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以知識流探勘與文件推薦提供知識支援 

研究生: 賴錦慧         指導教授: 劉敦仁 博士 

國立交通大學資訊管理研究所 

摘要 

知識是獲得與維持組織競爭優勢的重要來源。在不斷變動的商業環境中，組織必須

使用有效的方法來保留知識、分享知識和知識再利用，以協助知識工作者尋找工作相關

的資訊。因此，要如何從工作者過去的工作記錄中，發掘與建構知識流（Knowledge Flow）

是一個重要的議題。建立知識流模型的目的是在於，了解知識工作者的工作需求與參考

知識的方式，進而提供適性化的知識支援。此外，組織中的知識是透過知識流的遞送與

累積，而且知識工作者具備不同領域的知識，他們會參與以工作為基礎的群體，並進行

合作，以滿足工作的需求。 

本研究首先提出以知識流模型為基礎之混合式推薦方法，其整合知識流探勘、序列

規則探勘，以及協同式過濾技術來推薦工作知識。這些以知識流為基礎的推薦方法包含

二個階段：知識流探勘階段與知識流推薦階段。知識流探勘階段能藉由分析工作者的知

識參考行為（資訊需求），以發掘工作者的知識流；而知識流推薦階段則利用所提出的

混合式推薦方法，主動地提供相關知識給工作者。因此，根據工作者對於知識文件的喜

好與知識參考行為，本研究方法能預測工作者感興趣的主題，進而推薦工作相關的知識

文件給工作者。在實驗中，我們利用某研究單位實驗室的真實資料，來評估本研究之混

合式方法的推薦效果，並與傳統的協同式過濾方法做比較。最後，實驗結果顯示，工作

者對於知識文件的偏好與知識參考行為，可以有效地改善推薦品質並促進組織內的知識

分享。 

此外，為了協助群體學習與分享工作相關知識，針對以工作任務為基礎之群體，我

們提出整合資訊檢索與資料探勘技術之演算法，發掘與建構群體知識流（Group-based 

Knowledge Flow）。群體知識流可利用有向性之知識圖來表示，藉此呈現一群工作需求

相近工作者的知識參考行為（或知識流），而從知識圖中所發現的頻繁知識參考路徑，

可以代表群體使用者的頻繁知識流。為了驗證方法的效能，我們實作一個群體知識流探

勘之雛型系統。在一個重視協同合作與團隊合作的環境中，透過群體知識流探勘的方法

與系統，可以加強組織學習，以及知識的管理、分享與再利用。 

關鍵字: 知識流、知識流探勘、知識分享、文件推薦、協同式過濾、序列規則探勘、推

薦系統、群體知識流、知識圖、資料探勘、資訊檢索. 
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Knowledge Flow Mining and Document Recommendation  
For Knowledge Support 

 

Student: Chin-Hui Lai      Advisor: Dr. Duen-Ren Liu 

Institute of Information Management 
National Chiao Tung University 

Abstract 

Knowledge is a critical resource that organizations use to gain and maintain competitive 

advantages. In the constantly changing business environment, organizations must exploit 

effective and efficient methods of preserving, sharing and reusing knowledge in order to help 

knowledge workers find task-relevant information. Hence, an important issue is how to 

discover and model the knowledge flow (KF) of workers from their historical work records. 

The objectives of a knowledge flow model are to understand knowledge workers’ task-needs 

and the ways they reference documents, and then provide adaptive knowledge support. 

Additionally, knowledge is circulated and accumulated by knowledge flows (KFs) in the 

organization to support workers’ task needs. Because workers accumulate knowledge of 

different domains, they may cooperate and participate in several task-based groups to satisfy 

their needs.  

This work first proposes hybrid recommendation methods based on the knowledge flow 

model, which integrates KF mining, sequential rule mining and collaborative filtering 

techniques to recommend codified knowledge. These KF-based recommendation methods 

involve two phases: a KF mining phase and a KF-based recommendation phase. The KF 

mining phase identifies each worker’s knowledge flow by analyzing his/her knowledge 

referencing behavior (information needs), while the KF-based recommendation phase utilizes 

the proposed hybrid methods to proactively provide relevant codified knowledge for the 

worker. Therefore, the proposed methods use workers’ preferences for codified knowledge as 

well as their knowledge referencing behavior to predict their topics of interest and recommend 

task-related knowledge. Using data collected from a research institute laboratory, experiments 

are conducted to evaluate the performance of the proposed hybrid methods and compare them 
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with the traditional CF method. Finally, the results of experiments demonstrate that utilizing 

the document preferences and knowledge referencing behavior of workers can effectively 

improve the quality of recommendations and facilitate efficient knowledge sharing. 

Moreover, to support group-based learning and share task-related knowledge, we 

propose an algorithm that integrates information retrieval and data mining techniques to mine 

and construct group-based KFs (GKFs) for task-based groups. A GKF is expressed as a 

directed knowledge graph which represents the knowledge referencing behavior, or 

knowledge flow, of a group of workers with similar task needs. The frequent knowledge 

referencing path is identified from the knowledge graph to indicate the frequent knowledge 

flow of the workers. To demonstrate the efficacy of the proposed method, we implement a 

prototype of the GKF mining system. Our GKF mining method and system can enhance 

organizational learning and facilitate knowledge management, sharing, and reuse in an 

environment where collaboration and teamwork are essential.  

Keywords: Knowledge Flow, Knowledge Flow Mining, Knowledge Sharing, Document 
Recommendation, Collaborative Filtering, Sequential Rule Mining, Recommender System, 
Group-based Knowledge Flow, Knowledge Graph, Data Mining, Information Retrieval. 
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Chapter 1. Introduction 

1.1 Research Background and Motivation 

Organizational knowledge can be used to create core competitive advantages and achieve 

commercial success in a constantly changing business environment. Hence, organizations 

need to adopt appropriate strategies to preserve, share and reuse such a valuable asset, as well 

as to support knowledge workers effectively [42, 44]. Knowledge and expertise are generally 

codified in textual documents, e.g., papers, manuals and reports, and preserved in a 

knowledge database. This codified knowledge is then circulated in an organization to support 

workers engaged in management and operational activities [12]. Because most of these 

activities are knowledge-intensive tasks, the effectiveness of knowledge management depends 

on providing task-relevant documents to meet the information needs of knowledge workers. 

In task-based business environments, knowledge management systems (KMSs) can 

facilitate the preservation, reuse and sharing of knowledge. Moreover, workers may need to 

obtain task-relevant knowledge to complete a knowledge-intensive task by referencing 

codified knowledge (documents); For example, based on a task’s specifications and the 

process-context of the task, the KnowMore system [1] provides context-aware knowledge 

retrieval and delivery to support workers’ procedural activities. The task-based K-support 

system [39, 58] adaptively provides knowledge support to meet a worker’s dynamic 

information needs by analyzing his/her access behavior or relevance feedback on documents. 

To help knowledge workers complete multiple tasks, TaskTracer [19] was developed to 

monitor workers’ activities and help them rapidly locate and reuse processes employed 

previously. However, previous research on task-based knowledge support did not analyze and 

utilize the flow of knowledge among various types of codified knowledge (documents) to 

provide effective recommendations about task-relevant documents.  

Knowledge flow (KF) research focuses on how KF can transmit, share, and accumulate 

knowledge when it passes from one team member/process to another. In a workflow situation, 

work knowledge may flow among workers in an organization, while process knowledge may 

flow among various tasks [61-62, 64]. Thus, KF reflects the level of knowledge cooperation 
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between workers or processes and influences the effectiveness of teamwork/workflow. Zhuge 

[61] proposed a management mechanism for realizing ordered knowledge sharing, and 

integrated the knowledge flow with the workflow to assist people working in a complex and 

knowledge intensive environment. Also, KF plays an important role in academic research, as 

researchers often devise novel concepts based on previous research reported in the literature 

[63]. However, to the best of our knowledge, there is no systematic method that can flexibly 

identify KF in order to understand the information needs of workers. Furthermore, 

conventional KF approaches do not analyze knowledge flow from the perspective of 

information needs and recommend relevant documents based on the discovered KF. 

Knowledge workers normally have various task needs over time. Moreover, they may 

need to obtain task-relevant knowledge to complete a task by referencing several types of 

codified knowledge (documents); and the knowledge in one document may prompt a worker 

to reference another related document. Based on a worker’s referencing behavior, KF can be 

used to describe the evolution of information needs, preferences, and knowledge accumulated 

for a specific task. From the perspective of information needs, some knowledge in a KF may 

have a higher priority for accomplishing a task. For example, before taking a Data Mining 

course, a student must take courses in Statistics and Database Systems, which represent the 

fundamental knowledge of Data Mining. Thus, these two courses are significant and have a 

high priority for the student. Additionally, academic knowledge may flow between different 

courses and thereby help students accumulate more knowledge. Similarly, the codified 

knowledge for a task also has different referencing priorities and ordering based on its 

perceived importance. In other words, important basic knowledge about a task should be 

referenced first. Therefore, KF can be utilized to provide effective recommendations about 

task-relevant knowledge to suit workers’ information needs for tasks. This issue has not been 

addressed by previous research. 

In task-based business environments, large amounts of such codified knowledge are 

circulated and accumulated in an organization to support knowledge workers engaged in 

diverse tasks and activities. Knowledge workers may cooperate with each other to accomplish 

a specific task. During the collaboration phase, task knowledge can be transmitted, shared and 

accumulated from one team member/process to another. Knowledge flows (KFs) can be used 
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to represent the long-term evolution of workers’ information needs [36]. Based on those needs, 

the knowledge flow-based document recommendation method proactively delivers 

task-relevant topics and documents to the workers. 

To work more efficiently, workers who have task-related knowledge, expertise and 

experience may join a task-based group and collaborate to perform a task. The workers can 

share task-related knowledge delivered by their knowledge flows (KF) during the 

collaboration. In addition, workers in the same group may have similar referencing behavior 

and techniques for learning knowledge. Each group may require knowledge of different topic 

domains to accomplish its tasks and goals. Because the information needs of workers or 

groups may change over time, modeling the knowledge referencing behavior of a group of 

workers is difficult. Obviously, recognizing those needs, delivering knowledge during the 

collaboration, and facilitating knowledge sharing/reuse are important issues that must be 

addressed in a knowledge intensive organization. However, to the best of our knowledge, 

there is no appropriate approach for analyzing and constructing KFs from the perspective of a 

group’s information needs; and very little research effort has been expended on KF mining for 

task-based groups.  

1.2 Research Objectives 

According to the research motivation, the major research objectives are listed below. 

 Mining the knowledge flow for each knowledge worker and a group of workers; 

 Identifying and analyzing topics of interest, major referencing behavior patterns, 

and the long-term evolution of workers’ information needs; 

 Providing knowledge support adaptively based on the referencing behavior of 

workers; 

 Effectively recommending task-relevant knowledge to suit workers’ information 

needs for tasks; 

 Enhancing organizational learning and task collaboration; 

 Facilitating knowledge dissemination, sharing and reusing among workers in the 

context of collaboration and teamwork; 
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1.3 The Approaches Based on Knowledge Flow 

In an attempt to resolve the limitations of previous research, we first propose KF-based 

recommendation methods for recommending task-related codified knowledge. To adaptively 

provide relevant knowledge, collaborative filtering (CF), the most frequently used method, 

predicts a target worker’s preference(s) based on the opinions of similar workers. However, 

the target worker’s referencing behavior may change over the period of the task’s execution, 

because his/her information needs may vary. Traditional CF methods only consider workers’ 

preferences for codified knowledge. They neglect the effect of the time factor, i.e., workers’ 

referencing behavior for knowledge over time. To fill this research gap, we propose a 

KF-based sequential rule method (KSR) that recommends codified knowledge by utilizing the 

KF-based sequential rules. However, the method is based on the target worker’s referencing 

behavior without considering the opinions of his/her neighbors who may have similar 

preference for documents. Therefore, to take advantage of the merits of typical CF and KSR 

methods, we propose hybrid recommendation methods that combine CF and KSR methods to 

enhance the quality of document recommendation. The hybrid methods consider workers’ 

preferences for codified knowledge, as well as their knowledge referencing behavior, in order 

to predict topics of interest and recommend task-related knowledge. 

The proposed hybrid methods consist of two phases: a KF mining phase and a KF-based 

recommendation phase. To determine a knowledge worker’s referencing behavior, the KF 

mining phase analyzes his/her historical work records to identify the knowledge flow, i.e., the 

target worker’s information needs. Then, the KF-based recommendation phase selects and 

recommends documents based on the document preferences and KF-based sequential rules 

derived from the target worker’s neighbors. In other words, the proposed methods trace a 

worker’s information needs by analyzing his/her knowledge referencing behavior for a task 

over time, and also proactively provide relevant codified knowledge for the worker based on 

the KFs of the worker’s neighbors. 

According to the KF mining approach [36], we extend it and propose algorithms that 

integrate information retrieval and data mining techniques for mining and constructing the 

group-based knowledge flows (GKFs). Specifically, we discover a group’s KF from the KFs 

of the participating workers. First, based on the workers’ logs, we analyze each worker’s 
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referencing behavior when acquiring task-related knowledge, and then construct his/her KF. 

Workers who have similar KFs are clustered into the same group by a clustering method, and 

the resulting group is regarded as a working group. Because workers in the same group may 

adopt different behavior when referencing task-related knowledge, we design GKF mining 

algorithms to discover the frequent referencing behavior of a group of workers. Second, we 

apply the concepts of graph theory to visualize the GKF as a knowledge graph in which a 

vertex and an edge indicate, respectively, a topic domain and a direct flow relation between 

two topic domains. From the knowledge graph, frequent knowledge paths (patterns) can be 

identified based on the edge frequencies in the graph. The paths represent the worker’s 

frequent knowledge referencing behavior and important knowledge flows in the group. 

Finally, to demonstrate the efficacy of our proposed method, we implement a prototype 

system for mining the GKF of a group of workers. The system provides useful functions that 

allow users to simplify the complexity of KF mining and visualize KFs graphically. 

1.4 Organization of the proposal 

The remainder of this proposal is organized as follows. Chapter 2 provides a brief 

overview of related works. In Chapter 3, we describe the knowledge flow model, the 

overview of knowledge flow-based research and the knowledge flow mining phase. The 

knowledge flow-based recommendation framework is illustrated in Chapter 4. The 

group-based knowledge flow mining methods are illustrated in Chapter 5. According to these 

methods, we propose a prototype system for mining the group-based knowledge flow. Finally, 

in Chapter 6, we summarize our conclusions and consider future research directions. 
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Chapter 2. Related Work 

In this chapter, we discuss the background of our research, including knowledge flow, 

information retrieval and task-based knowledge support, document clustering methods, 

dynamic programming algorithm, rule-based recommendations, collaborative filtering and 

process mining.  

2.1 Knowledge Flow 

Knowledge can flow among people and processes to facilitate knowledge sharing and 

reuse. The concept of knowledge flow has been applied in various domains, e.g., scientific 

research, communities of practice, teamwork, industry, and organizations [33, 63]. Scholarly 

articles represent the major medium for disseminating knowledge among scientists to inspire 

new ideas [8, 63]. A citation implies that there is knowledge flow between the citing article 

and the cited article. Such citations form a knowledge flow network that enables knowledge 

to flow between different scientific projects to promote interdisciplinary research and 

scientific development.  

KM enhances the effectiveness of teamwork by accumulating and sharing knowledge 

among team members to facilitate peer-to-peer knowledge sharing [61]. To improve the 

efficiency of teamwork, Zhuge [62] proposed a pattern-based approach that combines 

codification and personalization strategies to design an effective knowledge flow network. 

Kim et al. [33] proposed a knowledge flow model combined with a process-oriented approach 

to capture, store, and transfer knowledge. KF in weblogs (blogs) is a communication pattern 

where the post of one blogger links to that of another blogger to exchange knowledge [8]. 

Similarly, knowledge flow in communities of practice helps members share their knowledge 

and experience about a specific domain to complete their tasks [46]. 

2.2 Information Retrieval and Task-based Knowledge Support 

Information retrieval (IR) facilitates access to specific items of information [10, 21]. The 

vector space model [48] is typically used to represent documents as vectors of index terms, 

where the weights of the terms are measured by the tf-idf approach. tf denotes the occurrence 

frequency of a particular term in the document, while idf denotes the inverse document 
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frequency of the term. Terms with higher tf-idf weights are used as discriminating terms to 

filter out common terms. The weight of a term i in a document j, denoted by wi,j, is expressed 

as follows:  

)1(log2,,, +×=×=
n
Ntfidftfw jiijiji , (1) 

where tfi,j is the frequency of term i in document j, idfi is measured by (log2 N/n) + 1, N is 

the total number of documents in the collection, and n is the number of documents in which 

term i occurs at least once.  

Information retrieval techniques coupled with workflow management systems (WfMS) 

have been used to support proactive delivery of task-specific knowledge based on the context 

of tasks within a process [2]. For example, the KnowMore system [1] provides context-aware 

delivery of task-specific knowledge. The Kabiria system assists knowledge workers with 

knowledge-based document retrieval by considering the operational context of task-associated 

procedures [9].  

