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Essays on the Econometric Analysis of Financial

Market Volatility and Mutual Fund Performance

Student: Erh-Yin Sun Advisers: Dr. Huimin Chung
Graduate Institute of Finance

National Chiao Tung University

ABSTRACT

This dissertation consists of two separate issues.

The first issue is to discuss the forecasting performance of HAR and MIDAS
regression models of realized range-based volatility; we focus on the S&P 500 index.
The empirical results show that the realized range-based volatility is more efficient
than the realized return-based volatility; the regressors consisting of the continuous
sample path and jump variability measures in the HAR and MIDAS regressions
predict the future realized range wvolatilities,”and- thus dominate almost in all MSE
terms. In addition, the realized_range:based regressions are significant for short-run
volatility forecasting, but the realized return-based regressions are almost invariant to
jumps. Furthermore, we will employ the. HAR and MIDAS regressions as
encompassing regressions to examine the“information content of the continuous and
jump components of the realized range-based volatility, and the additional
information content of the implied volatility as an additional regressor. We use the
VIX as the measure of the implied volatility. We find that the implied volatility has a
high information content and the past continuous components feature relevant
information content by the implied volatility. Besides, the jump components do not
contribute to future valuable information.

The second issue is to detect mutual fund market timing abilities, using the threshold
regression model. The empirical results show that the traditional Henriksson and
Merton (1981) model is only a special case within our model, and we demonstrate the
potential bias of using the traditional model, arguing that it tends to underestimate the
market-timing effect. Indeed, we find that the use of the traditional market timing test
may provide misleading results in some circumstances; thus, our proposed threshold
model provides more accurate inferences on the market-timing effects of mutual
funds.

Keywords: realized range-based volatility; HAR regression; MIDAS regression;
VIX; information content; mutual fund; threshold regression
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Chapter 1 Introduction

Applied econometric methods will be used for the estimations and forecasts of
important financial quantities, analyses of economic outcomes and market behaviors.
This dissertation will employ econometric analyses to focus on two important issues
in the financial market, including volatility forecasting and mutual fund performance
evaluation.

The first issue in this dissertation is to discuss the predicting volatility. Volatility
forecasting of financial asset returns is important for derivative pricing, asset
allocation, and risk management. Most of the previous studies used the realized
volatility to predict volatility; and Forsberg and Ghysels (2007) explored different
variations as regressors to predict the realized wvolatility, using the heterogeneous
autoregressive and the mixed- data sampling regressions. Because the realized
range-based estimation of integrated.variance-has been proved to be more efficient,
we are motivated to predict this realized.range-based volatility. By following Forsberg
and Ghysels (2007), we use the heterogeneous autoregressive and mixed data
sampling regressions to examine whether future volatility is well predicted by the past
realized range-based variations, realized range bipower variations , and so on.

In addition, most of the previous studies have documented the information
content of the implied volatility. They always focus on whether the implied volatility
has the additional information content of historical volatility; the realized volatility is
always used as the historical volatility. We will employ the heterogeneous
autoregressive regressions and mixed data sampling regressions as encompassing
regressions to examine the information content of the continuous and jump
components of the realized range-based volatility, and the additional information

content of the implied volatility as an additional regressor. Besides, we use the
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Chicago Board Options Exchange volatility index new VIX as the measure of the
implied volatility. The new VIX is based on S&P 500 index options and adopts the
model-free volatility expectation.

The second issue examined in this dissertation is to detect mutual fund market
timing abilities by the threshold regression model. Investment performance and the
market timing of mutual funds continue to receive considerable attention by both
academics and market practitioners, with a variety of evaluation techniques having
been proposed and implemented over the years. This chapter proposes a new method
to test mutual fund performance and market timing through the application of
threshold regression techniques. The idea is that fund managers may adopt different
trading strategies when they perceive different market conditions. As fund managers
may not uniformly use the sign of.the market return to capture the direction of market
movement, it is natural to conjecture that a fund manager’s trading behavior changes
when the market return is above or below-a-certain threshold level, which varies
across managers of different funds.

To sum up, the dissertation provides some insights into the issues of volatility
forecasting and mutual fund performance evaluation. With these points in mind, the
research results will provide us with the empirical evidences to comprehend the

occasion of some distinctive phenomena in financial markets.



Chapter 2 On the Forecasting Performance of HAR and
MIDAS Regression Models

of Realized Range-Based Volatility

1 Introduction

\olatility forecasting of financial asset returns is important for derivative pricing,
asset allocation, and risk management. The latent volatility is unobservable, so the
observable proxies are used; in this study, we will use the realized variance (Andersen
et al. (2001)) and the realized range variance (Parkinson (1980)). In recent years, with
the availability of high frequency financial.market data, the previous studies showed
that the use of high-frequency: data jisj-beneficial in predicting volatility. The
return-based estimation is the realized variance (RV), which is the sum of the squared
returns over non-overlapping intervals ‘within-a sampling period. The theory states
that the RV is an unbiased and efficient'estimator (Andersen et al. (2001)), converges
in probability to the quadratic variation (QV) as the sampling frequency tends to
infinity (Barndorff-Nielsen and Shephard (2002)), and has the persistent properties
(Andersen et al. (2003)). In practice, market microstructure effects pose the RV to
become biased and inconsistent (Bandi et al. (2005, 2006), Ait-Sahalia et al. (2005)
and Hansen et al. (2005)). An alternative way of range-based estimation is the realized
range variance (RRV), which is based on the difference between the maximum and
minimum prices observed during a certain period. Cristensen and Podolskij (2005)
derived that the RRV has the theoretical properties similar to Barndorff-Nielsen and
Shephard (2002) for RV, and it is a more efficient volatility estimator than the realized

volatility (Parkinson (1980) and Martens et al. (2007)) because it is formed from the



entire process. Most authors explored the univariate persistent properties, using the
RV or RRV to predict volatility. The regressions of the heterogeneous autoregressive
(HAR) by Corsi (2004) and of mixed data sampling (MIDAS) by Ghysels et al. (2006)
were considered to be some variations as regressors to predict future increments in
quadratic variations. These two models are able to reproduce the memory persistence
observed in the data and to reduce the number of parameters to estimate; and their
prediction powers were proved to outperform ARFIMA.

Furthermore, in high-frequency data, discrete jumps may affect returns, so the
jump component appears to account for a proportion of quadratic variation. In this
chapter, we consider a continuous time stochastic volatility jump-diffusion model for
the asset returns. An asymptotic distribution theory for the jump test was derived by
Barndorff-Nielsen and Shephard .(2006), whichis based on the ratio of RV and
bipower variation (BPV), suitably.normalized. Moreever, similar tests based on RRV
were derived by Christensen and Podelskij-(2006). Furthermore, Andersen et al. (2007)
suggested the use of the bipower variation as-the predictor of volatility, because jump
components are “noise” and not helpful in predicting future volatility. The HAR and
MIDAS regressions allow us to compare the forecasting abilities of different
regressors and to choose the predictors with the best predicting ability. In this chapter,
we will use RV, RRV, and BPV, etc. as regressors to predict latent volatilities.

In this chapter, our purpose is to forecast volatility. Most of the previous studies
used the RV to predict volatility, and Forsberg and Ghysels (2007) explored different
variations as regressors to predict the realized volatility, using the HAR and MIDAS
regressions. Because the realized range-based estimation of integrated variance has
been proved to be more efficient, we are motivated to predict this realized
range-based volatility. By following Forsberg and Ghysels (2007), we use HAR and

MIDAS regressions to examine whether future volatility is well predicted by past
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realized range-based variations, realized range bipower variations (RBV), and so on.

The results show that the realized range-based variance is more efficient and the
results are the same as the previous studies. The regressors consisting of the
continuous sample path and jump variability measures (CJ) in the HAR and MIDAS
regressions predict the future realized range volatilities, and thus dominate almost in
all mean square error (MSE) terms. In addition, in the in-sample forecasting, the
relative decreasing ratio of MSE of HAR-RRV (MIDAS-RRV) regressions are almost
larger than that of HAR-RV (MIDAS-RV); and in the out-of sample forecasting, the
MSE of HAR-RRV and MIDAS-RRYV regressions are small. Moreover, the realized
range-based regressions are significant for short-run volatility forecasting, but the
realized return-based regressions are almost invariant to jumps. Hence, our empirical
results show that by using of the- HAR and MIDAS regressions to predict latent
volatility under different variations, the realized range-based variance is a good
volatility proxy.

The remainder of this chapter is-organized-as follows. In section 2, we discuss
various volatility measures and predict volatility regressions. In section 3, we present
the data and the empirical results of HAR and MIDAS regressions for the S&P 500

cash index to predict RV and RRV. Section 4 concludes the article.

2 The Methodology
2.1 Construction of volatility measures
Let the logarithmic price of financial assets at timet be denoted by p(t) and follow
the continuous-time jump diffusion process

dp(t) = p(t)dt+ o (t)dw(t) + «(t)da(t) , (1)
where u(t) and o (t) are the drift and instantaneous volatility, w(t) is the standardized
Brownian motion, q(t) is a counting process with time-varying intensity A(t), i.e.

5



P[dq(t) =1] = A(t)dt, and «(t)is the jump size. The quadratic variation process for a
sequence of partitions is defined by

[P1) =plim 3 (p(s,.) - (5,

where 0=s; <s <---<s =t and sup;{s;,,—s;}—>0 for n—>o0 . The quadratic

j+l

variation for the cumulative return process, QV,,,,, = p(t+H)—p(t), is then

Vo =[ " o*@)ds+ Y k(). 2)
t<s<t+H
Hence, the quadratic variation from time t to timet+ H consists of the integrated
volatility of the continuous sample path component (_[tHH o’ (s)ds) and the summation
of the squared jumps between time t andtime t+H .
Let daily returns be denoted by r;,", =p(t) — p(t—1), where the time index t
refers to daily sampling. When the.data is sampled at a higher frequency, M times in

a day, we will denote the intraday returns-and-ranges as:

L= Pt-1+3) =P SR, j=1

and Spaam =, M3 {P, =P},
where s, , . represents that each range is based on the corresponding m returns.

The realized variance and the realized ranged-based variance over day t are defined

as
- 2
RV, =2 15, 3)
j=1
1 M
RRVtm* = Zsim Am ! (4)
A’Z,m i=1 h

where 1, =E(s),)<% VjeRandmeN® and W is the Brownian motion. In

! There is no explicit formula for 4, » butitis computed to any degree of accuracy from simulations.
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addition, from time t totime t+H, the realized variance is RV, ., = ZR it tad

As the theory of quadratic variation is applied, the realized variance converges
uniformly in probability to the increment of the quadratic variation process as the

sampling frequency of the underlying returns increases. That is,

RVt t+H —>Q tt+H - (5)
The above equation means that the realized variationRV, ,,, is a consistent estimator

of the quadratic variation QV,,,, . Other measures of realized within-day price
variance are based on the realized power variation, which is denoted by

tt+1 ‘ ‘ '
One is also called the realized bipower variation,

BPV,

n+1(k) :% T ’ trj= (k)

‘rw.‘ k>0, (6)

in which two absolute returns of every-other_(k +1) ~days multiply together while the

other is the tripower variation,

M %
TPV, (k) =M (m) -1; k (‘ru (k) ‘ ti-(Lk) ‘ L ) ’
j=1+ (+F) (7)
k>0, /_2/ FE;

in which three absolute returns of every other (k+1) days multiply together and is
raised tos power (Barndorff-Nielsen and Shephard (2002, 2004)).
As noted by Barndorff-Nielsen and Shephard (2004) and Andersen, Bollerslev,

and Diebold (2004), there are some results:

IlmBPVm(k)—>J‘ o2 (s)ds, (8)
imTPV,,.,(k)—— [ o*(s)ds. 9)

tt+1

Under Barndorff-Nielsen and Shephard’s (2006) joint asymptotic distribution, there



are some results as follows,
th.t+l - QV1,1+1
2.TPV, ., (k%

JEMRPY,, (k) ~ [ o (s)ds
JE-DM RV, (k)

~N(0,1),

~N(0,1),

BPV,,, (k)| o*(s)ds

tt+1

Jer TPV, ()

N(0,1).

As noted by the notion of Barndorff-Nielsen and Shephard (2004), combining
the results of equations (5) and (8), the jumps in the underlying prices may
consistently be estimated by

lim(RV, ., ~BPVY,,) = > «(s), (10)

but in a given finite sample, the difference between RV and BPV may be negative.
Hence, when we follow the suggestion of Andersen; Bollerslev, and Diebold (2007),

they truncated the actual empirical measurements at zero,

J... =max(RV,,, <BPV

tt+l ttel?

