
國 立 交 通 大 學

工業工程與管理學系

博 士 論 文

M/G/1/K與G/M/1/K排隊含啟動時間的
F方策與N方策之相互關係

Interrelationships between F Policy and N Policy for

M/G/1/K and G/M/1/K Queues with Startup Time

研 究 生：郭清章

指導教授：彭文理 教授

中 華 民 國 九 十 六 年 十 一 月

M/G/1/K與G/M/1/K排隊含啟動時間的
F方策與N方策之相互關係

Interrelationships between F Policy and N Policy for

M/G/1/K and G/M/1/K Queues with Startup Time

研 究 生：郭清章 Student：Ching-Chang Kuo
指導教授：彭文理 博士 Advisor：Dr. W. L. Pearn

國 立 交 通 大 學

工業工程與管理學系

博士論文

A Dissertation Submitted to
Department of Industrial Engineering and Management

College of Management
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in

Industrial Engineering and Management

November 2007
Hsinchu, Taiwan, Republic of China

中華民國 九十六 年 十一 月

 i

Acknowledgment

誌 謝

很高興能夠在三年多的時間內完成本論文，在撰寫論文期間多虧許多人教導與協

助，使我在困境中能找到方向，也因此讓我感受到師友的可貴。在此，首先要感謝的

是指導老師 彭文理教授，在老師細心教導下，學生可以學到更多知識，再者是撰寫論

文過程中，得到中興大學 王國雄教授的從旁協助，讓學生可以加速完成論文，此外還

要感謝本系 鍾淑馨教授、中興大學應數系 王國雄教授、臺灣科技大學工管系 徐世輝

教授及臺中技術學院統計系 柯沛程教授，對本論文費心的審查及提供諸多的寶貴意見

使本論文更加完備。

特別感謝是雅甄同學，在博士修業期間不斷鼓勵與關懷，使我能夠保持愉悅的心

情學習，再者，要謝謝交大實驗室裡其他學長姐、學弟及同學們在課業上的砥礪與啟

發，使我獲益良多。

最後要謝謝家人支持與關心，尤其是二哥郭清寶，在學習過程中不斷照顧與支持，

讓我能夠一路順利完成學業，完成我的夢想。謹以此獻給所有關愛我的家人。

郭清章 謹誌於國立交通大學

管理學院工業工程與管理學系

中華民國九十六年十一月二十一日

 ii

M/G/1/K 與 G/M/1/K 排隊含啟動時間的
F 方策與 N 方策之相互關係

學生：郭清章 指導教授：彭文理 博士

國立交通大學管理學院
工業工程與管理學系

摘 要

此篇論文是在研究 F 方策 M/G/1/K 和 G/M/1/K 排隊含起動時間的問題，進而

深入探討 F 方策和 N 方策的相互關係。在排隊問題中，F 方策主要是研究控制到達的

問題。N 方策排隊問題主要是研究控制服務的問題。首先，我們探討對於在 F 方策

M/G/1/K 和 G/M/1/K 排隊含起動時間的問題。而 F 方策的定義如下：當顧客數目

到達系統可承載數(例如系統容量)，系統不再允許任何到達顧客進入，直到有一定數目

(足夠)的顧客已被服務，也就是顧客數目會降到一個門檻值 F (≤ < −0 1F K)。同時，

啟動系統開始讓顧客進入系統，其啟動時間的分配為指數分配，參數為 β 。因此，系

統會正常運作直到系統裡的顧客數目到達系統可承載的數目，所有的程序會再重新依

序發生。我們分別針對在 F 方策 M/G/1/K 和 G/M/1/K 排隊中提出遞迴的方法與輔

助變數技巧來推導。其方式如下，使用輔助變數代替剩餘服務時間(到達時間)再利用遞

迴方法來計算在穩態下的機率。為了分析說明遞迴方法，此篇論文提出三種不同服務

時間(到達時間)分配來解釋在 F 方策 M/G/1/K 和 G/M/1/K 排隊系統含指數分配的

起動時間，其服務時間(到達時間)分配包括指數分配、3 階段 Erlang 和 deterministic

分配等。同時，針對最佳化的問題，建立其成本模型來決定最佳 F 值，使得成本最小。

我們也使用 Maple 電腦程式來計算出最佳 F 值與系統參數的關係，並作敏感度的分析。

為了進一步探討 F 方策和 N 方策的關係，我們同樣使用遞迴方法和輔助變數技巧來求

取含啟動時間之 N 方策 M/G/1/K 排隊系統中穩態機率的演算法。而 N 方策的定義

如下：當顧客數目增加到一個門檻值 N (≥1N)時，啟動系統開始服務，其啟動時間的

分配為指數分配，參數為γ 。且直到系統內沒有顧客後關閉服務。透過一系列的演算

法的比對與計算，驗證出 F 方策和 N 方策之間的互補關係：可由 F(或 N)方策排隊系統

所得到的演算法去計算另一個方策的排隊問題的解。最後，我們提供兩個範例，分別

為 3 階段 Erlang 與指數分配來作說明 F 方策和 N 方策之間的互補關係。

關鍵字：F 方策; N 方策; M/G/1/K 排隊; G/M/1/K 排隊; 遞歸方法; 啟動時間;
 輔助變數; 成本; 敏感度分析.

 iii

 Interrelationships between F Policy and N Policy for
M/G/1/K and G/M/1/K Queues with Startup Time

Student: Ching-Chang Kuo Advisor: Dr. W. L. Pearn

Department of Industrial Engineering and Management
National Chiao Tung University

Abstract

This dissertation deals with the interrelationship between F policy and N policy.

The F policy queuing problem investigates the most common issue of controlling arrival

to a queuing system. The N policy queuing problem investigates the most common issue

of controlling service. The optimal control arrival in M/G/1/K and G/M/1/K queues

operating under the F policy and startup time is investigated in this dissertation. The

definition of F policy is described as following: When the number of customers in the

system reaches its capacity K (i.e. the system becomes full), no further arriving

customers are allowed to enter the system until there are enough customers who have

been served in the system. Consequently, the number of customers in the system

decreases to a threshold value F (0 1F K≤ < −). At that time, the server requires to take

an exponential startup time with parameter β to start allowing customers in the

system. Thus, the system operates normally until the number of customers in the system

reaches its capacity at which time the above process is repeated all over again. A

recursive method, using the supplementary variable technique and treating the

supplementary variable as the remaining service (or inter-arrival) time, is provided to

develop the steady-state probability distributions of the number of customers in two

finite queues. To illustrate analytically the two recursive methods, examples of different

service (or interarrival) time distributions, such as exponential, 3-stage Erlang and

deterministic distributions, in the F policy M/G/1/K queuing system and in the F

policy G/M/1/K queuing system with exponential startup time distribution is present.

In both queueing systems, a cost model is established to determine the optimal

management F policy at minimum cost. An efficient Maple computer program is used

to determine the optimal operating F policy and some system performance measures.

Sensitivity analysis is also studied. To find the interrelationship between F policy and N

 iv

policy, we have solved the solution algorithm of the N policy M/G/1/K queue with

startup time. A recursive method and supplementary variable technique to obtain the

solution algorithm is provided. The definition of N policy is described as following: The

server needs a startup time when the number of customers in the system reaches the

threshold (1)N N ≥ for the first time until there are no customers present in the system.

At that time, the server needs to take an exponential startup time with parameter γ to

start servicing customers in the system. Through a series of the algorithm, the

complementary interrelationship between the F policy and N policy queues is obtained.

Therefore, the problem of F policy (N policy) queuing system with startup time gives the

solution algorithm to the other problem. The two simple examples of 3-stage Erlang and

exponential distribution to illustrate the interrelationship are provided.

Keywords: F policy, N policy, G/M/1/K queue, M/G/1/K queue, Recursive method,

 Startup times, Supplementary variable, Cost, Sensitivity analysis.

 v

List of Contents

Page

Acknowledgment···i

Abstract (Chinese)··· ii

Abstract (English) ·· iii

List of Contents ·· v

List of Tables ·· vii

Chapter 1. Introduction··· 1

1.1 Background··· 1

1.2 Theoretical Analysis Techniques·· 3

1.3 Literature Review·· 5

1.4 Problem Statement ·· 6

1.5 Scope of Dissertation··· 8

Chapter 2. The F Policy M/G/1/K Queue with Startup Time ····································· 9

2.1 Assumptions and Notations··· 9

2.2 Development of the Equations and Solutions ··· 11

2.3 Steady State Results··· 12

2.3.1 Recursive methods ··· 13

2.3.2 The solution algorithm·· 17

2.4 Simple Examples··· 18

2.5 Optimal F policy ··· 24

2.5.1 Cost function··· 24

2.5.2 Numerical examples ··· 25

Chapter 3. The F Policy G/M/1/K Queue with Startup Time ··································· 27

3.1 Assumptions and Notations ·· 27

3.2 Development of the Equations and Solutions··· 28

3.3 Steady State Results··· 29

3.3.1 Recursive methods ··· 30

3.3.2 The solution algorithm·· 33

3.4 Simple Examples··· 34

3.5 Optimal F policy ··· 39

 vi

3.5.1 Cost function··· 39

3.5.2 Numerical examples ··· 40

Chapter 4. The N policy M/G/1/K Queue with Startup Time ··································· 43

4.1 Assumptions and Notations ·· 43

4.2 Development of the Equations and Solutions··· 44

4.3 Steady State Results··· 45

4.3.1 Recursive methods ··· 46

4.3.2 The solution algorithm·· 49

4.4 Simple Example ·· 50

Chapter 5. Interrelationship between the F policy and the N policy for M/G/1/K and

G/M/1/K Queues with Startup Time ··· 53

5.1 Development of the F policy G/M/1/K Queue ··· 53

5.2 Interrelationship between the N policy M/G/1/K Queue and the F policy

G/M/1/K Queue·· 55

5.3 Development of the N policy G/M/1/K Queue··· 57

5.4 Interrelationship between the F policy M/G/1/K Queue and the N policy

G/M/1/K Queue·· 60

Chapter 6. Conclusions and Future Researches·· 63

6.1 Conclusions·· 63

6.2 .Future Researches ·· 64

Appendix·· 66

References ·· 67

 vii

List of Tables

Page

Table 1 The optimal value of F and its minimum expected cost for the service time

distribution such as exponential ·· 26

Table 2 The optimal value of F and its minimum expected cost for the service time

distribution such as 3-stage Erlang··· 26

Table 3 The optimal value of F and its minimum expected cost for the service time

distribution such as deterministic··· 26

Table 4 The optimal value of F and its minimum expected cost for exponential

interarrival time ·· 42

Table 5 The optimal value of F and its minimum expected cost for 3-stage Erlang

interarrival time ·· 42

Table 6 The optimal value of F and its minimum expected cost for deterministic

interarrival time ·· 42

Table 7 N policy M/G/1/K queue corresponds to F policy G/M/1/K queue ·········· 55

Table 8 F policy M/G/1/K queue corresponds to N policy G/M/1/K queue ·········· 60

 1

Chapter 1

Introduction

In section 1.1, we describe the background of queueing theory that has been a

continuously growing and interesting science. In section 1.2, an important

technique that is supplementary variable technique will be introduced. In section

1.3, several researchers are shown in earlier works. In section 1.4, the description of

the problems that are the interrelationships between F policy and N policy in

M/G/1/K and G/M/1/K queues are presented. In section 1.5, we illustrate the

scope of dissertation.

1.1 Background

The most of the optimization problems in queueing systems focused on design

or static models in which the system characteristics did not vary with time in the

last few years. It is evidence that this type of model does not meet the requirements

of the majority of realworld queueing applications. For example, those models

relative to the management of large-scale systems in several fields are: distribution,

transportation, administration, production, informatics, etc. It is especially true in

many computer and communication applications, in which the performance of the

investigation system may be improved if some system parameters are adjusted as

the system state changes. (see Kleinrock [24], Bolch et al. [6])

Hence, it is more concerned that the system characteristics are allowed to vary

with time in the control or dynamic models. The aim of such models is to prescribe

a certain behavior on the part of the decision maker. In these models, it is

emphasized that the optimization is achieved over a class of operating policies,

rather than over a set of parameters for a single operating policy, which is a fixed

part of the model. A complete survey about the design and control of models was

presented by Gross and Harris [15], and Crabill et al. [9].

Several researchers investigate five kinds of controllable queues as follows:

1. The N policy was first developed by Yadin and Naor [36] in 1963. When the

number of customers in the system reaches the threshold N(1N ≥) for the first time

until there are no customers present in the system, the server returns to provide

 2

service.

Many researchers have worked on this subject such as Yadin and Naor [36],

Hersh and Brosh [16], Kimura [23], Lee and Park [26], Medhi and Templeton [28],

Takagi [29], Wang et al. [32], Wang and Ke [33], Ke and Wang [20] and others.

2. The F policy was developed by Gupta [12] in 1963. When the number of

customers in the system reaches its capacity K (i.e. the system becomes full), no

further arriving customers are allowed to enter the system until there are enough

customers in the system have been served so that the number of customers in the

system decreases to a threshold value F (0 1F K≤ < −). At that time, the server

requires to take an exponential startup time to start allowing customers in the

system. Thus, the system operates normally until the number of customers in the

system reaches its capacity at which time the above process is repeated all over

again.

3. The T policy was developed by Heyman [18], Levy and Yechiali [27], Tijm

[31], Gakis et al. [11], and Ke[22]. Following the beginning of the idle period, the

server returns to provide service immediately after T time units have elapsed from

the epoch of server removal if there is at least one customer present in the waiting

line, until there are no customers in the system. If after T time units have elapsed,

there are no customers in the system to initiate service, the server waits another T

time units, and so on, until at least one customer is present.

4. The D policy was developed by Balachandran [3], Tijm [31] and Gakis et al.

[11]. The server returns to provide service if the accumulated backlog, which is the

sum of service time of the new arriving customers, exceeds a given quantity

D(≥1D) for the first time.

5. The combined policies which are combined by any two of the N, T, and D

policies. Doganata [10] first studied the NT policy M/G/1 queueing system that the

vacation period is terminated if the time elapsed since the first arrival during the

vacation period reaches the threshold T, or the number of customers in the system

waiting for services reaches the threshod N. Alfa and Frigui [1] extended

Doganata's model to the MAP/PH/1 case. Gakis, et al. [11] presented six dyadic

policies for the M/G/1 queueing system.

 3

1.2 Theoretical Analysis Techniques

Recall that a queue is characterized by the input process, the service

mechanism, and the queue discipline. When arrivals have Poisson characteristics

and service times are exponential, the resulting queueing process is Markovian. A

Markovian model is in the framework of the birth-and-death process that

completely specifies the state of the system at a given time. This information is

sufficient to describe the future development of the process. These assumptions

imply that the future evolution of the system from some time t depends only on

the state of the system at time t , and is independent of the history of the system

prior to time t . In these models, the "state" of the system could always be specified

in terms of the number of customers present. (In a multidimensional case, the state

is specified in terms of the number of customers of each type present at time t .)

Suppose that we are interested in a queue for which the number of customers

present at any time t is not sufficient information to permit complete analysis of

the model. Such a queue is impossibly solved by using birth-and-death process.

Clearly, some methods are required.

In this section, we will introduce an important technique to study the F policy

M/G/1/K and G/M/1/K queues with startup time and N policy M/G/1/K queue

with startup time. It is supplementary variable technique, introduced by Cox [8].

Suppose that customers arrive at random with rate α in a single server queue.

Let the service times of customers be independently distributed with p.d.f. ()b t

and hazard function ()bh t . When ()b t is not an exponential distribution, the

probability of service being completed in + Δ(,)t t t depends on the length of time

service has been in progress.

If the customer currently being served has been at the service point for a time

u . Let (,)np u t be the joint probability density of the state (,)n u at time t . More

explicitly, if U is the random variable corresponding to u ,

+Δ →

< < + Δ
=

Δ0

Pr(and customers present at time)
(,) lim .n

u

u U u u n t
p u t

u

Then we can have the forward equations for the process using the usual

argument as in the birth and death model.

 4

The following forward difference equations may be obtained in steady-state,

for 1,2,...n =

0 0 10
() ()(1) (;) () (),bp t dt p t dt p u t h u du dtα

∞
+ = − + + Δ∫ (1.1)

{ } 1(,) (,) 1 [()] (,) (),n n b np u dt t dt p u t h u dt p u t dt dtα α−+ + = − + + + Δ (1.2)

and

1 0 1,0
(0,) (;) () () (),n n b np t p u t h u du p t dtα δ

∞
+= + + Δ∫ (1.3)

where 1, 1,1 if 1 and 0 otherwise.j jjδ δ= = = (δ1, j is the Kronecker delta function.)

By performing the following expansions to (1.2)

(,) (,)
(,) (,) (),n n

n n
p u t p u t

p u dt t dt p u t dt dt dt
u t

∂ ∂
+ + = + + + Δ

∂ ∂

we obtain the following partial differential equations

1(,) [()] (,) (,).n b n np u t h u p u t p u t
u t

α α −
∂ ∂⎛ ⎞+ = − + −⎜ ⎟∂ ∂⎝ ⎠

 (1.4)

Solutions to (1.1) and (1.3)-(1.4) can be obtained with the help of mathematical

theory and techniques.

Let u denote the length of time when customer is being served at time t

until his service completion. We have the following backward difference equations

may be obtained in steady-state, for 1,2,...n = .

0 0 1() ()(1) (0,) (),p t dt p t dt p t dt dtα+ = − + + Δ (1.5)

α α− +− + = − + + + Δ1 1(,) (,)(1) (,) (0,) () ().n n n np u dt t dt p u t dt p u t dt p t b u dt dt (1.6)

By performing the following expansions to (1.6)

(,) (,)
(,) (,) (),n n

n n
p u t p u t

p u dt t dt p u t dt dt dt
u t

∂ ∂
− + = − + + Δ

∂ ∂

the following partial differential equations are obtained

1 1(,) (,) (,) (0,) ().n n n np u t p u t p u t p t b u
u t

α α − +
∂ ∂⎛ ⎞+ = − + +⎜ ⎟∂ ∂⎝ ⎠

 (1.7)

Solutions to (1.1)-(1.7) can be solved with the help of mathematical theory and

techniques.

 5

1.3 Literature Review

We use a supplementary variable technique to analyze the optimal control of

the F policy M/G/1/K and F policy G/M/1/K queues where the server needs a

startup time before start allowing customers in the system and K < ∞ denotes the

maximum capacity of the system. The method of controlling arrivals focuses on

reducing the number of customers in the system. The model proposed in this

dissertation is very useful in real-life situations since the controlling of arriving

customers is considered.

Steady-state analytical solutions of the F policy M/M/1/K queueing system

with an exponential startup time were first developed by Gupta [12]. However,

steady-state analytical solutions of the F policy queue with interarrival times or

service times distribution of the general type have not been found. It is extremely

difficult, if not possible, to obtain the explicit expressions for the steady-state

probability distribution of the number of customers in the system. This becomes

particularly helpful when the supplementary variable technique to the

non-Markovian queueing system having general interarrival times or general service

times is used. Cox [8] first introduced the supplementary variable technique. Based

on this technique, Gupta and Rao [13-14] presented a recursive method to develop

the steady-state probability distributions of the number of failed machines for the

no-spare M/G/1 machine repair problem and the cold-standby M/G/1 machine

repair problem, respectively.

Past work regarding queues may be divided into two parts according to

whether the system is considered to control the service or the arrival. In the first

category of controlling the service, the N policy M/M/1 queueing system without

startup was first introduced by Yadin and Naor [36]. The extension of this model

can be referred to Bell [4-5], Heyman [17], Kimura [23], Teghem [30], Wang and

Ke [33], and others. Wang and Ke [33] provided a recursive method and used the

supplementary variable technique to develop the steady-state probability

distributions of the number of customers for the N policy M/G/1/L queueing

system. Ke and Wang [20] presented a recursive method and applied the

supplementary variable technique to obtain the steady-state probability distributions

of the number of customers for the N policy G/M/1/L queueing system. The server

startup corresponds to the preparatory work of the server before starting the service.

 6

In some real-life situations, the server often needs a startup time before beginning to

provide the service. Several authors research on queueing systems with startup time

focus mainly on the N policy M/G/1 queues. Baker [2] first studied the N policy

M/M/1 queueing system with an exponential startup time. Borthakur et al. [7]

extended Baker’s model to the general startup time. The N policy M/G/1 queueing

system with startup time was investigated by several researchers such as Medhi and

Templeton [28], Takagi [29], Lee and Park [26], Hur and Paik [19], Krishna et al.

