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Abstract

This dissertation deals with the interrelationship between F policy and N policy.
The F policy queuing problem investigates the most common issue of controlling arrival
to a queuing system. The N policy queuing problem investigates the most common issue
of controlling service. The optimal control arrival in M/G/1/K and G/M/1/K queues
operating under the F policy and. startup time i§.investigated in this dissertation. The
definition of F policy is described as following: When the number of customers in the
system reaches its capacity .K (i.e. the system becomes full), no further arriving
customers are allowed to enter the system until there are enough customers who have
been served in the system. Consequently, the number of customers in the system
decreases to a threshold value F (0'< F < K —1). At that time, the server requires to take
an exponential startup time with parameter f to start allowing customers in the
system. Thus, the system operates normally until the number of customers in the system
reaches its capacity at which time the above process is repeated all over again. A
recursive method, using the supplementary variable technique and treating the
supplementary variable as the remaining service (or inter-arrival) time, is provided to
develop the steady-state probability distributions of the number of customers in two
finite queues. To illustrate analytically the two recursive methods, examples of different
service (or interarrival) time distributions, such as exponential, 3-stage Erlang and
deterministic distributions, in the F policy M/G/1/K queuing system and in the F
policy G/M/1/K queuing system with exponential startup time distribution is present.
In both queueing systems, a cost model is established to determine the optimal
management F policy at minimum cost. An efficient Maple computer program is used
to determine the optimal operating F policy and some system performance measures.

Sensitivity analysis is also studied. To find the interrelationship between F policy and N



policy, we have solved the solution algorithm of the N policy M/G/1/K queue with
startup time. A recursive method and supplementary variable technique to obtain the
solution algorithm 1s provided. The definition of N policy is described as following: The
server needs a startup time when the number of customers in the system reaches the
threshold N (N >1) for the first time until there are no customers present in the system.
At that time, the server needs to take an exponential startup time with parameter y to
start servicing customers in the system. Through a series of the algorithm, the
complementary interrelationship between the F policy and N policy queues is obtained.
Therefore, the problem of F policy (/V policy) queuing system with startup time gives the
solution algorithm to the other problem. The two simple examples of 3-stage Erlang and

exponential distribution to illustrate the interrelationship are provided.

Keywords: F'policy, N policy, G/M/1/K queue, M/G/1/K queue, Recursive method,

Startup times, Supplementary variable, Cost, Sensitivity analysis.
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Chapter 1
Introduction

In section 1.1, we describe the background of queueing theory that has been a
continuously growing and interesting science. In section 1.2, an important
technique that is supplementary variable technique will be introduced. In section
1.3, several researchers are shown in earlier works. In section 1.4, the description of
the problems that are the interrelationships between F' policy and N policy in
M/G/1/K and G/M/1/K queues are presented. In section 1.5, we illustrate the

scope of dissertation.

1.1 Background

The most of the optimization problems in queueing systems focused on design
or static models in which the systemchardcteristics did not vary with time in the
last few years. It is evidence that this type,of modél does not meet the requirements
of the majority of realworld- queueing-applications. For example, those models
relative to the management of large-scale systems in several fields are: distribution,
transportation, administration, production;-infermatics, etc. It is especially true in
many computer and communication applications, in which the performance of the
investigation system may be improved if some system parameters are adjusted as

the system state changes. (see Kleinrock [24], Bolch et al. [6])

Hence, it is more concerned that the system characteristics are allowed to vary
with time in the control or dynamic models. The aim of such models is to prescribe
a certain behavior on the part of the decision maker. In these models, it is
emphasized that the optimization is achieved over a class of operating policies,
rather than over a set of parameters for a single operating policy, which is a fixed
part of the model. A complete survey about the design and control of models was
presented by Gross and Harris [15], and Crabill et al. [9].

Several researchers investigate five kinds of controllable queues as follows:

1. The N policy was first developed by Yadin and Naor [36] in 1963. When the
number of customers in the system reaches the threshold N( N >1) for the first time

until there are no customers present in the system, the server returns to provide



service.

Many researchers have worked on this subject such as Yadin and Naor [36],
Hersh and Brosh [16], Kimura [23], Lee and Park [26], Medhi and Templeton [2§],
Takagi [29], Wang et al. [32], Wang and Ke [33], Ke and Wang [20] and others.

2. The F policy was developed by Gupta [12] in 1963. When the number of
customers in the system reaches its capacity K (i.e. the system becomes full), no
further arriving customers are allowed to enter the system until there are enough
customers in the system have been served so that the number of customers in the
system decreases to a threshold value F (0< F <K —1). At that time, the server
requires to take an exponential startup time to start allowing customers in the
system. Thus, the system operates normally until the number of customers in the
system reaches its capacity at which time the above process is repeated all over

again.

3. The T policy was developed by Heyman [18], Levy and Yechiali [27], Tyym
[31], Gakis et al. [11], and Kg[22]. Following the beginning of the idle period, the
server returns to provide service immediately after 7'time units have elapsed from
the epoch of server removal if there is.at least one customer present in the waiting
line, until there are no customers in the system. If after T time units have elapsed,
there are no customers in the system to initiate service, the server waits another 7’

time units, and so on, until at least one customer is present.

4. The D policy was developed by Balachandran [3], Tiym [31] and Gakis et al.
[11]. The server returns to provide service if the accumulated backlog, which is the

sum of service time of the new arriving customers, exceeds a given quantity
D(D >1) for the first time.

5. The combined policies which are combined by any two of the N, T, and D
policies. Doganata [10] first studied the NT policy M/G/1 queueing system that the
vacation period is terminated if the time elapsed since the first arrival during the
vacation period reaches the threshold 7, or the number of customers in the system
waiting for services reaches the threshod N. Alfa and Frigui [1] extended
Doganata's model to the MAP/PH/1 case. Gakis, et al. [11] presented six dyadic
policies for the M/G/1 queueing system.



1.2 Theoretical Analysis Techniques

Recall that a queue is characterized by the input process, the service
mechanism, and the queue discipline. When arrivals have Poisson characteristics
and service times are exponential, the resulting queueing process is Markovian. A
Markovian model is in the framework of the birth-and-death process that
completely specifies the state of the system at a given time. This information is
sufficient to describe the future development of the process. These assumptions
imply that the future evolution of the system from some time ¢ depends only on
the state of the system at time ¢, and is independent of the history of the system
prior to time ¢. In these models, the "state" of the system could always be specified
in terms of the number of customers present. (In a multidimensional case, the state

1s specified in terms of the number of customers of each type present at time ¢.)

Suppose that we are interested in a queue for which the number of customers
present at any time ¢ is not sufficient information to permit complete analysis of
the model. Such a queue is impossiblyysolved by using birth-and-death process.

Clearly, some methods are required.

In this section, we will introduce an‘important technique to study the F policy
M/G/1/K and G/M/1/K queues with startup time'and N policy M/G/1/K queue

with startup time. It is supplementary variable technique, introduced by Cox [8].

Suppose that customers arrive at random with rate o 1in a single server queue.
Let the service times of customers be independently distributed with p.d.f. b(¢)
and hazard function 7#,(t). When b(¢) is not an exponential distribution, the
probability of service being completed in (z,#+A¢) depends on the length of time

service has been in progress.

If the customer currently being served has been at the service point for a time
u.Let p,(u,t) be the joint probability density of the state (n,u) at time ¢. More

explicitly, if U is the random variable corresponding to u,

. Pr(u<U <u+ Au and n customers present at time ¢)
p,(u,t)= lim .
Au—0* Au

Then we can have the forward equations for the process using the usual

argument as in the birth and death model.



The following forward difference equations may be obtained in steady-state,

for n=12,...

Po(t +de) = po(t)1—ardt) + [ py (s )y e+ A(d), (L.1)

p,(u+dt,t+dt)=p,(u,t) {1 —la+h, (u)]dt} + p,_1(u,t)adt + A(dt), (1.2)
and

2,(0,8) = Jj Pt (5 0) By (u)du + a py(£)0, ,, + A(dr), (1.3)

where 6, ; =1ifj=1and 6, ; =0 otherwise. (5, ; is the Kronecker delta function.)

By performing the following expansions to (1.2)

b urdt,t+de)=p, () +dt F "8(”’ D, 4P a(? Dy aGdn),
u

we obtain the following partial differential equations

(%ﬁj p(1,8) = o+ by ()] Py gy 1 (1,9) (1.4
u ot

Solutions to (1.1) and (1.3)-(1.4) can be obtained with the help of mathematical

theory and techniques.

Let u denote the length of time when customer is being served at time ¢
until his service completion. We have the following backward difference equations
may be obtained in steady-state, for n=1,2...

po(t+dt) = py(t)1—adt) + p,(0,1)dt + A(dt), (1.5)

p,(u—dt,t+dt)=p,(u,t)1-adt)+p,_(u,t)adt + p,.,(0,6)b(u)dt + A(dt).  (1.6)

By performing the following expansions to (1.6)

. (u—dt,t+de) = p,(u,1)— dt ap"a(”’ 2 8pn;;t, D Adr),
u

the following partial differential equations are obtained

0 O
(a— + —j p,(u,t)=—ap,(u,t)+ap, (u,t)+ p,,1(0,£)b(w). 1.7)
u Ot

Solutions to (1.1)-(1.7) can be solved with the help of mathematical theory and

techniques.



1.3 Literature Review

We use a supplementary variable technique to analyze the optimal control of
the F policy M/G/1/K and F policy G/M/1/K queues where the server needs a
startup time before start allowing customers in the system and K <o denotes the
maximum capacity of the system. The method of controlling arrivals focuses on
reducing the number of customers in the system. The model proposed in this
dissertation is very useful in real-life situations since the controlling of arriving

customers is considered.

Steady-state analytical solutions of the F policy M/M/1/K queueing system
with an exponential startup time were first developed by Gupta [12]. However,
steady-state analytical solutions of the F policy queue with interarrival times or
service times distribution of the general type have not been found. It is extremely
difficult, if not possible, to obtain the explicit expressions for the steady-state
probability distribution of the numbeér of customers in the system. This becomes
particularly helpful when the supplementary variable technique to the
non-Markovian queueing system having general interarrival times or general service
times is used. Cox [8] first introduced the supplementary variable technique. Based
on this technique, Gupta and.Rao [13-14]presented.a recursive method to develop
the steady-state probability distributions of the number of failed machines for the
no-spare M/G/1 machine repair problem and the cold-standby M/G/1 machine

repair problem, respectively.

Past work regarding queues may be divided into two parts according to
whether the system is considered to control the service or the arrival. In the first
category of controlling the service, the N policy M/M/1 queueing system without
startup was first introduced by Yadin and Naor [36]. The extension of this model
can be referred to Bell [4-5], Heyman [17], Kimura [23], Teghem [30], Wang and
Ke [33], and others. Wang and Ke [33] provided a recursive method and used the
supplementary variable technique to develop the steady-state probability
distributions of the number of customers for the N policy M/G/1/L queueing
system. Ke and Wang [20] presented a recursive method and applied the
supplementary variable technique to obtain the steady-state probability distributions
of the number of customers for the N policy G/M/1/L queueing system. The server

startup corresponds to the preparatory work of the server before starting the service.



In some real-life situations, the server often needs a startup time before beginning to
provide the service. Several authors research on queueing systems with startup time
focus mainly on the N policy M/G/1 queues. Baker [2] first studied the N policy
M/M/1 queueing system with an exponential startup time. Borthakur et al. [7]
extended Baker’s model to the general startup time. The N policy M/G/1 queueing
system with startup time was investigated by several researchers such as Medhi and
Templeton [28], Takagi [29], Lee and Park [26], Hur and Paik [19], Krishna et al.
[25], Ke [21], Wang and Ke [33],Wang and Ke [34], Wang et al.[35], and so on. Ke
[21] presented a recursive method and used the supplementary variable technique to
compute the operating characteristics for the N policy G/M/1/L queueing system
with an exponential startup time. In the second category of controlling the arrivals,
the analytical developments for controlling the arrivals in queueing problems are
rarely found in the literature, which are particularly for service time and interarrival
time following general type. The work of related problems in the past mainly
concentrates on Markovian system. The pioneeting work in steady-state analytical
solutions of the F policy M/M/1/K -queueing system with an exponential startup
time was first derived by Gupta [12]. Through a series of propositions, the
interrelationship between the operating IV policy and the operating F' policy are
established by Gupta [12].

Practically, the memoryless property: of the arrival (input) process does not
always meets the needs of applications because, for interarrival time, general
distribution, rather than exponential distribution, appears to be more appropriate
and reasonable. General distribution can include the special cases of exponential,
Erlang, hyper-exponential, and deterministic, etc. However, aside from theoretical
arguments, many real-life situations satisfy the assumptions of Markovian
conditions for service time. Hence, we may consider inevitably to analyze the F'
policy M/G/1/K and F policy G/M/1/K queues.

1.4 Problem Statement

In this dissertation, we investigate the interrelationship between F policy and N
policy in M/G/1/K and G/M/1/K queues. First, we study the optimal control in
the F policy M/G/1/K and G/M/1/K queues. The definition of a F policy is

described as follows: When the number of customers in the system reaches its



capacity K (i.e. the system becomes full), no further arriving customers are allowed
to enter the system until there are enough customers in the system have been served
so that the number of customers in the system decreases to a threshold value F
(0< F <K -1). At that time, the server requires to take an exponential startup time
to start allowing customers in the system. Thus, the system operates normally until
the number of customers in the system reaches its capacity at which time the above
process 1s repeated all over again. Gupta [12] first developed the concept of an F
policy steady-state analytical solution of the F policy M/M/1/K queueing system

with an exponential startup time.

A number of practical problems arise which may be formulated as one in
which the server requires taking a startup time to start allowing customers in the
system. Such models have potentially useful in practical real-life. For example, in
computer process and service systems, massages are transmitted among the
computers (processors). If the processor is free the message is accepted; otherwise
the message is temporarily stored in a buffer to be served some time later. When the
buffer is full, the arriving messages will-be restricted entrance until the number of
messages drops to some a -threshold level. When system buffer reduces to the
threshold level, the messages are immediately-admitted to enter the system. This
will help to prevent the system'from becoming over-loaded. Another application of
our model is transportation. In order to:avoid traffic jams caused by motorists
returning home for Chinese New Year, the entrance ramps along the highway will
be controlled by a metering system. When traffic flow is congested, entrance ramps
are closed to keep expressway traffic smooth. Vehicles are allowed to re-enter once
the traffic is improved. The entrance ramps may need to maintain and the service
may be temporarily shut down. The model is also applicable to controlling the
amount of eco-tour visitors, e.g. in Kenting National Park (Taiwan). When

applicants reach the limited numbers of the day, the application would be rejected.

We will study the interrelationship between F' policy and N policy in M/G/1
and G/M/1 queues. We first consider the N policy M/G/1 queue with startup time.
The decision-maker can turn a single server on at any arrival epoch or off at any
service completion (departure) epoch. The term 'removable server' is just an
abbreviation for the system of turning on and turning off the server, depending on

the number of customers in the system. Yadin and Naor [36] first introduced the



concept of an N policy which turns the server on when N (N >1)or more
customers are present and turns the server off only when the system is empty. After
the server is turned off, the server may not operate until N customers are present in

the system.

