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The process capability index Cpm, sometimes called the loss-based index, has been proposed to the
manufacturing industry for measuring process reproduction capability. This index incorporates the varia-
tion of production items with respect to the target value and the specification limits preset in the factory. To
estimate the loss-based index properly and accurately, certain frequentist and Bayesian perspectives have
been proposed to obtain lower confidence bounds (LCBs) for providing minimum process capability. The
LCBs not only provide critical information regarding process performance but are also used to determine
whether an improvement was made in a capability index and by extension in reducing the fraction of
non-conforming items. In this paper, under the assumption of normality, based on frequentist and Bayesian
senses, several existing approaches for constructing LCBs of Cpm are presented. Depending on the statis-
tical methods used, we then classify these existing approaches into three categories and compared them in
terms of the coverage rates and the mean values of the LCBs via simulations. The relative advantages and
disadvantages of these approaches are summarized with some highlights of the relevant findings.

Keywords: coverage rate; loss-based capability index; lower confidence bound; performance comparison

1. Introduction

With the speedy advance of manufacturing technology, suppliers and manufacturers require their
products to be of high quality, with a very low proportion of non-conformities (NC). This is
true, particularly for today’s high-technology products requiring a very low fraction of NC, often
measured in parts per million (PPM). Traditional methods for measuring the fraction of NC
become inapplicable for those high-quality processes because any manufacturing sample of a
reasonable size likely contains no defective product items. For this reason, recently developed
process capability indices (PCIs), includingCp,Cpk, andCpm, have received substantial attention in
the manufacturing industries, particularly for companies manufacturing microelectronics devices
and accessories demanding strict quality requirements.
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1130 C.-W. Wu et al.

The Cp and Cpk indices are appropriate measures of progress for quality improvement paradigms
in which a reduction in variability is the guiding principle. These two indices are defined by
Kane [1] as

Cp = USL − LSL

6σ
, Cpk = min

{
USL − μ

3σ
,
μ − LSL

3σ

}
,

where USL and LSL refer to the upper and lower specification limits, respectively, μ stands for
the process mean and σ stands for the process standard deviation of an in-control manufacturing
process. Clearly, the Cp and Cpk indices are not related to the cost of failing to meet customers’
requirement. Taguchi, on the other hand, emphasizes the loss in a product’s worth when one of
its characteristics departs from the customers’ ideal value T . To help account for this, Hsiang and
Taguchi [2] introduced the index Cpm, which was also proposed independently by Chan et al. [3].
As the index Cpm is related to the idea of squared error loss, this Taguchi index Cpm has been
sometimes called the loss-based index. The index Cpm is defined as

Cpm = USL − LSL

6
√

σ 2 + (μ − T )2
= d

3
√

σ 2 + (μ − T )2
, (1)

where d = (USL = LSL)/2 refers to the half-length of the allowable tolerance of the process.
From Equation (1), we can observe that the term σ 2 + (μ − T )2 incorporates two variation com-
ponents: (i) variation in the process mean; and (ii) deviation of the process mean from the target;
that is, the loss-based index Cpm emphasizes on measuring the ability of the process to clus-
ter around the target, which therefore reflects the degrees of process targeting (centering). It is
easy to see that if the process variance increases (decreases), then the denominator will increase
(decrease) and Cpm will decrease (increase). Also, if process mean moves away from (closer to)
the target value, then the denominator will increase (decrease) and Cpm will decrease (increase).
Obviously, Cpm is sensitive to T , with an additional penalty of being off-target. Furthermore,
Ruczinski [4] obtained a lower bound on the process yield as Yield ≥ 2�(3Cpm) − 1 or equiv-
alently NC% ≤ 2�(−3Cpm) for Cpm >