Information filtering with a similarity-based approach is often used to locate knowledge 

items relevant to the task-at-hand. The discriminating terms of a task are usually extracted 

from a knowledge item/task to form a task profile, which is used to model a worker’s 

information needs. Holz et al. [27] proposed a similarity-based approach to organize desktop 

documents and proactively deliver task-specific information. Liu et al. [39] proposed a 

K-Support system to provide effective task support for a task-based working environment.  

2.3 Document Clustering Methods 

Document clustering or unsupervised document classification methods are used in many 

applications. Most methods apply pre-processing steps to the document set and represent each 

document as a vector of index terms. To cluster similar documents, the similarity between 

documents is usually measured by the cosine measure [10, 57], which computes the cosine of 

the angle between their corresponding feature vectors. Two documents are considered similar 

if the cosine similarity value is high. The cosine similarity of two documents, X and Y, is 

simcos(X, Y)=
YX
YX ⋅ , where X and Y  are the feature vectors of X and Y respectively. 
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Documents within a cluster are very similar, while documents in different clusters are very 

dissimilar. 

Agglomerative hierarchical clustering [30, 32] is a popular document clustering method. 

In this work, we use the single-link clustering method [20, 29] to cluster codified knowledge 

(documents). Initially, each document is regarded as a cluster. Next, the single-link method 

computes the similarity between two clusters, which is equal to the greatest similarity 

between any document in one cluster and any document in the other cluster. Then, based on 

the similarity measurement, the two most similar clusters are merged to form a new cluster. 

The merging process continues until all documents have been merged into one cluster at the 

top of a hierarchy, or a pre-specified threshold is satisfied [29]. 

2.3.1 The CLIQUE Clustering Method 

We also apply the CLIQUE clustering method [6, 29] to derive worker groups. CLIQUE 

starts with the definition of a unit-elementary rectangular cell in a subspace and uses a 

bottom-up approach to find units whose densities exceed a threshold. The algorithm has four 

key steps. First, 1-dimensional units are determined by dividing intervals into equal-width 

bins (a grid). Next, candidate k-dimensional units are generated from (k-1)-dimensional dense 

units, which involves self-joining of k-1 units that have common k-2 dimensions 

(Apriori-reasoning). Finally, all the subspaces are sorted by their coverage and those with less 

coverage are pruned. Therefore, a cluster is defined as a maximal set of connected dense 

units.  

2.3.2 Clustering Quality 

A good clustering method generates clusters that are cohesive and isolated from other 

clusters. For this reason, the measurement of clustering quality takes both inter-cluster 

similarity and intra-cluster similarity into account [16]. Let C be a set of clusters. The 

inter-cluster similarity between two clusters Ci and Cj, similarityA(Ci, Cj), is defined as the 

average of all pairwise similarities between the documents in Ci and Cj; and the intra-cluster 

similarity within a cluster Ci, similarityA(Ci, Ci), is defined as the average of all pairwise 

similarities between documents in Ci. On the basis of the cohesion and isolation of C, the 

quality measure of C , CQ(C), is defined as: 
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Note that the smaller the value of CQ(C), the better the quality of the derived set of 

clusters, C, will be. 

2.4 Dynamic Programming Algorithm for Sequence Alignment 

In this work, each worker’s knowledge flow is represented as a sequence. We use 

sequence alignment techniques to analyze the similarity of workers’ knowledge flows, which 

corresponds to a sequence alignment problem. Such techniques are used to compare or align 

strings in many application domains, such as biology, speech recognition, and web session 

clustering. A number of methods can be used for sequence alignment, e.g., the sequence 

alignment method (SAM) [14, 24] and dynamic programming. SAM, also called the string 

edit distance method [35], considers the sequential order of elements in a sequence and then 

measures the similarity/dissimilarity of sequences. The measurements reflect the operations 

necessary to equalize the sequences by computing the costs of deleting and inserting unique 

elements as well as the costs of reordering common elements [24, 41]. In addition, Charter et 

al. [14] proposed a dynamic programming algorithm that solves the sequence alignment 

problem efficiently. 

The algorithm consists of three steps: initialization, FindScore and FindPath [14, 43]. 

The first step creates a dynamic programming matrix with N+1 columns and M+1 rows, 

where N and M correspond to the sizes of the sequences to be aligned. One sequence is placed 

at the top of the matrix and the other is placed on the left-hand side of the matrix. There is a 

gap at the end of each sequence to allow calculation of the alignment score. The FindScore 

step calculates the two-dimensional alignment score of sequences. If two aligned sequences 

have an identical matching in the same column, the column is given a positive score s (e.g., 

+1 or +2); but if the values in a column are mismatches, the score s is zero or negative (e.g., 0, 

-1 or -2). In addition, if a column contains a gap, it is given a penalty score w (e.g., 0, -1 or -2). 

Therefore, starting from the bottom right-hand corner, each position in the dynamic 

programming matrix is given the maximal score Mij. For each position in the matrix, Mij is 

defined as follows: 
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( ) ( ) ( ){ }wMwMsMMaximumM jijiijjiij +++= −−−− ,11,1,1 ,, , (3) 

where i is the row number, j is the column number, sij is the match/mismatch score, and 

w is the penalty score. The third step, FindPath, determines the actual KF alignment that 

derives the maximal score. It traverses the matrix from the destination point (top left-hand 

corner) to the starting point (bottom right-hand corner) to find an optimal alignment path in 

order to determine the maximal alignment score δ. We calculate the flow similarity based on 

the maximal alignment score. The details are given in Section 4.2. 

2.5 Rule-based Recommendations 

Association rule mining [3-4, 59] is a widely used data mining technique that generates 

recommendations in recommender systems. An association rule describes the relationships 

between items, such as products, documents, or movies, based on patterns of co-occurrence 

across transactions. The Apriori algorithm [3-4] is usually employed to identify such rules. 

Two measures, support and confidence, are used to indicate the quality of an association rule 

[3]. The discovered rules should satisfy two user-defined requirements, namely minimum 

support and minimum confidence.  

To improve the quality of traditional CF, Cho et al. [15] proposed a sequential rule-based 

recommendation method that considers the evolution of customers’ purchase sequences. 

Transactions are clustered into a set of q transaction clusters, C={C1,C2,…,Cq}, where each Cj 

is a subset of transactions. Each customer’s transactions over l periods are then transformed 

into transaction clusters as a behavior locus, Li =<Ci,T-l-1,…Ci,T-1, Ci,T>, where Ci,T-k ∈ C, 

k=1,2,…,l-1, l≧2. Finally, sequential purchase patterns are extracted from the behavior locus 

of customers by time-based association rule mining to keep track of customers’ preferences 

during l periods, with T as the current (latest) period. A sequential rule is expressed in the 

form CT-l+1, …, CT-1 ⇒ CT, where CT represents the customers’ purchase behavior in period T. 

If a target customer’s purchase behavior prior to period T was similar to the conditional part 

of the rule, then it is predicted that his/her purchase behavior in period T will be CT. 

Accordingly, CT is used to recommend products to the target customer in T. 
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2.6 Collaborative Filtering Recommendation 

Collaborative filtering (CF) is a well-known approach for recommender systems: 

GroupLens [34], Ringo [51], Siteseer [47], and Knowledge Pump [22]. CF recommends items, 

e.g., products, movies, and documents, based on the preferences of people who have the same 

or similar interests to those of the target user [11, 38, 40]. The CF approach involves two 

steps: neighborhood formation and prediction. The neighborhood of a target user is selected 

according to his/her similarity to other users, and is computed by Pearson correlation 

coefficient or the cosine measure. Either the k-NN (nearest neighbor) approach or a 

threshold-based approach is used to choose n users that are most similar to the target user. 

Here, we use the k-NN approach. In the prediction step, the predicted rating is calculated from 

the aggregated weights of the selected n nearest neighbors’ ratings, as shown in Eq. (4): 

( )
∑

∑
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=
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i

n

i iji
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rriuw
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1 ,
,

),(

),(
,  (4) 

where Pu,j  denotes the prediction rating of item j for the target user u; ur and ir  are the 

average ratings of user u and user i, respectively; w(u,i) is the similarity between target user u 

and user i; ri,j is the rating of user i for item j; and n is the number of users in the 

neighborhood.  

Similar to the PCF method, the item-based collaborative filtering (ICF) algorithm [37, 40, 

50] analyzes the relationships between items (e.g., documents) first, rather than the 

relationships between users. Then, the item relationships are used to compute 

recommendations for workers indirectly by finding items that are similar to other items the 

worker has accessed previously. Thus, the prediction for an item j for a user u is calculated by 

the weighted sum of the ratings given by the user for items similar to j and weighted by the 

item similarity, as shown in Eq. (5). 

∑
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where pu,j represents the predicted rating of item j for user u; w(j,m) is the similarity 

between two items j and m; and rj,m denotes the rating of user u for item m. A number of 
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methods can be used to determine the similarity between items e.g., the cosine-based 

similarity, correlation-based similarity, and adjusted cosine similarity methods. Since the 

adjusted cosine similarity method performs better than the others [50], we use it as the 

similarity measure for the ICF method. The adjusted cosine similarity between two items i 

and j is given by Eq. (6).  
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where ru,i / ru,j is the rating of item i/j given by user u; and ur  is the average item rating 

of user u.  

2.7 Process Mining 

In a workflow system, a process mining technique is used to extract the description of a 

structural process from a set of real process executions [54]. It then infers the relations 

between the tasks/activities and generates a process model from event-based data (log data) 

automatically [7, 53, 55-56]. The relations between processes (tasks/activities) are defined as 

casual relations and parallel relations, and are modeled by a directed graph [7, 23] or an 

instance graph [56]. Because a workflow log contains information about workflow processes, 

a loop may occur in a process. Most process mining algorithms assume that loops do not exist 

[23, 56]. However, some algorithms have been proposed to handle the problem of process 

loops [18, 54]. For example, Agrawal, et al.’s algorithm [7] builds a general directed graph 

with cycles for mining process models from the logs of executed processes. The algorithm 

labels multiple instances of the same activity with different identifies to differentiate them in 

the workflow graph. Vertices with different instances of the same activity form an equivalent 

set and can be merged to form one vertex. A directed edge is added if there is an edge 

between two vertices of different equivalent sets. 

Process mining is used in various applications. Discovering frequently occurring 

temporal patterns in process instances facilitates intelligent and automatic extraction of useful 

knowledge to support business decision-making [7, 28]. Similarly, data mining techniques are 

exploited in workflow management contexts to mine frequent workflow execution patterns 

[23]. The frequent patterns represent blocks of activities that have been scheduled together 
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more frequently during the execution of a process. The sequence of activities within a process, 

the time required to complete it, the execution cost and the reliability of the process can be 

predicted by using the process path mining technique [13]. Based on the process patterns and 

process paths, unexpected and useful knowledge about the process is extracted to help the 

user make appropriate decisions. In addition, combining the concepts of process mining and 

social network analysis is useful for mining social networks from event logs [52].  

Another benefit of process mining is that it is useful for discovering how people and/or 

procedures work [54]. In this work, we use process mining to analyze the relations between 

knowledge topics in a knowledge flow and model the referencing behavior of a group of 

workers. We design algorithms for mining the group-based knowledge flow (GKF) and 

construct a GKF as a directed knowledge graph. In such graphs, frequent knowledge paths 

can be derived to represent the most common referencing behavior of the group.  
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Chapter 3. The Overview of Knowledge Flow-Based Research 

3.1 Knowledge Flow Model 

In a knowledge-intensive and task-based environment, workers may need to access a 

large number of documents (codified knowledge) to accomplish a task. From the perspective 

of information needs, a worker’s knowledge flow (KF) represents the evolution of his/her 

information needs and preferences during a task’s execution. Workers’ KFs are identified by 

analyzing their knowledge referencing behavior based on their historical work logs, which 

contain information about previously executed tasks, task-related documents and when the 

documents were accessed. 

A KF consists of two levels: a codified level and a topic level, as shown in Fig. 1. The 

knowledge in the codified-level indicates the knowledge flow between documents based on 

the access time. In most situations, the knowledge obtained from one document prompts a 

knowledge worker to access the next relevant document (codified knowledge). Hence, the 

task-related documents are sorted by their access time to obtain a document sequence as the 

codified-level KF.  

Documents with similar concepts can be grouped together automatically to form a 

topic-level abstraction of knowledge. Note that each topic may contain several task-related 

documents. The codified-level KF can be abstracted to form a topic-level KF, which 

represents the transitions between various topics. Since the task knowledge in the topic level 

may flow among topics, it could prompt the worker(s) to retrieve knowledge from the next 

related topic. Formally, we define knowledge flow as follows. 

 

Fig. 1: The two levels of a knowledge flow 
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Definition 1: Knowledge Flow (KF) 

Let a worker’s knowledge flow be },{ v
w

v
w

v
w CKFTKFlowKF = , where v

wTKF  is the 

topic-level KF of the worker w for a task v, and v
wCKF is his/her codified-level KF for the task 

v.  

Definition 2: Codified-Level KF 

A codified-level KF is a time-ordered sequence arranged according to the access times of 

the documents it contains. Thus, it is defined as ><= ft
w

t
w

t
w

v
w ddd CKF ,,, 21

, and fttt <<< 21 , 

where jt
wd denotes the document that the worker w accessed at time tj for a specific task v. 

Each document can be represented by a document profile, which is an n-dimensional vector 

containing weighted terms that indicate the key content of the document. 

Definition 3: Topic-Level KF 

A topic-level KF is a time-ordered topic sequence derived by mapping documents in the 

codified-level KF to corresponding topics. Thus, it is defined as ><= ft
w

t
w

t
w

v
w TPTPTP TKF ,,, 21 , 

fttt <<< 21  , where jt
wTP denotes the corresponding topic of the document that worker w 

accessed at time tj for a specific task v. Each topic is represented by a topic profile, which is 

an n-dimensional vector containing weighted terms that indicate the key content of the topic. 
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3.2 The Framework of Knowledge Flow-based Approaches 

 

Fig. 2: The overview of knowledge flow-based research 

Fig. 2 illustrates the overview of our research which is knowledge flow-based 

approaches for providing knowledge support. According to the definition of knowledge flow, 

the knowledge flow mining is used to identify both topic-level and codified-level KF of each 

knowledge worker based on their log data which consists of the access behavior of 

task-related documents. Then, based on the discovered KF, our research is divided into two 

parts: KF-based recommendation phase and group-based KF mining methods.  

The KF-based recommendation phase selects and recommends documents based on 

document preferences and knowledge flows derived from the target worker’s neighbors. In 

other words, the proposed recommendation methods trace a worker’s information needs by 

analyzing his/her knowledge referencing behavior for a task over time, and also proactively 

provide relevant codified knowledge for the worker based on the KFs of the worker’s 

neighbors.  

According to the KF mining approach [36], we propose the group-based KF mining 

algorithms that integrate information retrieval and data mining techniques for mining and 

constructing the group-based knowledge flows (GKFs). Specifically, we discover a group’s 

KF from the KFs of the participating workers and identify the frequent referencing behavior 
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of a group of workers. Then, the concepts of graph theory are applied to visualize the GKF as 

a knowledge graph. The paths on such graph represent the workers’ frequent knowledge 

referencing behavior and important knowledge flows in the group. Section 3.3 describes the 

details of knowledge flow mining first. Then, the two parts of our research are based on the 

mining results and are illustrated in Chapter 4 and Chapter 5. 

3.3 Knowledge Flow Mining Phase 

The objective of the knowledge flow (KF) mining phase is to identify the KF of each 

knowledge worker. In this Section, we describe how the KF mining method identifies KFs 

from workers’ log. This phase consists of three steps: document profiling, document 

clustering and KF extraction. In the first step, each document is represented as a document 

profile, which is an n-dimensional vector comprised of significant terms and their weights. 

Then, based on the document profiles, documents with higher similarity measures are grouped 

in clusters by the hierarchical clustering method. In the third step, topic-level and 

codified-level KFs are generated from the document clustering results. A topic-level KF is 

expressed as a sequence of topics referenced by a worker, while a codified-level KF is 

represented as a sequence of codified knowledge accessed by a worker. Further details are 

given in the following subsections. 

3.3.1 Document Profiling and Document Clustering 

Two profiles, a document profile and a topic profile, are used to represent a worker’s KF. 

A document profile can be represented as an n-dimensional vector composed of terms and 

their respective weights derived by the normalized tf-idf approach based on Eq. (1). Based on 

the term weights, terms with higher values are selected as discriminative terms to describe the 

characteristics of a document. The document profile of dj is comprised of these discriminative 

terms. Let the document profile be >=< njnjjjjjj dtwdtdtwdtdtwdtDP :,,:,: 2211 , where dtij is the 

term i in dj and dtwij is the degree of importance of a term i to the document dj, which is 

derived by the normalized tf-idf approach. The document profiles are used to measure the 

similarity of the documents. 

We adopt the single-link hierarchical clustering method [29] to group documents with 
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similar profiles into clusters by using the cosine measure to calculate the similarity between 

the profiles of two documents. The single-link method computes the cluster similarity 

between two clusters Cr and Ct by ( ){ }
,

,
i r j t

i jd C d C
max simcos d d
∈ ∈

 [60], and then merges the two most 

similar clusters into a single cluster. The similarity computation and cluster combination steps 

are repeated until the similarity of the most similar pair of clusters is no greater than a 

pre-specified threshold value. Different clustering results can be obtained by setting different 

threshold values. We adjust the threshold value systematically and use the quality measure 

described in Section 2.3.2 to evaluate each clustering result. Then, we take the one with the 

best quality measure as our clustering result. Note that a cluster represents a topic set and has 

a topic profile (derived from the document cluster) that describes the features of the topic. 

