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Abstract

In the cellular code division multiple access (CDMA) communication systems, each user
communicate via the same radio channel such that interference increases with the number
of subscribers. Traditional RAKE receivers cannot handle the multiple access interference
(MAI) well, and this prompts the use of extra spatial degree of freedom (antenna array) and
extra information of MAI (multiuser deteetion). Cell sectorization also has been widely used
for improving system capacity. However, it causes extra computational load due to handoff.
Through the dynamic sector synthesis by selecting of diversity beamformer, this allows to
balance the traffic loading across sectors.and to ‘manage‘ handoff overhead. In this thesis, we
will discuss the performance of space-time 2-D-RAKE receivers. In despite of the superior
performance of the space-time joint processor, it needs more complex computations and the
real-time processing is hard to achieve when the joint degree of freedom is large. To remedy
this, we make use of the concept of reduced-dimension beamspace-time processing. The
beamspace-time processing scheme involves two processors, a set of adaptive beamformers
and a set of adaptive correlators. The beamformers are constructed to provide effective
suppression of unwanted interference and reception of signals from a prescribed working
sector. And the correlators are constructed to suppress the in-sector strong MAI and to
receive the diversity paths from prescribed time region. Finally, the output data obtained by
these processors are maximum ratio combined to capture the signal multipath components
coherently. In particular, both two processors can be realized in the form of generalized
sidelobe canceller (GSC) with the aid of channel estimation, and partially adaptivity is

incorporated for reduce complexity processing and improved convergence.
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Chapter 1

Introduction

The ability to communicate with people on the move has evolved remarkably since
Guglielmo Marconi first demonstrated radio’s ability to provide continuous contact with
ships sailing the English Channel in 1897. Since then new wireless communications methods
and services have been enthusiastically,adepted by people throughout the world. Particularly
during the past ten years, the mobile radio/communmications industries have grown by orders
of magnitude, fueled by digital and radio frequency (RF) circuit fabrication improvements.
Digital switching techniques have facilitated thelarge seale deployment of affordable, easy to
use radio communication networks. The ¢ellularradio communication networks have risen to
offer universal network access while freeing users of locations and time restrictions. However,
there are a lot of problems needed to be solved in modern communication environment. These
include a complex multipath time-varying propagation channel, limited availability of radio
spectrum, limited energy-storage capability of batteries in portable units, the demand for
higher data rates, better communication quality, fewer dropped calls, and so on [1]. Among
those demands discussed above, with the rapid growing of subscribers, engineers are facing
the most demanding technological challenge: the need to increase the spectrum efficiency of

wireless networks.



1.1 Cellular Radio Network Systems

A basic cellular system consists of three parts: a mobile unit, a base station, and a mobile
switching center (MSC), with connections to link the three subsystems. When a mobile user
initiates a telephone call, the mobile unit communicates with the base station at the center
of a cell site via radio air interface. The messages are relayed through a backbone network
to the MSC, which is the central coordinating element for all cell sites, and it interfaces with
public switching telephone network (PSTN), controls call processing, and handles billing
activities, etc. Cellular wireless systems rely on an intelligent allocation and reuse of channels
throughout a coverage region. Each cellular base station is allocated a group of radio channels
to be used within a small geographic area (cell). Base stations in adjacent cells are assigned
different channel groups. By limiting the coverage area to within the boundaries of a cell,
the same group of channels may be reused in different cells which are separated from one
another by distances large enough to keep .interference level within tolerable limits. The
cellular concept and spectrum reuse are the key techniques for solving the problem of spectral
congestion and user capacity. It offers'higher capacity. by using smaller and smaller cells.
On the other hand, spectrum reusé implies-that in a given coverage area there are multiple
users that access the same set of cliamnel' resotrces: The mutual interference due to these
multiple users is called the multiple access interference (MAI) and is the major limiting
factor for spectrum efficiency. Moreover, because of the nature of wireless environments,
multipath propagation results in signal fading and intersymbol interference (ISI), and this

further deteriorates the quality of signals at the receiver.

1.2 Code Division Multiple Access

The most recent multiple access technology is code division multiple access (CDMA)
based on direct sequence spread spectrum communications. Unlike frequency division mul-
tiple access (FDMA) and time division multiple access (TDMA), CDMA users occupy the
entire bandwidth all the time. Users are distinguished from each other through the spread-

ing codes assigned to them. The spreading code acts as a signature for the user and allows



the user’s receiver to extract the desired signal from the MAI. Thus, the codes must be
sufficiently uncorrelated, i.e., they must have good crosscorrelation properties to reduce in-
terference. Wideband CDMA technology is being proposed for third-generation wireless
personal communications [2]-[6]. Third generation systems will improve the technology and
services provided by second generation systems. Furthermore, a lot of flexibility is being
provided to allow for the evolution of technology. One of the special attributes of the pro-
posals for wideband CDMA is the provision for advanced receivers. The novel aspects of
wideband CDMA allow for the implementation of multiuser detections and smart antenna
schemes. These features of advanced receivers may be employed in multirate third generation
systems to perform interference rejection and improve system performance. More extensive
discussions of multiple access technologies can be found in [1, 7]. The three popular multiple
access techniques are illustrated in Figure 1.1.

The advantages of CDMA are primarily a result of the spread spectrum technology [8].
Spread spectrum provides resistance to.fiéquency selective fading due to multipath through
spectral diversity, and robustness to:MAIL-The variance of the signal-to-noise ratio (SNR) at
the receiver is lower for CDMA than ‘for na‘rl‘"owband FDMA when operating in frequency-
selective fading channels. This applies to most-practical CDMA systems where the signal
bandwidth is significantly larger than the channel*coherence bandwidth. CDMA is less
susceptible to degradation due to ISI than TDMA is. One of the principal factors that
influence the increase in the system capacity in CDMA systems is universal frequency reuse,
which means that the same spectrum can be used in all cells, i.e., the reuse factor is 1.
This also eliminates the need for frequency planning. The higher the reuse factor, the lower
the system capacity. A typical reuse factor used in TDMA and FDMA cellular systems is
3-7. Furthermore, the impact of co-channel interference (CCI), which results from other
cells using the same frequency, is greater for TDMA and FDMA systems than for CDMA
systems with accurate power control. Power control in TDMA and FDMA systems helps
reduce interference. However, power control is a more serious problem in CDMA systems.
In the absence of fast and accurate power control, the near-far problem can cause much
stronger signals received from users closer to the basestation to jam weaker signals received

from mobiles at the edge of the cell. Another distinguished feature of CDMA is that it allows



for the exploitation of multipath energy with a RAKE receiver. The RAKE receiver provides
a means of constructive combining of multipath. Distinguishing multipath components is
possible because the coherence bandwidth of the channel is smaller than the signal bandwidth
or, equivalently, the delays of the multipaths are larger than the chip duration. To improve
the system capacity, CDMA may take advantages of the low voice-activity of normal speech.
Human beings speak only about 30% ~ 40% of the time during a conversation and listen for
the rest of the time. If transmission is blocked during periods of silence, then interference
can be reduced, thus increasing overall capacity. When a user moves from one cell to a
neighboring cell, the signal must also move from one basestation to another via handoff. The
RAKE receiver can be used to monitor the signal powers from two basestations carrying the
same user’s information. The gradual transition to another serving basestation is carried out
through a process known as soft handoff. Soft handoff usually leads to fewer dropped calls
and a more consistent coverage area [9]. Another attribute of CDMA is its soft capacity
limit, which results in “soft blocking” oficalls’anda graceful degradation in performance. As
well known, TDMA and FDMA plage ahard limit.on the number of users in a cell, resulting
in “hard blocking”. With CDMA ,-however, there is a graceful degradation in voice quality

when the number of users exceeds a certain-timit:

1.3 Space-Time Processing

The reasoning behind the use of space-time processing techniques is the optimization
of the cellular spectral efficiency of the network. This is realized by implementing more
than one antenna element to optimally transmit and receive signals by using both temporal
and spatial signal processing techniques in the transceiver. Well known techniques such as
antenna sectorization, diversity combining and adaptive beamforming (spatial and temporal
signal processing in a broader sense) are considered to be examples of space-time processing.
In fact, all antenna array systems can be considered to be space-time processors. More ad-
vanced space-time processors include space-time 2-D RAKE receivers, space-time equalizers
and space-time multiuser detectors, etc. The main purpose of using multi-element antenna

array in wireless links is to promise a significant increase in system capacity. For example,



in a system equipped with smart antennas, user terminals can transmit and receive with a
smaller gain, resulting in a lower system level interference and thus equivalently larger capac-
ity. On the other hand, exploitation of both the spatial and temporal domains at the same
time allows for a much larger dimension to work with when performing signal reconstruction
and interference cancellation. This certainly guarantees a better output SINR performance
compared to either space-only or time-only processing. Recent theoretical results indicate
that a point-to-point link utilizing D transmitting and receiving antennas can achieve an
information theoretic capacity as high as D times that of a single antenna link [10]. This
is called the multi-input, multi-output (MIMO) spatial multiplexing, and is considered the
utmost exploitation of communications channel resources. In summary, space-time process-
ing can improve network capacity, coverage and quality by reducing MAI while enhancing
diversity and array gain. As a result, it has been an international research trend in the area
of wireless communications to exploit the possibility of incorporating the “smart antenna”,
which is the most known name of space-time progessing techniques.

Space-only and time-only signal processing téchniques have been actively studied by nu-
merous researchers over the past 20 years. S‘I)éce¥on1y processing with antenna array focuses
mainly on distinguishing signatures of difforentruser signals in the space domain, i.e., angles
of arrival (AOA). Hence, it is very effective in suppressing strong narrowband interference
(NBI) or MAT impinging on the antenna afray from different directions other than the desired
signal’s. Moreover, antenna array combining (beamforming) further provides array gain and
diversity gain to compensate for the loss of SNR due to fading. Space-only processing can
also possibly reduce ISI. However, it is not practical since real channels with rich multipaths
will require too many antenna elements. On the other hand, time-only processing with a
single antenna and temporal processing units, e.g., RAKE receivers and Viterbi equalizers,
focus on equalizing ISI in the time domain by using the temporal signature of the user sig-
nal, i.e., the channel impulse response. Even though time-only processing with over-sampling
makes it possible to reduce MAI, the temporal channels for signal and interference will be
similar in a practical channel with a small excess bandwidth, and MAI reduction leads to
excessive noise enhancement. Therefore, temporal processing offers only a small leverage

for suppressing MAI. In a cellular wireless system with both ISI and MAI, space-only or



time-only processing cannot handle both types of interference at the same time due to their
fundamental limitation. The merge of space and time processing, i.e., space-time process-
ing, provides a way to simultaneously exploit spatial and temporal structures, and suppress
both ISI and MAI simultaneously. The desired signal and MAI, even in complex multipath
environments, almost always arrive at the antenna array with distinct spatial and temporal
signatures, thus allowing the receiver to exploit these differences to reduce MAI. Likewise,
the space-time transmitter can use spatial selectivity to deliver signals to the desired mobile
while minimizing interference for other mobiles. The space-time processing can be employed
in a cascade space-only and time-only fashion and vice versa, or space-time joint fashion
as shown in Figure 1.2 and Figure 1.3. The great potential of space-time signal processing
will surely speed up the goal of providing affordable and ubiquitous wireless communication

services in the near future.

1.4 Background and Literatures Review

There exist two main approaches to the demodulation of CDMA signals at the receiver.
Single-user receivers basically estimate thesignalof the desired user without caring the inter-
ferers’ information. In contrast, multiuser detectors include all the users in the signal model
[11]. The conventional RAKE receiver is a typical single-user CDMA receiver, which per-
forms simply a matched filter operation. Because the crosscorrelations among the spreading
sequences (or signatures) for different transmissions are nonzero, a nearby interference can
disrupt reception of highly attenuated desired signal. The RAKE receiver was proven to be
sensitive to the near-far problem [12].

Multiuser detection techniques provide alternatives to the conventional detector, by ex-
ploiting various levels of knowledge about the interfering signals to achieve near-far resistance
[13]. The optimum multiuser detector attains the performance of the single user case by as-
suming the knowledge of the signature waveform, timing and received amplitude of each of
the users. It is a nonlinear detector with superior performance to the conventional detector,
but is exponentially complex in the number of users. Several suboptimal detectors have been

proposed which require less knowledge of the interfering signals and/or have lower complex-



ity, but still maintain near-far resistance. An example is the decorrelating detector [13]-[14],
which performs a linear transformation on the outputs of the matched filter, cancelling out
the effect of MAI for each user. When the interfering users are weak compared to back-
ground noise level, the performance of the decorrelating detector may become worse than
a conventional receiver. Linear minimum mean square error (MMSE) detectors solve this
problem by incorporating the knowledge of the users’ energies [15]. These detectors perform
as decorrelating detector in the presence of strong multiple access interference, and act as
conventional detector, when the background noise dominates. The chief advantage of the
MMSE detectors, however, is in their ability to be easily implemented in an adaptive fash-
ion. This eliminates the need for the knowledge of the signature waveforms of the interfering
users. A training signal has to be retransmitted, every time there is a severe change in the
received signal, which can become cumbersome in rapidly changing environments.

Blind or self recovering procedures for estimating the system parameters are possible by
exploiting the characteristics of communication signals. Blind subspace methods show good
performance [16]-[17], but the required singular value decomposition (SVD) of large matrices
leads to a heavy computational load.. On the contrary; blind adaptive multiuser detectors
[18, 19] significantly reduce the computagional-burden. A scheme that was presented in [18]
with constrained minimum output energy (MOE) exploits knowledge of the desired user’s
spreading code to operate in a blind manner. The MOE detectors minimize the receivers’
output energy subject to one or more linear signal preserving constraints. The MOE method
was extended to multipath environments by adding more constraints [19]. Under ideal con-
ditions, it converges to the MMSE detector without requiring training signals. However,
the MOE detectors are sensitive to mismatch in the signal preserving constraints. Robust
implementations for that case are attempted in [20] by forcing the receiver response to the
delayed copies of the signal to zero. With these additional constraints, MOE techniques are
applicable, but have inferior performance since they treat part of the user signal as interfer-
ence. Another robust implementation is to add an identity matrix so as to deemphasize an
algorithm to errors known as diagonal loading in array processing [21, 22]. Recently however,
constrained optimization solutions were developed to combine all multipath components of

the signal of interest and jointly minimize MAI while maximizing the signal component at



the receiver’s output [23]. The performance of this min/max approach tends to be close to
that of the optimal MMSE receiver at high SNR in the presence of multipath [23]. How-
ever, the complexity is higher due to the use of the eigenvalue decomposition. In [24], a
modified generalized sidelobe canceller (GSC) is employed to construct a bank of adaptive
correlators, which is used to collect the multipath components and suppress MAI. A robust
adaptive algorithm is also developed to reduce the computational burden.

Enormous increase in traffic throughput is promised by the use of antenna arrays in
wireless radio frequency [25]. Optimal maximum likelihood space-time multiuser detection
was suggested for flat-fading channels in [26, 27] and for multipath fading in [28]. Because
optimum detectors’ implementation is prohibitively complex for a large number of users,
linear space-time multiuser detectors with lower complexity have been explored in [14, 29].
A space-time single-user receiver that exploits both the temporal and spatial structures of
the desired signal to coherently combine the multipath energy is referred to as the space-time
2-D RAKE receivers [30]-[32]. The pioneéring wétk, for blind space-time 2-D RAKE receiver
proposed in [30] exploits the distinefive structires of.the pre-despread and post-despread
spatial correlation matrices to estimate the ‘sl‘aatial channels at different fingers of the signal
of interest (SOI) via principal componeht (PE)meigenvalue decomposition. Beamforming is
then performed at different fingers, followed by a RAKE combining. In [31], the PC based
scheme is extended to perform space-time joint channel estimation and post-combining. The
receivers in [30]-[32] work with the outputs of a bank of fixed correlators, and are thus post-
despread receivers. They are simple to implement, but do not fully exploit the temporal
degree of freedom available to handle strong MAI. As an alternative, a receiver which works
directly with the chip sampled data is called a pre-despread receiver, and can be regarded as
an adaptive matched filter that performs despreading and MAT suppression simultaneously
[33]. A popular blind pre-despread receivers is the MOE receivers [18]. Temporal MOE
detectors achieve good performance in multipath environments where the delay spread is
limited to a portion of the symbol intervals by exploiting knowledge of the desired user’s
signature vector. Equivalent space-time MOE detectors require the information about the
space-time signature vector, which depends on the temporal spreading code, the spatial

array response vector, and the multipath channel. We can assume that the multipath delay



spread is limited to a few chip intervals, however AOA generally vary over a wide range
and antenna calibration may be difficult to obtain, hence the space-time channel properties
are difficult to characterize. In [34], a comprehensive treatment of constraints strategies
under the assumption, with knowledge of the temporal code vector but no knowledge of the
spatial response, is developed using fixed and optimized constraints based on temporal MOE
detectors in [34]. Another space-time MOE detector is presented in [24], which utilizes a
set of adaptive modified GSC beamformers steered to different look direction to encompass
a working sector. These adaptive GSC beamformers perform adaptive nulling for strong
MALI from outside the sector. The outputs of these beamformers are processed by a bank
of adaptive correlators, which can be regarded as a set of linearly constrained minimum
variance (LCMV) combiners in the time domain. A modified GSC in the temporal domain
is employed again to collect the multipath components and suppress the in-sector MAI.
The space-time MOE detector is blind in that the construction of adaptive beamformers
and correlators does not require any traiting. The only information required is the desired
user’s signature vector, timing and‘a rough-estimate of the AOA of the desired signal for
the working sector selection. The adaptive 1‘b(‘eamformers and correlators can also be jointly
constructed in the form of beamformertcorrelator pairs to collect the multipath signals in
a prescribed angular sector and timé‘duration, and to suppress MAI and NBI [35]. This
is done by performing adaptive nulling on a set of LCMV space-time processors steered to
different look directions and delays. To avoid signal cancellation incurred with the mismatch
of space-time signatures, a modified GSC is employed. The space-time receivers in [24, 35]
performs “beamspace” beamforming in which array data are first pre-processed by a set
of diversity beamformers encompassing an angular sector. This has two main advantages.
First, with sectorization, the capacity of the system can be potentially increased. Second,
MAI and NBI from outside the sector can be suppressed adaptively, leading to improve
reception quality for the SOI.

The computational complexity of an adaptive processor, MOE, GSC or MMSE, is the
function of the rank of the filter and the requirements of the adaptive algorithm. The filter
rank is conventionally chosen to satisfy the desired Wiener solution and the resulting steady

state MMSE or output signal-to-interference-plus-noise ratio (SINR). The complexity of the



algorithm determines how quickly the filter coefficients converge to the Wiener solution. For
recursive least squares (RLS) algorithms, with M being the number of adaptive weights, the
computational complexity is M? and convergence is obtained in approximately 2M adap-
tation [37], yielding a complexity of 2M? for convergence. Due to this large computational
complexity, it is very important to reduce M to a level which is realizable for the platform.
The partially adaptive filtering uses only a portion of the available degrees of freedom of-
fered by the adaptive weights. The advantage of partially adaptive filtering include: reduced
complexity, faster convergence and the ability to improve the quiescent response with the
unused degrees of freedom. Much of the previous work on partially adaptive interference
suppression has been based on principal components (PC) in which the received vector is
projected onto an estimate of the lower dimensional signal subspace with the largest energy
[36, 38]. When used with GSC, the partially adaptive filtering can be employed to reduce
the size of blocking matrix [39, 40]. There are several methods proposed for determining the

low rank subspace of blocking matrix.

1.5 Outline of Thesis

In this thesis, we propose a class.of. pre-despread and post-despread blind 2-D RAKE
receivers. In addition to conventional space-time 2-D RAKE receivers working on antenna
elements directly, beamspace-time 2-D RAKE receivers which utilize a set of diversity beam-
formers are developed. The beamspace-time receiver is suitable for sectorized communica-
tions in which the desired signal is captured from inside a designated angular sector. In
particular, a new method of beamfoming is propsed which leads to reliable signal reception
and interference suppression. For real time implementation, we suggest efficient adaptive al-
gorithms for time-varying mobile environments, and methods for enhancing their robustness.
Furthermore, partially adaptive schemes are also proposed for reduced complexity process-
ing and faster convergence. Finally, a new scheme of sectorization is developed which can
effectively combat narrowband interference from inside the sector. In summary, the thesis
presents an alternative approach to the conventional space-time receiver for CDMA systems

by incorporating beamspace processing. The new receiver structure proves to be near-far
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resistant, and requires a significantly lower complexity. It can be operated even in a nearly
blind mode without the need of many training symbols that consume the system throughput.
The proposed receiver is well suited to the so-called multi-beam sectored system considered
to be a promising candidate for future smart antenna technologies. The thesis is organized
as follows.

In Chapter 1, we introduce the multiple access techniques, space-time processing and
give a historical review of various blind and nonblind linear CDMA receivers. Chapter 2
establishes the basic system models and theoretical background of the research. It shows a
continuous time model of CDMA systems over multipath fading channels. This model was
derived into an equivalent discrete time model for the purpose of digital signal processing.
It also analyzes some key concepts in linear multiuser or single-user detection techniques,
including MMSE detection, decorrelating detection, and MOE detection. In the last part
of this chapter, we propose a blind CDMA receiver based on a modified GSC structure for
multipath reception and interference suppressioi:

In Chapter 3, the system model is extended from the time-only to space-time domain by
the incorporation of an antenna array. In ﬁértiéulr, a class of 2-D RAKE receivers will be
discussed and analyzed. The tempdral domain-processing leads to pre-despread and post-
despread processors and spatial domain processing leads to antenna space and beamspace
processors, respectively. The temporal and spatial domain processing can be done either in a
joint or cascade manner. In addition to various space-time detectors, the parallel interference
cancellation (PIC) and successive interference cancellation (SIC) CDMA receivers are also
discussed in detail. Finally, blind space-time CDMA receivers based on the GSC technique
is proposed. The GSC technique is similar to the conventional linearly constrained minimum
variance (LCMYV) technique, and known to be sensitive to the mismatch of signature vectors.
To avoid such sensitivity problems, we include some modifications in the GSC to successfully
enhance its reliability.

In Chapter 4, we propose several beamspace-time 2-D RAKE receivers for sectored
CDMA systems. In a sectored cellular system, the entire field-of-view is divided into several
contiguous sectors, with each sector responsible for a distinctive set of users. With antenna

array incorporated, sectorization can be done adaptively to meet two major requirements.
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First, multiple beams are formed to collect multipath components of the desired signal with
angle diversity. Second, strong MAI outside the sector is suppressed in the sidelobe region
of these beams. The outputs of the beamformers are then processed by a bank of adaptive
correlators, which are formed by a set of modified GSC’s to collect the multipath components
of the desired signal and to suppress the in-sector MAI.

In Chapter 5, for a practical implementation of the proposed CDMA receivers, adaptive
algorithms are introduced to avoid matrix inversion in GSC and to adapt the receiver to
time-varying mobile environments. Note that with the channel being nonstationary, matrix
inversion is usually required repeatedly, resulting in tremendous amount of computational
loading. The adaptive algorithms are realized in a time recursive fashion such as the popular
least mean squares (LMS) and RLS algorithms. Robust techniques are also included that
are shown to effectively improve the system performance. Finally, an adaptive algorithm is
presented for tracking the principle eigen-component required for maximum ratio combining.

Chapter 6 discusses miscellaneous issues about practical implementation and performance
enhancement. First, the technique 'of diagonal loading in the correlation matrix increases
the robustness of adaptive GSC algOrithms‘. ‘Se(‘:ond, several partially adaptive algorithms
are presented with their convergencé béhavierssecompared. In particular, a new method is
proposed for the multiuser scenario inwhich both-the signal and MAI’s signatures are avail-
able. Third, a near maximum SINR (MSINR) CDMA receiver is developed which exhibits
enhanced convergence performance as compared to the original GSC based receiver. An
analysis of LCMV beamformers reveals that the main cause of its poor convergence is the
presence of a non-zero crosscorrelation between the signal and interference-plus-noise due to
finite samples. The crosscorrelation term induces a perturbation on the weight vectors of
beamformers, which in turn causes a drop in output SINR. The same statements apply to
GSC. To remedy this, we propose an iterative procedure in which the signal is estimated,
reconstructed at the prsent iteration, and subtracted from the input data at the next iter-
ation. Finally, the NBI issue is considered. A strong NBI acts like a nonstationary signal
within the processing window of the conventional receiver. So the temporal processing is not
effective in suppressing the NBI. Fortunately, the NBI can be easily suppressed in the spatial

domain by using an antenna array, because the spatial signature of the NBI is usually much
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more stationary than its temporal signature. We propose to use a set of diversity beams to
suppress the NBI and present a scheme of dynamic sector synthesis to adapt to the traffic of
the CDMA system. The dynamic sector synthesis can be implemented for different angular
regions. This allows the operator to balance the traffic loading across sectors, to manage
handoff overhead, and to control the interference. As a conclusion, Chapter 7 summarizes

the thesis and gives a sketch of some future work.
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Chapter 2

CDMA Receivers in Multipath Fading

Channels

In this chapter, we provide a mathematical framework for describing CDMA systems.
Some fundamental parameters of CDMA systemsfand performance measures are defined.
CDMA receivers may be categorized broadly: into multiuser receivers and single-user re-
ceivers. This classification is based.on the structures of receivers, i.e., based on whether the
receivers demodulate a single-user or jointly. demodulate some or all of the active users in
the system. The optimal receiver is the maximum likelihood (ML) multiuser receiver which
requires joint estimation of channel parameters and data symbols [41]. The optimal receiver
is too complex for practical implementation and hence several suboptimal receivers have
been proposed as alternatives [42]. When considering downlink receivers, only the signal of
interest (SOI) should be demodulated while suppressing the interference due to other users.
The single-user detectors are thus options for the downlink receivers. A popular single-user
receiver is the RAKE receiver [43] which constructively combines the multipath components
of the SOI. Due to the imperfect correlation properties of the spreading codes, the RAKE
receiver is sensitive to multipath and near-far problems [12]. Significant improvements can
be obtained with linear MMSE or decorrelating receivers. Either MMSE or decorrelating
receiver needs training signals. Adding training signals consumes the available bandwidth
and reduces spectral efficiency. In addition, the training method is not efficient in rapidly

time-varying channels or in protocols with small short message packages. In the absence of
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training signals however, the development of a linear receiver with performance equal or close
to that of the MMSE solution presents a significant challenge. In this chapter, we introduce
the optimal ML multiuser detector and some linear multiuser detectors. We also discuss
nonblind and blind single-user receivers. Finally we develop a single-user detector based on

GSC structure to collect the multipath signals and to suppress MAI simultaneously.

2.1 Data Model

A standard model for an asynchronous DS/CDMA system with K users and L propa-
gation paths are considered. The signal of the kth user is modulated by binary phase shift
keying (BPSK) and the modulated signal are spread with a unique signature waveform given

by
N—-1

cx(t) = Y exlnlp(t — nT,) | (2.1)

n=0
where N denotes the number of the éhips per symbol, i.e., processing gain or spreading

factor, cx[n] € {—1,1} is the nth chip of the kth user,.p(t) is the chip waveform, and T, is
the chip interval. Assume that theperiod of signature waveform equals one symbol interval,
then the contribution of user k to the received signal over an I-symbol interval can be written

as

= Ukzbk Ck t— ZT) (22)
where [ is the number of the symbols within the processing window, by (i) denotes the
1th transmitted symbol, assumed to be i.i.d. with zero-mean and unit variance, oy is the
transmitted amplitude of the user k£, and T is the symbol interval. The complex envelope of
the received signal is expressed as

Z Z Tk * hk (t) (23)

i=1 k=1

The n(t) is the additive white Gaussian noise process with two-sided power spectral density
o2 and the symbol * denotes the convolution operation. The hy(t), which denotes the impulse

response of channel for user k, is given by

t) = Z Oék’lé(t — Tk,l) (24)

=1
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where L is number of the resolved Rayleigh fading multipaths, oy, is the complex fading
gain, 7, is the propagation delay of the /th path of user k£ and d(¢) is the Dirac’s delta
function. Evaluating the equation (2.3) with (2.4), the received signal is given by

1

t):ZZZUkbk ozklck t—lT—Tkl)+n() (25)

i=1k=11=1
To fully exploit the temporal signature of the received signal, z(¢) is passed through chip
matched filter and then is chip rate sampled at ¢t = (i — 1)T +nT. +T./2 over the processing
window of interest, i.e., I-symbol interval. The received data in discrete time form over a

block of I-symbol data is given by
x(i) = SFAb(i) 4+ n(7) (2.6)
where the chip-sampled data vector also is given by

x(i) = [iT(i +1),% (i +2), - X (i + I)];le

(2.7)
and x7 (i) is the chip-sampled vector of the receiveddata over the ith symbol interval, given
by

_Ty. ‘ T
x" (i) = [ﬁ(t) |t:(i—1)T+TC/2 , 2(t) |t:(i—1)T—|—TC‘+TC/2 o, (1) |t:(i—1)T+(N—1)TC+TC/2] NX1(2-8)

where [-]7 denotes the transpose. The S(i).is the chip-sampled signature sequence matrix

over an /-symbol interval given by

S(i) = [S(i+1),8(i +2),---,8(i + I)] (2.9)

NIXKLI
where S(i) is the chip-sampled signature sequence associated with the ith symbol only. Tt
means that although the column vectors spanned over an I-symbol interval, the entries of
the vectors happen to be non-zero only on the chip-sampled interval during the ith symbol

period. The matrix is given by

( o --- 0 --- 0
CTl,l e CTI,L . ch,L
S@)=| 0o -~ 0 - 0 (2.10)
L 0 0 0
dNIXKL
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where each column of S(i) has about (i — 1) N leading zero entries and a non-zero sequence,

Cr,,, which is the augmented signature sequence given by one of the column of Cy:

[ 0] 0 0 ]
Ck[()]
cp|[N —1 : 0
C, = ¢l ] (2.11)
0 Ck[N — 1] Ck[O]
L 0 0 o CkUV__l]-(N+L7UxL
= Cr1 Ck2 *°° CglL

where ¢x[n] is the nth chip-sampled data of the signature waveform, c,(t). The ¢y, is the
augmented signature sequence associated with the path of [ chips delay of user k. The

channel coefficient matrix is given by

F = diag [F F..F] (2.12)
where
11 R
F = diag S R : | (2.13)
Q1.1 ORI
KILXK
The received amplitude matrix is given by
A = diag [A, A, -, A] Crrt (2.14)
where
A:diag[al,ag,-n,af(]KxK (215)
The transmitted data vector of users’ symbols over the I-symbol interval is given by
N [Ty T . RTy T
b(i) = [b7(i+1),b"(i+2),--- . b G+ D] (2.16)
where
b(i) = [br(i), ba(i)s - bre ()]s (2.17)

The transmitted data by(i), i = 1,---,I, k = 1,---, K, is modulated with the symbol

alphabet € {—1,1} and n(7) is the channel noise vector.
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2.2 Conventional RAKE Receivers

Conventional detection in multipath environments is done by filtering the received data
vector by a bank of matched filter bank. This is conceptually equivalent to the MRC, and
is usually termed RAKE reception as shown in Figure 2.1. The matched filter bank output

is given in the vector form by

y(i) = (SF)"x(i)
= FYRFADb(i) + (SF)"n(i)
= HADb(i) + n(i) (2.18)

where [-]7 denotes the conjugate transpose, H = F/RF, and n(:) = (SF)”n(:) with the
covariance matrix o2 (SF)”SF. Under a reasonable assumption of delay spread less than

one symbol interval, the crosscorrelation matrix, R = F {SH(Z)S(’L)}, is given by

[ RO RO 0y, - a0 0%
RCY RO RO 0pp :
0x; RO RO RO

R=| SN (2.19)
: T,
RV RO R(1)
(-1 (0)
L Ok Ok R R dkrixkrLr
where
Py Pl Pk Pl L)
(4) (4) (4) . j
R(]) — p(271.)(171) p(271?(17l‘) p(271).(K71) . pglal).(KaL) (220)
(4) (4) (J j
| PR T PRDD T PRDED T PEDKD) | KLxKL
:08;,1)(14,1/) = CS.QIHCS.Z?J, for j = —1,0,1, and C(TQI is the chip-sampled signature vector of

cp(t —jT —my) at t =T, /2 4+ 114, (N — 1)T. +T,/2 + 71,, assuming that user 1 is the
desired user.
Without loss of generality, we assume a synchronous CDMA system and each user has L

multipaths with delays, 0, T, - - -, (L—1)T,, respectively. Then, consider the sample signature
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sequence matrix S(i) over a two-symbol duration, which can be written as

( -
(i) = l ) ] _ ciafl:N] -+ crur[l:N]
cty AN+ 1) (Nt L—1)] -~ exul(N+1):(N+L—1)]
L Oon —(N4L-1) Oon (N1L-1) lonkr
(2.21)

where ¢ [1 : N] denotes a vector with the entries of the vector cj; indexed from 1 to N.
Then RO = COHECO) and RCY = ¢CVHECO) — cOHCY) = RM),

The decision strategy of the RAKE receiver is that the bit b[n], which is the nth entry
of the symbol vector b(i), (b[n] = b,(i), if I = 1), is decided by the sign of the nth entry of

y(i). The decision criterion is given by

b[n] = sign {y(i)[n]} (2.22)
If only the desired user exists in the gystem, this‘decision is optimal in the sense that the
SNR is maximized corresponding to:the ML -detection.-If multiple users exist in the system,
this is, however, not entirely true.-The SNR_is still maximized, but the detector is not ML
due to the presence of MAI.
In order to provide more insights inte.the stricture of y, we consider a synchronous
CDMA system with two active users with a single path each. The processing window over a
one-symbol interval is sufficient, i.e, (I = 1) and we assume that user 1 is the desired user.