√
3/3, where NC% is the fraction of nonconforming

items.
In practice, in order to realize the manufacturing capability of a process based on the value

of Cpm, the knowledge of the process mean μ and the process variance σ 2 are required. Thus,
sample data are collected to calculate the estimated value of Cpm, and a great degree of uncertainty
(sampling errors) is introduced into the capability analysis. In the case of the normal distribution
conditions, the statistical properties of the estimator of Cpm have been investigated extensively,
including Chan et al. [3], Boyles [5], Kushler and Hurley [6], Vännman and Kotz [7], Kotz and
Lovelace [8], Wright [9], Zimmer et al. [10], Pearn and Shu [11], Perakis and Xekalaki [12],
Daniels et al. [13], Wu and Pearn [14], and Pearn and Wu [15]. Kotz and Johnson [16] provided a
compact survey with interpretations and comments of some 170 publications on process capability
indices during 1992–2000. Among these studies, the main issue is to accurately estimate the loss-
based index Cpm to properly measure the reproduction performance of an in-control manufacturing
process. The lower confidence bound (LCB) conveys the minimum capability information of the
manufacturing process, which is also the main criterion of quality assurance system. Although,
many approaches based on the traditional frequentist and the Bayesian senses for constructing
the LCB of Cpm have been carried out for measuring process performance, none of the research
has been conducted on comparing the performance of these LCB approaches. Throughout this
paper, it is assumed that the process measurements are independent, identically distributed as the
normal distribution and the process is under statistical control.
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Journal of Statistical Computation and Simulation 1131

2. Sampling distributions of the estimated Cpm

The definition of Cpm involves two unknown parameters μ and σ 2, which must be estimated from
the collected sample. Chan et al. [3] and Boyles [5] proposed the following two estimators of
Cpm, C̃pm, and Ĉpm, respectively,

C̃pm = d

3
√∑n

i=1(Xi − T )2/(n − 1)
= d

3
√

S2 + [n/(n − 1)](X − T )2
, (2)

Ĉpm = d

3
√∑n

i=1(Xi − T )2/n
= d

3
√

S2
n + (X − T )2

, (3)

where X = ∑n
i=1 Xi/n, S2 = ∑n

i=1(Xt − X)2/(n − 1) and S2
n = ∑n

i=1(Xt − X)2/n.
The two estimators, C̃pm and Ĉpm, are essentially the same. Note that X and S2

n are the maximum
likelihood estimators (MLEs) of μ and σ 2, respectively. Hence, the estimated Ĉpm is also the MLE
of Cpm. Boyles [5] considered that it would be more appropriate to replace the factor n − 1 by n in
the denominator since the terms S2

n + (X − T )2 = ∑n
i=1(Xi − T )2/n and E[S2

n + (X − T )2] =
σ 2 + (μ − T )2 in the denominator of Ĉpm are the uniformly minimum variance unbiased estima-
tors (UMVUEs) of the term σ 2 + (μ − T )2. Therefore, it is reasonable, for reliability purposes,
that we use the estimator Ĉpm to evaluate the process performance. However, the point estimate
is a random variable which provides no confidence on the estimation accuracy. It would be more
useful to construct LCBs that guarantee the minimal capability at some designated level of confi-
dence. Kotz and Johnson [17] derived formulas for the rth moment of Ĉpm. Note that the quantity
n[S2

n + (X − T )2]/σ 2 has a non-central chi-square χ2
n,λ distribution with n degrees of freedom

and non-centrality parameter λ = nξ 2, where ξ = (μ − T )/σ . Boyles [5] and Pearn et al. [18]

showed that Ĉpm is distributed as Cp

√
n/χ2

n,λ, which can be equivalently expressed as

Ĉpm ∼ Cpm

√
1 + λ

n

√
n

χ2
n,λ

. (4)

In fact, Equation (3) can be alternatively expressed as Ĉpm = D/(3
√

K + Y ), where D =√
nd/σ , K = nS2

n/σ
2 ∼ χ2

n−1, Y = n(X − T )2/σ 2. Thus, the probability density function (PDF)

and cumulative distribution function (CDF) of Ĉpm can be obtained as [19],

fĈpm
(x) = 21−n/2Dn

3nxn+1
exp

(
−λ

2
− D2

18x2

) ∞∑
j=0

{ (
λD2/36x2

)j

j !� ((n/2) + j)

}
, (5)