Topic Profile 

Documents in the same cluster contain similar content and form a topic set. The key 

features of the cluster are described by a topic profile, which is derived from the profiles of 

documents that belong to the cluster. Let >=< nxnxxxxxx dtwttttwttttwttTP :,,:,: 2211  be the 

profile of a topic (cluster) x, where ixtt is a topic term and ixttw is the weight of the topic term. 

In addition, let Dx be the set of documents in cluster x. The weight of a topic term is 

determined by Eq. (7) as follows:  

x

Dj
ij

ix D

dtw
ttw x

∑
∈= , (7) 

where dtwij is the weight of term i in document j, and |Dx| is the number of documents in 

cluster x. The weight of a topic term is obtained from the average weight of the terms in the 

document set.  

3.3.2 Knowledge Flow Extraction 

In this section, we describe the method used to extract a worker’s KF from his/her data 

log when performing a task. We define a task as a unit of work, which denotes either a 

previously executed (i.e., historical) task or the current task. When performing a task in a 

knowledge-intensive and task-based environment, a worker usually requires a large amount of 

task-related knowledge to accomplish the task. By analyzing a worker’s referencing behavior 

for a specific task, the corresponding knowledge flow of the task is derived by the knowledge 
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flow extraction method. Note that if a worker performs more than one task, more than one 

knowledge flow will be extracted. For a specific task, the method derives two kinds of KF, 

codified-level KF and topic-level KF, to represent the worker’s information needs for the task. 

Codified-Level Knowledge Flow 

The codified-level KF is extracted from the documents recorded in the worker’s work 

log. In most situations, workers are motivated to access a document about a specific task 

because of knowledge derived from other documents. The documents are arranged according 

to the times they were accessed, and a document sequence, i.e., a codified-level KF, is 

obtained. The order of documents in the sequence is subjective, since it is determined by the 

worker. In other words, each worker has his/her own codified-level KF, which represents 

his/her knowledge accumulation process for a specific task at the codified level.  

Topic-Level Knowledge Flow 

The topic-level KF is derived by mapping documents in the codified-level KF of a 

specific task into corresponding clusters and is represented by a topic sequence. In the 

previous step, documents with similar content were grouped into clusters. We use the 

document clustering results to map the documents in the codified-level KF into topics 

(clusters) in order to compile the topic-level KF. Since the codified-level KF is the basis of 

the topic-level KF, the knowledge in the latter is an abstraction of the former, and indicates 

how knowledge flows among various topics. A topic in the topic-level KF may be duplicated 

because the worker may read about the same topic frequently to obtain essential knowledge 

while executing a task. 
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Chapter 4. Knowledge Flow-based Recommendation Framework 

The proposed recommendation methods are illustrated in Fig. 3. Our methods consist of 

two phases, a knowledge flow mining phase and a KF-based recommendation phase. The first 

phase identifies the worker’s knowledge flow from the large amount of knowledge in the 

worker’s log. Then, the second phase recommends codified knowledge to the target worker 

by using the proposed recommendation methods.  

 

Fig. 3: Document recommendation based on knowledge flows 

In the knowledge flow mining phase, KFs are identified from the task requirements and 

the referencing behavior of workers recorded in their logs. As tasks are performed at various 

times, each knowledge worker requires different kinds of knowledge to achieve a goal or 

complete a task. Further details about this phase are given in Section 3.3. 

The proposed hybrid recommendation methods combine a KF-based sequential rule 

(KSR) method with a user-based/item-based collaborative filtering (CF). The KSR method is 

regarded as the core process of the proposed hybrid methods. In the KSR method, workers 

with similar KFs to that of the target worker are deemed neighbors of the target worker and 

their knowledge referencing behavior patterns are identified by a sequential rule mining 

method. Based on the discovered sequential rules and the neighbors’ KFs, relevant topics and 

codified knowledge are recommended to the target worker to support the task-at-hand. 

Moreover, by considering workers’ preferences for codified knowledge, the CF method 
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makes recommendations to the target worker based on the opinions of similar workers. Three 

approaches are used to find similar workers to the target worker. The 

preference-similarity-based CF method (PCF) chooses workers with similar preferences, 

while the KF-similarity-based CF method (KCF) chooses workers with similar KFs. Different 

from these two user-based methods, the item-based CF method predicts a document rating 

based on its similar documents that have been rated by a target user. To adaptively and 

proactively recommend codified knowledge, we consider workers’ referencing behavior as 

well as their preferences for codified knowledge. Therefore, three hybrid recommendation 

methods are used in the KF-based recommendation phase: 1) a hybrid of PCF and KSR 

(PCF-KSR), 2) a hybrid of KCF and KSR (KCF-KSR) and 3) a hybrid of ICF and KSR 

(ICF-KSR). Further details are given in the following subsections.  

4.1 Knowledge Flow-based Recommendation Phase 

In this work, we propose three hybrid recommendation methods based on knowledge 

flow (KF), which is a sequence of codified knowledge (documents) or topics referenced by a 

worker during a task’s execution. KF represents a worker’s information needs and the 

evolution of knowledge requirements, and is identified by analyzing a worker’s work log. To 

support workers effectively, our methods consider workers’ preferences as well as their 

referencing behavior in order to recommend task-related knowledge. During the 

recommendation phase, the user-based collaborative filtering (CF) is used to predict a target 

worker’s preferences based on the opinions of similar workers, while the item-based 

collaborative filtering [50] is used to predict a document based on the targets worker’s 

interests on its similar items (documents). However, the limitation of these traditional CF 

methods is that they only consider workers’ preferences for codified knowledge and neglect 

workers’ referencing behavior. A worker’s referencing behavior may change during the task’s 

execution to suit his/her current information needs. To address this issue, we propose a 

KF-based sequential rule method that improves the recommendation quality by tracking 

workers’ referencing behavior based on sequential rules. However, this method does not 

consider the opinions of the target worker’s neighbors who have similar preferences for 

documents. To overcome the limitations of CF and KF-based sequential rule methods, we 

combine the advantages of the two approaches and propose three hybrid recommendation 
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methods that integrate KF mining, KF-based sequential rule mining and CF techniques to 

enhance the quality of recommendations. 

The KF-based recommendation phase consists of three hybrid recommendation methods: 

1) PCF and KSR (PCF-KSR), 2) KCF and KSR (KCF-KSR) and 3) ICF and KSR (ICF-KSR), 

as shown in Fig. 3. We note that PCF denotes the preference-similarity based CF method; 

KCF denotes the KF-similarity based CF method; ICF denotes the item-based CF method; 

and KSR denotes the KF-based sequential rule method. To adaptively recommend documents, 

both the PCF method and the KCF method select neighbors based on the similarity of 

preferences, while the ICF method chooses similar documents for a document based on their 

preferences given by a target user. The three methods differ in the way they compute the 

similarity between workers’ preferences to select the target worker’s neighbors. The PCF 

method (traditional CF) uses preference ratings to compute the similarity, while the KCF 

method uses workers’ KFs to derive the similarity. The ICF method applies similarity 

measure to evaluate the similarity between two items (i.e., documents), rather than the 

similarity between two workers. The proposed KSR method traces workers’ knowledge 

referencing behavior by using the KF-based sequential rules. The proposed hybrid 

recommendation methods take advantage of the merits of the KSR, PCF, KCF and ICF 

methods.  

4.2 Identifying Similar Workers Based on their Knowledge Flows 

To find a target worker’s neighbors, his/her topic-level KF is compared with those of 

other workers to compute the similarity of their KFs. The resulting similarity measure 

indicates whether the KF referencing behavior of two workers is similar. In this work, we 

regard each knowledge flow as a sequence. Since comparing knowledge flows is very similar 

to aligning sequences, the sequence alignment method (SAM) [24] and the dynamic 

programming approach [14, 43] can be used to measure the similarity of two KF sequences.  

To determine which of the two methods would be more appropriate for comparing 

workers’ knowledge flows, we applied both methods in our experiments and found that 

dynamic programming is better than SAM. Therefore, we employ the dynamic programming 

algorithm [14, 43] to measure the similarity of workers’ knowledge flows. 
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Unlike the sequence alignment problem, a worker’s KF contains task-related documents. 

Thus, we have to consider the sequential order of topics in a knowledge flow, as well as the 

worker’s aggregated profile, which accumulates the task-related documents based on the 

times they were accessed during the task’s execution. We propose a hybrid similarity measure, 

comprised of the KF alignment similarity and the aggregated profile similarity, to evaluate the 

similarity of two workers’ KFs, as shown in Eq. (8). 
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where ),( l
j

v
ia TKFTKFsim  represents the KF alignment similarity between worker i and 

worker j who execute task v and task l respectivel  v
iTKF / l

jTKF  is the topic-level KF of 

worker i/j for task v/l; ),( l
j

v
ip APAPsim  represents the aggregated profile similarity of two 

workers’ KF v
iAP l

jAP  is the aggregated profile of worker i/j for task v/l; and α is a 

parameter used to adjust the relative importance of the two types of similarity. 

The KF alignment similarity is based on the topic sequence and topic coverage, while the 

aggregated profile similarity is based on the aggregated profiles derived from the profiles of 

referenced documents in the KFs. Note that the KF alignment similarity considers the topic 

sequence in the KF without considering the content of workers’ profiles; while the aggregated 

profile similarity considers the content of profiles without considering the topic sequence in 

the KF. By linearly combining these two similarities, we can balance the tradeoff between KF 

alignment and the aggregated profile. We discuss the rationale behind these two similarity 

measures next. 

4.2.1 KF Alignment Similarity 

The KF alignment similarity is comprised of two parts: the KF alignment score, which 

measures the topics in sequence; and the join coefficient, which estimates the topic’s coverage 

in two compared topic-level KFs. We modify the sequence alignment method [14] to derive 

the KF alignment score. In addition to computing the sequence alignment score, we estimate 

the overlap of the topics in two compared topic-level KFs by using the join coefficient. The 

rationale is that if the topic overlap is high, the KF alignment similarity of the two compared 

KFs will also be high. In other words, the two compared KFs will be very similar. The KF 
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alignment similarity, ),( l
j

v
ia TKFTKFsim , is defined as follows:  

where v
iTKF / l

jTKF denotes the topic-level KF of worker i/ worker j for task v/ task l; η is 

the KF alignment score; Norm is a normalization function used to transform the value of η 

into a number between 0 and 1; v
iTPS  and l

jTPS are the sets of topics in v
iTKF and l

jTKF

respectively; l
j

v
i TPSTPS ∩  is the intersection of topics common to v

iTKF and l
jTKF ; and 

v
iTPS  and l

jTPS represent the number of topics in v
iTKF and l

jTKF  respectively. The KF 

alignment score, which is based on the sequence alignment method [43], is defined in Eq. 

(10):   

where δ is the maximal alignment score derived by the dynamic programming approach, 

ms is the identical matching score (+2), and ξ is the length of the aligned KF. To obtain the 

maximal alignment score δ, we set the matching score ms, the mismatching score md and the 

gap penalty score mg to +2, -1 and -2 respectively in the dynamic programming approach [14] 

discussed in Section 2.4. The maximum value of η is 1 if the two compared KFs are exactly 

the same. On the other hand, the value of η is negative if most of topics in the two compared 

KFs do not match. Thus, the value of η may range from a negative value to 1. To alter the 

range of the KF alignment score, the value of η is transformed into a value in the range [0, 1] 

by the normalization function. The normalized KF alignment score Norm(η) is then used to 

calculate the KF alignment similarity.  

4.2.2 Aggregated Profile Similarity 

The aggregated profile similarity, defined as ),( l
j

v
ip APAPsim , computes the similarity of 

two workers’ KFs based on their aggregated profiles, which are derived from the profiles of 

documents they have referenced; v
iAP and l

jAP  are the respective vectors of the aggregated 

profiles of workers i/ j for task v/ l. We use the cosine formula to calculate the similarity 

between two aggregated profiles. The value of the similarity score ranges from 0 to 1. The 
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aggregated profile of a worker i for task v is defined as  

∑
=

×=
T

t

v
tTt

v
i DPtwAP

1
, , (11) 

where twt,T is the time weight of the document referenced at time t in the KF; T is the 

index of the times the worker accessed the most recent documents in his KF; and v
tDP  is the 

profile of the document referenced by worker i at time t for task v. The aggregation process 

considers the time decay effect of the documents. Each document profile is assigned a time 

weight according to the time it was referenced. Thus, higher time weights are given to 

documents referenced in the recent past. The time weight of each document profile is defined 

as 
StT
Stttw Tt −

−
=, , where St is the start time of the worker’s KF. 

4.3 KF-based Sequential Rule Method 

 

Fig. 4: An overview of the KSR method 

The KF-based sequential rule method (KSR) considers the referencing behavior of 

neighbors whose KFs were very similar before time T, and then recommends documents at 

time T for the target worker. Fig. 4 provides an overview of the KSR method. To determine 

the similarity of various topic-level KFs, the target worker’s KF is compared with those of 

other workers by measuring their KF similarity, as discussed in Section 4.2. Workers with 

similar KFs to that of the target worker are regarded as the latter’s neighbors and their 

. . .

. . .
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topic-level KFs are used to discover frequent knowledge referencing behavior by applying 

sequential rule mining to the target worker’s referencing behavior. The discovered sequential 

rules with high degrees of rule matching are selected to recommend topics at time T. 

Documents belonging to the recommended topics have a high priority of being recommended. 

The KSR recommendation method involves four steps: identifying similar workers, mining 

their knowledge referencing behavior, identifying the target worker’s knowledge referencing 

behavior, and document recommendation. 

4.3.1 Mining Knowledge Referencing Behavior 

Knowledge workers with similar referencing behavior (high similarities) of the target 

worker are regarded as neighbors of the target worker. We modify the association rule mining 

method [3-4] and sequential pattern mining method [5] to discover topic-level sequential rules 

from the neighbors’ topic-level KFs. The extracted rules can be used to keep track of the 

referenced topics among workers with similar referencing behavior. Let Ry be a sequential 

rule, as defined in Eq. (12). 

Ry: gy,T-s,…, gy,T-1 ⇒ gy,T  (Supporty, Confidencey) 
where gy,T-f ∈TPS; f = 0 to s; and TPS is a set of all topics 

(12) 

The conditional part of the sequential rule is <gy,T-s,…,gy,T-1>, and the consequent part is 

gy,T. The items that appear in the rules are topics extracted from the neighbors’ topic-level 

KFs (TKF). The support and confidence values, Supporty and Confidencey, are used to 

evaluate the importance of rule Ry. We use the support and confidence scores to measure the 

degree of match between the referencing behavior and the conditional part of a rule for a 

target worker, as illustrated in the third step. Note that if the knowledge referencing behavior 

of the target worker is similar to the conditional part of Ry, then the topic predicted for 

him/her at T will be gy,T.  

4.3.2 Identifying the Knowledge Referencing Behavior of the Target Worker 

This step identifies the target worker’s knowledge referencing behavior by matching 

his/her KF with the sequential rules discovered in the previous step. Specifically, the rules are 

matched with the topic-level KF of the target worker to predict the topics required at time T. 

We set a knowledge window on the KF before time T. The size of the window is determined 
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by the user. Let >=< −+−− 11 ,, T
u

sT
u

sT
uu TPTPTPKW  be the knowledge window for the topic-level 

KF of a target worker u before time T. Note that fT
uTP − is the topic referenced by u at time T-f, 

f=1…s. The knowledge window KWu covers several topics previously referenced by the target 

worker and arranged in time order. The steps of sequential rule matching are as follows. 

Step 1. Set a knowledge window KWu.  

The reference time of topics in the window may range from T-s to T-1, where s is the 

window size determined by the worker. The referencing behavior within the knowledge 

window is then compared with the sequential rules extracted from the KFs of the target 

worker’s neighbors (Step 3). 

Step 2. Generate topic subsequences and compare them with the knowledge window 

All generated rules are compared with the given knowledge window to obtain the 

matching scores of rules. A sequential rule may partially or fully match a knowledge window. 

To identify sequential rules that match the target worker’s referencing behavior, we consider 

all partial matches of the rules. Therefore, all possible topic subsequences are generated from 

the conditional part of the rule first.  

The topic subsequences are enumerated according to the topic order in the conditional 

part of a rule. Let >=< mi k
y

k
y

k
y

k
y TPTPTPTS ,...,...,1  be a topic subsequence in the conditional part 

of a sequential rule y, and let ik
yTP  be a topic with the index position ki in the sequence k

yTS . 

In addition, let KWu be a knowledge window in a worker’s KF, and let hj
uTP  be a topic with 

the index position hj in the sequence KWu. Then, each topic subsequence of a rule is examined 

by checking whether it exists in the knowledge window.  

Instead of using identical matches, all the topics in a topic subsequence are compared 

with those in the knowledge window by using topic similarities to determine their matches. 

The characteristics of a KF are different from those of a general sequence, because a topic in a 

KF is composed of abstract knowledge concepts. Rather than using the identical match 

method, we use the topic similarity, i.e., simcos( ik
yTP , jh

uTP ), to determine if two topics match. 