Under these assumption, y is given by

. o1 02012 b (1) _
y(i) = | +n (2.23)
o1p12 O bo (i)
where p; o is the crosscorrelation of signature sequences between user 1 and user 2 and n is
a Gaussian random variables with zero mean and variance equal to o2. The probability of

bit error of user 1 is given by [11]

P{(0n) = Plba(i) # bi(3)]
- o) o

On On

Q <w> (2‘24)

On

IN
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where () is the unit Gaussian tail probability given by

Lo
Q(x)zﬁ/m e 5 d (2.25)

If the relative amplitude of the interference satisfies

g9 1

01 |P1,2

(2.26)

then the conventional receivers exhibit a highly anomalous behavior, i.e., the “near-far prob-
lem”. Although the conventional detector has its limitation, it still plays an important role
in multiuser detection since the output of a bank of matched filters provides a minimal

sufficient statistics for detection [41].

2.3 Optimal Multiuser Receivers

The optimal detector is the ML detector which exhaustively searches all the possibility
of hypotheses and finds the exact owe with the maximum probability. The optimal ML

detection is defined as

b = arg _max P (y[b) (2.27)

e{—1,1}K1
Assuming that all the spreading codes-are knowa and the knowledge of b is given, the only
random component in y is the Gaussian noise n. It therefore follows that y is Gaussian
distributed with E{Ay} = AHAD, where A is defined in (2.14), and var{Ay} = c2AHA.
The corresponding probability distribution function is thus [44] given by

Ay — AHAb)?(AHA) '(Ay — AHAD
P(y|b) = Ko exp (—( Y ) s ) (Ay )> (2.28)
where K is a constant independent of y and b, and therefore
bur(i) = arg min (Ay — AHAb)"(AHA) '(Ay — AHAD)
be{-1,1}K1
_ . T _ T
= argbe{rflllﬁrll}mb AHADb - 2R{b" Ay}
= arng{IEIII’III}KIQ(b) (2.29)
where
Q(b) = b" AHAD — 2R{b" Ay} (2.30)
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with Q(b) being the likelihood function of the matched filter output vector y in (2.18) con-
ditioned on all the transmitted symbols b(i) and R(-) fetching the real part of the operand.
The solution to the ML problem was derived in [41], which is to exhaustively search all 257
possible data vectors using the Viterbi algorithm to guarantee a global solution. It is hence
clear that the problem grows exponentially in complexity with the number of users. The
structure of optimal multiuser detection is shown in Figure 2.2.

Due to the prohibitive computational complexity of the optimal ML multiuser receiver,
suboptimal solutions have been studied extensively. Well-known suboptimal receivers are
the linear multiuser receivers. Before discussing these receivers, we first introduce three

importance performance measures in the next section.

2.4 Performance Measures

There are four important performance measiires to indicate whether the specified CDMA
receiver is good enough or not. These measures are asymptotic efficiency, near-far resistance,

probability of bit error, and output: SINR.

2.4.1 Asymptotic Efficiency

Asymptotic efficiency is a measure of the influence, which the interfering users have, on
the bit error rate (BER) of the user of interest. A single user in the CDMA system with
amplitude oy in an additive white Gaussian noise (AWGN) channel with BPSK modulation

with noise variance o2 has a probability of bit error [45]:

P=Q (Z—Z) =Q (@) (2.31)

where e, is the energy of user k. With interferers the probability of error may increase.
Define the effective energy ey(o,) as the energy that would be required for a single user
in AWGN to achieve the BER that is observed in the presence of other users. Thus the
efficiency is given by the ratio of the energy required in the multiuser system to the energy
required in the single user system for the same BER performance.

(o) ek((j%") (2.32)
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The asymptotic efficiency is defined as the limit in the high SNR region:

(2.33)

The 7, lies between 0 and 1, with a value of 1 indicating that the user of interest is not
affected at all by the presence of other users. The asymptotic efficiency of a conventional
RAKE receiver was derived in [46]:
i :maX{O,l— 3 % |y, k]|} (2.34)
ik Ok
where H[j, k] is the (j, £)th entry of matrix H. The asymptotic efficiency of optimal multiuser

receiver for a two-user system is given in [46]:

_ . 02?2 02
g = min 1,1+ (—) —9JH[1,2)| 2 (2.35)
01 01

2.4.2 Near-far Resistance

The near-far resistance quantifies the robustiiess of the receiver against unequal user
power. Power inequality can cause a near-far effect, whereby a weak user is swamped by in-
terference from a strong user. The near-far resistance is-defined as the worst case asymptotic

efficiency measured over all relative-user energies.

.= inf 7 2.36

The near-far resistance of the conventional receiver is obtained as
|1 H[G K =0, £k
Mk = (2.37)
0 otherwise

That is, the conventional receiver is not near-far resistant unless the spreading sequences are

orthogonal. The near-far resistance of the optimal multiuser receiver is given by

L if the kth user signal is linearly independent

i =4 TR (2.38)

0 if kth user signal is in subspace spanned by other user
where H™ is the Moore-Penrose generalized inverse of the normalized crosscorrelation matrix
H [14], which is equivalent to the inverse if H is nonsingular. In the two-user case, the near-

far resistance of user 1 is given by [13]
m =1—H][1,2)? (2.39)

25



and similar representation for user 2 too, implying that the receiver is near-far resistant

unless the spreading codes are linearly dependent.

2.4.3 Probability of Bit Error

The ultimate goal in most communication systems is to achieve low probability of bit
error, i.e., low bit error rate (BER). For a conventional RAKE receiver, the BER can be
expressed as

2 ())[k]=—1

b(i)e{-1,1}X1,b(i In

This is simply the sum of the Gaussian tail probabilities for each possible choices of trans-
mitted bit vector b() from {—1,1}*" conditioned on that the associated bit on the kth entry
of b(i), denoted as b(i)[k], equals to -1. Equal probability of each user transmitting a 1 or
-1 is assumed. There is no closed form expression for the optimal multiuser detection. For
most of the cases, we refer to the processing window of the conventional RAKE receiver as
one symbol interval, i.e., I = 1. Then the hotation. of b(i)[k] simply means the transmitted

bit symbol of the kth user by (7).

2.4.4 Output SINR

The output SINR is an important quantity that indicates the goodness of CDMA receivers.
It is denoted as SINR, (in dB) and calculated by

Total Power of SOI’s

SINR, = 101 -
810 Total Power of INT’s + Noise Power

For the case of two-user synchronous CDMA systems, the output SINR of user 1 is given by
[13]

2
07

SINR, =
oZH[L, 22 + o2

(2.41)

2.5 Linear Multiuser Receivers

As seen from the previous section, the optimal multiuser detection algorithm has a

prohibitive computational complexity. In this section, we develop the alternative linear
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multiuser receivers. It is assumed that the receivers have the knowledge of the spreading
codes and the channel parameters of all users. This is a major distinction from linear
single-user CDMA receivers, which have only the knowledge or utilization of the desired user
information.

For linear multiuser detectors, a linear transformation is applied to the matched filter
bank output vector y(i) in (2.18), known as the sufficient statistics vector in [28]. Then a
local decision mechanism is applied on the transformed data vector to demodulate all the

bit symbols simultaneously. The criterion of demodulation is given by
bi) = sign{R (T"y(i))}
= sign {R (T"HAD(i) + T"a(i))} (2.42)
where T is a complex matrix with dimension K1 x KI. For the conventional single-user

receiver, the transformation matrix is an identity matrix such that T = I. Assume that the

decision is under Gaussian white noise condition, the BER of linear multiuser detector is

given by
Py = P[b[k] =1]b[k] = 1]
= P[(T"HADb + T"n) [k > 0 bk} = 1]
= P |(T"n) k] > (T"HA) [k k=3 (T"HA) [k, j]b]j]
J#k

_ % > P|(T")[k] > (T"HA) [k, k] - > (T"HA) [£, j]b[j]](2.43)
be{-1,1}K! Jj#k
blk]=—1

where we use the fact that the random variable (T n)[k] is Gaussian with zero mean and
variance equal to (T"HAT)[k, k]o2. The sum in (2.43) can be simplified as o,, — 0 in the

following equation:

1

Pe = 5@ (((THHA) [k, k] — J% (T"HA) [k,j]) / 0/ (TTHAT) [F, k]) (2.44)

Hence, according to (2.32), the asymptotic multiuser efficiency achieved by the linear trans-

formation is

<(THHA)[ -7 ‘THHA‘ [k ;)
e = I7k (2.45)
\/(T"HAT) [k, k]
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2.5.1 Decorrelating Multiuser Receivers

The decorrelating receivers are designed to recover the transmitted bits error-free in the
absence of noise without requiring knowledge of the users’ received amplitudes. Assume that
the crosscorrelation matrix H in (2.18) is invertible. If we multiply the matched filter bank

output vector y by H™!, i.e., TH = H™!, then
H 'y(i) = H '"HAb(i) + H 'a(i) = Ab(i) + H 'n(i) (2.46)

So we can simply take the sign of each of the components in (2.46) to decide the bit symbols
of the transmitted data:

~

b[k] = sign { (H 'y)[k]} = sign {(Ab)[k]} = b[] (2.47)

We come to a conclusion if the spreading sequences are linearly independent, then the de-
tector in (2.47) achieves perfect demodulation for all users. For the decorrelating receiver,
the signature sequences spanned over an'lI-synibel interval for different users are linearly
independent. The interferences can be caneelléd.completely. This is why the detector is
called “decorrelating receiver”. The output of the decorrelating receiver has only two com-
ponents: one due to the SOI, assumed usér-ks-which is ‘equal to o.bg, and the other due to
the background noise, which is Gaussian with zero 1ean and covariance matrix c2AH .

Consequently, the BER of user k can be derived by replacing TH# as H ! in (2.44):

Pk (Un) = Q (o’n ,7H+[k,k])
- Q (ﬂ\/l - vaHklvk> (2.48)

On
The BER is shown to be independent of the interferers’ amplitudes. The vy is the kth
column of H without the diagonal entries, and Hy, is the (K — 1) x (K — 1) matrix that
results by striking out the kth row and the kth column from H. Substituting (2.48) into
(2.33) the asymptotic efficiency can then be obtained as follows:

Ml = m (2.49)

As depicted in (2.48), the kth user’s BER depends only on the SOI's amplitude as does the

asymptotic efficiency in (2.49), so the decorrelating receiver is near-far resistant.
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2.5.2 Linear MMSE Multiuser Receivers

The linear MMSE receivers are derived by minimizing the MSE between the transmitted
data bits Ab(i) and the linear transformation of matched filter bank output vector, y(7), by

the transformation matrix T. The criterion of MMSE is given by

min F{||Ab(i) - T"y()|} (2.50)

TeCKIXKI

The solution to the optimization problem in (2.50) [11, 47, 48] is given by
T = (H+ anA*Q)*1 (2.51)

The MMSE detectors will converge to the decorrelating detectors for the background noise
0, — 0. Thus in this case, its asymptotic efficiency and near-far resistance are the same

as those of the decorrelating detectors:

T = m (2.52)

If the decision statistics of the MMSEsteceiver is' not Gaussian, but is a sum of Gaussian
random variables (due to the background'noise) and-a binomial random variable (due to
the MAI), then the analysis of BER is not as straightforward as that of the decorrelating
detector.

For the synchronous case considered,; the firstelement of the output of the linear MMSE

transformation in (2.51) can be written as [11]

(THy)[1] = <(H + O'nA*2)*1 y) [1] = k1(by + X_j Brbr) + oniy (2.53)
where
o=t

ke =ox (H+02A ) "H) [1,4]
iy ~ N (0, TYHT1, 1])

The “leakage coefficient” [, quantifies the contribution of the kth interferer to the decision
statistic, relative to contribution of the desired user. The BER readily follows

mis ) — 1 o (THH)[1,1] K
Fiton) = 28 b2,...,bKe{zzl,1}K1 @ (Un (THHT)[1,1] <1 i %ﬂk@c)) (2.54)
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In the high SNR and low SINR environment, i.e., MAI is dominant, the MMSE receiver acts
like the decorrelating detector. And for the low SNR and high SINR case, i.e., background

noise is dominant, the MMSE receiver acts like the conventional RAKE receiver.

2.6 Linear Single-User Receivers

It is noted in previous sections that the optimal ML receiver has a prohibitive com-
putational complexity for practical implementation. The suboptimal receivers of multiuser
detection, with less complexity, require the knowledge of the spreading sequences of all users,
accurate estimates of the phase, timing, and, in some cases, amplitudes. Accurate estimation
of all of these channel parameters are almost impossible to achieve, and often, a slight loss
in accuracy can result in a large degradation of the performance of these receivers [49, 50].
When the receiver is intended for a mobile unit, not only the computational complexity
of multiuser detectors, but also the lacksof knowledge of the spreading sequences of all of
the users precludes their use. The:linear single=user receivers require knowledge of only
the desired user’s spreading sequence. Although initial code synchronization is necessary,
the timing accuracy requirement is-not istfingent.. The ‘éhief advantage of linear single-user
receivers is the case with which they can be implemented adaptively easily.

Considering the equation in (2.7), rewrite the equation with the assumption that the
processing window is over the duration of the bit symbol of interest. This is a reasonable

assumption for single-user detection given only the knowledge of the SOI.

x(1) = [2(0),

2(1),- -, x(N+L-2)]"
= z z g1 Cr by (1) + n(7)

K

= hybi (i) + Y hyby(i) + n(i)

k=2

= ds() +i(i) +n(i) (2.55)

where d,(7) is the signal, i(7) is interference, and n(i) is Gaussian noise vector. ¢y, is the
augmented signature vector associated with the /th path of user k, given by the /th column

of Cy, defined in (2.11), and hy is the effective composite signature vector (CSV) of user k
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given by

L
hy, = agchy (2.56)

1=1
A linear single user detector weights and sums the sampled data vector to produce the output

statistics from which a symbol decision is made. That is,
ysu (i) = sx(i) (2.57)
where s is the weight vector. In BPSK systems, a bit decision is made according to

b1 (i) = sign {ysv (i)} (2.58)

There are two scalar indices often used to measure the performance of communication re-
ceivers. They are the output SINR and BER. The output SINR is defined to be the energy in
the decision statistic due to the desired signal divided by the energy due to the interference-
plus-noise. With the assumption of independence among all transmitted signals and noise,

the output SINR is given by

2
‘Sth‘

SINR, =

(2.59)

> sfhyhgs? + 028ts
k=2

The BER is determined by the receiver output-signal-to-noise ratio and the Euclidean dis-

tance between the receiver output and the decision boundary:

P = E{P(ysu(i) >0]bi(i) = —1)}
= > P (ysu(i) > 0[b(i)) P (b(i) [b1(i) = —1)

b(i)e{—1,1}X b1 (i)=—1
K

SHh1 + E SHhkbk(’i)
k=2

o (sfs)1/2

_— (2.60)

2.6.1 Decorrelating Single-User Receivers

As the decorrelating multiuser detection, the decorrelating single-user receiver is designed
such that, in the absence of noise, the detector output perfectly recovers the transmitted

signal. It is clear that the s, is the solution of decorrelating receiver only if it satisfies
s" ' h, hy --- hK]Z[l 0 --- 0 (2.61)
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Let H; denote the (N + L—1) x (K — 1) matrix with columns given by hy, - - -, hx such that
H; = [hy, hs, - - -, h;]. The interference subspace, denoted as S;, is the subspace spanned by
hy,--- hg. The orthogonal projection component of h; onto the interference subspace S;

is given by
hi =h, - H;(HH;) '(H/'h)) (2.62)
and the linear decorrelating solution was derived in [51], given by:

S: = h%/ﬁz
1
= 77_ (I — HI(H?HI)_lH?) h, (2.63)

where the scale factor 1/7, is selected for

sfhl‘ = 1. The quantity 7, is known as the near-

2 2
far resistance. It is easily shown that (hi)%h; = th| , so that 77, = thH . Schematically,

interference suppression by a linear decorrelating detector is illustrated in Figure 2.3.

2.6.2 Linear MMSE Single=User Receivers

The linear MMSE single-user receiver minimizes the mean squared error between the

decision statistic and the desired signal bit“symbol only. The MMSE solution is given by
Smmse = Ry 'y (2.64)
where
R, = E{x())x(/)"} =R, +R;, =R, +R; + R, (2.65)

and R, = E{d,(i)d,())"} = hyh! R, = R; + R,, R = E{i())i(:)"}, and R, =
B{n(i)n()"}.

If only one signal exists, R, = h;h¥ + ¢2. Using the matrix inversion lemma, we have

1 h;h#
R;'=— (I #> (2.66)

2 o 2
On op + |||
In case of K orthogonal interference sources, successive application of the matrix inversion

lemma to hy, hy,---, hg yields:

R—l — R~_1 o R’lehlh{IRz;Ll
@ " 1+hlR,'h
1 -1
= = (I ~H; (H/'H, + 07) H?) h, (2.67)

n
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Then the optimal weight vector can be written as
1 o o\ ! prH
Smmse — O__TQL I- HI (H[ H] + OnI) H] h1 (268)

As we compare the solution of the decorrelating detector in (2.63) to the one in (2.68), we find
that the decorrelating detector is a scaled version of the MMSE detector when free of white
noise, o2 = 0, or in very high SNR environment. When white noise is present, the MMSE
receiver maximizes the output SINR. In particular, the MMSE solution is well-defined even
when the decorrelating detection solution does not exist.

If the interferers’ amplitudes are such that ||hg|| = op — o0, it is easily seen that

H

2
sy — 0. Otherwise, we have the condition Hsgmseth > eop > 0, where ¢ > 0 is

arbitrary positive number, which is the contribution to the MSE from user k. As o7 — oo,
the MSE — oo, which contradicts the condition MSE < 1 (i.e., Symse = 0 gives MSE=1).
In fact, it can be shown that

lim
[y |[—00

hy| =0 | (2.69)

‘S’I}Timse
which implies that as ||h.|| = 0} —Zoc, the contribution to the MSE from user & diminishes
to zero [15, 52]. To generalize (2:69), if |jhg|| = o/ => oo for all k, £ # 1, then clearly
Smmse = Ehi, where £ is a constant. Minimization of MSE by selecting & gives & = n++t2

We therefore conclude that as the interfering amplitudes ||hy|| = o, — 00, k # 1, we have

hL
Smmse = —— 5 (2.70)
N + 0y
and the MMSE becomes
o2
MMSE = — (2.71)
0. + o,
In addition to MMSE, the output SINR is
H
h
SINR, = — Smmse 1 (2.72)
> s e + 02 ||Smmse||2
k=2
The bit error probability in (2.60) is also given by
K
ngsehl + Z ngsehkbk
Pl — Q k=2 (273)

On ||Smmse||
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The asymptotic efficiency of the MMSE detector, given that the interfering amplitude
|hy|| — oo for the worst case and 02 — 0, is therefore ||h;||>. That is, the near-far re-

sistance of the MMSE receiver considered is the squared norm of the component of the

desired signal vector that is orthogonal to the subspace spanned by the interference vectors.

2.6.3 Minimum Output Energy Receivers

An alternative approach to the above is to suppress the interference by minimizing the
power of the receiver output ||y5U||2 [18, 34], employing a single linear constraint constructed
from the knowledge of the desired user’s CSV, denotes as h;. The minimum output energy

(MOE) optimization can be expressed as

min [lyso () = [s"x(0)] = s"R.s

subject to: s”h; =1 (2.74)

The optimal weight vector is given by

1 _
Smoe = <m) R;plhl (275)

and the MOE at the optimal point “becomes

1

MOE (hy) = 7. Ry$ymoe =~
( 1) Sioe S h{lR;lhl

(2.76)

The MOE detector is a scaled version of the MMSE detector. Since scaling doesn’t affect
the output SINR, MOE has the same optimal performance as MMSE when the CSV of
the desired user is accurately estimated. Unfortunately, the CSV is generally unavailable
to the receiver or become inaccurate in the multipath environment, and the constrained
optimization methods are known to be very sensitive to signature mismatch due to the

signal cancellation effect [18]. Hence special care needs to be taken when multipaths are
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present [53]. The CSV, hy, from (2.55) can be derived as

[ e[0] 0 0 ]
: C1.2 [0] . 11
cia|N —1 : 0 a
h, = V=1 = af, (2.77)
0 CLQ[N - ]_] . Cl,L[O] .
. . . | 0 |
0 0 e N=1]
where the multipath fading parameter vector f, = [y, - -, al’L]T, are generally unknown.

It was proposed in [23] that explicit estimation be avoided by employing the constraint

‘sHh‘ = 1, where h is an unknown parameter vector that approximates h;.

MOE with Capon’s Criterion

A procedure reminiscent to the Capon’s estimation method was proposed for optimizing
h. This procedure consists of selecting h by.the conditions that MOE(h) in (2.76) is maxi-
mized and the constraint ||h|| = 1 is satisfied. If-h is replaced by h = C,f, where f is some
parameter vector approximating f,s we get-the following optimization problem:

h'’'h _ fIQUR-'Cf
=‘atg min FICTC, f

foapon = arg max

3, SR (2.78)

The solution to equation (2.78) is via the generalized eigenvalue decomposition involving the

matrix pencil of (CIR;'C,CIC)).

MOE with A Single Arm

An alternative approach to MOE for handling the multipath case relies on extending
the number of constraints. In [20], the weight vector s is constrained to satisfy Ci's =

[1,0,---,0]". In this way, the response of the SOT is constrained to
s"h =sC.f = [1,0,---, O]Tf = ay,; = Constant (2.79)

This method avoids the signal cancellation problem by forcing the response of delayed copies
of the signal of interest to zero. By doing so however, the method doesn’t exploit all the

energy of the received signal.
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We generalize the above constraints problem by selecting the weight vector s and a

arbitrary parameter vector to satisfy the following general constraint:
Clls=f (2.80)

where f is a general parameter vector arbitrarily chosen. The solution subject to (2.80)

yields the optimum receiver with the minimum variance:
-1 Hp-1c ) !
smee = R;'C1 (C{'R;'Cy) f (2.81)
Substituting (2.81) into (2.59), the output SINR is given by

2

£ (CPR;'C,)” CIR;'h,

SINR(f) = - - 5 (2.82)
£ (CI'R,'C,)” f — ||f7 (CI'R,'C)) ™' CI'R, 'hy |
which after some manipulation, and using h; = Cif, in (2.77), reduces to
SINR(f) = ! (2.83)
~ fH(CHR;'Cy)E ; '
T

It is well known that the MMSE:receiver maximizes the SINR [54], hence generally, we
expect that

SINR(f) < SINRusarsi (2.84)
It is clear from (2.81) that if f = (C{/R,'C,)f,, then equality is achieved in (2.84) because
Smoe 18 nOW identical to the MMSE receiver weight vector R 'h;.

MOE with Min/Max Criterion

An improvement was proposed in [23] where the channel parameters f are optimized by
the min/max approach. In the first step, the constraints vector f is set as a dummy vector.

Then, the linearly constrained minimum variance (LCMV) problem is solved:

min J =s"R,s
S

subject to: CHls=f 2.85
1
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For a given f, the solution to this constrained optimization problem is obtained using the
Lagrange multipliers [53]:
_n-l 1~ 7!
smee = R;'C1 (CiR;'Cy) £ (2.86)
This minimization suppresses the output components from interference and noise. In the sec-
ond step, the received output power .J,,,. is maximized over f, assuming that the interference

and noise output energies have already been suppressed in the first step:

Jmoe = |r‘£1”a:>§ s ReSmoe (2.87)

Ideally, this maximization optimizes the output energy of the desired signal, which is achieved
when the constraint parameter f matches to its optimal value. The optimized linearly
constrained MOE receiver is given by sequential min/max optimization in step I (2.85)
and II (2.87). By substituting s, in (2.86) into equation (2.87), this min/max problem is
equivalent to solving

£7(CIR_C,) ' ‘
max T | (2.88)

This cost function in (2.88) is a Rayleigh.quotient and hence the solution to this optimization
problem is the eigenvector of (CHRIC;) ! corresponding to the maximum eigenvalue, or
equivalently the minimum eigenvector of (CHR,'C,).

It has been shown [23] that the performance of this MOE detector with variable con-
straints is close to that of the MMSE receiver at high SNR in the presence of multipaths.
However, the computational complexity is higher than using fixed constraint parameters

because it requires an extra eigenvalue decomposition.

2.6.4 Proposed GSC Receivers

Here an adaptive CDMA receiver with enhanced signal reception and interference re-
jection is proposed for multipath channels. The design of the receiver involves a two-stage
procedure. First, an adaptive correlator bank is constructed in the form of generalized side-
lobe canceller (GSC) to suppress strong interference. To reduce the complexity, the partially

adaptive implementation is incorporated in the design of GSC blocking matrix. Next, a
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maximum ratio combining of the correlator outputs is performed to constructively collect
the multipath energy. Since strong MAI has been removed, channel estimation can be done
accurately, leading to improved performance compared to the conventional RAKE receiver.

In order to restore the processing gain and retain the multipath diversity, the received
vector, x(i), is despread for each path, or finger. Specifically, the output of the correlator at

the [th finger is despread by s; into
yi1, = s, x(i) = s/ 'hyby (i) + 8/7i(i) + s, n(i) (2.89)

for [ =1,---, L, where s; is the weight vector at the /th finger. For an effective suppression

of MAI, the weight vector can be determined in accordance with the LCMV criterion:
min sfl R.s;
S
subject to: cf{lsl =1 (2.90)

However, the adverse phenomenon of signal cancellation usually occurs with the solution in
(2.90) due to the mismatch of signature vector.-\With such a mismatch present, the signal can
be treated as an interference. That causes-a very small gain for the signal. To avoid such
signal cancellation, the LCMV correlators can be implemented with multiple constraints
[34]. Another better alternative solution’is suggested based on the GSC technique. The
GSC is essentially an indirect but simpler implementation of the LCMV receiver. It is a
widely used structure that allows a constrained adaptive algorithm to be implemented in
an unconstrained fashion [55]. The concept of GSC is to decompose the weights into two
orthogonal parts, written in s; = ¢;; — B.g;, which is shown in Figure 2.4. The matrix B, is
a pre-designed signal “blocking matrix” which removes user 1’s signal before filtering. The
goal is then to choose the adaptive part of weight vector, g;, to cancel the interference in

x(i). According to the GSC scheme, g; is determined by the MMSE criterion:

min  B{lex(i) — g Bx(i)’} = [|R;*B.gi — Ry/%e1y)” (2.91)

g

Since the signal has been removed in the lower branch by the signal blocking matrix B, the

only way to minimize the MSE is such that g; performs a mutual cancellation of the MAI
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between the upper and lower branches. Solving for g; and substituting it in s; = ¢;; — B.g;

gives
s; = [I- B.(B/'R,B,)'B/R,| c1, (2.92)

Note that B, is designed to block signals from the entire delay spread in order to avoid signal
cancellation. It can be chosen to be a full rank (N + L —1) x (N — 1) matrix whose columns
are orthogonal to {¢; 1, -, ¢ 1}, i.e., BIC; = 0.

With the MAT suppressed by the adaptive GSC correlators, the next step is to perform
a maximum ratio combining of the correlators’ outputs to collect the multipath energy
of the signal. It is assumed that, with the adaptive correlator processing, the dominant
interference has been eliminated and the output data y,;(i), [ = 1,---, L, contains the
signal and colored noise only. This suggests that the maximum ratio combining (MRC)
criterion can be employed to collect these components coherently to extract by(i). Let £,

be the L x 1 weight vector that performs the combining:

20(i) = £2, .y (i) | (2.93)
where

y(i) = [y vz oyl (2.94)
is the output data vector of correlators within the ¢th symbol, and

n, = [s7n(i),sin(i), - sin(i)] (2.95)

The MRC weight vector can be determined blindly as the solution to the following problem
[56]:

E{‘fH y 2} £ R,f
ax = Imretyotmre (2.96)

oo B{Igh 0’} R L

mrc

where Ry, = E{yc(z)yf(z)} and R,, = E{nc(z)nf(z)} are the output data and noise

correlation matrices, respectively. The solution to (2.96) is well known to be the principal

generalized eigenvector of {Ry,, Ry, }.
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2.7 Simulation Results

In this section, we present simulation results that illustrate the performance of some
of the CDMA receivers discussed in this chapter. All results are obtained based on the
assumption that the processing gain is N = 31, and the interferers are asynchronous with
L = 4 independent Rayleigh fading multipaths. The multipath delays are chosen uniformly
from [0 ~ 3T.]. Both the desired and interference signature sequences are Gold sequences
[57]. The order of RAKE receiver is 4. As an indication of the goodness of these receivers,

we define the output SINR (in dB) as a criterion:
Total Power of SOI's

SINR, = 101 2.97
9810 Total Power of INT’s 4+ Noise Power ( )
and the input SNR (in dB) is defined as
a;

n

The NFR (in dB) is defined as the ratio of the MEAI power to signal power before despreading:
) ‘

NFR = 1010g102—%C and o= o0f =-1-=qgs sfor k=1,--- K
N, symbols are used to obtain sample estimates of varibus correlation matrices. A total of
50 Monte-Carlo runs are executed %0 obtain‘an-average value of SINR,. Unless otherwise
mentioned, the following “standard” parameters will be used throughout the section: SNR,;=
0 dB, Ny =500, L = 4 fingers and processing gain N = 31.