FĈpm
(x) = 1 −

∫ x

0

21−n/2Dn

3nxn+1
exp

(
−λ

2
− D2

18x2

) ∞∑
j=0

{ (
λD2/36x2

)j

j !� ((n/2) + j)

}
dx (6)

for x > 0, which is equivalent to the PDF and CDF of Ĉpm presented in [7]. It can be noted
that expression (4) entailing a non-central χ2 distribution and Equations (5) and (6) involved the
infinite series. Applying the similar integration technique used in ref. [20], Pearn and Shu [11]
obtained an alternatively explicit form of the PDF and CDF of Ĉpm. The PDF and CDF of Ĉpm
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1132 C.-W. Wu et al.

are expressed in terms of a mixture of the χ2 distribution and the normal distribution,

fĈpm
=

∫ b
√

n/(3x)

0

2b2n

9x3
g

(
b2n

9x2
− t2

)
[φ(t + ξ

√
n) + φ(t − ξ

√
n)]dt, (7)

FĈpm
= 1 −

∫ b
√

n/(3x)

0
G

(
b2n

9x2
− t2

)
[φ(t + ξ

√
n) + φ(t − ξ

√
n)]dt (8)

for x > 0, where b = d/σ , ξ = (μ − T )/σ , g(·), and G(·) are the PDF and CDF of the χ2

distribution with degrees of freedom n − 1, and φ(·) is the PDF of the standard normal distribution.
It can obtain an identical equation if Equations (7) and (8) are substituted ξ by −ξ , for fixed values
of x and n.

3. Existing approaches for estimating Cpm

In order to assess process performance and make decisions in manufacturing capability, the deci-
sion rules as (1) critical values, (2) p-values, and (3) LCBs are needed based on Equations (4)–(8).
To keep the paper concise, the LCBs for the true value of Cpm are discussed here. Subse-
quently, several researchers devoted studies to constructing approximate or exact LCBs of Cpm

are described and contrasted. From Equations (4)–(8), we know that the CDF and PDF of Ĉpm are
quite complicated as the distribution parameter ξ is unknown.

3.1. Marcucci and Beazley’s approximation

From expression (4), Marcucci and Beazley [21] set ξ = 0 to obtain the following approximate
100γ % LCB of Cpm, denoted as CL(MB)

pm ,

CL(MB)
pm

∼=
√

χ2
n (1 − γ )

n
Ĉpm, (9)

where χ2
n (1 − γ ) is the 100(1 − γ )th percentile of the ordinary χ2 with n degrees of freedom.

3.2. Boyles’ approximation

Boyles [5] used the ordinary χ2 distribution with the correct low terminal and the first two
moments to approximate the non-central χ2 distribution, χ2

n,λ, in expression (4) (a technique used
in [22]) to obtain an approximate LCB of Cpm, where a known parameter ξ is given. It has been
shown that

S2
n + (X − T )2

σ 2 + (μ − T )2
= τ̂ 2

τ 2
∼̇χ2

v

v
, where v = n(1 + ξ 2)2

(1 + 2ξ 2)
, (10)

where the symbol ∼̇ means ‘is approximately distributed as’.As Cpm/Ĉpm = τ̂ /τ , an approximate
100γ % LCB for Cpm, with a known parameter ξ , CL(Bo)

pm can be expressed as

CL(Bo)
pm

∼= Ĉpm

√
χ2

v (1 − γ )

v
. (11)

In practice, v is unknown, which has to be estimated. Boyles [5] replaced the unknown parameter v

by its MLE v̂, naturally obtained by substituting μ and σ with the sample mean X and the sample
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Journal of Statistical Computation and Simulation 1133

standard deviation Sn. Consequently, the approximate 100γ % LCB of Cpm with an unknown
parameter ξ , ∗CL(Bo)

pm , can be obtained as

∗CL(Bo)
pm

∼= Ĉpm

√
χ2

v̂
(1 − γ )

v̂
, where v̂ = n(1 + ξ̂ 2)2

(1 + 2ξ̂ 2)
, ξ̂ = (X − T )

Sn

. (12)