Suppose that the time elapsing between two successive arrivals is
independently and identically distributed (i.1.d.) random variable, having a general
distribution A(v) (v>0), a probability density function (p.d.f.) a(v) (v>0) and
mean interarrival time g; . The service times of successive customers are
independent and identically random variables having a common distribution
S(u) (u=0), a probability density function s(x) (#>0) and mean service time s;.
The service process is independent of the arrival process. We assume that arriving
customers form a single waiting line based on the order of their arrival; that is, the
first-come, first-served discipline. The server can serve only one customer at a time.
A customer, upon entry into the service facility, finding that the server is busy have

to wait in the queue until the server is free.

1.5 Scope of Dissertation

In chapter 2, we provide-a recursive method using the supplementary variable
technique to derive the steady-state probability distributions in the F' policy
M/G/1/K queue. We illustrate the solution algorithm by presenting three simple
examples for three different service time distributions: exponential (denoted M),
3-stage Erlang (denoted E;), and deterministic (denoted D). Various system
performance measures are also presented. The total expected cost function per unit
time is developed. Numerical and comparative results are shown. In chapter 3, we
follow the above method of the chapter 2 and treating the supplementary variable as
the remaining interarrival time to develop the F' policy G/M/1/K queue with
startup time. In chapter 4, we study N policy M/G/1/K queue with startup time. In
chapter 5, we examine the relationships between the F policy and N policy. Using
the solution algorithm of N policy (F policy) M/G/1/K queue with startup time,
we develop the steady state probabilities of F policy (IV policy) G/M/1/K queue.

Finally, chapter 6 consists of some concluding remarks.



Chapter 2
The F Policy M/G/1/K Queue with Startup Time

A supplementary variable technique is used to study the optimal management
problem of the F policy M/G/1/K queue where the server needs a startup time
before start allowing customers in the system and K <o denotes the maximum
number of customers in the system. The method of controlling arrivals focuses on
reducing the number of customers in the system. The model presented in this
dissertation is very useful in real-life situations since the controlling of arriving

customers is considered.

The primary objective of this chapter is threefold. Firstly, we develop a
recursive method using the supplementary variable technique and treating the
supplementary variable as the remaining service time, to develop the steady-state
probability distributions of the number of customers for the F policy M/G/1/K
queue. The method can be wutilized forrany service time distribution, such as
deterministic (denoted D), exponential (denoted M) and k-stage Erlang (denoted Ey),
etc. Secondly, to illustrate a recursive method we present three simple examples for
three different service time distributions such as exponential, 3-stage Erlang, and
deterministic. Thirdly, we study various system' performance measures, such as the
average number of customers in the system, the probability that the server is busy,
the blocking probability, etc. The total expected cost function per unit time for the
F policy M/G/1/K queue with startup times is developed. Numerical and

comparative results are also provided.

2.1 Assumptions and Notations

We consider the controlling arrivals to a finite capacity M/G/1 queue with
combined F policy and exponential startup time. It is assumed that customers arrive
according to a Poisson process with parameter A, and the service times of the
successive customers are independently and identically distributed (i.i.d.) random
variables having a distribution S(x) (#>0), a probability density function s(u)
(u >0) and mean service time s,. The arrival process is independent of the service
process. We assume that arriving customers form a single waiting line based on the

order of their arrivals; that is, the first-come, first-served discipline. Suppose that the



server can serve only one customer at a time. Customers entering into the service
facility and finding that the server is busy have to wait in the queue until the server
is available. Gupta [6] first introduced the concept of a F policy. The definition of a
F policy 1s described as follows: When the number of customers in the system
reaches its capacity K (i.e. the system becomes full), no further arriving customers
are allowed to enter the system until there are enough customers in the system have
been served so that the number of customers in the system decreases to a threshold
value F (0<F <K-1). At that time, the server requires to take an exponential
startup time with parameter £ to start allowing customers in the system. Thus,
the system operates normally until the number of customers in the system reaches

its capacity at which time the above process is repeated all over again.

The following notations and probabilities are used throughout this chapter.

F threshold level

K system capacity (K > F +1)

S service time random variable

U remaining service time random variable
S(u) distribution function (d.f.) of* §

s(u ) probability density function (p.d.f.) of S

5" () Laplace-Stieltjes transform (L.ST) of S
Y (6)  Ith order derivative of S” (@) with respectto 6

( t) probability of no customers in the system at time ¢ when the
arrivals are not allowed to enter the system

(¢) probability of n customers in the system at time ¢ when the
arrivals are not allowed to enter the system, where n=1,2,...,K.

P, ( t) probability of no customers in the system at time ¢ when the
' arrivals are allowed to enter the system
P, ( t) probability of 7 customers in the system at time ¢ when the

arrivals are allowed to enter the system, where n=1,2,...,K —1.
Fyo steady state probability of no customers in the system when the
arrivals are not allowed to enter the system
steady state probability of n customers in the system when the
arrivals are not allowed to enter the system, where n=1,2,...,K.
P, steady state probability of no customers in the system when the
arrivals are allowed to enter the system

B, steady state probability of # customers in the system when the
arrivals are allowed to enter the system, where n=1,2,...,K —1.
s mean service time

The special case with system capacity K=F+1 is presented in the appendix.
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2.2 Development of the Equations and Solutions

We use the following supplementary variable: U =remaining service time for
the customer in service. The state of the system at time ¢ is given by

N (¢)=number of customers in the system, and
U (t) =remaining service time for the customer being served.

Let us define
R, (u,t)du=Pr{N(t)=n,u<U(t)Su+du}, u>0, n=0,1,..K.
PLn(u,t)du=Pr{N(t)=n,u<U(t)Su+du}, u>0, n=0,1,.,K-1.

Bu()=[ B (wt)du, n=01.. K
B, ()=, Pa(wt)du, n=01,. K-1.

Relating the state of the system at time ¢ and ¢+ d¢, we obtain

d
Epo,o(f):_ﬂl)(),o(t)+P0,l(0’t)’ (2'1)
%—% Po’n(u,f):_/BPO,n(u’t)+P(),n+l(0’t)S(u)’ ISnSF’ (22)
0 0 =
P By, (u,t)= Py oy (052 )s(u), F+lsn<K -1, (2.3)
2 _9p (u,t) = APy (k) 2.4)
or ou) 0K\ . el '
d
EPLO (£)==AR () + BRy, (£)+B1(0:2), (2.5)
0 0
(E—EJPM(”/):_/“)1,1(u,f)+ﬂpo,1(”’f)J”UDLO(t)S(”)jL 2.6)
B (0,2)s(u),
0 0
(2 LR )= AR 1) 8 1)+ 21 1) 5(0) .
+Pln+1(0’t)s(u)’ 2<nSF’
0 0
(a_ajpln u:t)__ﬂ’Pl,n(uJ)-’_ﬂ“Pl,n—l(u’t)s(u)_'_Pl,nH(O’t)s( )’ (28)
F+1<n<K-2,
0 0
(E_ajpl,lm () ==AR g1 (u,2)+ AR x5 (u,2). (2.9)

11



2.3 Steady State Results
In steady state, let us define

B, =lmP,,(t), n=0,1,..,K.

7” =
t—

B,=limPB,(t), n=0,1,...,K-1.

t—

B, (u) =limFy, (u,t), n=12,..,F.

t—

B, (u)= }1_1)1{)10}’1,1 (u,¢), n=0,1,..,K-1.

and further define
By, (u)=F,s(u), n=12,. . F. (2.10)
From (2.1)-(2.10), we can easily obtain the following steady state equations:
0=-BP,+Fy,(0), 2.11)
_dipo,n (1) =By (1) + By (0)s (), 1<n<F, 2.12)
u
—diPOﬂ(u):l’()ml(O)s(u), Fil<p<K-1, (2.13)
u
d
_gPo,K (u)=AB &1 (u), (2.14)
0=—AR,+ SRy +B,(0), > (2.15)
d
—aPu (u)=—AR, (u)+ ﬂPO,Is(u) A ﬂ}’l,os(u)+Pl’2 (0)s(u), (2.16)
d
_apw (u)==AR,, (u)+ PRy ;s(u)+ AP 4 (#)+ R .. (0)s(u), 2.17)
2<n<F,
—diplﬂ (1) =—AB,, (1) + AP 1 (1) + Pyt (0)s(u), F4l<n<K-2, (2.18)
u
d
_EPI,K—I (u)==AB g1 (1) + AP, x5 (u). (2.19)
Further define
S ((9) = j: e_gudS(u) = j: e_gus(u)du,

*

By, (0)=] ¢ Ry, (u)du,

*

B,(0)= _[;O e P, ,(u)du,

12



and

—ou O *
fo "~ Ru(u)du=0R,(0)-R,(0).

Therefore, we take the LST on both sides of (2.12)-(2.14) and (2.16)-(2.19). It yields

~0F;,(0)=~PF,S (0)+ Ry, (0)S™ ()~ B, (0), 1<n<F,
_HPO’jn(9):PO,nH(O)S*(e)_PO’n(O), F+1<n<K-1,
_HPOTK (‘9) = /u)lTK (9)_1)0,1{ (0),

(2-0) P (8)=BFyS (0)+ AP ,S (6)+F,(0)S™(6)~Fy(0).

(2-0)F;,(0)= PPy,S"(0)+ Ay 1(6)+ B, (0)S"(6) - B, (0).

2<n<F,

(1-0)F,(0)=AR,(0)+PB,.1(0)S (8)-B,(0), F+1<n<K-2,

(/1 _Q)PITK—I (‘9) - /UDITKfZ (‘9) —B k1 (0)

2.3.1 Recursive methods

The recursive method is developed to obtain F,,(0) and P, (0).

(2.20)
(2.21)
(2.22)
(2.23)

(2.24)

(2.25)
(2.26)

Our

solution algorithm will first obtain £, (0) (1<#<K) which are then used for

finding R, ,(0).

Using (2.11) and setting «@ = 0:.1n-(2:20).and (2.21), we get

ﬂgnzlP | <5< BPb ‘ n, 0<n<F-1,
., 1<n< K, where S
P "TI\F, F<n<K,

By, (0)=

M

and
Pyui1(0)==Po, p Py, + B, (0), 1<n<K-1,
h 1, 1<n<F,
where =
On.F 0, otherwise.
Using (2.28) in (2.20) and (2.21), we get

PO’jn (9) - I_Se (9)

Taking lim, ,, in(2.29) and using L'Hospital's rule once gives

B, (0)=sPR,(0), 1<n<K-1,

B ,(0), 1<n<K-1.

where s, = ~s™ (0) is the mean service time.
Using (2.27) in (2.30), we have

B, (0)=¢,B, 1<n<K-1,

13
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(2.29)

(2.30)

(2.31)



1, n=0,

2.32
sB(1+s8)"", 1<n<K. (2:32)

where ¢, :{

Thus, F,(0), By, (0),..., Byx(0) canbe obtained by using (2.31).

Next, we derive the expressions of A, (0) (1<n<K) in terms of A and
Fyo. Using (2.31) in (2.23)-(2.24) and then setting =41 in (2.23)-(2.26), we
finally obtain

By (0)- A EyoS (2)- 288" (2)

B, (0)= 5T , 2.33)
Pl,n+1 (0)= Pl,n (O)_ﬂ¢n,F¢n§E),(()j) (l)_ﬂPl,n—l (l), 2<n<K-2, (234)
Bk (0) = J“PITK—Z (1) (2.35)

To obtain Plfnfl () (1<n<K-1) in(2.34)-(2.35), using (2.31) in (2.23)-(2.24)
again, differentiating (2.23)-(2.26) (Z—l) times with respect to € and setting
0 = 1, we finally get

. *(1) ol s
P“(H)(A)=—S Zﬂ)[iﬂ’0+ﬂ¢lﬂ,’0+}tﬁ’2(0)], I=1,.,K-2, (2.36)
* 1
By (2) = B (08 (Wpmanirs 8 ()80 ()] 5
2<n<K-2, [=1,..,K<n-1,
P (2)=-2B 15 (%), (2:38)

where P:,(lo) (4)=RB,(4) and s (0)= [(dl/dﬁl )S* (6’)} denotes the Ith
derivative of S (8).
Solving (2.36)-(2.38) recursively, we obtain

. . S Bl ¢.S*( 10 S ( /1)
P (1) =—/ NP .- n—i+1%i n—i+l P.
I,n( ) nS ( ) 1,0 ; Y zZI IH—I(O)’ (239)
1<n<K-1,
where
_(_’1)115*(”)(’1) 1<n<K-1
l,= nts (1) ’ (2.40)
0, otherwise.

Using (2.39) in (2.34), we can obtain

14



1 n—2

Pl,n(O)zm lnl +Zlfn 1})11+1 +

§n72

Bl D lpirly = Pur ot |[Poo+ A, 2B, 3<n<K-1.
=1

We further define

1, n=0,
Y, = z z KoKy, Ky n=1, 2,..., K-3,

1<k<n  r+1y+-+1,=n
71,7, e (1,2, )

0, otherwise,
where
*; + 161 y n= 1,
5 (4)
K,=1(,, n=2,3,---,K -3,
0, otherwise.

(2.41)

(2.42)

(2.43)

Remark: The representative meaning of the above formulation (2.42) is to sum up

all possible products of £ s -in which the'total of subscript values of x equals 7.

We give an easily understood example for n = 4:

= K, +2K3K;, + K5 +3KEK, + K7

Using (2.42) and (2.43) to solve (2.41) recursively, and including (2.15) and (2.33),

we finally get
B1(0)=A(1)Bo+B(1) Ry,

B, (0) =Zn:\1’n_i [A(i)Rg+B(i)Ryy ] 2<n<K-1,
i=2

where
A, n=1,
A(n)=14 =3 () , n=2,
5 (4)
Al, 5, 3<n<K-1,

15

(2.44)

(2.45)

(2.46)



B(n)= _ﬂ{1+¢1{¢15 (i)}, n=2, (2.47)

é/n—Z
B Z iy —ﬂ¢n—1,F¢n-1, 3<n<K-1.

=1

Substituting (2.45), (2.44), and (2.35) into (2.39) finally yields

i+1 K- I‘P(K—i—l)B AN
, |:Z€Kzlij JJrl ) ; S*(/l) ;ﬁgl{zﬂﬁilp i
10~ i+1 , Ky (k- i—l)A(i) bo- (2.45)
ZKKZIZ‘I’ —j+1)4 +Z 5 0) + AU g,

Finally, we develop the steady-state probabilities P{fn (0) in terms of £, . Setting
f=0 in(2.23)-(2.26) we have

Sn
R,(0)= %{ﬁZ ¢ o+ B uit (0)}, 0<n<K-2, (2.49)
i=0
. ﬁ F =l
Bk (0) ZEZ@PO,O' (2.50)

As  B,(0), P,(0),..., B (0) “and““By ‘are known, B(0), B,(0),

.+ P x_1(0) can be determined recursively using'(2.49) and (2.50) in terms of ).

