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USE OF CHARACTERISTIC-BASED FLUX LIMITERS IN A
PRESSURE-BASED UNSTRUCTURED-GRID ALGORITHM
INCORPORATING HIGH-RESOLUTION SCHEMES

Yeng-Yung Tsui and Tian-Cherng Wu
Department of Mechanical Engineering, National Chiao Tung University,
Hsinchu, Taiwan, Republic of China

A pressure-based procedure to solve problems ranging from incompressible to highly

compressible flows is described. The method adopts the fully conservative finite-volume

approach, for which the meshes can be of any topology. To handle the sharp change of

the gradient in the regions near the shock or the solid wall, the convective flux is limited

using high-resolution schemes such as the total variation diminishing (TVD) or the normal-

ized variable diagram (NVD) scheme. The flux limiters are determined from the character-

istic variables instead of the commonly used primitive or conservative variables. To enhance

solution accuracy, the gradient is calculated using a linear reconstruction approach. The

method is assessed and validated via testing on a number of flow problems, including inviscid

flows through a convergent-divergent nozzle, inviscid and viscous flows past an airfoil, and

viscous flows through a double-throat nozzle.

INTRODUCTION

For convection-dominated flows, the approximation to the advection term is of
great importance to the accuracy and stability of numerical solutions. It was recog-
nized that for high-order linear schemes the coefficients of the difference equation
may become negative and, thus, tend to introduce spurious oscillations in the sol-
ution where the gradients change sharply [1]. To remedy this problem, Spalding
[2] proposed a hybrid scheme which uses the second-order central difference scheme
for the absolute value of the cell Peclet number less than 2 and switches to the first-
order upwind difference scheme elsewhere. In the flux-corrected transport method of
Borris and Brook [3], the solution is obtained in a predictor-corrector manner. In the
predictor step, a low-order diffusive scheme is used to obtain a positive, monotonic
solution. It is followed by a corrector step in which a certain amount of diffusion
flux, which may have been excessive, is removed in a way that no new extrema will
be created.
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In hyperbolic systems, the characteristic speeds (or the eigenvalues) are of
mixed signs for subsonic flows. Information can be propagated both upstream
and downstream along the characteristics. In supersonic flows, information can be
transmitted only in the downstream direction because the characteristic speeds are
of the same sign. To reflect this fact, Beam and Warming [4] adopted a hybrid strat-
egy which switches automatically from central difference schemes to upwind differ-
ence schemes whenever the eigenvalues change from mixed sign to all positive. Later,
this inspires the development of the flux-vector splitting method [5, 6].

In past years, a lot of effort has been devoted to developing nonlinear
schemes by which high-order-accurate and bounded solutions are obtained. One
of these is the total variation diminishing (TVD) type of scheme introduced by
Harten [7]. These schemes usually involve limiters to control convective flux such
that the solution satisfies the total variation diminishing conditions [8, 9]. The
limiters are usually expressed as a function of the gradient ratio. These TVD
schemes are mostly found in density-based methods to capture shocks in transonic
and supersonic flows.

NOMENCLATURE

AC, AP coefficients of difference equation

BC coefficient defined by Eq. (31)
~dd a vector defined in the direction of

~ddPC

D pressure coefficient in difference

equation

e internal energy

Ff
C convective flux

Ff
D diffusive flux

k conduction coefficient

K inverse of the square of the speed

of sound

_mm mass flux

P pressure

Po total pressure

P0 pressure correction

r ratio of two consecutive gradients

R gas constant

S source term of difference equation
~SSf surface vector of cell face

S/ source term of transport equation

T temperature

T Jacobian matrix

To total temperature
~VV flow velocity vector

V1 velocity at infinity

c ratio of specific heats

cf flux limiter

C diffusion coefficient
~ddPC distance vector from node P to

node C

~ddBD distance vector from node B to

node D

DV cell volume

Dt time interval

m dynamic viscosity

q density

sij viscous stress tensor

/ transport variable

/B;/D;/U values of / at the upstream,

downstream, and far upstream

nodes

u characteristic variable

uB;uD;uU values of u at the upstream,

downstream, and far upstream

nodes

Subscripts

B a node upstream of the considered

face

C neighboring cell node

D a node downstream of the

considered face

f a face of the control volume

surface

P primary cell node

U a node far upstream of the

considered face

Superscripts

o old-time-level value
� prevailing value
0 correction
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Another approach was later introduced by Leonard [10] in the form of a
normalized variable diagram (NVD). After the variables have been normalized,
the face value is related to the value only at the upwind node. Solution monotonicity
is achieved by satisfying the convection boundedness criterion of Gaskell and Lau
[11]. It was shown by Leonard [12] that a number of TVD flux limiters can be
reinterpreted in the NVD, allowing for easier understanding of their characteristics.
This kind of scheme is mostly adopted in the pressure-based methods.

