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Abstract

Process capability indices have been widely used in the manufacturing industry
and provided numerical measures on process performance. However, process
capability indices seem to be easy and straightforward to apply. That is because of
some assumption must be satisfied: the process under investigation is free from any
special or assignable cause, the process characteristic is normal distributed, and the
observations of quality characteristics are statistically independent. However, these
conditions are not always fulfilled in manymanufacturing situations. In real world,
process is always influenced by some assignable cause.

In addition, capability measure for processes with single characteristic has been
investigated extensively, but=capability” measure: for processes with multiple
characteristics is comparatively neglécted-In the thesis, the process capability
indices for multi-characteristics of one-sided process and the modified index C,,
for tool wear process are proposed. ' Two real-world examples from multiple
characteristics process and tool wear process respectively are taken to illustrate the
applications of the propose approaches.

For the first example, we used four bootstrap methods to estimating C;, and
compare the estimation precision of these methods. The results indicated that the
BCPB method has better performance based on estimation precision than others.
The table of the lower confidence bound values and sample sizes required for
specified precision of the estimation is provided for the practitioners.

For the second example, a procedure of capability measure with assignable
causes is developed, and the critical value for various values capability requirements
and sample size are provided. The proposed procedure is similar to those used in
monitoring a process with control chart, and used to monitor the process and decide
if the process should stop and replace the tool to avoid producing unacceptable
products.

Keywords: multiple quality characteristics, bootstrap, lower confidence bound, tool
wear, critical value.
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1. Introduction

1.1. Process Capability Indices

There are three basic means which is process yield; process expected loss and
process capability indices (PCIs) can be widely applied in measuring product
performance. Of the three, process capability indices are easily understood and can
be straightforwardly applied to the manufacturing industry, because process
capability indices establish the relationship between the actual process performance
and the manufacturing specifications. The relationship between the actual process
performance and the specification limits or tolerance may be quantified using
appropriate process capability indices. The larger process capability index implies
the higher process yield. Those capability indices quantifying process potential and
process performance are necessary to successful quality improvement activities and
quality program implementation. Several capability indices have been widely used
in manufacturing industry as follows:

c _USL-LSL
Y
_USL = _u—LSL
CPU - 30_ ) CPL L 30_ )
. JUSL =ty —LSL
Cor =m1n{ 35 3 ,

where USL and LSL are the upper.and-the lower specification limits, u 1is the
process mean, o is the process standard deviation. In the literature, many authors
have promoted the use of various process capability indices. Examples include
Kushler and Hurley (1992), Vannman and Kotz (1995), Kotz and Lovelace (1998),
Pearn and Shu (2003), and reference therein.

In practice process mean 4 and process variance o~ are unknown. In order
to calculate the estimator, however, data must be collected to calculate the index
value, and a great degree of uncertainty may be introduced into capability
assessments due to sampling errors.

1.2. Literature Review

The assessment of process capability appears to be easy and straightforward to
apply. That is because of some assumptions should be satisfied before those
capability indices are used. These conditions stipulate that the process under
investigation is free from any special or assignable causes (i.e., in-control), the
process characteristic is to follow normal distribution, and the observed values of
quality characteristics are statistically independent. In addition, capability measure
for processes with single characteristic has been investigated extensively, see Kane
(1986), Pearn et al. (1992, 1998), Chen et al. (1998), however, capability measure for



processes with multiple characteristics is comparatively neglected.

With the scientific and technological progress, products are various and
different from the past. In practice, most of current products are multi-
characteristics. For process with multiple characteristics, Bothe(1992) considered a
simple measure by taking the minimum measure of each single characteristic. For
instance, consider a v- characteristics product with v-yield measures P, P,, ...,
and P, . The overall process yield is measured as P = min{P,,P,....,P,}. It is noted
that this approach does not reflect the real situation accurately. Suppose a process
has five characteristics ( v=5), with equal characteristic yield measures
P =P,=P, =P, =P, =99.85% (or 1500 ppm of non-conformities). Assuming that
the five characteristics are mutually independent, then the actual overall process
yield should be calculated as P=PFXP x..xP =99.2522% (or 7478 ppm of
non-conformities), which is significantly less than that calculated by Bothe(1992).
Chen and Pearn (2003) modified the process capability index with
multi-characteristics, proposed

Sh = %CIYI {[Hl(ch@spkj) -+ 1]/2}.
=

Then, Wu and Pearn (2004) discussed couplers and wavelength division
multiplexers, which are multi-characteristics products with one-sided specification.
For the product, they proposed-a ¢apability index as

W
ch, :§¢ 1{H¢(3c,,w)}.
j=1

They estimated confidence bound by bootstrap method. There are four types of
bootstrap confidence interval, including the standard bootstrap confidence interval
(SB), the percentile bootstrap confidence interval (PB), the biased corrected
percentile bootstrap confidence interval (BCPB), and the bootstrap-¢ (BT) method.
However, Wu and Pearn (2004) calculate the confidence bound by PB method.

These conditions (process free from assignable cause, normal distribution,
independent observations) are not always fulfilled in many manufacturing
situations; process capability analysis with assignable causes has become critical
1ssues. Many researchers realized the fact and thus a number of studies are reported
in the literature. Somerville and Montgomery (1996) presented an extensive study
to illustrate how poorly the normally based capability indices perform as a predictor
of process fallout when the process is non-normally distributed. Several authors
have discussed the assessment of the process capability when the process output is
non-normally distributed. These methods could be divided into two categories. One
1s completely new indices, designed to be robust to non-normality (see Johnson e al.
(1994), Wright (1995), Chen and Pearn(1997)). Alternatively, other authors
suggested corrections for existing process capability indices (see Vannman (1995),



Castagliola (1996), Chang et al. (2002)).

A process capability analysis is valid only when the process under investigation
1s free from any special or assignable causes. It is also expected that observations are
statistically independent; however, processes with uncontrollable but acceptable
trend are common in practice. Current practices in assessing process capability in
the presence of assignable cause include various techniques. Some approaches
attempt to remove the variability associated with systematic cause. Time series
modeling to trended data is also suggested by Alwan and Roberts (1988), who
recommend using residuals in monitoring the process. Furthermore, others make
the general assumption of linear degradation in the tool. Quesenberry (1988)
suggested that tool wear can be modeled over an interval of tool life by a regression
model and assumes that the tool wear rate is known or a good estimate of it is
available.

However, the above approaches assume a static process capability over a cycle.
By allowing the process capability to be dynamic within a cycle, as well as from
cycle to cycle, circumvents some of the problems encountered. Spiring (1991)
proposed an application of assessing process capability index, C,, in the presence
of a systematic assignable cause thatresults in a numerical measure of the actual
process capability associated with'the process:

1.3. Research Objects

Two real-world examples from. multiple characteristics process and tool wear
process respectively are taken’ to “illustrate ‘the applications of the propose
approaches. For the first example, ‘we used four bootstrap methods to estimating
C;, and compare the estimation precision of these methods. Since the four types of
bootstrap confidence interval are different ways to estimate confidence bound the
engineers/ practitioners would want to know which one is the best. In this paper,
we compare the performance of confidence interval for the one-sided index C,,
with multiple characteristics by using these four bootstrap methods. Furthermore,
we find that the BCPB method would be the best way to estimate confidence
interval when sample size is less than 100. We also provide the tables about the
sample sizes required for various designated precision for the engineers/
practitioners to use in their factory applications. For the second example, the
estimator of the index C, for the process where a systematic assignable cause
occurs is investigated. Further, a procedure of capability measure with assignable
causes is developed, and the critical value for various values capability requirements
and sample size are provided. The real-world case taken from IC packaging process
1s investigated to illustrate the applicability of the proposed procedure. The testing
procedure is similar to those used in monitoring a process with control chart and
used to monitor the process and decide if the process should stop and replace the
tool to avoid producing unacceptable products.



2. Capability Estimation for Process with Multiple Quality
Characteristics

2.1. Thin-film Transistor Liquid Crystal Display: Manufacturing Process

TFT-LCD represents thin-film transistor liquid-crystal display. TFT-LCD was
first invented in early 1960's, over the years substantial improvements it was
developed for commercial production for notebook computers in 1991, hence the
TFT-LCD industry began.

The TFT-LCD is a progressive display, which screen picture information by
adjusting the amount of light permitted. TFT 1is a circuit formed with
semiconductor films on a thin glass substrate to control liquid crystals. The circuit
plays a essential role in controlling each pixel, the basic unit of a picture image. The
color filter displays a color image by coating the pixel on a glass substrate.
TFT-LCD technology has created a wide range of computer and consumer products.
The flat and thin attributes of LCD makes them ideal for mobile or portable
applications.

Three key components make the liquid-crystal display module functions
properly. Those include the liquid=crystal idisplay, the back lighting, and the
peripheral (interface) system. There are-three major process groups in TFT-LCD
manufacturing process: array process, cell process and module assemble process, as
follows:

Array Process: The array process.is similar to‘the semiconductor manufacturing
process, except that transistors aré/fabricated on a glass substrate instead of a silicon
wafer.

Cell Process: The cell process joins the arrayed back substrate and the front
substrate that is fitted with a color filter. The space between the two substrates is
filled with liquid crystal.

Module Assembly Process: The module assembly process involved connecting
additional components, such as driver integrated circuits and backlight units, to the
fabricated glass panel.

We focus on the array process of TFT-LCD. The processing steps in array
process are similar to semiconductor industry: deposition, photolithography and
etching. Following process are included:

PECVD (Plasma Enhanced Chemical Vapor Deposition) Process: Maintaining a
vacuum before gas enters the chamber, and heating the glass plate to a specific
temperature. The RF voltage is applied from electrodes inside the chamber, which
transforms gas into a plasma state when gas flows into the chamber. Precursors are
formed and deposited on the glass substrate from this plasma.