Now the only unknown quantity is Pof K(O) which can be obtained from
(2.22). To find it, differentiating (2.22) with respect to 6 and setting =0, we

have

PO*,K (0):_’11;1?2)71(0)- (2.51)

To find ﬂf’:g)_l(O), differentiating (2.23)-(2.26) with respect to € and setting
0 =0, we finally obtain

_ B IB¢1PO,OS*(1) (0)+ /“31,05*(1) (0)+B, (O)S*(l) (0)

21" (0) s | 252
B (0) = T T PPnrfutbod (0)+ 2R3 (0)+ B, (005 (0)
T Y ’ (2.53)
2<n<K-2,
“(1)
Ei,(0) E“”f’“(o) (2.54)

16



As P:l(l)(O) is known completely from (2.52), the values 1’1?51)(0) for
n=23,.,K—-1 can be found recursively from (2.53) and (2.54). Therefore we

obtain
(1) RS W(0)S W) S (1)
Pii1(0)=—| LR +BS T (0) 28, F00+S T (0) L Bi(0)+2R,eS T (0) | (2.55)
i=1 i=1 i=2
Substituting (2.55) into (2.51), we have

. S W (o)S W) S (1)
Bk (0)=- ;Pl,ﬁﬂS (O);‘/jnPo,o”LS (0)2;,131,1'(0)+/1f1,05 (0)]- (2.56)

So P(0), Ry, (0),..., By x(0) is known in terms of Fy,, which can be

determined using the normalizing condition
K K-1
P+ P, =1 (2.57)
=0 =0

To demonstrate the working of the recursive.method, we first describe the solution
algorithm for calculating the steady state probabilities, P(;n (0) (0<n<K) and
B, (0) (0<m<K-1). Next,to illustrate the solution algorithm, we provide three
simple examples where the. service time distributions are exponential, k-stage

Erlang, and deterministic, respectively.

2.3.2 The solution algorithm

Let F be the threshold, K be the maximum capacity of the system, and let
5" (0) be the Lth derivative of S*(6), where /=1, 2,..., K . We set the values of
F, K, and the LST expression of the service time distribution, namely S : (49) . The

steps of the solution algorithm are stated as follows:
Step 1. Foreach n=0, 1,...,K , compute ¢, using (2.32).

Step 2. For each n=1, 2,...,K -1, compute P(;n (0) using (2.31) in terms of
PO,O .

Step 3. Compute ¢, (1<n<K-2) and x,(1<n<K-3) using (2.40) and
(2.43), respectively.

Step 4. For each n=0, 1,...,K -3, compute ¥, using(2.42).

Step 5. For each n=1, 2,...,K—1, compute A4(n) and B(n)using (2.46) and
(2.47).

17



Step 6. For each n=1, 2,...,K —1, compute B ,(0) using (2.44) and (2.45) in
terms of P, and F,.
Step 7. Compute P, using (2.48) in terms of F,. Thus B, (0)
(1<n<K-1) are achieved from Step 6.
Step 8. For each n=1, 2,...,K —1, compute P{fn (0) using (2.49) and (2.50) in

terms of £ .
Step9.For n=K ,compute F,,(0) using(2.56)in terms of Fy.

Step 10. Determine F,, using (2.57). Thus Po*,n (0) (n=1, 2,...,K) are achieved
from Steps 2 and 9, and Pl; (0) (=0, 1,...,K—1) are achieved from
Steps 7 to 8.

2.4 Simple Examples

We use the solution algorithm to illustrate a recursive method. We provide
three simple examples for three different service time distributions such as

exponential, 3-stage Erlang, and deterministic, respectively.

Example 1 (For M/M/1 queue). We set the mean setvice time s, =1/, where u

is the service rate. Assume that F =1.and7K = 4 . In this case, we have

. H
s'(0)=1.

Step 1. Foreach n=0, 1,...,4, compute ¢, .
Using (2.32), we obtain
2
#b=1, f=(1-a)/a,and ¢, =¢;=¢,=(1-a)/a”, where a=u/(1+p).
Step 2. For each n=1, 2, 3, compute POT,, (0) using (2.31) in terms of Fy.

From (2.31), we finally get

* l-o
PO,I (0) :¢1P0,0 ZTPO,O’

* * 1—
Po,z (0) =P0,3 (0) = ¢2P0,0 =a—2aP0,o .

Step 3. For each n=1 2, compute ¢, and x, using (2.40) and (2.43),

respectively.

For each n=1, 2, using (2.40) yields ¢, =-1/(1+c) and ¢, = —1/(1 +<7)2 , where
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oc=u/l.
For each 7 =1, we find from (2.43) that K1=(1+G+O'2)/U(1+O').
Step 4. For each n=0, 1, compute ¥, .
Tt implies from (2.42) that ¥, =1 and ‘1’1:(1+0'+0'2)/0'(1+0').
Step 5. Foreach n=1, 2, 3, compute A(n) and B(n).
Using (2.46) and (2.47), it follows that

A(N)=p/o, A(2)=p/c*, and A(3)=-ulc(1+0).
() o aro)i-a)a

, B(2)=- 5 , and B(S):—m

B(1)=- a oa (1+o)a®

Step 6. For each n=1, 2, 3, compute B ,(0) using (2.44) and (2.45) in terms of
By and Fy,.
It yields from (2.44) and (2.45) that
B,(0)=4(1)R,+B(1) Fyy,
B, (0)="¥o[ A(2)Fo+B(2) By |5
P3(0)="¥,[ A(2)B o +B(2) Ry |+ ¥ [ 4(3)Bg+B(3) Ry |-
Step 7. Compute B, using (2.48) in terms of By,. Thus £, (0) (1<n<3) are
achieved from Step 6.

From (2.48), we finally have

3 2, 3
PLO:O‘(I Ol)(a+20'+0' +0 )PO,O’ (1’1,0(0)=P1,o),

Step 8. Foreach n=1, 2, 3, compute P{fn (0) using (2.49) and (2.50) in terms of Fy,.
Using (2.49) and (2.50) yields

a(l—a)(1+0'+02)

2 PO,O’ PITZ (O)=
o a

0'(1 —a)z(l + 0')

PITI(O): B,
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o(l-a)

Step 9. For n=4, compute POfn (0) using (2.56) in terms of Fy.

Using (2.56), it follows that

x l-a
P0’4(0):( az )PO,O'

Step 10. Determine By, using (2.57). Thus B, (0) (7=0, 1,...,4) are achieved
from Steps 2 and 9, and P:n (0) (=0, 1, 2, 3) are achieved from Steps 7
to 8.

aZ

a® +a(1—a)+3(1—a)+a(l—a)(3+a+30+202 +(73).

Po,o =

It is to be noted that these results are the same as those given in Gupta [12,
p1006].

Example 2 (For M/E;/1 queue). The 3-stage Erlang.distribution is made up of three
independent and identical exponential stages, each with mean 1/3u. We set the

mean service time s, =1/u, *F =1, and K =3. In this case, we have

5'(9) {3219]3 '

Step 1. Foreach n=0, 1,...,3, compute ¢, .

From (2.32), we finally obtain

do=1, ¢,=3(1-7)/r,and ¢, =¢,=3(1-7)(3-27)/r",
where 7 =3u/(3u+p).

Step 2. For each n=1, 2, compute P(;n (0) using (2.31) in terms of Fy.
From (2.31), it follows that
% 1-
Bo, (0) =thbo = 377/130,0 J

% 1-y)(3-2y
Po,z (0)=¢2Po,0 :3( );2 )Po,o-

Step 3. For each n=1, compute /,,.

Using (2.40) yields ¢, = —3/(1 + z') ,where 7=3u/1.
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Step 4. For each n=0, compute ¥, .
It implies from (2.42) that ¥, =1.
Step 5. Foreach n=1, 2, compute A(n) and B(n).
It yields from (2.46) and (2.47) that
A(1)=3p/r and A(2)=3p(1+3r+37%) /7"
|a(1+30+322)+ 2 (3-27) |(1-7) 1

U=P)E ng B(2)=-3 —

B(1)=-3
(1) . >

Step 6. For each n=1, 2, compute B ,(0) using (2.44) and (2.45) in terms of A
and Fy.
From (2.44) and (2.45), we find that
B,(0)=4(1)R,+B(1)F,,
P, (0)=¥,[ 4(2)Ro+B(2) Ryl
Step 7. Compute B using (2.48) in terms of Fyp. Thus B, (0) (1<n<2) are
achieved from Step 6. L=

It implies from (2.48) that

1(1—7/)[1'3 (1+2')(3—2}/)+7/(1+4r+672ﬂ
(1+4r+677 )7

r3y(1+r)(1—y)(3—27/)P

(1+4r+6z‘2))/2 o0

2'3,11(1—7/)(3—27/)1D
2\,2 ~00°
(1+4r+67% )y

1,0 = Bops (PITO (0) = PI,O) J

Z:1,1(0):3

9

P, (0)

Step 8. For each n=1, 2, compute Plfn (0) using (2.49) and (2.50) in terms of Fy,.
Using (2.49) and (2.50) yields
r(1+7)(1-7)(3-27)(1+37 +37°)

P = )
b (1 +47 467> )7/2 00
i} 7(1-7)(3-2y)(1+37+37°
and £, (0)= 72< Jp,
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Step9.For n=3, compute F,(0) using (2.56) in terms of F.
It follows from (2.56) that

. (1=7)(3-27)(3+107+1077)
o (0) - (1+42'+6T2)]/2

Fyo-

Step 10. Determine Fy, using (2.57). Thus B, (0) (n=0, 1,...,3) are achieved
from Steps 2 and 9, and an (0) (=0, 1, 2) are achieved from Steps 7 to 8.

Foo =<1+4r+612)7/2x
{(1+4T+6T2)|:]/2 +(1—}/)(9—7/2)}

+(1-7)(3-27)(3+11r +142 +67° + 47 + 77 )}_1

Example 3 (For M/D/1 queue). We set the mean service time s, =1/u, F=1,
and K =3. In this case,

s (6’):6—9/".
Step 1. For each n=0, 1,...,3, compute ¢, .
Using (2.32) yields

d=1, f=(1-a)/a,and. ¢, = ¢ :(l—a)/az,where a=ul(u+p).
Step 2. For each n=1, 2, compute PO’tn (0) using (2.31) in terms of Fy.

Using (2.31), we finally get

* l-a
PO,I (0) =¢1P0,0 =7Po,o,

* -
Po,z (0) = ¢2Po,0 :7130,0~

Step 3. For each n=1, compute /.

From (2.40), we find that ¢/, =—p, where p=4/u.
Step 4. For each n=0, compute ¥, .

It implies from (2.42) that ‘¥, =1.

Step 5. Foreach n=1, 2, compute A(n) and B(n).

From (2.46) and (2.47), it follows that
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A(1)=pu and A(Z):p,u(l—ep).

_ l-a)ll-a+e”
)= =H g B(Z):—ﬂ( I . )
a a
Step 6. For each n=1, 2, compute B, (0) using (2.44) and (2.45) in terms of B
and Fy,.

Using (2.44) and (2.45) yields
B,(0)=4(1)B,+B(1)F,,
P, (0)=Y,[ A(2)B+B(2) Ry ],
Step 7. Compute B, using (2.48) in terms of Fy,. Thus A, (0) (1<n<2) are

achieved from Step 6.

We find from (2.48) that
o ‘(1ai[zi((i:)_elp)mp]?w’ [5(0)=Fio).
Aal0) az((ti)_ép )PO'O*
f2(0)=- az((ll_ +02 /_)ip) fo

Step 8. Foreach n=1, 2, compute Pl; (0) “using (2.49) and (2.50) in terms of Fy,.

Using (2.49) and (2.50) yields

(1—0{) 1—€p " l_a
pa (1+p—ep) o

Pfl(o):

Step9.For n=3, compute F,(0) using (2.56) in terms of F.
It follows from (2.56) that

(1-a)| 2(e” -1)-p(1+¢”)]

pa2(1+p—ep)

Step 10. Determine By, using (2.57). Thus £, (0) (2=0, 1,...,3) are achieved
from Steps 2 and 9, and Pl; (0) (n=0, 1, 2) are achieved from Steps 7 to
8.
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Fyo = pa’ (1+p—ep)><
[p(1+p+a—a2)+ep (ap+a2 —2p° —a)—(l—a)z}_l.
2.5 Optimal F policy

Our analysis 1s based on the following system performance measures of the F
policy M/G/1/K queue with exponential startup time. Let
L, =the average number of customers in the system;
P, =the probability that the server is busy;
P, =the probability that the server requires a startup time before starting the
service;
P,, =the probability that the server is blocked.

The expressions for L,, B, F,,and F, are giveby

K K-1
L =Z”Po,n + z nh
n=1 n=1

K K-1
B=>FR,+2 R,
n=0 n=0

F
P=>FR,,
n=0

K
}21 :::E:‘[ﬁ,n
n=0

2.5.1 Cost function

We develop the total expected cost function per unit time for the F policy
M/G/1/K queue with startup times, in which F is a management decision
variable. The main purpose of this subsection is to determine the optimum
management F policy so as to minimize this total expected cost function. Let

C, =holding cost per unit time for each customer present in the system;

C, =busy cost per unit time for a busy server;

C, =startup cost per unit time for the preparatory work of the server before

starting the service;

C,, =fixed cost for every lost customer when the system is blocked.

Utilizing the definitions of each cost element listed above, the total expected

cost function per unit time is given by
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The optimal value of F, F " is determined by satisfying the following

inequality
TC(F -1)>TC(F") and TC(F +1)>TC(F"). (2.59)
2.5.2 Numerical examples

We now perform a sensitivity analysis on the optimum value F " based on
changes in specific values of the system parameters and fix the system capacity
K=15. We consider the three simple examples for three different service time
distributions such as exponential, 3-stage Erlang, and deterministic and employ the

following cost elements:

Case 1: C, =5, C, =200, C, =250, C,; =300.
Case 2: C, =5, C, =200, C, =250, C,, =350.
Case 3: C, =5, C, =200, C, =300, Cy; =350.
Case4: C, =5, C, =225, C, =300, Cp = 350.
Case 5: C, =10, C, =225, C; =300, C,, =350.

In this section we provide the numerical results of the optimal value F " and
the minimum expected cost for three interarrival time distributions and specific
valuesof A, u, f.We firstfix ( w B ) =7(1:0, 3.0) and choose different values of
A =0.5,0.6, 0.7. Next, we fix (ﬂ,ﬂ) = (0.8,:3.0) and consider various values of
u=1.0, 1.1, 1.2. Finally, we fix (4,)"=%0.8, 1.0) and select different values of
£ =2.0,4.0,5.0.

The optimal value of F, F *, and its minimum expected cost TC (F *) for the
above five cases are shown in Tables 1-3. For fixed values of (x, ) and various
values of A in Tables 1-3, we observe that (i) T C(F *) increases as A increases
for any case; and (i) F " decreases as A increases for any case. For fixed values
of (4,8) and various values of u in Tables 1-3, we find that (i) TC (F *)
decreases as u increases for any case; and (i) F " increases as 4 increases for
any case. Again, for fixed (4,u) and various values of B in Tables 1-3, we
observe that (i) 7C (F *) slightly decreases as f increases for any case; and (ii)
F" does not change at all when S changes from 2.0 to 5.0 for any case.
Intuitively, F~ is insensitive to changes in g

It can be easily see from Tables 1 through 3 that (1) F " increases as C,
decreases or C,, increases (see cases 4-5 and cases 1-2); and (i1) C, and Cy,
have a larger effect on F * than C, and C, (see cases 3-4 and cases 2-3).
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Table 1. The optimal value of F'and its minimum expected cost for the service time distribution such as exponential.