That is, they match if their similarity is greater than the user-specified thresholdθ. 
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We define a similarity matching score to compare a topic subsequence with a knowledge 

window. A topic subsequence k
yTS matches the knowledge window KWu, if their corresponding 

topic similarities are larger than the user defined threshold, i.e. simcos( 1k
yTP , 1h

uTP )>θ , 

simcos( 2k
yTP , 2h

uTP )>θ, …, simcos( mk
yTP , mh

uTP )>θ, where integers k1 < k2 < … < km , h1 < h2 

< … < hm , and θ is the user-defined threshold. The similarity matching score is the 

summation of the topic similarities, as defined in Eq. (13). 
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Step 3. Find the matching degree of a sequential rule. 

Given the similarity matching scores of all topic subsequences extracted from a 

sequential rule, we choose the subsequence with the highest score to compute the matching 

degree of the rule. The matching degree is defined as follows: 

{ } yyKWTSqkKWR ConfidenceSupportM SmaxMDR
u

k
yuy

××=
= ,..1, , (14) 

where 
uy KWRMDR , is the matching degree of rule Ry and uKW of the target worker u; 

{ }
u

k
y KWTS1..qk

M Smax ,=
 is the highest similarity matching score of all topic subsequences of 

sequential rule y; and k from 1 to q is all topic subsequences of sequential rule y; The 

matching degree is used to identify the sequential rules qualified to recommend topics at time 

T.  

Step 4. Choose sequential rules for recommendation 

A sequential rule with a high matching degree means that the referencing behavior of the 

target worker matches the conditional part of the rule, so the consequent part of the rule can 

be selected as a predicted topic for the target worker at time T. Hence, the Top-N approach 

can be used to derive a set of predicted topics by selecting N rules with the highest matching 

degree scores. 

4.3.3 Document Recommendation 

The KSR method predicts a document rating based on sequential rules derived from the 

KFs of a target worker’s neighbors. Let v
uKNB  be a set of neighbors of target worker u for a 
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task v, selected according to the KF similarity (using Eq. (8)). The sequential rules derived 

from v
uKNB  with high degrees of rule matching are selected to recommend topics for the 

target worker at time T. However, the referencing behavior of some workers in v
uKNB  may 

not match the selected sequential rules. Therefore, we apply the sequential rule matching 

method discussed in Section 4.3.2 to compare the KFs of workers in v
uKNB  with the selected 

sequential rules. If a worker’s KF matches a selected sequential rule, that worker’s 

referencing behavior conforms to the sequential rule, and can therefore be used to make 

recommendations based on the selected sequential rules. The reason for checking the KFs of 

workers in v
uKNB  is to identify neighbors whose referencing behavior conforms to the 

selected sequential rule.  

For a task v, let v
uKNBR  denote the neighbors in v

uKNB  whose KFs are very similar to 

the target worker’s KF and whose referencing behavior matches the selected sequential rules. 

In addition, let RTS be a set of recommended topics derived from the consequent parts of the 

recommended sequential rules; τ be a recommended topic, where τ ∈ RTS; and the topic of a 

document d be τ. Based on the KFs of the neighbors in v
uKNBR , the predicted rating of a 

document d belonging to the recommended topic τ for the target worker u is calculated by Eq. 

(15): 

where v
ur τ, / ,

l
xr τ is the topic rating of the target worker u/worker x for task v/ l, derived 

from the worker’s average rating of documents in the recommended topic τ; v
uTKF / l

xTKF  is 

the topic-level KF of the target worker u/ worker x for task k/ task l; l
dxr τ,,  is the rating given 

by worker x for a document d belonging to the recommended topic τ in task τ; and 

),( l
x

v
u TKFTKFsim is the KF similarity of worker u and worker x, derived by Eq. (8). If the 

target worker u does not rate any documents in τ, then v
ur τ,  is replaced by the average rating 

of all his/her documents. Meanwhile, if the target worker’s neighbors do not rate any 

documents in τ, the predicted rating of document d is derived by the average rating of the 

target worker’s documents. 

To recommend task-related documents to a target worker, it is necessary to collect data 
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with explicit ratings. Many recommender systems and recommendation methods use such 

ratings to represent users’ preferences. Similarly, our recommendation methods use 

knowledge workers’ document ratings to predict other documents that may be useful to a 

target worker’s task, as shown in Eq. (15). Each knowledge worker gives explicit ratings to 

the documents referenced during the task’s execution, while documents related to different 

tasks are re-rated by different workers. The ratings are used to gauge a worker’s perceptions 

about the usefulness and relevance of documents for a specific task. The stronger the worker’s 

perceptions of the usefulness or relevance of a document for the task at hand, the higher the 

rating he/she will give the document. Such ratings are subjective because they are based on 

the worker’s perspective. Moreover, since a document may be referenced by different workers 

as they execute their specific tasks, it will be given different ratings based on how the workers 

perceive its usefulness and relevance to their tasks. 

The sequential rules with high matching scores are selected to recommend topics. In 

other words, topics with high scores in the consequent part of a rule are recommended to the 

target worker at time T. The KSR method predicts ratings for documents that belong to the 

recommended topics and gives them a high priority for recommendation. Unlike traditional 

methods, KSR recommends documents to the target worker based on the selected sequential 

rules and the document ratings. Note that the KSR method does not consider the similarity of 

workers’ preferences when calculating the predicted rating of a document. 

4.4 The Hybrid PCF-KSR Method  

The hybrid PCF-KSR recommendation method linearly combines the 

preference-similarity-based CF method (PCF) with the KSR method to recommend 

documents to a target worker, as shown in Fig. 5. The PCF method is the traditional CF 

method that makes recommendations according to workers’ preferences for codified 

knowledge. To recommend a document, the neighbors of a target worker are selected based 

on the similarities of the workers’ preference ratings. Pearson’s correlation coefficient is used 

to find similar workers based on the document rating vectors. Then, PCF-KSR predicts the 

rating of a document by linearly combining the predicted ratings calculated by the two 

methods. One part of the rating is derived by the PCF method based on the document ratings 

and the preferences of the target worker’s neighbors. The other part is derived by the KSR 
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method described in Section 4.3. Because a worker’s knowledge flow may change over time, 

the hybrid method considers the worker’s preference for documents as well as topic changes 

in his/her KF to make recommendations adaptively.  

 

Fig. 5: The framework of the hybrid PCF-KSR method 

The predicted rating of a document d for a worker u executing a task v is derived by 

combining the PCF and KSR methods, as defined in Eq. (16): 
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where v
ur / l

xr  is the average rating of documents for task v / task l given by the target 

worker u / worker x; PSim(uv, xl) is the similarity between the target worker u for task v and 

the neighbor worker x for task l, derived by Pearson’s correlation coefficient; v
uPNB is the set 

of neighbors of the target worker u for task v, selected by PSim(uv, xl); l
dxr , is the rating of a 

document d for task l given by worker x; KSR
dvup ,,ˆ  is the predicted rating of a document d for the 

target worker u engaged in task v based on the KSR method; and βPCF-KSR is the weighting 

used to adjust the relative importance of the PCF method and KSR method. 

According to Eq. (16), a document in a recommended topic has a higher priority for 

recommendation than documents that are not in the recommended topics, based on their 

predicted ratings derived by the KSR method. Documents with high predicted ratings are used 

to compile a recommendation list, from which the top-N documents are chosen and 
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recommended to the target worker. 

4.5 The Hybrid KCF-KSR Method  

 

Fig. 6: The framework of the hybrid KCF-KSR method 

The hybrid KCF-KSR method linearly combines the KF-similarity-based CF method 

(KCF) with the KSR method to recommend documents to a target worker, as shown in Fig. 5. 

The KCF method is based on the referencing behavior of neighbors with similar KFs, while 

the PCF method is based on the similarity of preference ratings derived by Pearson correlation 

coefficient. Like the PCF-KSR method, the predicted rating of a document is also derived by 

integrating two parts of the ratings. One part is obtained by the KCF method, while the other 

is obtained by the KSR method described in Section 4.3.  

The hybrid KCF-KSR method predicts the rating of a document d for worker u engaged 

in task v by Eq. (17), and then determines which documents should be recommended. 
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where v
ur / l

xr is the average rating of documents given by the target worker u / worker x 

engaged in task v/ l; l
dxr , is the rating of a document d for task l given by worker x; v

uTKF /
l

xTKF denotes the topic-level KF of the target worker u/ worker x for task k/ task l; 

),( l
x

v
u TKFTKFsim is the KF similarity of worker u and worker x, derived by Eq. (8); v

uKNB  is 

the set of neighbors of the target worker u for task v, selected according to their KF similarity 
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scores; KSR
dvup ,,ˆ  is the predicted rating of a document d based on the KSR method; and βKCF-KSR 

is the weighting used to adjust the relative importance of the KCF method and the KSR 

method. 

According to Eq. (17), a document in a recommended topic has a higher priority for 

recommendation than those documents that are not in the recommended topic. The KCF-KSR 

method considers the KF similarity of two workers, their preferences for documents, and 

topic sequences in the KF when making recommendations. 

4.6 The Hybrid ICF-KSR Method 

The hybrid ICF-KSR recommendation method linearly combines the item-based CF 

method (ICF) with the KSR method to recommend documents to a target worker, as shown in 

Fig. 7. The ICF method is the traditional item-based CF method [50] described in Section 2.6. 

The similar documents (neighbors) of a target document are selected based on the adjusted 

cosine similarities of the documents (Eq. (6)). Then, the predicted rating of the target 

document is computed by taking the weighted average of the target worker’s ratings for 

similar documents (Eq. (5)).  

 

Fig. 7: The framework of the hybrid ICF-KSR method 

The ICF method does not consider workers’ referencing behavior when they perform 

tasks. To address this issue, we propose the hybrid ICF-KSR method, which integrates 

traditional item-based collaborative filtering and the KSR method to recommend documents 

that may meet workers’ information needs. The ICF-KSR approach predicts the rating of a 
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document by linearly combining the predicted ratings calculated by the two methods. One 

part of the rating is derived by the ICF method based on the target worker’s ratings for 

documents similar to the target document. The other part is derived by the KSR method 

described in Section 4.3. A worker’s knowledge flow may change over time. Thus, to make 

recommendations adaptively, the hybrid method considers documents similar to the target 

document, the worker’s perceptions about the usefulness of the documents, and the topic 

sequences in his/her KF. 

The hybrid ICF-KSR method predicts a rating for a document d for worker u performing 

a task v by using Eq. (18), and then determines the documents that should be recommended.  
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where v
iur ,  is the rating of the usefulness of a document i given by worker u for task v; 

),( idACSim  is the adjusted cosine similarity between document d and document i; Id is the 

set of documents similar to document d, selected according to their adjusted cosine 

similarities; KSR
dvup ,,ˆ  is the predicted rating of document d for the target worker u engaged in 

task v based on the KSR method; and βICF-KSR is the weighting used to adjust the relative 

importance of the ICF method and the KSR method. According to Eq. (18), a document in a 

recommended topic has a higher priority for recommendation than documents that are not in 

the recommended topic.  

In Section 4.7 and 4.8, we conduct experiments to compare and evaluate the 

recommendation quality for the hybrid PCF-KSR, KCF-KSR and ICF-KSR methods, and 

then have some discussions about these experimental results. Next, we will describe the 

experiment setup in Section 4.7, discuss the experiment results and evaluations in Section 4.8, 

and have some discussions in Section 4.9.  

4.7 Experiment Setup 

To demonstrate that knowledge flows can support the recommendation of task-relevant 

knowledge (documents) to knowledge workers, experiments were conducted on a dataset 

from a real application domain, namely, research tasks in the laboratory of a research institute. 
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The dataset contained information about the access behavior of each knowledge worker 

engaged in performing a specific task, e.g., writing a research paper or conducting a research 

project. To accomplish their tasks, the workers needed various documents (research papers). 

Besides the documents, other information, such as when the documents were referenced and 

the document ratings, is necessary for implementing our methods. Since it is difficult to 

obtain such a dataset, using the real application domain restricts the sample size of the data in 

our experiments. 

The dataset is based on the referencing behavior of 14 knowledge workers in a research 

laboratory and 424 research papers used to evaluate the proposed methods. Specifically, it 

contains information about the content of the documents, the times they were referenced, and 

the document ratings given by workers. For each worker, the documents and the times at 

which they were referenced are used to identify the worker’s referencing behavior when 

performing a task. 

The document rating, which is given by a worker and on a scale of 1 to 5, indicates 

whether a document is perceived as useful and relevant to a task. A high rating, i.e., 4 or 5, 

indicates that the document is perceived as useful and relevant to the task at hand; while a low 

rating, i.e., 1 or 2, suggests that the document is deemed not useful. If a document has been 

referenced by a worker without being assigned a rating value, it is given a default rating of 3. 

In our experiment, the dataset is divided according to the time order of the documents 

accessed by knowledge workers as follows: 70% for training and 30% for testing. The testing 

set contains documents with access time more close to the current time period. The training 

set is used to generate recommendation lists, while the test set is used to verify the quality of 

the recommendations. In the experiments, we evaluate and compare the performance of 

traditional CF methods and our KF-based recommendation methods, namely the hybrid 

PCF-KSR method, the hybrid KCF-KSR method, and the hybrid ICF-KSR method. 

We use the Mean Absolute Error (MAE), which is widely used in recommender systems 

[11, 25-26, 51], to evaluate the quality of recommendations derived by our methods. MAE 

measures the average absolute deviation between a predicted rating and the user’s true rating 

[50], as shown in Eq. (19).  
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where MAE is the mean absolute error; Ζ is the test set of a target worker, which consists 

of n predicted documents; ip is the predicted rating of document i; and iq is the real rating of 

document i. The lower the MAE, the more accurate the method will be. The advantages of 

this measurement are that its computation is simple and easy to understand and it has well 

studied statistical properties for testing the significance of a difference. 

4.8 Experiment Results 

We conduct several experiments to measure the quality of recommendations derived by 

our methods. To generate topic-level KFs, the documents in the data set are grouped into 

clusters by the single-link hierarchical clustering method described in Section 3.3.1. To 

determine the threshold value that yields the best clustering result, we adjust the threshold 

value systematically in decrements of 0.05 ranging from 0.5 to 0.2 to generate different 

clustering results, each of which is evaluated by using the quality measure defined in Section 

2.3.2. The cluster with the best quality measure generated by setting the threshold value at 0.3 

is selected as our clustering result; it contains 8 clusters. Based on the clustering results, 

topic-level KFs are generated by mapping documents from the codified-level KFs into their 

corresponding clusters for each knowledge worker. Finally, by considering the topic-level and 

codified-level KFs, the hybrid PCF-KSR and KCF-KSR methods recommend task-related 

documents to users. In the following sub-sections, we discuss the experiment results.  

4.8.1 Evaluation of the hybrid PCF-KSR Method 

In this experiment, we evaluate the performance of the hybrid PCF-KSR method. The 

parameters, α and βPCF-KSR, may affect the quality of the recommendations; α is used to 

calculate the KF similarity (Eq. (8)), while βPCF-KSR is used to predict a document’s rating. We 

set various values for these parameters and determine the settings that yield the best 

recommendation performance. The experiment was conducted by systematically adjusting the 

values of α in increments of 0.1, and the optimal value (i.e., the lowest MAE value) was 

chosen as the best setting. Based on the experiment results, we set α = 0.3 in all the following 

experiments.  
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We evaluate how the βPCF-KSR values and the number of neighbors, k, affect the 

recommendation quality, as shown in Fig. 8. The parameter βPCF-KSR, whose value ranges 

from 0.1 to 1, represents the relative importance of the PCF method and KSR method in Eq. 

(16). The experiment was conducted using various numbers of neighbors (parameter k) to 

derive the predicted ratings. Fig. 8 shows that the lowest MAE value generally occurs when 

βPCF-KSR is 0.5.  

 

Fig. 8: The performance of the hybrid PCF-KSR method with various k and βPCF-KSR values 

Fig. 9 compares the hybrid PCF-KSR method with the traditional CF method (PCF 

method). The predicted rating of a document is derived in two parts by the PCF method and 

the KSR method respectively. The part derived by the PCF method is based on the document 

ratings of the target worker’s neighbors, while the other part is derived by the KSR method 

based on documents in the recommended topics and sequential rules generated from the KFs 

of the target worker’s neighbors. If a document is in the recommended topic, the KSR part of 

PCF-KSR can be used to adjust the predicted rating of the document. Therefore, the 

PCF-KSR method ensures that documents in the recommended topics have a high priority for 

recommendation to the target worker. In the experiment, we set α = 0.3 and βPCF-KSR = 0.5, 

and select the top-5 sequential rules with high rule matching scores. The experiment results 

show that the PCF-KSR method outperforms the traditional CF method (PCF method) under 

various numbers of neighbors (parameter k). That is, the KSR method improves the 

recommendation quality of the PCF method. In other words, the PCF-KSR method is 

effective in recommending documents to the target worker, and it improves on the quality of 

the recommendations derived by the PCF method alone. 