[25], Ke [21], Wang and Ke [33],Wang and Ke [34], Wang et al.[35], and so on. Ke

[21] presented a recursive method and used the supplementary variable technique to

compute the operating characteristics for the N policy G/M/1/L queueing system

with an exponential startup time. In the second category of controlling the arrivals,

the analytical developments for controlling the arrivals in queueing problems are

rarely found in the literature, which are particularly for service time and interarrival

time following general type. The work of related problems in the past mainly

concentrates on Markovian system. The pioneering work in steady-state analytical

solutions of the F policy M/M/1/K queueing system with an exponential startup

time was first derived by Gupta [12]. Through a series of propositions, the

interrelationship between the operating N policy and the operating F policy are

established by Gupta [12].

Practically, the memoryless property of the arrival (input) process does not

always meets the needs of applications because, for interarrival time, general

distribution, rather than exponential distribution, appears to be more appropriate

and reasonable. General distribution can include the special cases of exponential,

Erlang, hyper-exponential, and deterministic, etc. However, aside from theoretical

arguments, many real-life situations satisfy the assumptions of Markovian

conditions for service time. Hence, we may consider inevitably to analyze the F

policy M/G/1/K and F policy G/M/1/K queues.

1.4 Problem Statement

In this dissertation, we investigate the interrelationship between F policy and N

policy in M/G/1/K and G/M/1/K queues. First, we study the optimal control in

the F policy M/G/1/K and G/M/1/K queues. The definition of a F policy is

described as follows: When the number of customers in the system reaches its

 7

capacity K (i.e. the system becomes full), no further arriving customers are allowed

to enter the system until there are enough customers in the system have been served

so that the number of customers in the system decreases to a threshold value F

(0 1F K≤ < −). At that time, the server requires to take an exponential startup time

to start allowing customers in the system. Thus, the system operates normally until

the number of customers in the system reaches its capacity at which time the above

process is repeated all over again. Gupta [12] first developed the concept of an F

policy steady-state analytical solution of the F policy M/M/1/K queueing system

with an exponential startup time.

A number of practical problems arise which may be formulated as one in

which the server requires taking a startup time to start allowing customers in the

system. Such models have potentially useful in practical real-life. For example, in

computer process and service systems, massages are transmitted among the

computers (processors). If the processor is free the message is accepted; otherwise

the message is temporarily stored in a buffer to be served some time later. When the

buffer is full, the arriving messages will be restricted entrance until the number of

messages drops to some a threshold level. When system buffer reduces to the

threshold level, the messages are immediately admitted to enter the system. This

will help to prevent the system from becoming over-loaded. Another application of

our model is transportation. In order to avoid traffic jams caused by motorists

returning home for Chinese New Year, the entrance ramps along the highway will

be controlled by a metering system. When traffic flow is congested, entrance ramps

are closed to keep expressway traffic smooth. Vehicles are allowed to re-enter once

the traffic is improved. The entrance ramps may need to maintain and the service

may be temporarily shut down. The model is also applicable to controlling the

amount of eco-tour visitors, e.g. in Kenting National Park (Taiwan). When

applicants reach the limited numbers of the day, the application would be rejected.

We will study the interrelationship between F policy and N policy in M/G/1

and G/M/1 queues. We first consider the N policy M/G/1 queue with startup time.

The decision-maker can turn a single server on at any arrival epoch or off at any

service completion (departure) epoch. The term 'removable server' is just an

abbreviation for the system of turning on and turning off the server, depending on

the number of customers in the system. Yadin and Naor [36] first introduced the

 8

concept of an N policy which turns the server on when (1)N N ≥ or more

customers are present and turns the server off only when the system is empty. After

the server is turned off, the server may not operate until N customers are present in

the system.

Suppose that the time elapsing between two successive arrivals is

independently and identically distributed (i.i.d.) random variable, having a general

distribution () (0)A v v ≥ , a probability density function (p.d.f.) () (0)a v v ≥ and

mean interarrival time 1a . The service times of successive customers are

independent and identically random variables having a common distribution

() (0)S u u ≥ , a probability density function () (0)s u u ≥ and mean service time 1s .

The service process is independent of the arrival process. We assume that arriving

customers form a single waiting line based on the order of their arrival; that is, the

first-come, first-served discipline. The server can serve only one customer at a time.

A customer, upon entry into the service facility, finding that the server is busy have

to wait in the queue until the server is free.

1.5 Scope of Dissertation

In chapter 2, we provide a recursive method using the supplementary variable

technique to derive the steady-state probability distributions in the F policy

M/G/1/K queue. We illustrate the solution algorithm by presenting three simple

examples for three different service time distributions: exponential (denoted M),

3-stage Erlang (denoted E3), and deterministic (denoted D). Various system

performance measures are also presented. The total expected cost function per unit

time is developed. Numerical and comparative results are shown. In chapter 3, we

follow the above method of the chapter 2 and treating the supplementary variable as

the remaining interarrival time to develop the F policy G/M/1/K queue with

startup time. In chapter 4, we study N policy M/G/1/K queue with startup time. In

chapter 5, we examine the relationships between the F policy and N policy. Using

the solution algorithm of N policy (F policy) M/G/1/K queue with startup time,

we develop the steady state probabilities of F policy (N policy) G/M/1/K queue.

Finally, chapter 6 consists of some concluding remarks.

 9

Chapter 2

The F Policy M/G/1/K Queue with Startup Time

A supplementary variable technique is used to study the optimal management

problem of the F policy M/G/1/K queue where the server needs a startup time

before start allowing customers in the system and K < ∞ denotes the maximum

number of customers in the system. The method of controlling arrivals focuses on

reducing the number of customers in the system. The model presented in this

dissertation is very useful in real-life situations since the controlling of arriving

customers is considered.

The primary objective of this chapter is threefold. Firstly, we develop a

recursive method using the supplementary variable technique and treating the

supplementary variable as the remaining service time, to develop the steady-state

probability distributions of the number of customers for the F policy M/G/1/K

queue. The method can be utilized for any service time distribution, such as

deterministic (denoted D), exponential (denoted M) and k-stage Erlang (denoted Ek),

etc. Secondly, to illustrate a recursive method we present three simple examples for

three different service time distributions such as exponential, 3-stage Erlang, and

deterministic. Thirdly, we study various system performance measures, such as the

average number of customers in the system, the probability that the server is busy,

the blocking probability, etc. The total expected cost function per unit time for the

F policy M/G/1/K queue with startup times is developed. Numerical and

comparative results are also provided.

2.1 Assumptions and Notations

We consider the controlling arrivals to a finite capacity M/G/1 queue with

combined F policy and exponential startup time. It is assumed that customers arrive

according to a Poisson process with parameter λ , and the service times of the

successive customers are independently and identically distributed (i.i.d.) random

variables having a distribution ()S u ()0u ≥ , a probability density function ()s u

()0u ≥ and mean service time 1s . The arrival process is independent of the service

process. We assume that arriving customers form a single waiting line based on the

order of their arrivals; that is, the first-come, first-served discipline. Suppose that the

 10

server can serve only one customer at a time. Customers entering into the service

facility and finding that the server is busy have to wait in the queue until the server

is available. Gupta [6] first introduced the concept of a F policy. The definition of a

F policy is described as follows: When the number of customers in the system

reaches its capacity K (i.e. the system becomes full), no further arriving customers

are allowed to enter the system until there are enough customers in the system have

been served so that the number of customers in the system decreases to a threshold

value F (0 1F K≤ < −). At that time, the server requires to take an exponential

startup time with parameter β to start allowing customers in the system. Thus,

the system operates normally until the number of customers in the system reaches

its capacity at which time the above process is repeated all over again.

The following notations and probabilities are used throughout this chapter.

F threshold level

K system capacity ()1K F> +

S service time random variable
U remaining service time random variable

()S u distribution function (d.f.) of S

()s u probability density function (p.d.f.) of S

()*S θ Laplace-Stieltjes transform (LST) of S
() ()* lS θ l th order derivative of ()*S θ with respect to θ

()0,0P t probability of no customers in the system at time t when the
arrivals are not allowed to enter the system

()0,nP t probability of n customers in the system at time t when the
arrivals are not allowed to enter the system, where 1,2,..., .n K=

()1,0P t probability of no customers in the system at time t when the
arrivals are allowed to enter the system

()1,nP t probability of n customers in the system at time t when the
arrivals are allowed to enter the system, where 1,2,..., 1.n K= −

0,0P steady state probability of no customers in the system when the
arrivals are not allowed to enter the system

0,nP steady state probability of n customers in the system when the
arrivals are not allowed to enter the system, where 1,2,..., .n K=

1,0P steady state probability of no customers in the system when the
arrivals are allowed to enter the system

1,nP steady state probability of n customers in the system when the
arrivals are allowed to enter the system, where 1,2,..., 1.n K= −

1s mean service time

The special case with system capacity K=F+1 is presented in the appendix.

 11

2.2 Development of the Equations and Solutions

We use the following supplementary variable: U ≡ remaining service time for

the customer in service. The state of the system at time t is given by

()N t ≡ number of customers in the system, and

()U t ≡ remaining service time for the customer being served.

Let us define

() () (){ }= = < ≤ + ≥ =0, , Pr , d , 0, 0,1,..., .nP u t du N t n u U t u u u n K

() () (){ }= = < ≤ + ≥ = −1, , Pr , d , 0, 0,1,..., 1.nP u t du N t n u U t u u u n K

() ()∞
= =∫0, 0,0

, d , 0,1,..., .n nP t P u t u n K

() ()∞
= = −∫1, 1,0

, d , 0,1,..., 1.n nP t P u t u n K

Relating the state of the system at time t and dt t+ , we obtain

() () ()0,0 0,0 0,1
d

0, ,
d

P t P t P t
t

β= − + (2.1)

() () () ()β +
∂ ∂⎛ ⎞− = − + , ≤ ≤⎜ ⎟∂ ∂⎝ ⎠

0, 0, 0, 1, , 0, 1 ,n n nP u t P u t P t s u n F
t u

 (2.2)

() () ()+
∂ ∂⎛ ⎞− = , + ≤ ≤ −⎜ ⎟∂ ∂⎝ ⎠

0, 0, 1, 0, 1 1,n nP u t P t s u F n K
t u

 (2.3)

() ()0, 1, 1, ,K KP u t P u t
t u

λ −
∂ ∂⎛ ⎞− = ,⎜ ⎟∂ ∂⎝ ⎠

 (2.4)

() () () ()1,0 1,0 0,0 1,1
d

0, ,
d

P t P t P t P t
t

λ β= − + + (2.5)

() () () () ()

() ()

λ β λ∂ ∂⎛ ⎞− = − + + +⎜ ⎟∂ ∂⎝ ⎠
,

1,1 1,1 0,1 1,0

1,2

, , ,

 0,

P u t P u t P u t P t s u
t u

P t s u

 (2.6)

() () () () ()

() ()

λ β λ −

+

∂ ∂⎛ ⎞− = − + +⎜ ⎟∂ ∂⎝ ⎠
+ , ≤ ≤

1, 1, 0, 1, 1

1, 1

, , , ,

 0, 2 ,

n n n n

n

P u t P u t P u t P u t s u
t u

P t s u n F

 (2.7)

() () () () () ()1, 1, 1, 1 1, 1, , , 0,

 1 2,

n n n nP u t P u t P u t s u P t s u
t u

F n K

λ λ − +
∂ ∂⎛ ⎞− = − + + ,⎜ ⎟∂ ∂⎝ ⎠

+ ≤ ≤ −
 (2.8)

() () ()1, 1 1, 1 1, 2, , , .K K KP u t P u t P u t
t u

λ λ− − −
∂ ∂⎛ ⎞− = − +⎜ ⎟∂ ∂⎝ ⎠

 (2.9)

 12

2.3 Steady State Results

In steady state, let us define

()
→∞

= =0, 0,lim , 0,1,..., .n n
t

P P t n K

()
→∞

= = −1, 0,lim , 0,1,..., 1.n n
t

P P t n K

() ()
→∞

= =0, 0,lim , , 1,2,..., .n n
t

P u P u t n F

() ()
→∞

= = −1, 1,lim , , 0,1,..., 1.n n
t

P u P u t n K

and further define

() ()= =0, 0, , 1,2,...,n nP u P s u n F . (2.10)

From (2.1)-(2.10), we can easily obtain the following steady state equations:

()0,0 0,10 0 ,P Pβ= − + (2.11)

() () () ()β +− = − + , ≤ ≤0, 0, 0, 1
d

0 1 ,
d n n nP u P s u P s u n F

u
 (2.12)

() () ()+− = , + ≤ ≤ −0, 0, 1
d

0 1 1,
d n nP u P s u F n K

u
 (2.13)

() ()0, 1, 1
d

,
d K KP u P u

u
λ −− = (2.14)

()1,0 0,0 1,10 0 ,P P Pλ β= − + + (2.15)

() () () () () ()1,1 1,1 0,1 1,0 1,2
d

0
d

P u P u P s u P s u P s u
u

λ β λ− = − + + + , (2.16)

() () () () () ()λ β λ − +− = − + + + ,

≤ ≤

1, 1, 0, 1, 1 1, 1
d

0
d

 2 ,

n n n n nP u P u P s u P u P s u
u

n F
 (2.17)

() () () () ()λ λ − +− = − + + , + ≤ ≤ −1, 1, 1, 1 1, 1
d

0 1 2,
d n n n nP u P u P u P s u F n K

u
 (2.18)

() () ()1, 1 1, 1 1, 2
d

.
d K K KP u P u P u

u
λ λ− − −− = − + (2.19)

Further define

() () ()*

0 0
d d ,u uS e S u e s u uθ θθ

∞ ∞− −= =∫ ∫

() ()*
0, 0,0

d ,u
n nP e P u uθθ

∞ −= ∫

() ()*
1, 1,0

d ,u
n nP e P u uθθ

∞ −= ∫

() ()*
0, 0, 0,0

0 d ,n n nP P P u u
∞

= = ∫

() ()*
1, 1, 1,0

0 d ,n n nP P P u u
∞

= = ∫

() () ()*
0, 0, 0,0

d 0 ,u
n n ne P u u P P

u
θ θ θ

∞ − ∂
= −

∂∫

 13

and

() () ()*
1, 1, 1,0

d 0 .u
n n ne P u u P P

u
θ θ θ

∞ − ∂
= −

∂∫

Therefore, we take the LST on both sides of (2.12)-(2.14) and (2.16)-(2.19). It yields

() () () () ()θ θ β θ θ+− = − + − , ≤ ≤* * *
0, 0, 0, 1 0,0 0 1 ,n n n nP P S P S P n F (2.20)

() () () ()θ θ θ+− = − , + ≤ ≤ −* *
0, 0, 1 0,0 0 1 1,n n nP P S P F n K (2.21)

() () ()* *
0, 1, 0, 0 ,K K KP P Pθ θ λ θ− = − (2.22)

() () () () () () ()* * * *
1,1 0,1 1,0 1,2 1,10 0P P S P S P S Pλ θ θ β θ λ θ θ− = + + − , (2.23)

() () () () () () ()λ θ θ β θ λ θ θ− +− = + + − ,

≤ ≤

* * * *
1, 0, 1, 1 1, 1 1,0 0

 2 ,
n n n n nP P S P P S P

n F
 (2.24)

() () () () () ()λ θ θ λ θ θ− +− = + − , + ≤ ≤ −* * *
1, 1, 1 1, 1 1,0 0 1 2,n n n nP P P S P F n K (2.25)

() () () ()* *
1, 1 1, 2 1, 1 0 .K K KP P Pλ θ θ λ θ− − −− = − (2.26)

2.3.1 Recursive methods

The recursive method is developed to obtain ()*
0, 0nP and ()*

1, 0nP . Our

solution algorithm will first obtain () ()0, 0 1nP n K≤ ≤ which are then used for

finding ()*
0, 0nP .

Using (2.11) and setting 0θ = in (2.20) and (2.21), we get

()
ζ

β
−

=

= ≤ ≤∑
1

0, 0,
0

0 , 1 ,
n

n i
i

P P n K where ζ
≤ ≤ −⎧

= ⎨ ≤ ≤⎩

, 0 1,

, ,n
n n F

F F n K
 (2.27)

and

() ()βϕ+ = − + , ≤ ≤ −0, 1 , 0, 0,0 0 1 1,n n F n nP P P n K

where ϕ
, ≤ ≤⎧

= ⎨
⎩

,

1 1 ,

0, otherwise.n F
n F

(2.28)

Using (2.28) in (2.20) and (2.21), we get

() () ()θ
θ

θ
−

= , ≤ ≤ −
*

*
0, 0,

1
0 1 1.n n

S
P P n K (2.29)

Taking 0limθ→ in (2.29) and using ˆL'Hospital's rule once gives

() ()= , ≤ ≤ −*
0, 1 0,0 0 1 1,n nP s P n K (2.30)

where () ()* 1
1 0s S= − is the mean service time.

Using (2.27) in (2.30), we have

() φ= , ≤ ≤ −*
0, 0,00 1 1n nP P n K , (2.31)

 14

where
()ζ

φ
β β −

=⎧⎪= ⎨
+ ≤ ≤⎪⎩

1
1 1

1, 0,

1 , 1 .nn

n

s s n K
 (2.32)

Thus, () () ()* * *
0,1 0,2 0, 10 , 0 ,..., 0KP P P − can be obtained by using (2.31).

Next, we derive the expressions of () ()1, 0 1nP n K≤ ≤ in terms of 1,0P and

0,0P . Using (2.31) in (2.23)-(2.24) and then setting θ λ= in (2.23)-(2.26), we

finally obtain

() () () ()
()

* *
1,1 1 0,0 1,0

1,2 *

0
0 ,

P P S P S
P

S

βφ λ λ λ
λ

− −
= (2.33)

() () () ()
()

βϕ φ λ λ λ
λ

−
+

− −
= ≤ ≤ −

* *
1, , 0,0 1, 1

1, 1 *

0
0 , 2 2,n n F n n

n
P P S P

P n K
S

 (2.34)

() ()*
1, 1 1, 20 .K KP Pλ λ− −= (2.35)

To obtain () ()*
1, 1 1 1nP n Kλ− ≤ ≤ − in (2.34)-(2.35), using (2.31) in (2.23)-(2.24)

again, differentiating (2.23)-(2.26) ()1l − times with respect to θ and setting

θ λ= , we finally get

() ()
() () ()λ

λ λ βφ λ− ⎡ ⎤= − + + = −⎣ ⎦

*
* 1

1,0 1 0,0 1,21,1 0 , 1,..., 2
l

l S
P P P P l K

l
, (2.36)

() () () () () () () () ()λ λ βϕ φ λ λ λ−
+ −

⎡ ⎤= − + +⎢ ⎥⎣ ⎦
≤ ≤ − = − −

* 1 ** *
1, 1 , 0,01, 1, 1

1
0 ,

 2 2, 1,..., 1,

l ll l
n n F nn nP P S P S P

l
n K l K n

 (2.37)

() () ()* 1*
1, 1 1, 2K KP Pλ λ λ− −= − , (2.38)

where () () ()* 0 *
1,1, nnP Pλ λ= and () () () ()* *d dl l lS Sθ θ θ⎡ ⎤= ⎣ ⎦ denotes the lth

derivative of ()*S θ .

Solving (2.36)-(2.38) recursively, we obtain

() () () () ()
ζ β φ λ λ

λ λ
λ λ

− + − +
+

= =

= − − −

≤ ≤ −

∑ ∑
* *

1 1* *
1, 1,0 0,0 1, 1

1 1

0 ,

 1 1,

n n
n i i n i

n n i
i i

S S
P S P P P

n K

 (2.39)

where

() () ()
()

λ λ
λ

⎧ −
⎪− ≤ ≤ −

= ⎨
⎪
⎩

*

*
, 1 1,

!