2 (u,8)=(1.0,3.0)

u (4,8)=(0.8,3.0)

B (A4,1)=(0.8,1.0)

0.5 0.6 0.7 1.0 1.1 1.2 2.0 4.0 5.0
Casel F 9 7 5 4 7 10 5 4 4
TC(F') | 105.000 127.486 151.420 | 177.597 158.454 143.314 | 177.680 177.561 177.540
Case2 F 12 11 9 6 10 12 6 6 6
TC(F') | 105.001 127.501 151.554 | 178.285 158.655 143.367 | 178.361 178.247 178.225
Case3 F 12 11 8 6 10 12 6 6 6
TC(F') | 105.001 127502 151.562 | 178.314 158.669 143.374 | 178.404 178.269 178.242
Cased F 11 9 7 4 8 11 5 5 5
TC(F') | 117500 142.496 169.000 | 197.985 176.767 160.020 | 198.072 197.941 197.915
Case5 F 5 4 3 2 4 6 2 2 2
TC(F') | 122470 149.933 180.049 | 213.873 189.095 169.773 | 213.960 213.830 213.804

Table 2. The optimal value of F and its minimum expected cost for the service time distribution such as 3-stage Erlang.

2 (1,8)=(1.0,3.0)

u (2,8)=(0.8,3.0)

B (A,41)=(0.8,1.0)

0.5 0.6 0.7 1.0 1.1 1.2 2.0 4.0 5.0
Casel F 9 7 6 4 7 10 4 4 4
TC(F') | 104.167 125.999 148912 | 173.998 #155.504 141.111 | 174.022 173.986 173.979
Case2 F 12 11 9 6 10 12 6 6 6
TC(F') | 104167 126000 148.932 | 1742216, 1155541 141.116 | 174.241 174204 174.197
Case3 F 12 11 9 6 10 12 6 6 6
TC(F') | 104.167 126.000 148.933 | 174226 155.544" 141.117 | 174.255 174211 174.202
Cased F 11 9 7 5 9 12 5 5 5
TC(F') | 116.667 141.000 *.166.424 | 194.121 193710 157.781 | 194.150 194.107  194.099
Case5 F 6 4 3 2 4 6 2 2 2
TC(F") 120.833  146.996 175.278 | 207.572 183.632 165.532 | 207.601 207.557 207.548

Table 3. The optimal value of F and its minimum expected cost for the service time distribution such as deterministic.

A (u,8)=(1.0,3.0)

# (4,8)=(0.8,3.0)

B (2,14)=(0.8,1.0)

0.5 0.6 0.7 1.0 1.1 1.2 2.0 4.0 5.0
Casel F 10 8 6 4 7 10 4 4 4
TC(F') | 103.750 125.250 147.578 | 171.798 153.930 140.000 | 171.806 171.794 171.792
Case2 F 12 11 9 6 10 12 6 6 6
TC(F') | 103.750 125250 147.582 | 171.869 153.938 140.001 | 171.877 171.865 171.863
Case3 F 12 11 9 6 10 12 6 6 6
TC(F') | 103750 125250 147.582 | 171.872 153.938 140.001 | 171.882 171.867 171.864
Cased F 12 10 7 5 9 12 5 5 5
TC(F') | 116250 140250 165.080 | 191.839 172.117 156.667 | 191.848 191.834 191.831
Case5 F 7 5 3 2 4 6 2 2 2
TC(F') | 120.000 145500 172.649 | 203.459 180.568 163.331 | 203.469 203.454 203.451
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Chapter 3

The F Policy G/M/1/K Queue with Startup Time

We use a supplementary variable technique to analyze the optimal control of
the F policy G/M/1/K queue where the server needs a startup time before start
allowing customers in the system and K <oo denotes the maximum capacity of
the system. The method of controlling arrivals focuses on reducing the number of
customers in the system. The model proposed in this dissertation is very useful in

real-life situations since the controlling of arriving customers is considered.

In section 3.1, the queue model is briefly described. Section 3.2 develops the
equations and solutions. Section 3.3 provides a recursive method using the
supplementary variable technique and treating the supplementary variable as the
remaining interarrival time, to obtain the steady-state probability distributions of the
number of customers in the F policy G/M/1/K queue. In section 3.4, we illustrate
the solution algorithm by presenting sthree<simple examples for three different
interarrival time distributions: exponential (denoted M), 3-stage Erlang (denoted E;),
and deterministic (denoted D). In section'3.5, various.system performance measures
are presented. The total expected cost function per unit time for the F policy
G/M/1/K queue with startup’times is developed. Numerical and comparative

results are also provided.

3.1 Assumptions and Notations

We consider the category of controlling the arrivals to the F policy
G/M/1/K queue with exponential startup time. It is assumed that the times
elapsing between successive arrivals are independently and identically distributed
(i.i.d) random variables having general distribution A4(v) (v>0), a probability
density function a(v) (v>0) and mean interarrival time &, . The service times of
the customers are independently random variables having a common exponential
distribution with mean 1/x. Let us assume that customers arriving at the server
form a single waiting line and are served in the order of their arrivals; that is,
according to the first-come, first-served (FCFS) discipline. Suppose that the server
can serve only one customer at a time, and that the service is independent of the

arrival of the customers. Customers entering into the service facility and finding that
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the server is busy have to wait in the queue until the server is available. Gupta [6]

first introduced the concept of a F policy. The definition of a F' policy is described as

follows: When the number of customers in the system reaches its capacity K (i.e. the

system becomes full), no further arriving customers are allowed to enter the system

until there are enough customers in the system have been served so that the number

of customers in the system decreases to a threshold value FF (0<F<K-1). At

that time, the server needs to take an exponential startup time with parameter f

to start allowing customers in the system. Thus, the system operates normally until

the number of customers in the system reaches its capacity at which time the above

process is repeated all over again.

The following notations and probabilities are used throughout this chapter.

F

threshold level
system capacity (K > F +1)

Interarrival time random variable
remaining interarrival time random variable
distribution funetion (d.f;) of «4

probability density function (p.d.f.) of. 4
Laplace-Stieltjes transform (LST) of ' 4
I th order derivative of @ () with respect to ¢

probability of no ¢ustomers in the system at time ¢ when the
arrivals are not allowed to enter the system

probability of # customers in the system at time ¢ when the
arrivals are not allowed to enter the system, where n=1,2,...,K.

probability of no customers in the system at time ¢ when the
arrivals are allowed to enter the system

probability of # customers in the system at time ¢ when the
arrivals are allowed to enter the system, where n=1,2,...,K —1.

The special case with system capacity K=F+1 is presented in the appendix.

3.2 Development of the Equations and Solutions

We use the following supplementary variable: 7 =remaining interarrival time

for the customer in arrival process. The state of the system at time ¢ is given by

N (¢)=number of customers in the system, and

V () = remaining interarrival time for the customer who is arriving.

Let us define
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Po,l(v,t) {N(t)zn,v<V(t)£v+dv}, >0, n=0,1,.. F.
B, (v,t)dv {N(t):n,V<V(t)Sv+dv}, v>0, n=0,1,.. ,K-1.
B, (1) j B, (v,t)dv, n=01,..,F.

Pln(t I B, vt)dv n=0,1,.,K-1.

Relating the state of the system at time ¢ and ¢+d¢, we obtain

%Poo() ~BRyo(t)+uby, (1),

S B () =B+ ) By, (6) B (1), 1505 F,
%Poﬁ(t):—uPo’n(t)+/1P07n+1(t), Frl<n<K-1,
%PO,K( )=—1Fy  (£)+ B x1(0,2),

(E_EJPLO(V )= BByo (v,0)+ 1By (1),

v,t)=—uB )v,t)+ SRyt )+ B, (0,¢)a(v)+

(
,uPLnH(v,t), 1<n<F,

o 0
(E_ajpln(vft):_ﬂit)l,n(v’t)+f)11”—1(O’t)a(v)-i_'upl’nﬂ(v,[),
F+1<n<K-2,

2_9p (v,t)=—uB g1 () + P g (0,2)a(v).

o ov) MK b b

3.3 Steady State Results

In steady state, let us define

BR,=lm#F,(¢), n=01.,K
’ t—0
1,n—}gnPOn( ), n=0,1,..,K-1.

By, (v )—}1_1)130P0’n(v,t), n=01,.,F
Pl,n(V):}i_r)?oPLn(V’t)’ n=0,1,..,K-1.

and further define

B, (v)=F,a(v), n=0,1,. F

From (3.1)-(3.8) we can easily obtain the following steady state equations:
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(3.2)
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(3.4)
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3.7)

(3.8)
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0=—-pFyo+uby, (3.10)

0=—(B+u)Ry,+uFR,,, 1<n<F, (3.11)

0=—uPy,+ 1Py, F+l<n<K-l, (3.12)

0=-uPyx+Bx1(0), (3.13)
d

_EPI,O (V)::BPO,O‘Z(V)+#131,1(V)’ (3.14)
d

_EPl,n (V) = _:UPI,n (V) +ﬁP0,na(V) +Pl,n—1 (0)61(V)+ IUPI,n+1 (V)’ (3 15)
1<n<F,

—diPl,n (¥) = 1B, (v)+ Py (0)a(v)+ 1By (1), F+1<n<K—2, (3.16)
v
d

1 l,Kfl(V):_'uPl,Kfl(V)+PI,K72 (0)a(v). (3.17)

Further define

a (49) = ro e_avdA(v) = _[: e_‘gva(v)dv,
~ (v)dv, AT,
5 (0)=[ B, (v)dy, i=015

© _—ov 0 _ v
Ioe 5E’n(v)dV—HPi’n(9)—P

i

Gl =0,

Therefore if the LST is taken on.both sides of (3.14)-(3.17), it is found that

0B (0)=phyga (0)+uB;(0)=R,(0), (3.18)
(,Ll - G)Plfn ((9) = IBPO,na* (9) T :uPI:Hl (9) + Pl,n—l (O)a* (9) _Pl,n (O)’ (3 19)
1<n<F, '
(u—0)R,(0)=uPB,. (0)+P,(0)a (6)-P,(0), F+1<n<K-2, (3.20)

*

(4=0)Bx1(0)=PFx(0)a

3.3.1 Recursive methods

(0)= P, k-1(0). (3.21)

The recursive method is developed to obtain F,(0) and P, (0). Our
solution algorithm will first obtain By, (0) (1sn<K).

Using (3.10)-(3.13), we get

B, (0)=¢,B, 1<n<K, (3.22)
B xa (0) = udra b, (3.23)
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where ¢, = €t 3.24
’ ﬁ[nﬁj . 1<n<K, (3.24)
A
n, 0<n<F-1,
where ¢, =
F, F<n<K

Thus, Fy;(0), By, (0),..., By (0) can be obtained by using (3.22).

Next, we derive the expressions of B, (0) (0<n<K-2) in terms of Fy.
Using (3.22)-(3.23) in (3.19)<(3.21) and then setting 0= in (3.19%(3.21), we
finally obtain

PI n+1 (0) - /UPITn+2 (/u) - ﬂ¢n+1,F¢n+1PO,Oa* (:u)

A,(0)= o () , 0<n<K-3,
(3.25)
b 1, 1<n<F,
where =
n.r 0, otherwise,
B, (0)=% D1 Byo- (3.26)

a" ()

To obtain B, (u) (0sm<K=3) in (3:25), use (3.22) and (3.26) in
(3.19)-(3.21), differentiating®(3.19)-(3.21) (/-1) titmes with respect to ¢ and
setting € = u , we finally get

B ()=~ B (00 ()8 Foge O )+ B ()]
where 2<n<K-2, [I=1,..,K-n-1,

*(1)
Pl,K—l(ﬂ)_ la¢F+1a—(ﬂ)Po,0, (3.28)

a (u)

where Pl*(o)(y):P:n (#) and a*(l)(é’):[(dl/dé?l)a* (9)} denotes the /th

n

derivative of a (6).

Solving (3.27)-(3.28) recursively, we obtain

* By (1) & a (n) &
A ()= Coin®: B0 — ChiaB,(0),
1 (4) P ,-%2 W0 === 2 LB 0 g
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b=y ald(u) (3.30)

0, otherwise.

Using (3.28)-(3.29) in (3.25), we can obtain

1)1 N7} 1
Pln(o : z fz —-n— lﬂz 1
,Ll) i=n+2
» (3.31)
Bl uizr X, Linah—Pusirbus |Fogy 0Sn<K-3.
i=§n+2
We further define
L n=0,
¥, =1 2 Y kKK, n=12.,K-2, (3.32)
1<k<n  r+1y+-+1=n
71,7, e (1,2, )
0, otherwise,
where
%"t‘gl, n= 1,
a (1)
Kn: n 7’122,3,"',K—2, (333)

S

, otherwise.

The representative meaning of the above formulation (3.32) is the same as (2.42).

Using (3.32)-(3.33) to solve (3.31) recursively, and including (3.26), we finally get

K-n-1
Pl,n(o): Z \PKfnfz'flA(K_i_l)Po’(), OSI’ISK—Z, (335)
i-1
where
F
BOpir F z Ciw1® = BOui1 pPu, 0<n<K -3,
Aln)= o (3.36)
L2 n=K-2.
a (u)

Finally, we develop the steady-state probabilities P{fn (0) in terms of £, . Setting
6 =0 1in (3.18)-(3.21) we have
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% é’n—l
R,n(0)=%[ﬂ,n_1(0)—ﬂz @Po,o} l<n<K-1. (3.37)

=0
As P,(0), B,(0),..., Bx(0) are known, B;(0), P,(0),..., P,x_(0) can be

determined recursively using (3.37) in terms of £ .

Now the only unknown quantity is B,(0) which can be obtained from
(3.18)-(3.21). To find 1t, differentiate (3.18)-(3.21) with respect to 6 and set =0,

we have

Py (0)=-BRyea"" (0)-uB}" (0), (3.38)
70 (0)= 1ot P rdiBooa ) (0)+ uB\) (0)+ R, (0)a™ (0)
y r ! (3.39)
1<n<K-1.

The values PITS)(O) for n=12,...,K—-1 can be found recursively from (3.39).

Therefore, we obtain
* *(1) F K-1 *(1) K-2
Bo(0)=—=| Ba ) (0)D. 4, B o+ > By+a s’ (0)D B.(0)]. (3.40)
i=0 i=1 i=0

So P y(0), B1(0),..., B x(0) is known ‘in terms of Fy,, which can be

determined using the normalizing condition
K K-1
S P+ P, =1 (3.41)
=0 i=0

To demonstrate the working of the recursive method, we first describe the
solution algorithm  for calculating the steady state probabilities,
B,(0) (0<n<K) and P ,(0) (0sn<K-1). Next, to illustrate the solution
algorithm, we provide three simple examples where the interarrival time
distributions are exponential, k-stage Erlang, and deterministic, respectively.

3.3.2 The solution algorithm

Let F be the threshold, K be the maximum capacity of the system, and let
a*(l)(ﬁ) where /=1, 2,....K be the Ith derivative of a (). We are given the
values of F, K, and the LST expression of the interarrival time distribution, namely

a (9) . The steps of the solution algorithm are stated as follows:

Step 1. Foreach n=0, 1,...,K , compute ¢, using (3.24).
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Step 2. For each n=1, 2,...,K , compute POT,, (0) using (3.22) in terms of
P070.

Step 3. Compute /,(1<n<K-2) and «,(1<n<K-2) using (3.30) and
(3.33), respectively.

Step 4. For each n=0, 1,...,K -2, compute ¥, using (3.32).

Step 5. Foreach n=0, 1,...,K -2, compute A(n) using(3.36).

Step 6. For each n=0, 1,...,K -2, compute A, (0) using (3.35) in terms of
FByo-

Step 7. For each n=1, 2,...,K -1, compute Pl; (0) using (3.37) in terms of

Byo-
Step 8. Compute P,(0) using (3.40) in terms of Fy.
Step 9. Determine Py, using (3.41), Thus B, (0) (7=1, 2,...,K) are achieved

from Step 2, and Pl; (0) (n=0, 1,:.l5K —1) are achieved from Steps 7
to 8.

