027) (0.8114) (0.8120) (0.8110) 

3 weeks 0.3026  0.2928  0.2998 0.2949 0.2034 0.2020 0.2005  0.1983  

 (0.7502) (0.7583) (0.7525) (0.7566) (0.8115) (0.8128) (0.8142) (0.8162) 

4 weeks 0.3222  0.3118  0.3080 0.2866 0.2168 0.2111 0.2091  0.2084  

 (0.7340) (0.7426) (0.7457) (0.7634) (0.7991) (0.8044) (0.8062) (0.8069) 

Note: The table represents MSE of the equations (17) – (24) for one day, one week through four weeks in-sample 
predictions of the HAR regressions of RV and RRV of S&P 500 cash index from 1995/01/01 to 2005/03/31. The 
different columns represent the use of different regressors. RV  denotes the realized variance, RRV  denotes the 
realized range-based variance,  ( )t tBVP RBV  denotes the realized bipower (realized range bipower) variation, C  
denotes the continuous part of RV  ( RRV ) as determined by the bipower test. ( )CJ  denotes the continuous part 

and the square root of the jump part that are used as separate regressors. Panel B is the model of the standard 
deviation. Panel C is the model of the log form. In the bipower test to separate RV  ( RRV ) into C  and J , the 
significant level 0.999α =  was used. On the left side, the dependent variable is the RV  for all horizons; 
and on the right side, the dependent variable is the RRV . The related decreasing ratios of MSE are in parenthesis. 
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Table 2.3  In-sample results S&P 500 1995/01/01 ~ 2005/03/31: MIDAS 
Panel A MIDAS-RV MIDAS-RRV 
Horizon RV BPV C CJ RRV RBV C CJ 
MSE      
1 day 0.9306  0.8463  0.8491 0.8449 0.7945 0.7593 0.7530  0.7197  

 (0.2318) (0.3014) (0.2991) (0.3025) (0.2637) (0.2964) (0.3022) (0.3331) 

1 week 0.4248  0.4104  0.4026 0.4020 0.3207 0.3157 0.3141  0.3120  

 (0.6493) (0.6612) (0.6677) (0.6682) (0.7028) (0.7074) (0.7089) (0.7109) 

2 weeks 0.2832  0.2611  0.2635 0.2583 0.1995 0.1883 0.1874  0.1849  

 (0.7662) (0.7845) (0.7825) (0.7868) (0.8151) (0.8255) (0.8263) (0.8287) 

3 weeks 0.2905  0.2752  0.2837 0.2836 0.1994 0.1958 0.1950  0.1947  

 (0.7602) (0.7728) (0.7658) (0.7659) (0.8152) (0.8186) (0.8193) (0.8196) 

4 weeks 0.3075  0.2932  0.2929 0.2925 0.2053 0.1976 0.1958  0.1956  

 (0.7462) (0.7580) (0.7582) (0.7585) (0.8097) (0.8169) (0.8186) (0.8187) 

Panel B 1
2MIDAS-RV 1

2MIDAS-RRV  
Horizon 1

2RV 1
2BPV  1

2C 1
2(CJ) 1

2RRV 1
2RBV 1

2C  1
2(CJ)  

MSE      
1 day 0.9007  0.8485  0.8545 0.8536 0.7599 0.7382 0.7342  0.7258  

 (0.2565) (0.2996) (0.2946) (0.2954) (0.2958) (0.3159) (0.3196) (0.3274) 

1 week 0.4035  0.3970  0.3933 0.3931 0.3030 0.3015 0.3012  0.3009  

 (0.6669) (0.6723) (0.6753) (0.6755) (0.7192) (0.7206) (0.7209) (0.7212) 

2 weeks 0.2806  0.2600  0.2604 0.2555 0.1977 0.1884 0.1877  0.1869  

 (0.7684) (0.7854) (0.7850) (0.7891) (0.8168) (0.8254) (0.8261) (0.8268) 

3 weeks 0.2902  0.2773  0.2854 0.2855 0.1977 0.1954 0.1938  0.1902  

 (0.7604) (0.7711) (0.7644) (0.7643) (0.8168) (0.8189) (0.8204) (0.8237) 

4 weeks 0.3057  0.2883  0.2890 0.2771 0.2044 0.1976 0.1965  0.1949  

 (0.7476) (0.7620) (0.7614) (0.7713) (0.8106) (0.8169) (0.8179) (0.8194) 

Panel C MIDAS- ln RV MIDAS- ln RRV  
Horizon ln RV ln BPV  lnC ln( )CJ ln RRV ln RBV lnC  ln( )CJ  
MSE      
1 day 0.9130  0.8814  0.8907 0.8893 0.7539 0.7399 0.7387  0.7351  

 (0.2463) (0.2724) (0.2647) (0.2659) (0.3014) (0.3143) (0.3154) (0.3188) 

1 week 0.4039  0.3935  0.3958 0.3898 0.3010 0.2982 0.2984  0.2958  

 (0.6666) (0.6752) (0.6733) (0.6782) (0.7211) (0.7237) (0.7235) (0.7259) 

2 weeks 0.3048  0.2900  0.2887 0.2835 0.2118 0.2034 0.2029  0.1986  

 (0.7484) (0.7606) (0.7617) (0.7660) (0.8037) (0.8115) (0.8120) (0.8160) 

3 weeks 0.3016  0.2932  0.3014 0.3023 0.2041 0.2035 0.2025  0.1997  

 (0.7510) (0.7580) (0.7512) (0.7505) (0.8109) (0.8114) (0.8123) (0.8149) 

4 weeks 0.3288  0.3189  0.3152 0.2804 0.2245 0.2179 0.2164  0.1953  

 (0.7286) (0.7368) (0.7398) (0.7685) (0.7920) (0.7981) (0.7995) (0.8190) 

Note: The table represents MSE of the equations (17) – (24) for one day, one week through four weeks in-sample 
predictions of the MIDAS regressions of RV and RRV of S&P 500 cash index from 1995/01/01 to 2005/03/31. The 
different columns represent the use of different regressors. The related decreasing ratios of MSE are in parenthesis. 
See Table 2 for further details. 
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Table 2.4  In-sample results S&P 500 1995/01/01 ~ 2005/03/31 
Chow test for conditional HAR regressions

Panel A HAR-RV HAR-RRV
Horizon RV BPV C RRV RBV C 

 and F stat p value− −   
1 day 52.6680  1.7142 1.0365 59.9671 32.2231 30.0457  

 (0.0000)  (0.1440 ) (0.3868 ) (0.0000 ) (0.0000 ) (0.0000 ) 

1 week 1.8256  2.3656 2.1403 14.3689 15.5310 15.2141  

 (0.1226 ) (0.0520 ) (0.0747 ) (0.0000 ) (0.0000 ) (0.0000 ) 

2 weeks 2.7435  0.5548 0.5413 3.6889 1.8788 1.6905  

 (0.0292 ) (0.6957 ) (0.7055 ) (0.0062 ) (0.1148 ) (0.1528 ) 

3 weeks 0.7533  0.2970 0.3210 1.0382 0.6336 0.4908  

 (0.5572 ) (0.8796 ) (0.8636 ) (0.3893 ) (0.6393 ) (0.7425 ) 

4 weeks 0.6198  0.1298 0.1385 1.7564 0.9276 0.8743  

 (0.6493 ) (0.9713 ) (0.9677 ) (0.1423 ) (0.4505 ) (0.4817 ) 

Panel B 1
2HAR-RV 1

2HAR-RRV
Horizon 1

2RV  1
2BPV 1

2C 1
2RRV 1

2RBV 1
2C  

 and F stat p value− −   
1 day 26.6570  1.3136 0.5917 32.6609 10.9828 8.2993  

 (0.0000 ) (0.2625 ) (0.6687 ) (0.0000 ) (0.0000 ) (0.0000 ) 

1 week 1.6470  0.9922 0.9285 7.2790 6.3360 6.1991  

 (0.1612 ) (0.4113 ) (0.4470 ) (0.0000 ) (0.0001 ) (0.0001 ) 

2 weeks 2.4738  0.4077 0.3580 4.1786 1.7955 1.3640  

 (0.0451 ) (0.8031 ) (0.8384 ) (0.0027 ) (0.1303 ) (0.2470 ) 

3 weeks 0.9541  0.2664 0.2282 0.6741 0.0904 0.0475  

 (0.4345 ) (0.8992 ) (0.9223 ) (0.6109 ) (0.9854 ) (0.9957 ) 

4 weeks 0.7671  0.1276 0.1057 1.9653 0.9361 0.8101  

 (0.5487 ) (0.9722 ) (0.9803 ) (0.1043 ) (0.4457 ) (0.5211 ) 

Panel C HAR- ln RV HAR- ln RRV
Horizon ln RV  ln BPV lnC ln RRV ln RBV lnC  

 and F stat p value− −   
1 day 16.4395  1.1144 0.9940 15.3766 2.8791 1.7581  

 (0.0000 ) (0.3479 ) (0.4095 ) (0.0000 ) (0.0215 ) (0.1345 ) 

1 week 1.5409  0.0340 0.0445 4.5171 2.3127 2.0388  

 (0.1891 ) (0.9978 ) (0.9963 ) (0.0014 ) (0.0567 ) (0.0878 ) 

2 weeks 2.0553  0.4506 0.4645 3.6827 1.4817 0.9904  

 (0.0873 ) (0.7719 ) (0.7618 ) (0.0062 ) (0.2083 ) (0.4134 ) 

3 weeks 1.3271  0.2565 0.1589 1.5545 0.6619 0.5296  

 (0.2622 ) (0.9053 ) (0.9587 ) (0.1891 ) (0.6194 ) (0.7142 ) 

4 weeks 0.6590  0.0862 0.0473 1.6982 0.8170 0.6134  

 (0.6217 ) (0.9866 ) (0.9957 ) (0.1551 ) (0.5168 ) (0.6538 ) 

Note: The table is the Chow test of the F -statistics and p value−  for the test of the 

hypothesis that the jump dummies are zero for one day, one week through four weeks 

in-sample predictions of the conditional HAR regression for RV and RRV of S&P 500 
cash index from 1995/01/01 to 2005/03/31. The p value− are in parenthesis. 