In the first set simulations, the asymptotic efficiency is evaluated in the two-user sce-
nario. The resulting output SINR curves with respect to the NFR are plotted in Figure
2.5. Obviously the asymptotic efficiency of the decorrelating multiuser receiver (ZF-MUD)
described by (2.47) is nearly a constant, which is determined only by the crosscorrelation
properties of signature sequences. The MMSE multiuser receiver (MMSE-MUD), as de-
scribed by (2.51), acts similar to the conventional receiver in low NFR region and similar to
the ZF-MUD in high NFR region. The conventional RAKE receiver works better than the
ZF-MUD in the low NFR region. This is because that the ZF-MUD has the more significant
noise enhancement phenomenon in that region.

In the second set of simulations, the BER performance of the linear multiuser detections

is evaluated in the two-user scenario. The resulting BER curves with respect to the NFR are
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plotted in Figure 2.6. Although the power of interference increases, the ZF-MUD remains
constantly reliable. The MMSE-MUD outperforms the ZF-MUD with low NFR, but degrades
quickly as the NFR increase.

In the third set of simulations, the system capacity is evaluated with different user num-
bers K. The resulting output SINR curves are plotted in Figure 2.7 for NFR = 0 dB and
NFR = 20 dB. As observed, the conventional RAKE (C-RAKE) receiver totally fails with
NFR = 20 dB and a large K due to the poor crosscorrelation properties among signature
sequences. The linear MMSE receiver (MMSE-SU) described by (2.64) has the best of per-
formance among these receivers. This is due to the aid of training signal and the large degree
of freedom with N. The MOE receiver with the min/max criterion (MM-MOE) described
in Section 2.6.3, and the proposed GSC receiver (G-RAKE) described in Section 2.6.4 have
nearly the same performance of the MMSE receiver for NFR = 0 dB. As the NFR increases
to 20 dB, the output SINR of the MOE degrades quickly. This is because that the MOE
receiver relies largely on the estimation ef CSV. Many strong MAT users will cause the chan-
nel mismatch more severe. The proposed GSC is better than the MOE, but is slightly worse
than the training based MMSE-SU feceiver.‘ |

In the fourth set of simulations; thenoar-far resistaﬁce of the proposed GSC receiver is
evaluated with different NFR values. Figure 3in shows the results obtained with K =5 and
K = 25 users. As observed, the C-RAKE receiver fails again with K = 25. The MM-MOE,
G-RAKE and MMSE-SU receivers achieves their excellent near-far resistant by successfully
cancelling the MAT using the temporal degree of freedom (N: processing gain) with K = 5.
For the case of large number of users K = 25, the output SINR of the MM-MOE receiver
degrades quickly as the NFR increases. The MMSE-SU gives the best performance, in which
case both channel estimation and MAI suppression can be done effectively. On the other
hand, the proposed G-RAKE receiver has the same degree of freedom to suppress the MAI
and is not sensitive to channel error. So the proposed G-RAKE receiver has the performance

somehere between the MMSE-SU and MM-MOE.
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2.8 Summary

A CDMA receiver model is introduced and a systematic overview of the linear multiuser
and single-user CDMA receivers are outlined. Also, a GSC based receiver has been proposed
for multipath environments. The proposed receiver can be operated without the aid of
training signals. The only information required is the signature sequence, rough timing
estimation. From simulation results, it is shown that the proposed blind receiver is near-far

resistant, and performs reliably in an overloaded system.
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Chapter 3

Space-Time Processing Techniques for

CDMA Systems

As discussed in Chapter 2, signal processing in CDMA receivers include channel esti-
mation of transmitted signal and supptession of MPAI. One promising approach to improve
signal processing performance is the space-time (ST) processing, which operates simultane-
ously on multiple antennas. A key leverage of this spatial dimension is MAI suppression.
This suppression is possible since the: MAT and the SOI almost always arrive at the antenna
array (even in complex multipath environments) with distinct and often well-separated spa-
tial signatures. This allows the receiver to exploit the difference to reduce the MAI. Likewise,
the ST transmit processing can use spatial selectivity to deliver signals to the desired mo-
bile while minimizing the interference to others. Filtering in the space domain can separate
spectrally and temporally overlapping signals from multiple mobile units, which is referred
to as space division multiple access (SDMA) [55, 58, 59, 60]. By exploiting the space do-
main via an adaptive antenna array, the operational benefits to the network operator were

summarized as follows [61]:
e Capacity enhancement
e Coverage extension

e Increased immunity to near-far problem
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e Ability to support hierarchical cell structure

In this chapter, we extend the discussion from time domain to ST domain by employing
multiple antennas. Firstly, we develop the ST CDMA models in a similar way as Chapter
2 does for time domain. Then, we will derive different kinds of ST 2-D RAKE receivers for
cellular DS/CDMA communication systems. The extension of conventional RAKE receiver
into the 2-D RAKE receiver, a combination of the space domain (antenna array or diversity
beams) and time domain (the RAKE receiver) only, is very important in the user-flooded

communication environments.

3.1 Space-Time Data Model

Reconsider the DS/CDMA data model for a scenario in which the receiver of basestation is
equipped with an antenna array of D elements. Assuming that each transmitter is equipped
with a single antenna, the baseband maltipath channel between the kth user’s transmitter
and the basestation receiver can be modeled asia gingle-input, multiple-output (SIMO)
system. To develop the SIMO data model, fitstly the received data at the dth antenna is

written as

I K L
Jf(d) (t) == Z Z Z O'kbk (i)akl’dak’lck (t — T — Tk,l) + n(d) (t) (31)

i=1 k=1 l=1
The scheme of data model is shown in Figure 3.1. Following a chip matched filter, the

discrete time complex baseband signal over a block of I symbols is given by

X(4) (i) = SF (g Ab(i) + na (i) (3.2)

The equations (3.1) and (3.2) similar to the equations (2.5) and (2.6), which are developed
in the single antenna CDMA system, except for a multiplying phase parameter ay; 4. As
developed in the previous chapter, we cascade the chip-sampled data over a block of I

symbols at the dth antenna into a vector as

(o) (i) = [%y i + 1), X[y (i + 2), - &Ly (i + 1)) (3.3)

NIx1

where 3_{%:1) (1) is the chip-sampled data vector over the ith symbol duration denoted as
T
7T 1 p— « ..
X(d) (7) = [x(d) (t)‘t:(i—l)TJrT.Tc » T(d) (t)‘t:(i—l)TJrTch% T ) (t)‘t:(i—l)T+NTc—% N><1(3.4)
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and ng (i) is the chip-sampled white Gaussian noise vector over the /-symbol interval

. — . — . — . T
n (i) = [na)(z + 1),n€i)(z +2),-- -,na)(z + I)]lel

(3.5)

where ﬁ@)(i) is the chip-sampled noise vector over the ith symbol duration denoted as

T
B (1) = [n(d) (t)‘t:(iq)ﬂ% 1) (t)‘t:(z‘fl)TJrTch% R (t)‘t:(ifl)TJrNTc—% NX1(3'6)
In (3.2), S, A and b are defined in (2.9), (2.14) and (2.16) in Chapter 2. The f‘(d) is defined

as

F(q) = diag [¢(d)(i + 1), (i +2), -+, Gy (i + I)} F (3.7)
where
QS(d) (Z) = dlag [all,da o ndy 5 AK1,dy Tt aKL7d]KL><KL (38)

for i = 1,---,1, F is the channel fading matrix,defined in (2.12), and a4 is the phase of
the kth user associated with the [thpath at-the dth antenna element.

Stacking the received data at the 4 antennas gives:,

xsr(i) =[x (1), X(o) (), - %y D] 55 5 (3.9)
which, in matrix form, is
xg7(i) = SFAb(i) 4+ ngr(i) (3.10)

where S is the NID x K LID block Toeplitz signature matrix with diagonal blocks S¢4) =S,
ford=1,---,D, S is defined in (2.9), such that

§ = diag [S1): Sy S0)] v i (3.11)
F is the KLID x KI ST channel fading matrix:

F = [Fa)’ Fg)’ o F{D)]iLIDxKI (3.12)
and ngz(i) = [na)(i), nly (i), -, n(TD)(i)];mm is the stacked ST received noise vector. The

ngr(i) is a vector of independent zero-mean complex white Gaussian noise processes, and

o2 is the variance of the ambient noise at each antenna element.
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Similar to the development of multiuser receivers in the single antenna case, which corre-
sponds to a single-input, single-output (SISO) system, we can derive the sufficient statistics
for ST multiuser detectors from the received ST stacked data vector xgr(i) in (3.10). The

A~

ML detector finds the symbol vector estimate, b(i), which maximizes the likelihood function

exp [(—1/2031)

the following exponential function:

‘XST(i) - gf‘Ab(z)HQ] [11]. This is equivalent to maximizing the negative of

Qor (b) = 2R <bAFH§HxST> _ bAF"§7SFAD (3.13)

Since the second term does not depend on the received signal assuming knowledge of the

channel matrices, a sufficient statistic vector is given by the complex KI x 1 vector:

ysr(i) = FYSYSFAb(i) 4+ F"S"ngr(i)

= HAD() + ngr(i) (3.14)

where H = F7SHSF is the ST correlationiatrik and figp = F”S"ngr is the corresponding
noise vector.

It is seen that the sufficient statistics are Simply the ST code matched filter output.
The ST code is specified by the ST channel-parameter associated with the path fading
gains and AOA of each user. For example, suppose the processing window [ is over only
one-symbol duration, the kth element of ygr is the ST matched filter output for user
k, obtained by correlating each of the D antennas received signals with its L multipath
codes [Ck1,Ck2,--,Ck], weighting them by the complex conjugate of the ST channel
(k1 a1 s Ok2,aCk 2, * + + 5 Qg a0k,r], for d = 1,-+-, D, and summing over all the multipath
indices [ and all array indices d. The procedure is illustrated in Figure 3.2. If the channel,
F, is not known, an alternative vector of sufficient statistics can be formed at the outputs of

the code matched filter bank:

yST = gHSFAb—FSHST

— Hb + gy (3.15)

where H = SSFA is the overall channel matrix between the input vector b(i) and output

vector ¥er(i). Equations (3.14) and (3.15) are two sufficient statistics models for the received
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signal. Depending on the knowledge of the channel, the receivers can operate either on ygr (i)

or on yer(i).

3.2 Linear Space-Time Multiuser Receivers

Since the optimal ST multiuser detection algorithm has a prohibitive computational
complexity, oc O(2KT), we will develop linear ST multiuser detection techniques in this
section. It is assumed that the receiver has the knowledge of the spreading code and the ST
channel parameters of all users.

In linear multiuser detection, a linear transformation is applied to the sufficient statistics

vector, ysr (i), then followed by local decisions for each user, that is

b(i) = sign{R{T"ysr(i)}}
= sign {R{T"Hb(i) + T"hgr(i)} } (3.16)

where T is a K1 x KT complex matrix;
Two popular linear multiuser detectors described in Chapter 2 are the decorrelating
detector and MMSE detector. The cortesponding: transformation matrices for these linear

detectors are given, respectively, by

T, =H' [ linear decorrelating multiuser detector | (3.17)
T, = (H+02A2)  |[linear MMSE multiuser detect 3.18
SToarse = ( + o ) [ linear multiuser detector ] (3.18)

The BER performances of linear ST multiuser detectors are similar to the previous SISO

linear multiuser detectors, so what we do is to replace H with H in (2.43), such that

P = P[blk]=1[b[k] = -1] = P[(T"HAb + T"8sr) [k] > 0 [blt] = —1]

= P|(T"asr) [k] > (TTHA) [k, k] — 3 (T7HA) [k, j]blj]
7k
- 2K1]—1 E p (THﬁST) [k] > (THI:IA) [ka k] - 27; (THI:IA) [ka]][]]]
be{—1,1} %1 j#k
blk]=—1

(3.19)

20



and the asymptotic efficiency of ST multiuser detection can be achieved in a similar way as

the equation (2.45) developed previously:

(xria) sk - frmia )
7 = ik (3.20)
\/ (THHAT) [k, K]

In order to perform a simpler analysis on the impact of a generic detector on the system
capacity, one can approximate the BER as the Q(-) function of the square root of the received

SNR where the noise is modeled as in-cell and out-of-cell Gaussian MAT:

¢ (\/(K - 1])\;3 -+ K7> (3.21)

where

N processing gain;

K number of users per cell;

B percentage of MAI power remaining‘after any multiuser detection;
(8 = 0 : no multiuser detéction, BI= 1" pérfect removal of all MAI)

v (the ratio of the total out-of-cell interference-over K)

If the signal-to-interference ratio (SIR)%inereases-by a factor of D, for example, due to D
uncorrelated antennas, then for a fixed. BER the new system can support K’ users, and this

K’ can be solved based on the same BER assumption:

¢ (\/(K - 1])\; n m) =q (\/(K’ - ?);VJF K’v) (3.22)

Solving for K’ and normalizing by K, we have
K -1
K 7 K@+9)

which asymptotically approaches D as K approaches infinity. From (3.23), it follows that

(3.23)

additional antennas and multiuser detection both increase the DS/CDMA system capacity.

3.3 Single-User Detection Data Model

In this section, we will derive a variety of data models applicable to 2-D RAKE single-

user receivers for DS/CDMA communication systems. For single-user detection, the MAT is
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regarded as noise and only the desired user’s channel is of interest. Here, we will develop
different ST CDMA data models according to whether the data modeled for detection is
pre-despread or post-despread in time domain or whether the antenna-space or beamspace
is considered. They will be categorized into four types of models: pre-despread antenna-
space model (Pre-BT), pre-despread beamspace model (Pre-BT), post-despread antenna-
space model (Post-ST) and post-despread beamspace model (Post-BT).

3.3.1 Pre-despread Antenna-space Data Model

First, we discuss the Pre-ST data model in which the data is in pre-despread form in time
domain and antenna-space form in space domain. Rearranging the received data (3.1) into

a stacked vector, we have the single-input multiple-output (SIMO) continuous time model

as
_ T T T
Xsr(t) = [3?(1)(t),$ 9 (1), 7(p) (t)]
I K L ‘
= ZZZO’kbk aklaklck(t—zT—Tkl)—i-n( ) (324)
i=1k=11=1
where a; = (a1, Grkros - - s, akl,D]T is the array response vector associated with the [th path

of the kth user’s.

To gain full information of the composite signatures, we chip-sample the received data
Xsr(t) at t = ¢T + nT. + 3T, over one symbol duration, (n = 0,1,...,N + L —2). Tt
means that we take (N + L — 1) samples to make the decision on one bit. Without loss
of generality, we assume that the desired user is user 1 and the ¢th data bit is considered.
Thus, the sampled received data can be written as a D x (N + L — 1) matrix:

X(Z) = Zak,lamc{lbl (’L) + I(’L) + N(Z)

=1
- [}_CST,i(O)a }_{ST,i(]-)a Tty }_CST,Z'(N + L - 2)] (325)
where Xgr;(n) is the received data vector sampled at ¢ = iT + nT, + %TC, ci,, defined in
(2.11), is the augmented signature vector of the [th path of user 1, and I(i) consists of ISI
and MAI:
L T L T
I(Z) = Zauaucg;) bl(Z — 1) + Zauaucﬁ) bl(Z — 1)

=1 =1
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+ZZaklaklcklbk +ZZaklaklckl bk(’L—l)

k 21 1 k=21=1
+22ammckl bi(i+ 1) (3.26)
k=21=1
(-) (+)

with ¢;,” and ¢;;’ being the augmented signature vector associated with the previous and

next bits, respectively. ¢y, cfgjl) and CE:’;) are defined in a similar fashion for the MAI. N(i)

is complex additive spatial and temporal white Gaussian noise matrix. From (3.25), the ST

signature matrix of the desired user is given by

L
T
Hsr = Z ay,01,Cy

= [hsr(0), hgr(1), -+, hsp(N + L — 2)] (3.27)
such that
X (i) = Hrby (i) + 1(3) + N(i) (3.28)
where
1(i) = [ig,:(0), igri(1), -+ -, igm(NF L=2)] 5 (3.29)
N(7) = [ngri(0), ngri(1),- - -, ngpi(N + L‘ —2)] (3.30)

where hgr(n) is the chip-sampled channel signature vector, igr;(n) is the ISI and interference
part of chip-sampled vector and ngr(n) is the chip-sampled white Gaussian noise vector, all

sample at t =T + nT, + %Tc.

3.3.2 Pre-despread Beamspace Data Model

The pre-despread beamspace data (Pre-BT) model is developed next. The Pre-BT re-
ceiver is constructed on a set of M diversity beams formed at the antenna array, where the
number of beams is usually less than the number of antenna elements, i.e., (M < D), and
each beam is pointed at a distinctive look angle as shown in Figure 3.3. This transforms the

received antenna-space data matrix X into a set of beamformer outputs:
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where w,,,, m = 1,..., M, are the beamforming weight vectors. The look angles are chosen
such that the M beams span an angular region encompassing a sector ©, within which the
desired signal paths arrive. From (3.31), we get the D x M beamforming weight matrix Wy
and the Pre-BT data model as

Yer(i) = WEX(i)

L
= Y ayWigayc] b (i) + WZI(i) + WEN(i)
=1
= |yBri(0),ypri(1), -, ypr(N + L — 2)] (3.32)
where ypr:(n) is the chip-sampled beamspace vector at t = T + nT, + %Tc. The Pre-BT
signature matrix is given accordingly by
L
Hpr = Z Oél,leal,lC{z
=1
= [hpr(0),hpr(1),- -, hpr(N + L — 2)] (3.33)
where hpr(n) is the chip-sampled beamspace signature vector at t = i7" + nT, + %Tc. Note
that the simplest choice of Wy is a-set of fixed beams pointed at different directions in the

working sector ©,.

3.3.3 DPost-despread Antenna-space Data Model

Post-despread antenna-space data model (Post-ST) means that the chip-sampled ST data
is despread or compressed in time domain first before further processing. Assuming that the
information of channel impulse responses with a delay spread of L chips is known, we may
design a matched filter bank with L fingers for every antenna. The weight vector of each
finger has a length of N + L — 1 to cover all the delay versions carrying the information
bit of interest. In Post-ST data model, we despread the pre-despread data to compress the
temporal dimension from N + L — 1 to L in an adaptive fashion to suppress MAI. From

(3.25), we define the (N + L — 1) x L adaptive matched filter matrix G:

G =[s1,82, . SLl(vir 1)xr (3.34)

where s;, [ = 1,..., L, are the adaptive matched filter weight vectors. Note that similar to

that the simplest choice of Wpg is a set of fixed beams pointed at different direction, the
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simplest choice of G is the C; matrix as defined in (2.11). Then, the Post-ST data model is

given by

L
XSM(’L) = Z al’lauclT’lG*bl (Z) + ]:(’L)G‘r>k + N(Z)G*
=1
= [xsn,i(0), xsar,i(1), - -, xgar,i (L — 1)] (3.35)

where xgp,i(n) is the post-despread data vector at the nth finger. The Post-ST signature

matrix is given by

L

T *

Hsy = Y agagc),G
=1

= [hsp(0), hep(1),-- -, hop (L — 1)] (3.36)
and Post-ST interference and noise components are given by

Tsn(i) = I1()G*

= [isami(0),igni(1), -+ igni(L — 1) (3.37)

Now(i) = N(i)G*

= [ngr,i(0), ngari), = ngari (L — 1)] (3.38)

3.3.4 Post-despread Beamspace Data Model

The last data model is obtained by compressing the temporal and spatial dimension by
a set of adaptive correlators and a set of beamformers, respectively. The compressed data
model is called the post-despread beamspace data model (Post-BT) which is suitable for
sectored and post-despread systems. The Post-BT data model is given by
Yau(i) = WHX(i)G*
L
= Y o, Wihayc] ,G*b (i) + WRI())G* + WEN(i)G*

= [;BM,Z'(O): vem,i(1), - . yBumi(L —1)] (3.39)

and the Post-BT signature matrix is given by

L

H T *

HBM = E al,l WBaLlcl’lG
=1

= [hpm(0),hgn (1), -, hpn (L —1)] (3.40)
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The corresponding Post-BT interference matrix Iz, () and noise matrix Npy,(7) are given

by
Ipn(i) = WEIH)G*

= lipami(0),ipni(1),- - - ipai(L — 1) (3.41)

Npu(i) = WEN@G)G*

= [npn,i(0), npari(1), -+, ngai(L — 1)] (3.42)

3.4 Space-Time 2-D RAKE Receivers

In this section, we develop different types of ST 2-D RAKE receivers based on the four
types of data models (Pre-ST, Pre-BT, Post-ST and Post-BT) discussed in the previous
section. These 2-D RAKE receivers are distinguished by pre-despread and post-despread in
time domain and by antenna-space and beamspace’in space domain.

A 2-D RAKE receiver is implemented to:perform two main tasks: (1) identifies and
removes the signature matrix (or vector) of the desired user in order to recover the original

data bit; (2) suppresses MAI, TSI, NBI and noise.

3.4.1 Pre-despread Antenna-space 2-D RAKE Receivers

Firstly, we employ the ST data model from section 3.3.1 for pre-despread antenna-
space (Pre-ST) DS/CDMA systems. In order to formulate the data structure for ST joint
processing, we denote the data vector of size (N + L —1)D x 1 from (3.25):

X, s7(1) = vec{X(i)}
~ _ ~ T
= [XET,i(O): XgT,i(l): T ’XgT,i(N +L- 2)] (N+L—1)Dx1

= hc—STbl (’L) + ic—ST(i) + nc—ST(i) (343)

where vec(-) is the operation that concatenates a matrix into a column vector, column by

column. In this way, the concatenated Pre-ST signature vector from (3.27) is given by

L
h, 57 = vec{Hgr} = vec {Z aLlal,lclTJ}

=1
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T

= [hgT(O)ahgT(l)a'":hgT(N+L_ 2)7] (3.44)

(N+L—-1)Dx1
The concatenated Pre-ST interference vector i._g7(i) and noise vector n._gr(i) are given by

T

fesr(i) = [, (0 (), BN D=2 (3.45)
and
. _ _ B T
n. gr(i) = [n:sCT,z'(O)a ngT,i(l)a Ty ngT,i(N +L— 2)] (N+L—1)Dx1 (3.46)

A variety of receivers can be developed based on the concatenated Pre-ST vector in
(3.43). For example, the Pre-ST RAKE receivers combine the entries of the Pre-ST data

vector via a linear operation, with a specified weight vector q, into an estimate of b (7):

~

b1 (i) = sign { (quc_gT) } (3.47)

The weight vector can be chosen in accordance with the coherent or MMSE criterion [31].

For the coherent Pre-ST 2-D RAKE reeeiver, the'sweight vector q in (3.47) is given by
ry = h.sp = E{xsr(i)bj(i)}
q = Ty : ‘ (348)

Here ry; is formed to estimate the concatenated signature vector h._gr. For the Pre-ST

MMSE receiver,
q=R_ gt (3.49)

Another receiver similar to the MMSE receiver is the Pre-ST MVDR receiver, which is given
by

—1
a= (h£STRc_—15Thc—ST) R grhe o7 (3.50)

where R._gr = E {XC_ST(i)xf_ST(i)} is the Pre-ST data correlation matrix, and h,_gp is
the Pre-ST channel vector obtained by concatenating the columns of Hgy. In practice, ry

and R, g7 are usually estimated by

b= 3 xesrlibi(0) (3.51)

5 4=1
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- 1 X . .
Re_sr= N Z chST(Z)XgI_ST(Z) (3.52)

S =1

where Ny is the number of symbols. The output SINR of the linear receivers is given by
2
g
q hc—ST
SINR, = R ‘ ‘ I (3.53)
a”R. srq — q’h,_srh;’ srq

and the bit error probability is determined by the receiver output SNR and the Euclidean

distance between the receiver output and decision boundary:

P = Epcoinx {P (qHXc—ST(’i) > 0bi(i) = _1)}

- 0 thcfST + qHEBe{—l,l}Kfl,B:bg,m,bk {iC,ST(z’)}
on(qq)!/?

Although the Pre-ST 2-D RAKE receiver has the maximum degree of freedom (N +L—1)D

(3.54)

to suppress MAI, noise or NBI, it needs a higher computational complexity and suffers from
poor convergence. A simplified approache of performing ST processing is of course to separate
the spatial and the temporal processing. In this way, we can have spatial beamformers and
temporal correlators (or matched filters) wotk indepehdently. This results in the so-called

cascade ST and cascade time-space 2-D RAKE receivers [29].

3.4.2 DPost-despread Antenna-space 2-D RAKE Receivers

For post-despread antenna-space (Post-ST) DS/CDMA systems, we despread the received
data in the time domain by a set of matched filters. Then we get the concatenated Post-ST

data vector of size LD x 1 from (3.35) as follows:

Xe_sm(i) = vec{Xsnm(i)}
= [XgMﬂ‘(O)a X:gM,z‘(l)a T ’XgM,i(L - 1)]LD><1

= hcfsMbl(Z.) + iC,SM(Z.) -+ HC,SM(i) (355)

where the concatenated Post-ST signature vector from (3.36) is given by

L
T %
h, sy = vec{Hgy} = vec {Z ap a ey, G }
=1
T

= [th(O)a hg:M(l)’ B h?S:M(L - 1)] (356)

LDx1
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The concatenated Post-ST interference vector i._gy (i) and noise vector n._gy (i) are given

by

. . . . . T

icsm(i) = [lgM,i(O)a lg:M,i(l)a Tt lgM,i(L - 1)}LDX1 (3.57)
, T

n, sy (i) = [ngM,i(O)a ng:M,i(l)a Tty ngM,i(L - 1)]LDX1 (3.58)

The Post-ST RAKE receivers combine the entries of the Post-ST data vector via a linear
operation, with a specified weight vector ¢, into an estimate of by (7):

~

b1 (i) = sign { (qHXC,SM) } (3.59)

For the coherent Post-ST 2-D RAKE receiver, the weight vector q in (3.59) is given by

Yoyp = E{XC—SM(Z)U{('L)}
a4 = 1., (3.60)

Here rg, is formed to estimate the ¢oncatenated signature vector h._gps. For the Post-ST

MMSE receiver,

where R, sy = E{x,. gy (1)x 1) ¢. For the'Post-ST MVDR receiver,
c—SM

1
q-= (hriSMREESthfSM) R, sphe su (3.62)

In practice, R._gps and rg,, are usually estimated by

. 1 & .
Tom = 3~ > xe—sur (i) (0) (3.63)
s =1
- 1 & . .
Re_sy = ﬁ ZXC—SM(Z)Xf—SM(Z) (364)
s =1
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3.4.3 Pre-despread Beamspace 2-D RAKE Receivers

Similar to the development of the Pre-ST and Post-ST 2-D RAKE receivers, the pre-
despread beamspace 2-D (Pre-BT) 2-D RAKE receiver is developed next. Instead of pro-
cessing the antenna-space data, we concatenate the BT data matrix Yz (i) into a vector

Ve—pr for Pre-BT 2-D RAKE receiver. From (3.32), we obtained

Ye—nr = vec{Y pr} (3.65)

And the concatenated CSV h,. pgr is obtained by concatenating the columns of Hpgr:
hchT = vec {HBT} (366)

The Pre-BT 2-D RAKE receivers combine the entries of Pre-BT data vector via a linear

operation, with a specified weight vector q, into an estimate of by (i):

~

b1 (i) = sign { (qHyc_BT) } (3.67)

The weight vector can be chosen+in accordance with the coherent, MMSE or MVDR
criterion. For the coherent Pre-BT 2-D RAKE recefver, the weight vector q in (3.67) is
given by ‘

~

ry, = h. pr==~F {YC—BT('i)b){(i)}

q = Ty (3.68)

Here ry; is formed to estimate the concatenated signature vector h. py. For the Pre-BT

MMSE receiver,

a =R prru (3.69)
where Ro_pr = E {y_pr(i)y! y;(i)}. For Pre-BT MVDR receiver,

q= (hgBTI:{;lBThc—BT)71 R, 'prhe_pr (3.70)

In practice, R. pr and ry; are usually estimated by

) 1% —
Iy = N Z Ve pr(1)b7(7) (3.71)
5 i—1
= 1 N . H .
R. pr = N > Ve pr(@)y. pr(i) (3.72)
5 =1
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3.4.4 Post-despread Beamspace 2-D RAKE Receivers

The same development is done for the Post-BT 2-D RAKE receiver. We concatenate
the beamspace and matched filter matrix Y gy (i) into a vector y. pps for Post-BT 2-D
RAKE receivers. The Post-BT concatenates composite signature vector h._ gy, is obtained

by concatenating the columns of matrix Hgy. From (3.39) and (3.40), we obtain

Ye M = vec{Ypu} (3.73)
hc—BM = vec {HBM} (374)

The Post-BT 2-D RAKE receivers combine the entries of Post-BT data vector via a linear
operation, with a specified weight vector q, into an estimate of by (i):

~

by (i) = sign { (qHyc,BM) } (3.75)

Again, the weight vector can be chosen inaccordance with the coherent, MMSE or MVDR
criterion. For coherent Post-BT 2-D.RAKE.zeceiver;.the weight vector q in (3.75) is given
by

'ym = ﬁc—BM =F {Yc—BM(i)bT(i)}

q = Iy (376)

Here ry, is formed to estimate the cxoncatenated signature vector h._gy;. For Post-BT

MMSE receiver,

a=R. 5 Tom (3.77)
where R._pyy = F {yc,BM(i)yf_BM(i)}, and for Post-BT MVDR receiver,

q= (hiBMRg—lBMhC*BM)_l RE—IBthfBM (3-78)

In practice, R. gy and ry,, are usually estimated by

) 1 _
Tom = 77 > Ve Bum(i)bi(4) (3.79)
s i—1
B 1 Al N H .
R pv = N > Ve Bm()ye (i) (3.80)
s i—1
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3.4.5 Principal Component Based Blind 2-D RAKE Receivers

The training signal based 2-D RAKE receiver is easy to implement and its performance is
reliable. However, it consumes the spectrum and time resources. In GSM, for example, about
20% of the bits are dedicated for training. Moreover, in a rapidly varying mobile channel,
we must retrain the 2-D processor frequently, resulting in poor spectral efficiency. Hence,
there is an increased interest in blind methods in which one can estimate the communication
channel without any explicit training signal. It is noteworthy that the performance of blind
methods will be sensitive to the validity of structural properties assumed [62]. In [30, 63],
the principal component (PC) method is proposed to estimate the channel response blindly
by exploiting the feature of pre-despread data correlation matrix and post-despread data
correlation matrix differed by a rank one contribution due to the desired user. For this
reason, we need the pre-despread and post-despread data correlation matrices with the same
dimension. Since the concatenated Post-ST data vector is L D-dimensional, we should find
the concatenated ST data matrix LD:X LD. Fromrequation (3.35), we form the modified
concatenated ST data vector to fitthe PC algorithm: |

x(0) x(1) 2o x(N—1) ]
xy=| MW W@ ) (3.81)

where x;(n) is the chip-sampled data vector during the ith symbol at the antenna array.
Then the pre-despread data correlation matrix is given by

Rx, = E{X.(i)X! (i)} (3.82)
It is readily seen that

R — Ry, = N(N — Dh,_syhf g, (3.83)

Xe—SM

From equation (3.83) in [63], the estimated concatenated Post-ST composite signature vector

of the desired user, h, s M, can be found by the principal eigenvector of Rx__.,, —Rx.. From
equation (3.52), the pre-despread data correlation matrix can be estimated as:
- 1 N . Hy-
R, = N > x.(i)x (3) (3.84)
$ i=1
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The PC algorithm procedure can be summarized as follows:

—_

. Calculate the data correlation matrices as shown in equations (3.84) and (3.52).