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β PCF-KSR

M
A

E

k = 4
k = 6
k = 8
k = 10
k = 12
k = 14



 

38 

 
Fig. 9: Comparison of the hybrid PCF-KSR and PCF methods under different k  

4.8.2 Evaluation of the hybrid KCF-KSR Method 

Similar to the evaluation of the hybrid PCF-KSR method, we first determine the value of 

βKCF-KSR for the KCF-KSR method. The βKCF-KSR parameter, whose value ranges from 0.1 to 1, 

represents the relative importance of the KCF method and the KSR method. We set α=0.3 

when calculating the KF similarity. The results show that the smallest value of MAE usually 

occurs when βKCF-KSR = 0.5 for different the numbers of neighbors (k). Thus, in this 

experiment, βKCF-KSR is set at 0.5 for the KCF-KSR method. 

 

Fig. 10: Comparison of the hybrid KCF-KSR and KF methods under different k 

To evaluate the performance of the KCF-KSR method, we compare it with the 

KF-similarity-based CF method (KCF) by setting βKCF-KSR at 1, as shown in Fig. 10. Note that 

when βKCF-KSR = 1, the predicted rating of a document is derived totally by the KCF method, 

which only uses the document ratings of the target worker’s neighbors with similar KFs to 
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make recommendations. The experiment results demonstrate that the hybrid KCF-KSR 

outperforms the KCF method. In other words, considering workers’ knowledge referencing 

behavior can enhance the quality of recommendations. 

4.8.3 Evaluation of the hybrid ICF-KSR Method 

This experiment evaluates the performances of ICF and ICF-KSR methods. Once again 

we have to determine the value of the βICF-KSR parameter in the range 0.1 to 1 to represent the 

relative weights of the ICF method and the KSR method. The results show that the smallest 

value of MAE usually occurs when βICF-KSR = 0.4 under various number of neighbors (k). 

Relatively, KSR is more important than ICF in the hybrid ICF-KSR method because the 

weight of KSR is higher than that of ICF. Thus, βICF-KSR is set at 0.4 for the ICF-KSR method 

in this experiment. 

 

Fig. 11: Comparison of the hybrid ICF-KSR and KF methods under different k 

To assess the impact of considering workers’ referencing behavior on the ICF-KSR 

method, we compare it with the ICF method by setting βICF-KSR at 1, as shown in Fig. 11. 

Setting βKCF-KSR = 1 means that the predicted rating of a document is derived totally by the 

ICF method, which only utilizes the adjusted cosine similarity measures between documents 

to make recommendations. The hybrid ICF-KSR method takes this issue into account. Fig. 11 

demonstrates that the hybrid ICF-KSR method performs better than the ICF method under 

various numbers of neighbors (parameter k). The experiment results show that considering 

workers’ knowledge referencing behavior under the KSR method improves the 

recommendation quality of the ICF method.  
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4.8.4 Comparison of All Methods 

To evaluate the recommendation performances of the different methods, we compare the 

three individual methods (the PCF, KCF and ICF methods) and the three hybrid methods (the 

PCF-KSR, KCF-KSR and ICF-KSR methods), as shown in Fig. 12.  

 

Fig. 12: The performances of the compared methods under different k 

When the number of neighbors, k, is less than 8, the PCF method yields the lowest MAE 

values, while the ICF method yields the highest values. However, when the value of k is more 

than 8, the ICF method outperforms the KCF and PCF methods. The recommendation 

performances of the PCF method and the KCF methods are very close. 

In this experiment, we also compare the hybrid PCF-KSR, the hybrid KCF-KSR and the 

hybrid ICF-KSR methods, under various k (the number of neighbors). To obtain the MAE 

values of these methods, we set α=0.3, βPCF-KSR =0.5, βKCF-KSR =0.5 and βICF-KSR =0.4. The 

results show that the hybrid ICF-KSR method generally outperforms the PCF-KSR and 

KCF-KSR methods, while the PCF-KSR method performs better than the KCF-KSR method.  

To examine the differences between the KF-based methods and the traditional CF 

method, we performed a statistical hypothesis test, the paired t-test, under various k. The 

results show that the differences are statistically significant at the 0.01 level. Here, we only 

report the results of the t-test under k = 8. The mean, standard deviation (SD), and p-value of 

MAE for each pair of recommendation methods are listed in Table 1. The proposed hybrid 

methods, i.e., PCF-KSR, KCF-KSR and ICF-KSR, have smaller mean and generally smaller 

standard deviation scores than their individual methods. In terms of the p-value, the 
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differences between the proposed hybrid methods and the individual CF-based methods are 

statistically significant. 

Table 1: The t-test results for various recommendation methods with k = 8  

Recommendation Method Mean SD t-test 
PCF-KSR 0.7898  0.7189  p = 0.0006 (<0.01) 

PCF 0.8814  0.7244   
KCF-KSR 0.8086  0.7581  p = 0.0006 (<0.01) 

KCF 0.8865  0.7836   
ICF-KSR 0.7718  0.6880  p = 0.0045 (<0.01) 

ICF 0.8814  0.6829   

From the above results, it is clear that the hybrid methods perform better than their 

individual methods. That is, the hybrid PCF-KSR, KCF-KSR and ICF-KSR methods perform 

better than PCF, KCF and ICF methods alone. The results show that the KF-based approaches 

can enhance the recommendation quality of traditional CF methods.  

4.9 Discussion 

The comparison of KSR, PCF, KCF and ICF methods are listed in Table 2. There are five 

major differences among these four methods, including tracking workers’ referencing 

behavior, the effect of time factor, considering topic preferences, similarity computation 

methods and the document preferences of neighbors. Each method has its own advantages and 

limitations of making recommendations in different domains. To complement the merits of 

two methods, we propose three hybrid recommendation methods based on the KSR method. 

The KF-based sequential rule (KSR) method improves the recommendation quality by 

considering the topic preferences and tracking workers’ referencing behavior based on 

sequential rules, i.e., the information needs over time. It chooses neighbors whose KFs are 

very similar to the target worker’s KF and whose referencing behavior matches the selected 

sequential rules. However, it does not consider the opinions of the target worker’s neighbors 

who have similar preferences for documents, but PCF does. To solve this limitation, PCF 

method (traditional CF) and the KSR method are linearly combined as PCF-KSR method to 

improve the recommendation quality. Similar to the PCF method, the KCF method uses KF 

similarity to choose neighbors of the target worker, while the PCF uses Pearson’s correlation 
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coefficient to select neighbors with similar opinions. Thus, based on the KSR method, a 

hybrid of KCF and KSR as KCF-KSR method are proposed. In addition, both the PCF 

method and the KCF method select neighbors based on the similarity of preferences, while 

the ICF method chooses similar documents for a document based on their preferences given 

by a target user. Thus, the KSR method is combined with ICF method as ICF-KSR method 

which recommends documents from both user and item perspectives. Note that, each hybrid 

method linearly combines the recommendation lists from two individual methods. Because 

hybrid methods have complementary features derived from the merits of their combined 

methods, they generally outperform those individual methods in our experiments.  

Table 2: The differences of all methods 
 KSR PCF KCF ICF PCF- 

KSR 
KCF 
-KSR 

ICF
-KSR 

Tracking workers’ 
referencing 
behavior 

Yes No No No Yes Yes Yes 

Time factor Yes No Yes No Yes Yes Yes 

Considering topic 
preferences 

Yes No No No Yes Yes Yes 

The document 
preferences of 
neighbors 

No Yes Yes Yes Yes Yes Yes 

Similarity 
computation 
method 

KF 
Similarity 

Pearson’s 
Correlation 
Coefficient

KF 
Similarity

Adjusted 
Cosine 

Similarity

Pearson’s 
Correlation 
Coefficient 

/ KF 
similarity 

KF 
Similarity 

Adjusted 
Cosine 

Similarity / 
KF 

similarity 

Because each method has different features, it should be applied on an appropriate 

dataset or a suitable context to obtain the best performance. Our proposed methods are 

appropriate for a dataset where documents are clustered as various topic domains and the 

access behavior of workers over time are recorded. In addition, the CF methods have 

cold-start problem causing by new items and the sparsity problem. If there are new items that 

have fewer ratings given by users in a dataset, the CF methods cannot correctly make 

recommendations based on insufficient preference data, i.e., ratings on items. Similarly, a 

dataset with fewer preference ratings also causes the inaccurate recommendations. Moreover, 

the CF methods do not predict items based on their content similarity. To solve these problems 

Methods 
Influences 
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and improve the recommendation quality, we will consider the content similarity of items in 

recommendation methods in our future work. 

The contribution of this work is that our recommendation methods can proactively 

provide task-related knowledge based on knowledge flow. The experiment results 

demonstrate that the proposed KF-based hybrid methods, i.e., the PCF-KSR, KCF-KSR and 

ICF-KSR methods, improve the quality of document recommendation and outperform 

traditional CF methods. The three hybrid methods also perform better than the individual 

methods, i.e., the PCF, KCF, and ICF methods. Therefore, we discover that our proposed 

methods indeed improve the recommendation quality and obtain better performance than the 

traditional CF methods. In addition, providing topic knowledge to workers is helpful to 

support their tasks. 

This study has some limitations. First, our experiments were conducted using a real 

application domain, i.e., research tasks in a research institute’s laboratory. The domain 

restricted the sample size of the data and the number of participants in the experiments, since 

it is difficult to obtain a dataset that contains information that can be used for knowledge flow 

mining. Because of this limitation, in our future work, we will evaluate the proposed approach 

on other application domains involving larger numbers of workers, tasks and documents. 

Second, our evaluation focused on verifying the effectiveness of the proposed approach for 

recommending codified knowledge (documents) based on knowledge flows, rather than on 

user satisfaction or the system’s usability. A study of user satisfaction or usability would add 

further insights into our system’s ability to recommend task-relevant knowledge. In addition, 

the ratings given by people with different roles (e.g., professors and students) may have 

different influences on the recommendations. For example, it could be assumed that the rating 

given by a professor is more trustworthy than that given by a student. We will consider this 

issue in our future work.  
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Chapter 5. Group-based Knowledge Flow Mining Methods 

A knowledge flow (KF) represents a knowledge worker’s long-term information needs 

and accumulated task-related knowledge when he/she performs a task. In a previous work, we 

proposed a KF mining method to obtain each worker’s KF from his/her work log [36]. We 

also presented document recommendation methods to support workers’ in the execution of 

tasks and facilitate knowledge sharing in an organization. In the context of collaboration, 

workers usually have similar referencing behavior patterns, in which they share common 

topics or documents they find useful, or they reference task-related knowledge in a similar 

order. To model the common referencing behavior of a group, we propose a method for 

mining a group-based knowledge flow (GKF) from the KFs of a group of workers.  

 

Fig. 13: An overview of mining group-based knowledge flows 

Fig. 13 provides an overview of the proposed method for mining GKFs. Based on the 

workers’ KFs, workers with similar topic-level KFs are clustered together to form a 

task-based group. Members of the group have task-related knowledge or similar referencing 

behavior in terms of the topics of interest and the order the topics were referenced in their 

KFs. To identify similar referencing behavior from the KFs, we propose KF mining 

algorithms based on process mining and graph theory to discover a group’s knowledge flow. 

The algorithms identify common information needs and referencing patterns from the KFs of 
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a group of workers, and then build a group-based knowledge flow (GKF) model. Then, a 

frequent knowledge path is identified from the model to represent the referencing (learning) 

patterns of the group and to support novices in learning a group’s knowledge. In this work, we 

focus on two issues: 1) how to construct a group-based knowledge flow (GKF) model for a 

group of knowledge workers with similar KFs; and 2) how to identify frequent referencing 

patterns (paths) from the GKF model.  

In the remainder of this Chapter, we detail the steps of the proposed group-based KF 

mining algorithm. 

5.1 The group-based knowledge flow mining process 

 

Fig. 14: The procedure of the proposed GKF mining method 

The proposed method comprises three phases: worker clustering, group-based 

knowledge flow (GKF) mining, and identifying knowledge-referencing paths, as shown in Fig. 

14. Based on the extracted KFs, the worker clustering step clusters workers with similar KFs 

as an interest group because they have similar information needs and task-related knowledge 

to fulfill a task. Given the KFs of the workers, we formalize the GKF model to represent the 

group’s information needs by applying the proposed GKF mining algorithms. The GKF is 

represented by a directed acyclic graph comprised of vertices and edges. Each vertex denotes 

a topic in a KF, while each directed edge represents the referencing order of two topics. A 

GKF contains several knowledge referencing paths, which indicate the referencing behavior 

patterns of the group of workers. To identify frequent referencing behavior from the GKF 
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model, we determine the frequency of each path. Then, we choose the paths with scores 

higher than a user-specified threshold as frequent knowledge referencing paths for the group. 

5.2 Clustering Similar Workers Based on their Knowledge Flows 

To find a target worker’s neighbors, his/her topic-level KF is compared with those of 

other workers to compute the similarity of their KFs. The resulting similarity measure 

indicates whether the KF referencing behavior of two workers is similar. Since the KFs are 

sequences, the sequence alignment method [14, 43], which computes the cost of aligning two 

sequences, can be used to measure the similarity of two KF sequences. Based on this concept, 

we propose a hybrid similarity measure, comprised of the KF alignment similarity and the 

aggregated profile similarity, to evaluate the similarity of two workers’ KFs, as shown in Eq. 

(8). 

As mentioned earlier, workers with similar KFs are clustered together because they have 

similar task knowledge and referencing behavior. In this work, we use the CLIQUE clustering 

method [6, 29] to cluster knowledge workers based on a similarity matrix of their KFs. Each 

entry in a similarity matrix represents the degree of KF similarity between two workers, 

derived by Eq. (8). Based on the matrix, the CLIQUE clustering method is exploited to group 

workers with similar KFs. Workers in the same cluster are highly connected with each other 

because they have similar referencing behavior and information needs in topic domains. To 

identify each group’s GKF, we apply our group-based knowledge mining method to process 

the clustering results. 

5.3 Definition of Group-based Knowledge Flows 

The group-based knowledge flow (GKF) represents the information needs and common 

referencing behavior of a group of workers. Based on GKF, workers can share their task 

knowledge to complete the target task. Moreover, managers can comprehend the information 

needs of workers and groups to provide knowledge support adaptively.  

We use graph theory to model a GKF. A GKF graph models the relations between topics, 

the direction of the knowledge flow and the frequent knowledge paths to describe a group’s 

information needs and referencing behavior. Next, we define the components of the GKF 
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model and the features of the GKF graph, and then propose our GKF mining algorithms.  

Definition 4: Knowledge Graph 

A knowledge graph is defined as G = (V, E), where V is a finite set of vertices, and E is a 

finite set of directed edges connecting two topics. Each vertex in V denotes a topic in the 

knowledge domain, and each edge in E denotes the knowledge flow from one topic to the 

other topic.  

Example: Given a directed knowledge graph comprised of two vertices (topics) vx and vy and 

an edge ex,y, the edge is used to connect vertices vx to vy directly, as shown in Fig. 15. In 

addition, vx is said to be an adjacent predecessor of vy, while vy is said to be an adjacent 

successor of vx.  

 

 

Fig. 15: An example of a directed graph 

Definition 5: Knowledge Sub-graph 

Given a knowledge graph G = (V, E), a knowledge sub-graph of G is a graph G’ = (V’, 

E’), where V’ and E’ are subsets of V and E respectively, i.e., VV' ⊂ and EE'⊂ .  

A GKF graph represents the referencing behavior of a group of workers as a directed 

knowledge graph, which consists of a finite set of vertices and edges, defined as follows. 

Definition 6: Group-based Knowledge Flow (GKF) 

As mentioned earlier, a GKF is derived from the KFs of workers who are in the same 

cluster and therefore have similar information needs. A GKF is defined as GKF = {G, W, 

TKF}, where G is a directed knowledge graph; n}1ii,|{wW i =∀= is a set of n workers who 

have similar KFs; and { | , 1 }jTKFS TKF j j n= ∀ = is a set of topic-level KFs of the workers in 

W.  

The properties of TKF and the directed knowledge graph G are defined as follows. 

Definition 7: Flow Relation and Direct Flow Relation 

x y

Topic Topic 
yxe ,
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In a flow relation of a topic-level KF (TKF), topic x is followed by topic y, denoted by x 

> y, if topic x was accessed before topic y in the TKF. A topic x is followed directly by 

another topic y if there does not exist a distinct topic such that x is followed by z and z is 

followed by y. Thus, the relation between topics x and y is a direct flow relation, defined as 

x→y. 

Definition 8: Path 

Given a directed graph G, if there is a path from a vertex vx to another vertex vy, the path 

is denoted as vx ~> vy. 

Definition 9: Topic Cycle 

Let a flow relation x > y appear in a TKF and a flow relation y > x also appear in another 

TKF. The relations are represented by their corresponding paths, vx ~> vy and vy ~> vx, on the 

graph of the GKF. Such relations form a topic cycle between the vertices of vx (topic x) and vy 

(topic y) in the GKF. 

Definition 10: Topic Loop 

Let x be a duplicate topic in a TKF and let two flow relations x > y and y > x appear in 

the TKF. These relations are represented by their corresponding paths, vx ~> vy and vy ~> vx, 

on the graph of GKF. Such relations form a topic loop between the vertices of vx (topic x) and 

vy (topic y) in the GKF.  