0, otherwise.

n n

n

S
n K

n S (2.40)

Using (2.39) in (2.34), we can obtain

 15

()
()

() ()

ζ

λ

β φ ϕ φ λ
−

−

− − − +
=

− − − − −
=

= + +

⎡ ⎤
− + ≤ ≤ −⎢ ⎥

⎢ ⎥⎣ ⎦

∑

∑
2

2

1, 1, 1 1 1, 1*
1

1 1, 1 0,0 2 1,0
1

1
0 0 0

 , 3 1.
n

n

n n n i i
i

n i i n F n n
i

P P P
S

P P n K

 (2.41)

We further define

{ }

τ τ τ
τ τ τ

τ τ τ

κ κ κ
≤ ≤ + + + =

∈

⎧
⎪

=⎪
⎪Ψ = = −⎨
⎪
⎪
⎪⎩

∑ ∑ 1 2

1 2

1 2

1
, , , 1,2, ,

1, 0,

, 1, 2,..., 3,

0, otherwise,

k

k

k

n
k n n

n

n

n K (2.42)

where

()λ
κ

⎧ + =⎪
⎪⎪= = −⎨
⎪
⎪
⎪⎩

1*

1
, 1,

, 2,3, , 3,

0, otherwise.
n n

n
S

n K (2.43)

Remark: The representative meaning of the above formulation (2.42) is to sum up

all possible products of k sκ in which the total of subscript values of κ equals n.

We give an easily understood example for n = 4:

4 4 3 1 2 2 1 3 1 1 2 1 2 1 2 1 1 1 1 1 1

2 2 4
4 3 1 2 1 2 1 2 3 .

κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ

κ κ κ κ κ κ κ

Ψ = + + + + + + +

= + + + +

Using (2.42) and (2.43) to solve (2.41) recursively, and including (2.15) and (2.33),

we finally get

() () ()1,1 1,0 0,00 1 1 ,P A P B P= + (2.44)

() () ()−
=

⎡ ⎤= Ψ + ≤ ≤ −⎣ ⎦∑1, 1,0 0,0
2

0 , 2 1,
n

n n i
i

P A i P B i P n K (2.45)

where

() ()
()

λ

λ
λ

λ

λ −

=⎧
⎪

⎡ ⎤−⎪= =⎢ ⎥⎨
⎢ ⎥⎪ ⎣ ⎦

⎪ ≤ ≤ −⎩

*

*

2

, 1,

1
, 2,

, 3 1,n

n

S
A n n

S

n K

 (2.46)

 16

() ()
()

ζ

β

ϕ φ λ
β

λ

β φ βϕ φ
−

− − − −
=

⎧
⎪
− =⎪
⎪ ⎡ ⎤+⎪= − =⎢ ⎥⎨

⎢ ⎥⎪ ⎣ ⎦
⎪
⎪ − ≤ ≤ −⎪⎩
∑

2

*
1, 1

*

1 1, 1
1

, 1,

1
, 2,

, 3 1.
n

F

n i i n F n
i

n

S
B n n

S

n K

 (2.47)

Substituting (2.45), (2.44), and (2.35) into (2.39) finally yields

() () () ()
()

() () () ()
()

ζ
β φ

λ

λ
λ

−− + −

− − − −
= = = =

− + −

− − −
= = =

⎡ ⎤Ψ − −
− Ψ − + + +⎢ ⎥
⎢ ⎥⎣ ⎦=

⎡ ⎤Ψ − −
Ψ − + + +⎢ ⎥

⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∑

∑ ∑ ∑

22 1 1

1 1*
1 2 2 1

1,0 0,02 1 1

1 2*
1 2 2

1
1

1
1

KK i K

K i K i i
i j i i

K i K

K i K
i j i

K i B i
i j B j

S
P P

K i A i
i j A j

S

. (2.48)

Finally, we develop the steady-state probabilities ()*
1, 0nP in terms of 0,0P . Setting

0θ = in (2.23)-(2.26) we have

() ()
ζ

β φ
λ +

=

⎡ ⎤
= + ≤ ≤ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑*

1, 0,0 1, 1
0

1
0 0 , 0 2,

n

n i n
i

P P P n K (2.49)

()*
1, 1 0,0

0

0 .
F

K i
i

P P
β φ
λ−

=

= ∑ (2.50)

As () () ()1,1 1,2 1, 10 , 0 ,..., 0KP P P − and 1,0P are known, () ()* *
1,1 1,20 , 0 ,P P

()−
*

1, 1..., 0KP can be determined recursively using (2.49) and (2.50) in terms of 0,0P .

Now the only unknown quantity is ()*
0, 0KP which can be obtained from

(2.22). To find it, differentiating (2.22) with respect to θ and setting 0θ = , we

have

() () ()* 1*
0, 1, 10 0 .K KP Pλ −= − (2.51)

To find () ()* 1
1, 1 0KPλ − , differentiating (2.23)-(2.26) with respect to θ and setting

0θ = , we finally obtain

() ()
() () () () () () ()* 1 * 1 * 1

* 1 1,1 1 0,0 1,0 1,2
1,1

0 0 0 0
0 ,

P P S P S P S
P

βφ λ
λ

+ + +
= (2.52)

() ()
() () () () () () ()βϕ φ λ

λ
+−+ + +

=

≤ ≤ −

* 1* 1 * 1
* 1 1, , 0,0 1, 11, 1

1,

0 0 0 0
0 ,

 2 2,

n n F n nn
n

P P S P P S
P

n K

 (2.53)

() ()
() ()* 1

* 1 1, 1 1, 2
1, 1

0
0 .K K

K

P P
P

λ
λ

− −
−

+
= (2.54)

 17

As () ()* 1
1,1 0P is known completely from (2.52), the values () ()* 1

1, 0nP for

2,3,..., 1n K= − can be found recursively from (2.53) and (2.54). Therefore we

obtain

() () () () () () () () ()β φ λ
λ

− −

−
= = =

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
∑ ∑ ∑

1 1
* 1 * 1 * 1 * 1

1, 0,0 1, 1,01, 1
1 1 2

1
0 0 0 0 0 .

K F K

i n iK
i i i

P P S P S P P S (2.55)

Substituting (2.55) into (2.51), we have

() () () () () () () ()
1 1

* 1 * 1 * 1*
0, 1, 0,0 1, 1,0

1 1 2

0 0 0 0 0 .
K F K

K i n i
i i i

P P S P S P P Sβ φ λ
− −

= = =

⎡ ⎤
= − + + +⎢ ⎥

⎣ ⎦
∑ ∑ ∑ (2.56)

So () () ()* * *
0,1 0,2 0,0 , 0 ,..., 0KP P P is known in terms of 0,0P , which can be

determined using the normalizing condition

1

0, 1,
0 0

1.
K K

i i
i i

P P
−

= =

+ =∑ ∑ (2.57)

To demonstrate the working of the recursive method, we first describe the solution

algorithm for calculating the steady state probabilities, () ()*
0, 0 0nP n K≤ ≤ and

() ()*
1, 0 0 1nP n K≤ ≤ − . Next, to illustrate the solution algorithm, we provide three

simple examples where the service time distributions are exponential, k-stage

Erlang, and deterministic, respectively.

2.3.2 The solution algorithm

Let F be the threshold, K be the maximum capacity of the system, and let
() ()* lS θ be the l-th derivative of ()*S θ , where 1, 2,...,l K= . We set the values of

F, K, and the LST expression of the service time distribution, namely ()*S θ . The

steps of the solution algorithm are stated as follows:

Step 1. For each 0, 1,...,n K= , compute nφ using (2.32).

Step 2. For each 1, 2,..., 1n K= − , compute ()*
0, 0nP using (2.31) in terms of

0,0P .

Step 3. Compute n ()1 2n K≤ ≤ − and nκ ()1 3n K≤ ≤ − using (2.40) and

(2.43), respectively.

Step 4. For each 0, 1,..., 3n K= − , compute nΨ using (2.42).

Step 5. For each 1, 2,..., 1n K= − , compute ()A n and ()B n using (2.46) and

(2.47).

 18

Step 6. For each 1, 2,..., 1n K= − , compute ()1, 0nP using (2.44) and (2.45) in

terms of 1,0P and 0,0P .

Step 7. Compute 1,0P using (2.48) in terms of 0,0P . Thus ()1, 0nP

()≤ ≤ − 1 1n K are achieved from Step 6.

Step 8. For each 1, 2,..., 1n K= − , compute ()*
1, 0nP using (2.49) and (2.50) in

terms of 0,0P .

Step 9. For n K= , compute ()*
0, 0nP using (2.56) in terms of 0,0P .

Step 10. Determine 0,0P using (2.57). Thus () ()*
0, 0 1, 2,...,nP n K= are achieved

from Steps 2 and 9, and () ()*
1, 0 0, 1,..., 1nP n K= − are achieved from

Steps 7 to 8.

2.4 Simple Examples

We use the solution algorithm to illustrate a recursive method. We provide

three simple examples for three different service time distributions such as

exponential, 3-stage Erlang, and deterministic, respectively.

Example 1 (For M/M/1 queue). We set the mean service time 1 1s μ= , where μ

is the service rate. Assume that 1F = and 4K = . In this case, we have

()*S
μθ

μ θ
=

+
.

Step 1. For each 0, 1,...,4n = , compute nφ .

Using (2.32), we obtain

0 1φ = , ()1 1φ α α= − , and () 2
2 3 4 1φ φ φ α α= = = − , where ()α μ μ β= + .

Step 2. For each 1, 2, 3n = , compute ()*
0, 0nP using (2.31) in terms of 0,0P .

From (2.31), we finally get

()*
0,1 1 0,0 0,0

1
0P P P

αφ
α
−

= = ,

() ()* *
0,2 0,3 2 0,0 0,02

1
0 0P P P P

αφ
α
−

= = = .

Step 3. For each 1, 2n = , compute n and nκ using (2.40) and (2.43),

respectively.

For each 1, 2n = , using (2.40) yields ()1 1 1 σ= − + and ()22 1 1 σ= − + , where

 19

σ μ λ= .

For each 1n = , we find from (2.43) that () ()2
1 1 1κ σ σ σ σ= + + + .

Step 4. For each 0, 1n = , compute nΨ .

It implies from (2.42) that 0 1Ψ = and () ()2
1 1 1σ σ σ σΨ = + + + .

Step 5. For each 1, 2, 3n = , compute ()A n and ()B n .

Using (2.46) and (2.47), it follows that

()1A μ σ= , () 22A μ σ= , and () ()3 1A μ σ σ= − + .

() ()1
1B

α μ
α
−

= − , () ()()
2

1
2B

α σ α μ
σα

+ −
= − , and () ()

()

2

2

1
3

1
B

α μ
σ α

−
= −

+
.

Step 6. For each 1, 2, 3n = , compute ()1, 0nP using (2.44) and (2.45) in terms of

1,0P and 0,0P .

It yields from (2.44) and (2.45) that

() () ()1,1 1,0 0,00 1 1P A P B P= + ,

() () ()1,2 0 1,0 0,00 2 2P A P B P⎡ ⎤= Ψ +⎣ ⎦ ,

() () () () ()1,3 1 1,0 0,0 0 1,0 0,00 2 2 3 3P A P B P A P B P⎡ ⎤ ⎡ ⎤= Ψ + +Ψ +⎣ ⎦ ⎣ ⎦ .

Step 7. Compute 1,0P using (2.48) in terms of 0,0P . Thus () ()1, 0 1 3nP n≤ ≤ are

achieved from Step 6.

From (2.48), we finally have

()()2 3

1,0 0,02

1
P P

σ α α σ σ σ

α

− + + +
= , ()()*

1,0 1,00P P= ,

()
()()2

1,1 0,02

1 1
0P P

σμ α σ σ

α

− + +
= ,

() ()()
1,2 0,02

1 1
0P P

σμ α σ
α
− +

= ,

() ()
1,3 0,02

1
0P P

σμ α
α
−

= .

Step 8. For each 1, 2, 3n = , compute ()*
1, 0nP using (2.49) and (2.50) in terms of 0,0P .

Using (2.49) and (2.50) yields

()
()()2

*
1,1 0,02

1 1
0P P

σ α σ σ

α

− + +
= , () ()()*

1,2 0,02

1 1
0P P

σ α σ
α

− +
= ,

 20

and () ()*
1,3 0,02

1
0P P

σ α
α
−

= .

Step 9. For 4n = , compute ()*
0, 0nP using (2.56) in terms of 0,0P .

Using (2.56), it follows that

() ()*
0,4 0,02

1
0P P

α
α
−

= .

Step 10. Determine 0,0P using (2.57). Thus () ()*
0, 0 0, 1,...,4nP n = are achieved

from Steps 2 and 9, and () ()*
1, 0 0, 1, 2, 3nP n = are achieved from Steps 7

to 8.

() () ()()
2

0,0 2 2 31 3 1 1 3 3 2
P

α
α α α α σ α α σ σ σ

=
+ − + − + − + + + +

.

It is to be noted that these results are the same as those given in Gupta [12,

p1006].

Example 2 (For M/E3/1 queue). The 3-stage Erlang distribution is made up of three

independent and identical exponential stages, each with mean 1 3μ . We set the

mean service time 1 1s μ= , 1F = , and 3K = . In this case, we have

()
3

* 3
3

S
μθ

μ θ
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
.

Step 1. For each 0, 1,...,3n = , compute nφ .

From (2.32), we finally obtain

0 1φ = , ()1 3 1φ γ γ= − , and ()() 2
2 3 3 1 3 2φ φ γ γ γ= = − − ,

where ()3 3γ μ μ β= + .

Step 2. For each 1, 2n = , compute ()*
0, 0nP using (2.31) in terms of 0,0P .

From (2.31), it follows that

()*
0,1 1 0,0 0,0

1
0 3P P P

γφ
γ
−

= = ,

() ()()*
0,2 2 0,0 0,02

1 3 2
0 3P P P

γ γ
φ

γ
− −

= = .

Step 3. For each 1n = , compute n .

Using (2.40) yields ()1 3 1 τ= − + , where 3τ μ λ= .

 21

Step 4. For each 0n = , compute nΨ .

It implies from (2.42) that 0 1Ψ = .

Step 5. For each 1, 2n = , compute ()A n and ()B n .

It yields from (2.46) and (2.47) that

()1 3A μ τ= and () ()2 42 3 1 3 3A μ τ τ τ= + + .

() ()1
1 3B

γ μ
γ
−

= − and ()
() () ()2 3

3 2

1 3 3 3 2 1
2 3B

α τ τ τ γ γ μ

τ γ

⎡ ⎤+ + + − −⎣ ⎦= − .

Step 6. For each 1, 2n = , compute ()1, 0nP using (2.44) and (2.45) in terms of 1,0P

and 0,0P .

From (2.44) and (2.45), we find that

() () ()1,1 1,0 0,00 1 1P A P B P= + ,

() () ()1,2 0 1,0 0,00 2 2P A P B P⎡ ⎤= Ψ +⎣ ⎦ ,

Step 7. Compute 1,0P using (2.48) in terms of 0,0P . Thus () ()1, 0 1 2nP n≤ ≤ are

achieved from Step 6.

It implies from (2.48) that

() ()() ()
()

3 2

1,0 0,02 2

1 1 3 2 1 4 6

1 4 6
P P

τ γ τ τ γ γ τ τ

τ τ γ

⎡ ⎤− + − + + +⎣ ⎦=
+ +

, ()()*
1,0 1,00P P= ,

() ()()()
()

3

1,1 0,02 2

1 1 3 2
0 3

1 4 6
P P

τ μ τ γ γ

τ τ γ

+ − −
=

+ +
,

() ()()
()
3

1,2 0,02 2

1 3 2
0 9

1 4 6
P P

τ μ γ γ

τ τ γ

− −
=

+ +
.

Step 8. For each 1, 2n = , compute ()*
1, 0nP using (2.49) and (2.50) in terms of 0,0P .

Using (2.49) and (2.50) yields

()
()()()()

()
2

*
1,1 0,02 2

1 1 3 2 1 3 3
0

1 4 6
P P

τ τ γ γ τ τ

τ τ γ

+ − − + +
=

+ +
,

and ()
()()()2

*
1,2 0,02

1 3 2 1 3 3
0P P

τ γ γ τ τ

γ

− − + +
= .

 22

Step 9. For 3n = , compute ()*
0, 0nP using (2.56) in terms of 0,0P .

It follows from (2.56) that

()
()()()

()
2

*
0,3 0,02 2

1 3 2 3 10 10
0

1 4 6
P P

γ γ τ τ

τ τ γ

− − + +
=

+ +
.

Step 10. Determine 0,0P using (2.57). Thus () ()*
0, 0 0, 1,...,3nP n = are achieved

from Steps 2 and 9, and () ()*
1, 0 0, 1, 2nP n = are achieved from Steps 7 to 8.

()
() ()(){
()()()}

2 2
0,0

2 2 2

1
2 3 4 5

1 4 6

1 4 6 1 9

1 3 2 3 11 14 6 4 .

P τ τ γ

τ τ γ γ γ

γ γ τ τ τ τ τ
−

= + + ×

⎡ ⎤+ + + − −⎣ ⎦

+ − − + + + + +

Example 3 (For M/D/1 queue). We set the mean service time 1 1s μ= , 1F = ,

and 3K = . In this case,

()*S e θ μθ −= .

Step 1. For each 0, 1,...,3n = , compute nφ .

Using (2.32) yields

0 1φ = , ()1 1φ α α= − , and () 2
2 3 1φ φ α α= = − , where ()α μ μ β= + .

Step 2. For each 1, 2n = , compute ()*
0, 0nP using (2.31) in terms of 0,0P .

Using (2.31), we finally get

()*
0,1 1 0,0 0,0

1
0P P P

αφ
α
−

= = ,

()*
0,2 2 0,0 0,02

1
0P P P

αφ
α
−

= = .

Step 3. For each 1n = , compute n .

From (2.40), we find that 1 ρ= − , where ρ λ μ= .

Step 4. For each 0n = , compute nΨ .

It implies from (2.42) that 0 1Ψ = .

Step 5. For each 1, 2n = , compute ()A n and ()B n .

From (2.46) and (2.47), it follows that

 23

()1A ρμ= and () ()2 1A e ρρμ= − .

() ()1
1B

α μ
α
−

= − and ()
()()

2

1 1
2

e
B

ρμ α α

α

− − +
= − .

Step 6. For each 1, 2n = , compute ()1, 0nP using (2.44) and (2.45) in terms of 1,0P

and 0,0P .

Using (2.44) and (2.45) yields

() () ()1,1 1,0 0,00 1 1P A P B P= + ,

() () ()1,2 0 1,0 0,00 2 2P A P B P⎡ ⎤= Ψ +⎣ ⎦ ,

Step 7. Compute 1,0P using (2.48) in terms of 0,0P . Thus () ()1, 0 1 2nP n≤ ≤ are

achieved from Step 6.

We find from (2.48) that

() ()
()1,0 0,02

1 1 1

1

e
P P

e

ρ

ρ

α α ρ α

α ρ ρ

⎡ ⎤− + − −⎣ ⎦=
+ −

, ()()*
1,0 1,00P P= ,

() ()
()1,1 0,02

1
0

1
P P

e ρ
α μ

α ρ

−
= −

+ −
,

() ()
()1,2 0,02

1
0

1
P P

e ρ
α ρμ

α ρ

−
= −

+ −
.

Step 8. For each 1, 2n = , compute ()*
1, 0nP using (2.49) and (2.50) in terms of 0,0P .

Using (2.49) and (2.50) yields

()
()()

()
*

1,1 0,02

1 1
0

1

e
P P

e

ρ

ρ

α

ρα ρ

− −
= −

+ −
 and () ()*

1,2 0,02

1
0P P

α
ρα
−

= − .

Step 9. For 3n = , compute ()*
0, 0nP using (2.56) in terms of 0,0P .

It follows from (2.56) that

()
() () ()

()
*

0,3 0,02

1 2 1 1
0

1

e e
P P

e

ρ ρ

ρ

α ρ

ρα ρ

⎡ ⎤− − − +⎣ ⎦=
+ −

.

Step 10. Determine 0,0P using (2.57). Thus () ()*
0, 0 0, 1,...,3nP n = are achieved

from Steps 2 and 9, and () ()*
1, 0 0, 1, 2nP n = are achieved from Steps 7 to

8.

 24

()
() () ()

2
0,0

122 2 2

1

1 2 1 .

P e

e

ρ

ρ

ρα ρ

ρ ρ α α αρ α ρ α α
−

= + − ×

⎡ ⎤+ + − + + − − − −
⎣ ⎦

2.5 Optimal F policy

Our analysis is based on the following system performance measures of the F

policy M/G/1/K queue with exponential startup time. Let

sL ≡ the average number of customers in the system;

bP ≡ the probability that the server is busy;

sP ≡ the probability that the server requires a startup time before starting the

service;

blP ≡ the probability that the server is blocked.