0), (11)

to ensure that all of the estimates are non-negative. However, the J.2.. also had an

t,t+1

unreasonably large number of non-zero small positive value. They proposed that these
small jumps were treated as measurement errors, associating with only large values as
jump components. Following Barndorff-Nielsen and Shephard (2004b), the joint
asymptotic distribution of the realized volatility and bipower variation measures

results in the following test statistics,

(RVy 1 (K)=BPV; 11q (k%v )
Z..=~M - t‘f;v) —~N©0JD. (12)
\/((%)2 + 7 —5) - max(l, D0y

BPVia (K)

Huang and Tauchen (2005) found that the statistics in equation (12) also had a
sensible power against other empirically calibrated stochastic volatility jump diffusion

models. Using equation (12), Andersen, Bollerslev, and Diebold (2007) identified the

8



jump variation as,

JI,I+1 =1 (Z > q)a)(RVt,Hl - BPVt,t+1) ) (13)

t+1
and the continuous component variation was estimated as the residual,

Con=WZ <D,)-RV, ,, +1(Z,,>D,)-BPV,,,, (14)
where 1(:) denotes the indicator function, ®(-) is the standard cumulated normal
distribution (®, =® () ), and « is a significant level of the bipower test and we

will use a=0.999 throughout the chapter. From the definitions in equations (13)

and (14), we ensure that the continuous variation and jump variation sum to the total

realized variation, ie. RV, =C ., +J

t,t+1 tt+1 "

Similar results were shown by Christensen and Podolskij (2006a, 2006b). As

noted by Christensen and PodolsKij (2006a}2006b);

{ M
RRVtm*—P>Lo-2(s)ds+/1i-zt\]i2 2as M > oo,

2,m i=1

ie., RRV.™ is inconsistent. Hence; they modified the intraday high-low statistic to

make it consistent with the quadratic variation. The realized range-based bipower

variation with parameter (r,s) e R? is defined as*:

RBV,, =M""* 1L

M-1
(rs)t Aim i L

r s
SpiA,A,mSp(i+l)A,A,m 1

i=1

then RBV.,, ERBVIm—p>j;az(s)ds, as M —oo. Hence, the new range based

estimator, RRV," =4, RRV," +(1-4, ,)RBV,", is consistent with quadratic variation,
t M
ie, RRV"— [ o(s)ds+ ) J7.
i=1

Furthermore, using the bivariate distribution of (RRV,", RBV,") and the delta-

method, Christensen and Podolskij (2006b) found the jump detection statistic,

2 | maintain some notations used by Christensen and Podolskij (2006b) throughout the chapter.
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JM (RRV" —=RBV")

1 ——>N(0,1),
N [ o(s)ids
A — A Al 424 A, —3A°
where v, = A7 (A +AL—-2AT), Aj=—"—22 Al =28 /1““4 20 Z““,and
Y iz,m ﬁl,m

223@]‘1,(: - 2ﬂ’z.cﬂ‘lz,c
ﬂ’z,cﬂ‘lz,c

AP = . In addition, they adopted the modified ratio-statistic to

improve the size properties in finite samples. The modified ratio-statistic is

N (1_ RBV%RV“M )

= “ 5>N(0,1), (15)

\/vm max "% oy, X}

M-3

t
4
Where RQth :AMT,.“ZSpiA,A,mSp(i+l)A,A,msp(i+2)A,A,mSp(i+3)A,A,m and RQth —p)J.OO— (S)ds'

i=1

t+1

2.2 Predicting volatility models
In this study, we will explore :MIDAS regression model, which was introduced by
Ghysels et al. (2002, 2006) and HAR-regression madel, which was suggested by Corsi
(2004), to predict volatility from t to“t-+H ;where H is the prediction horizon in
days.

The multi-period realized variances, which were constructed by Andersen et al.

(2007), were defined as the normalized sum of the one-period realized variances,

RV

t+1?

RV, =H*RV_ ,+RV_,+---+RV_,), RV,

where H =1, 5, 10, 15, and 20 . H is the prediction horizon in days, in the
empirical analysis, as one day, weekly, bi-weekly, tri-weekly, and monthly. In addition,
we will follow Forsberg et al. (2007), using RV and its standard deviation and log
form to predict volatility.

The HAR-RV models have been introduced by Corsi (2004), and they can

capture the long memory property of the realized variance. The model is defined as
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RV,

ttel ao +aDXt—1,t +aWXt—5,t +a, X

M 7 t-20,t +¢&

tt+1?

(16)
in which X =RV,BPV, C, and CJ . Similarly, the HAR-RRV model is as follows

RRV, ., =«a, JrozDXH’t +a, XH.)_t +a, X

tt+1 M t-20,t

+ &

gy (17)
where X =RRV,RBV, C, and CJ. Andersen et al. (2007) defined the HAR-RV-CJ
model, which explores the separation of RV, into the continuous part C, and jump
part J,. This separation was suggested by Barndorff-Nielsen et al. (2004). The
HAR-RV-CJ model and the HAR-RRV-CJ are shown below

RViun =ap + aCDCHJ + ey Cw + oy, CFZO‘I 18)
+aypd e T % J e F gy J oo TELLH

RRV’LHH =a, + aCDCt—l,l + aCCWCHn + Ao szo,t (19)
+aypd e Tl J by J oo TELLH

Besides, following Forsberg and:Ghysels (2007);.we will consider the HAR-RV * -X *
(HAR-RRV ”*-X*) model, and the HAR-InRV-InX (HAR-In RRV-In X) model,

with X =RV (RRV),BPV (RBV);.C, and CJ . The-models are as follows,

RV, (RRVE ) =a, +a X[ +a, X[, +a, Xy R (20)
InRV In RRV,
t,t+H ( t,t+H ) ’ (21)

=a,+aIn X1ty In Xisi +ay In X201 &€ tan

RVI}I/{L(RR Il+1) a +a Cl ll CWCI}/SI +a C}/ (22)
+aJDJt}/1t +aJWJt}/5t +a J}/ +8tt+l’

INRV, . (INRRV, ,,,,)

=y +ag In Ciitaew In Cise ey In Cior o (23)

+aJD In ‘]t—l,t +aJW In ‘]t—5,t +aJM In ‘]t—20t + gt t+H
where X*2 = H7?(X¥2 4+ X+ .+ X¥ Jand In X, =HH(IN X+t Xy ).

The differences between MIDAS and HAR regressions models are the lagged

regressors and their weights. The MIDAS regression is introduced by Ghysels et al.
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(2002, 2005). MIDAS regressions can run parsimoniously parameterized regressors of
the data observed at different frequencies. Ghysels et al. (2006) used the MIDAS
regressions to predict volatility. In my present chapter, | followed their method. The

MIDAS-RV and MIDAS-RRV models can be written as

RViten =ty + 0y Ztrfg b(K, 6, 60,)X 1k + Evins (24)
RRV, on =ty + 4 ZETS b(K, 6, 60,)X 1k T i (25)
. 6-1 1— 6,-1
Where b(klel’gz): kf (k/kmaX lgl!ez) , f(x101102) :w , and
20 Tk 61,6) 5(,.6,)

ree)r(e
ﬂ(@l,ez):w, with X =RV(RRV), BPV(RBV), C,and CJ . For all the
r(6+o,)

MIDAS regressions, we use k_ =50%4andwe.fix 6,=1°. As noted by Forsberg et al.

(2007), we will consider the MIDAS-RV*-X*%madel, and the MIDAS-InRV-In X

model, with X =RV, BPV, C:and CJ .-The models-are as follows,

kmaX
RVt,/]t/z+H = Hy + ¢H Zk:o b(k’ 01' ez)xi/ifl‘t—k + Ctam (26)

IN(RV, 1)) =ty + D" b(K, 6, 6,) IN(X 1) + 6 s (27)

and under the MIDAS-RRV # -X”* and MIDAS-In RRV-In X, the RV

tt+H

is replaced

by RRV,,., ,andthe BPV,

tt+H

is replaced by RBV in the equations (26), (27).

Jt+H ! tt+H

2.3 Conditional models
We will show whether the jump will make the structural breaks in conditional
variance process or not. The structural change is modeled by allowing the dynamics to

be different, if the bipower jump test indicates a jump at time t. The conditional

® Ghysels (2006) showed that using longer lags (i.e., k >50) resulted in little effect over the results.
* This will give us declining weights in the lag polynominal.
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model is given by

RV, =(e,+2;D)+(a, +a;D,)X

tt+H

+ (aW + a\}\ll Dt) Xt—5,t (28)

t-1,t

+ (aM + al;]/I DI)XI—ZO,l + gl,HH
where D, is the indicated variable, in which D, =1, if the bipower jump test
indicates a jump at time t. X =RV,BPV, and C. We employ the similar approach

for its standard deviation and log form regressions. In the realized range-based

variance, the RV replaces the RRV , and the BPV is replaced by RBV. We will test

J

thenull H,:a) =a) =, =a, =0, using the Chow Test. If the null H, is rejected,

it represents that the jump will result in the structural breaks.

2.4 Evaluation measures
Patton (2006) showed that the mean square error:(MSE) loss function is robust with

regards to the volatility proxy- used. In 'this' chapter, we will use the MSE as a

comparing criterion. In the realized return=based volatility, let RV denote the true

tt+H

value of the RV forthe H days, and let RV..n denote the predicted value of the

dependent variable. In the realized range-based volatility, RV is replaced by RRV .

Then the MSE is given by
MSE=N">" (RV,,,, ~RViuu)*,

where N is the number of forecasts. As denoted by Forsberg and Ghysels (2007), in

order to be able to compare the MSE from the regressions, we undo the

transformation, i.e., the MSE of the RV in standard deviation and log form are

respectively given by
MSE = NilziN:l(RVi,HH _(ﬁ\\/fi”" )2)2 1

MSE =N">" (RV,,., —exp(In RV 1ct1))” .

ii+H
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Using these measures, we can compare the models with different transformations of
the dependent variable.

Moreover, we will compare both the HAR and MIDAS models. Because the
dependent variables are not identical, we will compare their relative decreasing ratio

of MSE.

3 Data and empirical results

3.1 Data descriptions

This study employs 5-minute intra-day data of the S&P 500 index securities. The
intraday data are obtained from Tick Data Inc., covering the period from January 1,
1995 to March 31, 2005, and consisting of 2535 days with 78 intra-day 5-minute
observations. Table 1 shows that the descriptive statistics of the data. Panel A
represents the descriptive statistics. of the realized -return-based variation. Panel B
represents the descriptive statistics..of the _realized range-based variation. LB,
reports the Liung-Box test statistics for.up to-the tenth order serial correlation. RV,
denotes the realized variance, RRYV, is the realized range-based variance; C. is the
continuous part, and J, is the jump part of RV, (orRRV,) as separated by the
bipower jump test of Barndorff-Nielsen and Shephard (2004a). For the bipower jump
test, a significance level o« =0.999 is used, and the critical value of LB, is 18.3070.
BPV, (RBV,) denotes the realized bipower (realized range bipower) variation.

Table 1 shows that the realized range-based variation is a more efficient
volatility estimator than the realized return-based variation because the standard
deviation of RRV, is smaller than the standard deviation of RV, . But note that the
means of the realized range-based variations are smaller than the realized variations,
i.e., using the realized range-based variations to estimate the latent volatility will

induce a downward bias. This is because the price path is not observed continuously.

14



The observed minimum and maximum price over- and underestimates the true
minimum and maximum, respectively. Studying the LB statistics, the RV, (RRV,)
exhibits the highest degree of serial correlation for all the transformations, which

denote that these volatility measures have higher persistence.

3.2 In-sample empirical results

In Table 2, we examine the in-sample fit for the HAR regressions of the realized
variance (HAR-RV) and the realized range-based variance (HAR-RRV), using the
S&P 500 cash index data set. Panel B and C denote the standard deviation and log

transformation of the variances respectively. We focus on five different prediction

horizons, one day, one, two, three and four weeks, corresponding to RV, and

tt+H

RRV,

t,t+H

for H =1, 5, 10, 15, and 20-;respectively. For both the HAR-RV and the

HAR-RRV regressions, comparing across-prediction horizons, the MSE is always the
lowest when the horizon is two weeks, thus indicating that the MSE for the two weeks
prediction horizon is more precise than the other horizons. Furthermore, the relative
decreasing ratios of the mean square errors of HAR-RRV regressions are always
larger than those of the HAR-RV regressions. That is to say, using the realized
range-based volatility to predict the latent volatility proxy is more precise than the
realized volatility.

In Table 3, we examine the in-sample fit for the MIDAS regressions of the
realized variance (MIDAS-RV) and the realized range-based variance (MIDAS-RRV),
using the S&P 500 cash index data set. We can obtain similar results as the above ones.
For both the MIDAS-RV and the MIDAS-RRV regressions, when we predict
volatility for two or three weeks horizons, we can get more accurate predictions. The

relative decreasing ratios of the mean square errors of MIDAS-RRV regressions are
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always larger than those of the MIDAS-RV regressions, i.e., using the realized
range-based volatility to predict the latent volatility is more precise than the realized

volatility.