3.3. Chan, Xiong and Zhang’s approximation

When the sample size is large (v̂ is larger than 100 in Equation (12)), Boyles [5] used the stan-
dard normal distribution instead of the ordinary χ2 distribution for the approximation, a similar
approach is proposed by Chan et al. [23]. Thus, the approximate 100γ % LCB of Cpm with an
unknown parameter ξ , CL(CXZ)

pm , becomes

CL(CXZ)
pm

∼= Ĉpm − Z(γ )
d

3

√
S2

n(X − T )2 + S4
n/2

n[S2
n + (X − T )2]3

or, equivalently,

CL(CXZ)
pm

∼= Ĉpm

(
1 − Z(γ )

√
1

2v̂

)
, (13)

where Z(γ ) denotes the 100γ % percentile of the standard normal distribution.

3.4. Perakis and Xekalaki’s approximation

Perakis and Xekalaki [12] provided a different approximation of non-central χ2 distribution
improving Patnaik’s moment approximation (a technique originally proposed by Pearson [24])
for constructing approximate LCB of Cpm. Perakis and Xekalaki [12] obtained the approximate
LCB of Cpm with a known parameter ξ , CL(PX)

pm , as

CL(PX)
pm

∼= Ĉpm

√
cχ2

f (1 − γ ) + b

n(1 + ξ 2)
, (14)

where c = (1 + 3ξ 2)/(1 + 2ξ 2), f = n(1 + 2ξ 2)/c2, b = −nξ 4/(1 + 3ξ 2).
For an unknown parameter ξ , Perakis and Xekalaki [12] proposed Equation (15) to obtain the

approximate LCB of Cpm, ∗CL(PX)
pm :

∗CL(PX)
pm

∼= Ĉpm

√√√√ ĉχ2
f̂
(1 − γ ) + b̂

n(1 + ξ̂ 2)
, (15)

where ĉ = (1 + 3ξ̂ 2)/(1 + 2ξ̂ 2), f̂ = (n(1 + 2ξ̂ 2)/ĉ2), b̂ = −nx̂4/(1 + 3ξ̂ 2).
Obviously, the unknown parameters ξ , c, f , and b are replaced by their MLEs ξ̂ , ĉ, f̂ , and b̂,

respectively.
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1134 C.-W. Wu et al.

3.5. Zimmer and Hubele’s approach

On the other hand, based on expression (4), the 100γ % LCB of Cpm, CL(ZH)
pm , can be found as [25]

CL(ZH)
pm = Ĉpm

√
χ2

n,λ(1 − γ )

n + λ
. (16)

Using expression (4) and Equation (16), Zimmer and Hubele [25] and Zimmer et al. [10] presented

some graphical procedures and tables of
√

n/χ2
n,λ(1 − γ ) to obtain confidence intervals of Cpm,

where the parameter ξ is assumed to be known.
In a real application with an unknown parameter ξ , the 100γ % approximate LCB of Cpm based

on Zimmer et al. [10], ∗CL(ZH)
pm , can be presented as

∗CL(ZH)
pm

∼= Ĉpm

√
χ2

n,λ̂
(1 − γ )

n + λ̂
, where λ̂ = nξ̂ 2. (17)

3.6. Pearn and Shu’s approach

By working with Equation (8), the 100γ % LCBs of Cpm, CL(PS)
pm , can be obtained by solving

Equation (18), where n and Ĉpm are given with a known ξ and bL = 3CL(PS)
pm (1 + ξ 2)1/2

∫ bL

√
n/(3Ĉpm)

0
G

(
b2

Ln

9Ĉ2
pm

− t2

)
[φ(t + ξ

√
n) + φ(t − ξ

√
n)]dt = 1 − γ. (18)

In real application with an unknown parameter ξ , an approximate LCB, ∗CL(PS)
pm , can be obtained

by solving Equation (19) with ∗bL = 3∗CL(PS)
pm (1 + ξ̂ 2)1/2,

∫ ∗bL

√
n/(3Ĉpm)

0
G

( ∗b2
Ln

9Ĉ2
pm

)
[φ(t + ξ̂

√
n) + φ(t − ξ̂

√
n)]dt = 1 − γ. (19)

Pearn and Shu [11] commented that such approach introduces additional sampling errors from
estimating ξ in finding the LCB, and certainly would make this approach (and of course other
existing methods discussed above) less reliable. Pearn and Shu [11] investigated the analysis on
LCB to find that it attains its minimal value at ξ = 0. Hence for quality assurance purpose, we
may solve Equation (20) to obtain the required 100γ % LCBs, ∗∗CL(PS)

pm , for giving Ĉpm, n, and
setting ξ = 0 without further estimating the parameter ξ .