The expressions for sL , bP , sP , and blP are give by
1

0, 1,
1 1

K K

s n n
n n

L nP nP
−

= =

= +∑ ∑ ,

1

0, 1,
0 0

K K

b n n
n n

P P P
−

= =

= +∑ ∑ ,

0,
0

F

s n
n

P P
=

= ∑ ,

0,
0

K

bl n
n

P P
=

= ∑ .

2.5.1 Cost function

We develop the total expected cost function per unit time for the F policy

M/G/1/K queue with startup times, in which F is a management decision

variable. The main purpose of this subsection is to determine the optimum

management F policy so as to minimize this total expected cost function. Let

hC ≡ holding cost per unit time for each customer present in the system;

bC ≡ busy cost per unit time for a busy server;

sC ≡ startup cost per unit time for the preparatory work of the server before

starting the service;

blC ≡ fixed cost for every lost customer when the system is blocked.

Utilizing the definitions of each cost element listed above, the total expected

cost function per unit time is given by

() h s b b s s bl blTC F C L C P C P C Pλ= + + + . (2.58)

 25

The optimal value of F , *F is determined by satisfying the following

inequality

* *(1) ()TC F TC F− ≥ and * *(1) ()TC F TC F+ ≥ . (2.59)

2.5.2 Numerical examples

We now perform a sensitivity analysis on the optimum value *F based on

changes in specific values of the system parameters and fix the system capacity

K=15. We consider the three simple examples for three different service time

distributions such as exponential, 3-stage Erlang, and deterministic and employ the

following cost elements:

Case 1: 5, 200, 250, 300.h b s blC C C C= = = =

Case 2: 5, 200, 250, 350.h b s blC C C C= = = =

Case 3: 5, 200, 300, 350.h b s blC C C C= = = =

Case 4: 5, 225, 300, 350.h b s blC C C C= = = =

Case 5: 10, 225, 300, 350.h b s blC C C C= = = =

In this section we provide the numerical results of the optimal value *F and

the minimum expected cost for three interarrival time distributions and specific

values of λ , μ , β . We first fix (),μ β = (1.0, 3.0) and choose different values of

λ = 0.5, 0.6, 0.7. Next, we fix (),λ β = (0.8, 3.0) and consider various values of

μ = 1.0, 1.1, 1.2. Finally, we fix (),λ μ = (0.8, 1.0) and select different values of

β = 2.0, 4.0, 5.0.

The optimal value of F, *F , and its minimum expected cost ()*TC F for the

above five cases are shown in Tables 1-3. For fixed values of (),μ β and various

values of λ in Tables 1-3, we observe that (i) ()*TC F increases as λ increases

for any case; and (ii) *F decreases as λ increases for any case. For fixed values

of (),λ β and various values of μ in Tables 1-3, we find that (i) ()*TC F

decreases as μ increases for any case; and (ii) *F increases as μ increases for

any case. Again, for fixed (),λ μ and various values of β in Tables 1-3, we

observe that (i) ()*TC F slightly decreases as β increases for any case; and (ii)
*F does not change at all when β changes from 2.0 to 5.0 for any case.

Intuitively, *F is insensitive to changes in β .

It can be easily see from Tables 1 through 3 that (i) *F increases as hC

decreases or blC increases (see cases 4-5 and cases 1-2); and (ii) hC and blC

have a larger effect on *F than bC and sC (see cases 3-4 and cases 2-3).

 26

Table 1. The optimal value of F and its minimum expected cost for the service time distribution such as exponential.

 λ () ()μ β =, 1.0,3.0 μ () ()λ β =, 0.8,3.0 β () ()λ μ =, 0.8,1.0

 0.5 0.6 0.7 1.0 1.1 1.2 2.0 4.0 5.0

Case1
*F 9 7 5 4 7 10 5 4 4

*()TC F 105.000 127.486 151.420 177.597 158.454 143.314 177.680 177.561 177.540

Case2
*F 12 11 9 6 10 12 6 6 6

*()TC F 105.001 127.501 151.554 178.285 158.655 143.367 178.361 178.247 178.225

Case3
*F 12 11 8 6 10 12 6 6 6

*()TC F 105.001 127.502 151.562 178.314 158.669 143.374 178.404 178.269 178.242

Case4
*F 11 9 7 4 8 11 5 5 5

*()TC F 117.500 142.496 169.000 197.985 176.767 160.020 198.072 197.941 197.915

Case5
*F 5 4 3 2 4 6 2 2 2

*()TC F 122.470 149.933 180.049 213.873 189.095 169.773 213.960 213.830 213.804

Table 2. The optimal value of F and its minimum expected cost for the service time distribution such as 3-stage Erlang.

 λ () ()μ β =, 1.0,3.0 μ () ()λ β =, 0.8,3.0 β () ()λ μ =, 0.8,1.0

 0.5 0.6 0.7 1.0 1.1 1.2 2.0 4.0 5.0

Case1
*F 9 7 6 4 7 10 4 4 4

*()TC F 104.167 125.999 148.912 173.998 155.504 141.111 174.022 173.986 173.979

Case2
*F 12 11 9 6 10 12 6 6 6

*()TC F 104.167 126.000 148.932 174.216 155.541 141.116 174.241 174.204 174.197

Case3
*F 12 11 9 6 10 12 6 6 6

*()TC F 104.167 126.000 148.933 174.226 155.544 141.117 174.255 174.211 174.202

Case4
*F 11 9 7 5 9 12 5 5 5

*()TC F 116.667 141.000 166.424 194.121 173.710 157.781 194.150 194.107 194.099

Case5
*F 6 4 3 2 4 6 2 2 2

*()TC F 120.833 146.996 175.278 207.572 183.632 165.532 207.601 207.557 207.548

Table 3. The optimal value of F and its minimum expected cost for the service time distribution such as deterministic.

 λ () ()μ β =, 1.0,3.0 μ () ()λ β =, 0.8,3.0 β () ()λ μ =, 0.8,1.0

 0.5 0.6 0.7 1.0 1.1 1.2 2.0 4.0 5.0

Case1
*F 10 8 6 4 7 10 4 4 4

*()TC F 103.750 125.250 147.578 171.798 153.930 140.000 171.806 171.794 171.792

Case2
*F 12 11 9 6 10 12 6 6 6

*()TC F 103.750 125.250 147.582 171.869 153.938 140.001 171.877 171.865 171.863

Case3
*F 12 11 9 6 10 12 6 6 6

*()TC F 103.750 125.250 147.582 171.872 153.938 140.001 171.882 171.867 171.864

Case4
*F 12 10 7 5 9 12 5 5 5

*()TC F 116.250 140.250 165.080 191.839 172.117 156.667 191.848 191.834 191.831

Case5
*F 7 5 3 2 4 6 2 2 2

*()TC F 120.000 145.500 172.649 203.459 180.568 163.331 203.469 203.454 203.451

 27

Chapter 3

The F Policy G/M/1/K Queue with Startup Time

We use a supplementary variable technique to analyze the optimal control of

the F policy G/M/1/K queue where the server needs a startup time before start

allowing customers in the system and K < ∞ denotes the maximum capacity of

the system. The method of controlling arrivals focuses on reducing the number of

customers in the system. The model proposed in this dissertation is very useful in

real-life situations since the controlling of arriving customers is considered.

In section 3.1, the queue model is briefly described. Section 3.2 develops the

equations and solutions. Section 3.3 provides a recursive method using the

supplementary variable technique and treating the supplementary variable as the

remaining interarrival time, to obtain the steady-state probability distributions of the

number of customers in the F policy G/M/1/K queue. In section 3.4, we illustrate

the solution algorithm by presenting three simple examples for three different

interarrival time distributions: exponential (denoted M), 3-stage Erlang (denoted E3),

and deterministic (denoted D). In section 3.5, various system performance measures

are presented. The total expected cost function per unit time for the F policy

G/M/1/K queue with startup times is developed. Numerical and comparative

results are also provided.

3.1 Assumptions and Notations

We consider the category of controlling the arrivals to the F policy

G/M/1/K queue with exponential startup time. It is assumed that the times

elapsing between successive arrivals are independently and identically distributed

(i.i.d) random variables having general distribution ()A v ()0v ≥ , a probability

density function ()a v ()0v ≥ and mean interarrival time 1b . The service times of

the customers are independently random variables having a common exponential

distribution with mean 1 μ . Let us assume that customers arriving at the server

form a single waiting line and are served in the order of their arrivals; that is,

according to the first-come, first-served (FCFS) discipline. Suppose that the server

can serve only one customer at a time, and that the service is independent of the

arrival of the customers. Customers entering into the service facility and finding that

 28

the server is busy have to wait in the queue until the server is available. Gupta [6]

first introduced the concept of a F policy. The definition of a F policy is described as

follows: When the number of customers in the system reaches its capacity K (i.e. the

system becomes full), no further arriving customers are allowed to enter the system

until there are enough customers in the system have been served so that the number

of customers in the system decreases to a threshold value F (0 1F K≤ < −). At

that time, the server needs to take an exponential startup time with parameter β

to start allowing customers in the system. Thus, the system operates normally until

the number of customers in the system reaches its capacity at which time the above

process is repeated all over again.

The following notations and probabilities are used throughout this chapter.

F threshold level

K system capacity ()1K F> +

A Interarrival time random variable
V remaining interarrival time random variable

()A v distribution function (d.f.) of A

()a v probability density function (p.d.f.) of A

()*a θ Laplace-Stieltjes transform (LST) of A
() ()* la θ l th order derivative of ()*a θ with respect to θ

()0,0P t probability of no customers in the system at time t when the
arrivals are not allowed to enter the system

()0,nP t
probability of n customers in the system at time t when the
arrivals are not allowed to enter the system, where 1,2, ..., .n K=

()1,0P t probability of no customers in the system at time t when the
arrivals are allowed to enter the system

()1,nP t
probability of n customers in the system at time t when the
arrivals are allowed to enter the system, where 1,2, ..., 1.n K= −

The special case with system capacity K=F+1 is presented in the appendix.

3.2 Development of the Equations and Solutions

We use the following supplementary variable: V ≡ remaining interarrival time

for the customer in arrival process. The state of the system at time t is given by

()N t ≡ number of customers in the system, and

()V t ≡ remaining interarrival time for the customer who is arriving.

Let us define

 29

() () (){ }= = < ≤ + ≥ =0, , Pr , d , 0, 0,1,..., .nP v t dv N t n v V t v v v n F

() () (){ }= = < ≤ + ≥ = −1, , Pr , d , 0, 0,1,..., 1.nP v t dv N t n v V t v v v n K

() ()∞
= =∫0, 0,0

, d , 0,1,..., .n nP t P v t v n F

() ()∞
= = −∫1, 1,0

, d , 0,1,..., 1.n nP t P v t v n K

Relating the state of the system at time t and dt t+ , we obtain

() () ()0,0 0,0 0,1
d

,
d

P t P t P t
t

β μ= − + (3.1)

() () () ()β μ μ += − + + ≤ ≤0, 0, 0, 1
d

, 1 ,
d n n nP t P t P t n F

t
 (3.2)

() () ()μ μ += − + + ≤ ≤ −0, 0, 0, 1
d

, 1 1,
d n n nP t P t P t F n K

t
 (3.3)

() () ()0, 0, 1, 1
d

0, ,
d K K KP t P t P t

t
μ −= − + (3.4)

() () ()1,0 0,0 1,1, , ,P v t P v t P v t
t v

β μ∂ ∂⎛ ⎞− = + ,⎜ ⎟∂ ∂⎝ ⎠
 (3.5)

() () () () ()

()

μ β

μ

−

+

∂ ∂⎛ ⎞− = − + + +⎜ ⎟∂ ∂⎝ ⎠
, ≤ ≤

1, 1, 0, 1, 1

1, 1

, , , 0,

 , 1 ,

n n n n

n

P v t P v t P v t P t a v
t v

P v t n F

 (3.6)

() () () () ()μ μ− +
∂ ∂⎛ ⎞− = − + + ,⎜ ⎟∂ ∂⎝ ⎠

+ ≤ ≤ −

1, 1, 1, 1 1, 1, , 0, ,

 1 2,

n n n nP v t P v t P t a v P v t
t v

F n K

 (3.7)

() () () ()1, 1 1, 1 1, 2, , 0, .K K KP v t P v t P t a v
t v

μ− − −
∂ ∂⎛ ⎞− = − +⎜ ⎟∂ ∂⎝ ⎠

 (3.8)

3.3 Steady State Results

In steady state, let us define

()
→∞

= =0, 0,lim , 0,1,..., .n n
t

P P t n K

()
→∞

= = −1, 0,lim , 0,1,..., 1.n n
t

P P t n K

() ()
→∞

= =0, 0,lim , , 0,1,..., .n n
t

P v P v t n F

() ()
→∞

= = −1, 1,lim , , 0,1,..., 1.n n
t

P v P v t n K

and further define

() ()0, 0, , 0,1,...,n nP v P a v n F= = . (3.9)

From (3.1)-(3.8) we can easily obtain the following steady state equations:

 30

0,0 0,10 ,P Pβ μ= − + (3.10)

()β μ μ += − + + , ≤ ≤0, 0, 10 1 ,n nP P n F (3.11)

μ μ += − + , + ≤ ≤ −0, 0, 10 1 1,n nP P F n K (3.12)

()0, 1, 10 0 ,K KP Pμ −= − + (3.13)

() () ()1,0 0,0 1,1
d
d

P v P a v P v
v

β μ− = + , (3.14)

() () () () () ()μ β μ− +− = − + + + ,

≤ ≤

1, 1, 0, 1, 1 1, 1
d

0
d

 1 ,

n n n n nP v P v P a v P a v P v
v

n F
 (3.15)

() () () () ()μ μ− +− = − + + , + ≤ ≤ −1, 1, 1, 1 1, 1
d

0 , 1 2,
d n n n nP v P v P a v P v t F n K

v
 (3.16)

() () () ()1, 1 1, 1 1, 2
d

0 .
d K K KP v P v P a v

v
μ− − −− = − + (3.17)

Further define

() () ()*

0 0
d d ,v va e A v e a v vθ θθ

∞ ∞− −= =∫ ∫

() ()θθ
∞ −= =∫*

, ,0
d , 0,1v

i n i nP e P v v i ,

() ()∞
= = =∫*

, , ,0
0 d , 0,1i n i n i nP P P v v i ,

() () ()θ θ θ
∞ − ∂

= − =
∂∫ *

, , ,0
d 0 , 0,1.v

i n i n i ne P v v P P i
u

Therefore if the LST is taken on both sides of (3.14)-(3.17), it is found that

() () () ()* * *
1,0 0,0 1,1 1,0 0P P a P Pθ θ β θ μ θ− = + − , (3.18)

() () () () () () ()μ θ θ β θ μ θ θ+ −− = + + − ,

≤ ≤

* * * *
1, 0, 1, 1 1, 1 1,0 0

 1 ,
n n n n nP P a P P a P

n F
 (3.19)

() () () () () ()μ θ θ μ θ θ+ −− = + − , + ≤ ≤ −* * *
1, 1, 1 1, 1 1,0 0 1 2,n n n nP P P a P F n K (3.20)

() () () () ()* *
1, 1 1, 2 1, 10 0 .K K KP P a Pμ θ θ θ− − −− = − (3.21)

3.3.1 Recursive methods

The recursive method is developed to obtain ()*
0, 0nP and ()*

1, 0nP . Our

solution algorithm will first obtain () ()*
0, 0 1nP n K≤ ≤ .

Using (3.10)-(3.13), we get

() φ= , ≤ ≤*
0, 0,00 1n nP P n K , (3.22)

()1, 1 1 0,00K FP Pμφ− += , (3.23)

 31

where ζφ β β
μ μ

−

=⎧
⎪

= ⎨ ⎛ ⎞
+ ≤ ≤⎪ ⎜ ⎟

⎝ ⎠⎩

1

1, 0,

1 , 1 ,
n

n

n

n K
 (3.24)

where ζ
≤ ≤ −⎧

= ⎨ ≤ ≤⎩

, 0 1,

, .n
n n F

F F n K

Thus, () () ()* * *
0,1 0,2 0,0 , 0 ,..., 0KP P P can be obtained by using (3.22).

Next, we derive the expressions of () ()1, 0 0 2nP n K≤ ≤ − in terms of 0,0P .

Using (3.22)-(3.23) in (3.19)-(3.21) and then setting θ μ= in (3.19)-(3.21), we

finally obtain

() () () ()
()

μ μ βϕ φ μ
μ

ϕ

+ + + +− −
= ≤ ≤ −

, ≤ ≤⎧
= ⎨
⎩

* *
1, 1 1, 2 1, 1 0,0

1, *

,

0
0 , 0 3,

1 1 ,
where

0, otherwise,

n n n F n
n

n F

P P P a
P n K

a

n F
 (3.25)

()
()

1
1, 2 0,0*

0 .F
KP P

a

μφ
μ
+

− = (3.26)

To obtain () ()*
1, 2 0 3nP n Kμ+ ≤ ≤ − in (3.25), use (3.22) and (3.26) in

(3.19)-(3.21), differentiating (3.19)-(3.21) ()1l − times with respect to θ and

setting θ μ= , we finally get

() () () () () () () () ()μ μ βϕ φ μ μ μ−
− +

⎡ ⎤= − + +⎢ ⎥⎣ ⎦
≤ ≤ − = − −

* 1 ** *
1, 1 , 0,01, 1, 1

1
0 ,

where 2 2, 1,..., 1,

l ll l
n n F nn nP P a P a P

l
n K l K n

 (3.27)

()
() ()

()

* 1
1*

1, 1 0,0*
F

K
a

P P
a

μφ μ
μ

μ
+

− = − , (3.28)

where () () ()* 0 *
1,1, nnP Pμ μ= and () () () ()* *d dl l la aθ θ θ⎡ ⎤= ⎣ ⎦ denotes the lth

derivative of ()*a θ .

Solving (3.27)-(3.28) recursively, we obtain

() () () ()
ζ

βϕ μ μ
μ φ

μ μ
+

−
+

− − − − −
= = +

= − −

≤ ≤ −

∑ ∑
2

* * 1
2,*

1, 1 0,0 1 1, 1
2

0 ,

 2 2,
n

F K
n F

n n i i n i i
i i n

a a
P P P

n K

 (3.29)

where

 32

() () ()
()

μ μ
μ

⎧ −
⎪− ≤ ≤ −

= ⎨
⎪
⎩

*

*
, 1 1,

!

0, otherwise.

n n

n

a
n K

n a (3.30)

Using (3.28)-(3.29) in (3.25), we can obtain

() ()
()

()

ζ

μ

β ϕ φ ϕ φ
+

−
+

− − −
= +

+ − − + +
=

= + +

⎡ ⎤
− ≤ ≤ −⎢ ⎥

⎢ ⎥⎣ ⎦

∑

∑
2

1
1, 1

1, 1 1, 1*
2

2, 1 1, 1 0,0

0
0 0

 , 0 3.
n

K
n

n i n i
i n

F

n F i n i n F n
i

P
P P

a

P n K

 (3.31)

We further define

{ }

τ τ τ
τ τ τ

τ τ τ

κ κ κ
≤ ≤ + + + =

∈

⎧
⎪

=⎪
⎪Ψ = = −⎨
⎪
⎪
⎪⎩

∑ ∑ 1 2

1 2

1 2

1
, , , 1,2, ,

1, 0,

, 1, 2,..., 2,

0, otherwise,

k

k

k

n
k n n

n

n

n K (3.32)

where

() 1*

1
, 1,

, 2,3, , 2,

0, otherwise.
n n

n
a

n K

μ

κ

⎧ + =⎪
⎪⎪= = −⎨
⎪
⎪
⎪⎩

 (3.33)

The representative meaning of the above formulation (3.32) is the same as (2.42).