Definition 11: Strongly Connected Component (SCC) 

A strongly connected component is a maximal strongly connected sub-graph in which 

every vertex is reachable from every other vertex in the sub-graph. 

Definition 12: Knowledge Referencing Path 

Given a directed graph G = (V, E) of a GKF, if there is a path from a start vertex to an 

end vertex, it is a knowledge referencing path. Such a path is defined as p = {s, d, Vp, Ep}, 

where s is a start vertex, d is an end vertex, and Vp is a set of topics on the path p. Ep is a set of 

edges, where each edge is an ordered pair (vi, vj); vi and vj ∈ Vp, vi ≠ vj and vi is an adjacent 

predecessor of vj.  
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Definition 13: Frequent Referencing Path 

Given a set of referencing paths derived from the graph of the GKF, a path p is said to be 

frequent if its path score, which is calculated based on the frequency count of edges on the 

path, is greater than a certain threshold. A frequent referencing path indicates that workers 

accessed task-related knowledge in a particular topic order frequently. 

Problem Statement: Given the TKFs of a group of workers, the GKF mining algorithms 

finds the GKF from the KFs. The GKF is represented by a directed graph, which is used to 

model the referencing behavior of a group of workers. 

5.4 GKF Mining Algorithm (without considering duplicate topics) 

To derive a GKF model from a set of KFs, we propose two algorithms: one for cases 

where there are no duplicate topics in a KF; and the other for cases where there are duplicate 

topics. Both algorithms, which are based on graph theory, model a group’s information needs 

as a group-based knowledge flow. The referencing path of a GKF details the order in which 

topics are accessed when workers search for task-related knowledge. In the following, we 

present a GKF mining algorithm for cases without duplicate topics.  

We assume that a topic in a TKF appears just once in this algorithm. That is, there is no 

duplicate topic in each TKF; hence, there will not be a topic loop in the GKF. However, the 

order of topics in different TKFs may vary, so topic cycles, which form strongly connected 

components, may appear in the graph G. 

In a strongly connected component (SCC), where each vertex is reachable from every 

other vertex, it is difficult to determine the ordering relation among the vertices. To resolve 

the problem, the algorithm applies the Topic_Relation_Identification procedure to identify the 

vertex relation in the SCC. The relation, which can be classified as either a parallel relation or 

a sequential relation to characterize the topic relations in the GKF, represents part of the topic 

ordering in workers’ referencing behavior.  

The GKF mining algorithm discovers frequent referencing of topics from the TKFs of a 

group of workers. To discover frequent referencing behavior patterns, which are modeled as 

frequent edges or frequent referencing paths on the GKF graph, the algorithm use the edge 
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deletion procedure to remove infrequent edges whose weights are no greater than a user 

specified threshold. A start vertex and an end vertex are added to the discovered graph to 

indicate the start and end of the referencing behavior paths of the workers. Note that a topic is 

represented as a vertex on the graph. It would be odd to generate a GKF in which topic 

references were incomplete; that is, where a topic reference does not originate at the start 

vertex or reach the end vertex. The algorithm ensures that every topic can be referenced 

successfully from the start vertex to the end vertex. Thus, an infrequent edge can only be 

deleted if its removal does not make any vertex unreachable from the start vertex or to the end 

vertex. 
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GKF mining algorithm 
Input: A set of n workers in W and their KFs, TKFS = {TKFw| w=1…n}; 
Output: GKF ={G, W, TKFS}; 
 
A directed graph G = {V, E}, where V=φ and E=φ ;   
Add a start vertex s and an end vertex d to V; 
For each TKFw in TKFS { 
Add each topic vy to V according to the sequence order in TKFw; 
Add an edge between the start vertex and the first topic in TKFw in E; 

    Add an edge between the last topic in TKFw and the end vertex in E; 
    For each vertex vx ∈ V and vx→ vy in TKFw { 
                Add an edge between vertex vx and vy in E; } 
Update the frequency of each edge in E; 

} 
Identify the strongly connected components (SCC) from G;   
For each SCC Gs, where Gs = (Vs, Es), Vs ∈V and Es ∈ E 

Topic_Relation_Identification(TKFS, G, Gs); 
Calculate the weights of all the edges in E; 
Transform the graph G into a new graph GN by mapping each SCC in G as a vertex vGs in 
GN and mapping edges connected to Gs in G as edges connected to vGs in GN, where GN 

= (VN, EN); 
L = Topological Sorting (VN, EN); 
P = Edge Deletion (L, G, GN); 

Fig. 16: The algorithm for mining a GKF when TKFs do not contain duplicate topics 

Several knowledge paths may exist on a GKF graph. The paths represent the group’s 

frequent referencing behavior when learning/referencing knowledge. Thus, the discovered 

graph can be used to inform a group of workers about topics of interest and the referencing 

behavior related to those topics.  

The steps of the proposed algorithm are shown in Fig. 16. To generate a GKF model for 
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a specific group (task), a set of TKFs is taken as the algorithm’s input, and the graph of the 

GKF is the output result. In the GKF graph, a topic domain in a TKF is represented as a 

knowledge vertex, and each flow that directly orders the knowledge between two topics is 

represented as an edge. For example, given a TKF <A, B, E, C>, the four topics A, B, E and C 

are represented as four knowledge vertices, i.e., vA, vB, vE and vC, respectively; and the direct 

flows between two knowledge vertices are represented as three directed edges, i.e., eA,B, eB,E, 

and eE,C, in the graph of G. Note that an edge is used to order the flow between two topics 

directly, e.g., the edge eA,B orders the flow from topic A to topic B. In contrast, if two topics 

have no direct flow relation, no edge exists between them. In the same example,  there is no 

flow relation between topic A and topic E , so an edge eA,E does not exist.  

The algorithm for building the GKF model involves several steps. First, a start vertex s 

and an end vertex d are added to the directed graph. Second, each topic in a TKF is regarded 

as a vertex and is added to a vertex set V if it does not exist in V already. Then, to connect the 

vertices in V, the edges related to the inserted vertex are added to the edge set E as follows. 

Let x→y be a direct flow relation from topic x to topic y, which denotes that topic x is 

followed immediately by topic y in a TKFw. When adding the edge ex,y to E, the algorithm has 

to check two additional conditions for the edge to connect the starting/ending vertex with 

other vertexes. First, if the vertex y is the first vertex in a TKF, the edge es,y from the starting 

vertex s to the vertex y is added to E; then, if the vertex y is the last topic in the TKF, the edge 

ey,d from the vertex y to the ending vertex d is added to E. When adding an edge to E, the 

algorithm counts the frequency of the edge. Adding all the vertices and their related edges to 

V and E respectively yields the initial graph of the GKF model. 

Example of Creating the GKF Graph  

This example illustrates how to build a GKF graph by using the GKF algorithm without 

considering duplicate topics in a TKF. Five workers who have similar TKFs form a group. 

Their topic-level KFs are listed in Table 3.  

The topic domains in each topic-level KF (TKF) are arranged as a topic sequence 

according to the times they were referenced. Based on the TKF of each worker, the proposed 

algorithm derives the group’s GKF, which is represented by a directed graph, as shown in Fig. 
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17. The topic domains, including the start and end vertices are represented by circles; an edge 

is represented by an arrow, which indicates the direction of knowledge flow from one 

knowledge vertex to another; and the number on each edge is the edge’s frequency count.  

Table 3: Five workers and their TKFs 
Worker Topic-level KF (TKF)

John <A, B, C, D, E> 
Mary <A, C, G, F, D, E> 
Lisa <B, A, C, E> 
Tom <A, B, C, D> 
Bob <C, B, G, F, D> 

 
Fig. 17: The initial graph of the GKF model 

In the initial graph, a strongly connected component (SCC) may be evident when some 

vertices appear in reverse order in any two TKFs. A strongly connected component Gs is a 

maximal strongly connected sub-graph that contains a path from each vertex to every other 

vertex in Gs. Because the vertices in a connected component are strongly connected, it is 

difficult to determine the ordering relationships between them. Even so, such relationships 

can be used to represent the characteristics of a TKF and they are important for modeling 

workers’ referencing behavior. Thus, we use a procedure called Topic_Relation_Identification 

to determine the relationships among vertices in any strongly connected component.  

In an SCC, two kinds of relations can be identified, namely, parallel and sequential 

relations. Any two vertices in an SCC indicate that two topics, x and y, may be referenced by 

different TKFs with the ordering x > y and y > x. This ordering is an example of a parallel 

relation, where either vx ~> vy or vy~>vx would be appropriate; thus, there is no strict ordering 

between vx and vy. The referencing order of the vertices is not obvious, and the knowledge 

items represented by the vertices may be referenced simultaneously. As the vertices in an 

SCC are not in a specific order, conventional workflow mining methods consider the 
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association between the vertices as a parallel relation. However, in contrast to such methods, a 

sequential relation pattern (SRP) rather than a parallel relation pattern (PRP) may be extracted 

if most of the referencing behavior in the SCC fits the SRP. That is, the SRP represents the 

most frequent knowledge referencing pattern in the SCC.  

We explain how to recognize the above relations in Section 5.4.1, and how to evaluate, 

the weight of each edge when measuring the importance of a flow in the GKF in Section 5.4.2. 

Then, we transform the initial graph of the GKF into a new directed acyclic graph GN in 

which a strongly connected component Gs is regarded as a vertex in Section 5.4.3.  

After graph transformation, the topological sorting and edge deletion procedures are 

applied on GN to remove any infrequent edges. An infrequent edge indicates that only a few 

workers in the group adopt a particular reference behavior pattern. Since such patterns are not 

representative of the group’s general referencing behavior, they can be removed. The 

topological sorting procedure is used to sort all vertices in VN in topological order, as 

discussed in Section 5.4.4. Based on the sorting result, the edge deletion procedure (described 

in Section 5.4.5) checks all the edges and removes infrequent and unqualified edges from EN 

and E. After edge deletion, the graph G represents the group-based knowledge flow.  

5.4.1 Topic Relation Identification 

The topic relation identification procedure determines the relations between vertices in a 

strongly connected component, as shown in Fig. 18. Let the strongly connected component Gs 

= (Vs, Es), where Vs is a vertex set and Es is an edge set. Parallel and sequential relations can 

be discovered from a strongly connected component Gs = (Vs, Es) based on the frequency 

count of knowledge flow sequences (KFSs). To determine and rebuild the relationships 

between vertices in Vs, all possible non-duplicate KFSs of length |Vs|, which contain all 

vertices in Vs, are identified from Gs. The derived KFSs are then compared with a 

non-duplicate sequence, i.e., SQw, in a TKFw, which contains a set of vertices that are 

common to both Vs and the vertex set of V(TKFw), i.e., V(SQw) = {Vs ∩ V(TKFw)}. V(SQw) / 

V(TKFw) denotes the set of vertices in the sequence SQw / TKFw. When the sequence SQw is a 

subsequence of a KFS, the frequency count of the KFS is increased. Next, all the KFSs are 

sorted in descending order of their frequencies and the top-2 frequent KFSs are selected to 
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elicit the relations of vertices in Vs. The preceding pseudo node vγ and the succeeding pseudo 

node vρ of Gs are also added to V. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

Topic_Relation_Identification (TKF, G, Gs) { 
Identify all possible non‐duplicate flow sequences of length | Vs | from Gs, where KFS = 

{KFSx | x= 1..n}; 
//Identify a sequence of vertices in Vs from a TKF and compare it with sequences in KFS 
For each TKFw { 

Identify a non‐duplicate sequence SQw  in TKFw that contains the common vertices  in 
Vs and TKFw, i.e., V(SQw) = {Vs ∩ V(TKFw)}; 

Compare  SQw with  each  KFSx in  KFS.  If  SQw  is  a  subsequence  of  KFSx,  increase  the 
frequency count of KFSx , i.e., fKFSx; 

} 
Sort all KFSx and select top‐2 frequent flow sequences KFSa and KFSb; 
Add a preceding pseudo node vγ and a succeeding pseudo node vρ of Gs to V; 
If (|fKFSa ‐ fKFSb| ≤ ε) {    //parallel relation (and/or split) 
      For each edge ei,j in Es { 
        If (vi → vj exists in a TKFw and vj > vi exists in another TKFy) 
            Remove the edge ei,j from E and Es; 
      } 

For each vertex vi in Vs { 
        For each adjacent predecessor vk of vi, where vk ∈V and vk ∉Vs { 

Replace  the  edges  ek,i with  the  edges  ek,γ  and  eγ,i,  and  update  their  frequency 
counts; } 

For each adjacent successor vl of vi, where vl ∈V and ∉Vs { 
Replace  the edges ei,l with  the edges ei,ρ and eρ,l, and update  their  frequency 
counts; } 

        } 
} 
else {    //sequential relation 
If (fKFSa > fKFSb) or (fKFSb > fKFSa) 

Let KFSy be the most frequent flow sequence; 
Let vi/ vj be the first/ last vertex in KFSy; 
Remove all edges in Es from Es and E; 
For each vg → vh in KFSy {add edges eg,h to Es and E}; 
For each vertex vf in Vs { 

For each adjacent predecessor vk of vf, where vk ∈ V and vk ∉ Vs { 
Replace edge ek,f with edges ek,γ and eγ,,i, and update their frequency counts; } 

For each adjacent successor vl of vf, where vl ∈ V and vl ∉ Vs { 
Replace edge ef,l with edges ej,ρ and eρ,l, and update their frequency counts; } 

        } 
    } 

Return G; 
} 

Fig. 18: The topic relation identification procedure 

If the difference in the frequency counts of the selected KFSs is no greater than a 

user-specified threshold ε, the order of the vertices in Vs is not significant. In this case, the 
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vertex relation is defined as parallel. For example, let us consider a strongly connected 

component where vertex vx, vertex vy and vertex vz are in Vs; and let the user-specified 

threshold ε = 2. When the frequency counts of two KFSs <vx, vy, vz > and < vz, vy, vx> are 7 

and 6 respectively, the relation between vertex vx, vertex vy and vertex vz is parallel because 

the difference in their frequency counts is no greater than the threshold. However, if the 

difference is greater than a user-specified threshold, the KFS with the largest frequency count 

can be used to represent the relationship of vertices in Vs based on the majority principle. The 

ordering of these vertices is defined as a sequential relation. Next, we explain how to identify 

the order of vertices in a strongly connected component, i.e., parallel relations and sequential 

relations.  

Identifying Parallel Relations in an SCC 

For parallel relations, the order of the vertices in Vs is not important. The 

Topic_Relation_Identification procedure checks each edge in Es for each TKF. Let ei,j be an 

edge in Es that connects vertex vi to vertex vj directly. If this direct flow relation vi → vj 

appears in a TKF and a flow relation vj > vi exists in another TKF, the edge ei,j is removed 

from E and Es, and the relation between vertex vi and vertex vj is regarded as parallel. That is, 

there is no specific ordering between vertex vi and vertex vj, and their corresponding topics 

can be referenced in any order.  

After adding a preceding pseudo node vγ and a succeeding pseudo node vρ to G, the 

edges connected to the vertices in Vs are redirected through the pseudo nodes. To connect a 

vertex in V to the pseudo nodes, each adjacent predecessor vk of vi, where vk ∉ Vs and vi ∈ Vs, 

and each adjacent successor vl of vi, where vl ∉ Vs and vi ∈ Vs, are examined. For vertex vk, if 

edge ek,i , which connects vertex vk to vertex vi , exists in E, it is removed. Then, the edges ek,γ  

and eγ,i are added to E and their frequency counts are calculated. If the two edges already exist 

in E, their frequency counts are simply updated. Briefly, the edge ek,i is replaced by edges ek,γ 

and eγ,i to make a connection with vertex vk and vertex vi through the pseudo node vγ. 

Similarly, for a vertex vl, if edge ei,l exists in E, it is removed. Then, the edges ei,ρ and eρ,l, are 

added to E and their frequency counts are calculated. If the edges already exist in E, their 

frequency counts are simply updated. 
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Example of Identifying Parallel Relations 

Fig. 17, there is a strongly connected component Gs comprised of Vs = {A, B, C} and Es 

= {eA,B, eB,A, eB,C, eC,B, eA,C}. Let the threshold ε be 1. The graph of the GKF after topic 

relation identification is shown in Fig. 19. 

Based on the Topic_Relation_Identification procedure, two pseudo nodes, γ and ρ, are 

added to G. Then, the edges in Es are examined to determine which ones should be removed. 

Three non-duplicate sequences are discovered in Gs, i.e., <A, B, C>, <A, C, B> and <B, A, 

C>; their frequency counts are 2, 1 and 1 respectively. Because the difference in the 

frequency counts of the top-2 sequences is equal to 1, the relation between vertex vA, vertex vC, 

and vertex vB is regarded as parallel, and the edges eA,B, eB,A, eB,C and eC,B are removed from 

the graph. 

 

Fig. 19: A parallel relation in a GKF graph 

Meanwhile, the relation between vertex vA and vC is regarded as sequence because A → 

C exists in one TKF, but there is no flow relation, i.e., C > A, in any other TKF. Thus, eA,C is 

not removed from the graph. The incoming edges of vertex vA, vertex vB and vertex vC are 

changed to make connections through pseudo node vγ. Similarly, the outgoing edges of vertex 

vA, vertex vB and vertex vC are changed to make connections through pseudo node vρ. Then, 

the frequency counts of these edges are updated, as shown in Fig. 19. 