3.4 Simple Examples

We use the solution algorithm to illustrate a recursive method. We provide

three simple examples for three.different interarrival time distributions such as

exponential, 3-stage Erlang, and deterministic, respectively.

Example 1 (For M/M/1 queue). We set A is the interarrival rate. Assume that

F =2 and K =5. In this case, we have

. 2
*9)=7a

Step 1. Foreach n=0, 1,...,5, compute ¢, using (3.24).

Using (3.24), we obtain

¢I_ ¢2 2 ’and ¢3_¢4 ¢5 3 ,Where o= ﬂ/ﬂ+ﬂ

Step 2. Foreach n=1, 2, ---, 5, compute PO,jn (0) using (3.22) in terms of Fy,.

Using (3.22), we finally get

1

l-a -
POO’ Poz( ):¢2Po,o:7po,o’

POTI (0) = ¢1Po,o =
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* * * 1—0(
Po,s (0) :P0,4 (0) :Po,s (0) :¢3Po,o :7130,0-

Step 3. For each n=1, 2, 3, compute ¢/, and «, using (3.30) and (3.32),

respectively.

For each n=1, 2, 3, using (3.30) yields /; =—c/(1+0), ¢, :—02/(1+a)2 and
0y :—0'3/(1+0')3 , where o =u/A.

Foreach n=1, 2, 3, from (3.32), we obtain
K =—(1+0'+0'2)/(1+0), K, :—0'2/(1—1-0')2 and x;, :—0'3/(1+<7)3 :
Step 4. For each n=0, 1,---, 3, compute ¥, using (3.31).
It implies from (3.31) that
Y,=1, ¥, :(1+0'+0'2)/(1+0), ¥, =1+0%, and
Y, :(1+(7+0'2 +o° +O'4)/(1+(7).
Step 5. For each n=0, 1,---, 3, compute] A(#) using (3.36).

It follows from (3.36) that

A(O)—ﬂ(la)z(g:a)amz), A(1)=—“(1_3a)2, A(2)=0, and
A(3):,u(1—a)3(1+6).

a
Step 6. For each n=0, 1,---, 3, compute P,,(0) using(3.35) in terms of F.

Using (3.35) yields
Py (0)=[ WA (3)+¥,A(2)+ W, A(1)+WoA(0) | Ry

/,1(1—0()(0'2 +o’+ot +a0'+a2)
= o Po,o,

,u(l—a)(0'+02 +0'3+a)

0[3

Py (0)=[W,A(3)+W,A(2)+WoA(1) | By = By,

B, (0)=[¥,A(3)+¥oA(2)] Ry = ”(1_“)(1:‘”"2)1)0,0’

a
ul-a)(l+o
( )3( )Po,o-

Pl,3 (O)Z\P3A(3)Po,o = o
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Step 7. Foreach n=1, 2, ---, 4, compute Plfn (0) using (3.37) in terms of Fy,.

It implies from (3.37) that

. 0'(1—0{)(0'+62+63+a) . O'(I—a)(1+0'+62)
P1,1(0)= o2 Boo> PI,Z(O): 2 Boos
* o(l-a)(l+o * o(l-a
P5(0)= ( a)3( )Po,o,and 3,4(0):%130,0-

Step 8. Compute B (0) using (3.40) in terms of Fy.

O'(I—a)(0'2 +o°’+ot +a0'+a2)

0{3

Using (3.40) yields B, (0)=

PO,O .

Step 9. Determine Fy, using (3.41). Thus PO’jn (0) (n=1, 2,...,5) are achieved from
Step 2, and Plfn (0) (n=0, 1,...,4) are achieved from Steps 7 to 8.

CZ3

P = .
00 2 +(1—a)<3+a+a2)+0(1—a)(3+a+a2 +aoc+3+30+30% +20° +0'4)

It is to be noted that these results are the:same as those given in Gupta [12,
p1006].

Example 2 (For E;/M/1 queue). The 3-stage Erlang distribution is made up of three
independent and identical exponential stages, each with mean 1/31. We set A is

the interarrival rate, F =1, and K =3 .'In'this case, we have

a*(e):(sjief'

Step 1. Foreach n=0, 1,...,3, compute ¢, using (3.24).

Using (3.24), we obtain
¢0 :1’ ¢1 :3(1_7)/7/’ and ¢2 :¢3 :3(1_7/)(3_27)/7/2’
where 7 =3u/(3u+ ).
Step 2. Foreach n=1, 2, 3, compute F,(0) using (3.22) in terms of Fy.

Using (3.22), we finally get

1-7)(3-2y)

* 1— * *
PO,I (0) =¢1P0,0 =377P0,0, Po,z (0) =P0,3 (0) =¢2P0,0 = 3( Po,0~
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Step 3. Compute /¢, and x;using (3.30) and (3.33), respectively.
Using (3.30) yields ¢, =-37/(1+7), where 7=p/32.

Form (3.33), we obtain &, =(1+7+67” +47° +7* )/(1+r) .

Step 4. For each n=0, 1, compute ¥, using (3.31).

It implies from (3.31) that W, =1 and ¥, = (1+r+6r2 +47% + 74 )/(1+T).
Step 5. For each n=0, 1, compute A(n) using (3.36).

It follows from (3.36) that

'u(l—_/)z and A(1)=3

4 v

u(1-7)(3-27)(1+7)"

A(0)=-9 5

Step 6. For each n=0, 1, compute B ,(0) using (3.35)in terms of Fy.

Using (3.35) yields

Po(0)=[W,A(1)+ WA ()R,

3u(1-7)(3-2) (L) (THr+67 4> + * ) -9u(1-7)
= P
2 0,0
i

34(1- ) (3=2)(1+ )
B1(0)=YoA(1) Ry = ( )(}/2 A )Po,o-

Step 7. For each n=1, 2, compute B, (0) using (3.37) in terms of F).
It implies from (3.37) that

3(1—7)(3—2}/)1'(3+9r+1712 +157° +67* +75)

7/2

3(1-7)(3-27)7(3+3r+%)

7/2

Plfl(o):

Fo0,

PIT2 (0)= Po,o-

Step 8. Compute B (0) using (3.40) in terms of Fy.

Using (3.40) yields
Py(0)= %{%(1 -9 r(3-120-367> - 780 ~787* ~347° —67°)
¥

+7(18+547 +1177% +1177° +51¢* +975)]}P070.
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Step 9. Determine Fy, using (3.41). Thus By, (0) (7=1, 2, 3) are achieved from Step
2, and an (0) (=0, 1, 2) are achieved from Steps 7 to 8.

By =7"[18-7(27-107)+272(2 + 67 +120> +187° +157* +.67° + 2°)
—97y(27+ 307 + 6072 +2707> +75¢% +307° +57%)
-1
+9777 (3+127+247° +367° +307* +122° +2¢%) | .

Example 3 (For D/M/1 queue). We set A is the interarrival rate, F =1, and
K =3 . In this case,

a (9)=e*.
Step 1. Foreach n=0, 1,...,3, compute ¢, using (3.24).
Using (3.24), we obtain

d=1, f=(1-a)/a,and ¢, =4 =(1—0{)/052 , where a=u/(u+p).
Step 2. Foreach n=1, 2, 3, compute £, ,(0) dsing (3.22) in terms of F,.

Using (3.22), we finally get

* 1—0{ * * -«
P0,1(0)2¢1P0,0 ZTPO,O’ Po,z (0)=P0,3 (0)=¢2Po,o :7Po,o~

Step 3. Compute /¢, and x;using(3.30) and (3:33), respectively.

Using (3.30) yields ¢, =—o, where o = u/A.Form (3.33), we obtain «,=¢° —0o.
Step 4. For each n=0, 1, compute ¥, using (3.31).

It implies from (3.31) that W, =1 and ¥, =¢° -0.

Step 5. Foreach n=0, 1, compute A(n) using (3.36).

2
M and A(1)=
(04 a

u(l-a)e |

It follows from (3.36) that A(0)=- >

Step 6. For each n=0, 1, compute B, (0) using (3.35)in terms of F.
Using (3.35) yields

,u(l—oz)(ez‘7 —oe +a—1)

Py (0)=[W,A(1)+WoA(0) ] Ry = . By,
u(l-a)e®
B, (0)= \POA(l)Po,o = (a—z)Po,o :
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Step 7. For each n=1, 2, compute B, (0) using (3.37) in terms of F).
It implies from (3.37) that

(1 —a)(eza —oe —l)

PITI (0) = 2 PO,O’ and PITZ (0) = 2 PO,O'
o a
Step 8. Compute P,(0) using (3.40) in terms of Fy.
. (lI-a)|24+ac—(1-0)e’ (¢ +1-0
Using (3.40) yields P (0)= [ ( 5 ) ( )J Fyp.

(24

Step 9. Determine F), using (3.41). Thus B, (0) (n=1, 2, 3) are achieved from Step
2,and P, (0) (n=0, 1, 2) are achieved from Steps 7 to 8.

a2

Po,o =

ce’° (1-a)+oe? (1—a)(1—0)+2—a+0{0—a20' '
3.5 Optimal F policy

Our analysis is based on the following system performance measures of the F
policy G/M/1/K queue with-exponential startup time. Let
L, =the average number of customets in the system;
B, =the probability that the server is busy;
P, =the probability that the server requires a startup time before starting the
service;

F,; =the probability that the server is blocked.

The expressions for L, B, P,,and F, are give by

K K-1
L :ZnPO,n + Z B
n=1 n=1
K K-1
B=2FR.+) B,
n=0 n=0
F
P=>h,,
n=0
K
Pbl = ZPO,n :
n=0

3.5.1 Cost function

We derive the total expected cost function per unit time for the F policy
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G/M/1/K queue with startup times, in which F is a decision variable. The main
purpose of this subsection is to determine the optimum operating F policy so as to

minimize this total expected cost function. Let

C, =holding cost per unit time for each customer present in the system;

C, =busy cost per unit time for a busy server;

C, =startup cost per unit time for the preparatory work of the server before
starting the service;

C,; =fixed cost for every lost customer when the system is blocked.

Utilizing the definitions of each cost element listed above, the total expected

cost function per unit time is given by

TC(F)=C,L,+CyP,+C.P.+CyAB,. (3.58)

The optimal value of F, F is determined by satisfying the following
inequality

TC(F -1)>TC(F") and TC(F +1D)>TC(F"). (3.59)

3.5.2 Numerical examples

We set the system capacity K=15. We perform a sensitivity analysis for
changes in the optimum value  F! 5 along with changes in specific values of the
system parameters. We consider -three simple examples for three different
interarrival time distributions such as exponential, 3-stage Erlang, and deterministic.

The following cost elements are employed:

Case 1: C, =10, C, =200, C, =250, Cy; =350.

Case 2: C, =10, C, =200, C, =250, C,, =400.

Case 3: C, =10, C, =200, C, =300, C,, =400.

Case 4: C, =10, C, =225, C, =300, C,, =400.

Case 5: C, =15, C, =225, C, =300, C;; =400.

In this subsection, we provide the numerical results of the optimal value F’
and the minimum expected cost for three interarrival time distributions and specific
valuesof A, u, f.Wefirstfix (u,f) =(1.0,3.0)and choose different values of
A =0.55,0.65, 0.75. Next, we fix (4,8) = (0.7, 3.0) and consider various values
of x#=1.0, 1.1, 1.2. Finally, we fix (4,#) = (0.7, 1.0) and select different values
of £=2.0,4.0,5.0.
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The optimal value of F, F * and its minimum expected cost TC (F *) for the
above five cases are shown in Tables 4-6. For fixed values of (, ,B) and various
values of A in Tables 4-6, we observe that (i) TC(F *) increases as A increases
for any case; and (i1) F" decreases as A increases for any case. For fixed values
of (4,8) and various values of x in Tables 4-6, we find that (i) TC (F *)
decreases as u increases for any case; and (i) F " increases as i 1ncreases for
any case. Again, for fixed (4,u) and various values of B in Tables 4-6, we
observe that (1) TC(F *) slightly decreases as £ increases for any case; and (ii)
F" does not change at all when S changes from 2.0 to 5.0 for any case.

Intuitively, F" is insensitive to changesin f.

It can be easily seen from Tables 4 through 6 that (i) F " increases as C,
decreases (see cases 4-5); and (ii) C, has a larger effect on F~ than C,, C, and

C,; (see cases 3-4, cases 2-3 and cases 1-2).
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Table 4. The optimal value of F and its minimum expected cost for exponential interarrival time

A (u,8)=(1.0,3.0)

u (4,8)=(0.7,3.0)

B (4,1)=(0.7,1.0)

0.55 0.65 0.75 1.0 1.1 1.2 2.0 4.0 5.0
Casel F 6 4 3 4 6 8 4 4 4
TC(F') | 122209 148361 177.914 | 162.635 144.660 130.652 | 162.654 162.626  162.620
Case2 F 8 6 5 5 8 11 5 5 5
TC(F) | 122215 148.425 178.303 | 162.803 144.705 130.663 | 162.823 162.793  162.787
Case3 F 8 6 5 5 8 11 5 5 5
TC(F) | 122216 148.428 178.318 | 162.810 144.708 130.664 | 162.834 162798  162.791
Cased F 7 5 4 4 7 10 5 4 4
TC(F') | 135963 164.647 196.879 | 180.230 160.598 145.243 | 180.253 180.218 180.211
Case5 F 4 3 2 2 4 6 2 2 2
TC(F') | 142.056 173.713 210.174 | 191.254 169.196 152207 | 191.276 191.242 191.235
Table 5. The optimal value of F and its minimum expected cost for 3-stage Erlang interarrival time
2 (1,8)=(1.0,3.0) u (4,8)=(0.7,3.0) B (4,1)=(0.7,1.0)
0.55 0.65 0.75 1.0 1.1 1.2 2.0 4.0 5.0
Casel F 7 5 4 4 7 9 4 4 4
TC(F') | 118.991 143288 1701687 | 156448 $139.842 126.868 | 156.450 156.447 156.447
Case2 F 9 7 5 6 9 12 6 6 6
TC(F) | 118.991 143291  170.747 ||156:463. 139.844 126.868 | 156.465 156.462 156.462
Case3 F 9 7 5 6 9 11 6 6 6
TC(F') | 118991 143291 170.750 | 156.464 139.844" 126.868 | 156.466 156.463 156.462
Cased F 8 6 4 5 8 11 5 5 5
TC(F") 132.741  159.539 ", 189.471 | 173.957 155752 141.451 | 173.959 173.956 173.955
Case5 F 5 4 3 3 5 7 3 3 3
TC(F") 137.236  166.178  199.711 | 182.155 162.033  146.552 | 182.157 182.153  182.153
Table 6. The optimal value of F and its minimum expected cost for deterministic interarrival time
2 (1,8)=(1.0,3.0) u (4,8)=(0.7,3.0) B (A1) =(0.7,1.0)
0.55 0.65 0.75 1.0 1.1 1.2 2.0 4.0 5.0
Casel F 10 6 4 5 7 10 5 5 5
TC(F') | 117.440 140.710 166.469 | 153.130 137.435 125.030 | 153.130 153.129  153.129
Case2 F 10 7 5 6 9 12 6 6 6
TC(F') | 117.440 140.710 166.477 | 153.131 137.435 125.030 | 153.131 153.130  153.130
Case3 F 12 7 5 6 9 12 6 6 6
TC(F') | 117.440 140.710 166.478 | 153.131 137.435 125.030 | 153.131 153.131  153.130
Cased F 9 6 5 5 8 11 6 5 5
TC(F') | 131.190 156.960 185224 | 170.630 153.344 139.613 | 170.630 170.630  170.630
Case5 F 6 4 3 4 6 8 4 4 4
TC(F') | 134911 162.315 193.445 | 177.193 158.425 143.794 | 177.193 177.193 177.193
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Chapter 4

The N policy M/G/1/K Queue with Startup Time

In this chapter, we introduce the N policy M/G/1/K queue with startup time.
We use a supplementary variable technique to analyze the optimal control of the N
policy M/G/1/K queue where the server needs a startup time when the number of
customers in the system reaches the threshold N (N >1) for the first time until
there are no customers present in the system. At that time, the server needs to take
an exponential startup time with parameter y to start servicing customers in the

system.