Using (3.32)-(3.33) to solve (3.31) recursively, and including (3.26), we finally get

() ()
− −

− − −
=

= Ψ Λ − − ≤ ≤ −∑
1

1, 1 0,0
1

0 1 , 0 2,
K n

n K n i
i

P K i P n K (3.35)

where

()

()

ζ
βϕ φ βϕ φ

μφ
μ

+

+ − − + +
=

+

⎧
− ≤ ≤ −⎪

⎪Λ = ⎨
⎪ = −⎪
⎩

∑
2

2, 1 1, 1

1
*

, 0 3,

 , 2.

n

F

n F i n i n F n
i

F

n K

n

n K
a

 (3.36)

Finally, we develop the steady-state probabilities ()*
1, 0nP in terms of 0,0P . Setting

0θ = in (3.18)-(3.21) we have

 33

() ()
ζ

β φ
μ

−

−
=

⎡ ⎤
= − ≤ ≤ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑

1
*

1, 1, 1 0,0
0

1
0 0 , 1 1

n

n n i
i

P P P n K . (3.37)

As () () ()1,1 1,2 1, 10 , 0 ,..., 0KP P P − are known, () () ()* * *
1,1 1,2 1, 10 , 0 ,..., 0KP P P − can be

determined recursively using (3.37) in terms of 0,0P .

Now the only unknown quantity is ()*
1,0 0P which can be obtained from

(3.18)-(3.21). To find it, differentiate (3.18)-(3.21) with respect to θ and set 0θ = ,

we have

() () () () ()* 1* 1*
1,0 0,0 1,10 0 0P P a Pβ μ= − − , (3.38)

() ()
() () () () () () ()βϕ φ μ

μ
−++ + +

=

≤ ≤ −

* 1* 1 * 1
* 1 1, , 0,0 1, 11, 1

1,

0 0 0 0
0 ,

 1 1.

n n F n nn
n

P P a P P a
P

n K

 (3.39)

The values () ()* 1
1, 0nP for 1,2,..., 1n K= − can be found recursively from (3.39).

Therefore, we obtain

() () () () () ()
1 2

* 1 * 1*
1,0 0,0 1, 1,

0 1 0

0 0 0 0 .
F K K

n i i
i i i

P a P P a Pβ φ
− −

= = =

⎡ ⎤
= − + +⎢ ⎥

⎣ ⎦
∑ ∑ ∑ (3.40)

So () () ()* * *
1,0 1,1 1, 10 , 0 ,..., 0KP P P − is known in terms of 0,0P , which can be

determined using the normalizing condition

1

0, 1,
0 0

1.
K K

i i
i i

P P
−

= =

+ =∑ ∑ (3.41)

To demonstrate the working of the recursive method, we first describe the

solution algorithm for calculating the steady state probabilities,

() ()*
0, 0 0nP n K≤ ≤ and () ()*

1, 0 0 1nP n K≤ ≤ − . Next, to illustrate the solution

algorithm, we provide three simple examples where the interarrival time

distributions are exponential, k-stage Erlang, and deterministic, respectively.

3.3.2 The solution algorithm

Let F be the threshold, K be the maximum capacity of the system, and let
() ()* la θ where 1, 2,...,l K= be the lth derivative of ()*a θ . We are given the

values of F, K, and the LST expression of the interarrival time distribution, namely

()*a θ . The steps of the solution algorithm are stated as follows:

Step 1. For each 0, 1,...,n K= , compute nφ using (3.24).

 34

Step 2. For each 1, 2,...,n K= , compute ()*
0, 0nP using (3.22) in terms of

0,0P .

Step 3. Compute n ()1 2n K≤ ≤ − and nκ ()1 2n K≤ ≤ − using (3.30) and

(3.33), respectively.

Step 4. For each 0, 1,..., 2n K= − , compute nΨ using (3.32).

Step 5. For each 0, 1,..., 2n K= − , compute ()nΛ using (3.36).

Step 6. For each 0, 1,..., 2n K= − , compute ()1, 0nP using (3.35) in terms of

0,0P .

Step 7. For each 1, 2,..., 1n K= − , compute ()*
1, 0nP using (3.37) in terms of

0,0P .

Step 8. Compute ()*
1,0 0P using (3.40) in terms of 0,0P .

Step 9. Determine 0,0P using (3.41). Thus () ()*
0, 0 1, 2,...,nP n K= are achieved

from Step 2, and () ()*
1, 0 0, 1,..., 1nP n K= − are achieved from Steps 7

to 8.

3.4 Simple Examples

We use the solution algorithm to illustrate a recursive method. We provide

three simple examples for three different interarrival time distributions such as

exponential, 3-stage Erlang, and deterministic, respectively.

Example 1 (For M/M/1 queue). We set λ is the interarrival rate. Assume that

2F = and 5K = . In this case, we have

()*a
λθ

λ θ
=

+
.

Step 1. For each 0, 1,...,5n = , compute nφ using (3.24).

Using (3.24), we obtain

0 1φ = , 1
1 αφ
α
−

= , 2 2

1 αφ
α
−

= , and 3 4 5 3

1 αφ φ φ
α
−

= = = , where ()α μ μ β= + .

Step 2. For each 1, 2, , 5n = , compute ()*
0, 0nP using (3.22) in terms of 0,0P .

Using (3.22), we finally get

()*
0,1 1 0,0 0,0

1
0P P P

αφ
α
−

= = , ()*
0,2 2 0,0 0,02

1
0P P P

αφ
α
−

= = ,

 35

() () ()* * *
0,3 0,4 0,5 3 0,0 0,03

1
0 0 0P P P P P

αφ
α
−

= = = = .

Step 3. For each 1, 2, 3n = , compute n and nκ using (3.30) and (3.32),

respectively.

For each 1, 2, 3,n = using (3.30) yields ()1 1σ σ= − + , ()22
2 1σ σ= − + and

()33
3 1σ σ= − + , where σ μ λ= .

For each 1, 2, 3n = , from (3.32), we obtain

() ()2
1 1 1κ σ σ σ= − + + + , ()22

2 1κ σ σ= − + and ()33
3 1κ σ σ= − + .

Step 4. For each 0, 1, , 3n = , compute nΨ using (3.31).

It implies from (3.31) that

0 1Ψ = , () ()2
1 1 1σ σ σΨ = + + + , 2

2 1 σΨ = + , and

() ()2 3 4
3 1 1σ σ σ σ σΨ = + + + + + .

Step 5. For each 0, 1, , 3n = , compute ()nΛ using (3.36).

It follows from (3.36) that

()
() ()

()

2 2

3

1
0

1

μ α α ασ σ

α σ

− + +
Λ = −

+
, () ()2

3

1
1

μ α
α
−

Λ = − , ()2 0Λ = , and

() ()()
3

1 1
3

μ α σ
α

− +
Λ = .

Step 6. For each 0, 1, , 3n = , compute ()1, 0nP using (3.35) in terms of 0,0P .

Using (3.35) yields

() () () () ()
()()

1,0 3 2 1 0 0,0

2 3 4 2

0,03

0 3 2 1 0

1
 ,

P P

P
μ α σ σ σ ασ α

α

⎡ ⎤= Ψ Λ +Ψ Λ +Ψ Λ +Ψ Λ⎣ ⎦

− + + + +
=

() () () ()
()()2 3

1,1 2 1 0 0,0 0,03

1
0 3 2 1P P P

μ α σ σ σ α

α

− + + +
⎡ ⎤= Ψ Λ +Ψ Λ +Ψ Λ =⎣ ⎦ ,

() () ()
()()2

1,2 1 0 0,0 0,03

1 1
0 3 2P P P

μ α σ σ

α

− + +
⎡ ⎤= Ψ Λ +Ψ Λ =⎣ ⎦ ,

() () ()()
1,3 3 0,0 0,03

1 1
0 3P P P

μ α σ
α

− +
= Ψ Λ = .

 36

Step 7. For each 1, 2, , 4n = , compute ()*
1, 0nP using (3.37) in terms of 0,0P .

It implies from (3.37) that

()
()()2 3

*
1,1 0,03

1
0P P

σ α σ σ σ α

α

− + + +
= , ()

()()2
*

1,2 0,03

1 1
0P P

σ α σ σ

α

− + +
= ,

() ()()*
1,3 0,03

1 1
0P P

σ α σ
α

− +
= , and () ()*

1,4 0,03

1
0P P

σ α
α
−

= .

Step 8. Compute ()*
1,0 0P using (3.40) in terms of 0,0P .

Using (3.40) yields ()
()()2 3 4 2

*
1,0 0,03

1
0P P

σ α σ σ σ ασ α

α

− + + + +
= .

Step 9. Determine 0,0P using (3.41). Thus () ()*
0, 0 1, 2,...,5nP n = are achieved from

Step 2, and () ()*
1, 0 0, 1,...,4nP n = are achieved from Steps 7 to 8.

()() ()()
3

0,0 3 2 2 2 3 41 3 1 3 3 3 3 2
P

α
α α α α σ α α α ασ σ σ σ σ

=
+ − + + + − + + + + + + + +

.

It is to be noted that these results are the same as those given in Gupta [12,

p1006].

Example 2 (For E3/M/1 queue). The 3-stage Erlang distribution is made up of three

independent and identical exponential stages, each with mean 1 3λ . We set λ is

the interarrival rate, 1F = , and 3K = . In this case, we have

()
3

* 3
3

a
λθ

λ θ
⎛ ⎞= ⎜ ⎟+⎝ ⎠

.

Step 1. For each 0, 1,...,3n = , compute nφ using (3.24).

Using (3.24), we obtain

0 1φ = , ()1 3 1φ γ γ= − , and ()() 2
2 3 3 1 3 2φ φ γ γ γ= = − − ,

where ()3 3γ μ μ β= + .

Step 2. For each 1, 2, 3n = , compute ()*
0, 0nP using (3.22) in terms of 0,0P .

Using (3.22), we finally get

()*
0,1 1 0,0 0,0

1
0 3P P P

γφ
γ
−

= = , () () ()()* *
0,2 0,3 2 0,0 0,02

1 3 2
0 0 3P P P P

γ γ
φ

γ
− −

= = = .

 37

Step 3. Compute 1 and 1κ using (3.30) and (3.33), respectively.

Using (3.30) yields ()1 3 1τ τ= − + , where 3τ μ λ= .

Form (3.33), we obtain () ()2 3 4
1 1 6 4 1κ τ τ τ τ τ= + + + + + .

Step 4. For each 0, 1n = , compute nΨ using (3.31).

It implies from (3.31) that 0 1Ψ = and () ()2 3 4
1 1 6 4 1τ τ τ τ τΨ = + + + + + .

Step 5. For each 0, 1n = , compute ()nΛ using (3.36).

It follows from (3.36) that

() ()2
2

1
0 9

μ γ
γ
−

Λ = − and () ()()()2
2

1 3 2 1
1 3

μ γ γ τ
γ

− − +
Λ = .

Step 6. For each 0, 1n = , compute ()1, 0nP using (3.35) in terms of 0,0P .

Using (3.35) yields

() () ()

()()() () ()
1,0 1 0 0,0

2 22 3 4

0,02

0 1 0

3 1 3 2 1 1 6 4 9 1
 ,

P P

P
μ γ γ τ τ τ τ τ μ γ

γ

⎡ ⎤= Ψ Λ +Ψ Λ⎣ ⎦

− − + + + + + − −
=

() () ()()()3
1,1 0 0,0 0,02

3 1 3 2 1
0 1P P P

μ γ γ τ
γ

− − +
= Ψ Λ = .

Step 7. For each 1, 2n = , compute ()*
1, 0nP using (3.37) in terms of 0,0P .

It implies from (3.37) that

()
()() ()2 3 4 5

*
1,1 0,02

3 1 3 2 3 9 17 15 6
0 ,P P

γ γ τ τ τ τ τ τ

γ

− − + + + + +
=

()
()() ()2

*
1,2 0,02

3 1 3 2 3 3
0 .P P

γ γ τ τ τ

γ

− − + +
=

Step 8. Compute ()*
1,0 0P using (3.40) in terms of 0,0P .

Using (3.40) yields

() {
}

* 2 3 4 5 6
1,0 2

2 3 4 5
0,0

1
0 3 (1) (3 12 36 78 78 34 6)

 (18 54 117 117 51 9) .

P

P

τ γ γ τ τ τ τ τ τ
γ

τ τ τ τ τ τ

⎡= − − − − − − −⎣

⎤+ + + + + + ⎦

 38

Step 9. Determine 0,0P using (3.41). Thus () ()*
0, 0 1, 2, 3nP n = are achieved from Step

2, and () ()*
1, 0 0, 1, 2nP n = are achieved from Steps 7 to 8.

2 2 3 4 5 6
0,0

2 3 4 5 6

12 2 3 4 5 6

18 (27 10) 27 (2 6 12 18 15 6)

 9 (27 30 60 270 75 30 5)

 9 (3 12 24 36 30 12 2) .

P γ γ γ τ τ τ τ τ τ τ

τγ τ τ τ τ τ τ

τγ τ τ τ τ τ τ
−

⎡= − − + + + + + + +⎣

− + + + + + +

⎤+ + + + + + + ⎦

Example 3 (For D/M/1 queue). We set λ is the interarrival rate, 1F = , and

3K = . In this case,

()*a e θ λθ −= .

Step 1. For each 0, 1,...,3n = , compute nφ using (3.24).

Using (3.24), we obtain

0 1φ = , ()1 1φ α α= − , and () 2
2 3 1φ φ α α= = − , where ()α μ μ β= + .

Step 2. For each 1, 2, 3n = , compute ()*
0, 0nP using (3.22) in terms of 0,0P .

Using (3.22), we finally get

()*
0,1 1 0,0 0,0

1
0P P P

αφ
α
−

= = , () ()* *
0,2 0,3 2 0,0 0,02

1
0 0P P P P

αφ
α
−

= = = .

Step 3. Compute 1 and 1κ using (3.30) and (3.33), respectively.

Using (3.30) yields 1 σ= − , where σ μ λ= . Form (3.33), we obtain 1 eσκ σ= − .

Step 4. For each 0, 1n = , compute nΨ using (3.31).

It implies from (3.31) that 0 1Ψ = and 1 eσ σΨ = − .

Step 5. For each 0, 1n = , compute ()nΛ using (3.36).

It follows from (3.36) that () ()2
2

1
0

μ α
α
−

Λ = − and () ()
2

1
1

eσμ α
α
−

Λ = .

Step 6. For each 0, 1n = , compute ()1, 0nP using (3.35) in terms of 0,0P .

Using (3.35) yields

() () ()
()()2

1,0 1 0 0,0 0,02

1 1
0 1 0 ,

e e
P P P

σ σμ α σ α

α

− − + −
⎡ ⎤= Ψ Λ +Ψ Λ =⎣ ⎦

() () ()
1,1 0 0,0 0,02

1
0 1

e
P P P

σμ α
α
−

= Ψ Λ = .

 39

Step 7. For each 1, 2n = , compute ()*
1, 0nP using (3.37) in terms of 0,0P .

It implies from (3.37) that

()
()()2

*
1,1 0,02

1 1
0 ,

e e
P P

σ σα σ

α

− − −
= and ()

()()*
1,2 0,02

1 1
0 .

e
P P

σα

α

− −
=

Step 8. Compute ()*
1,0 0P using (3.40) in terms of 0,0P .

Using (3.40) yields ()
() ()

*
1,0 0,02

(1) 2 1 1
0 .

e e
P P

σ σα ασ σ σ

α

⎡ ⎤− + − − + −⎣ ⎦=

Step 9. Determine 0,0P using (3.41). Thus () ()*
0, 0 1, 2, 3nP n = are achieved from Step

2, and () ()*
1, 0 0, 1, 2nP n = are achieved from Steps 7 to 8.

() ()()
2

0,0 2 21 1 1 2
P

e eσ σ
α

σ α σ α σ α ασ α σ
=

− + − − + − + −
.

3.5 Optimal F policy

Our analysis is based on the following system performance measures of the F

policy G/M/1/K queue with exponential startup time. Let

sL ≡ the average number of customers in the system;

bP ≡ the probability that the server is busy;

sP ≡ the probability that the server requires a startup time before starting the

service;

blP ≡ the probability that the server is blocked.

The expressions for sL , bP , sP , and blP are give by

1

0, 1,
1 1

K K

s n n
n n

L nP nP
−

= =

= +∑ ∑ ,

1

0, 1,
0 0

K K

b n n
n n

P P P
−

= =

= +∑ ∑ ,

0,
0

F

s n
n

P P
=

= ∑ ,

0,
0

K

bl n
n

P P
=

= ∑ .

3.5.1 Cost function

We derive the total expected cost function per unit time for the F policy

 40

G/M/1/K queue with startup times, in which F is a decision variable. The main

purpose of this subsection is to determine the optimum operating F policy so as to

minimize this total expected cost function. Let

hC ≡ holding cost per unit time for each customer present in the system;

bC ≡ busy cost per unit time for a busy server;

sC ≡ startup cost per unit time for the preparatory work of the server before

starting the service;

blC ≡ fixed cost for every lost customer when the system is blocked.

Utilizing the definitions of each cost element listed above, the total expected

cost function per unit time is given by

() h s b b s s bl blTC F C L C P C P C Pλ= + + + . (3.58)

The optimal value of F , *F is determined by satisfying the following

inequality

* *(1) ()TC F TC F− ≥ and * *(1) ()TC F TC F+ ≥ . (3.59)

3.5.2 Numerical examples

We set the system capacity K=15. We perform a sensitivity analysis for

changes in the optimum value *F along with changes in specific values of the

system parameters. We consider three simple examples for three different

interarrival time distributions such as exponential, 3-stage Erlang, and deterministic.

The following cost elements are employed:

Case 1: 10, 200, 250, 350.h b s blC C C C= = = =

Case 2: 10, 200, 250, 400.h b s blC C C C= = = =

Case 3: 10, 200, 300, 400.h b s blC C C C= = = =

Case 4: 10, 225, 300, 400.h b s blC C C C= = = =

Case 5: 15, 225, 300, 400.h b s blC C C C= = = =

In this subsection, we provide the numerical results of the optimal value *F

and the minimum expected cost for three interarrival time distributions and specific

values of λ , μ , β . We first fix (),μ β = (1.0, 3.0) and choose different values of

λ = 0.55, 0.65, 0.75. Next, we fix (),λ β = (0.7, 3.0) and consider various values

of μ = 1.0, 1.1, 1.2. Finally, we fix (),λ μ = (0.7, 1.0) and select different values

of β = 2.0, 4.0, 5.0.

 41

The optimal value of F, *F , and its minimum expected cost ()*TC F for the

above five cases are shown in Tables 4-6. For fixed values of (),μ β and various

values of λ in Tables 4-6, we observe that (i) ()*TC F increases as λ increases

for any case; and (ii) *F decreases as λ increases for any case. For fixed values

of (),λ β and various values of μ in Tables 4-6, we find that (i) ()*TC F

decreases as μ increases for any case; and (ii) *F increases as μ increases for

any case. Again, for fixed (),λ μ and various values of β in Tables 4-6, we

observe that (i) ()*TC F slightly decreases as β increases for any case; and (ii)
*F does not change at all when β changes from 2.0 to 5.0 for any case.

Intuitively, *F is insensitive to changes in β .

It can be easily seen from Tables 4 through 6 that (i) *F increases as hC

decreases (see cases 4-5); and (ii) hC has a larger effect on *F than bC , sC and

blC (see cases 3-4, cases 2-3 and cases 1-2).