Identifying Sequential Relations in an SCC 

If the difference between the frequency-counts of the selected top-2 KFSs is greater than 

a user-specified threshold, the ordering of the vertices in the KFSs is regarded as a sequential 

relation. That is, based on the majority principle w.r.t. knowledge referencing behavior 

discussed earlier, the vertices in Vs follow the ordering of the KFS with the highest frequency. 

Let KFSy be the knowledge flow sequence with the highest frequency count; and let vi and vj 
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be, respectively, the first and last vertices in the sequential order of KFSy. All the edges in Es 

are removed from Es and E. Then, for each direct flow relation vg → vh in KFSy, an edge eg,h is 

added to Es and E. Similarly, the edges connected to the vertices in Vs are redirected through 

the pseudo nodes.  

For each adjacent predecessor vk of vf , where vk ∈ V , vk ∉ Vs, and vf ∈ Vs, the edges ek,γ 

and eγ,i are added to E, and their frequency counts are calculated. If the edges already exist in 

E, their frequency counts are simply updated. The edge ek,f , which connects vertex vk to 

vertex vf , is removed from E and replaced by the connections from vk to vγ and from vγ to vi, 

the first vertex of KFSx. That is, the edge ek,f is replaced by edges ek,γ and eγ,i, which connect 

with vertex vk and vertex vi respectively through the pseudo node vγ. Similarly, for each 

adjacent successor vl of vf , where vl ∈ V and vl ∉ Vs, and vf ∈ Vs, we use the same method to 

establish connections from the last vertex in KFSx to the vertex vl through the pseudo node vρ. 

The connection from vf to vl is replaced by the connections from the last vertex of KFSx, i.e., vj, 

to the pseudo node vρ and from vρ to vl.  

Example of Identifying Sequential Relations 

Table 4: The TKFs of seven knowledge workers 
Worker Topic-level KF (TKF) 

W1 <A, F, B, C, D, H> 

W2 <A, G, B, C, D, I> 

W3 <F, B, C, D, H> 

W4 <A, F, C, D, B, K, H> 

W5 <F, C, D, B, K, H> 

W6 <A, G, B, C, K, H> 

W7 < F, B, C, D> 

Table 4 lists the knowledge flows of a group of seven workers. The GKF mining 

algorithm, described in Section 5.4, is used to generate the graph of the group-based KF and a 

strongly connected component with vertices vB, vC, and vD is identified from the GKF graph. 

Then, the Topic_Relation_Identification procedure is applied to determine the relation 

between those vertices. As shown in Fig. 20, the relation is sequential with the ordering vB, vC, 

and vD. In addition, the edges connected to any vertex in Vs are changed. For example, the 

edge eB,K is changed to edge eD,ρ and edge eρ,K such that there is a path from vertex vB to 
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vertex vK via the pseudo node vρ.  

 

Fig. 20: A sequential relation in a GKF graph  

5.4.2 Measuring the Importance of an Edge 

Our objective is to derive the referencing behavior of a group of workers by constructing 

a frequent knowledge path in a GKF graph. However, some infrequent edges in the graph 

may not be suitable for building the path. To measure the importance of each edge in a graph, 

the frequency count of each edge is normalized by the maximum edge frequency in E. The 

weighting function measures the importance of an edge in a GKF model, as defined in Eq. 

(20).  
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where wex,y, which ranges from 0 to 1, is the weight of the edge ex,y that represents a 

direct flow from vertex vx to vertex vy; fx,y is the frequency of the edge ex,y; E is the edge set of 

the graph; and the denominator is a maximum function that derives the frequency count of the 

most frequent edge in the graph. The more frequently an edge occurs, the more important it is 

deemed to be. The most frequent edge represents the frequent referencing behavior of most 

members of the group. Thus, it is suitable for describing the group’s referencing behavior. 

 

Fig. 21: The edge weights in a GKF graph  
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Example 

The weight of each edge in Fig. 19 is calculated by using the edge weighting method. 

The edge is then labeled with the weight to indicate its importance in the graph, as shown in 

Fig. 21.  

5.4.3 Graph Transformation 

To simplify a strongly connected component in a graph, the proposed algorithm 

transforms the original GKF graph into a new graph GN. After the transformation, the graph 

Gs is regarded as a vertex vGs in GN. We create two pseudo nodes, vγ and vρ , to represent, 

respectively, the split operator and the join operator of Gs. In addition, the incoming/ outgoing 

edges of Gs, which connect to the pseudo nodes vγ (the split operator) /vρ (the join operator), 

are merged to form a new edge whose weight is also updated. The weight of the incoming 

edge of vGs, which combines the incoming edges of Gs, is derived by combining the edge 

weights of the incoming edges of the node vγ. Similarly, the weight of the outgoing edge of 

vGs is derived by combining the edge weights of the outgoing edges of the node vρ. 

Example of Graph Transformation 

We transform the graph Gs in Fig. 21 into a new graph for further analysis, as shown in 

Fig. 22. To simplify the strongly connected component, all the vertices in Gs are wrapped as a 

vertex vGs in the new graph. The incoming edges and outgoing edges of any vertex in Gs and 

the weights of those edges are adjusted. In Fig. 21, edge eγ,A and edge eγ,B are merged to form 

a new edge eγ,Gs in Fig. 22 and their edge frequencies are combined as 1. In the same way, 

edge eC,ρ and edge eB,ρ are combined to form an edge eGs,ρ . 

Fig. 22: The result of graph transformation 
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5.4.4 Topological Sorting 

The frequent referencing behavior of a group of workers is derived by mining the 

group’s knowledge flow from a GKF graph. The workers may reference topics in a different 

order when performing tasks, but some referencing behavior is more frequent because the 

majority of workers in the group reference topics in the same order. In the GKF graph, a 

frequent knowledge path from the start vertex to the end vertex represents the workers’ 

frequent referencing behavior. For any vertex vi on the path, vertex vi is reachable from the 

start vertex and the end vertex is reachable from vertex vi. Note that a path with infrequent 

edges denotes an infrequent referencing behavior pattern.  

To derive a group’s frequent referencing behavior, a topological sorting procedure is 

used to sort all vertices in the graph, after which infrequent edges whose weights are no 

greater than a specified threshold are deleted. In graph theory, topological sorting [17, 31] is a 

very efficient way to arrange the vertices of a directed acyclic graph in topological order in 

linear time. The key property of the topological order is that, for any two vertices x and y, if x 

is a predecessor of y in the graph then x precedes y in the topological order.  

In this work, we use topological sorting to arrange all vertices in GN, which is a directed 

acyclic graph before the edge deletion procedure is applied. Then, the edge-deletion 

procedure examines the vertices in topological order to identify the infrequent incoming edges 

of each vertex that should be removed. However, before removing an infrequent edge, the 

procedure needs to ensure that each vertex in the GKF satisfies two criteria. First, any vertex 

vi on a knowledge path must be reachable from the start vertex and the end vertex must be 

reachable from vertex vi. Second, removing the edges of a vertex vi does not affect the path 

from the start vertex to the preceding vertices of vi in the topological order. In other words, 

topological ordering guarantees that 1) a predecessor will be processed before a successor; 

and 2) the predecessor’s reachability (i.e., from the start vertex to vi) will not be affected by its 

successors. Thus, when an infrequent edge of any vertex vi in G is removed, there is no need 

to verify the reachability of the predecessors of vertex vi from the start vertex. On the other 

hand, the path from the predecessors of vertex vi to the end vertex will be affected by 

removing an infrequent edge of vi; therefore, the predecessors should be examined again to 

ensure that they can still reach the end vertex.  
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Example 

In Fig. 22, all the vertices are sorted in topological order, and the resulting list is <s, γ, Gs, 

ρ, G, F, D, E, d>. According to the list, vs is the first vertex to be checked, vGs is the second 

vertex and so on. The algorithm examines all the vertices in topological order and removes 

infrequent edges from the graph GN via the edge deletion procedure. 

5.4.5 Using the Edge Deletion Procedure to Remove Infrequent Edges  

Based on the results of topological sorting of VN, the edge deletion procedure examines 

the vertices and determines which incoming edges should be removed from them. It then 

removes infrequent edges whose weight is no greater than a user-specified threshold, as 

shown in Fig. 23. The inputs of this procedure are the sorted list L derived by topological 

sorting and the edge set EN of the GKF graph. The algorithm checks the incoming edges of 

each vertex in ascending order of their weights, and those whose weights are no greater than a 

user-specified threshold η are candidates for removal. If an edge is removed, it means that the 

knowledge referencing behavior between two vertices (topics) is infrequent among the group 

of workers.  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Edge Deletion (L, G, GN) { 
Q =φ ; // the checked set of vertices 
For each vertex vy in GN , according to the vertex’s order in the sorted list L { 

For each incoming edge ex,y of vy , according to its weight in ascending order { 
If (the weight of edge ex,y < threshold θ) { 

Remove the edge ex,y from E and EN;   
If  (no path ps,y exists  from  the  start vertex  s  to vertex vy  in GN) or  (there 
exists a vertex vj, vj ∈ Q and no path pj,d exists from vertex vj to the end 
vertex d) 
Add the edge ex,y to E and EN; 

} 
} 
Add vertex vy to Q; 

} 
} 

Fig. 23: The edge deletion procedure 

However, an infrequent edge should only be deleted from the graph if removing it would 

not make any vertex unreachable. Let Q be the set of vertices that have been checked in 

topological order to remove their infrequent incoming edges. For a vertex vy, if one of its 
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incoming edges is removed and there is no other path from the start vertex to vy, the removed 

edge should be returned to the edge sets E and EN. In addition, the vertices checked before vy 

should be reexamined to ensure that there is a path from a checked vertex vi in Q to the end 

vertex. If removing an edge violates the above condition, the edge should be returned to the 

edge sets E and EN.  

Because of the characteristics of topological sorting, the edge deletion procedure ensures 

that 1) any vertex in the graph GN can be reached from the start vertex; and 2) removing an 

edge of a vertex does not affect any path from the start vertex to the predecessors of the vertex. 

In other words, there exists at least one path from each vertex to the end vertex. Moreover, we 

can obtain several frequent knowledge paths from the GKF graph to help workers learn the 

group’s knowledge. The following example explains how to remove an edge from the GKF 

graph. 

Example of Removing Infrequent Edges 

In Fig. 22, let vertex vE be the examined vertex and let the user-specified threshold be 0.3. 

The vertex vE has two incoming edges: eρ,E with weight 0.2 and eD,E with weight 0.4. The 

edge eρ,E qualifies for removal, because its weight is no greater than 0.3 and removing it 

would not make any vertex unreachable. Fig. 24 shows the resulting graph, which represents 

the GKF of the group. The graph is used to visualize the knowledge flows among the frequent 

topics and model the referencing behavior of the group. 

Fig. 24: The final graph GN of the GKF model 

The edge deletion procedure has several properties. We define and prove the associated 

lemmas below. 

Lemma 1: Let vs be the start vertex in a graph, GN, of a group-based knowledge flow. For any 

vertex vh in GN, there exists a path Ps,h from vertex vs to vh.  
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Proof:  In the edge deletion procedure, removal of an incoming edge from a vertex vh 

depends on the weight of the edge. All vertices in GN are visited in topological order and their 

incoming edges are examined. For any vertex vh, an incoming edge should be removed if its 

weight is no greater than a user-specified threshold. However, if removing an edge from vh 

also removes the path Ps,h from GN, that edge should be returned to the vertex.  

When deleting an incoming edge of a vertex, the edge deletion procedure ensures that 1) 

there is a path Ps,h from the start vertex vs to vertex vh; and 2) removing an incoming edge 

from a successor of vh does not affect the path Ps,h . The proof is as follows. Let a vertex vk be 

a succeeding vertex of vh in the topological order. Based on the topological order, the edge 

deletion procedure processes the vertex vh before vertex vk and there exists a path Ps,h. 

Assume that a path Ps,h does not exist from vs to vh, because an incoming edge of vk has been 

deleted. Thus, a path must have existed from vertex vs through vk to vh before the edge was 

deleted. Consequently, vk must be a predecessor of vh. However, this statement contradicts the 

algorithm’s processing of vertices in topological order. That is, vk is a succeeding vertex of vh 

and the path Ps,h exists in GN. Thus, removing an incoming edge from a succeeding vertex of 

vh does not affect the path Ps,h. According to the algorithm and the above explanation, for any 

vertex vh in GN, there exists a path Ps,h from vertex vs to vh.  

Lemma 2: Let vd be an end vertex in the graph of the group-based knowledge flow GN. For 

any vertex vh in GN, there exists a path Ph,d from vertex vh to vd. 

Proof:  Let vertex vk be the succeeding vertex of the vertex vh. Removing an incoming edge 

of vertex vk will affect the reachability of the end vertex vd from vertex vh. When the edge 

deletion procedure removes an incoming edge of vertex vk, it has to check whether the path 

Ph,d from vertex vh to the end vertex vd exists. If it does not exist, the incoming edge should 

not be removed. Therefore, the procedure ensures that a path Ph,d exists from vertex vh to the 

end vertex vd. 

Lemma 3: Let GN = {VN, EN} be the directed graph of a group-based knowledge flow. All 

vertices in VN can be visited by traversing vertices from the start vertex vs to the end vertex vd. 

Then, for any vertex vh in V, there exists a path from vs to vd through vh. 

Proof:  According to Lemma 2 and Lemma 3, for any vertex vh in VN, there exists a path Ps,h 
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from the start vertex vs to vh and a path Pv,d from vh to end vertex vd. Therefore, there exists a 

path from vs to vd through vh.  

Lemma 4: For any infrequent edge eh,k on an infrequent path of GN, either the path from the 

start vertex vs to vertex vk or the path from the vertex vh to the end vertex vd must pass through 

the edge eh,k.  

Proof:  Let vertex vh be a predecessor of vertex vk in the topological order, and let eh,k be an 

infrequent edge from vertex vh to vertex vk in GN. Assume that there exist two paths, one from 

start vertex vs to vertex vk and the other from vertex vh to the end vertex vd, neither of which 

passes through the edge eh,k. Our algorithm removes any infrequent edge if doing so will not 

make any vertex unreachable. Thus, the algorithm will remove the edge eh,k. However, this 

contradicts the statement that eh,k exists in GN. Consequently, for any infrequent edge eh,k of an 

infrequent path of GN, either the path from the start vertex vs to vertex vk or the path from the 

vertex vh to the end vertex vd must pass through the edge eh,k.  

The vertex VGS in graph GN represents a corresponding strongly connected component GS 

in G. All vertices in GS with parallel relations or sequential relations are reachable. Lemmas 2, 

3, 4 and 5 also hold for G.  

5.5 The GKF Mining Algorithm for Dealing with Topic Loops 

The GKF mining algorithm for dealing with topic loops (GKF-TL) is based on the GKF 

algorithm introduced in Section 5.4, which assumes there are no topic loops in workers’ KFs 

when it generates the graph of the group-based KF. A topic loop means that a specific topic 

appears repeatedly in a TKF because it is referenced by a worker several times. This may 

happen because the worker needs the knowledge at different times during a task’s execution. 

For example, given a worker’s topic-level KF <A, B, A, C, D>, if topic A is referenced twice, 

it is appears as a topic loop in the corresponding graph of the TKF. Because the loop problem 

in a workflow mining domain is difficult to resolve, no matter what the application domain, 

many researchers ignore the problem [23, 56]. Agrawal et al. [7] proposed an algorithm for 

workflow systems that builds a general directed graph with cycles for mining process models 

from workflow logs. The algorithm gives activities different labels to differentiate them in a 

workflow instance. The problem of dealing with topic loops in TKFs is analogous to that of 
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workflow systems. Thus, we adopt the above approach to solve the loop problem. Specifically, 

we propose an algorithm that considers duplicate topics (topic loops) in each TKF to build a 

directed graph for modeling the referencing behavior of a group of workers.  

The GKF-TL algorithm differs from the GKF algorithm. First, it identifies duplicated 

topics in a TKF and gives them different labels in order to solve the loop problem. For 

example, given a KF <B, A, B, C, B>, because topic B appears three times, it is transformed 

into three instances, i.e., B1, B2 and B3, such that the original KF becomes <B1, A, B2, C, 

B3>.  

After infrequent edges have been removed from the graph G, it is transformed into a new 

graph GT as follows. The vertices with different instances of the same topic form an 

equivalent set and can be merged to make one vertex. For a topic TP in a TKF, each vertex in 

the equivalent set of TP is an instance of the topic. Then, a directed edge is added to the new 

graph GT if there is an edge between two vertices of different equivalent sets in graph G. 

Initially, the merging process is applied to vertices of each equivalent set in G when a strongly 

connected component is not involved. To merge vertices involving a strongly connected 

component Gs, the steps are as follows. 

Let vertices vi/ vj be instances in the equivalent sets Qa / Qb, and let vk be an another 

instance in Qa as well as a vertex in a strongly connected component, i.e., vk ∈ Gs, where vγ 

and vρ are two pseudo nodes of Gs. Note that because vk and vi are instances of the same topic, 

they are in the same equivalent set and are thus merged to form one vertex. In addition, vi is in 

Gs, since vk is in Gs. Generally, the vertices of an equivalent set Qa in G are combined as a 

vertex va in the new graph GT, while the vertices of an equivalent set Qb are merged to form 

one vertex vb. For a strongly connected component Gs with pseudo nodes vγ and vρ, if a 

directed edge ei,j between vi and vj exists in G, a directed edge eρ,b is added to the new graph 

GT. Similarly, if a directed edge ej,i exists in G, a directed edge eb,γ is added to graph GT. 