The primary objective of this chapter is twofold. Firstly, we develop a recursive
method using the supplementary variable technique and treating the supplementary
variable as the remaining service time, to develop the steady-state probability
distributions of the number of customers for 'the N policy M/G/1/K queue. The
method can be utilized for any servicertime distribution, such as deterministic
(denoted D), exponential (denoted M) and' k-stage Erlang (denoted E,), etc.
Secondly, to illustrate a recursive method we present one simple example for the

service time distribution such as.3-stage Erlang.

In section 4.1, we describe  the-queueing model briefly. Section 4.2 the
equations and solutions is developed. Section 4.3 provides a recursive method using
the supplementary variable technique and treating the supplementary variable as the
remaining service time, to obtain the steady-state probability distributions of the
number of customers in the N policy M/G/1/K queue. Finally, presenting one

simple example for 3-stage Erlang (denoted E;), in section 4.4.

4.1 Assumptions and Notations

It is assumed that customers arrive following a Poisson process with parameter
A and the service times of the customers are independently and identically
distributed (i.i.d.) random variables having a distribution S(x) (#>0), a
probability density function s(u) (u >0) and mean service time s;. If one
customer 1s in service, then arriving customers have to wait in the queue until the
server is available. Let us assume that customers arrive at the server form a single

waiting line and are served in the order of their arrivals; that is, the first-come,
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first-served (FCFS) discipline. Suppose that the server can serve only one customer

at a time, and that the service is independent of the arrival of the customers.

The following notations and probabilities are used throughout the chapter.

N threshold level

K system capacity (K > N )

S service time random variable

U remaining service time random variable
S(u) distribution function (d.f.) of §

s(u) probability density function (p.d.f.) of §
S"(#)  Laplace-Stieltjes transform (LST) of S
s (6)  Ith order derivative of s (0) with respectto 6

) probability of no customers in the system at time ¢ when the
server is turned off
R, ( [) probability of 7 customers in the system at time ¢ when the
server is turned off where .z=1,2,..., K.

P, ( t) probability of 7, ‘customers in the system at time ¢ when the
’ server is turned on where;n=1,2,.., K.
F steady state probability of no customers in the system when the

server is turned off

., steady state probability of # customers in the system when the
server is turned off where #=1;2,...,K.

B, steady state probability of # customers in the system when the
server is turned on-where-n=1,2,....K.

5 mean service time.

4.2 Development of the Equations and Solutions

We use the following supplementary variable: U =remaining service time for
the customer in service. The state of the system at time ¢ is given by
N (¢)=number of customers in the system, and

U (t) =remaining service time for the customer being served.

Let us define
P, (ut)du=Pr{N(t)=nu<U(t)<u+duj, u20, n=12,.,K.
B, (£)=], Ba(wt)du, n=12,. K.

Relating the state of the system at time ¢ and ¢+d¢, we obtain

d
EPO,O(t)Z_ﬁ’})(),O(t)+f)1,l(0?t)’ 4.1)
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— B, (t)=-2R,(t)+ 1B, (1), 1<Sn<N-],

dr
%PM(z‘):—(l+7/)PO’n(t)+/lPo,n_1(t), N<n<K-l,

d
EPO,K(f)Z—VPO,K(f)"‘/u)(),K—l(t)’ n=K,

o 0
(E_EJPLI(u,f)=—M’I,l(u,f)+ﬁ,z(0’f)5(u), n=1,
(g_ijpln(u,[):—/1Pln(u,l‘)+ﬂpln_1(u¢t)+P1n+1(0’t)S(u)’
ot ou) ’ ’ ’
2<n<N-1

O O, (ut)= =By, (1) + A, (1,6)+ 7By, (1,6) +
ot Ou L \* Ln \* Ln-1\*% 0,n\*h

(
0 0
(———j]’lK (u,8)= AP (u,t)—i-)/PO?K (u,t), n=K.

4.3 Steady State Results

In steady state, let us define

P07n=}i_1)1;P07n(t), n=12,.,K.
Pl,n=}i_r>?oPo,n(t)» n=1"2%. Ni

B, (u)= }1_1)1010}’1” (u,¢), n=1,25..,K.

and further define
B, (u)=F,s(u), n=N,N+1,.. K.

From (4.1)-(4.9) we can easily obtain the following steady state equations:

0=-AF,+R,;(0),
0=-AR,(t)+ AR, , 1<n<N-1,
0:_(/1+7)P0,n+lpo,n—1= N<n<K-],
O=—yBx+AR g1, n=K.

d
__uPl’l (u)=—AB, (u)+ P, (0)s(u), n=1,

d

—diPl’n(u,t)=—/1PLn(u)+/1PLn_1 (1) 4 Pyt (0)s(u), 2<n<N-1,
u
d

_EPl,n(u)_ ﬁ“})l,n(u)+2’})l,n—l(u)+7})0,ns(u)+})l,n+l(O)S(u)’
N<n<K-1,
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4.2)
(4.3)
(4.4)

(4.5)

(4.6)

A.7)

(4.8)

(4.9)

(4.10)
(4.11)
(4.12)
(4.13)

(4.14)

(4.15)

(4.16)



d
_EPLK (u)=AB g (u)+yPygs(u), n=K.

Further define

and
JFemn,
0 ou

Therefore if the LST is taken of both sides of (4.14)-(4.17), it is found that

() du=0F;, (6) - Ba(0).

(’1_‘9)1)17,%1 (‘9):131,2 (O)S* (‘9)_131,1(0),

(A-0) P, (0)= 1B, (8)+ By (0)S(0)-B,(0), 2<n<N-1,

(2=0) R, (0)= AR, (0)%1ho,S" (0)+ R (0)S” (0)- R, (0),
F+1<n<K-2,

_'9PITK (0)= ﬂ“PlTK—I (9) +7/P0,KS* (0)- Pk (0).

4.3.1 Recursive methods

4.17)

(4.18)
(4.19)

(4.20)

(4.21)

The recursive method is developed to obtain F,(0) and P,,(0). Our

solution algorithm will first find obtain £, (1<n<K).

Using (4.10)-(4.13), we get
PO,n:¢nPO,O’ 1S1’ZSK.

1, 1<n<N-1,
1 n—N+1
where ¢, = ( j , N<n<K-1,
A+y
K—-N+1
4 = n=K.
7(A+7)
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By, Bypseers By canbe using (4.22) in terms of £ .

We derive the expressions of B ,(0) (1<n<K) in terms of F,. Using
(4.22) in (4.20) and then setting & =1 1in (4.18)-(4.20), we finally obtain

B, (0
B,(0)= ;;1((/1))’ n=1, (4.24)

P (0)- P.S (A)-AP" (A
P,1(0)= 1 (0) w”’w”sf’z’l)( PRl ), 2<n<K -1, (4.25)

where ¢,y =1, N <n<K-1, otherwise, ¢, y =0.

To obtain Plfn_l (1) (1<n<K-1) in (4.25), using (4.22) in (4.20) again,
differentiating (4.18)-(4.20) (/-1) times with respect to 6 and setting 6 =21, we
finally get

[Plz 0)], n=1 I=1..,K-1, (4.26)

zaT,S’-”u):——[za,M( )8 )+ 70010y Poos“<a>+wi5’m],
2<n<K-1, I=1,..,K-n,

(4.27)

where  B\"(2)=P,,(2) and §U(0)=|(d'/dd)s"(6)| denotes the kh

1,n

derivative of S (9).

Solving (4.26)-(4.27) recursively, we obtain

Z”:yﬁn z+1¢S ( )POO_nZJr‘ign—HZS (l)Plz(O)

( = = y) (4.28)
1<n<K-1,
where
Y s,
0 I O B
ly= n!S (1) (4.29)
0, otherwise.
Using (4.28) in (4.25), we can obtain
1
F,(0 ——— A, (,B;(0
( ) S (ﬁ,) 1 1 Z 1
o (4.30)
7’[%—2,1\{ Db ¢n—1,N¢n—lJ})0,0’ 3<n<K.
i=N
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We further define

17 7’l=0,
¥, = Z Z Ke Koy " Kry n=1,2,.,K-2, (4.31)

1<k<n  1+1y+-+1,=n
71,09, Tp 6{1,2,~ . -,n}

0, otherwise,
where
%4‘61, n= 1,
5 (4)
K, =30, n=2,3,---,K-2, (4.32)
0, otherwise.

The representative meaning of the above formulation (4.31) is the same as (2.42).
Using (4.31) and (4.32) to solve (4:30) recursively, and including (4.10) and (4.24),
we finally get

B (0)=A(1)By,, n=1 ‘ (4.33)
B, (0)=> ¥, A(i)R g 2<nik, (4.34)
i=2
where
A, n=1,
A(m)={ =2, n=2, (4.35)
s (2)
n-2
7/[(071—2,]\/ Z gn—i—1¢i _wn—l,N¢n—1]’ 3<n<K.
i=N

Finally, we develop the steady-state probabilities an (O) in terms of F,,. Setting
0 =0 in (4.18)-(4.20) we have

* 1 L
B0 4 B OB (000 S 450 | 1202500 430
=N

As P,(0), B,(0),..., B (0) are known, B;(0), 7,(0),..., Zx(0) can be

determined recursively using (4.36) in terms of F.
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Now the only unknown quantity is PITK (0) which can be obtained from

(4.21). To find it, differentiate (4.21) with respect to € and set 8 =0, we have

B (0)=-25%),(0)-7F xS (0). (4.37)

To find APITE{I)_I (0), differentiating (4.18)-(4.20) with respect to 6 and 6=0, we

obtain

*(1)
Pl’:l(l) (0) _ R,+PA, (/;))S (0) R 4.38)
R (0)= et 10un#,FooS " (0)+ AR (0)+ R, (0)5™(0)
o A : (4.39)
2<n<K-1,

n

As Plfl(l) (0) is known completely from (4.38), the values P:U) (0) for
n=2,3,...,K—1 can be found recursively from (4.39). Therefore we obtain

K-1

K K
B (0)=—| S B, +7sV(0)X 4,45 (0)3 B, (0)}- (4.40)
i=N i=2

i=1
So P;(0), B5(0),..., P ¢ (0) wis known -in terms of Fy,, which can be
determined using the normalizing condition

K K
DB, +D.B, =1 (4.41)
i=0 i=1

To demonstrate the working of the recursive method, we first describe the solution
algorithm for calculating the steady state probabilities, Fy,(0) (0<n<K) and
B, (0) (1sn<K). Next, to illustrate the solution algorithm, we provide one

simple example where the service time distribution is k-stage Erlang.

4.3.2 The solution algorithm

Let N be the threshold, K be the maximum capacity of the system, and let
s (0) where /=1, 2,...,K be the /th derivative of S ) (0). Given the values of
N, K, and the LST expression of the service time distribution, namely §" (0), the

steps of the solution algorithm are stated as follows:
Step 1. Foreach n=1, 2,...,K , compute ¢, using (4.23).

Step 2. For each n=1, 2,...,K , compute POfn (0) using (4.22) in terms of
P0,0~
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Step 3. Compute /,(1<n<K-2) and «,(1<n<K-2) using (4.29) and
(4.32).

Step 4. Foreach n=0, 1,...,K -2, compute ¥, using (4.31).
Step 5. Foreach n=1, 2,...,K , compute A(n) using (4.35).

Step 6. For each n=1, 2,...,K , compute A, (O) using (4.33) and (4.34) in

terms of Fy.

Step 7. For each n=1, 2,...,K -1, compute P{fn (0) using (4.36) in terms of
PO,O .

Step 8. For n=K , compute Plfn (0) using (4.40) in terms of Fy,.

Step 9. Determine Fy, using (4.41). Thus By, (0) (n=1, 2,...,K) are achieved
from Step 2, and P1Tn (0) (n=1, 2,...,K) are achieved from Steps 7 to
8.

4.4 Simple Example

We use the solution algorithm to illustrate a recursive method. We provide a

simple example for the service time distribution such as 3-stage Erlang.

Example (For M/E;/1 queue). The 3-stage Erlang distribution is made up of three
independent and identical exponential stages, ‘each with mean 1/31. We set the

mean service time s; =1/x, N =2,and K =3. In this case, we have

S*(H):(e»jﬁef

Step 1. For each n=1, 2, 3, compute ¢, using (4.23), we obtain

4 =1, ¢,=n/(3-2n),and ¢ =n"/3(1-1)(3-2n), where 1=32/(32+ ).

Step 2. For each n=1, 2, 3, compute P(:n (0) using (4.22) in terms of Fy.
From (4.22), we finally get

Po*,l (O) = ¢1P0,0 = Po,o,

Po*,z (0) = ¢2Po,o =

2
Fyo and Fy; (0) =950 = 3(1_777)7(3 _277) Foo-

n
(3-27n)

Step 3. For n=1, compute ¢, and «x, using (4.29) and (4.32), respectively.
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For each n=1, using (4.29) yields ¢, =-3c/(1+0c), where o =2/3u.

For each n=1, we find from (4.32) that «; = (1+0+60'2 +40° +0'4)/(1 +0)

Step 4. For each n=0, 1, compute ¥, .

It implies from (4.31) that W, =1 and ¥, =(1+0+60” +40” +o* )/(1+0') :
Step 5. For each n=1, 2, 3, compute A(n).

Using (4.35), it follows that

A()=2, 4(2)=2(1+0)’,and 4(3)=-31(1-7)/(3-27).

Step 6. For each n=1, 2, 3, compute A, (0) using (4.33) and (4.34) in terms of
Fyo-
It yields from (4.33) and (4.34) that
A, (0) - A(I)Po,o =Ahy 0,
R, (0)="¥yA4(2) R =A(L+ o) Fog,
P5(0)=[¥,4(2)+¥,4(3) | By
A(3-2n)(1+0) (1+a+60% +45% +o* |- 34(1-17)

= E,.
.y 0,0

Step 7. Foreach n=1, 2, compute: B, (0)-using (4.36) in terms of B,,.
From (4.36), we finally have

B(0)= G(3+3O‘+O‘2)P0’0 and

B,(0)=0(3+90+170% +150° +65* +0° | By

Step 8. For n=3, compute B, (0) using (4.40)in terms of Fy.

Using (4.40) yields
* 1 2 3 4 5 6
P (0)=—— 31203607 ~780° ~78c* —345° —6
1,3( ) (3_277){0[77( o o ) o o o )
+0(18+54a+11702+11703+5104+90'5)]}P0’0.