 42

Table 4. The optimal value of F and its minimum expected cost for exponential interarrival time

 λ () ()μ β =, 1.0,3.0 μ () ()λ β =, 0.7,3.0 β () ()λ μ =, 0.7,1.0

 0.55 0.65 0.75 1.0 1.1 1.2 2.0 4.0 5.0

Case1
*F 6 4 3 4 6 8 4 4 4

*()TC F 122.209 148.361 177.914 162.635 144.660 130.652 162.654 162.626 162.620

Case2
*F 8 6 5 5 8 11 5 5 5

*()TC F 122.215 148.425 178.303 162.803 144.705 130.663 162.823 162.793 162.787

Case3
*F 8 6 5 5 8 11 5 5 5

*()TC F 122.216 148.428 178.318 162.810 144.708 130.664 162.834 162.798 162.791

Case4
*F 7 5 4 4 7 10 5 4 4

*()TC F 135.963 164.647 196.879 180.230 160.598 145.243 180.253 180.218 180.211

Case5
*F 4 3 2 2 4 6 2 2 2

*()TC F 142.056 173.713 210.174 191.254 169.196 152.207 191.276 191.242 191.235

Table 5. The optimal value of F and its minimum expected cost for 3-stage Erlang interarrival time

 λ () ()μ β =, 1.0,3.0 μ () ()λ β =, 0.7,3.0 β () ()λ μ =, 0.7,1.0

 0.55 0.65 0.75 1.0 1.1 1.2 2.0 4.0 5.0

Case1
*F 7 5 4 4 7 9 4 4 4

*()TC F 118.991 143.288 170.687 156.448 139.842 126.868 156.450 156.447 156.447

Case2
*F 9 7 5 6 9 12 6 6 6

*()TC F 118.991 143.291 170.747 156.463 139.844 126.868 156.465 156.462 156.462

Case3
*F 9 7 5 6 9 11 6 6 6

*()TC F 118.991 143.291 170.750 156.464 139.844 126.868 156.466 156.463 156.462

Case4
*F 8 6 4 5 8 11 5 5 5

*()TC F 132.741 159.539 189.471 173.957 155.752 141.451 173.959 173.956 173.955

Case5
*F 5 4 3 3 5 7 3 3 3

*()TC F 137.236 166.178 199.711 182.155 162.033 146.552 182.157 182.153 182.153

Table 6. The optimal value of F and its minimum expected cost for deterministic interarrival time

 λ () ()μ β =, 1.0,3.0 μ () ()λ β =, 0.7,3.0 β () ()λ μ =, 0.7,1.0

 0.55 0.65 0.75 1.0 1.1 1.2 2.0 4.0 5.0

Case1
*F 10 6 4 5 7 10 5 5 5

*()TC F 117.440 140.710 166.469 153.130 137.435 125.030 153.130 153.129 153.129

Case2
*F 10 7 5 6 9 12 6 6 6

*()TC F 117.440 140.710 166.477 153.131 137.435 125.030 153.131 153.130 153.130

Case3
*F 12 7 5 6 9 12 6 6 6

*()TC F 117.440 140.710 166.478 153.131 137.435 125.030 153.131 153.131 153.130

Case4
*F 9 6 5 5 8 11 6 5 5

*()TC F 131.190 156.960 185.224 170.630 153.344 139.613 170.630 170.630 170.630

Case5
*F 6 4 3 4 6 8 4 4 4

*()TC F 134.911 162.315 193.445 177.193 158.425 143.794 177.193 177.193 177.193

 43

Chapter 4

The N policy M/G/1/K Queue with Startup Time

In this chapter, we introduce the N policy M/G/1/K queue with startup time.

We use a supplementary variable technique to analyze the optimal control of the N

policy M/G/1/K queue where the server needs a startup time when the number of

customers in the system reaches the threshold (1)N N ≥ for the first time until

there are no customers present in the system. At that time, the server needs to take

an exponential startup time with parameter γ to start servicing customers in the

system.

The primary objective of this chapter is twofold. Firstly, we develop a recursive

method using the supplementary variable technique and treating the supplementary

variable as the remaining service time, to develop the steady-state probability

distributions of the number of customers for the N policy M/G/1/K queue. The

method can be utilized for any service time distribution, such as deterministic

(denoted D), exponential (denoted M) and k-stage Erlang (denoted Ek), etc.

Secondly, to illustrate a recursive method we present one simple example for the

service time distribution such as 3-stage Erlang.

In section 4.1, we describe the queueing model briefly. Section 4.2 the

equations and solutions is developed. Section 4.3 provides a recursive method using

the supplementary variable technique and treating the supplementary variable as the

remaining service time, to obtain the steady-state probability distributions of the

number of customers in the N policy M/G/1/K queue. Finally, presenting one

simple example for 3-stage Erlang (denoted E3), in section 4.4.

4.1 Assumptions and Notations

It is assumed that customers arrive following a Poisson process with parameter

λ and the service times of the customers are independently and identically

distributed (i.i.d.) random variables having a distribution ()S u ()0u ≥ , a

probability density function ()s u ()0u ≥ and mean service time 1s . If one

customer is in service, then arriving customers have to wait in the queue until the

server is available. Let us assume that customers arrive at the server form a single

waiting line and are served in the order of their arrivals; that is, the first-come,

 44

first-served (FCFS) discipline. Suppose that the server can serve only one customer

at a time, and that the service is independent of the arrival of the customers.

The following notations and probabilities are used throughout the chapter.

N threshold level

K system capacity ()K N>

S service time random variable
U remaining service time random variable

()S u distribution function (d.f.) of S

()s u probability density function (p.d.f.) of S

()*S θ Laplace-Stieltjes transform (LST) of S
() ()* lS θ l th order derivative of ()*S θ with respect to θ

()0,0P t probability of no customers in the system at time t when the
server is turned off

()0,nP t probability of n customers in the system at time t when the
server is turned off where 1,2,..., .n K=

()1,nP t probability of n customers in the system at time t when the
server is turned on where 1,2,..., .n K=

0,0P steady state probability of no customers in the system when the
server is turned off

0,nP steady state probability of n customers in the system when the
server is turned off where 1,2,..., .n K=

1,nP steady state probability of n customers in the system when the
server is turned on where 1,2,..., .n K=

1s mean service time.

4.2 Development of the Equations and Solutions

We use the following supplementary variable: U ≡ remaining service time for

the customer in service. The state of the system at time t is given by

()N t ≡ number of customers in the system, and

()U t ≡ remaining service time for the customer being served.

Let us define

() () (){ }= = < ≤ + ≥ =1, , Pr , d , 0, 1,2,..., .nP u t du N t n u U t u u u n K

() ()∞
= =∫1, 1,0

, d , 1,2,..., .n nP t P u t u n K

Relating the state of the system at time t and dt t+ , we obtain

() () ()0,0 0,0 1,1
d

0, ,
d

P t P t P t
t

λ= − + (4.1)

 45

() () ()λ λ −= − + , ≤ ≤ −0, 0, 0, 1
d

 1 1,
d n n nP t P t P t n N

t
 (4.2)

() () () ()λ γ λ −= − + + , ≤ ≤ −0, 0, 0, 1
d

 1,
d n n nP t P t P t N n K

t
 (4.3)

() () ()γ λ −= − + , =0, 0, 0, 1
d

 ,
d K K KP t P t P t n K

t
 (4.4)

() () () ()λ∂ ∂⎛ ⎞− = − + , =⎜ ⎟∂ ∂⎝ ⎠
1,1 1,1 1,2, , 0, 1,P u t P u t P t s u n

t u
 (4.5)

() () () () ()λ λ − +
∂ ∂⎛ ⎞− = − + + ,⎜ ⎟∂ ∂⎝ ⎠
≤ ≤ −

1, 1, 1, 1 1, 1, , , 0,

 2 1,

n n n nP u t P u t P u t P t s u
t u

n N

 (4.6)

() () () ()

() ()

λ λ γ−

+

∂ ∂⎛ ⎞− = − + + +⎜ ⎟∂ ∂⎝ ⎠
, ≤ ≤ −

1, 1, 1, 1 0,

1, 1

, , , ,

 0, 1,

n n n n

n

P u t P u t P u t P u t
t u

P t s u N n K

 (4.7)

() () ()λ γ−
∂ ∂⎛ ⎞− = + =⎜ ⎟∂ ∂⎝ ⎠

1, 1, 1 0,, , , , .K K KP u t P u t P u t n K
t u

 (4.8)

4.3 Steady State Results

In steady state, let us define

()
→∞

= =0, 0,lim , 1,2,..., .n n
t

P P t n K

()
→∞

= =1, 0,lim , 1,2,..., .n n
t

P P t n K

() ()
→∞

= =1, 1,lim , , 1,2,..., .n n
t

P u P u t n K

and further define

() ()= = +0, 0, , , 1,..., .n nP u P s u n N N K (4.9)

From (4.1)-(4.9) we can easily obtain the following steady state equations:

()0,0 1,10 0 ,P Pλ= − + (4.10)

()λ λ −= − + , ≤ ≤ −0, 0, 10 1 1,n nP t P n N (4.11)

()λ γ λ −= − + + , ≤ ≤ −0, 0, 10 1,n nP P N n K (4.12)

γ λ −= − + =0, 0, 10 , .K KP P n K (4.13)

() () () ()λ− = − + , =1,1 1,1 1,2
d

0 1,
d

P u P u P s u n
u

 (4.14)

() () () () ()λ λ − +− = − + + , ≤ ≤ −1, 1, 1, 1 1, 1
d

, 0 2 1,
d n n n nP u t P u P u P s u n N

u
 (4.15)

() () () () () ()λ λ γ− +− = − + + + ,

≤ ≤ −

1, 1, 1, 1 0, 1, 1
d

0
d

 1,

n n n n nP u P u P u P s u P s u
u

N n K
 (4.16)

 46

() () ()λ γ−− = + =1, 1, 1 0,
d

, .
d K K KP u P u P s u n K

u
 (4.17)

Further define

() () ()*

0 0
d d ,u uS e S u e s u uθ θθ

∞ ∞− −= =∫ ∫

() ()*
0, 0,0

d ,u
n nP e P u uθθ

∞ −= ∫

() ()*
1, 1,0

d ,u
n nP e P u uθθ

∞ −= ∫

() ()*
0, 0, 0,0

0 d ,n n nP P P u u
∞

= = ∫

() ()*
1, 1, 1,0

0 d ,n n nP P P u u
∞

= = ∫

() () ()*
0, 0, 0,0

d 0 ,u
n n ne P u u P P

u
θ θ θ

∞ − ∂
= −

∂∫

and

() () ()*
1, 1, 1,0

d 0 .u
n n ne P u u P P

u
θ θ θ

∞ − ∂
= −

∂∫

Therefore if the LST is taken of both sides of (4.14)-(4.17), it is found that

() () () () ()* *
1,1 1,2 1,10 0P P S Pλ θ θ θ− = − , (4.18)

() () () () () ()λ θ θ λ θ θ− +− = + − , ≤ ≤ −* * *
1, 1, 1 1, 1 1,0 0 2 1,n n n nP P P S P n N (4.19)

() () () () () () ()λ θ θ λ θ γ θ θ− +− = + + − ,

+ ≤ ≤ −

* * * *
1, 1, 1 0, 1, 1 1,0 0

 1 2,
n n n n nP P P S P S P

F n K
 (4.20)

() () () ()* * *
1, 1, 1 0, 1, 0 .K K K KP P P S Pθ θ λ θ γ θ−− = + − (4.21)

4.3.1 Recursive methods

The recursive method is developed to obtain ()*
0, 0nP and ()*

1, 0nP . Our

solution algorithm will first find obtain ()0, 1nP n K≤ ≤ .

Using (4.10)-(4.13), we get

φ= ≤ ≤0, 0,0, 1 .n nP P n K (4.22)

where

()

λφ
λ γ

λ
γ λ γ

− +

− +

−

⎧
⎪

≤ ≤ −⎪
⎪
⎛ ⎞⎪= ≤ ≤ −⎨⎜ ⎟+⎝ ⎠⎪
⎪
⎪ =
⎪ +⎩

1

1

1, 1 1,

, 1,

, .

n N

n

K N

K N

n N

N n K

n K

 (4.23)

 47

0,1 0,2 0,, ,..., KP P P can be using (4.22) in terms of 0,0P .

We derive the expressions of () ()1, 0 1nP n K≤ ≤ in terms of 0,0P . Using

(4.22) in (4.20) and then setting θ λ= in (4.18)-(4.20), we finally obtain

() ()
()λ

= =1,1
1,2 *

0
0 , 1,

P
P n

S
 (4.24)

() () () ()
()

γϕ φ λ λ λ
λ

−
+

− −
= ≤ ≤ −

* *
1, , 0,0 1, 1

1, 1 *

0
0 , 2 1,n n N n n

n
P P S P

P n K
S

 (4.25)

where ϕ ϕ= , ≤ ≤ − =, ,1 1, otherwise, 0.n N n NN n K

To obtain () ()*
1, 1 1 -1nP n Kλ− ≤ ≤ in (4.25), using (4.22) in (4.20) again,

differentiating (4.18)-(4.20) ()1l − times with respect to θ and setting θ λ= , we

finally get

() ()
() () ()λ

λ− ⎡ ⎤= − = = −⎣ ⎦

*
* 1

1,21,1 0 , 1, 1,..., 1,
l

l S
P P n l K

l
 (4.26)

() () () () () () () () ()λ λ γϕ φ λ λ λ−
+ −

⎡ ⎤= − + +⎢ ⎥⎣ ⎦
≤ ≤ − = −

* 1 ** *
1, 1 , 0,01, 1, 1

1
0 ,

 2 1, 1,..., ,

l ll l
n n N nn nP P S P S P

l
n K l K n

 (4.27)

where () () ()* 0 *
1,1, nnP Pλ λ= and () () () ()θ θ θ⎡ ⎤= ⎣ ⎦

* *d dl l lS S denotes the lth

derivative of ()θ*S .

Solving (4.26)-(4.27) recursively, we obtain

() () () ()γ φ λ λ
λ ϕ

λ λ

+
− + − +

= =

= − −

≤ ≤ −

∑ ∑
* *1

1 2*
1, , 0,0 1,

2

0 ,

 1 1,

n n
n i i n i

n n N i
i N i

S S
P P P

n K

 (4.28)

where

() () ()
()

λ λ
λ

⎧ −
⎪− ≤ ≤ −

= ⎨
⎪
⎩

*

*
, 1 2,

!

0, otherwise.

n n

n

S
n K

n S (4.29)

Using (4.28) in (4.25), we can obtain

()
()

() ()
λ

γ ϕ φ ϕ φ

−

− −
=

−

− − − − −
=

= + +

⎛ ⎞
− ≤ ≤⎜ ⎟

⎝ ⎠

∑

∑

1

1, 1, 1 1,*
2

2

2, 1 1, 1 0,0

1
0 0 0

 , 3 .

n

n n n i i
i

n

n N n i i n N n
i N

P P P
S

P n K

 (4.30)

 48

We further define

{ }

τ τ τ
τ τ τ

τ τ τ

κ κ κ
≤ ≤ + + + =

∈

⎧
⎪

=⎪
⎪Ψ = = −⎨
⎪
⎪
⎪⎩

∑ ∑ 1 2

1 2

1 2

1
, , , 1,2, ,

1, 0,

, 1, 2,..., 2,

0, otherwise,

k

k

k

n
k n n

n

n

n K (4.31)

where

() 1*

1
, 1,

, 2,3, , 2,

0, otherwise.
n n

n
S

n K

λ

κ

⎧ + =⎪
⎪⎪= = −⎨
⎪
⎪
⎪⎩

 (4.32)

The representative meaning of the above formulation (4.31) is the same as (2.42).

Using (4.31) and (4.32) to solve (4.30) recursively, and including (4.10) and (4.24),

we finally get

() ()= =1,1 0,00 1 , 1,P A P n (4.33)

() ()−
=

= Ψ ≤ ≤∑1, 0,0
2

0 , 2 ,
n

n n i
i

P A i P n K (4.34)

where

()
()

λ
λ
λ

γ ϕ φ ϕ φ
−

− − − − −
=

⎧
⎪
⎪ =
⎪
⎪= =⎨
⎪
⎪ ⎛ ⎞⎪ − ≤ ≤⎜ ⎟⎪ ⎝ ⎠⎩

∑

*

2

2, 1 1, 1

, 1,

, 2,

, 3 .
n

n N n i i n N n
i N

n

A n n
S

n K

 (4.35)

Finally, we develop the steady-state probabilities ()*
1, 0nP in terms of 0,0P . Setting

0θ = in (4.18)-(4.20) we have

() () () γϕ φ
λ +

=

⎡ ⎤
= − + ≤ ≤ −⎢ ⎥

⎣ ⎦
∑*

1, 1, 1 1,1 , 0,0
1

0 0 0 , 1 1,
n

n n n N i
i N

P P P P n K (4.36)

As () () ()1,1 1,2 1,0 , 0 ,..., 0KP P P are known, () () ()* * *
1,1 1,2 1, 10 , 0 ,..., 0KP P P − can be

determined recursively using (4.36) in terms of 0,0P .

 49

Now the only unknown quantity is ()*
1, 0KP which can be obtained from

(4.21). To find it, differentiate (4.21) with respect to θ and set 0θ = , we have

() () () () ()* 1 * 1*
1, 0,1, 10 0 0 .K KKP P P Sλ γ−= − − (4.37)

To find () ()* 1
1, 1 0KPλ − , differentiating (4.18)-(4.20) with respect to θ and 0θ = , we

obtain

() () () () ()
λ

+
= =

* 1
* 1 1,1 1,2

1,1

0 0
0 , 1,

P P S
P n (4.38)

() ()
() () () () () () ()γϕ φ λ

λ
+−+ + +

=

≤ ≤ −

* 1* 1 * 1
* 1 1, , 0,0 1, 11, 1

1,

0 0 0 0
0 ,

 2 1,

n n N n nn
n

P P S P P S
P

n K

 (4.39)

As () ()* 1
1,1 0P is known completely from (4.38), the values () ()* 1

1, 0nP for

2,3,..., 1n K= − can be found recursively from (4.39). Therefore we obtain

() () () () () ()
1

* 1 * 1*
1, 1, 0,0 1,

1 2

0 0 0 0 .
K K K

K i n i
i i N i

P P S P S Pγ φ
−

= = =

⎡ ⎤
= − + +⎢ ⎥

⎣ ⎦
∑ ∑ ∑ (4.40)

So () () ()* * *
1,1 1,2 1,0 , 0 ,..., 0KP P P is known in terms of 0,0P , which can be

determined using the normalizing condition

0, 1,
0 1

1.
K K

i i
i i

P P
= =

+ =∑ ∑ (4.41)

To demonstrate the working of the recursive method, we first describe the solution

algorithm for calculating the steady state probabilities, () ()*
0, 0 0nP n K≤ ≤ and

() ()*
1, 0 1nP n K≤ ≤ . Next, to illustrate the solution algorithm, we provide one

simple example where the service time distribution is k-stage Erlang.

4.3.2 The solution algorithm

Let N be the threshold, K be the maximum capacity of the system, and let
() ()* lS θ where 1, 2,...,l K= be the lth derivative of () ()* lS θ . Given the values of

N, K, and the LST expression of the service time distribution, namely ()*S θ , the

steps of the solution algorithm are stated as follows:

Step 1. For each 1, 2,...,n K= , compute nφ using (4.23).

Step 2. For each 1, 2,...,n K= , compute ()*
0, 0nP using (4.22) in terms of

0,0P .

 50

Step 3. Compute n ()1 2n K≤ ≤ − and nκ ()1 2n K≤ ≤ − using (4.29) and

(4.32).

Step 4. For each 0, 1,..., 2n K= − , compute nΨ using (4.31).

Step 5. For each 1, 2,...,n K= , compute ()A n using (4.35).

Step 6. For each 1, 2,...,n K= , compute ()1, 0nP using (4.33) and (4.34) in

terms of 0,0P .

Step 7. For each 1, 2,..., 1n K= − , compute ()*
1, 0nP using (4.36) in terms of

0,0P .

Step 8. For n K= , compute ()*
1, 0nP using (4.40) in terms of 0,0P .

Step 9. Determine 0,0P using (4.41). Thus () ()*
0, 0 1, 2,...,nP n K= are achieved

from Step 2, and () ()*
1, 0 1, 2,...,nP n K= are achieved from Steps 7 to

8.

4.4 Simple Example

We use the solution algorithm to illustrate a recursive method. We provide a

simple example for the service time distribution such as 3-stage Erlang.

Example (For M/E3/1 queue). The 3-stage Erlang distribution is made up of three

independent and identical exponential stages, each with mean 1 3λ . We set the

mean service time 1 1s μ= , 2N = , and 3K = . In this case, we have

()
3

* 3
3

S
μθ

μ θ
⎛ ⎞

= ⎜ ⎟+⎝ ⎠

Step 1. For each 1, 2, 3n = , compute nφ using (4.23), we obtain

1 1φ = , 2 (3 2)φ η η= − , and ()2
3 3 1 (3 2)φ η η η= − − , where ()3 3η λ λ β= + .

Step 2. For each 1, 2, 3n = , compute ()*
0, 0nP using (4.22) in terms of 0,0P .

From (4.22), we finally get

()*
0,1 1 0,0 0,00P P Pφ= = ,

() ()
*

0,2 2 0,0 0,00
3 2

P P P
ηφ
η

= =
−

 and () ()()
2

*
0,3 3 0,0 0,00

3 1 3 2
P P P

ηφ
η η

= =
− −

.

Step 3. For 1n = , compute n and nκ using (4.29) and (4.32), respectively.

 51

For each 1n = , using (4.29) yields ()1 3 1σ σ= − + , where 3σ λ μ= .

For each 1n = , we find from (4.32) that () ()2 3 4
1 1 6 4 1κ σ σ σ σ σ= + + + + +

Step 4. For each 0, 1n = , compute nΨ .