See Table 2 for further details. 
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Table 2.5  In-sample results S&P 500 1995/01/01 ~ 2005/03/31 
Using conditional HAR regressions

Panel A HAR-RV HAR-RRV
Horizon RV BPV C RRV RBV C 
MSE   
1 day 0.8540  0.8371 0.8415 0.7902 0.7545 0.7478  

 (0.2950) (0.3090) (0.3053) (0.2677) (0.3008) (0.3070) 

1 week 0.4194  0.4100 0.4021 0.3198 0.3167 0.3151  

 (0.6538) (0.6615) (0.6681) (0.7036) (0.7065) (0.7080) 

2 weeks 0.2803  0.2660 0.2712 0.2033 0.1897 0.1895  

 (0.7686) (0.7804) (0.7761) (0.8116) (0.8242) (0.8244) 

3 weeks 0.2946  0.2810 0.2908 0.2032 0.1982 0.1979  

 (0.7568) (0.7680) (0.7599) (0.8117) (0.8163) (0.8166) 

4 weeks 0.3089  0.3015 0.2999 0.2114 0.2043 0.2022  

 (0.7450) (0.7511) (0.7524) (0.8041) (0.8107) (0.8126) 

Panel B 1
2HAR-RV 1

2HAR-RRV
Horizon 1

2RV  1
2BPV 1

2C 1
2RRV 1

2RBV 1
2C  

MSE   
1 day 0.8964  0.8432 0.8503 0.7560 0.7338 0.7295  

 (0.2600) (0.3039) (0.2981) (0.2994) (0.3200) (0.3240) 

1 week 0.4059  0.4026 0.3980 0.3041 0.3036 0.3031  

 (0.6649) (0.6677) (0.6715) (0.7182) (0.7187) (0.7191) 

2 weeks 0.2878  0.2655 0.2678 0.2022 0.1903 0.1900  

 (0.7624) (0.7808) (0.7789) (0.8126) (0.8236) (0.8239) 

3 weeks 0.2944  0.2810 0.2896 0.1998 0.1972 0.1960  

 (0.7570) (0.7680) (0.7609) (0.8148) (0.8173) (0.8184) 

4 weeks 0.3121  0.2990 0.2975 0.2091 0.2023 0.2006  

 (0.7424) (0.7532) (0.7544) (0.8062) (0.8125) (0.8141) 

Panel C HAR- ln RV HAR- ln RRV
Horizon ln RV  ln BPV lnC ln RRV ln RBV lnC  
MSE   
1 day 0.9112  0.8797 0.8898 0.7507 0.7364 0.7351  

 (0.2478) (0.2738) (0.2655) (0.3043) (0.3176) (0.3188) 

1 week 0.4068  0.3981 0.3998 0.3023 0.2998 0.3000  

 (0.6642) (0.6714) (0.6700) (0.7199) (0.7222) (0.7220) 

2 weeks 0.3040  0.2893 0.2875 0.2129 0.2035 0.2029  

 (0.7491) (0.7612) (0.7627) (0.8027) (0.8114) (0.8120) 

3 weeks 0.3026  0.2928 0.2998 0.2034 0.2020 0.2005  

 (0.7502) (0.7583) (0.7525) (0.8115) (0.8128) (0.8142) 

4 weeks 0.3222  0.3118 0.3080 0.2168 0.2111 0.2091  

 (0.7340) (0.7426) (0.7457) (0.7991) (0.8044) (0.8062) 

Note: The table represents MSE of the equations (29) for one day, one week 
through four weeks in-sample predictions of the HAR regressions of RV and RRV of 
S&P 500 cash index from 1995/01/01 to 2005/03/31. The related decreasing ratios of  

MSE are in parenthesis. 

See Table 2 for further details. 
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Table 2.6 Out-of-sample forecasts of S&P 500 1995/01/01 ~ 2005/03/31: HAR 
Panel A HAR-RV HAR-RRV 
Horizon RV BPV C CJ RRV RBV C CJ 
MSE      
1 day 0.0295  0.0247  0.0221 0.0217 0.0187 0.0169 0.0167  0.0187  

1 week 0.0246  0.0203  0.0157 0.0162 0.0155 0.0149 0.0147  0.0171  

2 weeks 0.0295  0.0246  0.0203 0.0194 0.0176 0.0169 0.0164  0.0183  

3 weeks 0.0470  0.0374  0.0313 0.0293 0.0275 0.0253 0.0248  0.0304  

4 weeks 0.0502  0.0396  0.0358 0.0321 0.0287 0.0270 0.0263  0.0274  

Panel B 1
2HAR-RV 1

2HAR-RRV  
Horizon 1

2RV 1
2BPV  1

2C 1
2(CJ) 1

2RRV 1
2RBV 1

2C  1
2(CJ)  

MSE      
1 day 0.0214  0.0198  0.0193 0.0193 0.0128 0.0122 0.0122  0.0126  

1 week 0.0103  0.0088  0.0079 0.0083 0.0078 0.0078 0.0078  0.0080  

2 weeks 0.0104  0.0088  0.0078 0.0079 0.0081 0.0084 0.0084  0.0085  

3 weeks 0.0168  0.0124  0.0111 0.0113 0.0120 0.0113 0.0113  0.0123  

4 weeks 0.0167  0.0144  0.0134 0.0132 0.0118 0.0122 0.0122  0.0131  

Panel C HAR- ln RV HAR- ln RRV  
Horizon ln RV ln BPV  lnC ln( )CJ ln RRV ln RBV lnC  ln( )CJ  
MSE      
1 day 0.0210  0.0199  0.0195 0.0195 0.0128 0.0122 0.0122  0.0122  

1 week 0.0083  0.0078  0.0072 0.0074 0.0068 0.0070 0.0071  0.0072  

2 weeks 0.0072  0.0071  0.0065 0.0064 0.0065 0.0071 0.0073  0.0076  

3 weeks 0.0089  0.0081  0.0074 0.0072 0.0077 0.0081 0.0081  0.0088  

4 weeks 0.0097  0.0097  0.0090 0.0090 0.0081 0.0090 0.0092  0.0100  

Note: The table represents MSE, for one day, one week through four weeks in-sample predictions of the HAR 
regressions of RV and RRV, of the out-of-sample forecasts of the S&P 500 cash index from September 16, 2004 to 

March 31, 2005. Data from January 1, 1995 to March 31, 2005 was used to estimate the parameters of the models. 
See Table 2 for further details. 
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Table 2.7  Out-of-sample forecasts of S&P 500 1995/01/01 ~ 2005/03/31: MIDAS 
Panel A MIDAS-RV MIDAS-RRV 
Horizon RV BPV C CJ RRV RBV C CJ 
MSE      
1 day 0.0256  0.0273  0.0325 0.0219 0.0191 0.0217 0.0214  0.0186  

1 week 0.0093  0.0064  0.0083 0.0169 0.0091 0.0091 0.0088  0.0168  

2 weeks 0.0097  0.0051  0.0056 0.0187 0.0078 0.0071 0.0070  0.0193  

3 weeks 0.0254  0.0062  0.0044 0.0298 0.0097 0.0040 0.0040  0.0297  

4 weeks 0.0146  0.0066  0.0049 0.0331 0.0048 0.0039 0.0039  0.0270  

Panel B 1
2MIDAS-RV 1

2MIDAS-RRV  
Horizon 1

2RV 1
2BPV  1

2C 1
2(CJ) 1

2RRV 1
2RBV 1

2C  1
2(CJ)  

MSE      
1 day 0.0215  0.0198  0.0193 0.0193 0.0129 0.0122 0.0123  0.0127  

1 week 0.0106  0.0091  0.0082 0.0082 0.0079 0.0081 0.0081  0.0085  

2 weeks 0.0113  0.0096  0.0087 0.0086 0.0086 0.0090 0.0090  0.0095  

3 weeks 0.0193  0.0137  0.0125 0.0124 0.0136 0.0124 0.0124  0.0131  

4 weeks 0.0183  0.0162  0.0155 0.0150 0.0129 0.0132 0.0132  0.0153  

Panel C MIDAS- ln RV MIDAS- ln RRV  
Horizon ln RV ln BPV  lnC ln( )CJ ln RRV ln RBV lnC  ln( )CJ  
MSE      
1 day 0.0209  0.0199  0.0194 0.0195 0.0128 0.0122 0.0123  0.0122  

1 week 0.0085  0.0080  0.0074 0.0075 0.0070 0.0073 0.0074  0.0076  

2 weeks 0.0078  0.0076  0.0071 0.0069 0.0071 0.0078 0.0080  0.0084  

3 weeks 0.0096  0.0088  0.0082 0.0077 0.0084 0.0089 0.0090  0.0097  

4 weeks 0.0106  0.0103  0.0099 0.0087 0.0089 0.0096 0.0097  0.0106  

Note: The table represents MSE, for one day, one week through four weeks in-sample predictions of the MIDAS 
regressions of RV and RRV, of the out-of-sample forecasts of the S&P 500 cash index from September 16, 2004 to 

March 31, 2005. Data from January 1, 1995 to March 31, 2005 was used to estimate the parameters of the models. 