Step 9. Determine Fy, using (4.41). Thus £, (0) (n=1, 2, 3) are achieved from
Step2,and B, (0) (n=1, 2, 3) are achieved from Steps 7 to 8.
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By =3(1-n)(3-27)x
[18—77(27—1077)+270'(2+60'+120'2 +185° +1506* +65° + 6°)
—907(27+300 + 6002 +2700° + 755* +300° +50°)

-1
+901%(3+120 + 2402 +360° +300* +120° +206)} .
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Chapter 5

Interrelationships between the F policy and the N policy for
M/G/1/K and G/M/1/K Queues with Startup Time

In this chapter, we study the interrelationship between the F policy and N
policy. In section 5.1, to consider the interrelationship between N policy M/G/1/K
queue with exponential startup time and F policy G/M/1/K queue with
exponential startup time, we use the solution algorithm of N policy M/G/1/K
queue with exponential startup time to derive the solution algorithm of F policy
G/M/1/K queue with exponential startup time. In section 5.2, the above
interrelationship is shown in Table 7. To illustrate the interrelationship, we provide
a simple example for N policy M/E;/1/K queue. In this example, we set the service
time distribution such as 3-stage Erlang and K=3 and N=2 to device the steady-state
probability of F policy E;/M/1/K queue with K=3 and F=1. Similarly, we use the
solution algorithm of F policy M/G71/K queue with exponential startup time to
derive the solution algorithm of Npolicy. G/M/1/K queue with exponential startup
time in section 5.3. In section:5.4, the Table/8 shows the interrelationship between F
policy M/G/1/K queue with exponential startup time and N policy G/M/1/K
queue with exponential startup time. We provide a simple for F policy M/M/1/K
queue. In this example, we set the service time distribution such as exponential and
K=5 and F=2 to device the steady-state probability of F policy M/M/1/K queue
with K=5 and N=3.

5.1 Development of the F policy G/M/1/K Queue

We follow the solution algorithm of the N policy M/G/1/K queue to modify
the parameters. Change (1) threshold from N to K-F; (i1) the arrival rate from A to
A ; (1i1) from the service time random variable S to the interarrival time random

variable A . The other parameters are the same. The steps are stated as follows:

Step 1. Foreach n=1, 2,...,K , compute ¢,.

n—K+F+1
@, = ( a ] , K-F<n<K-1, (.1)
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Step 2. Foreach n=1, 2,...,K , compute ‘PO’in (0) using (5.2) in terms of F .

P(;:n(o):¢npo’0, ISnSK

(5.2)

Step 3. Compute /, (1<n<K-2) and «,(1<n<K-2) using(5.3) and (5.4).

_ o\ K(n)
_(=#)a )(”), l<n<K-2,

nla (u
0, otherwise.
*;7%1, n=1,
a (u)
¢, 2<n<K-2,
0, otherwise,

where a (9) 1s the Laplace-Stieltjes transform (LST) of 4.

Step 4. Foreach n=0, 1,...,K -2, compute ¥, using (5.5).

1, Y A0,
Z Z KoKy Ky, = = K -2,
I<k<nry+7y+ - +7,=n
11,12,~~'rke{1,2,-~,n}
0, otherwise.

Step 5. Foreach n=1, 2,...,K , compute A(n) using (5.6).

U, n=1,

= 71:2,

F )

n-2
7{%—2,1{4 z Coia®y = wn—l,K—F¢n—1J? 3<n<K,
i—K-F

where ¢, ¢ =1, K—F<n<K-1, otherwise, ¢, x_r =0.

(5.3)

(5.4)

(5.5)

(5.6)

Step 6. For each n=1, 2,...,K , compute P,,(0) using (5.7) and (5.8) in terms

of Fy,.

P (0)= A(I)PO’O,

n
B,(0)=>¥, A(i)R,y, 2<n<K.
=2
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Step 7. For each n=1, 2,...,K -1, compute PI; (0) using (5.9) in terms of
PO,O .

* 1 L
})l,n(O):;|:P1,n+1(0)_})1,1(0)+7¢n,K—F Z ¢iPO,0:|’ l<n<K-1. (59)
i=K-F

Step8.For n=K ,compute B, (0) using (5.10) in terms of F).

. K-1 *(I) K *(1) K
Re0)--| 28,0750 3 mpraOFR 0L 0

Step 9. Determine Fy, using (5.11). Thus By, (0) (n=1, 2,..,K) are achieved
from Step 2, and P1Tn (0) (n=1, 2,...,K) are achieved from Steps 7 to 8.

K K
> B;+> B, =1 (5.11)
i=0 i=1

Using the solution algorithm for calculating the steady state probabilities,
B ,(0) (0<n<K) and B,(0) (1€n<K).sNext, change the index of F,,(0)
and P, (0) from n to K~m to obtain the steady state probabilities of F
policy G/M/1/K queue. To.illustrate the solution algorithm, we provide a table
that N policy M/G/1/K queue corresponds to F' policy G/M/1/K queue.

5.2 Interrelationship between the Npolicy M/G/1/K Queue and the F policy
G/M/1/K Queue

To illustrate the interrelationship between the N policy M/G/1/K queue and
the F policy G/M/1/K queue, we construct the Table 7 in this section and provide
one simple example for the service time distribution such as 3-stage Erlang.

Table 7. N policy M/G/1/K queue corresponds to F policy G/M/1/K queue.

N policy M/G/1/K F policy G/M/1/K

Capacity K = K K
Threshold N = K-F F
Arrival time A = H A
Service time S = A u
Startup time Y = 4 Y

B,(0) (0sn<K) = PRr,(0) = £R,0) (0<n<K)
Probabilities " . —

B,(0) 1sn<K) = Bg,(0) = B,(0)(0<n<K-I)

S : the service time random variable ; A4 : the interarrival time random variable.

Next, we provide a simple example for the service time distribution such as
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3-stage Erlang.

Example 1 (For M/E;/1 queue). The 3-stage Erlang distribution is made up of
three independent and identical exponential stages, each with mean 1/3u. We set
the mean service time s;=1/x, N=2, and K=3. In this case, we use the
solution algorithm to solve the steady state probabilities of F policy E;/M/1

queue.

3u Y’ 30 Y
We change from S*(@):(3 ﬂ@j to a*(ﬁ):(ﬂ 0) .
L+ +

The steps are stated as follows:
Step 1. For each n=1, 2, 3, compute ¢,
Using (5.1), we obtain ¢ =1, ¢, =y/(3-2y),and ¢ = 7/2/3(1—7/)(3—2)/) , Where
y=3u/(3u+y).
Step 2. For each n=1, 2, 3, compute P&n (O) using (5.2) in terms of £ .
Using (5.2), it follows that
POTI (0) = ¢1P0,0 = Po,o ’

Po*,z (0) = ¢2P0,0 =

2
By 'and By 5(0) =4 Fy o = 3(1_}/7)/(3_27/) Fop-

e
(3 — 27/)
Step 3. For n=1, compute /¢, and x, using (5.3) and (5.4), respectively.
For n=1, using (5.3) yields ¢, =-3z/(1+7), where 7=pu/32.

For =1, we find from (5.4) that x; =(1+7+6¢” +47>+7*) [(1+7).

Step 4. For each n=0, 1, compute ¥, .

It implies from (5.5) that ¥, =1 and ¥, = (1 +7+672 +47° + 74 )/(1 +7).
Step 5. Foreach n=1, 2, 3, compute A(n).

Using (5.6), it follows that

A()=p, A(2)=p(1+7),and A(3)=-3u(1-7)/(3-27).

Step 6. For each n=1, 2, 3, compute F,,(0) using (5.7) and (5.8) in terms of
PO,O'
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It yields from (5.7) and (5.8) that
Pll(o):A(l)Poo:ﬂPo,o’
B,(0)="¥,4(2 )Poozﬂ(lJFT)SPo,o’
B5(0) [‘PA )+¥04(3) Ry
,u(3 )(l+r) (1+z‘+672+4r3+r4)—3,u(1—;/)
3-2y

Byo-

Step 7. Foreach n=1, 2, compute P, (0) using(5.9)intermsof By,.

From (5.9), we finally have
B (0)=7(3+3r+27)Ryy and B (0)=r(3+9r+177> +157° +67* +2° ) By .

Step 8. For n=3, compute B, (0) using (5.10)in terms of Fy.
Using (5.10) yields

PIT3 (0) 2(3—12){1'[7(3—121—361'2 — 7872 L787% —347° —67%)
-2y
+7(18+ 547 +1177% +117¢% +517% +‘915)]}po’0,

Step 9. Determine By, using.(5.11):; Thus £, ;7(0) (n=1, 2, 3) are achieved from
Step 2, and Plfn (0) (n=1,2, 3) are achiéved from Steps 7 to 8.

Foo = 3(1-y)(3-2y)x
[18—7(27—107)+27r(2+6r+12r2 +187° +157% +67° +7°)
—97y(27+ 307 + 6072 +2707° +757* +307° +57°) '
+977%(3+127 + 2472 +367° +307* +127° + 2r6)]_1

Py3.,(0) (n=0,1,2 3) and P, (0) (n=1, 2, 3) are noted that these results
are the same as those given in F policy E;/M/1/K queue.

5.3 Development of the N policy G/M/1/K Queue

We follow the solution algorithm of the F policy M/G/1/K queue to modify
the parameters. Change (i) threshold from F'to K-N; (i1) the arrival rate from A4 to
4 ; (111) from the service time random variable S to the interarrival time random

variable A . The other parameters are the same. The steps are stated as follows:
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Step 1. Foreach n=0, 1,...,K , compute ¢,.

L n=0,
h= 5.12
’ a17(1+a17)§"*‘, 1<n<Kk, (5.12)
n, OSnSK—N—L
where £, =
K-N, K-N<n<K.
Step 2. For each n=1, 2,...,K -1, compute R)’in (0) using (5.13) in terms of
PO,O'
B, (0)=4,Pyy 1<n<K-1. (5.13)

Step 3. Compute /,(1<n<K-2) and «,(1<n<K-3) using (5.14) and

(5.15).
()@ (1)
- - , 1<n<K-2,
by = nla (u) (5.14)
0, otherwise!
*1 +4,, n=1,
a (1) &
K,=30,, 2<n=K-3, (5.15)
0, otherwise,

where a (9) is the Laplace-Stieltjes transform (LST) of 4.

Step 4. Foreach n=0, 1,...,K -3, compute ¥, using(5.16).

1’ 7/120,
¥, =1 2 Y kK, n=12,..,K-2, (5.16)

I<k<nry+7y+ - +7,=n
1,7y, T {12,

0, otherwise.

Step 5. For each n=1,2,..,K-1, compute A(n) and B(n) using (5.17)

and (5.18).

M, n:l’
1-a"
A(ﬂ)z ,Ll|:T/E’;l)j|, 7’1:2, (517)
ul, 5, 3<n<K-],
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and

B(n)=4-7 , n=2, (5.18)

{1"'?’11( N¢1a )}

gnZ
7( Coin® = ¢n1KN¢n1], 3<n<K-1,

where ¢,y =1, 1<n<K-N, otherwise, ¢, x_» =0.

Step 6. For n=0, compute B,(0) using(5.19)in terms of By,.

i+1 IRV B(Z) Cxoa
K-j-1
Z KK i lz\Pz ]+1B(]) Zz ]( ) Zl y€K7i71¢i
By(0)=- o = o, 4 1) Poo. (5.19)
ZEK i— Iz\Pz j+1A(])+ aj +:IJ€K72

= i=2

Step 7. For each n=1, 2,...,. K =1, compute' .7, (0) using (5.20) and (5.21) in

terms of By .

B,(0)=A4(1) B, +B(1)Ry, (5.20)
B,(0)= Z‘I’_ | A(i) P+ Bli) B 2s nSK - 1. (5.21)
i=2

Step 8. For each n=1, 2,...,K -1, compute Plfn (0) using (5.22) and (5.23) in

terms of Fy.

* 1 Sn
E,n(0)=;{y2¢il’o,0 +Pl,n+1(0)}, 1<n<K-2, (5.22)
i=0
N 7 K-N
R (0)=2) 2 diFoo. (5.23)

Step9.For n=K ,compute F,(0) using(5.24) in terms of B),.

K-1
POTK |:Z})11+7/a Z¢Poo+a Zplz +/Ua (0)})1,0:|' (5.24)
i=2

*

Step 10. Determine Fy, using (5.25). Thus £y, (0) (
from Step 2 and Step 9, and PLn( ) (=0, 1,...,K—1) are achieved
from Step 6 and Step 8.

n=1,2,..,K) are achieved
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K K-1
> B+ B, =1 (5.25)
i=0 i=0

Using the solution algorithm for calculating the steady state probabilities,
B,(0) (0<n<K) and B,(0) (0<n<K-1). Next, change the index of
By,(0) and B, (0) from n to K-n to obtain the steady state probabilities of
N policy G/M/1/K queue. To illustrate the solution algorithm, we provide a
table that F policy M/G/1/K queue corresponds to N policy G/M/1/K

queue.

5.4 Interrelationship between the F policy M/G/1/K Queue and the N policy
G/M/1/K Queue

To illustrate the interrelationship between the F policy M/G/1/K queue and
the N policy G/M/1/K queue, we construct the Table 8 in this section and provide
one simple example for the service time distribution such as exponential.

Table 8. F policy M/G/1/K quéue correspondsto N policy G/M/1/K queue.

Fpolicy M/G/1/K N policy G/M/1/K
Capacity K 1 K K
Threshold F = K—-N N
Arrival time A = H A
Service time S = A Y7,
Startup time 4 = 4 4
B, (0) (0<sn<K) "I "R, (0) = B,0) (0<n<K)
Probabilities — - n
R,(0) (0<n<K-1) = PF,,(0) = BR,(0) (1sn<K)

S : the service time random variable ; A : the interarrival time random variable.

Next, we provide a simple example for the service time distribution such as

exponential.

Example 2 (For M/M/1 queue). We set the mean service time s; =1/, where u
is the service rate. Assume that F =2, and K =5. In this case, we use the solution
algorithm to solve the steady state probabilities of N policy M/M/1 queue.

% * A
We change from 5" (0)=—~ 0)=—"2—.
e change from S (0) 40 to a (0) P

The steps are stated as follows:

Step 1. Foreach n=0, 1,..., 5, compute ¢,
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Using (5.12), we obtain ¢,=1, ¢2=}/(py+7/)/(p,u)2, and ¢y =¢, =¢s
=y(pu+7)’[(pu)* , where p=2/u.

Step 2. Foreach n=1, 2,..., 5, compute F,,(0) using (5.13)in terms of F.

Using (5.13), it follows that

* Y * y(ou+y)
Po,l (0) = ¢1P0,0 = —Po,o ) Po,z (0) = ¢2P0,0 == 2 Po,o )
PH (pu)

. . y(pu+y)
and Fj, (0) =Fy4 (0) =5 B0 =B = (IOTPO,O .

Step 3. Compute ¢, (1<n<3)and k, (1<n<2)using (5.14) and (5.15),

respectively.
For n=1,2,3, using (5.14) yields ¢, =—1/(1+p), f,=-1/(1+p) , and
t==1/(1+p).
For n=1,2 , we find from.5.15) that K1=(1+p+p2)/p(1+p) and
Ky =—1/(1+p).
Step 4. For each n=0, 1, 2, compute ‘Pn
It implies from (5.16) sthat . Wy=1— ‘I’1=(1+p+p2)/p(l+p) , and
¥, =(1+p2)/p2 .
Step 5. Foreach n=1, 2, 3,4, compute A(n) and B(n).
Using (5.17), it follows that
A()=p, A(2)=ulp, A(3)=-u/(1+p),and A(4)=-u/(1+p)’.