It implies from (4.31) that 0 1Ψ = and () ()2 3 4
1 1 6 4 1σ σ σ σ σΨ = + + + + + .

Step 5. For each 1, 2, 3n = , compute ()A n .

Using (4.35), it follows that

()1A λ= , () ()32 1A λ σ= + , and () () ()3 3 1 3 2A λ η η= − − − .

Step 6. For each 1, 2, 3n = , compute ()1, 0nP using (4.33) and (4.34) in terms of

0,0P .

It yields from (4.33) and (4.34) that

() ()1,1 0,0 0,00 1P A P Pλ= = ,

() () ()31,2 0 0,0 0,00 2 1P A P Pλ σ= Ψ = + ,

() () ()

()() () ()
1,3 1 0 0,0

2 2 3 4

0,0

0 2 3

3 2 1 1 6 4 3 1
.

3 2

P A A P

P
λ η σ σ σ σ σ λ η

η

⎡ ⎤= Ψ +Ψ⎣ ⎦

− + + + + + − −
=

−

Step 7. For each 1, 2n = , compute ()*
1, 0nP using (4.36) in terms of 0,0P .

From (4.36), we finally have

() ()* 2
1,1 0,00 3 3P Pσ σ σ= + + and

() ()* 2 3 4 5
1,2 0,00 3 9 17 15 6P Pσ σ σ σ σ σ= + + + + + .

Step 8. For 3n = , compute ()*
1, 0nP using (4.40) in terms of 0,0P .

Using (4.40) yields

() () {
}

* 2 3 4 5 6
1,3

2 3 4 5
0,0

1
0 (3 12 36 78 78 34 6)

3 2

 (18 54 117 117 51 9) .

P

P

σ η σ σ σ σ σ σ
η

σ σ σ σ σ σ

⎡= − − − − − −⎣−

⎤+ + + + + + ⎦

.

Step 9. Determine 0,0P using (4.41). Thus () ()*
0, 0 1, 2, 3nP n = are achieved from

Step 2, and () ()*
1, 0 1, 2, 3nP n = are achieved from Steps 7 to 8.

 52

()()0,0

2 3 4 5 6

2 3 4 5 6

12 2 3 4 5 6

3 1 3 2

 18 (27 10) 27 (2 6 12 18 15 6)

 9 (27 30 60 270 75 30 5)

 9 (3 12 24 36 30 12 2) .

P η η

η η σ σ σ σ σ σ σ

ση σ σ σ σ σ σ

ση σ σ σ σ σ σ
−

= − − ×

⎡ − − + + + + + + +⎣

− + + + + + +

⎤+ + + + + + + ⎦

.

 53

Chapter 5

Interrelationships between the F policy and the N policy for
M/G/1/K and G/M/1/K Queues with Startup Time

In this chapter, we study the interrelationship between the F policy and N

policy. In section 5.1, to consider the interrelationship between N policy M/G/1/K

queue with exponential startup time and F policy G/M/1/K queue with

exponential startup time, we use the solution algorithm of N policy M/G/1/K

queue with exponential startup time to derive the solution algorithm of F policy

G/M/1/K queue with exponential startup time. In section 5.2, the above

interrelationship is shown in Table 7. To illustrate the interrelationship, we provide

a simple example for N policy M/E3/1/K queue. In this example, we set the service

time distribution such as 3-stage Erlang and K=3 and N=2 to device the steady-state

probability of F policy E3/M/1/K queue with K=3 and F=1. Similarly, we use the

solution algorithm of F policy M/G/1/K queue with exponential startup time to

derive the solution algorithm of N policy G/M/1/K queue with exponential startup

time in section 5.3. In section 5.4, the Table 8 shows the interrelationship between F

policy M/G/1/K queue with exponential startup time and N policy G/M/1/K

queue with exponential startup time. We provide a simple for F policy M/M/1/K

queue. In this example, we set the service time distribution such as exponential and

K=5 and F=2 to device the steady-state probability of F policy M/M/1/K queue

with K=5 and N=3.

5.1 Development of the F policy G/M/1/K Queue

We follow the solution algorithm of the N policy M/G/1/K queue to modify

the parameters. Change (i) threshold from N to K-F; (ii) the arrival rate from λ to

μ ; (iii) from the service time random variable S to the interarrival time random

variable A . The other parameters are the same. The steps are stated as follows:

Step 1. For each 1, 2,...,n K= , compute nφ .

μφ
μ γ

μ μ
γ μ γ

− + +

⎧
⎪ ≤ ≤ − −⎪
⎪⎛ ⎞⎪= − ≤ ≤ −⎨⎜ ⎟+⎝ ⎠⎪
⎪

⎛ ⎞⎪ =⎜ ⎟⎪ +⎝ ⎠⎩

1

1, 1 1,

, 1,

, .

n K F

n

F

n K F

K F n K

n K

 (5.1)

 54

Step 2. For each 1, 2,...,n K= , compute ()*
0, 0nP using (5.2) in terms of 0,0P .

φ= ≤ ≤*
0, 0,0(0) , 1n nP P n K . (5.2)

Step 3. Compute n ()1 2n K≤ ≤ − and nκ ()1 2n K≤ ≤ − using (5.3) and (5.4).

() () ()
()

μ μ
μ

⎧ −
⎪− ≤ ≤ −

= ⎨
⎪
⎩

*

*
, 1 2,

!

0, otherwise.

n n

n

a
n K

n a (5.3)

()μ
κ

⎧ + =⎪
⎪⎪= ≤ ≤ −⎨
⎪
⎪
⎪⎩

1*

1
, 1,

, 2 2,

0, otherwise,
n n

n
a

n K (5.4)

where ()*a θ is the Laplace-Stieltjes transform (LST) of A .

Step 4. For each 0, 1,..., 2n K= − , compute nΨ using (5.5).

{ }

τ τ τ
τ τ τ
τ τ τ

κ κ κ
≤ ≤ + + + =

∈

⎧
⎪

=⎪
⎪Ψ = = … −⎨
⎪
⎪
⎪⎩

∑ ∑ 1 2

1 2

1 2

1
, , 1,2, ,

1, 0,

, 1, 2, , 2,

0, otherwise.

k

k

k

n
k n n

n

n

n K (5.5)

Step 5. For each 1, 2,...,n K= , compute ()A n using (5.6).

()
()

μ
μ
μ

γ ϕ φ ϕ φ
−

− − − − − − −
= −

=

= =

⎛ ⎞
− ≤ ≤⎜ ⎟

⎝ ⎠
∑

*

2

2, 1 1, 1

, 1,

, 2,

, 3
n

n K F n i i n K F n
i K F

n

A n n
a

n K

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

,

 (5.6)

where ϕ ϕ− −= − ≤ ≤ − =, ,1, 1, otherwise, 0.n K F n K FK F n K

Step 6. For each 1, 2,...,n K= , compute ()1, 0nP using (5.7) and (5.8) in terms

of 0,0P .

() ()1,1 0,00 1 ,P A P= (5.7)

() ()−
=

= Ψ ≤ ≤∑1, 0,0
2

0 , 2 .
n

n n i
i

P A i P n K (5.8)

 55

Step 7. For each 1, 2,..., 1n K= − , compute ()*
1, 0nP using (5.9) in terms of

0,0P .

() () () γϕ φ
μ + −

= −

⎡ ⎤
= − + ≤ ≤ −⎢ ⎥

⎣ ⎦
∑*

1, 1, 1 1,1 , 0,0
1

0 0 0 , 1 1.
n

n n n K F i
i K F

P P P P n K (5.9)

Step 8. For n K= , compute ()*
1, 0nP using (5.10) in terms of 0,0P .

() () () () () ()
1

* 1 * 1*
1, 1, 0,0 1,

1 2

0 0 0 0 .
K K K

K i i i
i i K F i

P P a P a Pγ φ
−

= = − =

⎡ ⎤
= − + +⎢ ⎥

⎣ ⎦
∑ ∑ ∑ (5.10)

Step 9. Determine 0,0P using (5.11). Thus () ()*
0, 0 1, 2,...,nP n K= are achieved

from Step 2, and () ()*
1, 0 1, 2,...,nP n K= are achieved from Steps 7 to 8.

0, 1,
0 1

1.
K K

i i
i i

P P
= =

+ =∑ ∑ (5.11)

Using the solution algorithm for calculating the steady state probabilities,

() ()*
0, 0 0nP n K≤ ≤ and () ()*

1, 0 1nP n K≤ ≤ . Next, change the index of ()*
0, 0nP

and ()*
1, 0nP from n to K n− to obtain the steady state probabilities of F

policy G/M/1/K queue. To illustrate the solution algorithm, we provide a table

that N policy M/G/1/K queue corresponds to F policy G/M/1/K queue.

5.2 Interrelationship between the N policy M/G/1/K Queue and the F policy

G/M/1/K Queue

To illustrate the interrelationship between the N policy M/G/1/K queue and

the F policy G/M/1/K queue, we construct the Table 7 in this section and provide

one simple example for the service time distribution such as 3-stage Erlang.

Table 7. N policy M/G/1/K queue corresponds to F policy G/M/1/K queue.

 N policy M/G/1/K F policy G/M/1/K
Capacity K ⇒ K K
Threshold N ⇒ K F− F
Arrival time λ ⇒ μ A
Service time S ⇒ A μ
Startup time γ ⇒ γ γ

() ()≤ ≤*
0, 0 0nP n K ⇒ ()*

0, 0K nP − = () ()*
0, 0 0nP n K≤ ≤

Probabilities
() ()*

1, 0 1nP n K≤ ≤
 ⇒ ()*

1, 0K nP − = () ()*
1, 0 0 1nP n K≤ ≤ −

S : the service time random variable ; A : the interarrival time random variable.

Next, we provide a simple example for the service time distribution such as

 56

3-stage Erlang.

Example 1 (For M/E3/1 queue). The 3-stage Erlang distribution is made up of

three independent and identical exponential stages, each with mean 1 3μ . We set

the mean service time 1 1s μ= , 2N = , and 3K = . In this case, we use the

solution algorithm to solve the steady state probabilities of F policy E3/M/1

queue.

We change from ()
3

* 3
3

S
μθ

μ θ
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 to ()

3
* 3

3
a

λθ
λ θ

⎛ ⎞= ⎜ ⎟+⎝ ⎠
.

The steps are stated as follows:

Step 1. For each 1, 2, 3n = , compute nφ

Using (5.1), we obtain 1 1φ = , 2 (3 2)φ γ γ= − , and ()2
3 3 1 (3 2)φ γ γ γ= − − , where

()3 3γ μ μ γ= + .

Step 2. For each 1, 2, 3n = , compute ()*
0, 0nP using (5.2) in terms of 0,0P .

Using (5.2), it follows that

()*
0,1 1 0,0 0,00P P Pφ= = ,

() ()
*

0,2 2 0,0 0,00
3 2

P P P
γφ
γ

= =
−

 and () ()()
2

*
0,3 3 0,0 0,00

3 1 3 2
P P P

γφ
γ γ

= =
− −

.

Step 3. For 1n = , compute n and nκ using (5.3) and (5.4), respectively.

For 1n = , using (5.3) yields ()1 3 1τ τ= − + , where 3τ μ λ= .

For 1n = , we find from (5.4) that () ()2 3 4
1 1 6 4 1κ τ τ τ τ τ= + + + + + .

Step 4. For each 0, 1n = , compute nΨ .

It implies from (5.5) that 0 1Ψ = and () ()2 3 4
1 1 6 4 1τ τ τ τ τΨ = + + + + + .

Step 5. For each 1, 2, 3n = , compute ()A n .

Using (5.6), it follows that

()1A μ= , () ()32 1A μ τ= + , and () () ()3 3 1 3 2A μ γ γ= − − − .

Step 6. For each 1, 2, 3n = , compute ()1, 0nP using (5.7) and (5.8) in terms of

0,0P .

 57

It yields from (5.7) and (5.8) that

() ()1,1 0,0 0,00 1P A P Pμ= = ,

() () ()31,2 0 0,0 0,00 2 1P A P Pμ τ= Ψ = + ,

() () ()

()() () ()
1,3 1 0 0,0

2 2 3 4

0,0

0 2 3

3 2 1 1 6 4 3 1
.

3 2

P A A P

P
μ γ τ τ τ τ τ μ γ

γ

⎡ ⎤= Ψ +Ψ⎣ ⎦

− + + + + + − −
=

−

Step 7. For each 1, 2n = , compute ()*
1, 0nP using (5.9) in terms of 0,0P .

From (5.9), we finally have

() ()* 2
1,1 0,00 3 3P Pτ τ τ= + + and () ()* 2 3 4 5

1,2 0,00 3 9 17 15 6P Pτ τ τ τ τ τ= + + + + + .

Step 8. For 3n = , compute ()*
1, 0nP using (5.10) in terms of 0,0P .

Using (5.10) yields

() () {
}

* 2 3 4 5 6
1,3

2 3 4 5
0,0

1
0 (3 12 36 78 78 34 6)

3 2

 (18 54 117 117 51 9) .

P

P

τ γ τ τ τ τ τ τ
γ

τ τ τ τ τ τ

⎡= − − − − − −⎣−

⎤+ + + + + + ⎦

Step 9. Determine 0,0P using (5.11). Thus () ()*
0, 0 1, 2, 3nP n = are achieved from

Step 2, and () ()*
1, 0 1, 2, 3nP n = are achieved from Steps 7 to 8.

()()0,0

2 3 4 5 6

2 3 4 5 6

12 2 3 4 5 6

3 1 3 2

 18 (27 10) 27 (2 6 12 18 15 6)

 9 (27 30 60 270 75 30 5)

 9 (3 12 24 36 30 12 2) .

P γ γ

γ γ τ τ τ τ τ τ τ

τγ τ τ τ τ τ τ

τγ τ τ τ τ τ τ
−

= − − ×

⎡ − − + + + + + + +⎣

− + + + + + +

⎤+ + + + + + + ⎦

.

() ()*
0,3 0 0, 1, 2, 3nP n− = and () ()*

1,3 0 1, 2, 3nP n− = are noted that these results

are the same as those given in F policy E3/M/1/K queue.

5.3 Development of the N policy G/M/1/K Queue

We follow the solution algorithm of the F policy M/G/1/K queue to modify

the parameters. Change (i) threshold from F to K-N; (ii) the arrival rate from λ to

μ ; (iii) from the service time random variable S to the interarrival time random

variable A . The other parameters are the same. The steps are stated as follows:

 58

Step 1. For each 0, 1,...,n K= , compute nφ .

()ζ
φ

γ γ −

=⎧⎪= ⎨
+ ≤ ≤⎪⎩

1
1 1

1, 0,

1 , 1 ,nn

n

a a n K
 (5.12)

where ζ
≤ ≤ − −⎧

= ⎨ − − ≤ ≤⎩

, 0 1,

, .n
n n K N

K N K N n K

Step 2. For each 1, 2,..., 1n K= − , compute ()*
0, 0nP using (5.13) in terms of

0,0P .

φ= ≤ ≤ −*
0, 0,0(0) , 1 1n nP P n K . (5.13)

Step 3. Compute n ()1 2n K≤ ≤ − and nκ ()1 3n K≤ ≤ − using (5.14) and

(5.15).

() () ()
()

μ μ
μ

⎧ −
⎪− ≤ ≤ −

= ⎨
⎪
⎩

*

*
, 1 2,

!

0, otherwise.

n n

n

a
n K

n a (5.14)

()μ
κ

⎧ + =⎪
⎪⎪= ≤ ≤ −⎨
⎪
⎪
⎪⎩

1*

1
, 1,

, 2 3,

0, otherwise,
n n

n
a

n K (5.15)

where ()*a θ is the Laplace-Stieltjes transform (LST) of A .

Step 4. For each 0, 1,..., 3n K= − , compute nΨ using (5.16).

{ }

τ τ τ
τ τ τ
τ τ τ

κ κ κ
≤ ≤ + + + =

∈

⎧
⎪

=⎪
⎪Ψ = = … −⎨
⎪
⎪
⎪⎩

∑ ∑ 1 2

1 2

1 2

1
, , 1,2, ,

1, 0,

, 1, 2, , 2,

0, otherwise.

k

k

k

n
k n n

n

n

n K (5.16)

Step 5. For each 1, 2,..., 1n K= − , compute ()A n and ()B n using (5.17)

and (5.18).

() ()
()

μ

μ
μ

μ

μ −

=⎧
⎪

⎡ ⎤−⎪= =⎢ ⎥⎨
⎢ ⎥⎪ ⎣ ⎦

⎪ ≤ ≤ −⎩

*

*

2

, 1,

1
, 2,

, 3 1,n

n

a
A n n

a

n K

 (5.17)

 59

and

() ()
()

ζ

γ

ϕ φ μ
γ

μ

γ φ ϕ φ
−

−

− − − − −
=

⎧
⎪
− =⎪
⎪

⎡ ⎤+⎪
= − =⎢ ⎥⎨

⎢ ⎥⎪ ⎣ ⎦
⎪

⎛ ⎞⎪ − ≤ ≤ −⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎩
∑

2

*
1, 1

*

1 1, 1
1

, 1,

1
, 2,

, 3 1,
n

K N

n i i n K N n
i

n

a
B n n

a

n K

 (5.18)

where ϕ ϕ− −= ≤ ≤ − =, ,1, 1 , otherwise, 0.n K N n K Nn K N

Step 6. For 0n = , compute ()*
1, 0nP using (5.19) in terms of 0,0P .

()

22 1 1
1

1 1 1*
1 2 2 1*

1,0 0,0.2 1 1
1

1 1 2*
1 2 2

()
()

()
0

()
()

()

KK i K
K j

K i i j K i i
i j i i

K i K
K j

K i i j K
i j i

B i
B j

a
P p

A i
A j

a

ζ
γ φ

μ

μ
μ

−− + −
− −

− − − + − −
= = = =

− + −
− −

− − − + −
= = =

Ψ
Ψ + +

= −
Ψ

Ψ + +

∑ ∑ ∑ ∑

∑ ∑ ∑
 (5.19)

Step 7. For each 1, 2,..., 1n K= − , compute ()1, 0nP using (5.20) and (5.21) in

terms of 0,0P .

() () ()1,1 1,0 0,00 1 1 ,P A P B P= + (5.20)

() () ()−
=

⎡ ⎤= Ψ + ≤ ≤ −⎣ ⎦∑1, 1,0 0,0
2

0 , 2 1.
n

n n i
i

P A i P B i P n K (5.21)

Step 8. For each 1, 2,..., 1n K= − , compute ()*
1, 0nP using (5.22) and (5.23) in

terms of 0,0P .

() ()
ζ

γ φ
μ +

=

⎡ ⎤
= + ≤ ≤ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑*

1, 0,0 1, 1
0

1
0 0 , 1 2,

n

n i n
i

P P P n K (5.22)

()*
1, 1 0,0

0

0 .
K N

K i
i

P P
γ φ
μ

−

−
=

= ∑ (5.23)

Step 9. For n K= , compute ()*
0, 0nP using (5.24) in terms of 0,0P .

() () () () () () () ()
1 1

* 1 * 1 * 1*
0, 1, 0,0 1, 1,0

1 1 2

0 0 0 0 0 .
K K N K

K i i i
i i i

P P a P a P a Pγ φ μ
− − −

= = =

⎡ ⎤= − + + +⎢ ⎥⎣ ⎦
∑ ∑ ∑ (5.24)

Step 10. Determine 0,0P using (5.25). Thus () ()*
0, 0 1, 2,...,nP n K= are achieved

from Step 2 and Step 9, and () ()*
1, 0 0, 1,..., 1nP n K= − are achieved

from Step 6 and Step 8.

 60

1

0, 1,
0 0

1.
K K

i i
i i

P P
−

= =

+ =∑ ∑ (5.25)

Using the solution algorithm for calculating the steady state probabilities,

() ()*
0, 0 0nP n K≤ ≤ and () ()*

1, 0 0 1nP n K≤ ≤ − . Next, change the index of

()*
0, 0nP and ()*

1, 0nP from n to K n− to obtain the steady state probabilities of

N policy G/M/1/K queue. To illustrate the solution algorithm, we provide a

table that F policy M/G/1/K queue corresponds to N policy G/M/1/K

queue.

5.4 Interrelationship between the F policy M/G/1/K Queue and the N policy

G/M/1/K Queue

To illustrate the interrelationship between the F policy M/G/1/K queue and

the N policy G/M/1/K queue, we construct the Table 8 in this section and provide

one simple example for the service time distribution such as exponential.