Next, we consider how to combine vertices involving two strongly connected 

components. Let vk / vl be vertices in strongly connected components Ga / Gb; vγa and vρa be 

pseudo vertices that connect with graph Ga; vγb and vρb be pseudo vertices that connect with 

Gb; and Qa / Qb be the corresponding equivalent sets of vertices in Ga / Gb. In addition, let 
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vertex vi and vk (resp. vj and vl) be instances of the equivalent sets Qa (resp. Qb). Vertices in Qa 

/ Qb are merged as vertex va / vb. Because vk / vl is in Ga / Gb, vi / vj also belongs to Ga / Gb; 

however, some edges need to be adjusted. If there is a directed edge ei,j from vi to vj in graph 

G, an edge eρa,γb with the same direction as edge ei,j is added to the new graph GT. Similarly, if 

a directed edge ej,i exists in graph G, a directed edge eρb,γa is added to GT. These new added 

edges are used to merge two equivalent sets in different strongly connected components and 

make a connection between them. Note that the weights of the edges are updated during the 

merging process. 

Note that we assume the instances of a topic exist in at most one strongly connected 

component after the vertices of each equivalent set have been merged to form one vertex. We 

defer consideration of the case where the same topic belongs to more than one strongly 

connected component to a future work. Next, we provide an example of implementing the 

GKF-TL algorithm. 

5.5.1 Applying the GKF Mining Algorithm for Dealing with Topic loops 

The following example considers a group of four workers with similar KFs. Their 

topic-level KFs (TKFs) are listed in Table 5. Each element in a TKF is used to represent a 

topic domain. Thus, the elements in a TKF are arranged as a topic sequence based on the 

times they were referenced. As a topic may appear more than once in a specific KF, because 

the worker needs the knowledge at different times, we apply the GKF-TL mining algorithm to 

deal with topic loops.  

Table 5: The TKFs of four workers 

Worker Topic-level KF (TKF) TKF’ 
John <A, B, A, C, D, F> <A1, B1, A2, C, D, F> 
Mary <B, A, B, C, D> <B1, A1, B2, C, D> 
Lisa <B, A, D, F> <B1, A1, D, F> 
Tom <A, B, A, E, G, D> <A1, B1, A2, E, G, D> 

In Table 5, a topic that appears more than once in a TKF is labeled as a different instance 

of the topic, and a TKF with duplicate topics is transformed into a TKF’. Then, the algorithm 

uses TKF’ to build the initial graph of the GKF model. In this example, we set the 

user-specified thresholds for topic relation identification and edge deletion as ε = 1 and θ = 
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0.3 respectively. The initial graph derived before graph transformation is shown in Fig. 25. A 

strongly connected component is discovered in the initial graph. To resolve the vertex relation 

problem in the strongly connected component, the algorithm applies the topic relation 

identification procedure detailed in Fig. 18. The vertex relation in the strongly connected 

component is shown in Gs in Fig. 25. The number on each edge represents the edge’s weight. 

Recall that the weight is derived by Eq. (20) to indicate the importance of the edge.  

 

Fig. 25: The initial graph of the GKF model with topic loops 

Fig. 26 shows the result of removing the infrequent edges from the graph in Fig. 25. The 

sub-graph Gs in the initial graph is transformed into a vertex vGs.; and the edge that connects a 

vertex in Gs with another vertex, i.e., eρ,D, is removed because its weight is no greater than 

0.3.  

 

Fig. 26: The graph of the GKF model with topic loops 

Finally, the algorithm merges vertices that are different instances of the same topic into 

one vertex. For example, in Fig. 25, vertices vB1 and vB2 are different instances of the same 

topic, so they are merged to form the vertex vB. Moreover, the edge eρ,B2 is replaced by an 

edge connecting vρ to vγ; and the edge eB2,C is changed to edge eρ,c. The vertices vA1 and vA2 

are two instances of topic A; hence they are merged to form vertex vA, and their edges are 

changed accordingly. Fig. 27 shows the final GKF graph, which considers the duplicate topics 

in each worker’s TKF. To illustrate all knowledge paths in the graph, the vertex vGs is 

converted into the original graph Gs.  
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Fig. 27: The final GKF graph, which considers the duplicate topics in each worker’s TKF 

5.6 Identifying Knowledge Referencing Paths in a GKF Graph 

We have developed a method for identifying frequent knowledge paths from the GKF 

graph to describe the information needs of a group of workers, i.e. their knowledge 

referencing behavior. A knowledge path, which represents the knowledge referencing 

behavior of a group of workers, consists of several vertices and edges that can be traversed 

from the start vertex to the end vertex. To identify a frequent knowledge path, a path score 

derived from the weights of the edges on a path is used to evaluate each path and indicate its 

importance, as defined in Eq. (21).  

}|{ ,, iyxyxi patheweMinps ∈∀= ,  (21) 

where psi is the path score of the path i; and wex,y is the weight of edge ex,y, which 

belongs to the path i and represents a direct flow relation between vertex x and vertex y. 

Based the weights of all the edges on a specific path, a path score is derived from the minimal 

weight among the edges to indicate the path’s level of importance. Note that the edge weight 

derived by Eq. (20) denotes the importance of the direct flow in a GKF. A large edge weight 

means that the referencing flow between topics is highly significant for the group of workers. 

Paths with scores higher than a user-specified threshold are regarded as frequent 

knowledge paths in the GKF and are selected for the group. Specifically, such knowledge 

paths (patterns) are used to represent the frequent knowledge referencing behavior of workers 

and important knowledge flows. The discovered paths will be important references for 

workers, while the frequent knowledge paths also will help novices learn group-related 

knowledge. The following example illustrates the computation of the path score.  

5.7 The Prototype System for Mining Group-based Knowledge Flows 

In this Chapter, we develop a prototype system to demonstrate the proposed methods for 
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mining group-based knowledge flows (GKFs), which are generally difficult to formalize. To 

address the problem, our system provides a mining function and modules to identify GKFs 

easily and effectively. In addition, a GKF is modeled as a graph to represent the referenced 

topics, the directions of knowledge flows, and the knowledge referencing paths (patterns) for 

a group of workers with similar KFs. The referencing paths with scores higher than a 

user-specified threshold are identified to represent the frequent knowledge referencing 

patterns of the group. We describe the real-world dataset used in our system in Section 5.7.1, 

present the implementation of our prototype system in Section 5.7.2 and discuss the 

contributions of this work in Section 5.7.3. 

5.7.1 Dataset 

We use a dataset from a research laboratory in a research institute. It contains 

information about 14 knowledge workers, 424 research documents, and a usage log that 

records the times documents were accessed and the workers’ document preferences. Each 

worker may perform a number of tasks, e.g., conducting a research project and writing 

research papers, and the research documents are the codified knowledge needed to perform 

the tasks. Because a worker’ information needs may change over time, the access time of 

documents can be used to track changes in his/her information needs for a specific task, and 

his/her knowledge referencing behavior can be identified.  

5.7.2 System Implementation 

To implement our prototype system for group-based KF mining, we use Microsoft 

Visual Studio 2005 (with C#) to develop the system and Microsoft SQL Server 2005 as the 

database system to storing the dataset. Because the dataset contains workers’ logs, it should 

be preprocessed to generate each worker’s codified-level KF and topic-level KF. To obtain 

the KF, documents in the dataset are grouped into eight clusters by using a single-link 

clustering method. Based on the clustering results, a topic-level KF is generated by mapping 

the codified knowledge into its corresponding clusters for each knowledge worker. Then, the 

two types of KF, the topic-level KF and the codified-level KF, are derived to describe the 

information needs of a worker. We use such KFs to build a prototype system to demonstrate 

the method for mining the knowledge flows of a group of workers.  
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Our system has two major functions: worker clustering and group-based knowledge flow 

mining. The former identifies a group’s knowledge flow, and the latter uses a directed acyclic 

graph to present the mining results. An interface that can visualize the KF is necessary. Note 

that our system can be applied in any knowledge intensive organization to help workers 

obtain and learn knowledge. Next, we describe the system in detail.  

 

Fig. 28: The main frame of the KF mining system 

The knowledge flow mining system is comprised of three modules: the main module, the 

CLIQUE clustering module and the GKF model. Each module has functions to help the user 

(a manager/worker) build a knowledge flow easily. Fig. 28 shows the main frame of the 

system, which provides essential functions for building the GKF model, e.g., the system 

settings, the KF alignment similarity and clustering functions. The system setting is used to 

initialize the system environment, e.g., database selection. The KF similarity function 

calculates the similarity between two workers’ knowledge preferences based on their 

knowledge flows and creates a similarity matrix of the workers. The parameter alpha adjusts 

the relative importance of the KF alignment similarity and the aggregated profile similarity on 

a scale of 0 to 1, as shown in Eq. (8). The user can specify the value of alpha and use the KF 

similarity function to create a KF similarity matrix based on the specified value. Then, the 

CLIQUE clustering method uses the similarity matrix to cluster workers who have similar 

KFs. The system also provides an interface to show the topic-level KFs of all workers and the 

results of worker clustering. To simplify the presentation of the KFs, we use a number to 

represent a topic domain that consists of topic-related terms. 
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Fig. 29: The CLIQUE clustering module  

Fig. 29 shows the CLIQUE clustering module. Before using the module, we have to set 

two parameters: the number of rows in the KF similarity matrix and the clustering threshold. 

The number of rows is used to determine the number of times clustering is performed using 

the CLIQUE clustering method, while the threshold is used to cluster workers whose 

similarity scores are higher than a certain value. Then, the clustering result is displayed on the 

system interface. For example, to perform clustering, the value of alpha is set at 0.3, the 

number of rows of the KF similarity matrix is 14 and the similarity threshold is set at 0.4. 

Each group is comprised of several workers, and each worker belongs to several task-based 

groups based on the KF similarities. After clustering similar workers, the system stores the 

clustering results in the database for further utilization and analysis.  

Next, using the proposed algorithm, the system builds a group-based knowledge flow 

(GKF) for a group of workers, as shown in Fig. 30. All the workers in a cluster have similar 

KFs, which are used to generate a GKF graph to characterize the referencing behavior of the 

group. In the graph, each circle is a topic domain represented by a number, while each 

directed edge indicates the flow of knowledge between two topics. The topic domain contains 

a topic profile, which consists of several representative terms and their term weights. Fig. 30 

shows the profile of topic domain 53 in a small window. The listed terms represent the 

knowledge of the topic.  
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Fig. 30: The GKF graph and knowledge referencing paths for a specific group 

In addition, the number on an arrow indicates the importance of a flow relation in this 

group’s topics. From the GKF graph, we observe that 6 topics, i.e., 4, 17, 19, 21, 27, and 29, 

can be referenced in parallel. That is, there is no specific order among the topics accessed by 

this group of workers. Moreover, the task-related knowledge may flow through 2 paths from 

the start vertex to the end vertex. In Fig. 30, the listed paths, which consist of several relevant 

topics and directed edges, are the knowledge referencing paths of this group. The paths with 

scores larger than a user-specified threshold are frequent referencing behavior patterns. The 

paths can be regarded as knowledge references for workers to share needed task knowledge. 

5.7.3 Discussion 

GKF mining by task-based groups has several advantages in a knowledge intensive 

organization. A GKF represents the flow and delivery of knowledge when workers in the 

same group perform a task. It can be used to identify topics of interest, major referencing 

behavior patterns, and the long-term evolution of the group’s information needs; and it allows 

task knowledge to be circulated and delivered efficiently among workers. If a novice joins the 

group, the GKF can provide a reference for learning group-based knowledge. The frequent 

knowledge paths in a GKF help a worker learn task-related knowledge, overcome obstacles 

encountered in a new domain, and enhance his/her learning efficiency. Moreover, based on 

the GKF, a manager can determine who has task-related knowledge and who satisfies a task’s 
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requirements, and then assign appropriate workers accordingly. In addition, through the GKF, 

an organization can realize the frequent referencing behavior and the information needs of a 

group of workers, and actively provide knowledge support for them. The GKF can also 

enhance organizational learning, as well as facilitate knowledge sharing and reuse in the 

context of collaboration and teamwork. 

In this work, we propose a recommendation framework based on the discovered 

knowledge flow for each knowledge worker, as described in Chapter 4. Such method analyzes 

workers’ referencing behavior and provides task-related documents to fulfill workers’ tasks. 

Because teamwork in an organization is common, we also develop a group-based knowledge 

flow mining algorithm that analyzes workers’ information needs from a group perspective and 

model the referencing behavior of a group as a knowledge graph. In our future work, we will 

apply the recommendation techniques on the group-based knowledge flow to provide 

knowledge support for workers in a teamwork environment.  
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Chapter 6. Conclusions and Future works 

6.1 Summary 

Knowledge is both abstract and dynamic. A worker’s knowledge flow (KF) comprises a 

great deal of working knowledge that is difficult to acquire from an organizational knowledge 

base. In this dissertation, we have considered how to identify the knowledge flow of 

knowledge workers, and how to provide knowledge support based on KFs effectively. To the 

best of our knowledge, no existing approach focuses on providing relevant knowledge 

proactively based on KFs. 

We propose KF-based recommendation methods, namely hybrid PCF-KSR, KCF-KSR 

and ICF-KSR methods, to proactively recommend codified knowledge for knowledge 

workers and enhance the quality of recommendations. These methods use KF-based 

sequential rule (KSR) method to recommend topics by considering workers’ knowledge 

referencing behavior; and then adjust the predicted rating of documents belonging to the 

recommended topic. Moreover, they consider workers’ preferences for codified knowledge, as 

well as their knowledge referencing behavior to predict topics of interest and recommend 

task-related knowledge. The collaborative filtering (CF) method, which is widely used to 

predict a target worker’s preferences based on the opinions of similar workers, only considers 

workers’ preferences for codified knowledge, but it neglects workers’ referencing behavior 

for knowledge. 

In the experiments, we evaluate the quality of recommendations derived by the proposed 

methods under various parameters and compare it with that of the traditional 

user-based/item-based CF method. The experiment results show that the proposed methods 

improve the quality of document recommendation and outperform the traditional CF methods. 

Additionally, using KF mining and sequential rule mining techniques enhances the 

performance of recommendation methods and increases the accuracy of recommendations. 

The KF-based recommendation methods provide knowledge support adaptively based on the 

referencing behavior of workers with similar KFs, and also facilitate knowledge sharing 

among such workers.  
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Furthermore, we have proposed the group-based KF mining method to identify the KFs 

of groups of workers. Such groups may be interest groups or communities, where the workers 

have very similar KFs. A group may comprise many workers with similar KFs, and a worker 

may join many groups simultaneously according to his/her information needs. Even though 

workers are in the same group, their KFs will differ in some respects. To discover the KF of a 

group of workers, we design algorithms that can analyze the workers information needs in 

their KFs to generate a GKF model. The model is then used to represent the information 

needs, the direction of knowledge flows, and possible paths for referencing task knowledge 

for a group of workers. Based on the model, we can identify representative paths as common 

behavior patterns for the group. Thus, the patterns can be regarded as learning references to 

help new members of a group. Finally, we implement a prototype system to demonstrate the 

efficacy of the proposed algorithms. Our system not only derives the KF for a group of 

workers, but also visualizes the mining results for further analysis.  

6.2 Future Works 

In our current work, a KF is simply regarded as a set of topics/codified knowledge 

objects arranged in a time sequence. However, a KF may have a complicated order structure 

with AND/OR, JOIN and SPLIT operations. In our future work, we will investigate a 

complex KF mining technique to model workers’ KFs with an order structure that includes 

such operations. Moreover, the discovered topic is regarded as an abstraction of topic-related 

documents. Auto-summarization techniques [45, 49] can be applied to extract the theme of a 

topic by summarizing the documents’ contents. In a future work, we will investigate the use 

of such techniques to derive knowledge flows based on theme information. In addition, the 

domain restricted the sample size of the data and the number of participants in the 

experiments, since it is difficult to obtain a dataset that contains information that can be used 

for knowledge flow mining. We will evaluate the proposed approach on other application 

domains involving larger numbers of workers, tasks and documents. Moreover, the method of 

generating topic subsequences for identifying the target worker’s knowledge referencing 

behavior is computationally expensive, especially for the large datasets. A more efficient 

method will be investigated in the future.  

Additionally, we will develop a recommendation method based on the GKF, so that 
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workers can cooperate and share their knowledge with other group members to accomplish a 

task. Moreover, different working groups in an organization may provide knowledge support 

for one another. To facilitate knowledge sharing in a group or among groups, we will 

investigate recommendation methods that provide task knowledge to workers and groups 

proactively. The effectiveness of a recommendation method depends to a large extent on how 

much workers trust one another. This factor is important because the level of trust may 

determine whether or not a worker is willing to share knowledge with others. Through group 

recommendation methods, task-related knowledge can be shared effectively to enhance the 

work efficiency of all knowledge workers. 
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