3.3 Conditional HAR models

If there is a jump at time t, the jump would imply a different dynamic of the
continuous part of the price process. Table 4 reports the result of the Chow test of the
corresponding F statistics and P —values. The realized range-based regressions
are significant at one day and one week horizons, i.e., the price process is not
invariant to jumps at short-run volatility forecasting, but the realized return-based
regressions are almost invariant to jumps. The results are similar when we model the
realized return and range-based variances in the standard deviation and the log form,
as reported in Table 4.

Besides, by looking at the results-in-Table 5; there are similar results as the
above ones. For both the conditional. HAR-RV and the conditional HAR-RRV
regressions, when we predict volatility for two or three weeks horizons, we can get
more accurate predictions. In addition, the relative decreasing ratios of the mean
square errors of HAR-RRV regressions are almost larger than those of the HAR-RV
regressions, i.e., using the realized range-based volatility of the conditional HAR
regressions to predict the latent volatility, which is more precise than the realized

volatility.

3.4 Out-of-sample empirical results
Table 6 and Table 7 report the out-of-sample results both for the HAR and MIDAS
regressions of the realized volatility and the realized range-based volatility. We split

the data into two parts: a sample part to estimate these two models and an
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out-of-sample part for forecasting. In this study, we explore the rolling window
analysis to predict the out-of-sample forecasting. The rolling window’s width is 2400
observations and the windows are rolled through the sample once for at a time; there
will be 135 rolling estimates for each parameter. Similarly, there will be 131 (one
week), 126 (two weeks), 121 (three weeks), and 116 (four weeks) rolling estimates for
each parameter respectively. Hence, the first in-sample period covers January 1, 1995
to September 16, 2004, a total of 2400 days. For both the HAR and the MIDAS
regressions, the mean square errors of the RRV are almost smaller than the RV

regressions, and the results are the same as the above.

4. Conclusions

In this chapter, we employ the mixed data sampling regression and the heterogeneous
autoregressive regression that are able to repreduce the memory persistence observed
in the data, and easy to estimatej-and-the-realized volatility and the realized
range-based volatility measures have higher.persistence. Using the MIDAS models
and HAR models to predict volatility with the dependent variables, which are the
realized volatility and the realized range-based volatility, we expect to find the most
accurate way for forecasting volatility. From the empirical results, the realized
range-based variance is more efficient; in the in-sample forecasting, the relative
decreasing ratio of MSE of HAR-RRV (MIDAS-RRV) regressions are almost larger
than that of HAR-RV (MIDAS-RV); and in the out-of sample forecasting, the MSE of
HAR-RRV and MIDAS-RRV regressions are small. The regressors consisting of the
continuous sample path and jump variability measures (CJ) in the HAR and MIDAS
regressions predict the future realized range volatilities, and such dominates almost in
all mean square error (MSE) terms. Furthermore, the realized range-based regressions

are significant for short-run volatility forecasting, but the realized return-based
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regressions are almost invariant to jumps. Hence, for our empirical results, using the
HAR and MIDAS regressions to predict latent volatility, under different variations,

and the realized range-based variance is a good volatility proxy.
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Table 2.1 Descriptive statistics of S&P 500 1995/01/01 ~ 2005/03/31

Panel A Realized return-based
Mean St. Dev Skew Kurt Min Max LBy
RV, 0.8792 1.2114 9.5654  197.2392 0.0277 323951  4199.6178
C 0.8035 0.9845 45023 35.4207 0.0277 122312  6848.0977
J; 0.0757 0.5616  34.7844  1497.8044 0.0000  24.8401 43412
BPV, 0.7463 0.9574 4.9252 41.7276 0.0281 127705  6856.5760
th% 0.8336 0.4295 2.0464 13.1757 0.1665 5.6917 10051.2788
ct}/z 0.7980 0.4084 1.6319 7.8198 0.1665 3.4973  10702.3322
J% 0.0931 0.2589 5.3464 62.9823 0.0000 4.9840 28.8587
prr% 0.7654 0.4008 1.7462 8.6065 0.1678 35736 10980.4914
InRV; -0.5945 0.9596 -0.0090 3.0608 -3.5861 34780 12603.5280
InC, -0.6873 0.9765 -0.0575 2.9382 -3.5861 2.5040  12677.0609
In(J; +1) 0.0489 0.1675 6.7823 79.1892 0.0000 3.2519 59.7342
InBPV; -0.7779 0.9883 -0.0251 2.9318 -3.5703 25471  13156.5850
Panel B Realized range-based
Mean St. Dev Skew Kurt Min Max LBy
RRV; 0.7589 1.0791 146190  422.6160 0.0365  35.2861  3476.9151
C 0.6740 0.8816 8.7098  167.0704 0.0365 225290  5505.4818
Ji 0.0849 0.3104  28.1328  1104.4405 0.0000  12.7571 58.2870
RBV, 0.6477 0.8513 9.2516  188.7055 0.0374 225290  5375.3518
RRv,}/z 0.7785 0.3911 2.1817 175788 0.1911 5.9402 11308.8325
c% 0.7326 0.3706 1.8761 11.7264 0.1911 47465 12130.6048
J}/z 0.1759 0.2323 2.6193 23.8600 0.0000 35717 300.0182
RBV,% 0.7186 0.3628 1.9040 12:2177 0.1933 47465 12177.7777
InRRV; -0.7210 0.9379 0.0094 2.8980 -3.3103 35635 14373.9498
InC; -0.8478 0.9473 0.0517 2.7497 -3.3103 3.1148  14842.8362
In(J; +2) 0.0686 0.1348 5.7459 69.4079 0.0000 2.6216 335.6110
InRBV; -0.8842 0.9429 0.0535 2.7622 -3.2871 3.1148  14924.9842

Note: The table shows that the S&P 500 cash index securities cover the period from January 1, 1995 to

March 31, 2005, consisting of 2535 days with 78 intra-day 5-minute observations. Panel A represents the

descriptive statistics of the realized return-based variations. Panel B represents the descriptive statistics of

the realized range-based variations. LB,, reports the Liung-Box test statistic for up to the tenth order

serial correlation. RV, denotes the realized variance, RRV, is the realized range-based variance; C, is

the continuous part, and J, is the jump part of RV, (or RRV,) as separated by the bipower jump test of

Barndorff-Nielsen and Shephard (2004a). The bipower jump tests a significant level at « = 0.999 ; and the

critical value of LB, is 18.3070. BVP, (RBV,) denotes the realized bipower (realized range bipower)

variation. In Panel A, the first part describes the RV, , the next describes the square root transformation,
and the last describes the log transformations of the variables. Panel B replaces RRV, to RV,.
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Table 2.2

In-sample results S&P 500 1995/01/01 ~ 2005/03/31: HAR

Panel A HAR-RV HAR-RRV
Horizon RV BPV C CJ RRV RBV C CJ
MSE
1 day 0.9258 0.8394 0.8429 0.8389 0.7902 0.7545 0.7478 0.7140
(0.2358)  (0.3071)  (0.3042)  (0.3075) | (0.2677)  (0.3008)  (0.3070)  (0.3383)
1 week 0.4256 0.4178 0.4091 0.4047 0.3198 0.3167 0.3151 0.3077
(0.6487)  (0.6551)  (0.6623)  (0.6659) | (0.7036)  (0.7065)  (0.7080)  (0.7149)
2 weeks 0.2930 0.2684 0.2736 0.2681 0.2033 0.1897 0.1895 0.1861
(0.7581)  (0.7784)  (0.7741)  (0.7787) | (0.8116)  (0.8242)  (0.8244)  (0.8275)
3 weeks 0.3002 0.2831 0.2931 0.2899 0.2032 0.1982 0.1979 0.1945
(0.7522)  (0.7663)  (0.7580)  (0.7607) | (0.8117)  (0.8163)  (0.8166)  (0.8198)
4 weeks 0.3155 0.3028 0.3014 0.2855 0.2114 0.2043 0.2022 0.1997
(0.7396) (0.7500) (0.7512) (0.7643) (0.8041) (0.8107) (0.8126) (0.8149)
Panel B HAR-RV* HAR-RRV*
Horizon RV* BPV* c* (CY* RRV” RBV” c* (C)H*
MSE
1 day 0.8964 0.8432 0.8503 0.8495 0.7560 0.7338 0.7295 0.7192
(0.2600)  (0.3039)  (0.2981)  (0.2987) | (0.2994)  (0.3200)  (0.3240)  (0.3335)
1 week 0.4059 0.4026 0.3980 0.3960 0.3041 0.3036 0.3031 0.3004
(0.6649)  (0.6677)  (0.6715) _ (0.6731) | (0.7182)  (0.7187)  (0.7191)  (0.7216)
2 weeks 0.2878 0.2655 0.2678 0.2639 0.2022 0.1903 0.1900 0.1885
(0.7624)  (0.7808)  (0.7789) (0.7822) | (0.8126)  (0.8236)  (0.8239)  (0.8253)
3 weeks 0.2944 0.2810 0.2896 0.2869 0.1998 0.1972 0.1960 0.1945
(0.7570)  (0.7680)  =(0.7609)  (0.7632) | (0.8148)  (0.8173)  (0.8184)  (0.8198)
4 weeks 0.3121 0.2990 0.2975 0.2841 0:2091 0.2023 0.2006 0.1952
(0.7424)  (0.7532)  (0.7544) +*'(0.7655) | (0.8062)  (0.8125)  (0.8141)  (0.8191)
Panel C HAR- InRV HAR- InRRV
Horizon InRV In BPV InC In(CJ) InRRV In RBV InC In(CJ)
MSE
1 day 0.9112 0.8797 0.8898 0.8887 0.7507 0.7364 0.7351 0.7302
(0.2478)  (0.2738)  (0.2655)  (0.2664) | (0.3043)  (0.3176)  (0.3188)  (0.3233)
1 week 0.4068 0.3981 0.3998 0.3952 0.3023 0.2998 0.3000 0.2958
(0.6642)  (0.6714)  (0.6700)  (0.6738) | (0.7199)  (0.7222)  (0.7220)  (0.7259)
2 weeks 0.3040 0.2893 0.2875 0.2818 0.2129 0.2035 0.2029 0.2040
(0.7491)  (0.7612)  (0.7627)  (0.7674) | (0.8027)  (0.8114)  (0.8120)  (0.8110)
3 weeks 0.3026 0.2928 0.2998 0.2949 0.2034 0.2020 0.2005 0.1983
(0.7502)  (0.7583)  (0.7525)  (0.7566) | (0.8115)  (0.8128)  (0.8142)  (0.8162)
4 weeks 0.3222 0.3118 0.3080 0.2866 0.2168 0.2111 0.2091 0.2084
(0.7340)  (0.7426)  (0.7457)  (0.7634) | (0.7991)  (0.8044)  (0.8062)  (0.8069)

Note: The table represents MSE of the equations (17) — (24) for one day, one week through four weeks in-sample
predictions of the HAR regressions of RV and RRV of S&P 500 cash index from 1995/01/01 to 2005/03/31. The

different columns represent the use of different regressors. RV denotes the realized variance, RRV denotes the

realized range-based variance, BVP (RBV,) denotes the realized bipower (realized range bipower) variation, C

denotes the continuous part of RV ( RRV ) as determined by the bipower test. (CJ) denotes the continuous part

and the square root of the jump part that are used as separate regressors. Panel B is the model of the standard

deviation. Panel C is the model of the log form. In the bipower test to separate RV (RRV )into C and J,the

significant level «=0.999 was used. On the left side, the dependent variable is the Rv for all horizons;

and on the right side, the dependent variable is the RRV . The related decreasing ratios of MSE are in parenthesis.
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Table 2.3