[\

. Calculate r as the principal eigenvector of fixc — RXC_SM.

3. The PC based coherent combining weight vector is w = r and the MMSE weight vector

~

isw=R>'r.

Te

3.5 Beamspace-Time 2-D RAKE Receivers for Sectored
CDMA Systems

Sectorization is a widely used method for increasing the cellular wireless communication
system capacity [64]. Although it can increase the system capacity, working with sector-
ization usually causes extra computationaliloadsin the MSC, e.g., inter-sector hand-offs. A
major requirement for sectored antenmas is that.they should exhibit a sufficient attenuation
for out-of-sector MAI so that the SINR:can be enhanced. for in-sector signals. In this section,
we will discuss the antenna array based sectorization téchniques which offer effective MAI

suppression.

3.5.1 Concept of Traditional Sectored Wireless Systems

In cellular wireless communication systems, various methods have been proposed to
achieve the goal of increasing system capacity. Among these methods, the commonly used
is cell sectorization. The concept of sectorization is described briefly below.

As shown in Figure 3.4, for example, each cell is split into three sectors by directional
antennas located at the center of the cell. Signals of different users in the same sector are
received by the same sector antenna. Each base station is connected to the MSC via fiber
optics or microwave links, which monitors all users in these sectors, and decisions about call
initialization, power control, handoffs, frequency band or time slot assignment, etc. are made
here. When some mobile unit moves from the current sector to another one, the inter-cell

handoff must be executed. From [64, 65], the more sectors in one cell are used, the larger
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of capacity will be. However, cell sectorization also increases the MSC computational load
because of the inter-cell handoffs are decided in the MSC. In addition to the increase in the
MSC loading, sectorization also decreases the trunking efficiency though the SINR for each
user in the system is improved [64]. The decrease in the trunking efficiency means that the

probability of being blocked or being delayed increases.

3.5.2 Beamspace Processing via Antenna Array for Sectored Wire-

less Systems

Conventional Fourier beamforming techniques can form a narrow beam in a prescribed
look direction. In a multipath fading environment, the desired signal is spread out and we
need to form a certain number of mainbeams in order to collect all the multipaths from
different directions. Working with a set of beamformers has the effect of transforming the
antenna space array data into the beamspace.data, which can then be fed into a beamspace-
time (BT) processor to compensate for the channel impairments and combine the multipaths
constructively. These multiple beains cover the field-of-view with a high in-sector gain and
suppress the out-of-sector MAI. This is_similar to the eperation of the conventional sector-
ization schemes. The difference between the twd methods is that the MSC needs to perform
additional handoffs, as mentioned previously, swhen conventional sectorization is applied.
However, for sectorization via antenna arrays, we just adjust the look directions of these
beams to form a new sector to cover the desired user. In other words, the sector formed
by the antenna array is changed adaptively with the DOA of the desired user. Handoffs
are unnecessary and the computational load of MSC does not increase. Due to the reduc-
tion of array data dimension, sectorization via antenna arrays can effectively reduce the
computational complexity and perform MAI suppression for the system. Beamspace pro-
cessing techniques can be readily applied with sectorization, with the set of beamformers
acting as the beamforming matrix. In the next chapter, we will propose the technique about
the development of beamforming matrix. We will address not only the conversion from
Pre-ST to Pre-BT or Post-ST to Post-BT for computational complexity reduction, (from

D-dimensional to M-dimensional), but also suppression of out-of-sector MAL
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3.6 Simulation Results

In this chapter, we present space-time multiuser detectors and various blind or nonblind
2-D RAKE receivers. In this section, we will illustrate the performance of these receivers
by simulating results. We evaluate the performance of these CDMA detectors using an
antenna array at the basestation. The array is linear and composed of D identical omni-
directional elements uniformly spaced by a 1/1/3 wavelength. The inter-element spacing is
chosen due to the assumption that the array is used to cover the field-of-view [—60°,60°].
In this case, D orthogonal beams can be formed within the 120° angular region. This is in
contrast to the conventional linear array with an inter-element spacing of 1/2 wavelength,
in which orthogonal beams are formed in the entire 180° region. For simplicity, the elements
are assumed to be ideal omnidirectional antennas, leading to the following steering vector
structure:

s sin.0
3

j2Zsing 4z sing e
a(f) = |1,e/vs 7 VT L el I

where 6 is measured with respect to the nermal to fhe array axis. In practical systems,
however, directional antennas with a suitable front—tQ;back ratio should be employed to
avoid backward radiation [64]. The sector.of interest is ©, = [—16.8°, 16.8°], which represents
about one third of the field-of-view. As‘an indication of the goodness of these receivers, we

define the output SINR, (in dB) as a criterion:

output power of signal

SINR, = 1010
? 510 output power of interference plus noise

The input SNR (in dB) is defined as SNR; = 101log;, %, and the NFR (in dB) is defined
as NFR = 101log,, %, where 02 = 02 = -+ = g%, for k = 1,---, K. We assumed that the
AOA’s of the desired signal’s multipaths are uniformly distributed in the sector of interest,
and the AOA’s of MAT’s multipaths are uniformly distributed in the entire field-of-view.
The simulation parameters are: N = 31 with Gold codes, L = 4 fingers, the number of
antenna elements D = 9, and the input SNR; = 0 dB. We use Ny, = 500 symbols for training
and estimation of correlation matrices. A total of 100 Monte-Carlo runs are done for each
simulation in this section. Unless otherwise mentioned, the above standard parameters will

be used throughout the section.
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In the first set of simulations, we compare the BER performances of linear ST 2-D RAKE
CDMA receivers, MMSE-MUD described by (3.18) and ZF-MUD described by (3.17), versus
input SNR with K = 5. The simulation results are shown in Figure 3.5 for NFR = 0 dB and
NFR = 20 dB. We introduce the BER performance of single-user environment as the lower
bound of those mentioned receivers for comparison. We see that the conventional ST 2-D
RAKE receiver (CST-RAKE) described by (3.60) and PC method (PC-RAKE) described in
subsection 3.4.5 strongly depends on the relative power of MAI. While the BER performances
of the MMSE-MUD and ZF-MUD are invariant to the NFR values. The linear ST MMSE
2-D RAKE receiver (MST-RAKE) described by (3.61) has little performance degradation
than those of the MMSE-MUD and ZF-MUD. This is because the multiuser detections not
only use the ST signature of themselves to enhance the output SNR, but also utilize the
crosscorrelation with the other users’ ST signature to suppress MAI simultaneously. The
MST-RAKE also has enough degree of freedom (DL = 36) to suppress the MATI and to
estimate the channel correctively. ‘

In the second set of simulations, the system capacity is evaluated in Figure 3.6 with
NFR=0 dB and 20 dB. As expected, pre—de;bread 2-D RAKE receivers in MMSE criterion,
PST-RAKE described by (3.49) and PBT-RAKE descriged by (3.69) with three fixed beams
formed at look directions {6y, 6,05} =:{—12.5°,02,12.5°}, perform reliably on large user
numbers and high NFR due to their large temporal and spatial degree of freedom. The
post-despread 2-D RAKE receivers, MST-RAKE and MBT-RAKE described by (3.77) with
three fixed beams formed at the same look directions as that of PBT-RAKE, perform well
in the small range of number of users and in the low NFR region, in which case both channel
estimation and MAI suppression can be done effectively. On the other hand, the conventional
CST-RAKE totally fails with NFR=20 dB even in the small number of users due to their
lack of degree of freedom to suppress the MAIL

In the third set of simulations, we consider the near-far problem in reverse link of
DS/CDMA systems. Since the distances of each user to basestation are always not the
same and propagation path loss of user closed to basestation is small, the closest user is
able to “capture” the basestation because of small propagation loss. To avoid to this prob-

lem, we examine the ST 2-D RAKE CDMA receivers whether they are near-far resistant
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or not. First we suppose that there are K=5 users in this cell, we show that in Figure
3.7(a) the PST-RAKE and PBT-RAKE, are “near-far” resistant due to that its large de-
gree of freedom allow for successful MAI suppression. The MST-RAKE and MBT-RAKE
receiver are near-far resistant, too. But the PC-RAKE and CST-RAKE receivers are not
near-far resistant due to that the increased interference power causes a larger channel es-
timation error more serious. Next, we suppose that there are K=25 users in this cell. As
shown in Figure 3.7(b), the PST-RAKE and PBT-RAKE are still near-far resistant but the
MST-RAKE and MBT-RAKE receivers get worse as compared with the K'=5 users case.
When the number of users increase to 20, it is interesting to notice that the PC-RAKE and
CST-RAKE receivers are all breakdown. It is conceivable since with many users and rich
multipath components, the degree of freedom of the post-despread methods can not perform
MALI suppression successfully.

The final set of simulations, we investigate the output SINR of MST-RAKE receiver for
different number of users with respect to different antenna size with NFR=10 dB. In order
to compare the performance of different antenna, array size, the output SINR curves are
evaluated by the number of antenna elemen‘t‘s for D =-1, 2, 4, 8, 12. The results shown in
Figure 3.8 demonstrate a signiﬁcant‘performance impro‘vement for a given number of users,
by increasing the size of antenna array: Fer the D.= 2 antennas case, the coherent combining
improves the output SINR on average by‘about 3 dB than that of single antenna element.
Figure 3.9 shows the output SINR of MST-RAKE for different numbers of users with respect
to a variety of code length for NFR = 10 dB. The output SINR curves are evaluated by the
length of spreading code with Walsh code for N = 8, 16, 32, 64, 128. The simulation results
also show a great improvement on output SINR for a given number of users by increasing

the length of spreading code.

3.7 Summary

In this chapter, we have discussed nonblind and blind 2-D RAKE receivers. The 2-D
RAKE receivers appear to be a promising approach to increasing the capacity of CDMA

systems. Several algorithms have been compared. The training-signal based nonblind 2-
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D RAKE receivers are straightforward, and their performances are better than the blind
methods. However, they waste the spectrum or the time resources and may suffer from
problems in a fast fading environment. On the contrary, the blind 2-D RAKE receivers do
not need to know any training signal, but more computational load is usually needed. The
joint processing methods, which take the spatial and the temporal dimensions together into
consideration, exhibit better performance than the separate processing methods.

We also compare the performance of linear space-time multiuser and single-user DS/CDMA
receivers. Aslong as they have enough degrees of freedom, they can retain near-far resistance.
However, in a fast fading and overloaded environment, the post-despread methods lack the
degree of freedom and suffer the near-far problem. The pre-despread methods have relatively
more degrees of freedom for suppressing the MAI and exhibit better performance, but they
require more computational complexity and a large number of filter taps. They are hard to
implemente and exhibit poor convergence in the adaptive mode. In order to reduce the com-
putational complexity, we propose the‘sec‘torization‘ concept in which reduced-dimensional
beamspace data are processed. Beamspace processing techniques not only reduce the compu-
tational complexity but also suppress out—of—‘séctOr MAI: In the next chapter, we will propose

three beamspace-time 2-D RAKE receivers-forsectored CDMA systems.
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Chapter 4

Proposed Beamspace-Time 2-D
RAKE Receivers for Sectored CDMA

Communication Systems

Most existing cellular and PCS Systems tuisually:make use of sectoring, in which each cell
is divided into several angular regions. Typically, each: cell is divided into 3 sectors which
are 120° wide or 6 sectors which are 60% wide [l; 64, 66]. It is useful to consider to utilize
adaptive beamspace diversity techniques for-sectored signal reception [82].

In this chapter, we proposed some beamspace-time receivers for interference suppression
and multipath diversity reception in sectored wireless DS/CDMA communications. The
scheme involves two processors, a set of adaptive beamformers and a set of adaptive corre-
lators (or a set of matched filter bank), which are jointly or cascaded employed. The set
of adaptive beamformers is constructed which provides effective suppression of unwanted
interference and reception of signals from a prescribed working sector. The set of adaptive
correlators is constructed to suppress the in-sector strong MAI and to receive the diversity
paths from prescribed time region. Finally, the output data obtained by these processors
are maximum ratio combined to capture the signal multipath components coherently. The
proposed BT receivers are blind in that no training signal is needed. The only information
required is the signature sequence, timing and a rough estimate of the angle of arrival of the

signal for selecting the sector of interest.
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4.1 A Beamspace-Time Blind 2-D RAKE Receiver for
Sectored CDMA Systems

In this section, an adaptive ST 2-D RAKE receiver is proposed for sectored CDMA sys-
tems [64]. In a sectored system, the entire field-of-view of the receiver is divided into several
angular sectors, with each sector responsible for a distinctive set of users. With an antenna
array incorporated, sectorization can be done adaptively to meet the following two require-
ments. First, multiple beams are formed to collect desired signal multipath components in
a designated angular sector. Second, strong MAI from outside the sector are suppressed in
the sidelobe of these beams. These can be achieved by performing adaptive nulling on a
set of beams steered to different look directions. To avoid signal cancellation incurred with
coherent multipaths or mismatch of steering vectors in adaptive nulling, a modified GSC is
employed to construct a set of linearly constrained minimum variance (LCMV) beamform-
ers [55]. The output of these beamformets are processed by a bank of adaptive correlators,
which can be regarded as a set of LCMV combiners in the time domain. A modified GSC
is again employed to collect the miltipath components @nd suppress the in-sector MAI The
beamformers and correlators together comstitute-a pre-despread beamspace-time (BT) pro-
cessor, which performs the function of‘a RAKE receiver. With MAT successfully suppressed,
a simple maximum ratio combining (MRC) criterion can be used to determine the weights
of the BT RAKE receiver. Compared to the conventional ST receiver, beamspace sectored
processing can potentially increase the system capacity by suppressing out-of-sector MAT,
and also lower the computational complexity by reducing the spatial dimension. The pro-
posed BT receiver is blind in that the construction of adaptive beamformers, correlators,
and MRC is done without the aid of a training signal. The only information required is
the spreading sequence, timing and a rough estimate of the AOA of the desired signal for
sector selection. Compared to conventional ST CDMA receivers [30, 56, 87|, in which spa-
tial processing is done by direct beamforming, the proposed receiver performs “beamspace”
beamforming in which array data are first pre-processed by a set of diversity beamformers
encompassing an angular sector. This has two advantages. First, with sectorization, the

capacity of the system can be potentially increased. Second, MAI and NBI from outside the
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sector can be suppressed adaptively, leading to improved reception quality for the SOI. As
for adaptive correlators in GSC form, the proposed receiver is similar to that of [87]. A major
distinction, however, is that the proposed method works with a temporal blocking matrix
designed to eliminate all multipath signals instead of just a specific path. This can avoid
signal cancellation incurred with coherent multipaths. In particular, a simple and effective
partially adaptive implementation is suggested to reduce the adaptive weights dimension.
Furthermore, with sectorization, only a rough AOA estimator (to determine the right sec-
tor) is needed for beamforming. In contrast, the method in [87] relies on ML AOA estimation
which requires a small multipath angle spread. In summary, the proposed receiver is designed
to combat strong interference by adaptive spatial pre-processing (diversity beamforming), to
incorporate pre-despread temporal processing to enhance suppression of in-sector MAI, and
to handle multipaths by spatial /temporal post-processing (maximum ratio combining).
The proposed BT RAKE receiver is developed via the following three-stage procedure.
First, a set of adaptive diversity beamformersis:constructed for each finger to collect in-sector
signals and suppress out-of-sector MAL-Second, :a set of adaptive correlators is attached
to each beamformer to perform despreading and in-sector MAI suppression. Finally, the
correlator outputs are combined coherently-for-an-optimal detection of signal symbols. For
the ease of notation, the subscript 1"will be omitted in the expressions of data associated

with user 1, which is the desired user.

4.1.1 Construction of Adaptive Beamformers

Suppose that the field-of-view of the receiver is divided into several sectors, and that the
AOA’s and delays of the multipaths of the SOI (user 1) are roughly known such that an
angular sector ©, and a time duration 7, can be chosen to accommodate these multipaths.
With an antenna array employed, the sectorization can be achieved by forming a set of
M diversity beams for each of the L fingers, with the beam patterns encompassing the
designated sector. Specifically, the beamformers for the [th finger act on the post-despread

data vector given by

x,(i) = X(ieyy
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= Hgrci b1 (i) + I(i)cq, + N(i)c, (4.1)

where X (i) and Hgr are defined in (3.25) and (3.27), and ¢y, is the [th column of the
augmented signature matrix of user 1 in (2.11). After despreading, X;(i) contains essentially
the strong MAI and multipath signals of the delay corresponding to c;;. To ensure an
effective suppression of strong out-of-sector MAI, adaptive nulling is performed for each of
the diversity beamformers. A popular nulling scheme is based on the LCMV criterion [55],

which says that the beamforming weight vector should be chosen in accordance with

. H
min Wz,mRilWl,m

Wi m
subject to: w/l a(fy) =1 (4.2)
forl=1,...,Land m=1,..., M, where w;,, is the weight vector of the mth beamformer

at the [th finger,
Ry, = B {%(i)%/(i)} ., (4.3)

is the post-despread space-only data correlation matrix; at the [th finger. Finally, 6, is the
look angle of the mth beam. A major problem-of-the LCMV beamformer is the phenomenon
of desired signal cancellation [83] due to the mismatch between the look angle steering
vectors a(f,,)’s and the actual steering vectors associated with the multipath signals. By
signal cancellation, it is meant that with a certain mismatch, the weight vector in (4.2)
will tend to treat the signal as interference, and attempt to cancel it in order to minimize
the output power. The sensitivity of the LCMV beamformer to steering vector mismatch
increases as the array size D or SNR increases, in which case the beamformer will put more
efforts to cancel the signal. An effective remedy suggested herein is to use a modified GSC
to block the signal before beamforming [55]. The GSC is essentially an indirect but simpler
implementation of the LCMV beamformer. In GSC, the weight vector is decomposed as
Wim = a(6,,) — B,V into two orthogonal components which lie in the range and null space
of the constraint, respectively. The matrix B, is a pre-designed “signal blocking” matrix

which removes the signal (and MAI) in the sector. The goal is then to choose the adaptive
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weight vector v;,, to cancel the out-of-sector MAI. Following the standard procedure of

GSC, the adaptive weight vectors are determined by solving the MMSE problem:

min E{|a” (0,,)%,(i) — v{,, B %, (i)|*} (4.4)

Vim

or equivalently

min [a(6,) — Bavim] R, [a(0m) — Bavim) (4.5)

Vim

Taking the gradient of (4.5) with respect to v;,, and setting to zero, we have

B, 'R [a(0n) — BoVim] =0 (4.6)
which gives

vim = (BJ/Rg,B,) " 'BIRy,a(6,,) (4.7)
Substituting this in w,,, = a(,,) — B,vi,, and putting in matrix form, we get

Wl = [Wl71, e ,W17M]

= [I-B.(B;RgB,) =B Rg][a(0), . a(0)] (4.8)

forl=1,...,L.

The choosing of the blocking matrix B, depends on the sector size and required degree
of freedom of the adaptive weight vector v;,,. Let v;,, be a D' x 1 vector. Then B, can be
chosen to be a full rank D x D' matrix with columns orthogonal to a set of steering vectors
{a(0}),a(6}),...,a(6%_, )} well representing the desired sector. As an alternative, the set
of steering vectors can be replaced by the eigenvectors associated with the D — D' largest

eigenvalues of the matrix:

Ao, = / a(8)a’ (0)do (4.9)

El
E]

leading to the eigenvector constrained method [84]. The advantage of using eigenvector
constraints lies in its fuzzy mode of operation, which offers robustness to the variation in
multipath scenario of the signal. The choosing of D’ is a trade-off between the blocking
effect and adaptive nulling performance. In general, a small D’ gives better “mainlobe

performance” (reception of desired signal), and a large D’ gives better “sidelobe performance”
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(suppression of out-of-sector MAI). A practical criterion is that the ratio (D — D')/D is
approximately equal to the ratio of the sector size to entire field-of-view of the antenna
array. That is, the degree of freedom D — D’ for blocking is proportional to the relative
size of the sector. However, numerical results show that a smaller D’ is required to warrant
a “clean” blocking effect for better handling the signal cancellation problem. With the
assumption that a single sector is responsible for about one third the field-of-view of the

antenna array, a suitable choice for D’ would be D/2.

4.1.2 Construction of Adaptive Correlators

The beamforming matrices W;’s are applied at the L fingers to convert the D x (N +

L — 1) ST chip-sampled data matrix X(i) into a set of L BT data matrices of dimension
Mx (N+L-1):

Y.(i) = W/HX(i)

ygjl (4)

YIT;Q ('L)

(4.10)

i YZM(i) i
for { =1,..., L, where y; (i) is the chip-sampled data vector obtained at the mth beam of
the [th finger, given by

yim(i) = X'(i)wi,,

= HgTmebl(i) + IT(i)me + N (i)w;

,m

(4.11)

The next step is then to perform despreading on y; (i) to restore the processing gain. In

order to better handle the MAI this is done with an adaptive correlator as follows:

zl,m(i) = SlI:Imyl,m (Z)
= wih.X(i)s],,
= wmegTsZmbl (1) + wfml(i)szm + wme(i)sZm (4.12)

where s;,,, is the despreading weight vector of the mth beam at the /th finger. As the

temporal analogy of the beamforming weight vector w;,,, s;, can be determined using
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the GSC scheme described above with the steering vector a(f) replaced by the augmented
signature vector ¢ ;. Following the development in (4.2)-(4.8), we have s;,, = ¢1; — B8 m,
where B, is the signal blocking matrix which removes user 1’s signal. Note that instead of
blocking signals with a specific delay, B, must block signals within the entire delay spread in
order to avoid signal cancellation due to coherent multipaths. The goal is then to choose the
adaptive weight vectors g, ,, to cancel the in-sector MAI (and possibly out-of-sector MAI not
canceled by the beamformers). Similar to GSC beamforming, the adaptive weight vectors

are determined by
gllin{l E{|Cf{z3’z,m(i) - gll?meYZ,m(i)F} (4.13)

or equivalently

min [c1; — Begim] "Ry, [€1, — Begim] (4.14)
where
Ry, = E {y1m(i)y/h. (i)} (4.15)

is the pre-despread time-only data correlation matrix at the mth beam of the [th finger.

Solving for g;,, in the same way as for v, ,,,, and substituting in s;,, = c¢i; — B.g;m, we get
Sl7m = [I - BC(Bg{RYl,mBC)71B£IRYl,m]c17l (4]‘6)

fori=1,...,Land m=1,..., M.

The choosing of the temporal blocking matrix B, is similar to the choosing of B,. That
is, B, can be chosen to be a full rank (N+L—1) x (N —1) matrix with columns orthogonal to
the set of augmented signature vectors {cy1,¢12,...,¢y } well representing the multipath
delay spread. For a more reliable operation, extra signature vectors can be included to
extend the blocking interval to a larger delay spread. This will help to avoid possible signal

cancellation due to undetected multipath arrivals. For example, two extra signature vectors

¢ = lea[l),enl2), .. eV = 1,0,..., 00"

—_—~
+
~
—

0,...,0,¢11[0],c1[1], ..., era[N = 2])" (4.17)
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can be added to the original set to extend by one chip at both ends of the blocking interval.

Note that the above ST processors is developed based on the assumption of short spread-
ing codes. Although the adaptive beamformers can be used with long codes, the adaptive
correlators cannot. This is because that the adaptive correlators are designed to respond to
fixed temporal signatures (composite spreading codes due to multipaths). Only with fixed

temporal signatures can the adaptive correlators “recognize” and suppress strong MAIL.

4.1.3 Maximum Ratio Combiner

Suppose that, after adaptive beamforming and despreading, the MAI are successfully
suppressed, the correlator outputs z;,,(i)’s contain essentially the desired signal and col-
ored noise only. In this case, the MRC criterion can be applied to combine these outputs

coherently to extract the signal. Let

Z(’L) = [2171(i), .. .,Zl’M(’i),ZQ’l(i), 2] .,ZQ’M(’i), PP

201(1), - 2o (0)])F & huby (@) e, (1) (4.18)

be the beamspace correlator output data vector, with h, and n, (i) being the corresponding

composite signature and noise vectors, respectively, given by

hz = [WleSTSil: c. ,W{{MHSTST’M, ngHSTS;’la cee
T
WgMHSTS;’M, o e 7W£1HSTS2717 .« e )W?/’MHSTS}”M} (4.19)
n(i) = [WhNG)s]y. . W/ N()s) . wN()s .
. . . T
Wi NSy WIEN()ST 1 Wi N()sT ] (4.20)

The final operation of the receiver is then a linear combination on z(7) using an ML x 1

weight vector f,,,,.:

2o(i) = £ 2(3) (4.21)

mrc

The weight vector f,,,. that leads to MRC can be determined by solving the following
problem [63]:
E{lfnc2z()*} _ £, Rafure

mre 4.29
B B (0P~ £, Qb (4.22)
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where R, = F{z(i)z" (i)} and Q, = E{n,(i)nf (i)} are the beamspace correlator output
data and noise correlation matrices, respectively. Note that Q. can be determined with the
knowledge of w;,,,’s, s;,,’s, and the whiteness of N (7). The solution to (4.22) is well known
to be the principle generalized eigenvector of the matrix pair {R,,Q,}. As a final remark,
we point out that, as opposed to the conventional ST 2-D RAKE receiver in which a single
beam is responsible for a finger, the proposed BT 2-D RAKE receiver requires M beams for
a finger. This is because that the BT 2-D RAKE receiver does not have the exact AOA or
channel information about the signal paths. So the best strategy would be to “collect” the
in-sector multipath signals using a set of diversity beams encompassing the entire sector. In
fact, using multiple beams for a single finger is the price in complexity paid for not using a

training sequence.

4.1.4 AOA Estimation and Sector Selection

To determine the working sector, @, some kind.of location techniques are required to
obtain a coarse estimate of the signal AQA. For the prdposed receiver, a suitable choice is the
multi-beam (MB) technique described in[85}.“The MB téchnique works with a bank of beams
pointed at different directions, and determines-thesignal AOA by comparing the signal power
levels observed at these beamformer outputs:+The beamformer with the maximum output
power is likely to be the one pointed at the signal, and its look direction is taken to be the
estimate of the signal AOA. Finally, the working sector is chosen to be the one that contains
the estimated AOA. To apply the MB technique in the proposed receiver, a set of beams
is formed simultaneously whose patterns encompass the entire field-of-view of the antenna
array. Power comparison is then performed on the post-despread data observed at these
beamformer outputs to determine the signal AOA and sector location. In a nonstationary
environment in which the signal source moves with time, it is necessary to keep track of the
signal to update the working sector via some prescribed hand-off procedure. A more detailed

description about AOA estimation will be given shortly in Section 4.2.3.
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4.1.5 Algorithm Summary

In practice, the data correlation matrices are usually estimated by the sample average

versions:
1 X
le ~ — le (4.23)
5 =1
1 X
Ry, % 77 2 Yim(0)Y [ i (4.24)
5 =1
1 X
— Z (4.25)
5 =1

where X;(7), y1.m(7) and z(7) are given by (4.1), (4.11) and (4.18), respectively, and Nj is the
number of symbols used during the processing period. With these estimates, the algorithm

of the proposed BT RAKE receiver is summarized as follows:
1. Determine working sector ©,, lookangles 6,,’s and GSC blocking matrices B, and B..

2. Compute in parallel W;, [ = 1,... E) according to (4.8), with Ry, , estimated by
(4.23).

3. Compute in parallel s;,,, | = 1,5055L, n =1,7.., M, according to (4.16), with Ry,
estimated by (4.24).

4. Obtain Q, and compute f,,,. according to (4.22), with R, estimated by (4.25).

The corresponding schematic diagram is depicted in Figure 4.1.

4.1.6 Recursive Computation of Weight Vectors

For a more efficient and practical implementation, the GSC can be realized in a time-
recursive fashion using stochastic gradient algorithms such as least mean square (LMS) [21].

This leads to recursive formulation of the solutions to (4.4) and (4.13), respectively:
Vi (i + 1) = Vi (i) + o [2" (0)%(3) — v, BE %, (1)] BE % (i) (4.26)

8n(i + 1) = g (i) + g [1y1m (i) — 80 BIyim(1)] Blyim(i) (4.27)
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for i = 1,2,..., where p, and p, are the stepsizes of adaptation. It was shown that the
convergence of blind adaptive algorithms is slow and noisy compared to the non-blind training
signal based algorithm. This is more significant when the dimension of weight vectors and /or
SNR is large. In view of this drawback, it is suggested that blind algorithms be employed
in the initialization stage, and be switched to the decision-directed mode once the SINR
has improved to offer a reliable decision reference [33]. In the decision-directed mode, the
detected symbols are treated as correct and fed back as a training signal to “direct” the
operation of the MMSE receiver. Of course, blindly detected symbols contain an arbitrary
phase rotation which should be removed by incorporating differential encoding, or a short
training sequence (much shorter than would be needed for regular training based methods).

On the other hand, the generalized eigenvector required for the computation of the MRC
weight vector in (4.22) can be also obtained via a time-recursive algorithm without the need
of a complicated eigenvalue decomposition (EVD) [63, 86]. The required computational
complexity is of the order NI (BT dimension) per iteration. The adaptive algorithm of the

proposed BT receiver is summarized in Table 4.1.

4.1.7 Partially Adaptive.Implementation

The degree of freedom for the adaptiverecorrelators is on the order of N, which can be
quite large in wideband applications. A large degree of freedom requires a high computational
complexity and is likely to incur poor convergence behaviors [55]. To alleviate this, partially
adaptive (PA) methods can be applied to reduce the dimension of g; ,,’s. Partial adaptivity
can be achieved by either working with a reduced-size input data or with a reduced-size
blocking matrix [38, 39]. A more detailed description about partially adaptive receivers will

be given in Section 6.2.

4.1.8 Complexity and Performance

The trade-off between system performance and computational complexity is an issue de-
pending on the number of antennas D and processing gain N of the system. In general, more

antennas and a larger processing gain will provide better interference suppression, but lead
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to high computational complexity and poor convergence behaviors. However, the spatial
and temporal dimensions (D and N) do not affect the complexity of the eigenvector com-
putation in MRC because the MRC weight vector has a size of M L, regardless of D and N.
The major computations in the proposed algorithm involves the inversion of (B/Ry, B.)™!
with size (N — 1) x (N — 1) in (4.16), inversion of (BfRg,, B,) ! with size D’ x D’ in
(4.7), and a principal eigenvector computation with size ML x ML in (4.22). The overall
complex is about O(MLN? + MD'* + M3L?). For recursive processing as described in the
previous section, the complexity for each iteration is about O(MLN + M D'+ ML) for the
proposed receiver. With partially adaptive method and parallel computation mechanism,

the computational loading will be greatly reduced.