Sputtering Process: Sputtering is the process wherein the gas ion, which is the



high energy inside the plasma created by RF power or DC power, collides with the
target surface, resulting in the deposition of the target material on the plate.
Generally, the target materials are mounted on the negative electrode surface. Then,
the sputtered target materials are deposited on the plate, which is put on the positive
electrode. For sputtering, inactive gases are used, such as helium and argon, so that
deposition material chemistry is not affected.

Photolithography Process: Photolithography is the transfer of a pattern from the
photo mask onto a substrate. The substrate is coated with an extremely thin liquid
film of photosensitive material, called photoresist. Then the light exposes the
photoresist, some of which is destroyed when exposed to the light. The unnecessary
portion of the material is then cleaned from the surface through another process.
Another layer of the photoresist is then deposited to the substrate, exposed, cleaned,
until all the layers have been printed or imaged onto the surface.

Dry etch Process: The dry etch process uses reactive species, such as atoms or
radicals from the gas plasma, to etch away a portion of the object material. When
these species react with the material located on the plate, the open region of
material transforms into a volatile state and is removed from the matrix. In this
process, the reaction velocity is fast and fine patterns can be formed uniformly.

Characteristics of Thin-Film Transistor Liquid Crystal Display

The photolithography process is a’critical step-within the LCD manufacturing
process because panel quality dépends’on the entire pattern formation. We focus on
some quality characteristics in photolithegraphy process. Another layer is formed
(deposited) by sputtering, exposed, and cleaned. Repeating these steps until all
layers has been printed. Between one deposited layer and another, an error may be
existed, called overlay, see Figure 1. There are three steps in photolithography
process: coating, exposure, development. It might result deviation as exposure on
panel window, called critical dimension, see Figure 2. In addition, coating
photoresist on panel has to be uniform. The specifications of these three key
parameters are shown as Table 1.

overlay

&VI (‘ 2'nd deposited layer

.
ﬁ“ 1'st deposited layer

Figure 1. Deposited layers on TFT-LCD.




mask

@

~—panel

"

critical dimension

Figure 2. Exposure process on panel window.

Table 1. Specifications for thin-film transistor liquid crystal display.

Parameter Specifications
Overlay <0.1um
Critical Dimension <0.3um
Uniformality <0.03

2.2. Thin-film Transistor Liquid Crystal Display: Capability Measure

One-sided Capability Measurement with Single Characteristic

Process capability index is-a function of process parameters and manufacturing
specifications, which measures.the capability-of reproducing products meeting the
specifications. For normally distributed processes with one-sided specification limit
USL, or LSL, the process yield is the following, where Z follows the standard
normal distribution N(0,1).

<USL—,u

g

P(X<USL):P[X_“ ]=<I>(3CPU),

X—,u<LSL—,u

o o

P(X < LSL)=P

] = B(3C,,).

For convenience of presentation, we let C; denote either Cpy or Cp;. Therefore,
the corresponding non-conforming units in parts per million (NCPPM) for a
well-controlled normal process can be calculated as: NCPPM =10° x[1-®(3C;)].
Consequently, the production yield for usual existing processes should target no
more than 88 PPM, noting that NCPPM < 100 PPM is the common standard used
in most microelectronic industries for products with one-sided specification. The
production yield for newly set-up processes on safety, strength, or with critical
parameters, however, should target no more than 0.8 PPM, a more stringent
requirement set for possible mean shift or variation change.



One-sided Capability Measurement with Multiple Characteristics

Capability measure for processes with single characteristic has been
investigated extensively. But, capability measure for processes with multiple
characteristics 1s comparatively neglected. For processes with multiple
characteristics, a simple measure by taking the minimum of the measure of each
single characteristic has been considered. Wu and Pearn (2004) proposed the
modified one-sided index C},, and the multi-characteristics process yield index
can be rewritten as:

1. _ USL—-u
=—o P
Cry =3P HP(—

)

where @®() i1s the cumulative distribution of the standard normal
distribution N(0,1), and ®! is the inverse function of ®(). For the process with
multiple quality characteristics, the following overall capability index is referred to
as Chy:

1 B v
Chy =@ 1{Hq>(3cpw)},
j=1

where Cpy; denotes the Cpy value'of the jth characteristic for j=1, 2,..., v,
and v is the number of characteristies:mThe index, Ck,, can be viewed as a
generalization of the single chartacteristic yield'index, Cpy . Give Chy =c, we have

g

In fact, Wu and Pearn (2004) showed that the relationship between the index
CE, and the overall process yields P can be established as follows:

P=T]P =[[®BCry) =2BCty) -
=1 j=1
Hence, the new index C}; provides an exact measure on the overall process yield.
For the example given in Wu and Pearn (2004), if C}, = 1.00, then the entire

process yield would be exactly 99.865%, and each single characteristic yield is no
less than (0.9986501)'° = 0.9997299 (equivalent to 270 NCPPM).

In order to calculate the estimator, however, sample data must be collected,
and a great degree of uncertainty may be introduced into capability assessments due
to sampling errors. The approach by simply looking at the calculated values of the
estimated indices and then making a conclusion on whether the given process is
capable, is highly unreliable as the sampling errors have been ignored. A reliable
approach for estimating the true value of process index is to construct the lower
confidence bound. The lower confidence bound not only is essential to production
yield assurance, but also can be used in capability testing for decision making.



Hence, if the required overall process capability is Chy >c,, let ¢' be the
minimum Cpy required for each single characteristic, then

%clr1 {Q(I)@CPU]-)} > %qu {Q@@c')} >¢.

And then we obtain the lower confidence bound to be

c' zlqu(r/qa(aco)).

3

Table 2 displays the lower bound ¢' of Cpy obtained by Wu and Pearn (2004)
for the required overall process capability C’; are 1.00 and 1.33 for v =1(1)5
characteristics. For example, if a process has capability requirement Ch; = 1.00 with
v =15, i.e., the capability for all the five characteristics is the following Cpy; 21.153, for
j=12,...,5.

Table 2. Lower bound of various capability levels for multiple characteristics.

C}ZU > ¢,
14 1.00 1.33
1 1.000 1.330
2 1.068 1.383
3 1.107 1.414
4 1.133 1.436
5 1.153 1.452

Hence, given the desired estimation precisionR),’’, the confidence level ¥ a

Since given the desired estimation precision Rpy and the confidence level ¥
ensures that the risk of making incorrect decisions will be no greater than the preset
Type I error 1 - Rpy. For a given estimation precision Rpy =Cpy/Chy, the
sample size determination is important as it directly relates to the cost of the data
collection plan. Hence, given the desired estimation precision Rpy , the
approximate sample size must be obtained. In order to compute the lower
confidence bound to determine sample sizes required for specified precision of the
estimation on C}; . We using bootstrap methods to determine the lower confidence
bound in the following section.

2.3. Capability Estimation: Bootstrap Approach

2.3.1. The Bootstrap Methodology

For computational tractability, statistical research work generally has
depended on the central limit theorem and normal approximations to obtain



standard errors and/or confidence interval. Unfortunately, most process data in real
world are not normally distributed. Usually the population distribution of data is
unknown. Idealized models and assumptions can be replaced with more realistic
modeling or by virtually model-free analyses. Efron (1979, 1982) introduced a
nonparametric, computational intensive but effective estimation method, called the
“Bootstrap”, which is a data based simulation technique for statistical inference.
One can use the nonparametric bootstrap method to estimate the sampling
distribution of a statistic, while assuming only that the sample is a representative of
the population from which it is drawn, and that the observations are independent
and identically distributed. The merit of the nonparametric bootstrap approach is
that it does not rely on any assumptions regarding the underlying distribution.
Rather than wusing distribution frequency tables to compute approximate
p probability values, the bootstrap method generates a unique sampling distribution
based on the actual sample rather than the analytic methods.

The bootstrap sampling is equivalent to sampling (with replacement) from the
empirical probability distribution function. It can be applied whenever the
construction of confidence intervals for parameters using the standard statistical
techniques becomes intractable. In order,to calculate process capability indices
sample data must be collected because uand © are unknown. Current practices
of measuring capability by evaludting-point. estimate are unreliable because it
ignores sampling error. The- essence of bootstrapping is that, without any
knowledge about a population,.the distribution found in a random sample of size n
from the population is the best guide to“the distribution in the population. By
resampling observations from the ‘observed data, the population that consists of the
n observed sample values is used to model the unknown real population. The only
difference between bootstrapping and randomization is the sampling with
replacement.

In the bootstrap, B new samples, each of the same size as the observed data
n, are drawn with replacement from the population. Efron and Tibshirani (1986)
developed four types of bootstrap confidence interval, including the standard
bootstrap confidence interval (SB), the percentile bootstrap confidence interval (PB),
the biased corrected percentile bootstrap confidence interval (BCPB), and the
bootstrap-t (BT) method. In the following we give an overview of four bootstrap
confidence intervals. These are employed to determine the lower confidence bounds
of the index.

Standard Bootstrap (SB)

From the B bootstrap estimates 6,{;, calculate the sample average and the
sample standard deviation
T* 1 B ANTH .
Cry = 2. Cr ),

i=1



Ser = \/ . 1Z[C£U(z) Cro1®,

where CPU (i) 1s the i-th bootstrap estimate. The quantlty S’ o 1s actually an
estimator of the standard deviation of C”, py and if cr sy 1S approx1mately normal
distribution the (1-2 &) 100% SB confidence interval can be obtained as

[Ch = Z,S); 1,

where Z, istheupper « quantile of the standard normal distribution.