In-sample results S&P 500 1995/01/01 ~ 2005/03/31: MIDAS

Panel A MIDAS-RV MIDAS-RRV
Horizon RV BPV C CJ RRV RBV C CJ
MSE
1 day 0.9306 0.8463 0.8491 0.8449 0.7945 0.7593 0.7530 0.7197
(0.2318)  (0.3014)  (0.2991)  (0.3025) | (0.2637)  (0.2964)  (0.3022)  (0.3331)
1 week 0.4248 0.4104 0.4026 0.4020 0.3207 0.3157 0.3141 0.3120
(0.6493)  (0.6612)  (0.6677)  (0.6682) | (0.7028)  (0.7074)  (0.7089)  (0.7109)
2 weeks 0.2832 0.2611 0.2635 0.2583 0.1995 0.1883 0.1874 0.1849
(0.7662)  (0.7845)  (0.7825)  (0.7868) | (0.8151)  (0.8255)  (0.8263)  (0.8287)
3 weeks 0.2905 0.2752 0.2837 0.2836 0.1994 0.1958 0.1950 0.1947
(0.7602)  (0.7728)  (0.7658)  (0.7659) | (0.8152)  (0.8186)  (0.8193)  (0.8196)
4 weeks 0.3075 0.2932 0.2929 0.2925 0.2053 0.1976 0.1958 0.1956
(0.7462) (0.7580) (0.7582) (0.7585) (0.8097) (0.8169) (0.8186) (0.8187)
Panel B MIDAS-RV* MIDAS-RRV*
Horizon RV* BPV* c* (CY* RRV* RBV” c* (C)H*
MSE
1 day 0.9007 0.8485 0.8545 0.8536 0.7599 0.7382 0.7342 0.7258
(0.2565)  (0.2996)  (0.2946)  (0.2954) | (0.2958)  (0.3159)  (0.3196)  (0.3274)
1 week 0.4035 0.3970 0.3933 0.3931 0.3030 0.3015 0.3012 0.3009
(0.6669)  (0.6723)  (0.6758)- = (0.6755) |"#(0.7192)  (0.7206)  (0.7209)  (0.7212)
2 weeks 0.2806 0.2600 0.2604 0:2555 071977 0.1884 0.1877 0.1869
(0.7684)  (0.7854)  (0.7850) — |(0.7891)" | (0:8168)  (0.8254)  (0.8261)  (0.8268)
3 weeks 0.2902 0.2773 0.2854 0.2855 0.1977 0.1954 0.1938 0.1902
(0.7604)  (0.7711)  (0.7644) I {07643y | (0.8168)  (0.8189)  (0.8204)  (0.8237)
4 weeks 0.3057 0.2883 0.2890 02771 0.2044 0.1976 0.1965 0.1949
(0.7476)  (0.7620)  (0.7614) = (0.7713)-  (0.8106)  (0.8169)  (0.8179)  (0.8194)
Panel C MIDAS- InRV MIDAS- InRRV
Horizon InRV In BPV InC In(CJ) InRRV In RBV InC In(CJ)
MSE
1 day 0.9130 0.8814 0.8907 0.8893 0.7539 0.7399 0.7387 0.7351
(0.2463)  (0.2724)  (0.2647)  (0.2659) | (0.3014)  (0.3143)  (0.3154)  (0.3188)
1 week 0.4039 0.3935 0.3958 0.3898 0.3010 0.2982 0.2984 0.2958
(0.6666)  (0.6752)  (0.6733)  (0.6782) | (0.7211)  (0.7237)  (0.7235)  (0.7259)
2 weeks 0.3048 0.2900 0.2887 0.2835 0.2118 0.2034 0.2029 0.1986
(0.7484)  (0.7606)  (0.7617)  (0.7660) | (0.8037)  (0.8115)  (0.8120)  (0.8160)
3 weeks 0.3016 0.2932 0.3014 0.3023 0.2041 0.2035 0.2025 0.1997
(0.7510)  (0.7580)  (0.7512)  (0.7505) | (0.8109)  (0.8114)  (0.8123)  (0.8149)
4 weeks 0.3288 0.3189 0.3152 0.2804 0.2245 0.2179 0.2164 0.1953
(0.7286)  (0.7368)  (0.7398)  (0.7685) | (0.7920)  (0.7981)  (0.7995)  (0.8190)

Note: The table represents MSE of the equations (17) — (24) for one day, one week through four weeks in-sample
predictions of the MIDAS regressions of RV and RRV of S&P 500 cash index from 1995/01/01 to 2005/03/31. The

different columns represent the use of different regressors. The related decreasing ratios of MSE are in parenthesis.
See Table 2 for further details.
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Table 2.4

Chow test for conditional HAR regressions

In-sample results S&P 500 1995/01/01 ~ 2005/03/31

Panel A HAR-RV HAR-RRV

Horizon RV BPV C RRV RBV C

F —stat and p —value

1 day 52.6680 1.7142 1.0365 59.9671 32.2231 30.0457
(0.0000) (0.1440) (0.3868) | (0.0000)  (0.0000)  (0.0000)

1 week 1.8256 2.3656 2.1403 14.3689 15.5310 15.2141
(0.1226) (0.0520)  (0.0747) | (0.0000)  (0.0000)  (0.0000)

2 weeks 2.7435 0.5548 0.5413 3.6889 1.8788 1.6905
(0.0292) (0.6957) (0.7055) | (0.0062)  (0.1148)  (0.1528)

3 weeks 0.7533 0.2970 0.3210 1.0382 0.6336 0.4908
(0.5572) (0.8796) (0.8636) | (0.3893) (0.6393)  (0.7425)

4 weeks 0.6198 0.1298 0.1385 1.7564 0.9276 0.8743
(0.6493) (0.9713) (0.9677) | (0.1423) (0.4505)  (0.4817)

Panel B HAR-RV* HAR-RRV*

Horizon RV* BPV* c* RRV* RBV* c*

F —stat and p —value

1 day 26.6570 1.3136 0.5917 32.6609 10.9828 8.2993
(0.0000) (0.2625) (0.6687) | (0.0000)  (0.0000)  (0.0000)

1 week 1.6470 0.9922 0.9285 7.2790 6.3360 6.1991
(0.1612)  (0.4113)  (0.4470) || (0.0000)  (0.0001)  (0.0001)

2 weeks 2.4738 04077 0.3580 4.1786 1.7955 1.3640
(0.0451) (0.8031))  (0.8384 ). (0.0027) (0.1303) (0.2470)

3 weeks 0.9541 0.2664 0:2282 0.6741 0.0904 0.0475
(0.4345)  (0.8992),..7(0.9223) I (0.6109) (0.9854)  (0.9957)

4 weeks 0.7671 0.1276 0.1057 1.9653 0.9361 0.8101
(0.5487)  (0.9722) = (0.9803)7]1.(0.1043)  (0.4457) (0.5211)

Panel C HAR-InRV HAR- InRRV

Horizon InRV InBPV InC InRRV InRBV InC

F — stat and p —value

1 day 16.4395 1.1144 0.9940 15.3766 2.8791 1.7581
(0.0000) (0.3479) (0.4095) | (0.0000) (0.0215) (0.1345)

1 week 1.5409 0.0340 0.0445 45171 2.3127 2.0388
(0.1891) (0.9978)  (0.9963) | (0.0014) (0.0567)  (0.0878)

2 weeks 2.0553 0.4506 0.4645 3.6827 1.4817 0.9904
(0.0873) (0.7719) (0.7618) | (0.0062) (0.2083)  (0.4134)

3 weeks 1.3271 0.2565 0.1589 1.5545 0.6619 0.5296
(0.2622)  (0.9053) (0.9587) | (0.1891) (0.6194) (0.7142)

4 weeks 0.6590 0.0862 0.0473 1.6982 0.8170 0.6134
(0.6217) (0.9866) (0.9957) | (0.1551) (0.5168)  (0.6538)

Note: The table is the Chow test of the F -statisticsand p-value for the test of the

hypothesis that the jump dummies are zero for one day, one week through four weeks

in-sample predictions of the conditional HAR regression for RV and RRV of S&P 500
cash index from 1995/01/01 to 2005/03/31. The p —value are in parenthesis.

See Table 2 for further details.
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Table 2.5

Using conditional HAR regressions

In-sample results S&P 500 1995/01/01 ~ 2005/03/31

Panel A HAR-RV HAR-RRV
Horizon RV BPV C RRV RBV C
MSE
1 day 0.8540 0.8371 0.8415 0.7902 0.7545 0.7478
(0.2950)  (0.3090)  (0.3053) | (0.2677)  (0.3008)  (0.3070)
1 week 0.4194 0.4100 0.4021 0.3198 0.3167 0.3151
(0.6538)  (0.6615)  (0.6681) | (0.7036)  (0.7065)  (0.7080)
2 weeks 0.2803 0.2660 0.2712 0.2033 0.1897 0.1895
(0.7686)  (0.7804)  (0.7761) | (0.8116)  (0.8242)  (0.8244)
3 weeks 0.2946 0.2810 0.2908 0.2032 0.1982 0.1979
(0.7568)  (0.7680)  (0.7599) | (0.8117)  (0.8163)  (0.8166)
4 weeks 0.3089 0.3015 0.2999 0.2114 0.2043 0.2022
(0.7450) (0.7511) (0.7524) (0.8041) (0.8107) (0.8126)
Panel B HAR-RV* HAR-RRV*
Horizon RV* BPV* c* RRV” RBV” c*
MSE
1 day 0.8964 0.8432 0.8503 0.7560 0.7338 0.7295
(0.2600)  (0.3039)  (0.2981) | (0.2994)  (0.3200)  (0.3240)
1 week 0.4059 0.4026 0.3980 0.3041 0.3036 0.3031
(0.6649)  (0.6677)  (0.6715) | #(0.7182)  (0.7187)  (0.7191)
2 weeks 0.2878 0:2655 0.2678 0.2022 0.1903 0.1900
(0.7624)  (0.7808) | (0.7789).| (0.8126)  (0.8236)  (0.8239)
3 weeks 0.2944 0.2810 0:2896 0.1998 0.1972 0.1960
(0.7570)  (0.7680), .+ (0.7609) | (0.8148)  (0.8173)  (0.8184)
4 weeks 0.3121 0.2990 0.2975 0:2091 0.2023 0.2006
(0.7424) (0.7532) (0.7544) (0.8062) (0.8125) (0.8141)
Panel C HAR-InRV HAR- InRRV
Horizon InRV InBPV InC InRRV In RBV InC
MSE
1 day 0.9112 0.8797 0.8898 0.7507 0.7364 0.7351
(0.2478)  (0.2738)  (0.2655) | (0.3043)  (0.3176)  (0.3188)
1 week 0.4068 0.3981 0.3998 0.3023 0.2998 0.3000
(0.6642)  (0.6714)  (0.6700) | (0.7199)  (0.7222)  (0.7220)
2 weeks 0.3040 0.2893 0.2875 0.2129 0.2035 0.2029
(0.7491)  (0.7612)  (0.7627) | (0.8027)  (0.8114)  (0.8120)
3 weeks 0.3026 0.2928 0.2998 0.2034 0.2020 0.2005
(0.7502)  (0.7583)  (0.7525) | (0.8115)  (0.8128)  (0.8142)
4 weeks 0.3222 0.3118 0.3080 0.2168 0.2111 0.2091
(0.7340)  (0.7426)  (0.7457) | (0.7991)  (0.8044)  (0.8062)

Note: The table represents MSE of the equations (29) for one day, one week

through four weeks in-sample predictions of the HAR regressions of RV and RRV of
S&P 500 cash index from 1995/01/01 to 2005/03/31. The related decreasing ratios of

MSE are in parenthesis.