4.1.9 Simulation Results

Computer simulations are conducted to demonstrate the performance the proposed BT
GSC based RAKE (GSC1-RAKE) receiver. The antenna employed is a linear array consist-
ing of D = 8 identical elements uniformly-spaced. by a‘l /\/3 wavelength. The inter-element
spacing is chosen for the field-of-view [—60°,60°], Which represents the effective angular re-
gion of operation for a linear array [64].~Note-that with the inter-element spacing chosen to
be a 1//3 wavelength, D = 8 orthogonal beams can be formed in the 120° region, with two
adjacent beams spaced by a half 3-dB beamwidth. The sector of interest in our simulations
is [—20°,20°], and M = 3 diversity beams are formed at look directions {—12.5°,0°,12.5°} to
cover the 40° region. The blocking matrix B, is constructed with D’ = 4 by the eigenvector
constrained method described in [55]. It is assumed that the multipaths of all users followed
the discrete uniform distribution model [64] with the same angle spread of 10°. That is, .J
paths are generated with their AOA’s evenly distributed in a 10° angular interval centered
at the line-of-sight (LOS) angle of the source. Moreover, the LOS angle of the signal is
randomly selected in the working sector, and the LOS angles of the MAI’s are randomly
selected in the entire 120° field-of-view. The path gains «y ;’s are assumed independent,
identically distributed unit variance complex Gaussian random variables, the path delays
Tk;’s are assumed uniform over [0, 27, and the number of paths is J = 3 for all users. All

CDMA signals are generated using the Gold code of length N = 31. Finally, the number of
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fingers of the receiver is L = 3, and the temporal blocking matrix B, is chosen, according to
Section 3.2, to be the matrix whose columns are orthogonal to {cy 1, ¢ 2,¢13}.
As a performance index, we defined the output SINR to be the ratio of the signal power

to the interference-plus-noise power at the receiver output z,(i):

output power of signal in z,(4)

SINR, = 101 - — .
©810 output power of (interference+noise) in z,(i)

The input SNR is defined as SNR; = 10log;, Z—i For simplicity, we assumed that all out-
of-sector MAT’s had the same power, and defined the near-far-ratio (NFR) to be the ratio
of the out-of-sector MAI power to signal power before beamforming and despreading, i.e.,

NFR = 101log, ‘;—2 with k& belonging to the out-of-sector MAI indices. Except for one case,

1

the in-sector M AT is assumed power controlled with the signal, i.e., o, = oy for k£ belonging
to the in-sector MAI indices (this is not strictly necessary since in-sector MATI not power
controlled can be suppressed by the adaptive correlators). For each result in the simulations,
N, symbols are used to estimate the correlation matrices, and a total of 50 Monte-Carlo
runs are executed to obtain an average SINR,,, with edch trial using a different set of oy ;’s,
7,8 and LOS angles of the users.. For comparison, we also included the results obtained
with the non-blind ST coherent RAKEY(CST-RAKE)-and MMSE receivers (MST-RAKE)
described in (3.60) and (3.61), respectively, with-the channel vector and post-despread ST
data correlation matrix using the same N; symbols as the training signal. The simulation
parameters are: N = 31 with Gold codes, L = 3 fingers, the number of paths J = 3, the
number of antenna elements D = 8, the number of training symbols N, = 500, and the
input SNR; = 0 dB. Unless otherwise mentioned, the above standard parameters will be
used throughout the section.

First, the system capacity is evaluated in Figure 4.2 with NFR = 0 dB and 20 dB. As
expected, the MST-RAKE gives the best performance with a small user number K and low
NFR, in which case both channel estimation and MAI suppression can be done effectively. On
the other hand, the proposed GSC receiver (GSC1-RAKE) performs reliably for a wide range
of K, even in the presence of strong MAI. In fact, the GSC1-RAKE receiver outperforms the
MST-RAKE receiver with a moderately large K and high NFR, indicating that the adaptive
beamformers and correlators have successfully eliminated the strong MAI. The CST-RAKE
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receiver totally fails with NFR = 20 dB due to the lack of MAI suppression.

In Figure 4.3, the patterns of the diversity beams for the first and third fingers are plotted
for the case K = 5 users and NFR = 10 dB. The mainlobes and deep nulls confirm that the
adaptive beamformers can effectively collect the in-sector signals and suppress out-of-sector
MAL

Next, the near-far resistance of the proposed receiver is evaluated with different NFR
values. Figure 4.4 shows the results obtained with K = 5 and 25 users, with the input SNR
equal to 0 dB and N; = 500. It is observed that the CST-RAKE receiver fails again, and the
MST-RAKE receiver loses its near-far resistance with K = 25 due to the exhaustion of degree
of freedom (8 x 3 = 24) for strong MAI suppression. On the contrary, the GSCI-RAKE
receiver achieves its excellent near-far resistance by successfully canceling the MAI using the
temporal degree of freedom (3143 —1 = 33) offered by the pre-despread chip-sampled data.

To demonstrate the efficacy of the adaptive correlators in handling in-sector MAI, we
repeated the same simulation with power’¢ontrol of in-sector MAT “turned off”. In this case,
the in-sector and out-of-sector MALhad: the same power determined by the NFR value. The
results shown in Figure 4.5 confirm that thel ﬁoh—power—‘contro]]ed in-sector MAI have little
effect on the GSC1-RAKE receiver even wyith-fx=25 siﬂce they can be effectively suppressed
as long as a sufficient degree of freedom is available for adaptive processing.

Finally, the convergence behaviors of the three RAKE receivers are evaluated by varying
the data sample size N;. The resulting output SINR are plotted in Figure 4.6 with NFR =
0 dB and 20 dB. The number of users is K = 25. As expected, the output SINR increases as
N, increases for the three receivers. The MST-RAKE receiver converges significantly faster
than the GSC1-RAKE receiver with a low NFR, but loses this advantage in the presence of
strong MAI. The GSC1-RAKE receiver achieves 95% of its maximum SINR, in about 500
symbols, and takes another 500 symbols to reach its full performance. This is observed to
be due to the errors in blind beamforming operation. It should be mentioned, however, that
the relatively slow convergence of GSC1-RAKE receiver does not raise practical problems
since the receiver can be switched to the decision directed mode as long as the MAT has been
sufficiently suppressed. From simulation results, we have shown that the proposed RAKE

receiver is near-far resistant, and performs reliably in a heavily loaded system.
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4.2 Space-Time Alternating 2-D RAKE Receiver for
Sectored CDMA Systems

In this section, another blind adaptive pre-despread beamspace-time (Pre-BT) receiver
is proposed for sectored CDMA communications. The receiver is designed with the following
procedure. First, a set of ST diversity processors, in the form of beamformer-correlator (BC)
pairs is constructed to collect the multipath signals in a prescribed angular sector and time
duration, and to suppress MAI and NBI. This is done by performing adaptive nulling on a
set of linearly constrained minimum variance (LCMV) ST processors “steered” to different
look directions and delays. To avoid signal cancellation incurred with the mismatch of
spatial /temporal signatures, a modified GSC is employed. Second, the outputs of these BC
pairs corresponding to different look directions and delays are coherently combined to collect
the multipath energy. The beamformers and correlators together constitute a beamspace-
time (BT) receiver which operates without the aidof a training signal. The only information

required is a rough estimate of the AOA of the SOI for sector selection.

4.2.1 Construction of Space-Time-Alternating Processors

In sectored communications, the entire field-of-view of the receiver is divided into several
angular sectors, each responsible for a subset of users [64]. Assume that the AOA’s and
delays of the multipaths of the SOT (user 1) are roughly known such that an angular sector
O, and a time duration T can be chosen to accommodate these multipaths. In order to
effectively collect the multipath energy, a set of M diversity beams is formed with their
patterns encompassing O, and a set of L diversity correlators is formed with their responses
matched to the L fingers in Tp. This leads to a set of M L beamformer-correlator (BC) pairs,
or ST processors, operating on the Pre-ST data matrix. Let {6,,,m = 1,..., M}, be the set
of angles well representing ©, and denote as a,, = a(f,,). Also let ¢;,; be the /th column of
C1, which is the signature matrix of user 1. The ST processor transforms the Pre-ST data

matrix into a scalar output:

Zm(i) = aﬁX(i)c’{’l (4.28)
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withm=1,...,.M and [l =1,...,L.

To ensure an effective suppression of strong interference, adaptive cancellation is per-
formed for each of the ST diversity processors. As mentioned before, an effective solution
is to employ the scheme of generalized sidelobe canceller (GSC) [55]. The GSC decomposes
the weight vector wy,, into: Wy, = a,, — B,V ;,, where a,, is the fixed weight vector and B,
is the blocking matrix which removes the signal before beamforming. The goal is to choose
the adaptive weight vector v;,, to cancel the interference. To apply the GSC concept for
ST processors, some modifications should be made. First, instead of blocking signals with a
specific direction or delay, the blocking matrix must remove signals from the entire O, and
Tp. Second, instead of using a different blocking matrix for each ST processor, the same
matrix is shared by all of the ML beam-finger pairs. Let v;,, and g;, be the spatial and
temporal adaptive weight vectors, respectively. The GSC formulation leads to the following

ST operation:

Hm()) = (am — Bavi,) X ()€1, — Bogim)'

= b1 (i) + i1,m (1) 2 npm (i) | (4.29)

where B, and B, are the spatial and temporal blocking matrices, respectively, and

hl,m = (am — Bavl,m)HHST(cl,l — Bcgl,m)* (430)
i1m (1) = (am — BaVim)71(i) (c1y — Begim)* (4.31)
nl,m(i) = (am - Bavl,m)HN(i) (Cl,l - Bcgz,m)* (4.32)

Following the standard procedure of GSC, the adaptive weight vectors are determined by
solving the MMSE problem:

min  E{|2m(0)*} = E {|(am — Bavim)"X(i)(c1s — Begim)'[*} (4.33)

Vi,m:8l,m
The ST processors in (4.29) utilizes the spatial and temporal degrees of freedom in a separate
fashion. This is in contrast to receivers operating in a ST joint fashion. ST joint receivers are
superior in terms processing dimension, but require a much higher complexity. For scenarios
in which there are only few dominant interferers, ST separate receivers would be a more

efficient solution.
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The closed-form solution to (4.33) is not available, and an suboptimum solution can
be obtained by keeping the spatial weight vector fixed and solving for the temporal weight
vector, and vice versa. This leads to the development of the following alternate minimization

procedure. First, the beamformer weight vector
wl,m =a, — Bavl,m (434)

is initialized with a pre-determined value (e.g. W;,,, = a,,), and the temporal adaptive weight

vector is obtained in accordance with

min E{|(c1s — Bogrm) "X ()W}, [*} (4.35)

m
gi,m ’

whose solution is given by
gim = ﬁ'ltmf.l,m (436)
where

Ry = E{BI'X" (i)W}, W/, X1)B,}

m Y lm

B = B {BIX" (i)W}, W, X (e} ] (4.37)
The correlator weight vector
Sim = €1, — Be8im (4.38)

with g, given by (4.36), can suppress MAI with a fixed temporal signature. For time-
varying NBI whose temporal signatures are not well defined, adaptive nulling in the space
domain is more effective. The second step is then to fix §; ,,, and obtain the spatial adaptive

weight vector in accordance with

min  E {|(am — Bavim) "X (0)3],,*} (4.39)
Vi,m ’

whose solution is given by
Vi = Ry Fim (4.40)

where

Ry = E{BI'X(i)s],,8],,X" (i)B, }

I,m

90



FLn = B {BYX(1)3],,81, X" (i)an | (4.41)

The above procedure can be iterated between (4.35) and (4.39) by substituting (4.40) in
(4.34), and re-executing the steps in (4.35)-(4.41). Since both the spatial adaptive weight
vector and temporal adaptive weight vector are adjusted to minimize the cost function of
(4.33), and both are orthogonal to the desired signal, the minimization of cost function is
solely due to the suppression of interference. In particular, at each alternate iteration, either
the spatial or temporal weight vector will adjust itself to decrease the cost function with
the other fixed. As a result, it can be sure that the cost function will reduce as iterations
proceed. Nevertheless, the resulting solution may not lead to the global minimum of the
cost function. However, as long as the degree of freedom of the adaptive weights are large
enough compared to the number of interferers, the alternate procedure can always yield a
converged solution that provides effective interference suppression. The proposed alternate
iterative scheme is similar in principle to theiterative least square (ILS) problem described
in [88]. Given wy,, fixed, the minimization of cost function (4.33) is a least-squares problem
for g, to make the cost function approach zero.. A similar situation holds for v;,, with §;,

fixed. The overall system diagram'is depieted in Figure 4.7.

4.2.2 Maximum Ratio Combiner

It is assumed that, with adaptive ST processing, the dominant interference has been
eliminated and the BC output data Z,,,(i),l=1,...,L, m=1,..., M, contain the SOI and
colored noise only. This suggests that the maximum ratio combining (MRC) criterion can
be employed to collect these components coherently to extract by (). Let f,,.. be the LM x 1

weight vector that performs the combining:

2(i) = £ 7.() (4.42)

mrcc

where

Zc(’i) = [2171(’i), PP Zl7M(i), 2271(i), ceey ZQ’M('i), ey ZL’l(’i), ey ZL’M(’i)]T (443)

~ h.b(i) +n.(:)
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is the BC output data vector associated with the kth symbol, with h, and n.(i) being the

corresponding composite signature and noise vectors, respectively, given by

hc - [hl,la ey hl,M: h?,l: ceey h2,M7 ey hL,h ceey hL’M]T (444)

n.(i) = [n1.1(3), ..., naar (), 21 (), o nonr (i), np i (D), np ()] (4.45)

with Z,,,(7), by and ng, (i) given by (4.29), (4.30) and (4.32), respectively.
As described in Section 4.1.3, the MRC weight vector can be determined blindly as the

solution to the following problem [56]:
E{lfnrcze ()} _ R fnre

max mrc

o B{EE n.()2} £ Ry e

mrc mrc

where R,, = F{z.(i)z (i)} and R,,, = E{n.(i)nf (i)} are the BC output data and noise

(4.46)

correlation matrices, respectively. The solution to (4.46) is well known to be the principal
generalized eigenvector {R,_, Ry, }. The matrix R,,, depends on the beamformer and corre-

lator weight vectors, and can be showmto have thé: (i, j)th entry given by (see Appendix)

H ~ ~

92 ~
nwll,m1w127m2s

S; | (4.47)

T
l17mlslz,m2

[Ru iy =0

where ¢ = (m; — 1)L + {3 and j = (me £ 1)L+ by with'1 <[;,l, < L and 1 <my,my < M.

4.2.3 AOA Estimation and Sector Selection

To determine the working sector, some kind of preliminary location method can be used to
obtain a coarse estimate the AOA of the SOI. The estimate need not be accurate as required
in conventional LCMV beamforming, but should lead to a right sector for the multipath
arrivals. In this section, a simple technique of AOA estimation is proposed based on the
same framework for adaptive beamforming.

For simplicity, we assume that the SOI is the the sector ©,. The AOA estimate of the

[th path of the SOI is determined as the solution to the following spectral search problem:
max P(60) = w,(0)"Ryw,(6) (4.48)

where

R, = E{X(i)c} cf X" (i)} (4.49)

92



is the post-despread correlation matrix for the /th finger, and
w(0) = [I - B,(BZR,B,) 'BR,]a(h) (4.50)

is the optimum beamforming weight vector steered to the look direction . It is the weight
vector obtained from (4.39), with a,, and §,,, replaced by a(f) and c;, respectively. For
any 0 € O,, w;(f) will produce a mainlobe at 6, and suppress interference outside ©;.
Hence by varying 6 over O, a spectral peak can be observed in the spatial spectrum P;(f)
corresponding to the AOA of the [th path. This is similar in principle to the Capon’s
location method [89], except that a different blocking scheme is used here to avoid signal
cancellation. The same procedure can be executed for different sectors to locate all spectral
peaks in the entire field-of-view. If multiple peaks are present in different sectors, then

further identification is necessary to distinguish the true SOI from others.

4.2.4 Algorithm Summary

In practice, the data correlation matrices are usually estimated by the sample average

versions:

. 1 N ‘
Ry, ~ v > BY XT(i)vv;mwme* (4)B.

5 =1

12
) A A > BIXT (i)W}, W, X" (i)ery (4.51)

m ,m )
S =1

- 1 X
Ry~ < > BIX(i)8},,8],, X" (i)B,

I,m>®lm
S =1

1 Y

) A A > BY X(i)é;ﬁmé{mxff(z’)am (4.52)
§ =1
1 Y

R, ~ —Y z.(i)z) (i) (4.53)
N i=1

where N; is the number of symbols used during the processing period. With these estimates,

the algorithm of the proposed alternating ST 2-D RAKE receiver is summarized as follows:

1. Determine working sector ©,, look angles 6,,’s and GSC blocking matrices B, and B..
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2. Initialize the adaptive weights v, = 0, i.e., W;,;, = a,.

3. Compute in parallel g;,,, I =1,...,L, m = 1,..., M, according to (4.36), with ].:A{l,m
and 1, estimated by (4.51).

4. Compute in parallel vj,,, I =1,...,L, m = 1,..., M, according to (4.40), with f{lm
and and 1, estimated by (4.52).

5. Iterate the procedure between step 3 and step 4 until the solutions converge. By
substituting the w;,, into (4.51), obtain a new §;,, and by substituting the one into

(4.52), update the W ,, iteratively.

6. Obtain Ry, and compute f,,. according to (4.46), with R,,, estimated by (4.53).

4.2.5 Recursive Computation of Weight Vectors

To avoid matrix inversion, the GSC+«¢an be implemented in a time-recursive fashion using
stochastic gradient algorithms such=as LMSJ21].. This-leads to recursive formulation of the

solutions to (4.35) and (4.39), respectively:

8L (i + 1) = gL (i) + 1 (€1, BBLm (1) X)W}, (1) BIXT (i)W}, ()  (4.54)
Vi (i +1) = Vi () + o [(@n — Bevim (1) X(0)8],,,(1)] BIX(1)37,,,(0) (4.55)

where p, and f, are the adaptation stepsizes. Clearly, (4.54) and (4.55) are coupled and
should be executed in an alternate fashion.

On the other hand, the generalized eigenvector required for the computation of the MRC
weight vector in (4.46) can be also obtained via a time-recursive algorithm. One such example
is the recently developed projection approximation subspace tracking (PAST) algorithm [68],
which is shown to exhibit global convergence and requires a computational complexity of
the order ML (BT dimension) per iteration. The PAST algorithm was originally proposed
for tracking multiple eigenvectors, and can be easily modified for the tracking of a single
generalized eigenvector as dictated by (4.46) in [67]. The overall adaptive algorithm for

alternate optimal beamspace-time 2-D RAKE receiver is summarized in Table 4.2.
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4.2.6 Partially Adaptive Implementation

The degree of freedom for the adaptive correlators is on the order of N, which can be quite
large in wideband applications. A large degree of freedom requires a high computational
complexity and is likely to incur poor convergence behaviors [55]. To alleviate this, the
partially adaptive (PA) methods can be applied to reduce the dimension of g;,,’s. Partial
adaptivity can be achieved by either working with a reduced-dimension data vector or with
a reduced-size blocking matrix [38, 39]. Here a simple approach is suggested based on the
principle of maximum cross correlation [90].

Let B, be the (N + L — 1) x P’ reduced-size blocking matrix and B. be the (N +
L — 1) x (N — 1) full-size blocking matrix satisfying B7C; = 0 and B/B, = I. The
maximum crosscorrelation criterion dictates that B, should be composed of P’ vectors that
maximize the magnitude of the crosscorrelation between the upper and lower branch data

of the temporal GSC described by (4.35). That is, B, is chosen according to:

m ' lm

max || B {B)X" (k)w},, Wi, X5 (k)|
subject to: BJ'Cy =0 and BB, =1 “ (4.56)

Optimum solution to (4.56) requires a‘time consuming iterative procedure if P’ is large [90].
As a simplified alternative, B, can be obtained with the P’ orthonormal columns of B, that
give the largest crosscorrelation values. Note that the crosscorrelation vector in (4.56) can be
readily obtained as a sub vector of 1, given in (4.37) without extra computation. Finally,

the PA correlator weight vector is given by (4.36)-(4.37), with B, replaced by B,,.

4.2.7 Complexity and Performance

The trade-off between system performance and computational complexity is an issue
depending on the number of antennas D and processing gain N of the system. In general,
more antennas and a larger processing gain will provide better interference suppression,
but lead to high computational complexity and poor convergence behaviors. However, the
spatial and temporal dimensions (D and N) do not affect the complexity of the eigenvector

computation in MRC because the MRC weight vector has a size of ML, regardless of D
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and N. For batch processing, the major computations in the proposed algorithm involves
the inversion of f{l_,}1 with size (N — 1) x (N — 1) in (4.36), inversion of f{l_,; with size
D' x D" in (4.40), and a principal eigenvector computation with size ML x ML in (4.46).
The overall complex is about O(N? + D" + M3L?). For comparison, the ST post-despread
receiver in [56] requires about O(D?*L?), and the ST pre-despread receiver in [87] requires
about O(N? + D + L) for batch processing. The higher complexity of the proposed receiver
and that in [63] is the price paid for not using a training sequence for channel estimation.

For recursive processing as described in the previous section, the complexity for each
iteration is about O(N + D'+ ML) for the proposed receiver, O(DL) for the receiver in [56],
and O(N + D?) for the receiver in [87]. The proposed receiver can be further simplified by
incorporating partial adaptivity in temporal processing to reduce N to a smaller P’. As long
as P’ is large compared to the number of strong interferers, the performance of the receiver
will be virtually unaffected.

In the flat-fading case, the multipathidelay spread is smaller than the chip period such
that the receiver would require only=a single finger to*work with. As a result, only a single
adaptive correlator is needed for each diversity beam. On the other hand, in time-invariant
channels without the Doppler shift; it will'bereasier for the adaptive algorithms to converge
and keep track of SOIL. In addition, singe the fading gain remains constant at each beam-
finger pair, the maximum ratio combining weights need not be computed frequently. This

should alleviate the load for eigenvector computation.

4.2.8 Simulation Results

Here the performance of the proposed BT receiver is evaluated using a linear array of
D = 12 identical antennas uniformly spaced by a 1/v/3 wavelength. The inter-antenna
spacing is chosen for the field-of-view [—60°,60°]. The working sector is ©, = [—20°,20°],
and M = 4 diversity beams are formed at look directions {—12.45°, —4.15°, 4.15°,12.45°}.
The spatial blocking matrix B, is constructed with D’ = 6 using the eigenvector constrained
method. It is assumed that the SOI is in ©,, and the MAI are uniformly distributed in the
entire field-of-view, with each user having the same multipath angle spread of 10°. For all

users, J = 4 paths are generated with delays chosen from {0, T,, 27,, 37T.}, and fading gains
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being i.i.d. unit variance complex Gaussian random variables. All CDMA signals are BPSK
data modulated and spread with the Gold code of length N = 31. In addition to the MAI,
there are two equal power BPSK NBI’s arriving from 30° and —45°, with a bit rate being 0.8
times that of the CDMA signals. Finally, the number of fingers is L = 4, and the temporal
blocking matrix B, is chosen, according to Section 4.1.2, to be the 34 x 28 matrix whose
columns formed an orthogonal complement to [cgjl), C1,1,C1,2,€C1,3,C1 45 cﬂ)].

As a performance index, the output SINR (in dB) is defined as

output power of signal in z, (%)
output power of (MAI+NBI+4noise) in z,(7)

and the input SNR (in dB) is defined as SNR; = 101log, o+ The near-far-ratio (NFR) is the
ratio of the MAT power to signal power before despreading, and the NBI-to-signal-ratio (NSR)
is the ratio of the NBI power to signal power before despreading. For all but one result in the
simulations, N, symbols are used to obtain sample estimates of Rz,m, T, f{z,m, I, and R, ,
and a total of 50 Monte-Carlo runs are execiited to obtain an average SINR,. For performance
comparison, we included the results obtainedwith the blind principal component 2-D RAKE
receivers (ST-PC) in [56] and the non=blind cohérent Post-ST RAKE (CST-RAKE), MMSE
Post-ST RAKE (MST-RAKE), coherent BT Post-BT “RAKE (CBT-RAKE), and MMSE
Post-BT RAKE (MBT-RAKE) receivers described ih Chapter 3. For non-blind receivers,
the Post-ST and Post-BT channel vectors are estimated using the same N, symbols as the
training sequence. For CBT-RAKE and MBT-RAKE receivers, the beamforming matrix is
constructed using the four steering vectors {ai, as, a, a4} associated with the look directions
of the diversity beams. The simulation parameters are: N = 31 with Gold codes, L = 4
fingers, the number of antenna elements D = 12, the number of training symbols N; = 500,
the NSR = 20 dB and the input SNR; = 0 dB. Unless otherwise mentioned, the above
standard parameters will be used throughout the section.

To demonstrate the efficacy of AOA estimation described in Section 4.2.3, the spatial
spectrum are computed for the three sectors [—60°, —20°], [—20°,20°], and [20°, 40°]. Figure
4.8 shows the result for the first and third fingers (I = 1,3), with K = 10 users and NFR =
0 dB. The peak in the working sector gives the AOA of the SOI, and those in other sectors

are “false peaks” due to NBI and can be easily detected by the system.
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In the first set of simulations, the system capacity is evaluated with different user numbers
K. The resulting output SINR curves are plotted in Figure 4.9 for NFR = 0 dB and 20 dB.
As observed, the proposed BT receiver (GSC2-RAKE) performs reliably for a wide range of
K, even outperforming the MST-RAKE receiver with a moderately large K and high NFR.
This indicates that the adaptive beamformers and correlators have successfully eliminated
the strong NBI and MAI, respectively. The CST-RAKE, CBT-RAKE and ST-PC receivers
totally fail with NFR = 20 dB and a large K due to the lack of interference suppression and
poor channel estimation. In Figure 4.10, the patterns of the diversity beams for the first and
third fingers (I = 1, 3) are plotted for the case K = 5 users and NFR = 0 dB. The mainlobes
and deep nulls confirm that the adaptive beamformers can effectively collect the in-sector
signals and suppress the strong NBI.

In the second set of simulations, the near-far resistance of the proposed BT receiver is
evaluated with different NFR values. Figure 4.11 shows the results obtained with K = 5
and 25 users. As observed, with K = 25;the CST=RAKE, CBT-RAKE and ST-PC receivers
fail again, and the MST-RAKE receiver loses itsiadvantage due to ineffective interference
suppression. On the contrary, the proposed BT receiver achieves excellent near-far resistance
by successfully canceling the MAI and NBI Simultaneou“sly. The proposed receiver performs
well with K = 5, in which case the ¢emporal GSC has a sufficient degree of freedom to
handle the NBL |

In the third set of simulations, the efficacy of partial adaptivity, which is described in
Section 4.2.6, is demonstrated through system capacity evaluation. Figure 4.12 shows the
results obtained with the fully adaptive (FA) BT receiver, partially adaptive BT receiver
with P’ = 10 (PA-10), and partially adaptive BT receiver with P’ = 20 (PA-20), for NFR
= 0 dB and 20 dB. As expected, the PA receivers perform reliably as compared to the FA
receiver with a small K, and degrade as K increases due to the exhaustion of the temporal
degree of freedom for interference suppression.

In the fourth set of simulations, the convergence behaviors of the proposed FA BT re-
ceiver, PA-10 receiver, ST-PC receiver and MST-RAKE receiver are evaluated by varying
the data sample size N,. The resulting output SINR are plotted in Figure 4.12 with K = 5,
and NFR = 0 dB and 20 dB. As observed, the output SINR increases as IV increases for all
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receivers. The MST-RAKE receiver converges fastest due to the use of a training sequence.
The PA-10 receiver converges faster than the FA receiver, confirming the well known fact
that adaptive filters of smaller size converge faster.

Finally, to demonstrate the effectiveness of the recursive algorithms for weight adaptation
and eigenvector computation, we replaced direct matrix inversions by the formulae given
in (4.54) and (4.55), and direct eigenvector computation by the PAST algorithm. The
adaptation stepsizes are chosen as u, = p, = 107% Figure 4.14(a) shows the resulting
learning curve of the FA BT receiver, with NFR = 0 dB and K = 5. To show the tracking
capability of the algorithm, we repeated the same simulation, but deliberately changed the
AOA’s of the two NBI’s to 40° and —50°, respectively, at the 500th iteration. The learning
curves given in Figure 4.14(b) confirm that the recursive receiver successfully adjusted its
weights to suppress the NBI.

For an efficient implementation, recursive algorithms are employed for weight vector
adaptation and eigenvector computationy and a simple partially adaptive solution is given
based on the maximum crosscorrelationprinciple: The proposed receiver can be operated
without the aid of a training signal; The only information required is the signature sequence,
timing and a rough estimate of the anglesof-arrival of the signal for selecting the sector
of interest. Compared to the conventional ST receivers, the proposed beamspace receiver
enhances the the SINR by suppressing interference via adaptive nulling, and increases system
capacity by sectorization. From simulation results, it is shown that the proposed blind

receiver is near-far resistant, and performs reliably in an overloaded system.

4.3 Post-despread Beamspace-Time 2-D RAKE Receiver
for Sectored CDMA systems

In this section, a blind post-despread RAKE receiver suitable for sectored systems is
developed by a two stage procedure. First, a set of adaptive ST beamformers is designed
which provide effective reception of the SOI in a prescribed sector, and suppression of out-

of-sector MAI on the post-despread data. Second, the outputs of these ST beamformers are
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constructively combined to extract the SOI’s symbols.

4.3.1 Construction of Space-Time Beamformers

In sectored communications, the entire field-of-view of the receiver is divided into several
angular sectors, each responsible for a subset of users [64]. Assumed that the AOA’s and
delays of the multipaths of the SOT (user 1) are roughly known such that an angular sector
O, and delay spread Tp can be chosen to accommodate these multipaths. In order to
effectively collect the multipath energy, a set of diversity beams is formed with their patterns
encompassing ©,. As opposed to the previously developed beamforming scheme, here we
propose another approach that yields a set of ST beamformers operating on the Post-ST
data vector x._gn (i) as defined in (3.55). Let 6,,, m = 1,..., M, be the set of angles well
representing ©; and denote as a,, = a(f,,), where a,, is associated with the space-only array

data. We can define the signature vectors associated with the Post-ST data vector as

( a, Qe O |
_ ~ ~ ~ Qi Attt e m
Ap = A, 80, ..., ALm] =| © : ‘ (4.57)
. 5 Y 0
L 0 0 SR < Iy |

where the [th column a,,, is the concatenation of L segments, with the /th segment being
a,,, and zero elsewhere. Specifically, the ST signatures for the AOA 6,, can be represented
by a set of L linearly independent vectors a;,,,, [ = 1,..., L, corresponding to the L fingers.
If M diversity beams are to be formed at 6,,, m = 1,..., M, then we need a total of ML
ST signature vectors (STSV).