The Percentile Bootstrap (PB)

From the ordered collection of @Z,; (i), select the a percent and the (1-&)
percent points as the end points and the PB confidence interval is
[Cry(aB)].

Biased-Corrected Percentile Bootstrap (BCPB)

The bootstrap distribution may be biased while the percentile confidence
interval is possible due to sampling errors. In other words, that bootstrap
distributions obtained using only a sample of the complete bootstrap distribution
may be shifted higher or lower than wouldiexpected. Thus, a three steps procedure
has been developed to correct for this potential bias (Efron, 1982). First, using the
ordered distribution of C?, , calculate the probability of

P P [CPU = C;U I
second, calculate

Z, =®"'(P),
P, =®Q2Z,-Z,),
P, =®Q2Z,+Z,),

where &®(-) is the standard normal cumulative distribution function. Finally, the
BCPB confidence is obtained as
[C}, (P.B)].

Bootstrap-t (BT)

While the distribution of the statistic is skewed, the percentile bootstrap
confidence interval is possible lower. Thus, the bootstrap-t is developed and that the
generated distribution will mimic the distribution of 7. First, approximate the
distribution of a statistic of T = (@;U -Ci)IS o by using bootstrap. By taking
bootstrap samples from the original data values the bootstrap approximation in this
case can be obtained, calculate the corresponding estimates éﬁu (i) and their
standard error, and then finding the T -values T =(CL, —CA‘IZU)/S;T)U . The
(1-2@)100% BT confidence interval can be obtained as

[Ch, —£.S", 1,

acT
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where ¢, and t, , aretheupper @ and 1-@ quantile of the bootstrap
T -distribution respectively.

2.3.2. Performance Comparisons

To compare the estimating performance of these four types of bootstrap
interval, we calculate the value R,, = Cjy"" /C},, (Pearn and Shu, 2003) , which

is estimating precision. We also compare the four types of bootstrap interval by
ranking. The closer the bootstrap interval met the true value (C;, =1.00 or 1.33),

the better the rank is. On the contrary, if the bootstrap interval is greater than true
value, the rank would be worse.

Calculated the total rank R, which is a weighted value; it shows the rank of
the four bootstrap methods (see detail as Appendix A).
R = (number of rankl1x1 + number of rank2x?2 +

number of rank3x 3+ number of rank4x4)/500

Some random data distributed as normal distribution are generated by
MABLAB program (in Appendix B) and these data satisfied the required overall
process capability C,, (see Table:2). For example, if a process has a capability
requirement C,, 21.00 with='v=5.1/i.€, the capability for all the five
characteristics is the following C;U >1.153 ,for. j=1,2,...,5. In Table 3, the rank of
four bootstrap method is illustrated with various sample size n=30(10)100, 125,
150, 200, and v=2(1)5 as C,,=1 and 133 For example, if the sample size is 60,
we generate two random obsetvations distributed as normal distribution and
C}, =1.33. From the table, we obtained the four ranks 2.944, 2.028, 1.132, 3.896
respectively.

We found that the method BCPB (Biased-corrected Percentile Bootstrap) is
better than other methods in Table 3, (when C,, =1). The estimating results of four
methods are similar as the sample size increasing, shown in Figure 3(a)~(d) and
Figure 4(a)~(d). However, the result in Figure 4(c)~(d) (when CZM =1.33,
v=4 ~5) is not the same.

These tables show that the method BCPB is distinctly better in small sample
size (n<100); however as sample size increase, the difference between four
methods’ performance is unobvious. In addition, as quality characteristic increase,
the rank of BCPB method is large. This indicates that BCPB method 1s perform
worse than the other methods (see Figure 4(d)), actually, the estimation of four
methods are similar. However, in small sample size (n <100), the BCPB method is
the best one to calculate C}, . Hence we use BCPB method to evaluate the €%, in
the following section.
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Table 3. The total rank of the four bootstrap methods asC,, =1,1.33 and »=2(1)5.

y=2 cl, =1 cl, =1.33
n SB PB | BCPB | PT SB PB | BCPB | PT
30 3 2 1.006 | 3.994 | 2.996 | 1.996 | 1.008 | 4.000
40 2996 | 2004 | 1.004 | 3996 | 2982 | 2.008 | 1.034 | 3.974
50 2992 | 2002 | 1.024 | 3982 | 299 | 2012 | 1.030 | 3.968
60 2982 | 2014 | 1042 | 3962 | 2984 | 2,010 | 1.056 | 3.950
70 2994 | 2.004 | 1018 | 3984 | 2984 | 2,020 | 1.030 | 3.966
80 2988 | 2012 | 1026 | 3974 | 2972 | 2,028 | 1.072 | 3.928
90 2994 | 2016 | 1.022 | 3968 | 2970 | 2.026 | 1.084 | 3.920
100 | 2,980 | 2.020 | 1.026 | 3974 | 2,992 | 2,002 | 1.072 | 3.934
125 | 3000 | 2.010 | 1.018 | 3972 | 2968 | 2.040 | 1.104 | 3.888
150 | 2988 | 2012 | 1.040 | 3960 | 2974 | 2056 | 1.094 | 3.876
200 | 3004 | 2018 | 1.036 | 3.942 | 2972 | 2,018 | 1148 | 3.858
y=3 cl, =1 cl, =1.33
n SB PB | BCPB | PT SB PB | BCPB | PT
30 2966 | 2.028 | 1.100 | 3906 | 2942 | 2048 | 1.112 | 3.8%
40 2950 2040 | 1106 | 3904 | 2954 | 2046 | 1.132 | 3.868
50 2970 | 2.034 | 1100 | 3.896 | 2946 | 2.044 | 1150 | 3.860
60 29421 2070 | 1124 | 3864 | 2922 | 2094 | 1216 | 3.768
70 2954 2052 | 1120 | 3874 | 2916 | 2112 | 1.290 | 3.678
80 2944 | 2062 | 1172 | 3818 | 2904 | 2108 | 1332 | 3.656
90 2940 | 2,078 | 1.166 | .3.816 | 2.836 | 2.168 | 1.428 | 3.568
100 29341 2072 | 116274 38284, 2894 | 2136 | 1352 | 3.610
125 2964 | 2060 | 1124 | .3.852.1 22832 | 2172 | 1590 | 3.406
150 2970 | 2,044 | 1136 |1 3848 | 2.804 | 2176 | 1.620 | 3.398
200 2918 | 2114 | 12001 3768 | .2.784 | 2230 | 1.636 | 3.344
v=4 Ch, =1 cl, =1.33
" SB PB | BCPB | "PT SB PB | BCPB | PT
30 297 | 2052 | 17316 | 3.856 | 294 | 2076 | 1.17 | 3.814
40 2912 2084 | 120813996 | 2.882 | 2.11 1.3 3.708
50 2922 2094 | 1224 | 376 | 282 | 2186 | 1.508 | 3.478
60 291 | 209 | 1222 | 3772 | 2798 | 2188 | 1.53 | 3.478
70 2882 | 2126 | 1254 | 3736 | 2822 | 2186 | 1.664 | 3.328
80 2916 | 2108 | 126 | 3716 | 279 | 2274 | 1.666 | 3.268
90 2.892 | 2.12 1.318 | 3.668 | 2.742 | 2272 | 1784 | 3.196
100 2886 | 2124 | 128 | 3706 | 273 | 2308 | 185 | 311
125 2922 2126 | 1308 | 3644 | 2634 | 24 2,054 | 2912
150 292 | 21 1.328 | 3.648 | 2684 | 2412 | 2034 | 2868
200 288 | 2152 | 1394 | 357 | 2632 | 2434 | 2322 | 2.606
v=>5 Cp, =1 Cr. =133
" SB PB | BCPB | PT SB PB | BCPB | PT
30 2938 2084 | 1222 [ 3756 | 286 | 2.15 1.398 | 3.59
40 2878 | 2118 | 1314 | 3688 | 2786 | 2216 | 1.652 | 3.344
50 2892 | 2148 | 1326 | 3.63 | 2792 | 224 | 1648 | 3316
60 285 | 216 1.408 | 3.582 | 2758 | 2254 | 1828 | 3.156
70 2846 | 2158 | 145 | 3542 | 2686 | 2336 | 2.026 | 2.942
80 2902 | 2.18 1.382 | 3528 | 2654 | 24 211 | 283
90 2876 | 2172 | 15 3452 | 2572 | 2432 | 2288 | 2.702
100 283 | 2192 | 156 | 3406 | 2.582 | 2478 | 2384 | 2.55
125 2904 2156 | 1514 | 342 | 256 | 248 | 26 2.354
150 2856 | 2228 | 1572 | 3342 | 2466 | 2524 | 2.648 | 2.346
200 2834 | 2244 | 1578 | 334 | 2426 | 2614 | 2878 | 2.074
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2.3.3. Recommended Bootstrap with Sample Size Information

These simulation results indicate that the estimating precision R_approaches

pu

to 1 as the sample size increases in all cases that have been investigated in Table 4-5.

Table 4. The relationship of the sample size and estimating precision with C;,, =1.

v=2 v=3 v=4 v=5
n R R R R

pu pu pu pu
30 0.8458 0.8406 0.8387 0.8384
40 0.8598 0.8571 0.8554 0.8563
50 0.8712 0.8696 0.8694 0.8686
60 0.8775 0.8780 0.8794 0.8804
70 0.8873 0.8874 0.8885 0.8886
80 0.8931 0.8936 0.8952 0.8957
90 0.8973 0.8995 0.9012 0.9020
100 0.9022 0.9039 0.9061 0.9070
125 0.9115 0.9150 0.9169 0.9180
150 0.9182 0.9222 0.9243 0.9260
200 0.9289 0.9327 0.9351 0.9371

Table 5. The relationship of samplé size and estimating precision with C;, =1.33.