See Table 2 for further details.
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Table 2.6 Out-of-sample forecasts of S&P 500 1995/01/01 ~ 2005/03/31: HAR

Panel A HAR-RV HAR-RRV

Horizon RV BPV C cl RRV RBV C cl
MSE

1 day 00295 00247 00221 00217 | 00187 00169 00167  0.0187
1 week 00246 00203 00157 00162 | 00155 00149 00147  0.0171
2 weeks 00295 00246 00203 00194 | 00176 00169 00164  0.0183
3 weeks 00470 00374 00313 00293 | 00275 00253 00248  0.0304
4 weeks 00502 00396 00358 00321 | 00287 00270 00263  0.0274
Panel B HAR-RV* HAR-RRV*

Horizon  RV* BPV* c* (CY)* RRV” RBV” c* (CY)*
MSE

1 day 00214 00198 00193 00193 | 00128 00122 00122  0.0126
1 week 00103 00088 00079 00083 | 00078 00078  0.0078  0.0080
2 weeks 00104 00088 00078 00079 | 00081 00084 00084  0.0085
3 weeks 00168  0.0124 0.0111 00113 | 00120 00113 00113  0.0123
4 weeks 00167 00144 00134 00132 | 00118 00122 00122  0.0131
Panel C HAR- In RV HAR- In RRV

Horizon InRV InBPV InC In(CJ) InRRV InRBV InC In(CJ)
MSE

1 day 00210 00199 00195 __ 00195 | 00128 00122 00122  0.0122
1 week 00083 00078 00072 00074 | *.0.0068 00070 00071  0.0072
2 weeks 00072 00071 (0065 . 0/0064 | 000065 00071 00073  0.0076
3 weeks 00089 00081 00074 | 00072 | 00077 00081  0.008L  0.0088
4 weeks 00097 00097 = 00090 00090 | 00081 00090  0.0092  0.0100

Note: The table represents MSE, for one day, one week-through-four weeks in-sample predictions of the HAR
regressions of RV and RRYV, of the out-of-sample forecasts of the S&P 500 cash index from September 16, 2004 to

March 31, 2005. Data from January 1, 1995 to March 31, 2005:Was used to estimate the parameters of the models.
See Table 2 for further details.
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Table 2.7 Qut-of-sample forecasts of S&P 500 1995/01/01 ~ 2005/03/31: MIDAS

Panel A MIDAS-RV MIDAS-RRV

Horizon RV BPV C CJ RRV RBV C CJ
MSE

1 day 0.0256 0.0273 0.0325 0.0219 0.0191 0.0217 0.0214 0.0186
1 week 0.0093 0.0064 0.0083 0.0169 0.0091 0.0091 0.0088 0.0168
2 weeks 0.0097 0.0051 0.0056 0.0187 0.0078 0.0071 0.0070 0.0193
3 weeks 0.0254 0.0062 0.0044 0.0298 0.0097 0.0040 0.0040 0.0297
4 weeks 0.0146 0.0066 0.0049 0.0331 0.0048 0.0039 0.0039 0.0270
Panel B MIDAS-RV* MIDAS-RRV*

Horizon RV” BPV”* c* (CY* RRV* RBV* c* (C)*
MSE

1 day 0.0215 0.0198 0.0193 0.0193 0.0129 0.0122 0.0123 0.0127
1 week 0.0106 0.0091 0.0082 0.0082 0.0079 0.0081 0.0081 0.0085
2 weeks 0.0113 0.0096 0.0087 0.0086 0.0086 0.0090 0.0090 0.0095
3 weeks 0.0193 0.0137 0.0125 0.0124 0.0136 0.0124 0.0124 0.0131
4 weeks 0.0183 0.0162 0.0155 0.0150 0.0129 0.0132 0.0132 0.0153
Panel C MIDAS- InRV MIDAS- InRRV

Horizon InRV InBPV InC In(CJ) InRRV InRBV InC In(CJ)
MSE

1 day 0.0209 0.0199 0.0194 0.0195 0.0128 0.0122 0.0123 0.0122
1 week 0.0085 0.0080 0.0074 0.0075 0.0070 0.0073 0.0074 0.0076
2 weeks 0.0078 0.0076 0:0071 0.0069 0.0071 0.0078 0.0080 0.0084
3 weeks 0.0096 0.0088 0.0082 0.0077. 0.0084 0.0089 0.0090 0.0097
4 weeks 0.0106 0.0103 0.0099 0.0087 0.0089 0.0096 0.0097 0.0106

Note: The table represents MSE, for one day, one week-through-four weeks in-sample predictions of the MIDAS
regressions of RV and RRYV, of the out-of-sample forecasts of the S&P 500 cash index from September 16, 2004 to

March 31, 2005. Data from January 1, 1995 to March 31, 2005:Was used to estimate the parameters of the models.
See Tables 2 for further details.
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Chapter 3 The Information Content of Implied Volatility
in the presence of the Continuous Components,
and the Jump Components of Realized Range

Volatility

1 Introduction

Most of the previous studies have documented the information content of the implied
volatility. They always focus on whether the implied volatility has the additional
information content of historical volatility; the realized volatility (RV) is always used
as the historical volatility. Giot and L.aurent (2007) considered the information content
of implied volatility in the continuous and jump:components of the realized volatility,
whose decomposition was suggested by ‘Barndroff:Nielsen and Shephard (2004),
using the encompassing regressions.. Because the realized range-based estimation of
the integrated variance has been proved to be more efficient, we will use the realized
range-based volatility to measure the historical volatility. We will employ the
heterogeneous autoregressive (HAR) regressions by Corsi (2004) and mixed data
sampling (MIDAS) regressions by Ghysels et al. (2006) as encompassing regressions
to examine the information content of the continuous and jump components of the
realized range-based volatility (RRV), and the additional information content of the
implied volatility as an additional regressor. In addition, this study focuses on the S&P
500 index, hence, we use the Chicago Board Options Exchange (CBOE) volatility
index new VIX as the measure of the implied volatility. The new VIX is based on
S&P 500 index options and adopts the model-free volatility expectation.

The results show that the implied volatility and almost all continuous
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components are statistically significant, while the jump components are almost not
significant. The implied volatility has a high information content and the continuous
components of the past realized range-based volatility feature relevant information
content by the implied volatility. Beside, the jump components do not contribute to
future valuable information.

In addition, except for h=1 horizon, the implied volatility and the
out-of-sample volatility have information contents but the implied volatility has more
powerful explanation abilities than the out-of-sample volatility for the future realized
range volatility.

The remainder of this chapter is organized as follows. In section 2, we discuss
the volatility measure, predict volatility regressions and cover the models we are
going to use. In section 3, we present the data and the empirical results. Section 4

concludes the article.

2 The Methodology
2.1 Construction of volatility measures

Let the logarithmic price of financial assets at timet be denoted by p(t) and follow
the continuous-time jump diffusion process

dp(t) = x(t)dt + o (t)dw(t) + x(t)da(t) , 1)
where u(t) and o(t) are the drift and instantaneous volatility, w(t) is the standardized
Brownian motion, q(t) is a counting process with time-varying intensity A(t), i.e.
P[dq(t) =1] = A(t)dt, and «(t)is the jump size. The quadratic variation process for a

sequence of partitions is defined by
n-1

[pI(t) =plimD " (p(s;.1) - P(s;))°
j=0

where0=s, <s, <---<s =tand sup{s;, —s;}—>0forn— .

j+l

27



When the data is sampled at a higher frequency, M times in a day, we will

denote the intraday ranges as:
Spaam = M8 {P, =P},

where s represents that each range is based on the corresponding m returns.

piA,A,m

The realized ranged-based variance over day t is defined as

M
RRV" =132, @
ﬂ’z,m i=1 o

where 4, =E(s), )<, VjeRandmeN?® and W is the Brownian motion. As

noted by Christensen and Podolskij (2006a, 2006b),

M
RRVtm*—P>J:02(S)dS +L-ZJf ,a M —> o,
i=1

2,m

ie., RRV.™ isinconsistent. Hence, they-modified the intraday high-low statistic to

make it consistent with the quadratic|variation. The realized range-based bipower

variation with parameter (r,s)eR’ is defined as®:

moo_ MU r $
RBV - M e il zspiA,A,mSp(iﬂ)A,A,m !

M -1
(r.s)t

i=1

then RBV.

(11),t

ERBVtm—p)J‘OtO'Z(S)dS, as M — . Hence, the new range based
estimator, RRV," =4, RRV," +(1-4,,)RBV,", is consistent for quadratic variation,

t M
. m P 2 2
i.e., RRYV, —>La (s)ds+ gl J°.
Furthermore, using the bivariate distribution of (RRV,", RBV,") and the delta-

method, Christensen and Podolskij (2006b) found the jump detection statistic,
VM (RRV," ~RBV,")
\/vm [ o(s)ds

< >N (0,1),

> There is no explicit formula for A » but it is computed to any degree of accuracy from simulations.

® | maintain some notations used by Christensen and Podolskij (2006b) throughout the chapter.
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A =2 2 -34"
_ + ﬂ‘lm 2,m ﬂl,m and

where v, =2 (A% +A%—2A%), AR ="En_Tam o opS :
iz,m ﬁl,m
2
AP = Ao~ 2o, . In addition, they adopted the modified ratio-statistic to

2,c2‘1,c
improve the size properties in finite samples. The modified ratio-statistic is

Z,,= N Gl ‘>N(0,1), (3)

\/v Max { "0 ooy, % }

M-3

t
4
Where RQth :AMT,.“ZspiA,A,mSp(i+l)A,A,mSp(i+2)A,A,mSp(i+3)A,A,m and RQth —p>J.OO— (S)dS.

i=1

Huang and Tauchen (2005) found that the statistics in equation (3) also had a sensible
power against other empirically calibrated stochastic volatility jump diffusion models.
Using equation (3), Andersen, Bollerslev,.and Diebold (2007) identified the jump

variation as,

II+1 =1 (Zt+1 > (Da)(RRVt:L i RBV:L) ) (4)

and the continuous component variation was estimated as the residual,

Coon = 1(Zoy <®,)-RRV" +1(Z,,,>®,)-RBV" |

ttl

()

where 1(:) denotes the indicator function, ®(:) is the standard cumulated normal
distribution (®, =®*(a)), and « is a significant level of the bipower test and we
will use @ =0.999 throughout the article. From the definitions in equations (4) and
(5), we ensure that the continuous variation and jump variation sum to the total

realized variation, i.e. RRVm =C.,.+J

t, I+l i+l "

2.2 Predicting volatility models
In this study, we will exploit MIDAS regression model, which was introduced by

Ghysels et al. (2002, 2006), and HAR regression model, which was suggested by
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Corsi (2004), to predict volatility from t to t+H, where H is the predicting
horizon in days.

The multi-period realized variances that were constructed by Andersen et al.
(2007). Similarly, the multi-period realized range-based varinaces were defined as the

normalized sum of the one-period realized range variances,

RRV.,..=H*(RRV,  +RRV , +---+RRV_...),

Lk L (2 tEH
where H =1, 5, 10, 15, and 20 . H is the prediction horizon in days, in the
empirical analysis, as one day, weekly, bi-weekly, tri-weekly, and monthly.

The HAR-RV models were introduced by Corsi (2004) and they can capture the
long memory property of the realized variance. Similarly, the HAR-RRV model is

written as follows

X X +&

tt+1?

RRV,

wn %t +aWXt—5,t +ta

Bt -1t M=" *t-20,t

where RRV

tt+H

represents the future RRV; using the HAR regressions.

Andersen et al. (2007) defined the HAR-RV-CJ model, which explores the

separation of RV, into the continuous part C, and jump part J . This separation
was suggested by Barndorff-Nielsen et al. (2004). Following Andersen et al.’s model,
the HAR-RRV-CJ is shown as below

RRYV,

o =0 T aCDCHJ + aCCWCH—,J +ag,C

t-20,t

+aypd . +ay,d . +ay,d i

t-1 t-5 t-20

As noted by Andersen et al. (2001) , the log form probability density of the error term
is close to the normal density, we will consider the HAR-In RRV-In cJ model in this

chapter. The models are as follows,

In RRV, .y =, +aep In Coitacy In Cis +cy In Ci sy

: (6)

+a,In Jia tayy In Jisi gy In Jioor Euin

where In X, =H?(In X, +..+In X, ).
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The differences between MIDAS and HAR regressions models are the lagged
regressors and their weights. The MIDAS regression was introduced by Ghysels et al.
(2002, 2005). MIDAS regressions can run parsimoniously parameterized regressors of
data the observed at different frequencies. Ghysels et al. (2006) used the MIDAS

regressions to predict volatility and we follow him. The MIDAS-RRV models can be

written as
kmax
RRV, . = 1y + 04 Zk:o bk, 6, 0,)X 1ok + € s
where RRv,_, represents the future RRV, using the MIDAS regressions.
: x4 (1-x)*"
D(ki 0 0,) = g Lk B g gy X U2
20 T kK36, 6,) 56,6,

r(6)re .
and £(6,,6,) =M. For all-the MIDAS regressions, we use K __ =50", and
I'(6,+6,)

we fix 6,=1°% Similarly as the above, we will consider the MIDAS-InRV-In CJ
model, which is written as follows;

IN(RRV, .,,) = 1, + 4 D0 0 B (KL 0, ) IN(C, 1) -
8,30, (K,1,0,,) N, )+

2.3 The models

We will use the HAR and MIDAS regressions as encompassing regressions to

examine the information content of the continuous and jump components of the

realized range volatility and the additional information content of the implied

volatility as an additional regressor. The models are shown as follows,

Model 1: Equation (6) and (7).