To ensure an effective suppression of strong out-of-sector MAI and NBI, adaptive nulling
is performed for each of the diversity beamformers. This is done by choosing the beamforming

weight vectors in accordance with the LCMYV criterion [55]:

Wl,m

. _ H
min Wl,mec—SM

Wi m

subject to: Wﬁmél,m =1 (4.58)
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fori =1,...,Land m = 1,..., M, where wy,, is the /th weight vector of the mth beam-

former,

Ru._su = E{xc-snm(i)x;_g ()} (4.59)

where R, is the Post-ST data correlation matrix. The solution to (4.58) is a ST beam-

Xc—SM
former that matches itself to a;,, to receive signal at the /th finger, while minimizing the
total output power to suppress interference. A major problem of the LCMV beamformer
is the phenomenon of signal cancellation [83] due to the mismatch of signature vectors. By
signal cancellation, it is meant that each of the weight vectors in (4.58) will combine the
multipath components in a destructive manner in order to minimize the output power. An
effective remedy proposed herein is again to use a modified GSC to block the signal before
beamforming [55]. In GSC, the weight vector is decomposed as Wy, = a;,;, — Ba vy, into two
orthogonal components which lie in the range and null space of the constraint, respectively.
The matrix B, is a pre-designed “signalsblécking” matrix which removes the signal in the
sector. The goal is then to choose the adaptive weight vector v, ,,, to cancel the out-of-sector
interference. To apply the GSC in- constructing the ST beamformer bank, some modifica-
tions should be made. First, instead of:blocking signalé from a specific direction, B, must
block signals from the entire sector.”.Second, instead of using a different blocking matrix
for each beamformer, the same B, is shared by all of the A/ beamformers at the L fingers.
Following the standard procedure of GSC, the adaptive weight vectors are determined by
the following MMSE problem:

Iv_rlllnIzl E{la] xc—snm(k) — v/}, B xc_sn ()|} (4.60)
or equivalently

min (A1 — BaVim)"Ra._c1[81m — BaVim] (4.61)

Solving for v, ,,, and substituting in w;,, = a;,, — Ba\?’l,m, we get

IR, B,) 'BIR, ., laim (4.62)
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4.3.2 Structure of Blocking Matrices

The blocking matrix B, is designed to remove signal components at each of the L fingers.
Since the Post-ST channel is not known, the blocking should be done in a finger-by-finger
basis. This suggests that B, should have the following form:

-Ba o .- 0_
_ O B, --- :
B, = (4.63)
N ¢
_o O .- Ba_

where B, is the “space-only” blocking matrix satisfying BZa(0) ~ 0 for § € ©,. The detail

of the construction of B, is described in Section 4.1.1.

4.3.3 Maximum Ratio Combiner

The weight vectors w; ,,,’s produce ML ST beams with diversity reception for the desired
signal from ©, and adaptive cancellation for the interfezence from outside ©,. These beams

are then linearly combined into a single-heam:-

M L
W= Zz.fl,mwl,m

m=1 =1
— Wf (4.64)
where
W - [V_VLl, e ,WL"I,WLQ, o ,WLQ, e ,V_VL’l, e ,V_VL’M] (465)
and
— — — — T
f= [f1,17 P I R TH SO TRR 0 PRI ) VORI fL,M] (4.66)

is the combining coefficient vector. To achieve the optimum performance, the vector f
is determined in accordance with the maximum ratio combining (MRC) criterion. With
adaptive ST processing, the dominant interference has been eliminated and the beamformer

output data mexc_gM(i), m=1,...,M,1=1,...,L, contain the SOI and colored noise
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only. In this case, the MRC weight vector can be determined blindly as the solution to the
following problem [63]:
o NE

max = Te=sM ___ (4.67)
©op{frwn s W Re o WE

where

Ri, s, = E{ne_su(i)n 5, (i)} (4.68)

The solution to (4.67) is well known to be the principle generalized eigenvector of the matrix

pair {R. R, ., }- Finally, the combiner output is given by

Xe—SM?
2o(1) = Wx,_ (i) (4.69)

Note that the blind MRC combiner exhibits an arbitrary phase ambiguity in symbol detection
due to the second order cost function usedsin(4.67). To remove this ambiguity, differential

encoding, or a short training sequeneé can beginecorporated.

4.3.4 Algorithm Summary

In practice, the data correlation matrix.is usually estimated by the sample average version:
1 X -
Ry o % 3 3 Xe snr()x!L oy (1) (4.70)
s i=1

assuming that x. g/ (i) is stationary over the processing period Ns. The noise correlation

matrix Rn depends on the beamformer weight vectors, and can be shown to be given by

H H H 1
’V 01’101711 01’201,11 P CLLCLlI
H H H
~ Cl 101’2]: Cl 2(:1’2]: P Cl LCLQI _
R, =c’W# | ’ ’ W (4.71)
H H H
L C1’1C1’LI C1’2C1’LI Ce cl,Lcl,LI |

where I is the D x D identity matrix. Using the estimate, the proposed diversity combiner

is summarized as follows:

1. Determine working sector O, look angles %’s, and blocking matrix B,.

103



2. Obtain R according to (4.70).

Xe—SM

3. Obtain W according to (4.62) and (4.65).

4. Obtain R according to (4.71).

Ne—SM

5. Obtain f as principle generalized eigenvector of {Ry, .., R,y }-
6. Obtain combining weight vector as w = Wf and 2,(i) = wx._sys

The overall schematic diagram of the post-despread receiver is depicted in Figure 4.14.

4.3.5 Recursive Computation of Weight Vectors

To avoid matrix inversion and the incurred numerical instability, the GSC can be imple-
mented in a time-recursive fashion using stochastic gradient algorithms such as LMS [21, 53].

This leads to recursive formulation of the solution to the MMSE problem (4.60)

k —

Vi (i 4 1) = Vim (i) = 1o |8/, %o sl EV, OB x5 ()] Bl xe—sni(i)  (4.72)

where p, is the adaptation stepsizes. It was‘shown thaf the convergence of blind adaptive
algorithms is slow and noisy compatred-to the-non-blind training signal based algorithm.
This is more significant when the size of weight vectors and/or SNR is large. In view of this
drawback, it is suggested that blind algorithms be employed in the initialization stage, and
be switched to the decision-directed mode once the SINR has improved to offer a reliable
decision reference [33].

On the other hand, the generalized eigenvector required for the computation of the MRC
weight vector in (4.67) can be also obtained via a time-recursive stochastic gradient (LMS-
like) algorithm without the need of a complicated generalized EVD. One such example is the
recently developed projection approximation subspace tracking (PAST) algorithm [68], which
is shown to exhibit global convergence and requires a computational complexity of the order
ML (BT dimension) per iteration. The PAST algorithm was originally proposed for tracking
multiple eigenvectors, and can be easily modified for the tracking of a single generalized
eigenvector as dictated by (4.67) [36]. The overall algorithm summary is tabulated in Table
4.3.
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4.3.6 Complexity and Performance

The computational complexity of the proposed post-despread RAKE receiver depends on
the designated blocking matrix B,, which has nothing to do with the processing gain, but is
related to the number of antenna D and the number of fingers L. For batch processing, the
major computations in the proposed algorithm involves the inversion of (BZR,, ., ,B,) ™!
with size LD' x LD' in (4.62) and a principal eigenvector computation with size ML x ML
in (4.67). The overall complexity is about O(ML*D"* + M?L?). Since the number of beams
M, the number of finger L, and the degree of D', D' < D are all small numbers, the proposed

post-despread receiver is less computational demanding than the previously proposed pre-

despread receivers.

4.3.7 Simulation Results

Here the performance of the proposed:post,despread receiver is evaluated using a lin-
ear array of D = 12 identical antennas uniformly'spaced by a 1/4/3 wavelength. The
inter-antenna spacing is chosen for the field-of-view {—60°,60°]. The working sector is
[—20°,20°], and M = 4 diversity- beams ‘are formed-at look directions {6y, 6,,60s,0,} =
{—12.45°, —4.15°,4.15°,12.45°}. The.spatial blocking matrix B, is constructed with D' = 6
using the eigenvector constrained method. Tt is ‘assumed that the desired signal is in the sec-
tor, and the MAT are uniformly distributed in the entire field-of-view, with each user having
same multipath angle spread of 10°. For all users, .J = 4 paths are generated with the delays
7;;'s chosen from {0, 7., 27T.,3T,}, and the corresponding path gains «; ;s are independent,
identically distributed unit variance complex Gaussian random variables. All CDMA signals
are generated with BPSK data modulation and spread with the Gold code of length N = 31.
In addition to the MAI, there are two equal power BPSK NBI’s arriving from 30° and —45°,
whose bit rate is 0.8 times that of the CDMA signals. Finally, the number of fingers of the
receiver is L = 4.

As a performance index, we define the output SINR to be the ratio of the signal power
to the interference-plus-noise power at the receiver output z,(i):

output power of signal in z, (%)
output power of (MAI+NBI+4noise) in z,(7)
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The input SNR is defined as SNR; = 10log;, % The near-far-ratio (NFR) is the ratio of
the MAI power to signal power before despreading, and the NBI-to-signal-ratio (NSR) is
the ratio of the NBI power to signal power before despreading. For all but one result in
the simulations, N, symbols are used to estimate the correlation matrices, and a total of 50
Monte-Carlo runs are executed to obtain an average SINR,. For performance comparison, we
also included the results obtained with the non-blind CST-RAKE, MST-RAKE and MBT-
RAKE receivers described by (3.60), (3.61) and (3.77), respectively. The corresponding
Post-ST channel vectors are estimated using the same N, symbols as the training sequence.
The simulation parameters are: N = 31 with Gold codes, L = 4 fingers, the number of
antenna elements D = 12, the number of training symbols N, = 500, the NSR = 20 dB and
the input SNR; = 0 dB. Unless otherwise mentioned, the above standard parameters will be
used throughout the section.

In the first set of simulations, the system capacity and interference rejection capability
are evaluated with different user number§ K. The tesulting output SINR curves are plotted
in Figure 4.16 for NFR = 0 dB and*10 dB: As expected, the MST-RAKE receiver gives the
best performance for most cases due to its larée degree of freedom (DL = 48) for interference
suppression. The MBT-RAKE recei\}er performswell with a small K and low NFR, in which
case interference suppression can be done successfully using its smaller degree of freedom
(ML = 16). On the other hand, the pfoposed beamspace-time receiver (GSC3-RAKE)
performs reliably for a wide range of K, even in the presence of strong MAI In fact, the
performance of the proposed receiver is nearly the same performance as that of MST-RAKE
receiver with a moderately large K and high NFR, indicating that the adaptive beamformers
and correlators have successfully eliminated the strong NBI and MAI, respectively. Note that
the MST-RAKE receiver cannot handle the time-varying NBI well when K is large. This is
because that the time-varying NBI appears to the MST-RAKE receiver as a set of multiple
time-invariant MAI [100], and requires a large degree of freedom for effective cancellation.
But the NBI seems to be stationary in spatial domain and can be nulling by the adaptive
beamformer of proposed receiver. The CST-RAKE receiver totally fails with NFR = 10 dB
due to the lack of interference suppression and cause large channel estimation error.

In the second set of simulations, the near-far resistance of the proposed receiver is eval-
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uated with different NFR values. Figure 4.17 shows the results obtained with K = 5 and
20 users. It is observed that the CST-RAKE fails again, and the MBT-RAKE receiver loses
its near-far resistance with K = 20 due to the exhaustion of degree of freedom for interfer-
ence suppression. On the contrary, the proposed receiver achieves its near-far resistance by
successfully cancelling the MAI the strong NBI using the jointly ST degree of freedom.
Finally, to demonstrate the effectiveness of the recursive algorithms for weight adaptation
and eigenvector computation, we replaced the direct matrix inversions and eigenvector com-
putation by the formulae given in (4.72). The adaptation stepsizes are chosen as y, = 1075.
Figure 4.19(a) shows the resulting learning curve of the receiver, with NFR = 0 dB, and
K = 5. To show the tracking capability of the algorithm, we repeated the same simula-
tion, but deliberately changed the AOA’s of the two NBI’s to 40° and —50°, respectively, at
the 500th iteration. The learning curves given in Figure 4.19(b) confirm that the recursive

receiver successfully adjusted its weights to suppress the NBI.

4.4 Summary

Three blind adaptive beamspace-time teceivers havé been proposed for sectored CDMA
wireless communications. The first proposed receiver was designed with a two-stage pro-
cedure. First, a set of adaptive ST diversity beamformers was constructed which provides
effective suppression of unwanted interference and reception of signals from a prescribed ST
region. Second, the output data obtained from these processors were maximum ratio com-
bined to capture the signal multipath components coherently. The second proposed receiver
used the beamformer-correlator pairs to alternately optimize the beamformer and correlator
outputs. Finally, a post-despread receiver was proposed. The receiver constructed multiple
beams for each finger, as opposed to the conventional ST receivers, which use one beam for
each finger. All these proposed receivers work blindly without the aid of a training signal.
The only information required is the signature sequence, timing and a rough estimate of
the angle of arrival of the signal for selecting the sector of interest. For an efficient im-
plementation, recursive algorithms are derived for weight vector adaptation and eigenvector

computation. Compared to the conventional antenna level ST receivers, beamspace receivers
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enhance the the SINR by suppressing interference via adaptive nulling, and lower the com-
putational complexity by reducing data dimension. From simulation results, it is shown that
the proposed blind receivers are near-far resistant, and performs reliably in an overloaded

system, even in the presence of strong NBI.
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Table 4.1: Algorithm summary of adaptive beamspace-time 2-D RAKE receiver

1. Determine working sector ©;, look angles 6,,’s and GSC blocking matrices B, and
B..

2. Initialize the coefficients 1, , py, A and forgetting factor oy, of PAST

3. Initialize the adaptive weights s, = ¢1; and w;,, = a(f,,).

4. Fori=1,2,--- (Do recursive update for step 4 ~ 6)

5. Forl=1,---,Land m =1,---, M (ML processors in parallel).

x,(1) = X(i)ey,

Wi (i) = a(0m) — Bavim(7)

Yim(i) = Wi ()X (i)

Vi (i 4 1) = Vi (i) o 2 (@a)%0(6) — v, ()BI%1 ()] BI (i)
g (i + 1) = g1 (8) 4ty [l i3m0y~ & () B yim ()] Bl y1m (i)
Wim(i + 1) = a(0,3— Be¥ambitd) L=

Sim(i+1) =ci; — Begrm(i +1)

2m(i+1) =w/ (i + )X+ 1)s),,(i + 1)

z(i+1) =[za(i+1), -, 2o+ 1), 200(0+ 1), -, 200+ 1), -+,

zra(i4+ 1),z (i + 1)]T
6. Use PAST to track the principal eigenvector and do maximum ratio combiner

2o(i +1) =fH ()z(i + 1)
bi(i41) = zo(i + 1)
Ae(i +1) = aphe(i) + |20(i + 1)

frre(i 4+ 1) = f0e(i) + [2(0 + 1) — £ (1) 20(7)] 20(0 + 1)" /A (i + 1)
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Table 4.2: Algorithm summary of adaptive space-time alternating 2-D RAKE receiver

1. Determine working sector ©;, look angles #,,’s and GSC blocking matrices B, and
B,.

Initialize the coefficients i, , ptg, Ae, frc(0) and forgetting factor oy, of PAST
Initialize the adaptive weights §;,,,(0) = ¢;; and W,,,,(0) = a,,.
Forl=1,---,Land m=1,---, M (ML processors in parallel).

For i =1,2,---, recursive calculate step 6 and step 7.

S ok o

Update §;,,(7), goto step 7

gm(t+1) =grm(i) + g [(Cl,l — Bcgzm(l))HXT(Z)VNVZKm(Z)} BfXT(Z)VWm '

sl,m(i + 1) =C1, — Bcgl,m(i + 1)

7. Update Wy, (i + 1), goto step 6

Vi (i + 1) = Vi (D) 50 | (2 — By (1) X ()8, (1)] BIX ()87, (1)

Wi (i + 1) = a(0g) — Baviam i A1)

8. Use PAST to track the prinéipal eigenvector and do maximum ratio combiner

am(i+1) =W/ (i+ D)X+ 1)s],,(i +1)
z(t+1)=[Z11G+ 1), 2o+ 1), 20.(0+ 1), -+, Zop(+ 1), - -,
Zra(i+ 1), 2o+ 1))
20(i +1) = £, (1)2c(i + 1)
bi(i+1) = 2z(i + 1)
Ae(i + 1) = e (i) + |20(i + 1)]?

frre(i 1) = frpe(i) + [2e(i + 1) = £rpe (1) 26(2)] 26(7 + 1) /A (i 4 1)

110



Table 4.3: Algorithm summary of post-despread beamspace-time 2-D RAKE receiver

Determine working sector O, look angles 6,,’s and blocking matrices B, and B,,.
Initialize the coefficients p,, A, £(0) and forgetting factor o, of PAST

Initialize the adaptive weights w,,,(0) = a;,, i.e, v;,, = 0.

Forl=1,---,Land m=1,---, M (ML processors in parallel).

A e

Fori=1,2,---, recursively update Wy, (i + 1).

Vi (i 1) = Vim (i) = 1o (@l % se(0) = 9/, ()BIxe sur ()] Bl xc s2(3)

Wim(i+1) =a(0p) — BaVim(i+1)

W(i+1)=[Wia(i+1),...,Wr1(i +1),Wio(i+1),....,Wra(i+1),...,
wri(i+1),...,wra(i+1)]

z(i +1) = Wi+ 1)"x, su

6. Use PAST to track the principal eigenvector and do maximum ratio combiner

z(i + 1) = £(i) "z +1)
bi(i41) = zo(i + 1)
Ae(i +1) = (1) + [

£(i+1) = £(i) + [2(i + 1) — £()20()] 20 (i + 1)/ Aeli + 1)
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Figure 4.5: Evaluation of near-far resistance of GSC1-RAKE, MST-RAKE and CST-RAKE
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Figure 4.6: Convergence behavior of GSC1-RAKE, MST-RAKE and CST-RAKE receivers
with K = 25, (a) NFR = 0 dB and (b) NFR = 20 dB.
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Figure 4.10: Patterns of diversity beams of GSC2-RAKE receiver obtained with K = 5 users
and NFR = 0 dB for (a) Finger 1 and (b) Finger 3.

116



(@ (b)

50 T T 50
— GSC2-RAKE — GSC2-RAKE
—e— ST-PC —e— ST-PC

40- - - MST-RAKE || 40- - - MST-RAKE ]
< - CST-RAKE < - CST-RAKE
4 - MBT-RAKE 4 - MBT-RAKE
- CBT-RAKE -+ - CBT-RAKE

N}
(=]

SINR_ (dB)
SINR_(dB)

-20 . - - -20
NFR (dB) NFR (dB)
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Appendix: Derivation of Entries of Ry,

Let i = (my — 1)L+ 1y and j = (mg — 1)L + l5. From (4.45), the (7, j)th entry of R,, is the

crosscorrelation between 1y, ,,, (k) and ny, n, (k):

[Rnc](i,j) = E{‘i’l}l],mlN(k) ég,m2NH(k)v~Vl2,m2}

S11,m

= VNVl}II’mlE{N(k)ézkl’mlég’m2NH(k)}le’m2
N+L—1N+L—-1

= VN"fm( ; Z::l [éﬁ,ml]l[éh,ml]nE{nl(/f)nZ(/f)}> Wiy.ms

where [8}, m,|n is the nth entry of §;, ,,, and n;(k) is the /th column of N(k). Using the fact

that n;(k) are i.i.d. random vectors with the same variance o2, we have
E{n(k)n(k)} = 0216l — n]

where 0[n] is the Kronecker delta function. This gives

N+L—-1
2~ H N A o~
Rl = ool (3 S0 i (473
n=1
= Uzﬁ’l}l[,m1ﬁ’l27m2§,l1;,m1§72,mz ] (474)
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Chapter 5

Adaptive CDMA Receivers

In wireless communications, the radio propagation channel is dynamic, and the adapta-
tion process must be continuous to allow the receiver to constantly optimize its filter weights.
The algorithm must adapt the weights quickly to keep up with the changing environment.
Since the adaptation algorithm is usedi'continuously, its computational complexity is often
an important issue to be considered, dspécially when: used in single-user receivers, where
power and physical space may be at a premium. The trade-off between convergence speed
and complexity should be taken inte careful consideration.

A variety of adaptive algorithms hawve been-used in adaptive CDMA receivers. While
some of them are classic algorithms used in adaptive equalization and interference rejection,
others are new and have been specially developed for CDMA receivers. Adaptive receivers
can be divided into two categories based on whether training sequences are used or not. In the
first category, nonblind MMSE receivers can be adaptively implemented if the desired signal
is known at the receiver [15], while in the second category, a blind approach is employed.
The nonblind methods need a significant overhead for training and may not be feasible in
practice. It is thus desirable to have blind algorithms that does not need any training signals.

The GSC algorithms proposed in previous chapters for wireless DS/CDMA receivers can
be used in a blind or nonblind way. Since the antenna array suppresses the strong out-of-
sector NBI and/or out-of-sector MAT and the set of adaptive correlators also suppress the in-
sector MAI, the proposed GSC receivers can use a shorter training sequence than the MMSE

receiver for the start-up procedure. The goal of this chapter is to derive adaptive algorithms
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for the GSC structure based CDMA receivers. Popular conventional adaptive methods are
the LMS and RLS algorithms. The LMS algorithm suffers from slow convergence, but has
a low computational complexity. The RLS algorithm has a faster convergence, but tends to
be sensitive to the input data. In this chapter, we will develop adaptive 2-D RAKE receivers
based either on the LMS or RLS algorithm.

5.1 Adaptive Multiuser Receivers

The linear multiuser receivers such as the decorrelating and the MMSE multiuser receivers
depend on signal crosscorrelations (and on the received SNR in case of MMSE detector),
and the computation of their filter weights involves matrix inversions. It is particularly
important to eliminate this need in multipath fading channels where crosscorrelations are
time varying and in channels with time varying received power levels. It is desirable to obtain
a linear multiuser detector that not onlyseliminates the need for on-line computation of its
weights, but also adapts to the time:varying environfnent. Here, we present some categories
of adaptive algorithms for DS/CDM®A multiuser detectors. The first category consists of
the LMS and RLS algorithms which areswell-known in t“he adaptive filtering theory [53, 69].
The second category is an iterative method for suecessive interference suppression (SIC) or

parallel interference suppression (PIC).

5.1.1 LMS and RLS Adaptive Algorithms for Multiuser Receivers

In the training mode, the weight matrix of space-time MMSE multiuser receiver, Tsr,,,,¢5

working on the sufficient statistics, can be obtained based on the MMSE criterion:

TSTMMSE arg Teg}(llnxk’f { {HTHyST H }} (51)
The cost function of MMSE receiver is
i, 90 = P[50 b0 o

The LMS adaptive algorithm is employed to update the weight matrix T at the ith input

data with the recursion:
T(i+1) = T(i) + pysr(i) [b(i) — zsr(i)]" (5.3)
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where zgr (i) = TH(i)ygr(i) is the KT x 1 filter output (one update per symbol), and T(i)
and ygr(i) denote the weight matrix and sufficient statistics vector at the ith iteration,
respectively. The p is the algorithm’s stepsize. Each column of T is updated through the
standard form of the single-user LMS algorithm.

A modification of the ordinary LMS algorithm to avoid noise amplification, when ygr (i)
is large, is the normalized LMS (NLMS) algorithm [53, 70]. The NLMS may be viewed as
the solution to the constrained optimization problem T (i + 1)ys7(i) = b(i). This result

has the following form:

T+ 1) = T0) + 2T () — 20 (0] (5.9
lysr (@)
where [i is the stepsize. It can be shown that the NLMS algorithm converges in the mean

square if 0 < 1 < 1 [53], which makes the selection of the stepsize i much easier than the
selection of p in the LMS algorithm. Normally, when the system employ a training signal
to achieve a level of performance, the algorithm (5.4) will be switched to decision-directed

mode in the form:

T(i+1):T()+”;’;TT(())” [b(i) B (5.5)

where b(i) = sign [zsr(i)).
Another alternative to the LMS algorithm is the RLS algorithm which chooses the weight

matrix T to minimize the least squares cost function:

min |, Jio(T) = 3 lase (@) — b(0) | (5.6)

TeCKEIXKI
where zg7(i) = TH(i)ysr(i) is the filtered output, and A, 0 < Az < 1, is an exponential

weighting factor that discounts past data. The correlation matrix RyST( )=FE {yST(i)ygT(i)}
is updated with a weighted sample average such as Ry, (i) = Z Ny (i)y (i), as well
j=1

as the inverse of the covariance matrix, Py, (i) = R7. (i), and an adaptation gain vector

k(i) = Pyo, (1)ysr(i).

The RLS implementation [53] iterates in the form:

e Initialization:

P,(0)=6¢"'T §= small positive constant (5.7)

T(0)=0 (5.8)
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e RLS updating: 7 =1, 2, -, compute

)‘fsle(i - 1)YST(¢)

KO = Y0P G — Dysr() (5:9)
£(i) = b(i) = T (i — V)ysr(i) (5.10)
T(i) =T — 1) +k(3)E7 (i) (5.11)
P,(i) = \,'P,(i — 1) = A, 'k(d)y & ()P, (i — 1) (5.12)

Basically, the update (5.12) is sensitive to numerical roundoff errors [51] and must therefore
be closely monitored or stabilized in some manner. Also the complexity per update is
O(K?I?) for RLS, as compared with O(KI) for LMS. As with the LMS case, the desired
signal for RLS can be initially accomplished through a training sequence, and subsequently

by switching to decision-directed mode.

5.1.2 Adaptive Algorithms.for Sucecessive Interference Canceller

For the two linear multiuser detectors, “MMSE. and decorrelating receivers, the corre-
sponding weight vector matrix are given by (3.17) an}d (3.18) respectively. Most of the
multiuser detectors enlarge the sliding processing window to cover more symbols. This re-
sults in a large dimension of matrices in'(3:17) and in (3.18). With direct inversion of the
matrices, it is too costly for practical implementation. In [67], the authors considered the
application of the Gauss-Seidel iteration in obtaining the detector output. This method
effectively performs serial interference cancellation (SIC) on the sufficient statistic vector
ysr(7) and recursively refines the estimate of the users’ transmitted symbols, denoted as
{El(i)[Ki +Ekl=o03b(i) 1 <k<K0<i<I-— 1}. Denote such an estimate at the jth it-
eration as d¥)(i)[Ki + k]. Here we denote Matrix[m,n] as the (m,n)th entry of Matrix
and denote vector[n] as the nth entry of vector.

Consider and rewrite the linear system equation in (3.14) which consists of the sufficient
statistics ygr, the users’ transmitted symbols d, and the space-time correlation matrix H.

Ignoring the Gaussian white noise, (3.14) is given by

Hd(i) = ysr(i) (5.13)

125



The purpose of the receiver is to update the estimates of the users’ transmitted symbols, d,

at each new data input. By using the Gauss-Seidel procedure [71] to solve the equation in

5.13), we get
_ . 1 _ _ .
dYKi+ k]l = = Ki+ k] — H[Ki + k. n'1d9D[n/
K+ ] H[Ki+ k, Ki+ K] (YST[ i+A n,<(§.+k) (i + K, n]d ]
- ¥ I:I[Ki+k,n’]d(j_1)[n’]) (5.14)
n'>Ki+k

fork=1,...K,i=0,...,1—1,j=1,2,...and n' = 1,---, KI. For simplicity, we replace
K1+ k by n which is the entry of a vector or matrix. Then, by examining the equation in
(5.14), we can find the Gauss-Seidel iteration for the SIC that obtains estimates of d¥/)(i)[n]
by subtracting the most current estimates of the interference created by all the users from
the received signal ysr (7). By the theory of Gauss-Seidel iterations, if H is positive definite,
the d) (i) will be guaranteed to converge to the solution of (5.13) [28, 72], i.e., the output
of the decorrelating detector in (3.17):

d9(i) - H 'yer(i) = T, s srli) : (5.15)

A similar way for developing the adaptive SICtoward to the MMSE solution can be obtained

by the linear system of equations:

(H+02A7%) d(i) = ysr(i) (5.16)
The corresponding Gauss-Seidel iteration is given by

. 1 _ . _ .

dW[n) = = — N Hn,2')d9Y[] - Y Hln,n')dY V[ (5.17
where n represents Ki + k and n,n’ = 1,...,KI, j = 1,2,.... dY will converge to the

solution of (5.16), i.e., the output of the MMSE detector in (3.18):

, _ -1
d (i) = (H+02A™?)  yer(i) = T, ., ¥sr(i) (5.18)
The computational complexity per user per bit of the direct inversion of the matrices H or
(H+02A2) is O(K?*I?/KI) = O(K?I?). The computational complexity of the adaptive
SIC algorithm per user per bit is O(jK*I/KI) = O(MK), where j is the total number
of iterations. Since the number of iteration is a small, the above adaptive SIC algorithm

achieves a significant complexity reduction over the direct matrix inversion approach.
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5.1.3 Adaptive Algorithms for Parallel Interference Cancellers

A natural alternative to the serial interference cancellation (SIC) method is the parallel
interference cancellation (PIC) method [67, 73]. In the SIC, the new estimate of d’[n] is used
to update the subsequent estimates as soon as it is available. In the PIC at the jth iteration,
the d)[n] is updated using the estimates only from the previous iteration d¥=1[n].

The simplest iterative method for solving the linear system in (5.13) or (5.16) in PIC is
the Jacobi iteration [67, 71, 74]. The adaptive PIC decorrelating receiver with the Jacobi

iteration solves the linear system of equations in (5.13):

. 1

dVn] = =—— Hn,n)dV "V 5.19
o= (1 - B o
And the adaptive PIC MMSE receiver corresponds to the Jacobi method for solving the

linear system of equations in (5.16):

A9 [n] = f +10%A[n,n] (yST[n %; Hn, n)d" =V [n ]) (5.20)

where n,n' =1,2,...,KI, and j =1,2,. ..