W 2Bl W v=>5
n R R R R

pit pii pu pu
30 0.8520.-0.8436--0.8423 0.8397
40 0.8622 0.8589 0.8577 0.8540
50 0.87310:8696:0.8670 0.8670
60 0.8803 0.8793 0.8774 0.8774
70 0.8875 0.8865 0.8856 0.8845
80 0.8929 0.8926 0.8924 0.8925
90 0.8980 0.8979 0.8980 0.8985
100 0.9030 0.9034 0.9027 0.9027
125 0.9124 0.9125 0.9140 0.9142
150 0.9190 0.9204 0.9218 0.9229
200 0.9294 0.9316 0.9328 0.9341

Chou and Owen (1989) showed that under normality assumption the estimator
C,, and C,, are distributed as (3\n)"'r (), where ¢ (§) is distributed as the
noncentral ¢ distribution with 7n—1 degrees of freedom and noncentrality
parameter §= 3\/;CPU and = 3\/ZCPL , respectively. A 10001-a)% lower
confidence bound L. for Coy satisfies. It can be written as:

USL-u
30
where ¢, =3/nC,, and & =3ynL.. Therefore, we can calculate the lower
confidence bound (LCB) by solving the cumulative distribution function (CDF) of

Pr( >L)=Prt,_ (5)<t)=1-a,
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noncentral ; distribution with p—1 degrees of freedom and noncentrality
parameter 51 :3\/;LC.

To compute the sample size required n, we develop a MATLAB program
(available on request). The simulation data is the same one in Section2.3.2 (random data
generated from normal distribution). Let the desired estimation precision be R,, and
the confidence level be ¥, and then the minimum sample size n (always rounding up
if n 1is not an integer) can be calculated. Table 6 displays the sample size n required
for R, 2 R,, ith R, = 0.750.01)0.95 and »=0.9,0.95,0.975,0.99. We also
provide the actual estimation precision R, in the Table 6. For example, if R, is set
to 0.89, then with y= 0.95 the sample size needed is # =76. We conclude that a
minimum sample size of # =76 is required to be 95% certain that the true C,, is no
less than R, = 89.12% of the sample estimate C pu - Thus, if the sample estimate
C,, =1.2, then the true value of C,, is no less than 1.2 x 89.12% = 1.069, with
95% confidence. The MATLAB program computing the minimum sample sizes
required for specified precision of the estimation for the C;, is shown in Appendix

B MATLAB Program.

Table 6. Sample size n required for R, ZR,,, with R,, =0.75(0.01)0.95,
¥=0.9,0.95,0.975,0.99,, three quality. characteristics and C ﬁU =1

. 7 =0.90 7=0.95 7 =0.975 7 =0.99
" n R?’ " R7 n R7 n R7
075 - - : - : - 16 07518
0.76 - - - . 6 - 21 0.7609
0.77 - - - J 7 07776 24 0.7731
0.78 - - - - 14 07832 28 0.7807
0.79 - - - - 18 07904 31 0.7901
080 - - 6 - 22 0.8005 36 0.8012
081 - - 12 08119 26 08107 40 0.8103
082 - - 17 08222 32 08226 49 0.8201
083 - - 23 0.8316 38 0.8304 56 0.8305
084 - - 28 08414 44 08403 65 0.8414
085 6 - 35  0.853 52 0.8502 75 0.8502

0.86 18 0.8608 41 0.8600 63 0.8613 88 0.8609
0.87 26 0.8708 51 08710 73 0.8700 105 0.8710
0.88 33 0.8805 60 0.8802 88 0.8800 124 0.8812
0.89 44 0.8909 76 0.8912 105 0.8908 146 0.8610
0.90 54 09005 93 09004 128 0.9000 176 0.9005
0.91 71 09107 115 09102 158 09103 213 0.9101
0.92 92 09205 146 09201 197 0.9204 268 0.9202
0.93 121 0.9306 188 0.9303 253 0.9300 339 0.9302
0.94 164 0.9400 251 0.9402 337 09400 451 0.9400
0.95 231 0.9500 350 0.9502 473 0.9505 634 0.9500
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In Table 6, we can found that as the sample size increases, the R,, and y
increase. However, some values of sample size can not be obtained when the values
of precision R,, and confidence level y are small. This is due to the problem of
the bootstrap resampling procedure.

We consider the following case taken from a manufacturing factory located on
the Science-Based Industrial Park in Taiwan, making the liquid crystal display. With
focus on these key parameters: overlay, critical dimension and uniformality. To
obtain the sample size required n under the desired estimation precision R, , we
can look it up in Table 6. Table 6 displays the sample size n required for R,=>
R, with R, =0.75(0.01)0.95 and y=0.9, 0.95, 0.975, and 0.99. If the practitioners
set R, to be 0.92 and y = 0.95 then the sample size needed is n = 146. We
conclude that a minimum sample size of n = 150 1s required to be 95% certain that
the true C%, is no less than R, = 92.01% of the sample estimate Ch; . Thus, if the
sample estimate Chy = 1.3, then the true value of Ck; is no less than 1.3 X 92.01%
=1.20, with 95% confidence. Hence sample data collected from 150 LCD are
displayed in Table 7. The upper specification limit, the calculated sample mean,
sample standard deviation, the estimated éPU_ for overlay, critical dimension and
uniformality are summarized in Table 8, /

Table 7. The 150 sample observationsfor three quality characteristics.

Quverlay (um ).
0.0779 0.0697 0.0764 0.0763 0:0834-0:0860.0.0778 0.0849 0.0846 0.0649
0.0853 0.0801 0.0711 0.08470.0817 0.0747 0.0886 0.0777 0.0889 0.0716
0.0802 0.0776 0.0800 0.0811 0.0873 '0.0804 0.0810 0.0729 0.0782 0.0794
0.0711 0.0712 0.0724 0.0839 0.0831 0.0846 0.0803 0.0851 0.0701 0.0741
0.0706 0.0826 0.0665 0.0843 0.0862 0.0824 0.0810 0.0804 0.0838 0.0693
0.0757 0.0842 0.0765 0.0742 0.0838 0.0832 0.0837 0.0745 0.0820 0.0911
0.0786 0.0751 0.0738 0.0801 0.0853 0.0667 0.0778 0.0888 0.0890 0.0638
0.0796 0.0859 0.0718 0.0799 0.0637 0.0789 0.0878 0.0926 0.0674 0.0745
0.0859 0.0913 0.0863 0.0695 0.0878 0.0753 0.0790 0.0798 0.0801 0.0736
0.0746 0.0885 0.0788 0.0746 0.0862 0.0787 0.0753 0.0793 0.0776 0.0945
0.0833 0.0709 0.0804 0.0780 0.0888 0.0842 0.0794 0.0793 0.0771 0.0835
0.0691 0.0806 0.0805 0.0735 0.0843 0.0837 0.0727 0.0834 0.0752 0.0877
0.0771 0.0850 0.0755 0.0826 0.0776 0.0833 0.0669 0.0740 0.0839 0.0743
0.0781 0.0754 0.0840 0.0840 0.0962 0.0780 0.0801 0.0742 0.0781 0.0908
0.0911 0.0849 0.0764 0.0932 0.0783 0.0732 0.0722 0.0775 0.0787 0.0715
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Critical Dimension ( um ):

0.2559 0.2627 0.2717
0.2689 0.2633 0.2694
0.2783 0.2623 0.2691
0.2788 0.2507 0.2661
0.2691 0.2792 0.2718
0.2657 0.2711 0.2579
0.2657 0.2650 0.2764
0.2514 0.2654 0.2754
0.2726 0.2828 0.2750
0.2700 0.2654 0.2819
0.2656 0.2850 0.2735
0.2638 0.2727 0.2681
0.2638 0.2640 0.2797
0.2651 0.2729 0.2698
0.2709 0.2592 0.2740

0.2656
0.2573
0.2571
0.2726
0.2791
0.2649
0.2827
0.2842
0.2721
0.2728
0.2774
0.2647
0.2708
0.2702
0.2598

0.2756
0.2691
0.2616
0.2807
0.2770
0.2760
0.2734
0.2524
0.2633
0.2713
0.2730
0.2720
0.2704
0.2694
0.2557

0.2747
0.2776
0.2759
0.2735
0.2581
0.2707
0.2676
0.2734
0.2608
0.2670
0.2757
0.2687
0.2475
0.2586
0.2790

0.2645
0.2550
0.2670
0.2673
0.2731
0.2769
0.2757
0.2687
0.2877
0.2580
0.2640
0.2627
0.2713
0.2619
0.2714

0.2671
0.2632
0.2688
0.2478
0.2660
0.2605
0.2662
0.2743
0.2628
0.2730
0.2707
0.2828
0.2710
0.2790
0.2874

0.2588
0.2624
0.2598
0.2831
0.2612
0.2648
0.2758
0.2631
0.2894
0.2652
0.2564
0.2838
0.2870
0.2723
0.2656

0.2703
0.2605
0.2620
0.2653
0.2718
0.2723
0.2753
0.2719
0.2638
0.2794
0.2634
0.2700
0.2610
0.2833
0.2789

Uniformality:

0.0272
0.0264
0.0271
0.0255
0.0254
0.0269
0.0265
0.0244
0.0268
0.0275
0.0278
0.0249
0.0252
0.0280
0.0264

0.0264
0.0265
0.0276
0.0269
0.0265
0.0270
0.0271
0.0272
0.0260
0.0265
0.0255
0.0265
0.0257
0.0271
0.0273

0.0255
0.0252
0.0268
0.0259
0.0280
0.0262
0.0286
0.0279
0.0256
0.0282
0.0274
0.0269
0.0286
0.0267
0.0244

0.0267
0.0278
0.0293
0.0271
0.0283
0.0279
0.0252
0.0259
0.0253
0.0270
0.0260
0.0269
0.0267
0.0274
0.0263

0.0248
0.0263
0.0283
0.0273
0.0262
0:0252
0.0261
0.0266
0.0268
0.0266
0.0273
0.0268
0.0265
0.0266
0.0264

0:0272
0.0272
0.0265
0.0256
0.0269
020255
0.0266
0.0265
0.0287
0.0267
0.0269
0.0267
0.0270
0.0277
0.0258

0.0270
0.0252
0.0269
0.0278
0.0267
0.0277
0.0278
0.0256
0.0270
0.0254
0.0256
0.0262
0.0270
0.0252
0.0268

0.0267
0.0264
0.0275
0.0283
0.0266
0.0254
0.0270
0.0274
0.0294
0.0270
0.0293
0.0266
0.0261
0.0268
0.0260

0.0257
0.0264
0.0277
0.0267
0.0263
0.0262
0.0255
0.0266
0.0265
0.0277
0.0256
0.0271
0.0264
0.0267
0.0276

0.0265
0.0247
0.0257
0.0277
0.0261
0.0279
0.0274
0.0282
0.0258
0.0257
0.0274
0.0269
0.0263
0.0257
0.0256

Table 8. Calculations for process capability of overlay,

critical dimension, and uniformality.

Characteristics

A A

USL x o} Cry

Overlay
Critical dimension

uniformality

0.1um  0.0795
0.2693

0.0267

0.0065 1.0499
0.0083 1.2298
0.00097 1.1423

0.3um
0.03

1.0087
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3. Capability Measure for IC Manufacturing with Tool wear

In this chapter, a case taken from a integrated-circuit (IC) manufacturing
factory will be proposed to illustrate the corrective process capability indices for tool
wear. First, we will introduce the manufacturing process of IC manufacturing in
section 3.1. Then, describing the tool wear problem in section 3.2. Finally, a case
will be proposed to illustrate how to apply the corrective process capability indices.

3.1. Integrated-Circuit: Manufacturing Process

The integrated circuit was first conceived in 1952, and the first integrated
circuits were manufactured in 1959. Programmable integrated circuits were
developed in the 1980s. The devices can be programmed by the user, rather than
being fixed by the integrated circuit manufacturer.

An integrated circuit (also knows as IC or chip) is a miniaturized electronic
circuit which has been manufactured in the surface of a thin substrate of
semiconductor material.

This process of IC manufacturing can be summarized in four major process
steps: wafer fabrication, wafer probe and sort;,IC assembly, and burn-in and final
test.

Step 1: Wafer Fabrication

Various layers of substances are'formed within the wafer, or deposited on the
surface of it in wafer fabrication process. These layers are typically formed in the
following way: A thin film of oxide is.formed" or deposited on the surface of the
wafer in a process called oxidation. Then, a photoengraving process called
photolithography (also known as “masking” or “imaging”) is used to transfer a
desired pattern onto the surface of a silicon wafer. Portions of the oxide surface
under the pattern are then dissolved away in a process called etching. Finally, in a
process called doping, impurities are introduced into the exposed surface to form
device elements such as the source and drain of a transistor. Thin films may also be
deposited on the wafer to form elements such as the polysilicon gate of a transistor.

Step 2: Wafer Probe and Sorting

In the second step of wafer manufacturing, each die on a fabricated wafer is
functionality tested. The dice that fail are marked with an ink spot. The wafer is
then sectioned into individual die by scribing lines between the dice and breaking
the wafer along these lines. The defective dice are discarded, and the remaining dice
are usually sent from the fabrication facility to a die bank inventory. Die lots will be
withdrawn from the inventory and assembled when they are scheduled for release.

Step 3: IC Assembly (Package)

In the third Step of wafer manufacturing, die that have been fabricated and
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tested are assembled for product release. Individual integrated circuit die can be
mounted in a wide variety of packages. A chip generally assembled by placing it on
a frame, attaching electrical leads to it at contact points (for connections to the
outside world), and sealing the assembly in a protective housing.

Step 4. Final Test and Burn-in

In this final Step, packaged chips are subjected to an extensive series of
electrical tests and burn-in operations to ensure that the circuit functions correctly
and will continue to do so reliably. (For example, they may be operated for several
hours in a high- temperature environment).

IC packaging

Integrated circuit packaging (called simply package or assembly) is the final
stage of IC manufacturing per se, followed by IC testing. Once wafer probe and
sorting, the wafer is scored and then broken into individual dice. Only the good,
undyed chips will be packaged. Packaging involves mounting the die, connecting
the die pads to the pins on the package, and sealing the die. The packaged chips are
retested to ensure that they were not damaged during packaging and that the
die-to-pin interconnects operation wassperformed correctly. The operations at this
stage as follows:

Die attachment. the step during the''integrated circuit packaging phase of
semiconductor device fabricatton during which a die is mounted and fixed to the
package or support structure.

IC bonding: bonding is a method of making interconnections between a
microchip and the outside would as part of semiconductor device fabrication.

1C encapsulation: refers to the design and manufacturing of protective packages
for integrated circuits.

Wafer back grinding

Wafer back grinding must be done after wafer fabrication and wafer probe, in
order to thin wafer thickness. Subsequently, IC packaging will be done.
Semiconductor wafers are routinely thinned prior to cube to aid the sawing
operation and to allow the final assembled package thickness to be minimized. For
semiconductor devices required to operate at high power levels, wafer thinning
improves the ability to dissipate heat by lowering the thermal resistance of die. As
final thickness is decreased, the wafer progressively becomes less able to support its
own weight and to resist the stresses generated by post back grinding processes.
Thus, it is important to reduce the damage caused by back grinding and improve its

quality.

Technical products of users’ requirement are more and more handy and small;
the size of IC has to conform the customers’ requests. However, the circuits on the
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wafer are possibly damaged if the thickness of wafer is too thin. Hence, wafer back
grinding must be done to thin the wafer without damaging the circuits on wafer.

A

Diatmond wheel
wafer

Rough Crinding Fine grinding

Figure 5. Wafer back grinding.

3.2. Integrated-Circuit: The Tool Wear Problem

Traditionally it is assumed that process capability is to be assessed only when
the values are statistically independent; Theissue of correlation among the samples
and its effect on control chart<limits has been studied by many authors (see
Vasilopoulos and Stamboulis (1978)). However, the effect of correlation in
estimating process capability has rarely been considered. There are some situations
when assignable causes are systematic, such as tool wear, so that their effects can be
decomposed before capability is evaluated.

When systematic assignable causes are present and tolerated, the overall
variation on the process (07) is composed of variation due to random causes (o)
and variation due to assignable causes (0.), i.e. 6° =0, +0.. The traditional PCI
measures neglects that portions of the overall variation, in the presence of tool wear,
will be due to assignable causes. Therefore, any estimates of process capability will
confound the true capability with these two causes. In order to get a true measure of
process capability, any variation due to assignable cause must be removed from the
measure of process capability. Spiring (1989, 1991) viewed this as a dynamic
process that is constantly changing as the process, tools, age, etc. In the dynamic
model, the capability of the process will vary, possibly in a predictable trend.
Spiring has devised a modification of C,, index for this dynamic process under the
effect of systematic assignable causes. In the state, the goal is to maintain some
minimum requirement of capability at all times. As a result, the capability will be
cyclical in nature, its period defined by the frequency of process adjustments. Even
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when assignable cause variation is not systematic, as is the case with tool wear, it
needs to be able to deal with random fluctuations of the process mean over time.
Typically, deviations from the target value are due to easily determined assignable
causes, such as shift-to-shift changes, differences in raw material batches,
environmental factors, etc.

The most general case discussed will assume only a reasonable predictable
recurring pattern with known upper and lower specification limits, target value and
the existence of a tool wear problem. Figure 6 illustrates a general relationship that
may occur when a tool wear problem exists, includes the process specifications (i.e.
USL, LSL and T), the starting, stopping and the process output. The tool wear is
pictured in a non-linear, increasing trend but could be nay reasonably consistent
recurring pattern. The process illustrated in Figure 6 depicts a systematic tool wear
problem with non-linear fashion. Similar to measuring variation in any process all
sources of variation must be examined when considering tool wear. In a process
exhibiting a tool wear problem, the traditional measure of process capability index
C, 1s influenced by tool wear slope, as Figure7. Hence, such measure is since if
fails to acknowledge that portions of the overall variation will be due to assignable
causes.

observation
Cpk:

LSLE = = = = = — — e

. . . . . . . . .
t0 t to t
time time

Figure 6. An example of tool wear Figure 7. Plot of the changing
problem. capability of a process with tool wear.

3.3. Capability Measure for Wafer Back Grinding

In this section, a modified C, index for dynamic process under the affect of
systematic assignable causes will be introduced (Pearn ez al., 2006). Subsequently, a
example of wafer grinding will be propose to illustrate how the modified C,
applied to.