" Ghysels (2006) showed that using longer lags (i.e., k >50) has little effect on the results.
® This will give us declining weights in the lag polynominal.
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Model 2:

INRRV,,,,, =a, +a,, In(IV,_, )+¢&_.., . (8)
Model 3:
In RRV, ., =+, In(lvt—l,t) +agp I Ct—l,t +agy In Ct—S,t +agy In Ct—ZO,t )
+a,In Jia Hayy In Jisi gy In Jioor +Euin ,
kmax
INRRV, .y = 1y +a, NIV ) + ¢lzk:0 be (k,1,0,c)IN(Cyi0) (10)
kmax )
+¢, Zk:() b, (k,1,6,,) In(‘]t—k—l,t—k) +En
Model 4:
INRRV, .y =, +a,, In(IV_y,) | a1
+ayIn Joae T o In Jise Ty In Ji 200 T Erren
INRRV, .y =y +ay IN(IV ) (12)
kmax '
+ ¢2Zk:0 by(K,1, Op)In(d, Gy o) + &y
Model 5:
INRRV,,,, =, +,, In(IV: )
t,t+H 0 v 1t ’ (13)
+aep In Ct—l,t + gy in Ct—S,t +agy In Ct—ZO,t + & tin
INRRV, (. = 1y +a, IN(1IV )
(14)

kmax .
+6 > ™0 (K, 16, )IN(C )+ &

2.4 Implied volatility and out-of-sample volatility
Regarding the HAR-RRV-CJ and MIDAS-RRV-CJ° volatility forecasts, we employ
the out-of-sample estimation approach to generate the H -day volatility forecasts. We
explore the rolling window analysis to predict the out-of-sample forecasts. The rolling
window width is 1236 observations (1995/01/01 ~ 1999/12/31) and the windows are

rolled through the sample once at a time; there will be 1299 rolling estimates for each

° Using HAR (MIDAS) regressions, we model RRV with C (the continuous components) and
J (the jump components) regressors.

32



parameter. Similarly, there will be 1295 (one week), 1285 (two weeks), and 1280 (one
month) rolling estimates for each parameter respectively.

Then, we explore the information content of the implied volatility and the
out-of-sample volatility in the light of the future realized range volatility. The model

is shown as follows,

INRRV, ., =, +a, In IV, +¢&,.,,, (15)
INRRV, ., =@, +@, NRRV n + &, , (16)
and INRRV,,., =a, +a, NIV, +2,INRRV c.n + &, , (17)

where INRRVeiow is the out-of-sample estimation of the HAR-RRV-CJ (or

MIDAS-RRV-CJ) volatility forecast.

3 Data and empirical results

3.1 Data descriptions

This study employs 5-minute intra-day data“of the S&P 500 index securities. The
intraday data are obtained from Tick Data Inc., covering the period from January 1,
1995 to March 31, 2005 and consisting of 2535 days with 78 intra-day 5-minute
observations. The daily data of the VIX implied volatility index are supplied by the

CBOE. The time period is from January 1, 1995 to March 31, 2005.

3.2 Empirical results

Table 1 and Table 2 report the results of encompassing regressions, using the HAR
and MIDAS regressions respectively. These two encompassing regressions provide
almost the same results. Besides, in our empirical results, when we use the HAR

regressions, the adjusted R® is larger, i.e., their regressors have more powerful
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explanation abilities.

Results of Model 1, without the implied volatility, are that the continuous
components of the past realized range volatility provide major information for the
future realized range volatility (except for h=20 horizon, the weekly continuous
component is not significant), and the jump components are almost not significant
(except for h=1 horizon, the daily jJump component is significant).

In Model 2, the sole regressor of implied volatility is concerned. The
coefficients of the log implied volatility are statistically significant and almost close to
1, i.e., the future realized range-based volatility co-moves almost one-to-one with the
implied volatility. Because the adjusted R’s are large, the implied volatility has a
high information content.

In Model 4, the jump components are ‘added to Model 2. There are barely
increases with the adjusted R?s and the jump components are almost not significant.
This means that the implied volatility has-a-high information content and the jump
components do not contribute to futurevaluable information.

In Model 5, the continuous components are added to Model 2; the implied
volatility and almost all continuous components are statistically significant. Since
there are few increases with the adjusted R?”s, the total explanation powers of the
encompassing regression are scarcely enhanced. Hence, the implied volatility
subsumes more information than the continuous components of the past realized
range volatility. Similarly, different from Model 2, Model 3 includes all our possible
regressors: implied volatility, the jump/continuous components of the past realized
range volatility. The implied volatility and almost all continuous components are
statistically significant, but the jump components are almost not significant and there
are little increases with the adjusted R?s. Therefore, the implied volatility has a high

information content. Moreover, from Model 2 to Model 5 (or 3), the coefficients of
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the implied volatility (¢, ) are decreasing and the continuous components are
statistically significant. This means the past continuous components feature relevant
information content by the implied volatility.

Table 3 reports the information content of the implied volatility and the
out-of-sample volatility, which are the HAR-RRV-CJ (or MIDAS-RRV-CJ) volatility
forecast in the light of the future realized range volatility. We split the data into two
parts: a sample part to estimate these two models and an out-of-sample part for
forecasting. In this study, we explore the rolling window analysis to predict the
out-of-sample forecasting. The rolling window’s width is 1236 observations and the
windows are rolled through the sample once at a time. Hence, the first in-sample
period covers from January 1, 1995 to December 31, 1999. We find that all
coefficients are statistically significant for all horizons. Only h=1 horizon, the
coefficients of the out-of-sample volatilities.are larger than the implied volatilities.
The smaller adjusted R* representsithat-the-regression has noise. Besides, when the
implied volatility is added to the out-of-sample volatility, there are few increases with
the adjusted R*s. The total explanation powers of the encompassing regression are
scarcely enhanced. Hence, the out-of-sample volatility subsumes more information
than the implied volatility. For other horizons, the coefficients of the implied
volatilities are larger than the out-of-sample volatilities and the adjusted R’s are
larger. In contrast, the adjusted R?s of the sole regressor of the implied volatility are
greater than the sole regressor of the out-of-sample volatility. When the out-of-sample
volatility is added to the implied volatility, there are few increases with the adjusted
R?s. The total explanation powers of the encompassing regression are scarcely
enhanced. Hence, both regressors have information contents but the implied volatility
has more powerful explanation abilities than the out-of-sample volatility for the future

realized range volatility.
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4 Conclusions

The purpose of this chapter is to examine the information content of the continuous
and jump components of the realized range-based volatility, and the additional
information content of the implied volatility as an additional regressor. We use the
model-free implied volatility, VIX, as the measure of the implied volatility. For our
empirical results and based on the HAR and MIDAS regressions as an encompassing
regression analysis, we find that the implied volatility has a high information content
and the past continuous components feature relevant information content by the
implied volatility. Besides, the jump components do not contribute to future valuable
information. Furthermore, the implied volatility and the out-of-sample volatility have
information contents for the future realized volatility, but the implied volatility has
more powerful explanation abilities than the out-of-sample volatility for the future

realized range volatility (except-for..h =1 'horizon).
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Table 3.1 Encompassing Regression: HAR
S&P 500 index 1995/01/01 ~ 2005/03/31

Model 1: INRRV, ., =, +agp INC_y + ey, INCg, +agy INC g, +ap INJ L+, INJ g +apy INJ o + 6
Model 2: In(RRY,

Model 3: INRRV, ,,, =, + e, IN(IV,_, ) + ap INC Ly, + ey INC g + ey INC Ly + @ INJ iy + gy, INJ g+, INT 0 + 60

)=a,+a, In(1V,

t-1t

tHH )+‘9WH

Model 4: INRRV, ., =, +a, IN(IV_y )+ a5 InJy + gy INJ g+ gy INJ o + 6

Model 5:InRRV, ., = a, +a,, IN(IV,_y )+ INCy + gy, INC g + 0y INC Ly + 61

Model 1 Model 2 Model 3 Model 4 Model 5
h=1
a, 0.0797" (0.0287) -1.3285" (0.0293)  -0.1865" (0.0380)  -1.2579" (0.0395)  -0.2408" (0.0354)
a, 1.23317 (0.0407)  0.3915"(0.0383)  1.3442" (0.0544)  0.3142" (0.0346)
o 0.3647" (0.0320) 0.3145" (0.0317) 0.3158" (0.0297)
Oy 0.3425" (0.0447) 0.2586" (0.0426) 0.2954" (0.0439)
ag, 0.2360" (0.0405) 0.1789" (0.0403) 0.1363" (0.0356)
a,, -0.2581" (0.0754) -0.2450" (0.0700)  -0.0856 (0.0845)
Ay, 0.2725 (0.2264) 0.1931 (0.2147) 0.4080 (0.3848)
a,, 0.0080 (0.3080) -1.2423" (0.3684)  -2.1564" (0.8089)
adjr? 0.7538 0.6350 0.7663 0.6407 0.7632
h=5
a, 0.1421" (0.0529)  -1.2301" (0.0452), % 20.1244 (0.0640)  -1.1716" (0.0608)  -0.1902" (0.0594)
a, 1.1687" (0.0646)  0.3824" (0.0610)  1.2576" (0.0807)  0.2951" (0.0572)
ag, 0.2418" (0.0490) 0.1646" (0.0492) 0.1738" (0.0485)
Ay, 0.3116" (0.0713) 0.2601" (0.0694) 0.3195" (0.0697)
ag, 0.3665" (0.0710) 0:3036" (0.0677) 0.2288" (0.0633)
a,, -0.0513 (0.1665) 20102297(0.1429),  -0.0185 (0.1939)
oy 0.5209 (0.4147) 0.4001 (0:3946) 0.4850 (0.4544)
a,, -0.7640 (0.6233) -1:8934 (0.7015)  -1.9682 (1.1285)
adjR? 0.7867 0.6745 0.8005 0.6781 0.7971
h=10
a, 0.1807" (0.0744)  -1.1845" (0.0544)  -0.0600 (0.0921)  -1.1311"(0.0770)  -0.1351 (0.0827)
a, 1.1253" (0.0814)  0.3367" (0.0780)  1.2066" (0.0991)  0.2568" (0.0773)
ag, 0.2835" (0.0630) 0.2149" (0.0652) 0.2161" (0.0639)
Oy 0.2400" (0.1074) 0.2001 (0.1076) 0.2507" (0.1097)
Oy 0.3961" (0.0909) 0.3315" (0.0902) 0.2684" (0.0875)
a,, -0.4050 (0.2219) -0.2903 (0.2181)  -0.1192 (0.3392)
oy 0.4893 (0.4997) 0.2886 (0.5183) 0.4843 (0.6744)
a,, -0.5655 (0.6968) -1.5346 (0.8174)  -1.7351 (1.2479)
adjR? 0.7759 0.6551 0.7871 0.6561 0.7835
h=20
a, 0.2199 (0.1042)  -1.1228" (0.0698)  -0.0210 (0.1228)  -1.0652" (0.0943)  -0.1153 (0.1165)
a, 1.0339" (0.1061)  0.3267" (0.1061)  1.1235" (0.1119) 0.2112" (0.1006)
ag, 0.2313" (0.0797) 0.1688" (0.0838) 0.1832" (0.0838)
Ay, 0.1622 (0.1741) 0.1175 (0.1795) 0.1439 (0.1904)
Oy 0.4956" (0.1525) 0.4319" (0.1423) 0.3806" (0.1327)
ay, -0.1930 (0.4462) -0.1789 (0.4077)  -0.5166 (0.5033)
oy -0.6509 (1.0094) -0.7153 (1.0525)  -0.2530 (1.3807)
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aJM
adjr?

-0.2759 (1.2454)
0.7166

0.6010

-1.2065 (1.4330)
0.7275

-0.7573 (1.7804)
0.6011

0.7223

Note: Newey-West standard errors are given in parenthesis.

* denotes statistical significance at the 1% level.

Table 3.2 Encompassing Regression: MIDAS
S&P 500 index 1995/01/01 ~ 2005/03/31

Kinax Kinax
Model 1: In(RRV, ;) = 14, + %z o Pe (6,1,6,c)In(Cy )+ ¢zzk:0 b, (K,1,6,5) NI e s) +

Model 2: In(RRV, .,,) = #, +,, In(IV,,,) + &,

tt+H

Kimax Kmax

Model 3: IN(RRV, ..., ) = g4+, NIV, 5 )+, 3" be (K18, ) IN(Coyy )+ 00,7 by (K, 1, 6,0) Iy i) + €
kmax

Model 4: IN(RRV,,..,,) = 4y, +cty, NIV, ) +6, 0,700, (K, 1,6,,) I3y 0) + €
kmax

Model 5: IN(RRV, 1) = £t + 2 IN(IV, 1) + 4 327 be (K, L6, ) INCy 4 1) + €

Model 1

Model 2

Model 3

Model 4

Model 5

h=1
Hy
a|V

¢1

¢2

adjr?
h=5

My
aIV

¢

adjr?

h=20
My
aIV
¢1

9,
adjr?