It should be noted the Jacobi iteration is not guaranteed to converge unless a specified
condition is satisfied. Let the matrix H be decomposed into three parts, a diagonal matrix
Dy, a lower left triangular matrix Lg, ‘a uppen right triangular matrix Ug such that H =
Dg + Lg + Ug. The condition that guarantees the Jacobi iteration’s convergence is that
the spectral radius of the matrix, Dg'(Lg + Ug), is less than 1 [72]. However, convergence
can also be assured if the technique of over-relaxation is applied [75]. The modification for

the Jacobi over-relaxation iteration (JOR) is given by

a0 = gl (yST[n] - 3 H n']a“[n']) + (1= ) a5 O] (5.21)
] = g AT (yST[n] - Hn n']a<j”[n'1)+<1 )5V [1](5.22)

where (1, is a fractional parameter with 0 < p, < 1. It can easily be seen that the JOR
is in fact a weighted linear PIC scheme where the interference estimate is scaled before

subtraction.
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5.2 Adaptive GSC Multiuser Receivers

The blind adaptive ST multiuser receiver was implemented based on the GSC algorithm.
With the chip-sampled received data vector at each antenna element, a set of linear adaptive
correlators is applied to extract the multipath path signal of the desired user and to suppress
the interference caused by other users, as well as the interferers. The chip-sampled data
vector at the dth antenna element, x(q) (i), d = 1,---, D, in (3.2), is the dth row vector of the
ST data matrix X(4) in (3.25). The set of adaptive correlators at the dth antenna element is

chosen according to the LCMV criterion [67, 76]. This leads to the criterion for determining

the weight matrix, S, = [Sa1, - - -,8az], of the bank of correlators:
Iréin E {HSdX H } = mln tr (Sd Rx(d)Sd)
subject to: SHCy =1, (5.23)

where trace(-) denotes the trace operatoty Ry, =E {X(d) (z)x{fl)(z)} and Cj is the multipath
signature matrix of user 1 as defined in (2:11); The solution to this LCMV optimization is

given by

S0 = RZ' C1(CMR,, C;)~! ‘ (5.24)

X(d) X (d)

The outputs of the correlator bank are concatenated to form th following vector:

. ~ . ~ . ~ T
2(i) = [(S{xe )" (Sixe (). (Shx@ )]
T
= [le,zg, , g]LDxl (5.25)

Finally, a linear combining vector f is applied to z(i) to yield the decision statistic for the

1th symbol of the desired user:
2,(1) = £77(4) (5.26)

One of the most well-known adaptive algorithms for LCMV is via the GSC [76], which
decomposes the weight vector at the [th finger of the dth antenna into two orthogonal

components such as follows:
Sat = Sdi,c — BeSaia (5.27)
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where Sy . is the quiescent weight vector, S4, is the adaptive weight vector, and B, is

the blocking matrix such that B¥Cy = O(y_1)x;. Combining the equations of (5.27), for

l=1,---, L, at the dth element of the antenna array, gives the new equation in matrix form:
Si = Sae — BeSua (5.28)
where Sy = [8a1,+,841), Saec = [8a1.er**»8arc) and Saa = [Barar**8ar.a)- Sae is the

projection obtained by projecting S, onto the subspace spanned by the column vectors of Cj,
and gd’a is the (N —1) x L adaptive weight matrix. The projection matrix is denoted as P, =
C,(CFC)'Cl. The LCMV problem is then converted into the following unconstrained

optimization problem:

min B {(sd ~B.Su.) xw) (i)} (5.29)
Sd,a

The LMS algorithm for updating the weights of the bank of correlators at the dth antenna

is given by
~ ~ H
24(i) = (Sae — BSuali)) X(a) () ‘ (5.30)
Saa(i +1) = Saa(i) + pBIxg (6)2] (i) | (5.31)

Note that z4(i) is the output of the.L-finger-correlator bank at the dth antenna element.
The output of the filters at all antenna elements-are concatenated to obtain z(i) in (5.25).
On the other hand, we can blindly combine the filter outputs of the correlator banck at
all antenna elements based on the maximum ratio criterion. The principal eigenvector of
the autocorrelation matrix of z(i) should be obtained in an adaptive fashion. The simple
algorithm named PAST (Projection Approximation Subspace Tracking) [68, 77] can be used
to track the largest eigenvalue, \,,, and the corresponding eigenvector, f, of the correlation

matrix of z(7):
A (i) = @A (i = 1) + |20(3) (5.32)
£(0) = £(0 = 1) + [2()) = £(i = 1)20(0)] 20(2)"/Am (4) (5.33)

where a, 0 < a < 1, is the forgetting factor. Finally, the filter output, which is the MRC

output, is given by
2o(i) = £ (i — 1)Z(i) (5.34)
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The algorithm for adaptive GSC multiuser detection is summarized in Table 5.1. The con-
vergence of the PAST algorithm are studied in [78]. Tt is shown that with the forgetting
factor @ = 1 under mild conditions, this algorithm globally converges almost surely to the

signal eigenvectors and eigenvalues.

5.3 Adaptive 2-D RAKE Single-User Receivers

For the four ST 2-D RAKE receivers such as Pre-ST, Post-ST, Pre-BT and Post-BT,

described in Section 3.3, a generic linear filtering model is given by

A~

b (i) = sign(s”x (7)) (5.35)

where x(i) is the observation vector (for Pre-ST being x. g7, Post-ST being x. g7, Pre-BT
being y. pr, and Post-BT being y. pa), and s is the generic weight vector.

As described before, popular adaptive,filtering algorithms consist of the conventional
stochastic gradient and least squares:algorithms [53]."These have been applied to obtain the
MMSE symbol estimates for CDMA systems [27, 79]. “An important feature of the MMSE
receivers is that the mean-square-error (MSE) ¢an be minimized via the Wiener-Hopf filtering
theory [53]. The MSE from a linear FIR filter s ‘operating on x in the estimation of bit by (4)

is given by
J=E {‘st(i) - bl(z')f} (5.36)

The stochastic gradient or LMS algorithm has been successfully applied to many signal
processing applications such as equalization, echo cancellation, and adaptive beamforming.

The weight vector updates of the LMS algorithm is summarized as
e Initialization s(0)=0

e LMS updating: : = 1,2, -, compute

A~

bi(i) = s" (i — 1)x(3) (5.37)
e(i) = bi(i) — by (1) (5.38)
s(i) =s(i — 1) + px(t)e*(7) (5.39)
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The scalar p is the LMS stepsize, whose choosing is according to the trade-off of stability
and convergence speed. With s set to the optimal value of Wiener solution R, where

r=FE{xbj}and R=F {XXH}, and for binary valued data, the MMSE is givrn by
Jmin = 1 — t7"RE (5.40)

The use of a finite, non-zero stepsize in the adaptive algorithm implies that the coefficients
will wander, so there will be some filter misadjustment. The mean square error above the
MMSE is termed excess mean square error .J., (i) at the ith iteration. The misadjustment,
defined as the ratio of the steady state value J,(00) of excess mean square error to the
MMSE Jmin:

Jez(00)
Jmin

M
P
= —_— 5.41
22— (o4
where \;’s are the eigenvalues of the correlation matrix R of dimension M x M.
For the normalized LMS (NLMS) algorithm;: the Stepsize is chosen to be equal to the

inverse of the instantaneous observation power [53, 70]:

p=—>"r (5.42)

e + [[x ()]
where [ is the NLMS stepsize, which can be used to adjust the convergence speed, and e
is a small constant that ensures stability when the signal energy is small. Nominally f is
chosen to be equal to unity. The main benefits of the LMS algorithm are its simplicity and
robustness to noise. The algorithm complexity is O(M), where M is the length of the weight
vector.
For the RLS adaptive algorithm, the weight vector is computed in accordance with the

algorithm:

e Initialization

P(0) =6"'T 6 = small positive constant (5.43)

s(0) =0 (5.44)
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e RLS updating: For each n = 1,2, -, compute:
s TP(i — 1)x(4)

k() = 53 T ()Pl = () (5-45)
£(1) = b(i) — s (i — 1)x(3) (5.46)
s(i) = s(i — 1) + k()€ (4) (5.47)
P(i) =\, '"P(i — 1) — N ' k() x" ())P(i — 1) (5.48)

where A\, is a positive constant close to, but less than, 1. When )\ equals 1, we have the
ordinary method of least squares corresponding to infinite memory.

The fundamental difference between the RLS algorithm and LMS algorithm is stated
as follows [53]: The stepsize parameter u in the LMS algorithm is replaced by the inverse
of the correlation matrix of the input vector x(i) in RLS algorithm. This modification
has a profound impact on the convergence behavior of the RLS algorithm for a stationary

environment, which is summarized as follows:

1. The rate of convergence of the RLS algorithm i typically an order of magnitude faster

than that of the LMS algorithm:

2. The rate of convergence of the RLS algorithin is invariant to the eigenvalue spread of

the ensemble-averaged correlation matrix of the input vector x()

3. The excess mean-squared error J, (i) of the RLS converges to zero as the number of

iteration, 7, approaches infinity, with the exponential weighting factor A\, = 1.

5.4 Adaptive GSC Single-User Receivers

This section provides a comprehensive treatment of blind ST adaptive GSC single-user
detection. The GSC adaptive detector requires accurate knowledge of the channel charac-
teristics of the desired user. However, when multiple antennas are deployed in the receiver,
it is not straightforward to identify the propagation channel. This is due to the difficulty
in performing direction finding in a rich multipath environment. For this reason, different
implementations of adaptive GSC algorithms have been taken into consideration. They are

classified into the ST joint or ST separate adaptive receiver structures.
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5.4.1 ST Joint Adaptive GSC Single-User Receivers

An MOE receiver is proposed in [18], where the weight vector is optimized by minimizing
the output energy subject to the constraint that the response to the user of interest is a

constant:
rnsin s"Rs
subject to: sh; =1 (5.49)

where h; is the generic effective ST CSV, (for Pre-ST being hgr, for Post-ST being hgyy,
for Pre-BT being hpr and for Post-BT being hpj).

By merging the ideas of the GSC and LMS algorithm, the generic weight vector s is
decomposed into two branches, where s = s, — Bs,. The upper branch weight vector
s. = hy is the fixed part that satisfies the constraint at each update. The lower branch
blocks the signal with the assumed signature sequence by a designated blocking matrix B.
By dynamically updating the adaptive weight vector.s, of the lower branch, any signals
common to the two branches’ outputs will be cancelled.; The blind adaptive GSC algorithm

for the single-user receiver is described in Table5:2.

5.4.2 Robust Adaptive GSC Algorithms

Unfortunately, the MOE method is known to be very sensitive to the signature mis-
match due to the so-called signal cancellation effect [18]. To see the impact of signature
mismatch, we consider the case of a 2-D RAKE single-user receiver with multipaths, but
no interference. Instead of hy, the perturbed CSV Ah; is assumed due to mismatch, where
A =1+ diag[dg, 01, .. .,0n], where the length of the CSV is M. The output power of the
MOE receiver is given by

2 AT L \H
FHp -1 VY 2 )¢ oiAh; (Ah)" | -
(h1 R hl) = o, {h1 lI — Mo? + o7 h,

Mo? + o2
M+ [ e |(ab)h [

Tn

-1
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(5.50)

For a small or moderate SNR 0% /02, the factor on the right hand side nearly equals 1. As the

SNR increases, however, this factor becomes proportional to 1/0%, and the signal is actually

suppressed:
lim (bR 'h;)™! % (14 ! (5.51)
im =_n - - ‘
0%/0%%00 ! ! M Zm|5m|2/M

To avoide signal cancellation, a robust solution is obtained by placing a limit on the

weight vector’s norm [80]:
min s"Rs
subject to: s%h; =1 and ss <2 (5.52)

where [ is the bound on the norni. Setting the Lagfangian and taking the gradient with

respect to the conjugate of the weight vector yields
Rs, + mhy + 78, = 0 (5.53)

where 7; and 7, are the Lagrange multipliers corresponding to the equality and inequality
constraints, respectively. If 77, = 0, the usual minimum variance solution results. If 7y # 0,

the solution is obtained by
So = —1h (R+11) "Iy (5.54)

Note that the multipliers do not have the same values in this solution. However, we can
develop a suboptimal solution by adding a fixed identity matrix to the correlation matrix.
Adding an identity matrix so as to desensitize an algorithm to errors is known as diagonal
loading in array processing [81]. The GSC with diagonal loading can be recast for the robust

adaptive algorithm:

min (s, — Bs,)” (R + n.I)(s, — Bs,) (5.55)

Sa
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The robust formulation for GSC requires modification of the dynamic equation for the adap-

tive weight vector:
so(i+1) = (I—1B"B)s, (i) + pz*(i)xp(i) (5.56)

where z(i) = is the estimation error between the output of upper GSC branch and that of the
lower branch, and xp(i) is the input data vector after the SOI is blocked by the designated
blocking matrix B.

An alternative robust algorithm for GSC is suggested that does not require specifying
the 1y value explicitly. Usually 7, is not known beforehand, and the norm constraint applies
only to the adaptive weight vector. Because the component terms are orthogonal, the norm

constraint ||s||> < 52 becomes
IBsall” < 57 — llscl” (5.57)

To obtain a robust algorithm, we force this' weight vector to satisfy its norm constraint at
each update. |

The robust formulation of the GSC receiverfis depicted in Table 5.3, which is based on
a norm constraint placed on the weightyvector. ‘Robust‘ness constraints limit the maximum
value of the overall weight vector norm. Since the fixed weight at the upper branch does not

change, only the norm of the adaptive weight vector need be limited.

5.4.3 ST Separate Adaptive GSC Single-User Receivers

A potential problem with the single constraint approach to ST joint adaptive methods
is the error in estimating the ST CSV h, in the adaptive algorithm. This problem may be
due to the difficulty in finding the multipath AOA’s in a multipath environment or other
types of distortion [51]. To alleviate this problem, spatial and temporal filtering could be
processed separately. In the time domain, an extended set of constraints, Cs; = f;, can
be used for multipath environments at the dth antenna element [23], where §, is the weight
vector, and f; is the channel parameter vector. Then, an adaptive method can be used to
track the principal components for maximum ratio combining in both the space and time

domain.
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Firstly, we solve the multiply constrained optimization problem at the dth antenna, for a
specified f; as the channel parameter vector of the SOI. The solution can be obtained using

Lagrange multipliers as:

540 = Ry, C1(CIRy, C) ', (5.58)
where Ry ,, = E {x(d)(i)x{é)(i)}, C; is the multipath signature matrix of user 1 defined in

(2.11). The minimum output variance is

Jmin = 8 ,Rux 840 = £ (CT Ry C)7 ', (5.59)

X(d)

In [23], a scheme is proposed to optimize the unknown vector f; by maximizing Jy,, that is,
by maximizing the energy of the signal component after the interference has been suppressed.

The Lagrangian associated with this problem equals
J =8 Ry, 8a + N (C'8q — £4) + 8] C1 — £]) A4 (5.60)

where A, is the Lagrange multiplier corresponding.to Gonstraints for a specified GSC weights,

S4, at the dth antenna element. Theng-two update equations for s, and f; can be formed as
§d(i + 1) = gd(l) - /LSV§2J ‘ (561)
fd(Z + 1) = fd(Z) + ,U,foJJ (562)

where 15 and pip are stepsize of the LMS algorithm. The algorithm will adaptively minimize
J with respect to §; and maximize .JJ with respect to f;. Since a change in the norm of
f,(7) does not affects the performance of the receiver §,4(i), we may project Vg-.J onto the

subspace orthogonal to f;(i), to obtain the following equation for updating f;:

In order to guarantee the constraint ||f4(i + 1)|| = 1 at each iteration, we need to normalize

fy(i + 1). Then, by using Equations (5.60), (5.61) and (5.63), the two update eauations

become

Sali+1) = 84(i) — pta (Ruxy8a(i) + Crha(i) ) (5.64)
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i+ 1) = 160 = o (1= G 0,0 (5.65)

The Lagrange multiplier \4(7) is again obtained by enforcing the constraint C§,(i + 1) =
f;(7), and the result is

M) = == (1) (C54() = 1.0 R () = (1) (5.66)

By substituting (5.66) into (5.64) and (5.65), we obtain the recursions:

Sa(i + 1) = P&, (84(1) — 1R 8a(i)) + €1 (CFCy) ™ £a(i) (5.67)

£i(i+1) = fd(i)+% (1 %) (CFC) " (1, CY Ry, 8a(i) — Cl'8a(i)) (5.68)
where

P, =1-C, (cfc)  cf (5.69)

And the instantaneous approximation is given by
Ry, (i) = aaR,) (0 — 1) + (£~ aa) X (0)x{a) (1) = (5.70)

where a4, 0 < ay < 1, is the smoothing tfactor. ‘
The filtered output z4(7) of the adaptive multiply constrained filter at the dth antenna

element is given by
(i) = 81 (1)) (1) (5.71)

The outputs of the GSC filter at all antenna elements are concatenated together to obtain
z(i) = [21(),...,zp(i)]", which is similar to (5.25). Finally, the principal eigenvector of
the autocorrelation matrix of z(i) is estimated to obtain the weight vector of the maximal
ratio combiner. The PAST subspace tracking can again be used to track the eigenvector e,
associated with the corresponding maximum eigenvalue \,,,, of the autocorrelation matrix

of z(i). The overall adaptive algorithm is summarized in Table 5.2.
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5.4.4 Blind Adaptive Beamspace-Time GSC Receivers

In addition to using adaptive GSC algorithms in the time domain, we can also use them
in the space domain for beamforming. For BT sectored CDMA systems, the entire field-
of-view is divided into several working sectors, the AOA of the SOI is roughly estimated,
and adaptive beamforming is performed accordingly with the LCMYV criterion [55]. In this
case, the LCMV beamformers can be operated in an adaptive fashion using the algorithms
described previously. The details of proposed adaptive algorithms for BT receivers was

presented already in Chapter 4.

5.5 Simulation Results

In this Chapter, we have presented various types of adaptive ST 2-D RAKE receivers.
In this section, we will illustrate the performance of these receivers by simulation results.
Again, a uniform linear array (ULA) with omni-diréctional elements is employed. The array
consists of D identical elements uniformly spaced by‘a 1/ V/3 wavelength, and is used for
the field-of-view [—60°, 60°], whichzrepresents-the effective angular region of operation for a

linear array. We define the output SINR'SINR, (in dB) as a performance index:

total power of SOI’s

SINR, =101
? ©810 total power of interference plus noise

The input SNR (in dB) is defined as SNR; = 10log, % The NFR (in dB) is defined as
the ratio of the MAI power to signal power before despreading and beamforming as NFR =
101ogy, Z—%, where 0 = 03 = -+ = 0% for k = 1,---, K. Major simulation parameters
include: N = 31 Gold code, L = 4 fingers, D = 8 antenna elements, SNR;, = 0 dB and NFR
= 10 dB. We use N, = 500 symbols for training and estimation of correlation matrices. A
total of 100 Monte-Carlo runs are done for each simulation. Unless otherwise mentioned,
the above standard parameters will be used throughout the section.

In the first case, we evaluate the adaptive SIC and PIC receivers for different user numbers
K =5 and K = 20 with 3 stages iteration. The simulation results are based on three stages

of cancellation for each user. For comparison, the BER performances of the CST-RAKE

receiver and single user bound are included. The BER performacnes versus input SINR are
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shown in Figure 5.1. As we can see in the figure, a significant performance improvement
is provided by SIC or PIC receivers as compared to the conventional CST-RAKE receiver.
Comparing the performance of SIC and PIC, it is found that for low input SNR, PIC offers
slightly better performance while SIC has a steeper descent in BER at moderate to high
input SNR.

In the second case, we demonstrate the effectiveness of recursive algorithms for weight vec-
tor adaptation. We replaced the direct matrix inversion computation by the corresponding
adaptive algorithms. Figure 5.2(a) shows the output SINR of the adaptive implementation
of adaptive implementation of MST-RAKE and GSC single-user receivers, with KX = 5 and
D =1 as a function of the number of symbols Ny for each of the following algorithms: RLS,
LMS with training signals, and blind GSC. The simulation results show that the RLS algo-
rithm converges much faster than the LMS algorithm. Specifically, the RLS converges in ap-
proximately 150 symbols, while the LMS requires about 500 symbols to converge within 95%
of the steady-state output SINR. Since,the GSC'is blind, it need more symbols (about 600)
to converge to within 95% of the steady-state of output SINR. In order to demonstrate the
tracking capability of these algorithms, the ;ﬁultipath fading gains are deliberately changed
at the 500th symbol. The resulting‘ learning-curves shé)wn in Figure 5.2(b) show that the
blind GSC algorithm converges in about:.350 symbols, successfully adjusting the weights to

adapt to the environment changes as well as the training based RLS and LMS algorithms.

5.6 Summary

In this Chapter, various adaptive receivers were introduced for practical implementation
of CDMA receivers. The adaptive algorithms were implemented in a recursive form, using
popular methods such as LMS and RLS. In particular, adaptive realization was presented for
the proposed GSC algorithms. Moreover, robust methods were suggested for the adaptive
GSC receivers that is shown to significantly improve system performance in the presence
of signature errors. Finally, the maximal ratio combiner was also realized with an adaptive
algorithm for tracking the principal component of the corresponding correlation matrix. The

presented adaptive algorithms represent a collection of feasible ways of realizing advanced
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CDMA receivers, and deserve further investigations in future research.
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Table 5.1: Blind adaptive GSC algorithm for multiuser detection

1. Initialize the principal eigenvector f(0), eigenvalues A.(0) and adaptive

weights Sq.4(0).

2. Initialize coefficient p of LMS and forgetting factor o of PAST.

3. Fori=1,2,... (Do iterative step 4, 5).

4. For d =1 to D (Do LMS algorithm in parallel at all antenna elements).

(a) Calculate the correlator outputs at the dth antenna element.
74(0) = (Sae — BSaali)) " x(a) (1)
(b) updating S (i)

Saali +1) = Sa.li) o pB X (0)z)]

5. Use PAST to track principal gigenveetor and eigenvalue and do maximum

ratio combining.

(a) Calculate the maximal ratio combiner output.
2o(1) = £ (i — 1)Z(i)

(b) Get the estimate of by (i) by (i) = z,(i)

(c) Updates principal eigenvalue.
Ae(i) = aAe(i = 1) + |z (1)

(d) Updates principle eigenvector.

£(0) = £(0 = 1) + [2()) = £(i = 1) zo()] 20(0)"/Ae (1)
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Table 5.2: Adaptive GSC algorithm for single-user detection

1. Initialize coefficient 1 and weight vector s,

2. Fori=1,2,..., compute

xp(i) = B"x(i)

ze(i) = hi'x(i)

Table 5.3: Robust-adaptive blind adaptive GSC algorithm

1. Initialize coefficients u, 55 and ‘weights s,(0)
2. Defined §,(7) = Bs, (i)

3. Fori=1,2,...

Va(i) = 84(1) + p2" (1)Bxp(i)
%u+n{“@ VeI < 82— el

2 val(i (12 2
VB = s lP i va () > B2 — [lsc]
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Table 5.4: Blind adaptive GSC algorithm with min/max algorithm

RANEE R

Initialize weights §4(0), £4(0), stepsize ps, pf, and smoothing factor ay
-1

Calculate P&, =1-C, (C'C,)  C¥f

Initialize forgetting factor oy, of PAST.

For i =1,2,... (Do iterative step 4, 5).

For d =1 to D (Do min/max algorithm in parallel at all antennas).
Rx(d)(i) = Otpr(d)(i o 1) + (1 o )X(d ('L) ( )
~ . ~ . 1 .
Sa(i+1) = Pg, (8a(i) — 1aRu, 8a(i)) + C1 (CF'C1)  £u(d)
)
)

Fi(i+1) = f(i) + 2L ([ () EZ

a

£(i) = £(i = 1) + [2(0) — £(i — 1)20(0)] 20(i)"/ Ae(4)
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Figure 5.1: Probability of bit error versus input SNR for SIC, PIC and CST-RAKE receiver
with NFR = 0 dB, (a) K =5 and (b) K= 20.
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Chapter 6

Implementation Issues and

Performance Enhancement

In previous chapters, we have proposed space-time multiuser and single-user receivers.
It has been demonstrated that these.receivers provide substantial performance gains over
detection techniques conventionallyused in multiple access channels. However, the platform
imposes computational and power constraints which led to hard implementation. To facili-
tate real-time implementation, it is"necessary to-alleviate the computational load, to adapt
to mobile environments, to avoid system instability, and to reduce the performance degra-
dation due to finite data samples. In this chapter, we will focus on some implementation

issues and learn how to enhance the system performance.

6.1 Numerical Stability

For the direct matrix inversion implementation, the computation of temporal and spatial
weight vectors for GSC or MOE algorithms all involve the inversion of correlation matrices of
temporal or spatial data inputs. Numerically instability may arise when there are few strong
interferers, led to ill-conditioned correlation matrices. On the other hand, the convergence
of weight vectors may be slow due to the residual signal not completely removed by the
blocking matrices. To remedy these, a pseudo noise term n,I or n,I, where n, and 7, are

constants, can be added to temporal or spatial correlation matrices, respectively, to alleviate
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the sensitivity problems [21, 34, 91]. The pseudo noise has the effect of deemphasizing the
strong interference and masking the residual signal, and helps improve signal reception [82].
To make it clearer, we evaluate the output power of the MVDR receiver as a study case.

From (3.50), the MVDR output power has the form:

1

P=—
sR™'s

(6.1)

where s is the weight vector, and R is the correlation matrix of the input data vector. The

correlation matrix can be rewritten as

R = EAE” (6.2)
where A = diag[A1,..., A, E = [e1,...,en], and Aq, ..., Ay are the eigenvalues of R,
e, ...,epn are the corresponding eigenvectors. It is assumed the rank of R is M.

Using the matrix inversion lemma with a scaling factor 1/, it can be shown that

M

e I \ (6.3)
i=1 i ‘

where 1/, is the smallest eigenvector of the inverse ¢orrelation matrix. Then the output

power can now be evaluated as follows:

1 1
"SR s (6-4)

F M A 2
SHS _ Z 'L_Aimzn |SHe1|
=1

Inspection of the right-hand side of (6.4) shows that each eigenvalue contributes to the output
with the proportional factor (A; — Ayin). In the case of infinite samples, every eigenvalue in
the noise subspace is equal to A,,;,, thus the noise subspace makes no contribution to the
output power. In the finite samples case, the noise subspace eigenvalues are spread out, i.e.,
Ag+1 > Ag1 > ... > Apin, assuming ¢ is the dimension of the signal subspace. In this case,
(Ai — Amin) /[ Amin # 0, hence the noise subspace corrupts the output.

The consequence of adding the pseudo noise term 7n,I or 7,I to the temporal or spatial
correlation matrix has the effect of reducing the (\; — Anin)/Amin term, thus reducing the
effect of the noise subspace on the output. If the eigenvalues of signal subspace are much
larger than the loading level, the signal subspace’s contribution to the output is minimal.

The pseudo noise term should be chosen large enough to handle the ill-conditioned problem,
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but not too large to distort the original signal scenario. A suitable choice which is proved
effective is that n,I or 7,I equals a small fraction (e.g. 0.1 ~ 0.3) of the dominant signal
power in the correlation matrix of the temporal and spatial data vector, respectively [82].
In practice, a convenient estimate of the dominant signal power is the largest eigenvalue of

the corresponding correlation matrices.

6.2 Partially Adaptive Implementation

Partially adaptive filter only uses a portion of the degree of freedom available in the
weight adaptation process [40, 55]. It speeds the convergence and improves the transient
performance of the filtering process. Unfortunately, reducing the adaptive degree of freedom
leads to poorer interference cancellation capability. As a consequence, a primary concern in
the design of partially adaptive filter is to minimize the performance degradation due to a
reduced degree of freedom [53]. To construct the. partially adaptive filter, we introduce a
rank-reducing transformation U. The transformation can be done on the input data vector
or the blocking matrix, if the GSC scheme is to be employed [92]. Two techniques of partially
adaptive filtering are noted: (1) method.1: reduced—sizé input data (RZ-ID), (2) method 2:
reduced-size blocking matrix of GSC/(RZ-BM). The diagrams of RZ-ID and RZ-BM are
shown in Figure 6.1(a) and 6.1(b), respectively.

6.2.1 Method 1: Reduced-Size Input Data

To reduce the number of adaptive filter taps, we introduce a rank-reducing transformation
matrix U of size P x P', where P is the tap number of full adaptation and P’ is tap number
of partial adaptation. For the cases of the adaptive correlators mentioned in the previous
chapters, the tap number of a fully adaptive filter is P = N 4+ L — 1, and P’ is chosen to
be P’ < N — 1. The received input data vector is pre-multiplied by U, which produces an
P'-dim vector. We will always assume U to be full rank.

We denote the reduced-dimension received data vector as x,(i) = Ux(i). Here x(i)
could be x._gr or X._pr, if the partially adaptive algorithm is employed in the time domain.

The reduced-dimension MMSE receiver vector s, is found as the solution to the Wiener-Hopf
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quation Ry, s, = r,, where Ry, = F{x,(i)x,(:)} and r, = E{x,(7)b;(i)}. Then the error

probability from (3.54) is given by

po ! 5 (2(7z§5UHﬁb}) 65

28t be{—1,1}K-1 by =—1 On (SEUHUSu)l/Q

where H = [hy, hy, ... hg], hy is the cascade Pre-ST or Pre-BT CSV of user &, and b is the

transmitted data symbol sequence of all but the desired user.

Optimum Dimension Reduction

The optimum transformation is defined as the transformation that conserves the error prob-
ability, i.e., the transformation U for which the MMSE receiver based on the reduced-size
input data vector Ux(i) has the same error probability as the MMSE receiver based on
original input data vector x(7). In [39], it was proved that, if U is such that R{H} C R{U},
R{-} means range of {-}, and U”U = Ip, the MMSE receiver with reduced-size transforma-
tion U will have the same probability as the MMSE receiver without dimension reduction.

The optimum dimension reduction. is not unique and-requires knowledge of the subspace

R{H}.

Eigenvector Identification

The signal space is spanned by the CSVs of active users, i.e, the column vectors of H.
It is assumed that the columns of E, are the eigenvectors corresponding to the P’ largest
eigenvalues of the autocorrelation matrix R = E{x(¢)x"(i)}. It is easy to understand that
R{H} = R{E,}. The optimal selection of the reduced-size transformation is to satisfy the
condition U = E, [92]. An estimate E, is found from the EVD of the sample correlation

matrix R
x(i)x" (i) = E,AE, + E,A,E, (6.6)

The matrix U = E; is called the eigenvector reduced-size transformation.
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Cyclically Shifted Filter Bank (CFSB)

In [15, 94], the columns of U are found as a bank of P’ matched filters, where each fil-
ter is matched to the multipath signature sequences of desired user cyclically shifted with
A = P/P’ steps. We assume for convenience, that A is integer. The CFSB reduced-size
transformation is U = [y, clA’l, e cﬁ/*lm] when the /th finger of adaptive correlators are

being processed, where cf’l denotes ¢y, cyclically shifted A by steps.

Symmetrically Dimension Reduction (SDR)

The SDR transformation forms the elements of the reduced received vector as partial sums

of the matched filter output. The reduced-size transformation U is found as

U= [Cl,l{o:Aq}’ Clilfnon_13r- "1 clal{(P’—l)A:P}] (6'7)
for the [th finger, where the partially despread vector is given by
: T T
Clipagsnay = [0:- -0, cLl KA (kEMA—H",0,...,0] (6.8)

where Cliga erna_y 15 P-dim vector with nonzero values of entries only within the region

{kA, (k +1)A — 1},

6.2.2 Method 2: Reduced-Size Blocking Matrix

The reduced-size transformation U, being a full column rank matrix, can be incorporated
with the blocking matrix B, resulting in a new equivalent GSC structure. The GSC weight

vector can be written as
s =s. — BUs, (6.9)

where s, is the nonadaptive weight vector, which can be a signature sequence in the time
domain, or a steering vector in the space domain, and s, is the associated adaptive weight

vector. The vector s, is found as the solution to the unconstrained optimization problem:

min (s, — BUs,)”R(s. — BUs,) (6.10)

Sa
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This minimization results in

s, = (U"B"RBU) ' U”B"Rs, (6.11)
Using (6.9) and (6.10), the overall GSC weight vector is then given by

s= (I-BU(U"B"RBU)"'U"B"R)s, (6.12)
It can be shown that the output SINR is given by

SINR, = (s/'Rs, — s/’ RBU(UHBHRBU)—1UHBHRSC)*1 (6.13)

There are a variety of criteria for choosing the reduced-size transformation matrix U for the

reduced-size GSC. We will discuss these criteria in the following.

Maximum Output SINR

In this criterion, the goal is to maximizeithe éutput SINR in (6.13). Since the first term
s/'Rs, is fixed, the minimization is achieved bymaximizing the latter term. The cost function

is obtained as
Jyse = sSTRBU(UPBPRBU)- LU”B¥RS] (6.14)

For a given reduced-size P', one way the .J ;. may be optimized is to choose a transformation

matrix U satisfying
BU =E; (6.15)

where E; consists of the P’ principal eigenvectors of R. The U can be obtained by solving
the least squares problem in (6.15). It is easy to show that with this optimal choice of U,
the optimal output SINR is given by
SINR, = (s/Rs, — s'E,A,Es.)
= (s"E.AEls) (6.16)

where R = E,AE; + E,AE, and E, consists of the other eigenvectors of R with the

smallest eigenvalue.
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To avoid the complexity of solving a least squares problem, let the matrix U be restricted
to consist of P’ of the P eigenvectors of R, = BYRB, where R, = E,A,Ef + E,A,EX,
and rank{E,} = P’. A natural choice would be let the reduced-size transformation consist

of the P’ principal eigenvectors of R, i.e., U = E;.