2
∫ ∗∗CL(PS)

√
n/Ĉpm

pm

0
G

(
n(∗∗CL(PS)

pm )2

Ĉ2
pm

− t2

)
φ(t)dt = 1 − γ. (20)

3.7. Shiau, Chiang and Hung’s Bayesian approach

Shiau et al. [26] adopted a Bayesian approach to obtain the credible interval, a Bayesian analogue
of classical confidence interval, by considering the posterior probability p = Pr{Cpm > w|X}
that the process under investigation is capable.
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Journal of Statistical Computation and Simulation 1135

Thus, the 100γ % LCBs of Cpm based on Shiau et al.’s Bayesian approach, CL(SCH)
pm , can be

obtained from γ = Pr{Cpm > CL(SCH)
pm |X}, that is

γ =
∫ t ′

0

[
1

�(k)ψkyk+1

]
exp

(
− 1

ψy

)
[�(b1(y) + b2(y)) − �(b1(y) − b2(y))]dy, (21)

where t ′ = (2/n)(Ĉpm/CL(SCH)
pm )2.

4. Performance comparisons

4.1. Discussions

Although Equations (16) and (18) proposed, respectively, by Zimmer and Hubele’s approach
(Section 3.5) and Pearn and Shu’s approach (Section 3.6) have different mathematical expressions,
given a known parameter ξ = (μ − T )/σ the exact LCBs of Cpm obtained from Equations (16)
and (18) are identical i.e. CL(ZH)

pm = CL(PS)
pm . Note that the actual ξ is unobtainable in real indus-

try application, hence the approaches expressed in Equations (16) and (18) are excluded in the
subsequent performance comparisons.

When ξ is unknown, an exact confidence bound estimation of Cpm may be intractable due
to the complicated statistical distribution. Existing approaches (Sections 3.1–3.7) based on the
frequentist and Bayesian senses proposed in the preceding section are used to ease the difficulties.
According to the statistical methods used for constructing the LCB of Cpm, we then classify
existing approaches (Sections 3.1–3.7) into three categories which are (1) the approach of exact
sampling distribution, (2) the approaches of approximation, and (3) the Bayesian approach. Table 1
summarizes the frequentist and the Bayesian senses, the statistical methods, and three categories
of approaches with corresponding equations.

4.2. Simulation study

The important consideration in choosing approaches for determining the LCB of Cpm is the
performance of each approach. For LCBs, the natural performance characteristic is the coverage
rate (CR) of the approach. If the desired confidence level is 100γ %, then the nominal CR is γ .
For an exact approach, the actual CR equals the nominal rate, but when the approach involves
an statistical methods of approximation, the actual rate can differ from the nominal rate. An
approximate approach for which the difference is relatively small can be said to perform well.

Table 1. The frequentist and the Bayesian senses, the statistical methods, and three categories of approaches with
corresponding equations.

Statistical methods used Abbreviation
for constructing LCBs of Cpm Category of approach Equations

Frequentist sense Non-central χ2 distribution Approach of exact sampling
distribution

ZH or PS (17) or (19)

Use ordinary χ2 distribution
by setting ξ = 0

Approaches of
approximations

MB (9) or (20)

Patnaik’s approximation Bo (12)
Normal approximation CXZ (13)
Pearson’s approximation PX (15)

Bayesian sense Non-informative prior Bayesian approach SCH (21)
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1136 C.-W. Wu et al.