See Tables 2 for further details. 
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Chapter 3  The Information Content of Implied Volatility  

in the presence of the Continuous Components,  

and the Jump Components of Realized Range 

Volatility 

  

1 Introduction 

Most of the previous studies have documented the information content of the implied 

volatility. They always focus on whether the implied volatility has the additional 

information content of historical volatility; the realized volatility (RV) is always used 

as the historical volatility. Giot and Laurent (2007) considered the information content 

of implied volatility in the continuous and jump components of the realized volatility, 

whose decomposition was suggested by Barndroff-Nielsen and Shephard (2004), 

using the encompassing regressions. Because the realized range-based estimation of 

the integrated variance has been proved to be more efficient, we will use the realized 

range-based volatility to measure the historical volatility. We will employ the 

heterogeneous autoregressive (HAR) regressions by Corsi (2004) and mixed data 

sampling (MIDAS) regressions by Ghysels et al. (2006) as encompassing regressions 

to examine the information content of the continuous and jump components of the 

realized range-based volatility (RRV), and the additional information content of the 

implied volatility as an additional regressor. In addition, this study focuses on the S&P 

500 index, hence, we use the Chicago Board Options Exchange (CBOE) volatility 

index new VIX as the measure of the implied volatility. The new VIX is based on 

S&P 500 index options and adopts the model-free volatility expectation. 

     The results show that the implied volatility and almost all continuous 
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components are statistically significant, while the jump components are almost not 

significant. The implied volatility has a high information content and the continuous 

components of the past realized range-based volatility feature relevant information 

content by the implied volatility. Beside, the jump components do not contribute to 

future valuable information.  

     In addition, except for 1h =  horizon, the implied volatility and the 

out-of-sample volatility have information contents but the implied volatility has more 

powerful explanation abilities than the out-of-sample volatility for the future realized 

range volatility. 

The remainder of this chapter is organized as follows. In section 2, we discuss 

the volatility measure, predict volatility regressions and cover the models we are 

going to use. In section 3, we present the data and the empirical results. Section 4 

concludes the article. 

 

2 The Methodology 

2.1 Construction of volatility measures 

Let the logarithmic price of financial assets at time t  be denoted by ( )p t and follow 

the continuous-time jump diffusion process 

( ) ( ) ( ) ( ) ( ) ( )dp t t dt t dw t t dq tμ σ κ= + + ,                 (1) 

where ( )tμ and ( )tσ are the drift and instantaneous volatility, ( )w t is the standardized 

Brownian motion, ( )q t is a counting process with time-varying intensity ( )tλ , . .i e  

[ ( ) 1] ( )P dq t t dtλ= = , and ( )tκ is the jump size. The quadratic variation process for a 

sequence of partitions is defined by 

    
1

2
1

0
[ ]( ) plim ( ( ) ( ))

n

j j
j

p t p s p s
−

+
=

= −∑ ,                       

where 0 10 ns s s t= < < < =" and 1sup { } 0j j js s+ − → for n →∞ .  
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     When the data is sampled at a higher frequency, M times in a day, we will 

denote the intraday ranges as:  

    { }
( 1), , ,

max
i i

M M
pi m t ss t

s p p
−Δ Δ ≤ ≤

= − ,                          

where , ,pi ms Δ Δ  represents that each range is based on the corresponding m  returns. 

The realized ranged-based variance over day t  is defined as 

                * 2
, ,

12,

1 M
m

t pi m
im

RRV s
λ Δ Δ

=

= ∑ ,                              (2) 

where ( ), , ,   and j
j m W mE s j R m Nλ = < ∞ ∀ ∈ ∈ 5, and W  is the Brownian motion. As 

noted by Christensen and Podolskij (2006a, 2006b), 

 * 2 2

0
12,

1( )
Mt

m P
t i

im

RRV s ds Jσ
λ =

⎯⎯→ + ⋅∑∫ , as M →∞ , 

. .i e , *m
tRRV  is inconsistent. Hence, they modified the intraday high-low statistic to 

make it consistent with the quadratic variation. The realized range-based bipower 

variation with parameter 2( , )r s R+∈  is defined as6: 

   ( )
2

, ,

1
1 1 1

( , ), , , ( 1) , ,
1

r s

r m s m

M
m r s
r s t pi m p i m

i

RBV M s sλ λ

+
−

−
Δ Δ + Δ Δ

=

= ∑ , 

then 2
(1,1), 0

( )
tm m p

t tRBV RBV s dsσ≡ ⎯⎯→∫ , as M →∞ . Hence, the new range based 

estimator, *
2, 2,(1 )m m m

t m t m tRRV RRV RBVλ λ≡ + − , is consistent for quadratic variation, 

. .i e , 2 2

0
1

( )
Mt

m P
t i

i

RRV s ds Jσ
=

⎯⎯→ +∑∫ .   

     Furthermore, using the bivariate distribution of ( ,  )m m
t tRRV RBV  and the delta- 

method, Christensen and Podolskij (2006b) found the jump detection statistic,  

   
4

0

( ) (0,1)
( )

m m
dt t

t

m u

M RRV RBV N
s dsν σ

−
⎯⎯→

∫
,                 

                                                 
5 There is no explicit formula for ,r mλ , but it is computed to any degree of accuracy from simulations. 
6 I maintain some notations used by Christensen and Podolskij (2006b) throughout the chapter. 
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where 2
2, ( 2 )R B RB

m m m m mν λ= Λ +Λ − Λ , 
2

4, 2,
2
2,

m mR
m

m

λ λ
λ
−

Λ = , 
2 2 4
2, 1, 2, 1,

4
1,

2 3m m m mB
m

m

λ λ λ λ
λ

+ −
Λ = , and 

2
3, 1, 2. 1,

2
2, 1,

2 2c c c cRB
c

c c

λ λ λ λ
λ λ
−

Λ = . In addition, they adopted the modified ratio-statistic to 

improve the size properties in finite samples. The modified ratio-statistic is 

   
( )
{ }

*

* 2

1
1

( )

1
(0,1)

max ,

m
t

m
t

m
t

m
t

RBV
RRV d

t
RQQ

tRBVm

M
Z N

ν
+

−
= ⎯⎯→ ,                (3) 

where 4
1,

3

, , ( 1) , , ( 2) , , ( 3) , ,
1

m

M
m M
t pi m p i m p i m p i m

i

RQQ s s s sλ

−

Δ Δ + Δ Δ + Δ Δ + Δ Δ
=

= ∑  and 4

0
( )

t
m p
tRQQ s dsσ⎯⎯→∫ .  

Huang and Tauchen (2005) found that the statistics in equation (3) also had a sensible 

power against other empirically calibrated stochastic volatility jump diffusion models. 

Using equation (3), Andersen, Bollerslev, and Diebold (2007) identified the jump 

variation as, 

   
, 1 , 1, 1 1( )( )

t t t t

m m
t t tJ I Z RRV RBVα + ++ += > Φ − ,                    (4) 

and the continuous component variation was estimated as the residual,  

   
, 1 , 1, 1 1 1( ) ( )

t t t t

m m
t t t tC I Z RRV I Z RBVα α+ ++ + += ≤ Φ ⋅ + > Φ ⋅ ,         (5) 

where ( )I ⋅  denotes the indicator function, ( )Φ ⋅  is the standard cumulated normal 

distribution ( 1( )α α−Φ = Φ ), and α  is a significant level of the bipower test and we 

will use 0.999α =  throughout the article. From the definitions in equations (4) and 

(5), we ensure that the continuous variation and jump variation sum to the total 

realized variation, . .i e  
, 1 , 1 , 1t t

m
t t t tRRV C J

+ + += + .  

 

2.2 Predicting volatility models 

In this study, we will exploit MIDAS regression model, which was introduced by 

Ghysels et al. (2002, 2006), and HAR regression model, which was suggested by 
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Corsi (2004), to predict volatility from t  to t H+ , where H  is the predicting 

horizon in days. 

     The multi-period realized variances that were constructed by Andersen et al. 

(2007). Similarly, the multi-period realized range-based varinaces were defined as the 

normalized sum of the one-period realized range variances, 

   1
, , 1 , 2 ,( )t t H t t t t t t HRRV H RRV RRV RRV−
+ + + += + + +" ,        

where 1,  5,  10,  15,  and 20H = . H is the prediction horizon in days, in the 

empirical analysis, as one day, weekly, bi-weekly, tri-weekly, and monthly. 

   The HAR-RV models were introduced by Corsi (2004) and they can capture the 

long memory property of the realized variance. Similarly, the HAR-RRV model is 

written as follows 

   , 0 1, 5, 20, , 1t t H D t t W t t M t t t tRRV X X Xα α α α ε+ − − − += + + + + ,     

where ,t t HRRV +  represents the future RRV, using the HAR regressions. 