0.0015 (0.0182)

0.8291" (0.0137)
-0.1906 (0.1257)
0.6913

0.1086" (0.0242)

0.9009' (0.0191)
0.0028 (0.1359)
0.7819

-0.0704 (0.0716)

0.6600 (0.0481)
0.3168 (0.2471)
05228

0.0007 (0.0820)

0.7295 (0.0602)
0.0669 (0.3532)
0.5766

-1.3198" (0.0303)
1.2229° (0.0418)

0.6237

-1.2172" (0.0458)
1.1540°.(0.0654)

0.6632

-1.1684" (0.0541)
1.1072" (0.0815)

0.6438

-1.1130 (0.0705)
1.0225' (0.1066)

0.5912

-0.4987" (0.0377)
0.5581" (0.0359)
0.5538" (0.0225)

03723 (0:0786)
0:7383

-0.1765 (0.0598)
072898'(0.0564)
0.7251" (0.0389)
=0:1101 (0:1284)
0.7919

-0.7626" (0.0688)
0.8165" (0.0818)
0.2888" (0.0439)
-0.2344 (0.2279)
0.6902

-0.5583" (0.0901)
0.6369" (0.0898)
0.3965 (0.0699)
-0.5527 (0.3030)
0.6672

-1.3151" (0.0303)
1.2327 (0.0434)

-0.1401 (0.0830)
0.6239

-1.2144" (0.0464)
1.1587" (0.0655)

-0.0820 (0.1743)
0.6626

-1.1619 (0.0560)
1.1180" (0.0801)

-0.1727 (0.2589)
0.6430

-1.0861" (0.0747)
1.0612" (0.1086)

-0.7062 (0.4406)
0.5959

-0.5232 (0.0359)
0.5423°(0.0353)
0.5456 (0.0217)

0.7356

-0.1807" (0.0594)
0.2838" (0.0565)
0.7248' (0.0389)

0.7922

-0.7739° (0.0669)
0.8036" (0.0825)
0.2871" (0.0440)

0.6904

-0.5694° (0.0893)
0.5989" (0.0887)
0.4039" (0.0693)

0.6650

Note: Newey-West standard errors are given in parenthesis.

* denotes statistical significance at the 1% level.
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Table 3.3 Encompassing Regression: Implied Volatility and Out-of-Sample Volatility
S&P 500 Index

InRRV,

tt+H

InRRV,

ti+H

InRRV,

tt+H

where In ﬁ/ww is the out-of-sample estimation of the HAR-RRV-CJ (or MIDAS-RRV-CJ) volatility forecast.

=aq,+a InlV, +

=a,+a,INRRV 111 +¢,

=a,+a,InlV +a,INRRV (1.n +¢

gLHH

tt+H

tt+H

h=1 h=5 h=10 h=20
HAR a, a, a, a, a, a, a, a, a, a, a, a,
Coefficient  0,3060"  1.1587" 0.3205"  1.1371" 0.3405"  1.1063" 0.3724"  1.0586"
Std. Error 0.0477  0.1085 0.0432  0.0996 0.0397  0.0927 0.0351  0.0816
adjR? 0.4476 0.5958 0.6282 0.6488
Coefficient ~ 1,3219" 1.0222" 12406 0.9928"  1.2101" 0.9740"  1.1642" 0.8992"
Std. Error 0.0559 0.0898  0.0537 0.0888  0.0538 0.0869  0.0518 0.0775
adjR? 0.4848 0.5626 0.5470 0.4599
Coefficient  0.9969"  0.3875"  0.7267"  0.6745"  0.72037 . 0.4326" £.05969° 0.8016" 0.3465°  0.5296"  0.8723"  0.2577"
Std. Error 0.1276  0.1363  0.1409  0.0882 ,%0.1141 _TOMO57<" 00769  0.1115  0.0932  0.0648 01020  0.0877
adjR? 0.4940 0.6223 0.6495 0.6663
MIDAS
Coefficient  0.3060"  1.1587" 0.3205" # 1:4371% 0.3405"  1.1063 0.3724"  1.0586"
Std. Error 0.0477  0.1085 0.0432  0.0996 0.0397  0.0927 0.0351  0.0816
adjr’? 0.4476 0.5958 0.6282 0.6488
Coefficient  1.3289" 1.0218"  1.2538" 1.0059"  1.2233" 0.9794"  1.1650" 0.8974"
Std. Error 0.0560 0.0896  0.0537 0.0889  0.0546 0.0875  0.0526 0.0784
adjr’? 0.4864 0.5736 0.5479 0.4593
Coefficient  1.0116"  0.3760"  0.7354"  0.7095°  0.6844°  0.4693"  0.6014" 0.8015° 0.3473° 05275 0.8749"  0.2530
Std. Error 01219 01273 0135 00893 01119  0.1075  0.0743 01078  0.0896  0.0611  0.0989  0.0788
adjr’? 0.4950 0.6259 0.6492 0.6655

Note: The standard errors are computed following a robust procedure, Neway-West standard errors, taking into account of the

heteroscedastic and autocorrelated error structure.

* denotes statistical significance at the 1% level.
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Chapter 4 Detecting Mutual Fund Timing Ability Using

the Threshold Model

1. INTRODUCTION

Investment performance and the market timing of mutual funds continue to receive
considerable attention by both academics and market practitioners alike, with a
variety of evaluation techniques having been proposed and implemented over the
years. Treynor (1965), Sharpe (1966) and Jensen (1968), for example, measured the
excess returns for systematic risk,'® whilst more recently, Bollen and Busse (2001)
and Chance and Helmer (2001) have stressed the importance of daily tests for
performance measurement.

This chapter proposes a new method of.testing mutual fund performance and
market timing through the application of threshold regression techniques. The idea is
that fund managers may adopt different.trading strategies when they perceive different
market conditions. As fund managers ‘may not uniformly use the sign of the market
return to capture the direction of market movement, it is natural to conjecture that a
fund manager’s trading behavior changes when the market return is above or below a
certain threshold level, which varies across managers of different funds.

Threshold models have been widely applied in the econometric analysis; the
threshold autoregressive model (TAR), for example, remains popular in the
examination of nonlinear time-series data. Hansen (2000) presented a statistical
theory for threshold estimation, in a regression context, proposing least squares
estimation of the regression parameters and concluding with the asymptotic

distribution theory for the regression estimates.

1 Treynor and Mazuy (1966), Henriksson and Merton (1981) and Chang and Lewellen (1984) noted
that investment managers have superior information and forecasting skills.
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This chapter aims to contribute to this field through the introduction of the
threshold model into the testing of mutual fund market-timing effects. The traditional
Henriksson and Merton (1981) model is shown to represent only a special case within
our model, and we demonstrate the potential bias of using the traditional model,
arguing that it tends to underestimate the market-timing effect. Indeed, we find that
the use of the traditional market timing test may provide misleading results in some
circumstances; thus, our proposed threshold model provides more accurate inferences

on the market-timing effects of mutual funds.

2. THRESHOLD MODEL AND MARKET TIMING

2.1 Models for Mutual Fund Performance and Market-timing Effects

We begin by using the threshold regression-model developed by Hansen (1996) to
propose a model for testing mutual fund performance and market-timing effects. The

threshold regression model takes the form:

R —R =i (R, —Ri)+e, Rn,—R; =q

o 2. e B ) (1)
Ri—Ri=af +5 (R, —Ri)+e R, —R;>q

where R; is the rate of return on the ith mutual fund; R, is the rate of return on the
market portfolio; R¢ is the riskless rate; q; is the threshold parameter; «i' (i) is the
abnormal return of the ith mutual fund when the excess return rate on the market

portfolio is smaller (larger) than the threshold variable; and £i* (/) is the systematic

risk of the ith mutual fund when the excess return on the market portfolio is smaller

(larger) than the threshold variable. If there is any significant increase in systematic

risk, (£ > fi"), fund managers will have market-timing ability.

The Henriksson and Merton (1981) model can be written as follows:
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Ri—R¢ =a; + By (R —R¢) = Biz -d (0) - (R, —R¢) +8, (2)

where d, (0) = I{Rn-R¢ < 0} is the dummy variable with 1{-} as the indicator function;
ai is the abnormal return of the ith mutual fund; Biiand (B2) are beta regression

coefficients; and the fund manager’s market-timing ability is expressed as So. It is clear

that the traditional Henriksson and Merton (1981) model is a special case of the
threshold regression model in equation (1) where q to the value of 0,

The above threshold regression model (1) can be rewritten as follows:

where r =[1"r 1, r (q)=[1 (r,d. (q))], rm is the nx1 vector of excess return

rate on the market portfolio; and £*is a column vector of ones. r, and r.(q) are
both n x 2 matrices; n represents-the.number of observations on the ith mutual fund; dp,

() = I{rn >q} is the dummy variable with'I{:} as the indicator function; r; is the nx 1

vector of excess return rate on the ith"mutual fund; 6, is the vector of coefficients of
the model when the excess return on the market portfolio is smaller than the threshold
variable; 6, is the vector of coefficients of the model when the excess return on the
market portfolio is greater than the threshold variable; 2 = 6, — 8; denotes the
‘threshold effect’; and e; is the n x 1 vector of error. If the results of the test on A are
significantly different from zero, this will indicate that the manager possesses
market-timing ability.

The regression parameters are estimated by the least squares method, with the

sum of the squared errors function being shown as:
Sn (01, 4,0) = (5 =6 1y = 2" 1 (@) - (5 = 6] - 1y = 2" 1, (@).

Conditional on q yielding the OLS estimators él(OI) and /i(q), by regression
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of rion (r,,r(q)), the concentrated sum of the squared errors function is:

$,(@) =S, (8,(), A(@),q) = "1, — /£ (e ) e,

where r? is the excess return on the market portfolio under the threshold condition.

For the minimization of the sum of the squared errors, q is assumed to be restricted to

a bounded set (empirically, it usually uses the 15 per cent quartile of the sample to the
85 per cent quartile of the sample); the least-squares estimate § of the threshold
parameter q is the value which minimizes S,(q). The consistency threshold estimate

q is defined as:

q =argmins;(q) .
Note that the LS estimator is also the MLE when e; is i.i.d. N(0,&°). Hansen
(2000) provided the asymptotic distribution-of; the consistent threshold estimate § ,

and suggested the use of the likelihood ‘ratio statistic to test the hypothesis
Ho: q=0, under the condition of e; being i.i.d. N(0,&°). The likelihood ratio statistic
under homoskedasticity is different from that under heteroskedasticity. The test
proposed by White (1980) can be employed to examine the homoskedastic
disturbances.

Under the assumption of homoskedasticity, the likelihood ratio statistic for q=q,
is defined as:

LR(@) =Nk ©

The likelihood ratio test of H, is rejected for large values of LR, (qo). If

heteroskedasticity exists, the likelihood ratio statistic under q=q, is defined as:
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. LR(q,) S,(9,) - S,(4)
LR =—— =n-: —
(qo) 772 n Sn(CI) .772 (4)

! ' ~2
, C'E(r re,

Y _ = q=0q,)c
where 77" is an estimator of o CE(rr'[q=gq,)c"

As demonstrated in both Henriksson and Merton (1981) and Chang and
Lewellen (1984), we can use the excess return on the market portfolio to determine
whether or not a bull market exists. Our aim is to test whether the market managers
are able to adjust their investment principles according to the market index; that is, to

test the hypothesis H,: q=0.

2.2 Testing for Threshold Effects

Using the changes in the regression coefficients of-the threshold estimate allows us to
evaluate the mutual fund manager’s stock-selection-and market-timing abilities. We
construct the hypothesis H,: 1=0to testforrthe:threshold effect.

If the fund manager does not-exhibit-market timing behavior, the conditional

sum of the squared errors S,(q,) of (3) and (4) will be equal to the sum of the squared
errors (/€;) in the traditional one-regime CAPM (ie., I, =0' T, +¢,).

In the presence of homoskedasticity, the likelihood ratio statistic is defined as:

ele, —S,(4)
LR=n.3% 29
) ®)

Under H, the threshold q remains unidentified; therefore, the classical tests have
non-standard distribution. Hansen (1996) suggested the adoption of a bootstrap to
simulate the asymptotic distribution of the likelihood ratio test, showing that a bootstrap
procedure attains the first-order asymptotic distribution; thus, the p-values constructed

for the bootstrap are asymptotically valid. We use bootstrap replication to generate a
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bootstrap sample of size 1,000 so that the residual features are the same as those of an
individual mutual fund. The small sample distribution and the p-value of the likelihood

ratio test estimator are then obtained.