In order to compare the performance of those existing approaches for constructing the LCBs,
a series of simulations were undertaken. Without loss of generality, the values USL = 3, T = 0,
and LSL = −3 were used for all simulations. A class of normal processes with four different
combinations of process mean and process standard deviation (μ, σ ) = (1, 1), (0.5,0), (0,1),
and (1,0) were considered. These values were chosen to represent processes that vary from ‘not
capable’ (i.e. index value less than 1.00) to ‘very capable’ (index of 1.5 and larger). For each
combination of (μ, σ ), a sample of size n = 25(5)150 was drawn. The single simulation was
then replicated 10,000 times. Thus, we are able to calculate the mean value of Ĉpm (ME), mean
value of LCBs (MLCBs) of Cpm and its CR for each sample size n based on 10,000 trials. The ME
and the MLCB are simply the average of 10,000 values of Ĉpm and the LCB of Cpm, respectively.
The estimated CR is the proportion of times that the calculated LCB were actually smaller than
the corresponding true value of Cpm. This actual CR could then be compared with the nominal
confidence level.

Tables 2–5 display the values of ME, CR, and MLCB for each approach under various parameter
(μ, σ ) combinations and sample size n with a 95% confidence level at 10,000 replications. The ME
seems to overestimate the actual value of Cpm, especially for small sample sizes. As n increases,
the ME tends to close the actual value of Cpm. Obviously, the CR and MLCB are inverse ratios to
each other. The lower CR, the closer to the actual value of the MLCB is. That is true because the
lower CR means much more LCBs do not cover the actual value, and the MLCB is much closer
to the actual value of Cpm.

From Tables 2–5, we observe that the performance of various approaches are affected by the
value of ξ , thus we further perform extensive computations to calculate the LCBs of Cpm for
ξ = 0(0.1)2.0, Cpm = 0.8(0.1)2.0, and n = 25(5)150, which covers a wide range of applications
with Cpm ≥ 0.8. Figure 1a–f plot CR vs. ξ for the 95% LCB of Cpm based on each approach with
ξ = 0(0.1)2.0, n = 25, 50, 100, and 150, and Cpm = 1.00 at times = 10,000.

It can be noted that for small ξ (say 0 ≤ ξ < 0.5), the lower bounds of Cpm for the ZH(PS), Bo,
PX, MB approaches perform well with the most accurate CRs for all the studied cases. Similarly,
when 0.5 ≤ ξ ≤ 2.0, the Bo, PX, ZH(PS) methods have the same acceptable performance mea-
sures for quality assurance with reasonable CRs for all the studied cases. As depicted in Figure 1e
and f, the MB approach under 0.5 ≤ ξ ≤ 2.0 and the SCH approach under 0 ≤ ξ ≤ 2.0 keep type
I error (α-risk) not greater than predetermined value (such as 0.05 or 0.01) to provide necessary
protection to the customers. The conservative LCBs for the true value of Cpm can lead to higher
level of type II error. In contrast, the CXZ approach keeps type I error (α-risk) greater than prede-
termined value, as shown in Figure 1c, to provide optimistic process capability for most of studies
cases under 0 ≤ ξ ≤ 2.0. The suggested approaches for constructing the LCBs of Cpm based on
the value of ξ are displayed in Table 6.

4.3. Some remarks

Based on the simulation results and above discussion, we can conclude the following rule of
thumb to practitioners for real-world factory applications:

(a) When 0 ≤ ξ < 0.5, the LCB of Cpm is in support of the use of the ZH(PS), Bo, PX, MB
approaches.

(b) When 0.5 ≤ ξ ≤ 2.0, the LCB of Cpm is in support of the use of the ZH(PS), Bo, PX
approaches.

(c) If the parameter ξ is known, the exact LCB of Cpm is in support of the use of the Equations (16)
and (18).
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Table 2. Simulated results for 95% LCB of Cpm with (μ, σ ) = (1, 1) and Cpm = 0.7071.