Andersen et al. (2007) defined the HAR-RV-CJ model, which explores the 

separation of tRV  into the continuous part tC  and jump part tJ . This separation 

was suggested by Barndorff-Nielsen et al. (2004). Following Andersen et al.’s model, 

the HAR-RRV-CJ is shown as below 

   1, 5, 20,

1, 5, 20,

, 0

,                 
t t t t t t

t t t t t t

t t H CD CW CM

JD JW JM t t H

RRV C C C C

J J J

α α α α

α α α ε
− − −

− − −

+

+

= + + +

+ + + +
.            

As noted by Andersen et al. (2001) , the log form probability density of the error term 

is close to the normal density, we will consider the HAR- ln RRV- ln CJ  model in this 

chapter. The models are as follows, 

, 0 1, 5, 20,

1, 5, 20, ,

ln ln ln ln
                  ln ln ln

t t H CD t t CW t t CM t t

JD t t JW t t JM t t t t H

RRV C C C
J J J

α α α α

α α α ε
+ − − −

− − − +

= + + +

+ + + +
,             (6) 

where ( )1
, 1ln ln ... lnt t H t t HX H X X−
+ + += + + . 
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     The differences between MIDAS and HAR regressions models are the lagged 

regressors and their weights. The MIDAS regression was introduced by Ghysels et al. 

(2002, 2005). MIDAS regressions can run parsimoniously parameterized regressors of 

data the observed at different frequencies. Ghysels et al. (2006) used the MIDAS 

regressions to predict volatility and we follow him. The MIDAS-RRV models can be 

written as 

   max

, 1 2 1,0
( , , )k

t t H H H t k t k t Hk
RRV b k Xμ φ θ θ ε+ − − − +=

= + +∑ ,            

where ,t t HRRV +  represents the future RRV, using the MIDAS regressions. 

( ) 21

max

11
max 1 2

1 2 1 2
1 2max 1 21

1( ; , ) ( ; , ) ,  ( ; , )  
( , )( ; , )k

k

x xf k kb k f x
f k k

θθθ θθ θ θ θ
β θ θθ θ

−−

=

−
= =
∑

,  

and ( ) ( )
( )
1 2

1 2
1 1

 
 ( , )

θ θ
β θ θ

θ θ
Γ Γ

=
Γ +

. For all the MIDAS regressions, we use max 50k = 7, and 

we fix 1θ =18. Similarly as the above, we will consider the MIDAS- ln RV- ln CJ  

model, which is written as follows, 

   
max

max

, 1 2 1,0

2 2 1,0

ln( ) ( ,1, ) ln( )

                    ( ,1, ) ln( )

k
t t H H C C t k t kk

k
J J t k t k t Hk

RRV b k C

b k J

μ φ θ

φ θ ε

+ − − −=

− − − +=

= +

+ +

∑
∑

.          (7) 

 

2.3 The models 

We will use the HAR and MIDAS regressions as encompassing regressions to 

examine the information content of the continuous and jump components of the 

realized range volatility and the additional information content of the implied 

volatility as an additional regressor. The models are shown as follows, 

Model 1: Equation (6) and (7). 

 

                                                 
7 Ghysels (2006) showed that using longer lags ( . .i e , 50k > ) has little effect on the results. 
8 This will give us declining weights in the lag polynominal. 
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Model 2: 

  , 0 1, ,ln ln( )t t H IV t t t t HRRV IVα α ε+ − += + + ,                         (8) 

Model 3: 

 , 0 1, 1, 5, 20,

1, 5, 20, ,

ln ln( ) ln ln ln
                  ln ln ln

t t H IV t t CD t t CW t t CM t t

JD t t JW t t JM t t t t H

RRV IV C C C
J J J

α α α α α

α α α ε
+ − − − −

− − − +

= + + + +

+ + + +
,  (9) 

 
max

max

, 1, 1 2 1,0

2 2 1,0

ln ln( ) ( ,1, ) ln( )

                    ( ,1, ) ln( )

k
t t H H IV t t C C t k t kk

k
J J t k t k t Hk

RRV IV b k C

b k J

μ α φ θ

φ θ ε

+ − − − −=

− − − +=

= + +

+ +

∑
∑

.      (10) 

Model 4: 

  , 0 1,

1, 5, 20, ,

ln ln( )
                ln ln ln

t t H IV t t

JD t t JW t t JM t t t t H

RRV IV
J J J

α α

α α α ε
+ −

− − − +

= +

+ + + +
,        (11) 

  
max

, 1,

2 2 1,0

ln ln( )

                   ( ,1, ) ln( )

t t H H IV t t

k
J J t k t k t Hk

RRV IV

b k J

μ α

φ θ ε

+ −

− − − +=

= +

+ +∑
.             (12) 

Model 5: 

  , 0 1,

1, 5, 20, ,

ln ln( )
                ln ln ln

t t H IV t t

CD t t CW t t CM t t t t H

RRV IV
C C C

α α

α α α ε
+ −

− − − +

= +

+ + + +
,      (13) 

  
max

, 1,

1 2 1,0

ln ln( )

                  ( ,1, ) ln( )

t t H H IV t t

k
C C t k t k t Hk

RRV IV

b k C

μ α

φ θ ε

+ −

− − − +=

= +

+ +∑
.             (14) 

 

2.4 Implied volatility and out-of-sample volatility 

Regarding the HAR-RRV-CJ and MIDAS-RRV-CJ9 volatility forecasts, we employ 

the out-of-sample estimation approach to generate the H -day volatility forecasts. We 

explore the rolling window analysis to predict the out-of-sample forecasts. The rolling 

window width is 1236 observations (1995/01/01 ~ 1999/12/31) and the windows are 

rolled through the sample once at a time; there will be 1299 rolling estimates for each 

                                                 
9 Using HAR (MIDAS) regressions, we model RRV with C  (the continuous components) and  

J  (the jump components) regressors. 
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parameter. Similarly, there will be 1295 (one week), 1285 (two weeks), and 1280 (one 

month) rolling estimates for each parameter respectively. 

     Then, we explore the information content of the implied volatility and the 

out-of-sample volatility in the light of the future realized range volatility. The model 

is shown as follows, 

   , 0 1 1, ,ln lnt t H t t t t HRRV IVα α ε+ − += + + ,                       (15) 

            n
,, 0 2 ,ln ln t t Ht t H t t HRRV RRVα α ε++ += + + ,                         (16) 

and         n
,, 0 1 1, 2 ,ln ln ln t t Ht t H t t t t HRRV IV RRVα α α ε++ − += + + + ,          (17) 

where n
1,ln t t HRRV + +  is the out-of-sample estimation of the HAR-RRV-CJ (or 

MIDAS-RRV-CJ) volatility forecast. 

 

3 Data and empirical results 

3.1 Data descriptions 

This study employs 5-minute intra-day data of the S&P 500 index securities. The 

intraday data are obtained from Tick Data Inc., covering the period from January 1, 

1995 to March 31, 2005 and consisting of 2535 days with 78 intra-day 5-minute 

observations. The daily data of the VIX implied volatility index are supplied by the 

CBOE. The time period is from January 1, 1995 to March 31, 2005. 

 

3.2 Empirical results 

Table 1 and Table 2 report the results of encompassing regressions, using the HAR 

and MIDAS regressions respectively. These two encompassing regressions provide 

almost the same results. Besides, in our empirical results, when we use the HAR 

regressions, the adjusted 2R  is larger, . .i e , their regressors have more powerful 
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explanation abilities. 

     Results of Model 1, without the implied volatility, are that the continuous 

components of the past realized range volatility provide major information for the 

future realized range volatility (except for 20h =  horizon, the weekly continuous 

component is not significant), and the jump components are almost not significant 

(except for 1h =  horizon, the daily jump component is significant).  

   In Model 2, the sole regressor of implied volatility is concerned. The 

coefficients of the log implied volatility are statistically significant and almost close to 

1, . .i e , the future realized range-based volatility co-moves almost one-to-one with the 

implied volatility. Because the adjusted 2R s are large, the implied volatility has a 

high information content. 

   In Model 4, the jump components are added to Model 2. There are barely 

increases with the adjusted 2R s and the jump components are almost not significant. 

This means that the implied volatility has a high information content and the jump 

components do not contribute to future valuable information. 

   In Model 5, the continuous components are added to Model 2; the implied 

volatility and almost all continuous components are statistically significant. Since 

there are few increases with the adjusted 2R s, the total explanation powers of the 

encompassing regression are scarcely enhanced. Hence, the implied volatility 

subsumes more information than the continuous components of the past realized 

range volatility. Similarly, different from Model 2, Model 3 includes all our possible 

regressors: implied volatility, the jump/continuous components of the past realized 

range volatility. The implied volatility and almost all continuous components are 

statistically significant, but the jump components are almost not significant and there 

are little increases with the adjusted 2R s. Therefore, the implied volatility has a high 

information content. Moreover, from Model 2 to Model 5 (or 3), the coefficients of 
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the implied volatility ( IVα ) are decreasing and the continuous components are 

statistically significant. This means the past continuous components feature relevant 

information content by the implied volatility. 