Using (5.18), it follows that

y(u+y+pu) B(3)__y(7+7p+2pu+p2u)

B(l)=-y, B(2)=- = ,
+yp+2pu+ p°

and B(4)=—7(j/ P 2,0/: Z,Dﬂ)
(1+p) p°u

Step 6. For n=0, compute B, (0) using(5.19) in terms of B),.

B, =%[p4y2 +p3(y2 +2,u;/)+(p2 +,0)(,U+7)2 +pay + 1 +72}Po,0.
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Step 7. For each n=1, 2, 3,4, compute B, (0) using (5.20) and (5.21) in terms of
PO,O .

It yields from (5.20) and (5.21) that

_l’_
131,1(0):14(1)131,0 +B(1)P0,o :W[/fﬂﬂ“(ﬂz +P+1)(#+7)}P0,0,

2( 2 2
7(Pﬂ+7’) p+p+l vipu+y) (p+1
PI,Z(O): p/,<12 )Po,o’ 1)1,3(0)2 ( ,0;32( )Po,o’

y(ou+y)
pu’

and A, (0) = oo

Step 8. For each n=1, 2, 3, compute Pffn (0) using (5.22) in terms of Fy,.
From (5.22), we finally have

* +
£,(0) =7(L3y)[p3ﬂ+(p2 +P+1)(ﬂ+7)}Po,o,
P
2 2 2
\ y(ou+y) (p"+p+l : y(ou+7Y (p+1
‘PI,Z (O): p2/<u3 )1)0,0’ and P1,3(0): ( p22[3( )P07()’

For n=4,compute P:n (0)=using (5.23) in terms of:! Fy .
Using (5.23) yields

2
* Y\pH+Y
Pl,4 (0) Z%Po,w

Step9.For n=5, compute F,,(0) using (5.24) in terms of F,.

5 y(pu+yy
Po,s (0) =TP0,0-

Step 10. Determine Fy, using (5.25). Thus PO’jn (0) (n=1, 2,..., 5) are achieved
from Step 2 and Step 9, and Plfn (0) (n=0, 1,...,4) are achieved from Step 6
and Step 8.

3
Foo= (Pﬂ) X
| PTn + 20y + 1)+ P (r + 3y + 1) + 29y (v + 1) +212)
1
+ P’ 5yl + 77 18 +37)+ Py By + Ty +5p7) + pr Gy +Tu) +37° |

Pys.,(0) (=0, 1,...,5) and B5,(0) (n=0,1,..,4) are noted that these
results are the same as those given in F policy M/M/1/K queue.
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Chapter 6
Conclusions and Future Researches

Steady-state results have been presented for (i) the F policy M/G/1/K queue
with startup time; (ii) the F policy G/M/1/K queue with startup time; and (iii) the
N policy M/G/1/K queue with startup time; These steady-state results, simple to
use and provide system characteristics, are convenient for the corresponding queue
applications. This is important that the interrelationships between the F policy and
N policy for M/G/1/K and G/M/1/K queues have been structured. In this chapter,
we make conclusions and provide possible extensions of the present work for

further research.

6.1 Conclusions

In this thesis, we have shown that the supplementary variable technique can be
successfully applied to analyse various controllable queues operating under F policy

and N policy:

1. For the F policy M/G/1/K queue with startup time, we provided a
recursive method for computing the steady:state probability distribution of the
number of customers in a finite system. We also‘illustrated a recursive method by a
study of three different interarrival time distributions, exponential, 3-stage Erlang,
and deterministic. In addition, we derived the optimum value of the control
parameter F' so as to minimize an expected cost function. We performed a
sensitivity analysis among the optimal value of F, specific values of system
parameters, and the cost elements. Based on the numerical results, we could make
an intelligent effective based on exact solutions for practical and general queue with

quantitative measurement.

2. For the F policy G/M/1/K queue with startup time, we have first provided
a recursive method for obtaining the steady-state probability distributions of the
number of customers in the system. Next, we have illustrated our recursive method
by a study of three different interarrival time distributions: exponential, 3-stage
Erlang, and deterministic. In addition, we provide a very efficient solution
algorithm to calculate the optimal threshold F' at minimum cost. Finally, we have

performed a sensitivity analysis among the optimal value of F, specific values of
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system parameters, and the cost elements. Further, the developed controlling arrival
systems in this dissertation can be modeled many quality and service (Q & S)

system in real-life.

3. For the N policy M/G/1/K queue with startup time, we have developed
analytic steady-state results by using the supplementary variable technique. We
have provided a recursive method for obtaining the steady-state probability
distributions of the number of customers for such a system. To demonstrate the
working schemes of this method, we have constructed a solution algorithm to study
analytically one simple example where the service time distribution is 3-stage

Erlang.

Finally, we have developed the complementarity interrelationships between the
F policy and N policy for M/G/1/K and G/M/1/K queues with startup time. It is
important that we can simply obtain the solution of one if the other solution is

given.

6.2 Further Researches

The following problems of the controllable queues are worthy of further

investigations:

1. Optimal control of the F'policy M/G/1/K queue with a unreliable

removable and startup server.

In chapter 2, we have studied the F policy M/G/1/K queue with startup time.
Hur and Par [19] dealt the N policy M/G/1 queueing system with server startup.
Wang and Ke [34] treated the dyadic policies M/G/1 queueing system with server
breakdowns. In the future, we may study the F policy M/G/1 queue with a

unreliable removable and startup server.

2. Optimal control of the F policy G/M/1/K queue with an unreliable

removable server.

In chapter 3, we have studied the F policy G/M/1/K queue with startup time.
In the future, we may study the F policy G/M/1/K queue with an unreliable

removable server.

3. System characteristics of the F policy G/M/1/K queue with startup time

64



and system characteristics of the F policy M/G/1/K queue with startup time.

Ke [21] studied the operating characteristic of the N policy G/M/1 with
startup time. In the future, we may study the system characteristics of the F policy
G/M/1/K queue and F policy M/G/1/K queue with startup time.

4. Optimal control of the F policy G/G/1/K queue with startup time.

In this dissertation, we have studied the F policy M/G/1/K and G/M/1/K
queues with startup time. In the future, we may study the F policy G/G/1/K queue

with startup time.

5. Optimal control of the N policy M/G/1/K queue with an unreliable

removable server.

In chapter 4, we have studied the N policy M/G/1/K queue with startup time.
In the future, we may study the N policy. M/G/1/K queue with a removable server.

6. Interrelationships between F policy and* N policy for M/G/1/K and
G/M/1/K queues with general startup time.

In chapter 5, we have studied thé-interrelationships between F policy and N
policy for M/G/1/K queue and G/M/17K queue with exponential startup time.
The relationships between F' policy and - N-policy M/M/1/K queuing system with
exponential startup time was considered by Gupta [12]. In the future, we may study
the interrelationships between F policy and N policy for M/G/1/K and G/M/1/K

queues with general startup time.
7. Optimal control of the F policy M*!/G/1/K queue with startup time.

In this dissertation, we have studied the F policy M/G/1/K queue with startup
time. In the future, we may study batch arrival for the F policy M*/G/1/K queue

with startup time.
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Appendix
We discuss the two cases with F+1=K : the F policy M/G/1/K queue with

startup time and the F policy G/M/1/K queue with startup time.

First, we modified (2.1)-(2.9) to (2.1a)-(2.6a) in the F policy M/G/1/K queue

with startup time. The new equations (2.1a)-(2.6a) are as following:

d
d—Poo(f)z—ﬂl’()o(f)+Po,1(0,f), (2.1a)
(___]PM ut ,[)’Poﬂ(u,t)-i-PO’nH(O,l‘)S(u), 1<n<F, (2.2a)
(5__}%1( =AR k- 1(” f) (2.3a)
_PIO( )=—AB()+ BRyo(t)+R:1(0,2), (2.4a)
0
[a—ajﬁl(u £)=~AR () + PRy (1) + AR, (1)s () + (2.5
B, (0,£)s(u),
0 0
(22 )R ) =8 (T BRAMD B2, (0)5(0) e

+PB,,1(0,£)s(u), 2<n<F,

Similarly, we can use (2.1a)-(2.6a) to obtain the algorithm of the steady-state

probability with the supplementary:variable technique and the recursive method.

Second, we changed (3.1)-(3.8) to (3.1a)-(3.5a) in the F policy G/M/1/K

queue with startup time. The new equations (3.1a)-(3.5a) are as following:

d

EPO’O (£)==PByo(t)+uFy, (1), (3.1a)
iPO"() (B 1) By (1) + By (1), 1<n<F, (3.2a)
d

EPOK( )=—uFy g (¢)+ B x1(0,), (3.32)
0 0

(5_5JPLO (v,t) =Bh (V,l')+ “B; (v,t), (3.4a)
0 0

(5‘5]5"(” ) =By () + BBy (1) By (0,6)a(v) + .

,uPLnH(v,t), 1<n<F,

Likewise, we use (3.1a)-(3.5a) to yield the algorithm of the steady-state

probability with the supplementary variable technique and the recursive method.

66



10.

11.

12.

References

. Alfa, A. S. and Frigui, 1. (1996). Discrete NT-policy single server queue with

Markovian arrival process and phase type service. European Journal of Operational
Research, 88, 559-613.

Baker, K. R. (1973). A note on operating policies for the queue M/M/1 with
exponential startup. INFOR, 11, 71-72.

. Balachandran, K. R. (1975). On the D-policy for the M/G/1 queue.

Management Science, 21, 1073-1076.

Bell, C. E. (1971). Characterization and computation of optimal policies for
operating an M/G/1 queueing system with removable server. Operations
Research, 19, 208-218.

. Bell C. E. (1972). Optimal operation of an M/G/1 priority queue with

removable server. Operations Research, 21, 1281-1289.

Bolch, G., Greiner S., Meer dey H."and Trivedi, K. S. (1998) Queueing Networks
and Markov Chain. Volume II: Theory; John Wiley and Sons, Inc., New York.
Borthakur, A. Medhi, J. and Gohain; R. (1987). Poisson input queueing systems
with startup time and under control-operating policy. Computers and Operations
Research, 14, 33-40.

Cox, DR (1955). The analysis-of non-Markovian stochastic processes by the
inclusion of supplementary variables. Proceedings Cambridge Philosophical Society,
51, 433-441.

Crabill, T., Gross, D. and Magazine, M. (1977). A classified bibliography of
research on Optimal design and control of queues. Operations Research, 25,
219-232.

Doganata, Y. N. (1990). NT-vacation policy for M/G/1 queue with starter in: E.
Arikan (ed.), Communication, Control, and Signal Processing, Elsevier Science,
Amsterdam 1663-1669.

Gakis, K. G., Rhee, H. K. and Sivazlian, B. D. (1995). Distributions and first
moments of the busy and idle periods in controllable M/G/1 queueing models
with simple and dyadic policies. Stochastic Analysis and Applications, 13, 47-81.
Gupta, S. M. (1995). Interrelationship between controlling arrival and service in

queueing systems. Computers and Operations Research, 22, 1005-1014.

67



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Gupta, U. C. and Srinivasa Rao TSS (1994). A recursive method to compute the
steady state probabilities of the machine interference model : (M/G/1)/K.
Computers and Operations Research, 21, 597-605.

Gupta, U. C. and Srinivasa Rao TSS (1996). On the M/G/1 machine
interference model with spares. European Journal of Operational Research, 89,
164-171.

Gross, D. and Harris, C. M. (1985). Fundamentals of Queueing Theory. 2nd ed,
John Wiley and Sons, New York.

Hersh, M. and Brosh, I. (1980). The optimal strategy structure of an
intermittently operated service channel. European Journal of Operational Research,
5,133-141.

Heyman, D. P. (1968). Optimal operating policies for M/G/1 queueing system.
Operations Research, 16, 362-382.

Heyman, D. P. (1977). The T-policy for the M/G/1 queue. Management Science,
23, 775-778.

Hur, S. and Paik, S. J. (1999).-The effect of, different arrival rates on the
N-policy of M/G/1 with  server setlip. Applied Mathematical Modelling, 23,
289-299.

Ke, J.-C. and Wang, K.-H./(2002). A recursive method for the N Policy G/M/1
queueing system with finite capacity. European Journal of Operational Research,
142, 577-594.

Ke, J.-C. (2003). The operating characteristic analysis on a general input queue
with N policy and a startup time. Mathematical Methods of Operations Research, 57,
235-254.

Ke, J.-C. (2005). Modified T vacation policy for M/G/1 queueing system with
an unreliable server and startup. Mathematical and Computer Modeling, 41, 1267
-1277.

Kimura, T. (1981) Optimal control of an M/G/1 queueing system with
removable server via diffusion approximation. European Journal of Operational
Research, 8, 390-398.

Kleinrock, L. (1975). Queueing Systems. Vol. 1I: Computer Applications, John
Wiley and Sons, Inc., New York.

68



25. Krishna, Reddy G. V., Nadarajan, R. and Arumuganathan, R. (1998). Analysis
of a bulk queue with N-policy multiple vacations and setup times. Computers and
Operations Research, 25, 957-967.

26.Lee, H. W. and Park, J. O. (1997). Optimal strategy in N-policy production
system with early set-up. Journal of the Operational Research Society, 48, 306-313.

27.Levy, Y. and Yechiali, U. (1975). Utilization of idle time in an M/G/1
queueing system. Management Science, 22, 202-211.

28. Medhi, J. and Templeton, J. G. C. (1992). A poisson input queue under
N-policy and with a general start up time. Computers and Operations Research, 19,
35-41.

29. Takagi, H. (1993). A M/G/1/K queues with N-policy and setup times. Queueing
Systems, 14, 79-98.

30. Teghem J. Jr. (1987). Optimal control of a removable server in an M/G/1
queue with finite capacity. European Journal of Operational Research, 31, 358-367.

31. Tyms, H. C. (1986). Stochastic. Modelling and .Analysis: a computational approach.
John Wiley and Sons., New Y ork:

32. Wang, K.-H., Chang, K.-Wand Sivazlian, B: D. (1999). Optimal control of a
removable and non-reliable server in-an infinite and a finnite M/H2/1 queueing
system. Applied Mathematical Modelling, 23;651-666.

33. Wang, K.-H. and Ke, J.-C. (2000). A recursive method to the optimal control of
an M/G/1 queueing system with finite capacity and infinite capacity. Applied
Mathematical Modelling, 24, 899-914.

34. Wang, K.-H. and Ke, J.-C. (2002). Control policies of an M/G/1 queueing
system with a removable and non-reliable server. International Transactions in
Operational Research, 9, 195-212.

35. Wang, K.-H., Shuang, S.-L., Pearn, W.-L. (2002). Maximum entropy analysis
to the N policy M/G/1 queueing system with a removable server. Applied
Mathematical Modelling, 26, 1151-1162.

36. Yadin, M. and Naor, P. (1963). Queueing systems with a removable service

station. Operational Research Quarterly, 14, 393-405.

69



	郭清章-博士論文電子檔071122-封面mark
	郭清章-博士論文電子檔071122-2
	Introduction
	The F Policy M/G/1/K Queue with Startup Time 
	The F Policy G/M/1/K Queue with Startup Time 
	The N policy M/G/1/K Queue with Startup Time
	Interrelationships between the F policy and the N policy for M/G/1/K and G/M/1/K Queues with Startup Time
	Conclusions and Future Researches