Cross Spectral Metric (CSM)

For a known covariance matrix R and a given reduced-size dimension P’, the optimal ap-
proach that maximizes the output SINR is suggested in [38, 95], in which U is constructed
from the P’ eigenvectors of R, = BYRB that maximizes the quantity:

|lefBRs,|

6.17
: (6.17)
where €; and ); are, respectively, eigenvectors and eigenvalues of R,. This method is referred

as the cross spectral metric (CSM) method.

Unitary Transformation

Since the motivation for reducing the rank of adaptive problems is to decrease the overall
computational complexity, it does not seem appropriate to perform an EVD on the lower
branch of correlation matrix. In this regard, other unitary transformations should be used
in place of EVD. The appropriate transformation to use depends on the nature of the lower
branch. For example, the discrete cosine transformation (DCT) is well known to approximate
the EVD for correlated data when the amount of data approaches infinity [96]. The DCT
matrix will therefore be used as a substitute for the eigenfilters in (6.17). For DCT reduced-
size transformation matrix, U is defined to be those P’ columns of the DCT matrix Q which

maximize the following metric:

q’B7Rs.
max ——— (6.18)

1 Og;

1

2
qZHBHx‘ is the associated filter

where q; is the ith column of the DCT matrix Q and o,, =
output.
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6.3 Partially Adaptive Implementation for Multiuser
Scenario

In previous chapters, we have introduced a set of adaptive correlators to perform de-
spreading and MAI’s suppression. They are realized in the form of GSC, and require no
pilot symbols assisted channel estimation. As described in the previous sections, the par-
tially adaptive methods work with a reduced-dimension P’ adaptive weights through the
use of a P x P’ linear transformation U. In the case of adaptive correlators based on
the modified GSC techniques as in the proposed receivers, the blocking matrix B, of size
(N+L—1)x(N—1)is modified into a smaller one of size (N+L—1) x P’, where P’ < (N—1).
The criteria for the selection of U include: (1) P’ should be as small as possible (2) MAI
should be retained as much as possible in the lower branch. Criterion (1) is for complexity
reduction and (2) is for optimal mutual cancellation of MAT in the upper and lower branches
of GSC schemes in [97].

To develop the partially adaptive GSC for multiuser scenarios, we rewrite the MMSE

criterion as

min E {‘cflx(i) — ngfo(z)‘} = HRI/QBCgl ~R'Y?cy, (6.19)

2
i |

Note from (6.19) that the optimal GSC weight vector g; is the one lying in the subspace
R {Rl/QBC} that is closest to R'/2¢;;. In other words, R'/2B,g; should be in the direction
that exhibits maximum “correlation” with R!/2¢;;. It is therefore desired that the blocking
matrix B, be chosen such that the crosscorrelation of the upper and the lower branch outputs,

p = ‘cflRBcgl , is large. Since BC; = 0, the only way to maximize p is to retain as

much MAI as possible. Therefore, an essential criterion for choosing a reduced-size blocking
matrix for implementation is such that the upper and the lower branch outputs of the GSC
have a large crosscorrelation [97]. Since the lower branch contains no signal, the only way to
maximize the crosscorrelation is to retain as much MAI as possible. By doing so, a maximum
mutual cancellation of interference can be achieved between the upper and lower branch.
Based on criterion (2), a simple partially adaptive scheme is suggested for a multiuser

scenario in which P’ MAT’s are present in the system, and their composite signature vector’s
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can be obtained by pilot symbols assisted channel estimation. From (3.24), the estimated
(N+L—1) x1CSV of user k can be expressed as

A L

h, = ; Qg 1C g (6.20)
for k = 2,..., K, where &y, is the channel gain estimate at the /th finger. Given these
CSV estimates, a reduced-size blocking matrix Bp: retaining the maximum MAI can be

constructed by projecting onto the column space of B, the set of vectors {flk}:
Bp = BB/ [hy- - hy] (6.21)

where we assume orthonormal columns of B, such that Bch = I. So the linear transfor-

mation U following B, is
U =B/ [hy - hy] (6.22)

Simple algebra shows that Bp: is an (N#tLi#=1) x (K — 1) matrix, the reduced-size P’
equals to the number of interferers, . which, removes fhe signal and retains as much MAI as
possible in the sense of maximum crosscorrelation. Partially adaptative realization via (6.21)
is simple and proves robust to errors in MAI’chhannel‘ estimates. In particular, errors in
h,’s tend to decrease the crosscorrelation between the upper and lower branches, and results
in only slight performance degradation. When viewed as a multiuser detector, the partially
adaptive receiver is much more robust than the conventional ones, which detect and subtract
the MAI [98]. In conventional multiuser interference cancellers, a small error in the MAT’s
channel estimate can result in an enhanced MAI power and possible error propagation.
Note that Bp: can be regarded as the “smallest” blocking matrix with the number of
columns (degree of freedom for MAT suppression) equal to the number of detected MAI. If
the partially adaptive receiver performs (K —1)-dim processing, where K < N, then at most
K — 1 MAT’s can be suppressed. By doing so, the GSC can concentrate on those dominant
MAT’s with the smallest possible degree of freedom, leading to lower complexity and better

convergence.
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6.4 Iterative Maximum SINR Receiver via Decision
Aided Signal Reconstruction

The GSC correlators are a variation of the LCMV combiner and share the same char-
acteristics of the latter, e.g., good interference cancellation and poor convergence. By poor
convergence is meant that there is usually a certain performance degradation due to finite
data samples. In [40], an analysis of the LCMV beamformer reveals that the main cause of
its poor convergence is the presence of a non-zero crosscorrelation between the signal and
interference-plus-noise due to finite samples. The crosscorrelation term induces a perturba-
tion on the beamformer weight vector, which in turn cause a drop in output SINR. With
the increase of data sample size, this crosscorrelation gradually vanished and the LCMV
beamformer approaches the optimal MSINR correlator. The same statements apply to GSC
correlator’s. Define a general form of input data matrix X = [x(1),x(2), - -+, x(N,)] and let
X = X, + X,,, where X, is the input ddta mattix,due to the desired signal and X,,, is the
input data matrix due to the interferencesplus-noise. “Then, the sample correlation matrix
can be estimated via input data samples. Fora total;of N, samples, the autocorrelation

matrix is given by

N 1 -
R = —XX7
N
1, L L L
- F( X+ XX+ X, X+ X, X1
= R,+Ri,+ R, (6.23)

where R,, R;, and R,;, are the sample signal correlation matrix, interference-plus-noise
correlation matrix, and crosscorrelation matrix between signal and interference-plus-noise,

respectively. Using the fact Bf].fls ~ 0, we have the optimal weights of GSC
si; = |- Bo(B/Ri;,B.) "' B/ Ry c1; — Bo(B/RinB.) ' B R, nc1, (6.24)

Note that the first term on the right-hand side of (6.24) represents the “optimal” maximum
SINR weight vector, and the second term represents the perturbation leading to poor conver-
gence [40]. A natural way to remedy this is then by removing the perturbation term, which

can be achieved by removing the desired signal component from the input data vector x(i)
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such that Rs,in = 0. This suggests an iterative procedure in which the signal is estimated,
reconstructed at the jth iteration, and subtracted from x(i) at the (j + 1)th iteration.
With the MAT is removed, channel estimation (&} ,;s) for the desired user can be done
accurately, leading to improved performance as compared to the conventional RAKE receiver.
However, the GSC is blind in nature and usually exhibits slow convergence due to the residual
signal effect. To remedy this, a decision aided scheme is introduced in which the signal is
estimated and then subtracted from the input data before the computation of optimal weight
vector of GSC scheme. First, assume that at the jth iteration, the received data x(i) is

available and despread into

x(i) (6.25)

where sg% is estimated by (6.24) using the “signal-substracted” data x( 7 as the GSC input:

s{) = [1- B.(B'RY/B,) 'B! Rgg] cyy (6.26)

m m

where RY) = E {X(J)(i)X(J) (i )} With y l ( i) avallable we can obtain the channel estimate

using a sequence of N, pilot symbdls:

, 1 M ‘ — ‘
afl == > v) ‘ (6.27)
Ny S
Using this channel estimate, the random phase of the /th finger output y%{l) is removed and

coherent RAKE combining is achieved by

L
=3 all uil ) (6:28)

=1

which is then sent to the data decision device:
o7 (i) = sign ({3 (i) }) (6.29)

Second, signal reconstruction is done by exploiting the channel estimate @ﬁ{}, the desired

user’s signature c;; and estimated data bit 139)(2) as follows:

29 () =0 (1) 3 a¥leny (6.30)

=1
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where %()(4) is the desired signal estimated at jth iteration. Note that a§{2’s are used for
both signal reconstruction and signal symbol detection. Finally, the reconstructed signal is

subtracted from the data sent to the (j + 1)th iteration, which yields

xT0 () = x(i) — &9 (4) (6.31)

m

(

By using Xiiﬂ)(i) as the GSC input, the adverse slow convergence can be effectively im-
proved, and the performance can be achieved nearly the optimal MMSE with a moderate
size of pilot symbols. Due to signal subtraction, the receiver will act like the optimal MSINR
receiver operating on R,,, which offers the best comprise between MAT plus noise suppres-
sion and signal reception. The above described procedure can be iterated several times, if
necessary, to gain further improvement. The overall scheme of iteration MSINR is depicted

in Figure 6.2.

Performance Analysis:

The output SINR at the jth is denoted.as SINR,: -

desired signal output power

SINR, = -
MAI + noise output power

~NH .
_ st Raspl (6.32)
DR W) '

S1, TinSy)

The corresponding BER can be calculated using the well known approximation [45]:

Per@Q (\/ SINRO) (6.33)

For the purpose of simplifying notation, the weight vector is denoted as s; = sgjl) without

reference to iteration and subscript. The optimal weight vector of the GSC receiver can be

expressed as
s = [I- B.(B/RB,)'B/'R| c1, (6.34)

where ¢y is the [th signature vector of user 1. The output power of GSC can be expressed

as

P,=s/'Rs, = c{{chu — cflRBc(Bf RB,)'BIRcy, (6.35)
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In the ideal case that the signal and noise are uncorrelated, R = R, + R;,, and BZR, = 0:
P, = c{|R,cyy (6.36)
and
Py = ¢{|Rinc1; — ¢ RinB.(B/R;,B,) "' B/ R;,cy (6.37)

Thus, the output SINR of GSC receiver can be expressed as

SINRpse = L5 — crRicy
@3¢ 7 Py clRicry — c[R;,B.(B7R;,B,)~'BIR,,cyy
1
- (6.38)
Ps

The equation of (6.38) and SINR of MOE are identical [21]. On the other hands, comparing
the output SINR of MOE with that of MMSE shows that they tend to be close to each other
at high SNR [21]:

The corresponding approximate BER 18 (6.33)
pGSC _ pMOE ., pMMSE (6.40)

For the output SINR of the MSINR receiver, the analysis of performance is the same as
the GSC receiver except that the desired signal is subtracted before going through the GSC

scheme.

6.5 Dynamic Sector Synthesis and Narrowband Inter-
ference Cancellation

In addition to multipath fading effects and MAI, a CDMA system can also be subject to
limiting factors such as narrowband interference (NBI). There are three basic types of NBI:
(1) tonal signals; (2) narrowband digital communication signals; (3) entropic narrowband

stochastic processes. Tonal signals are those which consist of sum of pure sinusoidal signals.
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These signals are useful for modeling tone jammers and other harmonic interference phenom-
ena. Narrowband digital communication signals generalize tonal signals to include digitally
modulated carriers. This leads to signals with nonzero-bandwidth components, and the dig-
ital signaling structure can be exploited to improve the NBI suppression capability. Less
structure can be assumed by modeling the NBI as entropic narrowband stochastic processes,
such as narrowband autoregressions.

Process in the area of NBI suppression for DS/CDMA system up until the late 1980s is
reviewed by [99]. The principle techniques of that era were frequency-domain and predictive
or interpolative techniques based on linear predictors/interpolators. In the past decade, there
have been a new techniques which make use of linear code-aided methods for suppression of
NBI both individually and jointly with MAI. However, the statistical characteristics of NBI
look like a nonstationary signal, except when the processing window is spanned over a long
enough observation interval [100]. This would be impractical for real-time implementation.
It is thus desirable to use an antenna array for suppressing the NBI since the spatial statistics
of NBI is relatively stationary in mostcases. Here we present a scheme in which a set of
diversity beams is constructed with NBI suppréssion capability, and we also present a way

of dynamic beam synthesis to adapt to the-traffic-of the system.

6.5.1 NBI Suppression by Diversity Beamformers

To suppress the NBI via an antenna array, we first estimate the AOA’s of the NBI. By
removing all the CDMA signals from the received signals and keeping the spatial signature
of NBI unchanged, we can estimate the AOA’s of the NBI accurately via well established
AOA estimation techniques. This can be done by despreading the received signal X(i) in
(3.25) with a specificallt designed signature vector s, which is obtained by

2
min HS”HCH
Sp

subject to: s,"s, =1 (6.41)

where C = [Cy, Cy, - - -, Ck] is the signature matrix of the active users, with Cy = [ct,1, k2, - -

being the kth users’ multipath signature matrix, as defined in (2.11). The solution to (6.41)
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is the minimum eigenvector, denoted as s, ,, of the correlation matrix R, = FE {CCH}. The

despread data vector is then obtained as

x, (i) = X (i)s* (6.42)

.0
We refer to s, , as the complemental despreading vector since it performs the complementary
despreading function of for CDMA signals. After complementary despreading, all CDMA
signals will be attenuated to a great extent, and the remaining components include only
NBI and noise. In this case, AOA estimation techniques can be employed on x,(i) to
locate the NBI. A promising technique for AOA estimation is based on Capon’s minimum
variance technique [21] which improves the poor resolution of classical methods and is less
complex than the subspace or maximum likelihood methods. This technique minimizes the
contribution of the undesired interference by minimizing the power while maintaining the

gain along the look direction to be unity. That is

min P =w" R,w
w

subject to: wHa(g) =1 ‘ (6.43)
where R, = F {Xp(i)xf(i)}. By using the’Lagrange multiplier technique, the solution to
(6.43) can be shown to be [21]

R, 'a(0)
0= L 6.44
Yo T ()R, 1a(0) (6.44)

Now the output spatial power spectrum of the beamformer as a function of the AOA is given

by

B 1
af(0)R,'a(0)

By computing the spectrum for § over the entire range of field-of-view, AOA’s of the NBI

P(6) (6.45)

can be estimated by locating the peaks in the spectrum.

6.5.2 Dynamic Sector Synthesis by Diversity Beamformers Selec-
tion

Cell sectorization has been widely proposed for improving system capacity in cellular

systems [101]. In a sectored system, every cell is divided into multiple sectors, and each
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sector is served by a dedicated antenna array. Through dynamic sector synthesis, the network
operator can customize the azimuth anglular coverage of each sector. This allows the operator
to balance the traffic loading across sectors, to manage handoff overhead, and to control the
interference. According to the distribution of users and strong NBI, the entire field-of-view is
divided into several dynamic sectors. Each dynamic sector is covered by a set of M diversity
beamformers with NBI suppressing constraints and each responsible for a subset of users.
These diversity beamformers suppress the NBI and enhance the SINR of a subset of CDMA
users in the associated dynamic sector denoted as ©,. Let 6,,, m = 1,..., M, be the set
of angles well representing ©, and denote as a,, = a(f,,). Assume that the AOA’s of NBI
have been estimated and denoted as qgn, n=1,...,N. In order to retain the CDMA signals
while rejecting the NBI, we consider the following multiply constrained minimum variance

problem:
%in WgQan
subject to: wia,, =1 ‘ (6.46)

~ ~ . 5 H ‘
where Q, = [a(¢1), e a(qﬁN)] [a(qﬁl), e a(dw)] is the spatial signature correlation ma-
trix of the NBI. The solution to (6.46) is given by

Q. 'an

Smo = ——— 6.47
o= e (6.47)
The beamforming matrix W = [wy 4, Wo,,- -+, Wa,| are applied to convert the space-time
data matrix X (i) with dimension D x (N + L—1) into beamspace-time data matrix Y (i)with

dimension M x (N + L — 1), such that

Y(’L) = [Wl,m W27O, e WM7O]H X(Z)
= WIX(5)
= [y@.y5 6, vh0] (6.48)

The vectors y,, (i), m = 1,..., M, are the chip-sampled data vectors at the mth beam. In
summary, the look angles are chosen such that the M beams cover a dynamic sector ©,, and
the dynamic sector is adapted to balance the traffic load, to reduce the handoff overhead,

and to control the interference, especially for strong NBI.

160



6.6 Simulation Results

Computer simulations are conducted to demonstrate the effectiveness of the schemes
developed in this chapter. The receiver output SINR is used as the evaluation index. Also,
the input SNR is defined as SNR; = 0% /02, and the near-far-ratio is defined as NFR = o7 /0%,
k = 2,...,K, where we assume equal power MAI for convenience. The path gains oy ;s
are assumed independent, identically distributed unit variance complex Gaussian random
variables, the path delays 7 ;’s are assumed uniform over {0, 37, }, and the number of fingers
of the receiver is L = 4. All CDMA signals are generated with BPSK data modulation and
Gold codes of length 31 are used as the spreading codes. For each simulation trial, N;
symbols (including data and pilot) are used to obtain the sample estimate of correlation
matrix and N, pilot symbols are used to obtain the &5{2 ’s. Unless otherwise mentioned,
the following standard parameters are assumed: K = 10, SNR; = 0 dB, NFR = 10 dB,
Ny = 500, N, = 50, the number of iterations, is JJ = 3, and the number of antenna element
D = 1. Each simulation result is obtained by 100.independent trials, with each trial using a
different set of ay,’s and data/noise sequence. |

In the first set of simulations, the superiority of the'robust GSC receiver, with diagonal
loading of 0.3 of the dominant eigenvalueof the corpelation matrix, is evaluated in the pres-
ence of modelling errors. For comparisomn, the non-robust receiver is also included. Without
loss of generality, it is assumed a single antenna element is used. Figure 6.3(a) shows the
output SINR for different numbers of symbols N,. The results show that the output SINR
curve of the non-robust GSC receiver is oscillated during startup. In Figure 6.3(b), modeling
errors are generated by adding a Gaussian random vector with the variance 1072 to the CSV
of the desired user. The simulaiton results show the output SINR of non-robust GSC is
worse than the robust GSC, as expected, due to its higher sensitivity to modeling errors.

In the second set of simulations, we compare the output SINR performance of different
reduced-dimension GSC receivers. The system capacity is evaluated with NFR = 10 dB
in Figure 6.4 for (a) P’ = 11 and (b) P’ = 21. In particular, GSCp, GSCp;, GSCpy
and GSCp3 respresent, respectively, the fully adaptive, multiuser partially adaptive receiver

described by (6.22), EVD based partially adaptive receiver described by (6.15), and unitary
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transformation partially adaptive receiver described by (6.18). For comparison, we also
include the results of the PST-RAKE receiver described by (3.49) and CST-RAKE receiver
in (3.60). As expected, the PST-RAKE receiver gives the best performance, and the fully
adaptive GSC receiver has nearly the same performance of the PST-RAKE for a wide range
of user number K. The conventional CST-RAKE receiver totally fails due to the lack of
interference suppression. Note that the partially adaptive receivers GSCp;, GSCpy and
GSCps degrade quickly with K > P’ due to the exhaustion of degree of freedom for MAT
suppression. For the user number K < P’, the performance of both the multiuser GSCp3
and EVD GSCp; partially adaptive receivers approaches the fully adaptive GSC receiver,
but the unitary transformation exhibits a larger performance loss compared to the other
two partially adaptive receivers. This is due to the approximation errors incurred with the
transformation.

In the third simulation, the output SINR performance of the proposed GSC receiver
versus the number of symbols is evaluated with K =5, P' =11 and NFR = 10 dB as a
function of iteration number J. Ingludedare the fully adaptive receiver GSCr, multiuser
partially adaptive receiver GSCpy ;and EVb based partially adaptive receiver GSCpy. For
channel estimation, N, = N,/10 pilof symbols-are-used. “ For the partially adaptive receivers,
true channel vectors are assumed for:the MAI, i.e.,‘ﬁk = hy, £k = 2,..., K. The results
in Figure 6.5 show that the proposed three receivers successively approach the optimal re-
ceiver after three iterations. After convergence, the two partially adaptive receivers have
almost the same performance of the fully adaptive receiver, confirming that the reduced-
dimension transformation in (6.21) retains the full interference suppression capability of the
fullly adaptive receiver.

The fourth simulation compares the convergence behaviors of the proposed receiver with
the MMSE and the proposed MSINR receivers described in Section 6.4. The proposed
receiver uses N, = N,/10 pilot symbols, and the MMSE receiver uses either N, = N,/10 or
N, = N; (full) pilot symbols. The MSINR receiver is considered as blind with N, = 0. The
results given in Figure 6.6 show that the proposed receiver with 1/10 pilot symbols converges
in about 200 data symbols and is only 1 dB away from the full pilot MMSE receiver. On
the other hand, the MMSE receiver using full pilot symbols offers the best performance, but
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degrades significantly if only 1/10 pilot symbols are available. The reasons for the significant
discrepancy between the proposed and MMSE receivers with a low pilot symbol ratio is that
the proposed receiver cancels the MAT before channel estimation whereas the MMSE receiver
estimates the channel in the presence of strong MAI. The MSINR receiver is better than the
MMSE receiver with 1/10 pilot symbols for a small Nj, but is inferior to the proposed receiver
by about 9 dB. Although the MSINR receiver is known to approach the MMSE receiver under
good conditions such as high SNR and moderate multipath fading and MAI, it is unable
to maintain the same performance under the severe conditions assumed in the simulation.
A close investigation of the simulation results reveals that the MOE receiver successfully
cancels the MAI, but gives a low gain for the desired signal due to channel mismatch. Note
that pilot symbols can be used for the MSINR receiver to obtain the channel phase, but this
does not make any difference to its output SINR performance.

In the final simulation, we consider the complementary despreading technique for dynamic
sector synthesis and NBI suppression. .In this case, an antenna array of D = 9 elements is
used. In addition to the MAI, thereg-are two equal power BPSK NBI arriving from 30° and
—45°, with bit rate being 0.8 times that of the CDMA signal. The NBI-to-signal ratio (NSR),
which is the ratio of the NBI power.to SOl-pewer beforé spreading, is 20 dB. To demostrate
the efficacy of complementary spreading:and AOA estimation of NBI, the spatial spectrum
is computed for the field-of-view [—60°,60°] and plotted in Figure 6.7. The peak in the plot
gives the AOA estimates of the NBI which is close to the real AOA’s of the two NBI's. M =7
diversity beams are then formed at look directions {—35°,—20°, —10°,0°,15°, 45° 55°} to
cover the field-of-view, skipping the NBI purposedly. In Figure 6.8, the patterns of diversity
beams are plotted for the case K = 5 users and NFR = 0 dB. The mainlobes and deep nulls
confirm that the diversity beamformer can indeed effectively collect the SOI and suppress

the strong NBI.

6.7 Summary

In this chapter, solutions have been proposed to (1) facilitate real-time implementation

for CDMA receivers (2) avoid system unstability (3) speed up convergence, and reduce per-
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formance degradation due to finite data samples. For low-complexity implementation, a
partially adaptive realization of the GSC matched filters based on multiuser information is
presented as an alternative to conventional multiuser receivers. This method is shown to be
robust to multiuser estimation errors, and offer nearly the same performance of fully adaptive
methods. For system stability, a simple yet effective dagonal loading method is suggested
which offer significant improvement especially when a few strong signals are present. For
better convergence behaviors of the GSC based receivers, an iterative maximum SINR re-
ceiver based on the decision aided scheme is proposed. In this scheme, the signal waveform is
first constructed, and then subtracted from the input data sent to the next iteration. With
signal subtraction, the proposed GSC CDMA receivers can achieve nearly the performance
of ideal MSINR receiver within a few iterations.

A major issue in spread spectrum communications is the NBI. The NBI acts like a non-
stationary signal for temporal processing, and requires a large degree of freedom for effective
suppression. An effective remedy for NBI'is through the use of antenna array processing to
suppress the NBI in the spatial domain.; This is because that the NBI is relatively stationary
in the space domain. We introduce a new ‘m‘eth‘od in which a complementary despreading
scheme is employed to remove the GDMA signals-first, and the AOA of NBI is estimated. By
using a set of diversity beamformers with null constraints set at the estimated NBI AOA’s,
a dynamic sector is synthesized. With dyhamic sector synthesis, the network operator can
customize azimuth angular region partition. This allows the operator to balance the traffic
loading across sctors, to manage handoff overhead, and to control the interference in the

sector.
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Figure 6.1: Structures of partially adaptive methods for (a) RZ-ID (b) RZ-BM.
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Chapter 7

Conclusions

7.1 Summary of Thesis

Advanced space-time 2-D RAKEeceivers capable of suppressing MAI and NBI in CDMA
systems and operating in frequency selective fading channels were considered in this thesis.
The introductory Chapter included:a literature-review related to the topics under consider-
ation. In Chapter 2, the DS/CDMA ‘system model has been introduced. As a motivation
for the rest of the thesis, some of the weak points of conventional RAKE receivers have been
pointed out. And, as condidate techniques for increasing the system capacity and enhancing
near-far resistance, the multiuser detection and linear single user detection techniques have
been derived. In order to compare the performance of various forms of CDMA detectors,
three performance measures were defined.

One advanced approach to improving signal processing is the space-time processing, which
operates simultaneously on multiple antennas and multiple taps. In Chapter 3, we have
developed various models of space-time 2-D RAKE receivers, including Post-ST, Post-BT,
Pre-ST and Pre-BT 2-D RAKE receivers. In addition to various linear space-time multiuser
detectors, the parallel interference cancellation (PIC) and successive interference cancellation
(SIC) CDMA receivers also have been discussed in the Chapter. A blind space-time CDMA

receiver based on the GSC technique has been introduced. To avoid signal cancellation, we
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have proposed a novel method for constructing the blocking matrix in the lower branch of
the GSC. For spatial processing, we removed the desired signal coming from the working
sector in the lower branch of the spatial GSC by judiciously designing the spatial blocking
matrix. And for temporal processing, we removed the signal coming within the delay spread
in the lower branch of the temporal GSC by judiciously designing the temporal blocking
matrix. The simulation results have shown that the performance of the proposed CDMA
receiver approached the performance of the MMSE receiver.

Chapter 4 proposed three novel beamspace-time 2-D RAKE receivers for sectored CDMA
systems. In a sectored cellular system, the entire field-of-view is divided into several working
sectors, with each sector responsible for a distinctive set of users. With an antenna array
incorporated, sectorization can be done adaptively to meet two major requirements. First,
multiple beams are formed to collect multipath components of desired signal. Second, strong
MAT outside the sector is suppressed in the sidelobe of these beams. The outputs of the
beamformers are processed by a bank offadaptive correlators, which are formed by a set of
modified GSC to collect the multipath compeonents of desired signals and to suppress the in-
sector MAI. Adaptive implementation of theéé 2-D RAKE receivers has also been introduced
and simulation results presented to confirth their-effectiveness.

In Chapter 5, various types of adaptive CDMA receivers were introduced. The adaptive
algorithms can avoid matrix inversion for reduced complexity complexity, which is most effi-
cient especially repeated matrix inversion is necessary when the channel was nonstationary.
The adaptive algorithms were implemented in a sequential time-recursive fashion, such as the
popular LMS and RLS algorithms. The LMS algorithm has a low computational complexity
but can be slow in convergence. The RLS algorithm is faster in convergence, but needs
more computations at each iteration. We have also introduced a constrained LMS algorithm
for the GSC architecture. Moreover, we have proposed robust adaptive techniques that are
shown to substaintially improve the system performance with signature errors present. Fur-
thermore, the maximal ratio combining was also realized with an adaptive algorithm in order
to track the principal component eigenvector efficiently.

Miscellaneous implementation issues have been discussed in Chapter 6. The diagonal

loading method has been used to enhance the robustness of adaptive algorithms. Some
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partially adaptive methods have been introduced to increase the speed of convergence of
the receivers, without sacrificing their performance. In particular, a partially adaptive GSC
algorithm was proposed for multiuser scenarios. The criterion for partially adaptive GSC
was to keep the MAI on both the upper and lower branches and to remove the desired
signal on the lower branch. Simulation results showed that the performance of the proposed
partially adaptive receivers approached that of the the fully adaptive versions. Also, the
results showed that improved performance could be achieved via iterative adaptations. We
also found that an even more effective way to improve the GSC convergence and to maximize
the putput SINR is to remove the desired signal before doing GSC. An analysis of LCMV
beamformer revealed that the main cause of its poor convergence is the presence of a non-zero
crosscorrelation between the signal and interference-plus-noise due to finite samples. The
same statements apply to GSC receivers. This suggests an iterative procedure in which the
signal is estimated, reconstructed, and subtracted the signal from the next input signal of
GSC at the next iteration. The NBI acts like ahonstationary signals within the processing
window of the adaptive receiver, so it;isydesirable to use the antenna array to suppress
the NBI in the spatial domain sinee' the spldt‘ial‘feature‘ of the NBI is relatively stationary.
We have presented a diversity bearhforming scheme to suppress the NBI and a method of
dynamic sector synthesis for adapting:to the traffic of CDMA systems. The dynamic sector
synthesis technique can offer customized azimuthal coverage. This allows the operator to
balance the traffic loading across sectors, to manage handoff overhead, and to control the

interference.

7.2 Future Work

Although the research studies presented in this thesis have thoroughly discussed receiver
design on space-time processing for CDMA systems, there are several other topics which

remain to be addressed:

e Forward Link Processing
In general, the forward link of CDMA systems provides better performance than the

reverse link, because the interference observed at each mobile can be controlled in a
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much easier way. However, since the forward and reverse links use different frequency
bands and, therefore, the multipath vector channels for both links are quite different,
the basestation cannot use the receiver weights operating on the reverse link for the for-
ward link. Hence, forward link beamforming requires special treatment, and represents

an interesting and important research topic for further study.

Space-Time Coding

The performance analysis of the proposed CDMA receivers did not include the effects of
channel coding. To fully exploit the system capacity, we are interested in investigating
joint transmitter /receiver design by using effective space-time codes at the transmitter.
Extension of this performance analysis to include these effects will also be another

future research direction.

Long-Code Spreading Sequence

The thesis considered only DS/CDMA systems employing periodic (short) spreading
sequences. The case of aperiodic (long‘) spreading sequences should be studied as well.
We remark that in the presence 'of ape‘ri‘odi‘c spreading sequences, only the “chip-level”
channel can be considered time-inyariant, not the éymbol—level channel. In this case, a
different data model is neede for'the development of adaptive receivers. This represents

an issue of further research in the design of the of DS/CDMA systems.

Hardware Implementation

The implementation of practical space-time CDMA receivers is an area of ongoing
research. On one hand, one aims to improve the performance of receivers and to
increase the system capacity. On the other hand, one looks for easy implementations
in real world applications. With improved algorithm performance, there is typically a
cost in increased computational complexity. However, there are practical limitations
on current hardware technologies, such as linear amplifier and antenna calibration for
antenna array, the sampling rate and finite precision for analogue to digital converters
(ADCs) and implementation of adaptive algorithms with fixed-point DSP or FPGA. As
technology progresses, looking for more robust and high performance real-time receiver

architectures will continue to be a dynamic and interesting research field.
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