3.3.1. Estimation of the C

Allowing the process capability to be dynamic, the objective will be to
maintain some minimum level of capability. Using a process capability index, the
changing ability of the process can be monitored. Pearn ez al. (2006) proposed a
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modified C, index for dynamic processes under the affect of systematic
assignable cause as:

C

_ min{USL—u,, 1, — LSL)
30 ’

rt

pk

where USL and LSL denote the upper and lower specification limits respectively,
M, represents the mean and o, the variation (due to random causes only) of the
process at time period .

We have to finding the value of C,, or a suitable estimate at carious times ¢
over each cycle in the lifetime of the tool to monitor a process capability. Assume
the effect of the tool deterioration to be linear over the sampling window only,
estimates of C, are possibly that will in fact be free from any contribution of the
assignable cause. Thus, the proposed estimator of process capability can be
obtained by replacing 4 and o, by the estimators X, and

rt t

[(n—2)MSE, /(n—1)]"?, respectively. Then obtained

o _min{USL—X, X, ~LSL) _ d-|X,-M|

. 36, ; [(n-2)MSE,
n—1

The variation &, is removed by considering of the sequentially selected points (i.e.,
ty, ty, - t,) instead of the Sample vatiance. The MES, is the mean square
error associated with the regression equation X, =a, + Aai , wWhere ¢, is the
sequence number of the sampling unitand ﬁ’a will denote the linear change in the
tool wear given a unit change in time:

S | |

z (Xtm' - XAtai )2
MSE, ==

n—2
3.3.2. Sampling Distribution and Critical Value for Dynamic Process

Pearn e al. (2006) derived the cumulative distribution function of C oo S
follow:

F@,,k<x>=1—Ifﬁ6(("_2)9(b@_’) J[¢<r+§ﬁ>+¢(z—fﬁ>]dt,for x>0.

nx

where b=d/o.

Using ordinary least square (OLS) estimates of «,, £, and assuming the
sampling scheme to be sequential, the computational formula for C,, can be
expressed alternatively as
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where n denotes the subgroup sample size, and X, represents the ith value of
the quality characteristic in the sampling period ¢,. The proposed sampling plot is
similar to those plots used in monitoring a process of control charting procedures.
The general form will be to gather k subgroups of size n from each cycle over the
lifetime of the tool. The value of k& will be unique to each process and in fact may
change from cycle to cycle within a process. On the other hand, sample size of less
than five are advised against, while larger samples (n>30) may also pose a
problem. The optimal sample size for measuring process capability in the presence
of systematic assignable cause will vary fro each process considered (Spiring, 1991).

Based on the CDF of épk, given values of capability requirement C, the
parameter & (£=(u—M)/0), sample size n, and risk «, the critical value c,
can be obtained by solving P(épk an‘Cpk =(C)=a using available numerical
integration methods. That is,

2
weuents | (n=2)(BCH* |En —1
J-(: e ( 9n|2| ) [9(1 +ENn) + gt —En)ldr = .

a

The above equation is an even‘function of &. Hence, for either £=¢& or
&=-¢, we will get the same critical value c,. Pearn er al. (2006) execute extensive
calculation to obtain the critical values ¢, for & =0(0.05)3.00, n =5(5)50,
C,,=0.5(0.5)2.0 with risk & =0.05. The results show the maximum c, value at
£=1.00.

In addition, Pearn et al. (2006) provide practitioners a table to apply the
proposed procedure. The critical values of C » for @ =0.01 and 0.05 with
n=>5(5)30 are listed in Table 9. For example, if C =1.33 is the minimum capability
requirement, for & =0.05 with sample size n=10, we can find ¢, =2.305. That is,
as the estimated process capability drops below the critical value of C > the
practitioner should stop the process and reset the tool because there is an evidence
to think the process is nearing the end of its ability to produce qualified product. On
the other hand, if the value of C o« 1s grater that the critical value, then the process
is thought capable.
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Table 9. The critical value ¢, for dynamic process with various parameters.

C,, =1.00 C,=133 C, =167 C,, =2.00

n =001 =0.05| =001 | ¢=0.05| =0.01 | =0.05| a=0.01 | a=0.05

5 | 5.206 2.967 6.867 3.918 8.591 4903 | 10.269 | 5.862

10 | 2.266 1.750 2.980 2.305 3.720 2.881 4.441 3.442

15| 1.826 1.517 2.404 2.000 3.002 2.500 3.584 2.987

20| 1.644 1.412 2.163 1.863 2.701 2.329 3.226 2.783

25| 1.539 1.350 2.026 1.782 2.532 2.229 3.023 2.664

30| 1.471 1.309 1.937 1.728 2.420 2.162 2.891 2.584

We consider the following case take from an IC package and testing factory to
explain how the proposed procedure be established and applied to diamond wheels
of wafer back grinder are investigated. The capability analysis focused on the key
characteristic, wafer thickness. The upper and lower manufacturing specification
limits are USL=330.2um and LSL=279.4um, respectively. If the characteristic
data is out of specification limits, the diamond wheel of wafer back grinder is
considered to make a replacement.

The thickness of wafer is measured and recorded when the product come out
of the process. The collect data showing tool wear consist of 100 observations in ten
subgroups of size ten each, -which exhibited "in- Table 10. Figure 8 plots the
individual values in the series-data. It“can be seen that the observations starting
from a lower value (close to lower specification-limit) gradually increase to the
upper specification limit due to diamond wheel deterioration. The trend seems to
linear in increasing. Also, the values of the thickness of wafer are influenced by tool
wear, which is likely to be dependent on the condition of the tool as previous
component was processed. Now, the goal is to maintain minimum level of
capability at all times and to monitor the processes under the affect of systematic
assignable cause. The process should be stopped and the tool should be replaced
when the measure of process capability is lower than the minimum acceptable level.
Suppose the capability requirement for the wafer back grinding process is defined as
“Capable” if C, >1.00. Therefore, applying the capability measure for dynamic
which is proposed by Pearn ez al. (2006), the practitioners can monitor the process
by calculating the measure of C, . The proposed testing procedure for tool wear
process is similar to those used in monitoring a process with control chart.
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Table 10. The collected 10 subgroups of size ten (Unit: um).

1 2 3 4 5 6 7 8 9 10

280.05 281.48 282.25 282.25 283.68 284.07 28440 284.78 284.78 285.50
285.88 286.60 286.98 288.80 286.98 288.80 288.41 288.80 286.98 288.08
286.98 286.98 288.80 288.80 288.80 288.80 286.98 290.61 290.61 292.42
293.53 293.86 296.06 294.24 296.77 295.34 29424 29787 296.44 297.87
297.87 299.36 298.97 297.87 299.69 297.87 301.50 300.78 300.45 301.50
301.50 303.37 303.37 305.18 30298 301.50 305.18 305.18 305.18 31245
7 1310.63 308.10 308.82 307.00 306.62 308.82 308.82 312.45 31426 316.07
s | 316.07 319.38 318.99 319.71 319.71 316.07 319.38 320.48 320.81 320.81
Ly 1320.09 320.81 320.81 321.52 319.71 321.19 319.71 319.71 32334 32521
o |323.34 32521 32334 327.02 327.02 32521 327.02 329.55 327.35 327.02

—_
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Figure 8. Plot of the 100 observations.

Assume the risk a =10, sample size n =10, and minimum capability
requirement C =1.00, in this case we can obtain the critical value of C 18 1.75 by
checking Table 9. While the estimated process capability drops below the critical
value of é’pk, the engineers should stop the process and replacement the tool
because there is an evidence to consider that the process is close the end of its ability
to produce acceptable product. If the values of C o are greater than 1.75 the
process is considered capable and is allowed to continue producing. Based on the
observation listed in Table 10, the calculated C‘pk for dynamic process at each time
period are shown in Table 11. Figure 9 illustrate the measure of process capability
C‘pk for dynamic process at eaAch time period over a single cycle of the process. It is
observed that the estimated C, comes to maximum at time period 7, and then
drops below the minimum C,, line (C, =1.75) at time period t,. Hence, based
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on these results, we would suggest that the process should be stopped and the tool
should be replaced to avoid produce unacceptable products.

Table 11. The estimated C,, for dynamic process at each time period.

) 5 2 Iy I s b I l lg
sk | 29316 3.0805 2.9058 4.8999 6.9571 3.7553 29135 2.6374 2.01

(@}

1.0158

Minimum Cpk value

estimated Cpk
F

\\b
! . !
2 4 6 8 10
sample number

Figure 9. Capability plot for dynamic process at each time period.
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4. Conclusion

Process capability indices have been widely used to measure manufacturing
process capability in industry. However, these indices for multiple characteristics
and tool wear problem are comparatively neglected. In the thesis, two real-world
cases of multiple characteristics and tool wear respectively, in manufacturing
industry are considered in order to illustrate how the modified indices apply to
real-world problems.

The first part, we considered the problem of finding the lower confidence
bound and sample sizes required for specified precision of the estimation for the
C%, . The lower confidence bounds present a measure on the minimum capability
of the process based on the sample data. The sample size determination is directly
related to the cost of data collection plan. We used the bootstrap method to
calculate the estimator C%, and compare the precision performance of four
bootstrap methods. The results indicated that the BCPB method has good
performance when the sample size is small than 100. We also investigated the
behavior of the lower confidence bound values and sample sizes required for
specified precision of the estimatiom ibysusing BCPB method. The proposed
approach ensures that the risk of making incorreet decisions will be no greater than
the preset Type I error 1-p . We also provided tables for the engineers/
practitioners to use for their inplant applications. A real-world example taken from
TFT-LCD manufacturing process is,investigated to:illustrate the applicability of our
approach.