     Table 3 reports the information content of the implied volatility and the 

out-of-sample volatility, which are the HAR-RRV-CJ (or MIDAS-RRV-CJ) volatility 

forecast in the light of the future realized range volatility. We split the data into two 

parts: a sample part to estimate these two models and an out-of-sample part for 

forecasting. In this study, we explore the rolling window analysis to predict the 

out-of-sample forecasting. The rolling window’s width is 1236 observations and the 

windows are rolled through the sample once at a time. Hence, the first in-sample 

period covers from January 1, 1995 to December 31, 1999. We find that all 

coefficients are statistically significant for all horizons. Only 1h =  horizon, the 

coefficients of the out-of-sample volatilities are larger than the implied volatilities. 

The smaller adjusted 2R  represents that the regression has noise. Besides, when the 

implied volatility is added to the out-of-sample volatility, there are few increases with 

the adjusted 2R s. The total explanation powers of the encompassing regression are 

scarcely enhanced. Hence, the out-of-sample volatility subsumes more information 

than the implied volatility. For other horizons, the coefficients of the implied 

volatilities are larger than the out-of-sample volatilities and the adjusted 2R s are 

larger. In contrast, the adjusted 2R s of the sole regressor of the implied volatility are 

greater than the sole regressor of the out-of-sample volatility. When the out-of-sample 

volatility is added to the implied volatility, there are few increases with the adjusted 

2R s. The total explanation powers of the encompassing regression are scarcely 

enhanced. Hence, both regressors have information contents but the implied volatility 

has more powerful explanation abilities than the out-of-sample volatility for the future 

realized range volatility. 
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4 Conclusions 

The purpose of this chapter is to examine the information content of the continuous 

and jump components of the realized range-based volatility, and the additional 

information content of the implied volatility as an additional regressor. We use the 

model-free implied volatility, VIX, as the measure of the implied volatility. For our 

empirical results and based on the HAR and MIDAS regressions as an encompassing 

regression analysis, we find that the implied volatility has a high information content 

and the past continuous components feature relevant information content by the 

implied volatility. Besides, the jump components do not contribute to future valuable 

information. Furthermore, the implied volatility and the out-of-sample volatility have 

information contents for the future realized volatility, but the implied volatility has 

more powerful explanation abilities than the out-of-sample volatility for the future 

realized range volatility (except for 1h =  horizon). 
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Table 3.1 Encompassing Regression: HAR 
S&P 500 index 1995/01/01 ~ 2005/03/31 

Model 1: , 0 1, 5, 20, 1, 5, 20, ,ln ln ln ln ln ln lnt t H CD t t CW t t CM t t JD t t JW t t JM t t t t HRRV C C C J J Jα α α α α α α ε+ − − − − − − += + + + + + + +  
Model 2: , 0 1, ,ln( ) ln( )t t H IV t t t t HRRV IVα α ε+ − += + +  
Model 3: , 0 1, 1, 5, 20, 1, 5, 20, ,ln ln( ) ln ln ln ln ln lnt t H IV t t CD t t CW t t CM t t JD t t JW t t JM t t t t HRRV IV C C C J J Jα α α α α α α α ε+ − − − − − − − += + + + + + + + +  
Model 4: , 0 1, 1, 5, 20, ,ln ln( ) ln ln lnt t H IV t t JD t t JW t t JM t t t t HRRV IV J J Jα α α α α ε+ − − − − += + + + + +  
Model 5: , 0 1, 1, 5, 20, ,ln ln( ) ln ln lnt t H IV t t CD t t CW t t CM t t t t HRRV IV C C Cα α α α α ε+ − − − − += + + + + +  

Model 1 Model 2 Model 3 Model 4 Model 5 
1h =      

0α  0.0797* (0.0287 ) -1.3285* (0.0293) -0.1865* (0.0380) -1.2579* (0.0395) -0.2408* (0.0354) 

IVα    1.2331* (0.0407) 0.3915* (0.0383) 1.3442* (0.0544) 0.3142* (0.0346) 

CDα  0.3647* (0.0320 )   0.3145* (0.0317)   0.3158* (0.0297) 

CWα  0.3425* (0.0447)   0.2586* (0.0426)   0.2954* (0.0439) 

CMα  0.2360* (0.0405)   0.1789* (0.0403)   0.1363* (0.0356) 

JDα  -0.2581* (0.0754)   -0.2450* (0.0700) -0.0856 (0.0845)   

JWα  0.2725 (0.2264)   0.1931 (0.2147) 0.4080 (0.3848)   

JMα  0.0080 (0.3080)   -1.2423* (0.3684) -2.1564* (0.8089)   

2adjR  0.7538  0.6350  0.7663  0.6407  0.7632  

5h =            

0α  0.1421* (0.0529) -1.2301* (0.0452) -0.1241 (0.0640) -1.1716* (0.0608) -0.1902* (0.0594) 

IVα    1.1687* (0.0646) 0.3824* (0.0610) 1.2576* (0.0807) 0.2951* (0.0572) 

CDα  0.2418* (0.0490)   0.1646* (0.0492)   0.1738* (0.0485) 

CWα  0.3116* (0.0713)   0.2601* (0.0694)   0.3195* (0.0697) 

CMα  0.3665* (0.0710)   0.3036* (0.0677)   0.2288* (0.0633) 

JDα  -0.0513 (0.1665)   -0.0229 (0.1429) -0.0185 (0.1939)   

JWα  0.5209 (0.4147)   0.4001 (0.3946) 0.4850 (0.4544)   

JMα  -0.7640 (0.6233)   -1.8934* (0.7015) -1.9682 (1.1285)   

2adjR  0.7867  0.6745  0.8005  0.6781  0.7971  

10h =            

0α  0.1807* (0.0744) -1.1845* (0.0544) -0.0600 (0.0921) -1.1311* (0.0770) -0.1351 (0.0827) 

IVα    1.1253* (0.0814) 0.3367* (0.0780) 1.2066* (0.0991) 0.2568* (0.0773) 

CDα  0.2835* (0.0630)    0.2149* (0.0652)   0.2161* (0.0639) 

CWα  0.2400* (0.1074)   0.2001 (0.1076)   0.2507* (0.1097) 

CMα  0.3961* (0.0909)    0.3315* (0.0902)   0.2684* (0.0875) 

JDα  -0.4050 (0.2219)   -0.2903 (0.2181) -0.1192 (0.3392)   

JWα  0.4893 (0.4997)    0.2886 (0.5183) 0.4843 (0.6744)   

JMα  -0.5655 (0.6968)   -1.5346 (0.8174) -1.7351 (1.2479)   

2adjR  0.7759  0.6551  0.7871  0.6561  0.7835  

20h =            

0α  0.2199 (0.1042)  -1.1228* (0.0698) -0.0210 (0.1228) -1.0652* (0.0943) -0.1153 (0.1165) 

IVα    1.0339* (0.1061) 0.3267* (0.1061) 1.1235* (0.1119) 0.2112* (0.1006) 

CDα  0.2313* (0.0797)    0.1688* (0.0838)   0.1832* (0.0838) 

CWα  0.1622 (0.1741)    0.1175 (0.1795)   0.1439 (0.1904) 

CMα  0.4956* (0.1525)    0.4319* (0.1423)   0.3806* (0.1327) 

JDα  -0.1930 (0.4462)    -0.1789 (0.4077) -0.5166 (0.5033)   

JWα  -0.6509 (1.0094)    -0.7153 (1.0525) -0.2530 (1.3807)   
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JMα  -0.2759 (1.2454)    -1.2065 (1.4330) -0.7573 (1.7804)   

2adjR  0.7166  0.6010  0.7275  0.6011  0.7223  

Note: Newey-West standard errors are given in parenthesis.

     * denotes statistical significance at the 1% level. 

 
 
 

Table 3.2 Encompassing Regression: MIDAS 
S&P 500 index 1995/01/01 ~ 2005/03/31 

Model 1: max max

, 1 2 1, 2 2 1,0 0
ln( ) ( ,1, ) ln( ) ( ,1, ) ln( )k k

t t H H C C t k t k J J t k t k t Hk k
RRV b k C b k Jμ φ θ φ θ ε+ − − − − − − += =

= + + +∑ ∑  

Model 2: , 1, ,ln( ) ln( )t t H H IV t t t t HRRV IVμ α ε+ − += + +  
Model 3: max max

, 1, 1 2 1, 2 2 1,0 0
ln( ) ln( ) ( ,1, ) ln( ) ( ,1, ) ln( )k k

t t H H IV t t C C t k t k J J t k t k t Hk k
RRV IV b k C b k Jμ α φ θ φ θ ε+ − − − − − − − += =

= + + + +∑ ∑  
Model 4: max

, 1, 2 2 1,0
ln( ) ln( ) ( ,1, ) ln( )k

t t H H IV t t J J t k t k t Hk
RRV IV b k Jμ α φ θ ε+ − − − − +=

= + + +∑  
Model 5: max

, 1, 1 2 1,0
ln( ) ln( ) ( ,1, ) ln( )k

t t H H IV t t C C t k t k t Hk
RRV IV b k Cμ α φ θ ε+ − − − − +=

= + + +∑  
Model 1 Model 2 Model 3 Model 4 Model 5 

1h =      

Hμ  0.0015 (0.0182) -1.3198
*
 (0.0303) -0.4987

*
(0.0377) -1.3151

*
(0.0303) -0.5232

*
 (0.0359) 

IVα   1.2229
*
 (0.0418) 0.5581

*
(0.0359) 1.2327

*
(0.0434) 0.5423

*
 (0.0353) 