2.3 Test for the Source of the Threshold Effect

In order to test whether the threshold effect stems from manager’s stock-selection
ability or market-timing ability, we use the threshold estimate as the dummy variable,
thereby dividing the mutual fund samples into two sample sets. We then construct a
test which can determine whether the threshold effect comes from manager’s
stock-selection ability or market-timing ability. The model constructed is similar to

the Fabozzi and Francis (1979) model, as follows:

=« +ﬂld;(ﬁ) +,Birm +ﬂzd;(q\)rm +€, (6)

where d (§)=I{r, >q} is the dummy variable with 1 {} as the indicator
function; g is the threshold estimator; «; is the €xcess return rate on the ith mutual
fund without threshold effect; fi is the systematic risk of the ith mutual fund without
threshold effect, 4 is the abnormal return disparity under (r, >q); 4, is the
systematic risk disparity of the ith mutual fund under (r, >q); and e; is a regression
error. The aim of constructing the hypothesis test is to determine whether the
threshold effect stems from manager’s stock-selection ability or market-timing ability;
this is undertaken by testing to see whether the corresponding differential coefficient
is statistically different from zero. A positive value of 4 represents that the fund
manager presents sufficient stock-selection ability in anticipation of a bull market,

while a positive 4, indicates that the fund manager has market-timing ability.
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3. Data and Empirical Results

Bollen and Busse (2001) demonstrated that daily tests are more forceful than monthly
tests, with mutual funds more often displaying significant timing ability from such
daily tests; hence, our analysis of the market-timing effect is based upon the daily
returns of 30 randomly-selected mutual funds. The sample is taken from the
aggressive growth mutual fund of the Center for Research in Security Prices (CRSP)
mutual fund database, with the sample period running from 1 January 2000 to 31
January 2003. We employ the net asset value and dividends to form a daily return
series for each fund. We use the CRSP value-weighted index, including NYSE,
AMEX and NASDAQ stocks, as an overall market benchmark. Three-month Treasury
Bills rates, drawn from the Federal Reserve Board, are used as the risk-free rates. Our

results show that half of the mutual funds-beat the market.*

The results in Table 1 demonstrates that 17 of the funds have threshold effects and
that the abnormal returns of 16 of the*17 funds-are both significant and positive (a*> a
i"), which indicates that the managers have stock-selection abilities. Only four of the 17
fund managers have market-timing ability because there is a significant increase in their
systematic risks (8¢ > fSi'); four of the 17 funds possess both stock-selection and
market-timing abilities. Furthermore, superior fund managers will increase the
systematic risk of a portfolio in anticipation of a bull market, so as to raise the risk
premium and reduce the systematic risk of the portfolio, thus reducing losses when a

bear market is forecasted.

The traditional Henriksson and Merton Model is the threshold regression model,
with the restriction that g = 0. The results of Table 2 reveal that 11 of the 17 funds

show a rejection of the hull hypothesis that g = 0; therefore, the traditional Henriksson

' The results are omitted to save space. However, they are available upon request.
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and Merton (1981) model is rejected. Hence, we demonstrate that there is potential

bias in the use of the traditional model.*?

The model employed in this study essentially explores the assumption of the
existence of a threshold effect. This assumption is important because it does affect our
evaluation of the investment performance of mutual fund managers. For example, as
demonstrated in Table 3, under the traditional model of Henriksson and Merton
(1981), four of the funds indicate that the fund managers do not possess any
market-timing or stock-selection ability; however, the fund managers not only
achieved more abnormal returns, but also increased the systematic risk so as to earn
higher market risk premiums once the market excess return was larger than the

threshold estimate.

4. CONCLUSIONS

This study has proposed the use of: the.threshold regression model to evaluate the
market-timing abilities of mutual fund managers. The empirical results for a set of
randomly-selected US mutual funds indicate that the threshold values of market
timing are different from 0 for more than 50% of the mutual funds. Our results
indicate potential bias in the use of the traditional Henriksson and Merton (1981)
model with regard to its evaluation of the ability of fund managers to select stocks,
and we find that the traditional model also tends to underestimate the market-timing

effect under the use of the capital asset pricing model with threshold effects.

12 The regression results of the threshold effect from equation (6) are omitted for saving space. Sixteen
of the mutual funds exhibited a positive and significant value for 4 (q), indicating that the fund
manager has stock-selection ability based upon the threshold effect. Four of the mutual funds also
exhibited a positive and significant value for A,(§), indicating that the fund manager has
market-timing ability based upon the threshold effect.
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Table 4.1 Estimation results of mutual fund market-timing effect using the threshold model

Fund Threshold
und name Variables 1b 1c 2 b 2¢ - d
Q; Bi a Bi p-value
Bear Stearns Small Cap -0.008 0.005 1174 0.000 0.825 0.065 *
Value Portfolio/C 7 (3.013) (12.363) (0.110) (20.553) '
: -0.001 1.003 0.003 0.856
D_reyfus Founders Funds: 0.0057 0080 *
Discovery Fund/T (-2.322) (25.305) (2.588) (13.733)
i i -0.002 0.874 0.001 0.844
Oppenheimer  Discovery -0.0025 0.005%*
Fund/A (-2.603) (16.867) (2.691) (22.401)
i -0.007 1.091 0.000 1.391
INVESCO Dynamics -0.0061. 0.004%*
Fund/Instl (-4.423) (11.966) (0.396) (29.474)
i 0.000 1.070 0.004 0.890
NI Numeric  Investors 0.0072 0097 *
Growth Fund (-0.699) (30.497) (3.054) (14.336)
i -0.001 0.227 0.004 -0.021
Quaker Aggressive 0.0055 0.000%*
Growth Fund (-2.337) (8.951) (5.569) (-0.536)

i -0.008 0.839 -0.001 1.240
Smith  Barney  Small -0.0086 0.006%*
Cap Core Fund/B (-4.845) (8.050) (-3.370) (33.872)

: i 0.000 0.836 0.002 0.652

Royce Fund: Opportunity/ -0.0025 0.012%*
Instl Serv (0.458) (15.681) (3.798) (16.728)
0:000 1.003 0.003 0.821

TD Waterhouse Extended 0.0075 0058 *
Market Index Fund (-0.056) (39.384) (3.027) (17.373)
0.000 0.864 0.004 0.703

Aetna Index Plus Small 0.0074 0057 *
Cap Fund/I (0.05) (30.017) (3.588) (13.249)
-0.003 0.603 0.000 0.752

AIM . §mal| Cap -0.0029 0.038%*
Opportunities (-3:590) (10.035) (0.782) (17.947)
i -0.004 0.997 0.001 1.162

Analysts Aggressive -0.0061 0052 *
Stock Fund (-3.099) (12.970) (1.412) (29.191)
-0.002 1.009 0.001 1.006

J Hancock Small Cap -0.0025 0076 *
Growth Fund/I (-2.563) (17.960) 1.772) (24.495)

i -0.001 1.377 0.009 0.955
Undiscovered  Managers 0.0079 0.003%*
Small Cap Growth/Instl (-0.712) (22.378) (3.933) (8.298)

i -0.001 0.868 0.002 0.828
Merrill  Lynch  Master -0.0025 0.046%*
Small Cap VI Tr Fund/B (-1.237) (18.434) (3.442) (24.024)

i -0.002 0.955 0.001 0.910

Lord Abbett Developing -0.0037 0.055 *
Growth Fund/A (-1.836) (16.560) (2.151) (24.286)
: 0.000 1.061 0.006 0.782

State _ Street  Research: 0.0072 0.003%*
Emerging Growth Fund/B1 (-0.502) (26.615) (4.300) (11.090)

Notes:

8 This table presents the estimation results for the model: as R-R =o'+AR,-R)+e R, -R/<q ;
R-R,=a’+ R, -R,)+e R, —R,>q; where q is the threshold parameter;R, is the return rate of the i"
mutual fund; R, is the return rate on the market portfolio; and the mutual funds have threshold effect.

a! («?) is an abnormal return of the i™ mutual fund when the excess return rate on the market portfolio is
smaller (larger) than the threshold estimate.

© g (p?) is the systematic risk of the i"" mutual fund when the excess return rate on the market portfolio is
smaller (larger) than the threshold estimate.

The null hypothesis of the testis1=0.

¢ Figures in parentheses are t-ratios.

* indicates significance at the 10 per cent level; ** indicates significance at the 5 per cent level.
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Table 4.2 Results of tests for the threshold variable of market timing being equal to zero

Fund name LR? p-value®
Bear Stearns Small Cap Value Portfolio/C ) 8.744 0.438
Dreyfus Founders Funds: Discovery Fund/T ] 8.413 0.073*
Oppenheimer Discovery Fund/A ] 9.100 0.042
INVESCO Dynamics Fund/Instl ) 8.570 0.009**
NI Numeric Investors Growth Fund ) 8.717 0.086*
Quaker Aggressive Growth Fund ) 8.774 0.007**
Smith Barney Small Cap Core Fund/B ] 8.790 0.023**
Royce Fund:Opportunity/Instl Serv ] 8.700 0.530
TD Waterhouse Extended Market Index Fund ] 8.872 0.288
Aetna Index Plus Small Cap Fund/I ) 8.552 0.026**
AIM Small Cap Opportunities ) 8.001 0.035**
Analysts Aggressive Stock Fund ) 8.560 0.022**
J Hancock Small Cap Growth Fund/I ] 8.602 0.332
Undiscovered Managers Small Cap Growth/Instl ] 8.547 0.003**
Merrill Lynch Master Sm Cp VI Tr Fund/B ] 8.851 0.167
Lord Abbett Developing Growth Fund/A ) 8.658 0.089*
State Street Research:Emerging Growth Fund/B1 8.609 0.010**

Notes:
& The null hypothesis of LR is q = 0.
P * indicates significance at the 10 per cent4&vel; ** indicates significance at the 5 per cent level.

Table 4.3 Mutual fund market timing and performance test, threshold model vs. Henriksson
and Merton model

Threshold Regression Model Henriksson and Merton Model °
Fund name " _
a B 4(9) 4,(9) a i B

INVESCO Dynamics ~ -0.007 1.001 0.007 0.300 -0.001 1.438 0.027
Fund/Instl (-4.42) (11.96) (4.28)** (2.92)** (-1.19) (28.05) (0.30)
Smith Barney Small  -0.008 0839 0.007 0.401 -0.001 1.259 0.041
Cap Core Fund/B (-4.845) (8.050) (4.075)** (3.631)**  (-3.424)  (27.046) (0.502)
AIM  Small Cap -0.003 0603 0.004 0.150 -0.001 0.806 0.056
Opportunities (-3.59) (10.04) (3.48)** (2.04)** (-1.25) (19.75) (0.80)
Ana|yst3 Aggressive -0.004 0.997 0.005 0.165 -0.001 1.202 0.001
Stock Fund (-3.10) (12.97) (3.40)** (1.90)* (-0.08) (27.98) (0.01)
Notes:

®  This table presents threshold regression results for the model:  r, = o, + 4,d. (G) + Br, + A,d. (§)r, +¢€,,
where d;((j) = |{rm > Q} is the dummy variable with 1{'} as the indicator function; d is the threshold estimator.

«, is alpha regression intercept for the i'" mutual fund, s, and s, are beta regression coefficients.

Figures in parentheses are t-ratios.

* indicates significance at the 10% level; **indicates significance at the 5% level.
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Chapter 5 Conclusions

This dissertation will employ econometrics analyses to focus on two important issues
in the financial market, including volatility forecasting and mutual fund performance
evaluation.

The first issue in this dissertation is to discuss the predicting volatility. The
empirical results show that the realized range-based variance is more efficient and the
results are the same as the previous studies. The regressors consisting of the
continuous sample path and jump variability measures in the HAR and MIDAS
regressions predict the future realized range volatilities, and such dominates almost in
all MSE terms. In addition, in the in-sample forecasting, the relative decreasing ratio
of MSE of HAR-RRV (MIDAS-RRV) regressions are almost larger than that of
HAR-RV (MIDAS-RV); and in-the.out-of sample forecasting, the MSE of HAR-RRV
and MIDAS-RRV regressions are.-small.——Moreover, the realized range-based
regressions are significant for short-run_velatility forecasting, but the realized
return-based regressions are almost invariant to jumps. Hence, our empirical results
show that by using of the HAR and MIDAS regressions to predict latent volatility
under different variations, the realized range-based variance is a good volatility proxy.

Furthermore, the implied volatility and almost all continuous components are
statistically significant, while the jump components are almost not significant, and
there are little increases with the adjusted R?s. Hence, when the continuous
components are included in the encompassing regression, they will share the
explanatory power with the implied volatility. That is to say, the implied volatility
subsumes most of the relevant volatility information. Beside, the jJump components do
not contribute to future valuable information. In addition, the implied volatility and

the out-of-sample volatility have information contents but the implied volatility has
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more powerful explanation abilities than the out-of-sample volatility for the future
realized range-based volatility.

The second issue examined in this dissertation is to detect mutual fund market
timing abilities using the threshold regression model. Our results indicate potential
bias in the use of the traditional Henriksson and Merton (1981) model with regard to
its evaluation of the ability of fund managers to select stocks, and we find that the
traditional model also tends to underestimate the market-timing effect under the use of
the capital asset pricing model with threshold effects.

To conclude, the essays of this dissertation provide some insights into the issues
of volatility forecasting and mutual fund performance evaluation. The results of this
study provide us with empirical evidences to comprehend the occasion of some

distinctive phenomena in financial:markets.
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