The second part, the estimator:of the ‘index C, for the process where a
systematic assignable cause occurs is investigated. Further, a procedure of capability
measure with assignable causes is developed, and the critical value for various
values capability requirements and sample size are provided. The proposed
procedure is similar to those used in monitoring a process with control chart, and
used to monitor the process and decide if the process should stop and replace the
tool to avoid producing unacceptable products. A real-world case taken from IC
packaging process is investigated to illustrate the applicability of the proposed
procedure.
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Appendix A The rank of the four bootstrap methods

The rank of the four bootstrap methods asC,, =1 and v=2

Rank 1 2 3 4 total

n =30 SB 6 21 473 0 2.934
PB 5 474 21 0 2.032

BCPB 473 0 1 26 1.160

PT 16 5 5 474 3.874

n =40 SB 6 20 472 2 2.940
PB 8 472 20 0 2.024

BCPB 472 2 0 26 1.160

PT 14 6 8 472 3.876

n =50 SB 2 27 469 2 2.942
PB 2 470 27 1 2.054

BCPB 469 1 2 28 1.178

PT 27 2 2 469 3.826

n =60 SB 2 30 465 3 2.938
PB 9 466 24 1 2.034

BCPB 468 0 1 31 1.190

PT 22 3 10 465 3.836

n=70 SB 4 19 475 2 2.950
PB 4 478 18 0 2.028

BCPB 477 0 0 23 1.138

PT 15 3 7 475 3.884

n =80 SB 5 26 467 2 2.932
PB 2 468 30 0 2.056

BCPB 470 3 0 27 1.168

PT 23 4 2 471 3.842

n =90 SB 4 26 470 0 2.932
PB 4 469 24 3 2.052

BCPB 472 1 2 25 1.160

PT 20 4 4 472 3.856

n =100 SB 6 27 466 1 2.924
PB 8 467 24 1 2.036

BCPB 466 1 2 31 1.196

PT 20 5 8 467 3.844

n=125 SB 4 19 475 2 2.950
PB 5 476 19 0 2.028

BCPB 477 1 0 22 1.134

PT 14 4 6 476 3.888

n =150 SB 2 22 470 6 2.960
PB 4 471 19 6 2.054

BCPB 477 0 4 19 1.130

PT 17 7 8 468 3.854

n =200 SB 2 26 461 11 2.962
PB 7 467 24 2 2.042

BCPB 470 4 2 24 1.160

PT 21 3 13 463 0.216
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The rank of four bootstrap methods as C,, =1 and v=3
1 2 3 4 total
n =30 SB 4 17 477 2 2.954
PB 0 480 17 3 2.046
BCPB 481 0 4 15 1.106
PT 15 3 2 480 3.894
n =40 SB 1 13 483 3 2.976
PB 1 486 12 1 2.026
BCPB 486 1 1 12 1.078
PT 12 0 4 484 3.920
n =50 SB 6 23 466 5 2.940
PB 4 469 24 3 2.052
BCPB 469 3 4 24 1.166
PT 21 5 6 468 3.842
n =60 SB 1 26 466 7 2.958
PB 2 471 26 1 2.052
BCPB 474 2 1 23 1.146
PT 23 1 7 469 3.844
n=70 SB 5 27 463 5 2.936
PB 5 464 30 1 2.054
BCPB 469 B) 3 23 1.160
PT 21 4 5 470 3.848
n =80 SB 7 25 464 4 2.930
PB 11 463 23 3 2.036
BCPB 465 2 10 23 1.182
PT 17 10 3 470 3.852
n =90 SB 10 21 457 12 2.942
PB 3 466 29 2 2.060
BCPB 466 4 4 26 1.180
PT 21 9 10 460 3.818
n =100 SB 7 20 464 9 2.950
PB 6 467 25 2 2.046
BCPB 468 6 3 23 1.162
PT 19 7 8 466 3.842
n=125 SB 7 39 444 10 2.914
PB 10 447 33 10 2.086
BCPB 461 7 9 23 1.188
PT 22 7 14 457 3.812
n =150 SB 7 41 435 17 2.924
PB 13 438 39 10 2.092
BCPB 446 9 9 36 1.270
PT 37 9 19 435 3.704
n = 200 SB 13 36 426 25 2.926
PB 15 434 42 9 2.090
BCPB 446 14 7 33 1.254
PT 27 15 25 433 3.728
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The rank of four bootstrap methods as C,, =1 and v=4
1 2 3 4 total
n =30 SB 7 24 466 3 2.930
PB 3 467 26 4 2.062
BCPB 469 3 4 24 1.166
PT 21 6 4 469 3.842
n =40 SB 5 30 459 6 2.932
PB 4 460 31 5 2.074
BCPB 467 5 1 27 1.176
PT 24 5 9 462 3.818
n =50 SB 9 31 450 10 2.922
PB 3 457 36 4 2.082
BCPB 460 3 3 34 1.222
PT 28 9 11 452 3.774
n =60 SB 9 33 445 13 2.924
PB 5 453 38 4 2.082
BCPB 455 6 5 34 1.236
PT 31 8 12 449 3.758
n =70 SB 9 44 434 13 2.902
PB 11 434 45 10 2.108
BCPB 450 11 7 32 1.242
PT 31 10 14 445 3.746
n =80 SB 6 47 434 13 2.908
PB 16 428 47 9 2.098
BCPB 439 13 3 45 1.308
PT 41 10 17 432 3.680
n =90 SB 12 41 425 22 2.914
PB 14 431 43 12 2.106
BCPB 442 10 9 39 1.290
PT 33 17 24 426 3.686
n =100 SB 8 48 422 22 2.916
PB 9 433 48 10 2.118
BCPB 441 11 12 36 1.286
PT 43 7 20 430 3.674
n=125 SB 15 63 392 30 2.874
PB 16 404 64 16 2.160
BCPB 425 15 15 45 1.360
PT 46 16 29 409 3.602
n=150 SB 17 55 394 34 2.890
PB 17 409 52 22 2.158
BCPB 416 21 20 43 1.380
PT 51 15 33 401 3.568
n =200 SB 20 53 386 41 2.896
PB 22 401 63 14 2.138
BCPB 412 24 10 54 1.412
PT 46 23 40 391 3.552
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The rank of four bootstrap methods as C,, =1 and v=5
1 2 3 4 total
n =30 SB 10 28 455 7 2.918
PB 5 458 34 3 2.070
BCPB 465 5 3 27 1.184
PT 20 9 8 463 3.828
n =40 SB 7 47 432 14 2.906
PB 9 435 50 6 2.106
BCPB 437 9 7 47 1.328
PT 48 8 11 433 3.658
n =50 SB 9 61 418 12 2.866
PB 12 416 61 11 2.142
BCPB 420 13 12 55 1.404
PT 61 8 10 421 3.582
n =60 SB 14 63 399 24 2.866
PB 13 410 62 15 2.158
BCPB 420 11 12 57 1.412
PT 54 15 28 403 3.560
n=70 SB 7 67 395 31 2.900
PB 17 402 71 10 2.148
BCPB 406 20 10 64 1.464
PT 70 12 23 395 3.486
n =80 SB 15 76 384 25 2.838
PB 10 391 78 21 2.220
BCPB 406 15 10 69 1.484
PT 69 18 28 385 3.458
n =90 SB 20 73 381 26 2.826
PB 19 385 74 22 2.198
BCPB 390 23 15 72 1.538
PT 72 18 30 380 3.436
n =100 SB 16 78 374 32 2.844
PB 20 388 78 14 2.172
BCPB 393 21 15 71 1.528
PT 74 11 34 381 3.444
n=125 SB 25 82 348 45 2.826
PB 34 352 90 24 2.208
BCPB 366 44 17 73 1.594
PT 76 21 45 358 3.370
n =150 SB 28 103 325 44 2.770
PB 37 330 102 31 2.254
BCPB 355 40 25 80 1.660
PT 80 27 50 343 3.312
n = 200 SB 22 86 340 52 2.844
PB 50 340 95 15 2.150
BCPB 365 45 19 71 1.592
PT 70 22 46 362 3.400
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The rank of four bootstrap methods as C,, =1.33 and v =2
1 2 3 4 total
n =30 SB 3 13 481 3 2.968
PB 3 483 14 0 2.022
BCPB 483 2 0 15 1.094
PT 11 2 5 482 3.916
n =40 SB 8 27 464 1 2.916
PB 4 465 29 2 2.058
BCPB 465 0 2 33 1.206
PT 23 8 5 464 3.820
n=>50 SB 3 18 477 2 2.956
PB 4 480 15 1 2.026
BCPB 482 2 1 15 1.098
PT 11 1 6 482 3.918
n = 60 SB 6 17 476 1 2.944
PB 5 477 17 1 2.028
BCPB 477 1 1 21 1.132
PT 12 5 6 477 3.896
n=70 SB 6 21 470 3 2.940
PB 3 474 22 1 2.042
BCPB 472 2 3 23 1.154
PT 19 3 5 473 3.864
n =80 SB 6 33 455 6 2.922
PB 5 459 32 4 2.070
BCPB 462 2 4 32 1.212
PT 27 6 9 458 3.796
n =90 SB 3 26 468 3 2.942
PB 4 467 26 3 2.056
BCPB 474 2 0 24 1.148
PT 20 4 6 470 3.852
n =100 SB 3 38 453 6 2.924
PB 7 456 34 3 2.066
BCPB 458 4 3 35 1.230
PT 32 2 10 456 3.780
n=125 SB 4 29 455 12 2.950
PB 3 459 33 5 2.080
BCPB 470 5 1 24 1.158
PT 23 7 11 459 3.812
n =150 SB 10 30 450 10 2.920
PB 9 459 27 5 2.056
BCPB 459 4 5 32 1.220
PT 22 7 18 453 3.804
n =200 SB 6 34 445 15 2.938
PB 13 448 33 6 2.064
BCPB 448 12 8 32 1.248
PT 33 6 14 447 3.750
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The rank of four bootstrap methods as C,, =1.33 and v=3
1 2 3 4 total
n =30 SB 5 21 473 1 2.940
PB 4 472 20 4 2.048
BCPB 474 2 3 21 1.142
PT 17 5 5 473 3.868
n =40 SB 4 30 459 7 2.938
PB 4 461 32 3 2.068
BCPB 462 4 3 31 1.206
PT 30 5 6 459 3.788
n =50 SB 3 32 460 5 2.934
PB 4 460 33 3 2.070
BCPB 463 4 2 31 1.202
PT 30 4 5 461 3.794
n = 60 SB 9 37 448 6 2.902
PB 2 453 40 5 2.096
BCPB 456 2 3 39 1.250
PT 33 8 9 450 3.752
n=70 SB 11 52 428 9 2.870
PB 3 427 61 9 2.152
BCPB 440 10 4 46 1.312
PT 46 11 8 435 3.664
n =80 SB 11 58 421 10 2.860
PB 4 420 60 16 2.176
BCPB 427 7 7 59 1.396
PT 58 15 12 415 3.568
n =90 SB 15 51 406 28 2.894
PB 14 420 51 15 2.134
BCPB 417 19 14 50 1.394
PT 54 10 29 407 3.578
n =100 SB 8 65 405 22 2.882
PB 8 414 66 12 2.164
BCPB 426 8 11 55 1.390
PT 58 13 18 411 3.564
n=125 SB 17 79 372 32 2.838
PB 24 382 86 8 2.156
BCPB 387 18 10 85 1.586
PT 75 18 35 372 3.408
n =150 SB 21 102 340 37 2.786
PB 20 359 101 20 2.242
BCPB 368 27 21 84 1.642
PT 91 14 37 358 3.324
n =200 SB 27 120 317 36 2.724
PB 39 304 121 36 2.308
BCPB 329 38 27 106 1.820
PT 106 38 35 321 3.142
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The rank of four bootstrap methods as C,, =1.33 and v =4