1φ  0.8291
*

(0.0137)   0.5538
*

(0.0225)  0.5456
*
 (0.0217) 

2φ  -0.1906 (0.1257)   -0.3723
*

(0.0786) -0.1401 (0.0830)   

2adjR  0.6913  0.6237  0.7383  0.6239  0.7356  

5h =            

Hμ  0.1086* (0.0242)  -1.2172* (0.0458) -0.1765* (0.0598) -1.2144* (0.0464) -0.1807* (0.0594)  

IVα    1.1540* (0.0654) 0.2898* (0.0564) 1.1587* (0.0655) 0.2838* (0.0565) 

1φ  0.9009* (0.0191)   0.7251* (0.0389)   0.7248* (0.0389) 

2φ  0.0028 (0.1359)   -0.1101 (0.1284) -0.0820 (0.1743)   

2adjR  0.7819  0.6632  0.7919  0.6626  0.7922  

10h =            

Hμ  -0.0704 (0.0716) -1.1684* (0.0541) -0.7626* (0.0688) -1.1619* (0.0560) -0.7739* (0.0669) 

IVα    1.1072* (0.0815) 0.8165* (0.0818) 1.1180* (0.0801) 0.8036* (0.0825) 

1φ  0.6600* (0.0481)   0.2888* (0.0439)   0.2871* (0.0440) 

2φ  0.3168 (0.2471)   -0.2344 (0.2279) -0.1727 (0.2589)   

2adjR  0.5228  0.6438  0.6902  0.6430  0.6904  

20h =            

Hμ  0.0007 (0.0820) -1.1130* (0.0705) -0.5583* (0.0901) -1.0861* (0.0747) -0.5694* (0.0893) 

IVα    1.0225* (0.1066) 0.6369* (0.0898) 1.0612* (0.1086) 0.5989* (0.0887) 

1φ  0.7295* (0.0602)   0.3965* (0.0699)   0.4039* (0.0693) 

2φ  0.0669 (0.3532)   -0.5527 (0.3030) -0.7062 (0.4406)   

2adjR  0.5766  0.5912  0.6672  0.5959  0.6650  

Note: Newey-West standard errors are given in parenthesis.

     * denotes statistical significance at the 1% level. 
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Table 3.3 Encompassing Regression: Implied Volatility and Out-of-Sample Volatility
S&P 500 Index 

, 0 1 1, ,ln lnt t H t t t t HRRV IVα α ε+ − += + +  

n
,, 0 2 ,ln ln t t Ht t H t t HRRV RRVα α ε++ += + +  

n
,, 0 1 1, 2 ,ln ln ln t t Ht t H t t t t HRRV IV RRVα α α ε++ − += + + +  

where n
1,ln t t HRRV + +  is the out-of-sample estimation of the HAR-RRV-CJ (or MIDAS-RRV-CJ) volatility forecast. 

 1h =  5h =  10h =  20h =  

HAR 0α  1α  2α  0α  1α  2α  0α  1α  2α  0α  1α  2α  

Coefficient 0.3060*  1.1587*  0.3205*  1.1371* 0.3405* 1.1063* 0.3724*  1.0586*  

Std. Error 0.0477  0.1085  0.0432  0.0996 0.0397 0.0927 0.0351  0.0816  

2adjR  0.4476    0.5958  0.6282 0.6488   

Coefficient 1.3219*   1.0222*  1.2406*  0.9928* 1.2101* 0.9740* 1.1642*   0.8992* 

Std. Error 0.0559   0.0898  0.0537  0.0888 0.0538 0.0869 0.0518   0.0775 

2adjR  0.4848    0.5626  0.5470 0.4599   

Coefficient 0.9969*  0.3875* 0.7267*  0.6745*  0.7203* 0.4326* 0.5969* 0.8016* 0.3465* 0.5296*  0.8723*  0.2577* 

Std. Error 0.1276  0.1363 0.1409  0.0882  0.1141 0.1057 0.0769 0.1115 0.0932 0.0648  0.1020  0.0877 

2adjR  0.4940    0.6223  0.6495 0.6663   

MIDAS             

Coefficient 0.3060*  1.1587*  0.3205*  1.1371*  0.3405* 1.1063*  0.3724*  1.0586*   

Std. Error 0.0477  0.1085  0.0432  0.0996  0.0397 0.0927  0.0351  0.0816   

2adjR  0.4476    0.5958    0.6282   0.6488    

Coefficient 1.3289*   1.0218*  1.2538*   1.0059* 1.2233*  0.9794* 1.1650*   0.8974* 

Std. Error 0.0560   0.0896  0.0537   0.0889 0.0546  0.0875 0.0526   0.0784 

2adjR  0.4864    0.5736    0.5479   0.4593    

Coefficient 1.0116*  0.3760* 0.7354*  0.7095*  0.6844* 0.4693* 0.6014* 0.8015* 0.3473* 0.5275*  0.8749*  0.2530* 

Std. Error 0.1219  0.1273 0.1356  0.0893  0.1119 0.1075 0.0743 0.1078 0.0896 0.0611  0.0989  0.0788 

2adjR  0.4950    0.6259    0.6492   0.6655    

Note: The standard errors are computed following a robust procedure, Neway-West standard errors, taking into account of the  

heteroscedastic and autocorrelated error structure. 

* denotes statistical significance at the 1% level. 
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Chapter 4  Detecting Mutual Fund Timing Ability Using 

the Threshold Model 
 

1.  INTRODUCTION 

Investment performance and the market timing of mutual funds continue to receive 

considerable attention by both academics and market practitioners alike, with a 

variety of evaluation techniques having been proposed and implemented over the 

years. Treynor (1965), Sharpe (1966) and Jensen (1968), for example, measured the 

excess returns for systematic risk,10 whilst more recently, Bollen and Busse (2001) 

and Chance and Helmer (2001) have stressed the importance of daily tests for 

performance measurement. 

     This chapter proposes a new method of testing mutual fund performance and 

market timing through the application of threshold regression techniques. The idea is 

that fund managers may adopt different trading strategies when they perceive different 

market conditions. As fund managers may not uniformly use the sign of the market 

return to capture the direction of market movement, it is natural to conjecture that a 

fund manager’s trading behavior changes when the market return is above or below a 

certain threshold level, which varies across managers of different funds. 

Threshold models have been widely applied in the econometric analysis; the 

threshold autoregressive model (TAR), for example, remains popular in the 

examination of nonlinear time-series data. Hansen (2000) presented a statistical 

theory for threshold estimation, in a regression context, proposing least squares 

estimation of the regression parameters and concluding with the asymptotic 

distribution theory for the regression estimates.  
                                                 
10   Treynor and Mazuy (1966), Henriksson and Merton (1981) and Chang and Lewellen (1984) noted 
that investment managers have superior information and forecasting skills. 
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This chapter aims to contribute to this field through the introduction of the 

threshold model into the testing of mutual fund market-timing effects. The traditional 

Henriksson and Merton (1981) model is shown to represent only a special case within 

our model, and we demonstrate the potential bias of using the traditional model, 

arguing that it tends to underestimate the market-timing effect. Indeed, we find that 

the use of the traditional market timing test may provide misleading results in some 

circumstances; thus, our proposed threshold model provides more accurate inferences 

on the market-timing effects of mutual funds.  

2.  THRESHOLD MODEL AND MARKET TIMING  

2.1  Models for Mutual Fund Performance and Market-timing Effects 

We begin by using the threshold regression model developed by Hansen (1996) to 

propose a model for testing mutual fund performance and market-timing effects. The 

threshold regression model takes the form: 

  
ifmifmiifi

ifmifmiifi

qRReRRRR

qRReRRRR

>−+−+=−

≤−+−+=−

      )(

       )(
22

11

βα

βα
,     (1) 

where R i is the rate of return on the ith mutual fund; R m is the rate of return on the 

market portfolio; R f is the riskless rate; qi is the threshold parameter; α i
1 (α i

2) is the 

abnormal return of the ith mutual fund when the excess return rate on the market 

portfolio is smaller (larger) than the threshold variable; and β i
1 (βi

2) is the systematic 

risk of the ith mutual fund when the excess return on the market portfolio is smaller 

(larger) than the threshold variable. If there is any significant increase in systematic 

risk, (β i
2 > β i

1), fund managers will have market-timing ability.  

The Henriksson and Merton (1981) model can be written as follows: 
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          ifmmifmiifi eRRdRRRR +−⋅⋅−−+=− )()0()( 21 ββα ,        (2) 

where d m (0) = I {R m – R f < 0} is the dummy variable with I {.} as the indicator function; 

α i is the abnormal return of the ith mutual fund; β i1 and (βi2) are beta regression 

coefficients; and the fund manager’s market-timing ability is expressed as βi2. It is clear 

that the traditional Henriksson and Merton (1981) model is a special case of the 

threshold regression model in equation (1) where q to the value of 0, 

The above threshold regression model (1) can be rewritten as follows:    

 immi eqrrr +⋅′+⋅′= )(**
1 λθ ,  ,  

where  ]  [ **
mm r1r = , ] ))(( [)( ** qdr1qr mmm = , rm is the n ×1 vector of excess return 

rate on the market portfolio; and 1* is a column vector of ones. *
mr  and )(* qrm  are 

both n × 2 matrices; n represents the number of observations on the ith mutual fund; dm 

(q) = I {rm >q} is the dummy variable with I {.} as the indicator function; ri is the n × 1 

vector of excess return rate on the ith mutual fund; θ 1 is the vector of coefficients of 

the model when the excess return on the market portfolio is smaller than the threshold 

variable; θ 2 is the vector of coefficients of the model when the excess return on the 

market portfolio is greater than the threshold variable; λ =  θ 2 – θ 1 denotes the 

‘threshold effect’; and ei is the n × 1 vector of error. If the results of the test on λ are 

significantly different from zero, this will indicate that the manager possesses 

market-timing ability. 