Table 8. F policy M/G/1/K queue corresponds to N policy G/M/1/K queue.

 F policy M/G/1/K N policy G/M/1/K
Capacity K ⇒ K K
Threshold F ⇒ K N− N
Arrival time λ ⇒ μ A
Service time S ⇒ A μ
Startup time γ ⇒ γ γ

() ()*
0, 0 0nP n K≤ ≤ ⇒ ()*

0, 0K nP − = () ()*
0, 0 0nP n K≤ ≤

Probabilities
() ()*

1, 0 0 1nP n K≤ ≤ − ⇒ ()*
1, 0K nP − = () ()*

1, 0 1nP n K≤ ≤

S : the service time random variable ; A : the interarrival time random variable.

Next, we provide a simple example for the service time distribution such as

exponential.

Example 2 (For M/M/1 queue). We set the mean service time 1 1s μ= , where μ

is the service rate. Assume that 2F = , and 5K = . In this case, we use the solution

algorithm to solve the steady state probabilities of N policy M/M/1 queue.

We change from ()*S
μθ

μ θ
=

+
 to ()*a

λθ
λ θ

=
+

.

The steps are stated as follows:

Step 1. For each 0, 1,..., 5n = , compute nφ

 61

Using (5.12), we obtain 0 1φ = , () ()22φ γ ρμ γ ρμ= + , and 3 4 5φ φ φ= =
2 3() ()γ ρμ γ ρμ= + , where ρ λ μ= .

Step 2. For each 1, 2,..., 5n = , compute ()*
0, 0nP using (5.13) in terms of 0,0P .

Using (5.13), it follows that

()*
0,1 1 0,0 0,00P P P

γφ
ρμ

= = , ()*
0,2 2 0,0 0,02

()
0

()
P P P

γ ρμ γφ
ρμ

+
= = ,

and () ()
2

* *
0,3 0,4 3 0,0 4 0,0 0,03

()
0 0

()
P P P P P

γ ρμ γφ φ
ρμ
+

= = = = .

Step 3. Compute n ()1 3n≤ ≤ and nκ ()1 2n≤ ≤ using (5.14) and (5.15),

respectively.

For 1, 2, 3n = , using (5.14) yields ()1 1 1 ρ= − + , ()22 1 1 ρ= − + , and

()33 1 1 ρ= − + .

For 1, 2n = , we find from (5.15) that () ()2
1 1 1κ ρ ρ ρ ρ= + + + and

()22 1 1κ ρ= − + .

Step 4. For each 0, 1, 2n = , compute nΨ .

It implies from (5.16) that 0 1Ψ = , () ()2
1 1 1ρ ρ ρ ρΨ = + + + , and

()2 2
2 1 ρ ρΨ = + .

Step 5. For each 1, 2, 3, 4n = , compute ()A n and ()B n .

Using (5.17), it follows that

()1A μ= , ()2A μ ρ= , () ()3 1A μ ρ= − + , and () ()24 1A μ ρ= − + .

Using (5.18), it follows that

()1B γ= − , () ()
2B

γ μ γ ρμ
ρμ
+ +

= − , ()
()

()

2

2 2

2
3

1
B

γ γ γρ ρμ ρ μ

ρ ρ μ

+ + +
= −

+
,

and ()
()

()

2

2 2 2

2
4

1
B

γ γ γρ ρμ ρ μ

ρ ρ μ

+ + +
= −

+
.

Step 6. For 0n = , compute ()*
1, 0nP using (5.19) in terms of 0,0P .

() ()()24 2 3 2 2 2 2
1,0 0,0.3

2P p
γ ρ μ ρ μ μγ ρ ρ μ γ μγ μ γ
μ

⎡ ⎤= + + + + + + + +
⎣ ⎦

 62

Step 7. For each 1, 2, 3, 4n = , compute ()1, 0nP using (5.20) and (5.21) in terms of

0,0P .

It yields from (5.20) and (5.21) that

() () () () ()()3 2
1,1 1,0 0,0 0,02

0 1 1 1P A P B P P
γ ρμ γ

ρ μ ρ ρ μ γ
μ
+ ⎡ ⎤= + = + + + +⎣ ⎦ ,

()
() ()2 2

1,2 0,02

1
0P P

γ ρμ γ ρ ρ

ρμ

+ + +
= , () () ()2

1,3 0,02

1
0P P

γ ρμ γ ρ
ρμ
+ +

= ,

and () ()2
1,4 0,02

0P P
γ ρμ γ

ρμ
+

=

Step 8. For each 1, 2, 3n = , compute ()*
1, 0nP using (5.22) in terms of 0,0P .

From (5.22), we finally have

() () ()()* 3 2
1,1 0,03

0 1P P
γ ρμ γ

ρ μ ρ ρ μ γ
ρμ

+ ⎡ ⎤= + + + +⎣ ⎦ ,

()
() ()2 2

*
1,2 0,02 3

1
0 ,P P

γ ρμ γ ρ ρ

ρ μ

+ + +
= and () () ()2

*
1,3 0,02 3

1
0 ,P P

γ ρμ γ ρ
ρ μ
+ +

=

For 4n = , compute ()*
1, 0nP using (5.23) in terms of 0,0P .

Using (5.23) yields

() ()2*
1,4 0,02 3

0 .P P
γ ρμ γ

ρ μ
+

=

Step 9. For 5n = , compute ()*
0, 0nP using (5.24) in terms of 0,0P .

() ()2*
0,5 0,03 3

0 .P P
γ ρμ γ

ρ μ
+

=

Step 10. Determine 0,0P using (5.25). Thus () ()*
0, 0 1, 2,..., 5nP n = are achieved

from Step 2 and Step 9, and () ()*
1, 0 0, 1,..., 4nP n = are achieved from Step 6

and Step 8.

()30,0

7 2 6 5 4

13 2 2 3 3 2 2 2 2 3

 2 () (3)() 2 ()(2)

 (5 7 3) (3 7 5) (3 7) 3 .

P ρμ

ρ γμ ρ γμ γ μ ρ γ γ μ γ μ ρ γ γ μ γ μ

ρ γμ γ μ μ γ ρ γ γ γμ μ ργ γ μ γ
−

= ×

⎡ + + + + + + + +⎣

⎤+ + + + + + + + + + ⎦

() ()*
0,5 0 0, 1,..., 5nP n− = and () ()*

1,5 0 0, 1,..., 4nP n− = are noted that these

results are the same as those given in F policy M/M/1/K queue.

 63

Chapter 6

Conclusions and Future Researches

Steady-state results have been presented for (i) the F policy M/G/1/K queue

with startup time; (ii) the F policy G/M/1/K queue with startup time; and (iii) the

N policy M/G/1/K queue with startup time; These steady-state results, simple to

use and provide system characteristics, are convenient for the corresponding queue

applications. This is important that the interrelationships between the F policy and

N policy for M/G/1/K and G/M/1/K queues have been structured. In this chapter,

we make conclusions and provide possible extensions of the present work for

further research.

6.1 Conclusions

In this thesis, we have shown that the supplementary variable technique can be

successfully applied to analyse various controllable queues operating under F policy

and N policy:

1. For the F policy M/G/1/K queue with startup time, we provided a

recursive method for computing the steady state probability distribution of the

number of customers in a finite system. We also illustrated a recursive method by a

study of three different interarrival time distributions, exponential, 3-stage Erlang,

and deterministic. In addition, we derived the optimum value of the control

parameter F so as to minimize an expected cost function. We performed a

sensitivity analysis among the optimal value of F, specific values of system

parameters, and the cost elements. Based on the numerical results, we could make

an intelligent effective based on exact solutions for practical and general queue with

quantitative measurement.

2. For the F policy G/M/1/K queue with startup time, we have first provided

a recursive method for obtaining the steady-state probability distributions of the

number of customers in the system. Next, we have illustrated our recursive method

by a study of three different interarrival time distributions: exponential, 3-stage

Erlang, and deterministic. In addition, we provide a very efficient solution

algorithm to calculate the optimal threshold F at minimum cost. Finally, we have

performed a sensitivity analysis among the optimal value of F, specific values of

 64

system parameters, and the cost elements. Further, the developed controlling arrival

systems in this dissertation can be modeled many quality and service (Q & S)

system in real-life.

3. For the N policy M/G/1/K queue with startup time, we have developed

analytic steady-state results by using the supplementary variable technique. We

have provided a recursive method for obtaining the steady-state probability

distributions of the number of customers for such a system. To demonstrate the

working schemes of this method, we have constructed a solution algorithm to study

analytically one simple example where the service time distribution is 3-stage

Erlang.

Finally, we have developed the complementarity interrelationships between the

F policy and N policy for M/G/1/K and G/M/1/K queues with startup time. It is

important that we can simply obtain the solution of one if the other solution is

given.

6.2 Further Researches

The following problems of the controllable queues are worthy of further

investigations:

1. Optimal control of the F policy M/G/1/K queue with a unreliable

removable and startup server.

In chapter 2, we have studied the F policy M/G/1/K queue with startup time.

Hur and Par [19] dealt the N policy M/G/1 queueing system with server startup.

Wang and Ke [34] treated the dyadic policies M/G/1 queueing system with server

breakdowns. In the future, we may study the F policy M/G/1 queue with a

unreliable removable and startup server.

2. Optimal control of the F policy G/M/1/K queue with an unreliable

removable server.

In chapter 3, we have studied the F policy G/M/1/K queue with startup time.

In the future, we may study the F policy G/M/1/K queue with an unreliable

removable server.

3. System characteristics of the F policy G/M/1/K queue with startup time

 65

and system characteristics of the F policy M/G/1/K queue with startup time.

Ke [21] studied the operating characteristic of the N policy G/M/1 with

startup time. In the future, we may study the system characteristics of the F policy

G/M/1/K queue and F policy M/G/1/K queue with startup time.

4. Optimal control of the F policy G/G/1/K queue with startup time.

In this dissertation, we have studied the F policy M/G/1/K and G/M/1/K

queues with startup time. In the future, we may study the F policy G/G/1/K queue

with startup time.

5. Optimal control of the N policy M/G/1/K queue with an unreliable

removable server.

In chapter 4, we have studied the N policy M/G/1/K queue with startup time.

In the future, we may study the N policy M/G/1/K queue with a removable server.

6. Interrelationships between F policy and N policy for M/G/1/K and

G/M/1/K queues with general startup time.

In chapter 5, we have studied the interrelationships between F policy and N

policy for M/G/1/K queue and G/M/1/K queue with exponential startup time.

The relationships between F policy and N policy M/M/1/K queuing system with

exponential startup time was considered by Gupta [12]. In the future, we may study

the interrelationships between F policy and N policy for M/G/1/K and G/M/1/K

queues with general startup time.

7. Optimal control of the F policy M[X]/G/1/K queue with startup time.

In this dissertation, we have studied the F policy M/G/1/K queue with startup

time. In the future, we may study batch arrival for the F policy M[X]/G/1/K queue

with startup time.

 66

Appendix

We discuss the two cases with F+1=K : the F policy M/G/1/K queue with

startup time and the F policy G/M/1/K queue with startup time.

First, we modified (2.1)-(2.9) to (2.1a)-(2.6a) in the F policy M/G/1/K queue

with startup time. The new equations (2.1a)-(2.6a) are as following:

() () ()0,0 0,0 0,1
d

0, ,
d

P t P t P t
t

β= − + (2.1a)

() () () ()β +
∂ ∂⎛ ⎞− = − + , ≤ ≤⎜ ⎟∂ ∂⎝ ⎠

0, 0, 0, 1, , 0, 1 ,n n nP u t P u t P t s u n F
t u

 (2.2a)

() ()0, 1, 1, ,K KP u t P u t
t u

λ −
∂ ∂⎛ ⎞− = ,⎜ ⎟∂ ∂⎝ ⎠

 (2.3a)

() () () ()1,0 1,0 0,0 1,1
d

0, ,
d

P t P t P t P t
t

λ β= − + + (2.4a)

() () () () ()

() ()

λ β λ∂ ∂⎛ ⎞− = − + + +⎜ ⎟∂ ∂⎝ ⎠
,

1,1 1,1 0,1 1,0

1,2

, , ,

 0,

P u t P u t P u t P t s u
t u

P t s u

 (2.5a)

() () () () ()

() ()

λ β λ −

+

∂ ∂⎛ ⎞− = − + +⎜ ⎟∂ ∂⎝ ⎠
+ , ≤ ≤

1, 1, 0, 1, 1

1, 1

, , , ,

 0, 2 ,

n n n n

n

P u t P u t P u t P u t s u
t u

P t s u n F

 (2.6a)

Similarly, we can use (2.1a)-(2.6a) to obtain the algorithm of the steady-state

probability with the supplementary variable technique and the recursive method.

Second, we changed (3.1)-(3.8) to (3.1a)-(3.5a) in the F policy G/M/1/K

queue with startup time. The new equations (3.1a)-(3.5a) are as following:

() () ()0,0 0,0 0,1
d

,
d

P t P t P t
t

β μ= − + (3.1a)

() () () ()β μ μ += − + + ≤ ≤0, 0, 0, 1
d

, 1 ,
d n n nP t P t P t n F

t
 (3.2a)

() () ()0, 0, 1, 1
d

0, ,
d K K KP t P t P t

t
μ −= − + (3.3a)

() () ()1,0 0,0 1,1, , ,P v t P v t P v t
t v

β μ∂ ∂⎛ ⎞− = + ,⎜ ⎟∂ ∂⎝ ⎠
 (3.4a)

() () () () ()

()

μ β

μ

−

+

∂ ∂⎛ ⎞− = − + + +⎜ ⎟∂ ∂⎝ ⎠
, ≤ ≤

1, 1, 0, 1, 1

1, 1

, , , 0,

 , 1 ,

n n n n

n

P v t P v t P v t P t a v
t v

P v t n F

 (3.5a)

Likewise, we use (3.1a)-(3.5a) to yield the algorithm of the steady-state

probability with the supplementary variable technique and the recursive method.

 67

References

1. Alfa, A. S. and Frigui, I. (1996). Discrete NT-policy single server queue with

Markovian arrival process and phase type service. European Journal of Operational

Research, 88, 559-613.

2. Baker, K. R. (1973). A note on operating policies for the queue M/M/1 with

exponential startup. INFOR, 11, 71-72.

3. Balachandran, K. R. (1975). On the D-policy for the M/G/1 queue.

Management Science, 21, 1073-1076.

4. Bell, C. E. (1971). Characterization and computation of optimal policies for

operating an M/G/1 queueing system with removable server. Operations

Research, 19, 208-218.

5. Bell C. E. (1972). Optimal operation of an M/G/1 priority queue with

removable server. Operations Research, 21, 1281-1289.

6. Bolch, G., Greiner S., Meer de, H. and Trivedi, K. S. (1998) Queueing Networks

and Markov Chain. Volume II: Theory, John Wiley and Sons, Inc., New York.

7. Borthakur, A. Medhi, J. and Gohain, R. (1987). Poisson input queueing systems

with startup time and under control operating policy. Computers and Operations

Research, 14, 33-40.

8. Cox, DR (1955). The analysis of non-Markovian stochastic processes by the

inclusion of supplementary variables. Proceedings Cambridge Philosophical Society,

51, 433-441.

9. Crabill, T., Gross, D. and Magazine, M. (1977). A classified bibliography of

research on Optimal design and control of queues. Operations Research, 25,

219-232.

10. Doganata, Y. N. (1990). NT-vacation policy for M/G/1 queue with starter in: E.

Arikan (ed.), Communication, Control, and Signal Processing, Elsevier Science,

Amsterdam 1663-1669.

11. Gakis, K. G., Rhee, H. K. and Sivazlian, B. D. (1995). Distributions and first

moments of the busy and idle periods in controllable M/G/1 queueing models

with simple and dyadic policies. Stochastic Analysis and Applications, 13, 47-81.

12. Gupta, S. M. (1995). Interrelationship between controlling arrival and service in

queueing systems. Computers and Operations Research, 22, 1005-1014.

 68

13. Gupta, U. C. and Srinivasa Rao TSS (1994). A recursive method to compute the

steady state probabilities of the machine interference model : (M/G/1)/K.

Computers and Operations Research, 21, 597-605.

14. Gupta, U. C. and Srinivasa Rao TSS (1996). On the M/G/1 machine

interference model with spares. European Journal of Operational Research, 89,

164-171.

15. Gross, D. and Harris, C. M. (1985). Fundamentals of Queueing Theory. 2nd ed,

John Wiley and Sons, New York.

16. Hersh, M. and Brosh, I. (1980). The optimal strategy structure of an

intermittently operated service channel. European Journal of Operational Research,

5, 133-141.

17. Heyman, D. P. (1968). Optimal operating policies for M/G/1 queueing system.

Operations Research, 16, 362-382.

18. Heyman, D. P. (1977). The T-policy for the M/G/1 queue. Management Science,

23, 775-778.

19. Hur, S. and Paik, S. J. (1999). The effect of different arrival rates on the

N-policy of M/G/1 with server setup. Applied Mathematical Modelling, 23,

289-299.

20. Ke, J.-C. and Wang, K.-H. (2002). A recursive method for the N Policy G/M/1

queueing system with finite capacity. European Journal of Operational Research,

142, 577-594.

21. Ke, J.-C. (2003). The operating characteristic analysis on a general input queue

with N policy and a startup time. Mathematical Methods of Operations Research, 57,

235-254.

22. Ke, J.-C. (2005). Modified T vacation policy for M/G/1 queueing system with

an unreliable server and startup. Mathematical and Computer Modeling, 41, 1267

-1277.

23. Kimura, T. (1981) Optimal control of an M/G/1 queueing system with

removable server via diffusion approximation. European Journal of Operational

Research, 8, 390-398.

24. Kleinrock, L. (1975). Queueing Systems. Vol. II: Computer Applications, John

Wiley and Sons, Inc., New York.

 69

25. Krishna, Reddy G. V., Nadarajan, R. and Arumuganathan, R. (1998). Analysis

of a bulk queue with N-policy multiple vacations and setup times. Computers and

Operations Research, 25, 957-967.

26. Lee, H. W. and Park, J. O. (1997). Optimal strategy in N-policy production

system with early set-up. Journal of the Operational Research Society, 48, 306-313.

27. Levy, Y. and Yechiali, U. (1975). Utilization of idle time in an M/G/1

queueing system. Management Science, 22, 202-211.

28. Medhi, J. and Templeton, J. G. C. (1992). A poisson input queue under

N-policy and with a general start up time. Computers and Operations Research, 19,

35-41.

29. Takagi, H. (1993). A M/G/1/K queues with N-policy and setup times. Queueing

Systems, 14, 79-98.

30. Teghem J. Jr. (1987). Optimal control of a removable server in an M/G/1

queue with finite capacity. European Journal of Operational Research, 31, 358-367.

31. Tijms, H. C. (1986). Stochastic Modelling and Analysis: a computational approach.

John Wiley and Sons., New York.

32. Wang, K.-H., Chang, K.-W. and Sivazlian, B. D. (1999). Optimal control of a

removable and non-reliable server in an infinite and a finnite M/H2/1 queueing

system. Applied Mathematical Modelling, 23, 651-666.

33. Wang, K.-H. and Ke, J.-C. (2000). A recursive method to the optimal control of

an M/G/1 queueing system with finite capacity and infinite capacity. Applied

Mathematical Modelling, 24, 899-914.

34. Wang, K.-H. and Ke, J.-C. (2002). Control policies of an M/G/1 queueing

system with a removable and non-reliable server. International Transactions in

Operational Research, 9, 195-212.

35. Wang, K.-H., Shuang, S.-L., Pearn, W.-L. (2002). Maximum entropy analysis

to the N policy M/G/1 queueing system with a removable server. Applied

Mathematical Modelling, 26, 1151-1162.

36. Yadin, M. and Naor, P. (1963). Queueing systems with a removable service

station. Operational Research Quarterly, 14, 393-405.

	郭清章-博士論文電子檔071122-封面mark
	郭清章-博士論文電子檔071122-2
	Introduction
	The F Policy M/G/1/K Queue with Startup Time
	The F Policy G/M/1/K Queue with Startup Time
	The N policy M/G/1/K Queue with Startup Time
	Interrelationships between the F policy and the N policy for M/G/1/K and G/M/1/K Queues with Startup Time
	Conclusions and Future Researches