1 2 3 4 total

n =230 SB 5 31 457 7 2.932
PB 2 463 28 7 2.080

BCPB 467 1 6 26 1.182

PT 26 5 9 460 3.806

n =40 SB 8 49 437 6 2.882
PB 7 438 48 7 2.110

BCPB 442 7 10 41 1.300

PT 43 6 5 446 3.708

n =50 SB 18 73 387 22 2.826
PB 13 395 78 14 2.186

BCPB 400 16 14 70 1.508

PT 69 16 22 393 3.478

n =60 SB 17 81 389 13 2.796
PB 15 390 80 15 2.190

BCPB 398 13 12 77 1.536

PT 71 16 19 394 3.472

n=70 SB 16 94 356 34 2.816
PB 22 368 104 6 2.188

BCPB 369 20 12 99 1.682

PT 93 18 28 361 3.314

n =80 SB 12 113 344 31 2.788
PB 18 350 108 24 2.276

BCPB 369 19 19 93 1.672

PT 102 17 29 352 3.262

n=90 SB 23 114 332 31 2.742
PB 26 330 126 18 2.272

BCPB 343 32 15 110 1.784

PT 110 23 26 341 3.196

n =100 SB 26 123 315 36 2.722
PB 23 316 132 26 2.310

BCPB 329 27 24 120 1.870

PT 119 35 28 318 3.090

n=125 SB 34 153 278 37 2.644
PB 28 280 155 373 5.090

BCPB 291 31 35 143 2.060

PT 147 36 34 283 2.906

n =150 SB 30 157 256 57 2.680
PB 29 274 161 36 2.408

BCPB 294 32 33 141 2.042

PT 147 37 51 265 2.868

n =200 SB 34 186 206 74 2.640
PB 45 234 182 39 2.430

BCPB 242 37 45 176 2.310

PT 181 41 68 210 2.614
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The rank of four bootstrap methods as C,, =1.33 and v=5

1 2 3 4 total

n =230 SB 10 45 436 9 2.888
PB 12 429 47 12 2.118

BCPB 440 8 7 45 1.314

PT 39 17 11 433 3.676

n =40 SB 11 80 392 17 2.830
PB 9 399 80 12 2.190

BCPB 400 13 10 77 1.528

PT 80 9 17 394 3.450

n =50 SB 24 115 335 26 2.726
PB 7 359 121 13 2.280

BCPB 358 9 18 115 1.780

PT 111 17 26 346 3.214

n =60 SB 20 126 327 27 2.722
PB 25 319 133 23 2.308

BCPB 338 31 17 114 1.814

PT 119 22 24 335 3.150

n=170 SB 24 157 285 34 2.658
PB 27 284 160 29 2.382

BCPB 293 25 27 155 2.088

PT 158 32 31 279 2.862

n =80 SB 26 177 262 35 2.612
PB 25 268 173 34 2.432

BCPB 279 29 26 166 2.158

PT 171 s 37 265 2.792

n=90 SB 24 181 257 38 2.618
PB 38 253 175 34 2.410

BCPB 260 37 30 173 2.232

PT 182 26 37 255 2.730

n =100 SB 23 192 245 40 2.604
PB 34 245 189 32 2.438

BCPB 250 35 24 191 2.312

PT 193 29 42 236 2.642

n=125 SB 42 212 197 49 2.506
PB 23 220 226 31 2.530

BCPB 217 27 35 221 2.520

PT 218 41 43 198 2.442

n =150 SB 36 223 191 50 2.510
PB 30 202 241 27 2.530

BCPB 197 36 31 236 2.612

PT 239 38 38 185 2.338

n =200 SB 43 267 152 38 2.370
PB 37 168 262 33 2.582

BCPB 146 31 38 285 2.924

PT 275 34 47 144 2.120
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Appendix B MATLAB Program

MATLAB Program for Sample Size
%
% Input basic data Rpu, Cpu_true, upbound, lowbound
%
Rpu =0.75;
Cpu_true = 1;
upbound = 2000;
lowbound = 0;

%
% Find sample size with binary search
%
counter = 0;

while (upbound - lowbound) > 1;

counter = counter + 1;
for1=1:500;
CI_BCPB(i) = bootstrap3. Cpul(floor((upbound+lowbound)/2));
end;
size(counter) = floor((upbound +lowbound)/2);
CI_BCPB_mean = mean(CI“BCPB);

if CI_BCPB_mean/Cpu_true >= Rpu;

upbound = floor((upbound+lowbound)/2);
else

lowbound = floor((upbound+lowbound)/2);
end;

R_gammal(counter) =CI_BCPB_mean/Cpu_true;

end;
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%
% Function files included — bootstrap3_Cpul.m
%
function [CI_BCPB] = bootstrap3_Cpul(size);
flag = -1;

while flag == -1

%
% Input data n, B, USL, alpha
%

n = size;
B =10000;
USL = 3.4;
alpha = 0.05;
%
% Randomize sample data distributed normal distribution and calculate parameter of
data
%

datal = normrnd(3.2273, 0.052, n, 1);
data2 = normrnd(3.2273, 0.052;n, 1);
data3 = normrnd(3.2273, 0.052, n, 1);

testl = 0;

counterl = 0;

while testl == 0;
sample_datal = bootstrp(B, 'sort', datal);
sample_mul = mean(sample_datal, 2);
sample_sigmal = std(sample_datal,0,2);
test]_data = sort(sample_sigmal);
if testl_data(1)> 0

testl =1;
cpu_hatl = (USL - sample_mul)./(3*sample_sigmal);
else
counterl = counterl +1;
end;
if counterl == 500;
stop;
end;
end;
test2 = 0;

counter2 = 0;
while test2 == 0;
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sample_data2 = bootstrp(B, 'sort', data2);
sample_mu2 = mean(sample_data2, 2);
sample_sigma?2 = std(sample_data2,0,2);
test2_data = sort(sample_sigma?2);

if test2_data(1)> 0

test2 =1;
cpu_hat2 = (USL - sample_mu2)./(3*sample_sigma?2);
else
counter2 = counter2 +1;
end;
if counter2 == 500;
stop;
end;
end;
test3 = 0;

counter3 = 0;

while test3 == 0;
sample_data3 = bootstrp(B; 'sort', data3);
sample_mu3 = mean(sample_data3;2);
sample_sigma3 = std(Sample_data3,0,2);
test3_data = sort(sample_sigma3);
if test3_data(1)> 0

test3 =1;
cpu_hat3 = (USL - sample_mu3)./(3*sample_sigma3);
else
counter3 = counter3 +1;
end;
if counter3 == 500;
stop;
end;
end;
%
% Calculate CZ,
%

cpu_total_hat =
(1/3)*norminv(normcdf(3*cpu_hat1l).*normcdf(3*cpu_hat2).*normcdf(3*cpu_hat3)
);
if cpu_total_hat ~= Inf
flag = 1;
end;
end;
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%
% Estimate C?, with BCPB method

%
cpu_total_hat_mu = mean (cpu_total_hat);
cpu_total_hat_sort = sort(cpu_total_hat);

p0 = length(find(cpu_total_hat_sort <=
cpu_total_hat_mu))/length(cpu_total_hat_sort);
z0 = norminv(p0);

pl = normcdf(2*z0-norminv(1-alpha));
CI_BCPB = cpu_total_hat_sort(round(pl*B));
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