The regression parameters are estimated by the least squares method, with the 

sum of the squared errors function being shown as: 

))(())((),,( **
1

**
11 qrrrqrrrqS mmimmin ⋅′−⋅′−⋅′⋅′−⋅′−= λθλθλθ .  

Conditional on q yielding the OLS estimators )(1̂ qθ  and )(ˆ qλ , by regression 
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of  ri on ))( ,( ** qrr mm , the concentrated sum of the squared errors function is:  

( ) i
q

m
q

m
q

m
q

miiinn rrrrrrrrqqqSqS
**** 1

1 )),(ˆ),(ˆ()(
′′ −

⋅′−⋅′== λθ ,  

where *q
mr  is the excess return on the market portfolio under the threshold condition. 

For the minimization of the sum of the squared errors, q is assumed to be restricted to 

a bounded set (empirically, it usually uses the 15 per cent quartile of the sample to the 

85 per cent quartile of the sample); the least-squares estimate q̂ of the threshold 

parameter q is the value which minimizes Sn(q). The consistency threshold estimate 

q̂  is defined as:         

)(minargˆ qSq n= .  

     Note that the LS estimator is also the MLE when ei is i.i.d. N(0,σ2). Hansen 

(2000) provided the asymptotic distribution of the consistent threshold estimate q̂ , 

and suggested the use of the likelihood ratio statistic to test the hypothesis        

H0
 : q = q0 under the condition of ei being i.i.d. N(0,σ2). The likelihood ratio statistic 

under homoskedasticity is different from that under heteroskedasticity. The test 

proposed by White (1980) can be employed to examine the homoskedastic 

disturbances. 

Under the assumption of homoskedasticity, the likelihood ratio statistic for q = q0 

is defined as: 

       )ˆ(
)ˆ()()( 0

0 qS
qSqSnqLR

n

nn −
⋅=                  (3) 

The likelihood ratio test of H0 is rejected for large values of LRn
 (q0). If 

heteroskedasticity exists, the likelihood ratio statistic under q = q0 is defined as: 
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where 2η̂  is an estimator of cqqrrEc
cqqerrEc
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As demonstrated in both Henriksson and Merton (1981) and Chang and 

Lewellen (1984), we can use the excess return on the market portfolio to determine 

whether or not a bull market exists. Our aim is to test whether the market managers 

are able to adjust their investment principles according to the market index; that is, to 

test the hypothesis H0
 : q = 0.  

2.2 Testing for Threshold Effects  

Using the changes in the regression coefficients of the threshold estimate allows us to 

evaluate the mutual fund manager’s stock-selection and market-timing abilities. We 

construct the hypothesis H0
 : λ = 0 to test for the threshold effect. 

If the fund manager does not exhibit market timing behavior, the conditional 

sum of the squared errors Sn(q0) of (3) and (4) will be equal to the sum of the squared 

errors )( iiee′ in the traditional one-regime CAPM (i.e., imi err +⋅′= θ ).  

In the presence of homoskedasticity, the likelihood ratio statistic is defined as:  

     )ˆ(
)ˆ(

qS
qSeenLR

n

nii −′
⋅=          (5) 

Under H0 the threshold q remains unidentified; therefore, the classical tests have 

non-standard distribution. Hansen (1996) suggested the adoption of a bootstrap to 

simulate the asymptotic distribution of the likelihood ratio test, showing that a bootstrap 

procedure attains the first-order asymptotic distribution; thus, the p-values constructed 

for the bootstrap are asymptotically valid. We use bootstrap replication to generate a 
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bootstrap sample of size 1,000 so that the residual features are the same as those of an 

individual mutual fund. The small sample distribution and the p-value of the likelihood 

ratio test estimator are then obtained.  

2.3  Test for the Source of the Threshold Effect  

In order to test whether the threshold effect stems from manager’s stock-selection 

ability or market-timing ability, we use the threshold estimate as the dummy variable, 

thereby dividing the mutual fund samples into two sample sets. We then construct a 

test which can determine whether the threshold effect comes from manager’s 

stock-selection ability or market-timing ability. The model constructed is similar to 

the Fabozzi and Francis (1979) model, as follows: 

         immmimii erqdrqdr ++++= )ˆ()ˆ( *
2

*
1 λβλα ,             (6) 

where }ˆ{)ˆ(* qrIqd mm >=  is the dummy variable with I {.} as the indicator 

function; q̂  is the threshold estimator; α i is the excess return rate on the ith mutual 

fund without threshold effect; β i  is the systematic risk of the ith mutual fund without 

threshold effect, 
1λ is the abnormal return disparity under )ˆ( qrm > ; 

2λ  is the 

systematic risk disparity of the ith mutual fund under )ˆ( qrm > ; and e i is a regression 

error. The aim of constructing the hypothesis test is to determine whether the 

threshold effect stems from manager’s stock-selection ability or market-timing ability; 

this is undertaken by testing to see whether the corresponding differential coefficient 

is statistically different from zero. A positive value of 1λ  represents that the fund 

manager presents sufficient stock-selection ability in anticipation of a bull market, 

while a positive 2λ indicates that the fund manager has market-timing ability.  
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3. Data and Empirical Results 

Bollen and Busse (2001) demonstrated that daily tests are more forceful than monthly 

tests, with mutual funds more often displaying significant timing ability from such 

daily tests; hence, our analysis of the market-timing effect is based upon the daily 

returns of 30 randomly-selected mutual funds. The sample is taken from the 

aggressive growth mutual fund of the Center for Research in Security Prices (CRSP) 

mutual fund database, with the sample period running from 1 January 2000 to 31 

January 2003. We employ the net asset value and dividends to form a daily return 

series for each fund. We use the CRSP value-weighted index, including NYSE, 

AMEX and NASDAQ stocks, as an overall market benchmark. Three-month Treasury 

Bills rates, drawn from the Federal Reserve Board, are used as the risk-free rates. Our 

results show that half of the mutual funds beat the market.11 

The results in Table 1 demonstrates that 17 of the funds have threshold effects and 

that the abnormal returns of 16 of the 17 funds are both significant and positive (α i
2 > α 

i
1), which indicates that the managers have stock-selection abilities. Only four of the 17 

fund managers have market-timing ability because there is a significant increase in their 

systematic risks (β i
2 > β i

1); four of the 17 funds possess both stock-selection and 

market-timing abilities. Furthermore, superior fund managers will increase the 

systematic risk of a portfolio in anticipation of a bull market, so as to raise the risk 

premium and reduce the systematic risk of the portfolio, thus reducing losses when a 

bear market is forecasted. 

The traditional Henriksson and Merton Model is the threshold regression model, 

with the restriction that q = 0. The results of Table 2 reveal that 11 of the 17 funds 

show a rejection of the hull hypothesis that q = 0; therefore, the traditional Henriksson 

                                                 
11 The results are omitted to save space. However, they are available upon request. 
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and Merton (1981) model is rejected. Hence, we demonstrate that there is potential 

bias in the use of the traditional model.12  

The model employed in this study essentially explores the assumption of the 

existence of a threshold effect. This assumption is important because it does affect our 

evaluation of the investment performance of mutual fund managers. For example, as 

demonstrated in Table 3, under the traditional model of Henriksson and Merton 

(1981), four of the funds indicate that the fund managers do not possess any 

market-timing or stock-selection ability; however, the fund managers not only 

achieved more abnormal returns, but also increased the systematic risk so as to earn 

higher market risk premiums once the market excess return was larger than the 

threshold estimate.  

 

4. CONCLUSIONS 

This study has proposed the use of the threshold regression model to evaluate the 

market-timing abilities of mutual fund managers. The empirical results for a set of 

randomly-selected US mutual funds indicate that the threshold values of market 

timing are different from 0 for more than 50% of the mutual funds. Our results 

indicate potential bias in the use of the traditional Henriksson and Merton (1981) 

model with regard to its evaluation of the ability of fund managers to select stocks, 

and we find that the traditional model also tends to underestimate the market-timing 

effect under the use of the capital asset pricing model with threshold effects.  