Approach ZH(PS) MB Bo CXZ PX SCH

n ME CR MLCB CR MLCB CR MLCB CR MLCB CR MLCB CR MLCB

25 0.7246 0.9516 0.5776 0.9692 0.5539 0.9494 0.5795 0.9468 0.5811 0.9516 0.5776 0.9587 0.5723
50 0.7158 0.9530 0.6128 0.9713 0.5968 0.9518 0.6136 0.9511 0.6146 0.9530 0.6128 0.9567 0.6107

100 0.7110 0.9510 0.6388 0.9707 0.6277 0.9498 0.6392 0.9492 0.6397 0.9510 0.6388 0.9538 0.6379
150 0.7094 0.9564 0.6506 0.9740 0.6416 0.9559 0.6509 0.9548 0.6512 0.9564 0.6506 0.9579 0.6501

Table 3. Simulated results for 95% LCB of Cpm with (μ, σ ) = (1, 0.5) and Cpm = 0.8944.

Approach ZH(PS) MB Bo CXZ PX SCH

n ME CR MLCB CR MLCB CR MLCB CR MLCB CR MLCB CR MLCB

25 0.9039 0.9546 0.7775 0.9568 0.6910 0.9519 0.7793 0.9502 0.7804 0.9546 0.7752 0.9568 0.7752
50 0.8992 0.9529 0.8096 0.9972 0.7498 0.9516 0.8107 0.9501 0.8113 0.9529 0.9529 0.9538 0.8096

100 0.8973 0.9498 0.8343 0.9962 0.7921 0.9484 0.8347 0.9471 0.8350 0.9498 0.8343 0.9496 0.8345
150 0.8959 0.9555 0.8445 0.9971 0.8102 0.9545 0.8448 0.9540 0.8450 0.9555 0.8445 0.9547 0.8447
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Table 4. Simulated results for 95% LCB of Cpm with (μ, σ ) = (0, 1) and Cpm = 1.00.

Approach ZH(PS) MB Bo CXZ PX SCH

n ME CR MLCB CR MLCB CR MLCB CR MLCB CR MLCB CR MLCB

25 1.0303 0.9501 0.7881 0.9503 0.7877 0.9501 0.7882 0.9482 0.7912 0.9501 0.7881 0.9718 0.7534
50 1.0150 0.9500 0.8465 0.9502 0.8464 0.9500 0.8465 0.9482 0.8482 0.9500 0.8465 0.9670 0.8279

100 1.0066 0.9518 0.8886 0.9518 0.8886 0.9518 0.8886 0.9495 0.8896 0.9518 0.8886 0.9653 0.8789
150 1.0051 0.9479 0.9090 0.9479 0.9090 0.9478 0.9090 0.9460 0.9097 0.9479 0.9090 0.9592 0.9025

Table 5. Simulated results for 95% LCB of Cpm with (μ, σ ) = (0, 0.5) and Cpm = 2.00.

Approach ZH(PS) MB Bo CXZ PX SCH

n ME CR MLCB CR MLCB CR MLCB CR MLCB CR MLCB CR MLCB

25 2.0575 0.9528 1.5739 0.9529 1.5730 0.9528 1.5741 0.9504 1.5800 0.9528 1.5738 0.9738 1.5046
50 2.0306 0.9516 1.6934 0.9518 1.6932 0.9516 1.6934 0.9504 1.6968 0.9516 1.6934 0.9666 1.6562

100 2.0171 0.9481 1.7807 0.9481 1.7806 0.9481 1.7807 0.9481 1.7825 0.9481 1.7807 0.9617 1.7613
150 2.0111 0.9479 1.8188 0.9479 1.8188 0.9479 1.8188 0.9466 1.8201 0.9479 1.8188 0.9599 1.8058
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Figure 1. (a) Plots of CR vs. ξ for 95% LCB based on ZH(PS) approach; (b) plots of CR vs. ξ for 95% LCB based on
Bo approach; (c) plots of CR vs. ξ for 95% LCB based on CXZ approach; (d) plots of CR vs. ξ for 95% LCB based
on PX approach; (e) plots of CR vs. ξ for 95% LCB based on MB approach; (f) plots of CR vs. ξ for 95% LCB based
on SCH approach.

Table 6. The suggested approaches for
LCBs of Cpm.