                                                 
12 The regression results of the threshold effect from equation (6) are omitted for saving space. Sixteen 

of the mutual funds exhibited a positive and significant value for )ˆ(1 qλ , indicating that the fund 
manager has stock-selection ability based upon the threshold effect. Four of the mutual funds also 
exhibited a positive and significant value for )ˆ(2 qλ , indicating that the fund manager has 
market-timing ability based upon the threshold effect.  
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Table 4.1 Estimation results of mutual fund market-timing effect using the threshold model  

 
                                                        

Fund name 
Threshold 
Variables  1

iα
b 1

iβ
c 2

iα
b 2

iβ
c p-value d

0.005 1.174 0.000 0.825 Bear Stearns Small Cap 
Value Portfolio/C 

-0.008
7 (3.013) (12.363) (0.110) (20.553) 

0.065 *

-0.001 1.003 0.003 0.856 Dreyfus Founders Funds: 
Discovery Fund/T 

0.0057 
(-2.322) (25.305) (2.588) (13.733) 

0.080 *

-0.002 0.874 0.001 0.844 Oppenheimer Discovery 
Fund/A 

-0.0025 
(-2.603) (16.867) (2.691) (22.401) 

0.005**

-0.007 1.091 0.000 1.391 INVESCO Dynamics 
Fund/Instl 

-0.0061 
(-4.423) (11.966) (0.396) (29.474) 

0.004**

0.000 1.070 0.004 0.890 NI Numeric Investors 
Growth Fund 

0.0072 
(-0.699) (30.497) (3.054) (14.336) 

0.097 *

-0.001 0.227 0.004 -0.021 Quaker Aggressive 
Growth Fund 

0.0055 
(-2.337) (8.951) (5.569) (-0.536) 

0.000**

-0.008 0.839 -0.001 1.240 Smith Barney Small 
Cap Core Fund/B 

-0.0086 
(-4.845) (8.050) (-3.370) (33.872) 

0.006**

0.000 0.836 0.002 0.652 Royce Fund: Opportunity/ 
Instl Serv 

-0.0025 
(0.458) (15.681) (3.798) (16.728) 

0.012**

0.000 1.003 0.003 0.821 TD Waterhouse Extended 
Market Index Fund 

0.0075 
(-0.056) (39.384) (3.027) (17.373) 

0.058 *

0.000 0.864 0.004 0.703 Aetna Index Plus Small 
Cap Fund/I 

0.0074 
(0.05) (30.017) (3.588) (13.249) 

0.057 *

-0.003 0.603 0.000 0.752 AIM Small Cap 
Opportunities 

-0.0029 
(-3.590) (10.035) (0.782) (17.947) 

0.038**

-0.004 0.997 0.001 1.162 Analysts Aggressive 
Stock Fund 

-0.0061 
(-3.099) (12.970) (1.412) (29.191) 

0.052 *

-0.002 1.009 0.001 1.006 J Hancock Small Cap 
Growth Fund/I 

-0.0025 
(-2.563) (17.960) (1.772) (24.495) 

0.076 *

-0.001 1.377 0.009 0.955 Undiscovered Managers 
Small Cap Growth/Instl 

0.0079 
(-0.712) (22.378) (3.933) (8.298) 

0.003**

-0.001 0.868 0.002 0.828 Merrill Lynch Master 
Small Cap Vl Tr Fund/B 

-0.0025 
(-1.237) (18.434) (3.442) (24.024) 

0.046**

-0.002 0.955 0.001 0.910 Lord Abbett Developing 
Growth Fund/A 

-0.0037 
(-1.836) (16.560) (2.151) (24.286) 

0.055 *

0.000 1.061 0.006 0.782 State Street Research: 
Emerging Growth Fund/B1 

0.0072 
(-0.502) (26.615) (4.300) (11.090) 

0.003**

Notes: 
a  This table presents the estimation results for the model: as qRReRRRR fmifmiifi ≤−+−+=−        )(11 βα ;  

qRReRRRR fmifmiifi >−+−+=−        )(22 βα ; where q is the threshold parameter; iR is the return rate of the ith 
mutual fund; mR is the return rate on the market portfolio; and the mutual funds have threshold effect. 

b    1
iα ( 2

iα ) is an abnormal return of the ith mutual fund when the excess return rate on the market portfolio is 
smaller (larger) than the threshold estimate. 

c    1
iβ ( 2

iβ ) is the systematic risk of the ith mutual fund when the excess return rate on the market portfolio is 
smaller (larger) than the threshold estimate. 

d    The null hypothesis of the test is 0=λ . 
e    Figures in parentheses are t-ratios. 
f    * indicates significance at the 10 per cent level; ** indicates significance at the 5 per cent level. 
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Table 4.2 Results of tests for the threshold variable of market timing being equal to zero 
 

Fund name  LR a  p-value b 

Bear Stearns Small Cap Value Portfolio/C 8.744 0.438 
Dreyfus Founders Funds: Discovery Fund/T 8.413 0.073 * 
Oppenheimer Discovery Fund/A 9.100 0.042 
INVESCO Dynamics Fund/Instl 8.570 0.009 ** 
NI Numeric Investors Growth Fund 8.717 0.086 * 
Quaker Aggressive Growth Fund 8.774 0.007 ** 
Smith Barney Small Cap Core Fund/B 8.790 0.023 ** 
Royce Fund:Opportunity/Instl Serv 8.700 0.530 
TD Waterhouse Extended Market Index Fund 8.872 0.288 
Aetna Index Plus Small Cap Fund/I 8.552 0.026 ** 
AIM Small Cap Opportunities 8.001 0.035 ** 
Analysts Aggressive Stock Fund 8.560 0.022 ** 
J Hancock Small Cap Growth Fund/I 8.602 0.332 
Undiscovered Managers Small Cap Growth/Instl 8.547 0.003 ** 
Merrill Lynch Master Sm Cp Vl Tr Fund/B 8.851 0.167 
Lord Abbett Developing Growth Fund/A 8.658 0.089 * 
State Street Research:Emerging Growth Fund/B1 8.609 0.010 ** 
Notes: 
a    The null hypothesis of LR is q = 0.   
b    * indicates significance at the 10 per cent level; ** indicates significance at the 5 per cent level. 
 
 
 
Table 4.3  Mutual fund market timing and performance test, threshold model vs. Henriksson 

and Merton model 
 

Threshold Regression Model a Henriksson and Merton Model b 

 Fund name  
α  β  )ˆ(1 qλ    )ˆ(2 qλ  α   1β   2β  

-0.007 1.091 0.007 0.300 -0.001 1.438 0.027INVESCO Dynamics 
Fund/Instl (-4.42) (11.96) (4.28)** (2.92)** (-1.19) (28.05) (0.30)

-0.008 0.839 0.007 0.401 -0.001 1.259 0.041Smith Barney Small 
Cap Core Fund/B (-4.845) (8.050) (4.075)** (3.631)** (-3.424) (27.046) (0.502)

-0.003 0.603 0.004 0.150 -0.001 0.806 0.056AIM Small Cap 
Opportunities (-3.59) (10.04) (3.48)** (2.04)** (-1.25) (19.75) (0.80)

-0.004 0.997 0.005 0.165 -0.001 1.202 0.001Analysts Aggressive 
Stock Fund (-3.10) (12.97) (3.40)** (1.90)* (-0.08) (27.98) (0.01)
Notes: 
a    This table presents threshold regression results for the model:  immmimii erqdrqdr ++++= )ˆ()ˆ( *

2
*

1 λβλα ,  

where }ˆ{)ˆ(* qrIqd mm >=  is the dummy variable with I {.} as the indicator function; q̂  is the threshold estimator.   
b   

iα is alpha regression intercept for the ith mutual fund, 1iβ and 2iβ are beta regression coefficients.  
c    Figures in parentheses are t-ratios. 
d    * indicates significance at the 10% level; **indicates significance at the 5% level. 
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Chapter 5  Conclusions 
 

This dissertation will employ econometrics analyses to focus on two important issues 

in the financial market, including volatility forecasting and mutual fund performance 

evaluation. 

     The first issue in this dissertation is to discuss the predicting volatility. The 

empirical results show that the realized range-based variance is more efficient and the 

results are the same as the previous studies. The regressors consisting of the 

continuous sample path and jump variability measures in the HAR and MIDAS 

regressions predict the future realized range volatilities, and such dominates almost in 

all MSE terms. In addition, in the in-sample forecasting, the relative decreasing ratio 

of MSE of HAR-RRV (MIDAS-RRV) regressions are almost larger than that of 

HAR-RV (MIDAS-RV); and in the out-of sample forecasting, the MSE of HAR-RRV 

and MIDAS-RRV regressions are small. Moreover, the realized range-based 

regressions are significant for short-run volatility forecasting, but the realized 

return-based regressions are almost invariant to jumps. Hence, our empirical results 

show that by using of the HAR and MIDAS regressions to predict latent volatility 

under different variations, the realized range-based variance is a good volatility proxy. 

     Furthermore, the implied volatility and almost all continuous components are 

statistically significant, while the jump components are almost not significant, and 

there are little increases with the adjusted 2R s. Hence, when the continuous 

components are included in the encompassing regression, they will share the 

explanatory power with the implied volatility. That is to say, the implied volatility 

subsumes most of the relevant volatility information. Beside, the jump components do 

not contribute to future valuable information. In addition, the implied volatility and 

the out-of-sample volatility have information contents but the implied volatility has 
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more powerful explanation abilities than the out-of-sample volatility for the future 

realized range-based volatility. 

     The second issue examined in this dissertation is to detect mutual fund market 

timing abilities using the threshold regression model. Our results indicate potential 

bias in the use of the traditional Henriksson and Merton (1981) model with regard to 

its evaluation of the ability of fund managers to select stocks, and we find that the 

traditional model also tends to underestimate the market-timing effect under the use of 

the capital asset pricing model with threshold effects. 

   To conclude, the essays of this dissertation provide some insights into the issues 

of volatility forecasting and mutual fund performance evaluation. The results of this 

study provide us with empirical evidences to comprehend the occasion of some 

distinctive phenomena in financial markets. 
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