ξ Suggested approaches

0.0 ≤ ξ < 0.5 ZH(PS), Bo, PX, MB
0.5 ≤ ξ < 2.0 ZH(PS), Bo, PX
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5. An application example

Printed circuit boards (PCBs) are widely used in the microelectronic manufacturing industry,
making computers and peripherals, digital phones, fax machines, channel switch devices, remote
controls, and many other things. Factories producing various PCBs and related products generally
are classified as ‘the PCB industry’, because the core components inside those products are the
PCBs. The PCB manufacturing process mainly consists of a series of chemical-related operations,
and the chemical operations determine the functions of a PCB. PCBs are laminates. This means
that they are made from two or more sheets of material stuck together; often copper and fiberglass.

Some parts of the side with copper tracks is coated with solder resist (usually green in colour)
to prevent solder sticking to those areas where it is not required. This avoids unwanted solder
bridges between tracks. The solder resist is an important operation in the post-process for the
PCB manufacturing, which is chemically unrelated. The effects of the solder resist are protecting
the metal ingredients inside the circuits from oxidizing, and also protecting the board itself from
exterior damage, when embedding specific electronic components for various applications. The
uniformly smooth surface of the PCB is an essential quality characteristic considered in all PCB
quality control schemes. The operation of the solder resist is the key to surface coating in the PCB
manufacturing industry. The simplest method to judge whether the PCBs satisfy the uniformity
flat requirement after the solder resist, is to measure its thickness. It particularly checks the uneven
parts including the caves and towers of a PCB. By measuring the thickness, one can obtain the
degrees of the uniformity for the surface of a PCB which is used for PCBs capability measures
on thickness.

The example investigated is taken from a company located on the Tao-Yuan Industrial Park
in Taiwan, which has supplied manufacturing multi-layer PCBs for the company orders. The
thickness of nominal-the-better characteristic is the key measurement for the PCBs. For a particular
model of PCBs, USL, LSL and T of a PCB’s thickness are 13.5 μm, 28.5 μm and 21.0 μm,
respectively. According to today’s modern quality assurance theory, reduction of the process loss
is as important as increasing the process yield. The histogram and the normal probability plot
of the 80 PCB data show no observations outside the upper specification limit, and both show
that the sample data appears to be approximately normal; the Shapiro–Wilk test is also applied to
verify the normality assumption.

5.1. LCB applications

The results obtained in the last discussion section show that we can suggest the LCB developed by
ZH(PS), Bo, and PX approaches for providing the minimum process performance if one is unsure
of the value of ξ . Thus, we calculate the LCB of Cpm based on ZH(PS), Bo, and PX approaches by
executing the Matlab program. The program reads the sample data file; the sample size n = 80,
LSL = 13.5 μm, USL = 28.5 μm, target value T = 21.0 μm, and confidence level γ = 0.95 are
taken as input, then it outputs the estimator Ĉpm = 1.405, ξ̂ = 1.3, and the corresponding LCBs
are C∗(ZH)

pm = 1.2608, CL(Bo)
pm = 1.2619, and CL(PX)

pm = 1.2521. Table 7 shows these three LCBs of
Cpm and the corresponding NC in PPM. We therefore conclude that the true value of the process

Table 7. Lower confidence bounds of Cpm and the corresponding
NC.

Approaches ZH (PS) Bo PX

LCB 1.2608 1.2619 1.2521
NC (in PPM) 156 154 173
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capability Cpm, is not less than 1.2521 with 95% level of confidence. We can thus assure that the
production yield is 99.9827% and the number of NC is less than 173 PPM.

6. Conclusions

The Taguchi capability index Cpm has been broadly used in the manufacturing industry dealing
with problems of measuring reproduction capability of processes to enhance product develop-
ment with a very low fraction of defectives. In this study, we exhaustively compare and contrast
the several existing approaches based on the frequentist and the Bayesian senses for LCBs on
Cpm. An intensive simulation study was conducted to compare the performance of approaches in
terms of the attained CR and the MLCBs. The results recommend the appropriate approaches to
practitioners for real-world factory applications.
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