The nonlinear schemes usually switch between different linear schemes accord-
ing to the flux limiter such as that used in the TVD schemes or the normalized
upwind value in the NVD schemes. In order to construct the flux-limiting function
to find the face flux, it is a natural choice to use either the primitive variables or the
conservative variables, because they are the dependent variables to formulate the
governing equations. Alternatively, Mulder and Van Leer [13] used characteristic
variables in their averaging procedure, which employs the Van Albada limiting func-
tion [14] to solve a one-dimensional flow problem with isothermal gas along an
almost circular path through the stellar gravitational field of a rotating two-armed
spiral galaxy. It was shown that the solution is a notch better in the regions where
the flow is smooth, but with the convergence improved significantly. Lin and Chieng
[15] incorporated a number of high-order schemes in the form of NVD. It is apparent
from the one-dimensional shock tube flow that the oscillations around the expansion
waves and the shock waves are reduced when the indicator of the switching pro-
cedure is changed from primitive or conservative variables to the characteristic vari-
ables. Also shown is less iteration required in the oblique-shock step flow. Similar
conclusions have been addressed by Dadone and Grossman [16], who adopted the
MINMOD limiter in their rotated upwind scheme. The use of a characteristic-based
limiter can also be found in the work of Pan and Cheng [17], in which the limiter of
Barth and Jespersen [18] was utilized.

In the articles cited above, the solutions of the flow problems were obtained
with density-based methods. Implementation of characteristic-based limiters into
the pressure-based methods is scarce. Kobayashi and Pereira [19] incorporated
the characteristic interpolation practice into Roe’s approximate Riemann solver
[20, 21] for calculation of the convective flux. This was followed by a predictor-
corrector procedure to treat the coupling between the momentum equations and
the continuity equation, just as in the SIMPLE algorithm. In the work of Issa and
Javareshkian [22], the convective flux was formulated in the form proposed by
Yee et al. [23]. The MINMOD limiter was then used.

In the above studies, the numerical methods were constructed within the frame-
work of structured grids. The only exception is that of Pan and Cheng [17], in which
unstructured triangular meshes were utilized. On unstructured grids, information at
the nodes far away from the considered face is difficult to obtain, and the far
upstream nodes cannot be identified for nonquadrilateral grids. The limiting process
used by Pan and Cheng was based on a piecewise-linear reconstruction of cell-aver-
aged solution data while ensuring that no value in the cell greater than the surround-
ing neighbor values was created [18]. In a recent study by the present authors [24], a
methodology utilizing a pressure-based unstructured grid algorithm was developed
for all-speed flows. In this work, the far-upstream node value, as required in the
limiting processes of the TVD and NVD schemes, can be estimated from a linear
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reconstruction. Therefore, a vast number of TVD and NVD schemes can easily be
implemented. In this study, this method is extended to incorporate characteristic
variables as the basis for the limiting indicators.

HYPERBOLIC SYSTEMS

In two dimensions, the conservation laws for the inviscid flow in quasi-linear
form can be written as

qU

qt
þ A

qU

qx
þ B

qU

qy
¼ 0 ð1Þ

where

U ¼

q
u
v
e

2
664
3
775 A ¼

u q 0 0
ðc� 1Þe=q u 0 c� 1

0 0 u 0
0 p=q 0 u

2
664

3
775 B ¼

v q 0 0
0 v 0 0

ðc� 1Þe=q 0 v c� 1
0 0 p=q v

2
664

3
775
ð2Þ

Here primitive variables (density q, velocities u and v, and internal energy e) are used
as dependent variables.

The equation of state is

P ¼ ðc� 1Þqe ð3Þ
where c is the ratio of specific heats. Define a matrix P

P ¼ k1Aþ k2B ð4Þ

where k1 and k2 are arbitrary real numbers. The system is hyperbolic because there
exists a similarity transformation such that

T�1PT ¼ K ð5Þ
Here K is a diagonal matrix formed by the eigenvalues of P,

k1;2 ¼ k1uþ k2v k3;4 ¼ k1 � kc k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ k2
2

q
ð6Þ

where c is the speed of sound. The matrices T and T�1 are given by

T ¼

1 0 q=c q=c

0 k2 k1=k �k1=k

0 �k1 k2=k �k2=k

�c2=cðc� 1Þq 0 c=c c=c

2
6664

3
7775

T�1 ¼

ðc� 1Þ=c 0 0 �ðc� 1Þq=c2

0 k2=k2 �k=k2 0

c=2cq k1=2k k2=2k ðc� 1Þ=2c

c=2cq �k1=2k �k2=2k ðc� 1Þ=2c

2
6664

3
7775

ð7Þ

The jth column of T is a right eigenvector of P, corresponding to the eigenvalue kj.
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GOVERNING EQUATIONS

The basic equations describing the conservation of mass, momentum, and
energy for viscous flows can be expressed in tensor notation as

qq
qt
þ q
qxj
ðqvjÞ ¼ 0 ð8Þ

qqvi

qt
þ q
qxj
ðqvjviÞ ¼ �

qp

qxi
þ qsij

qxj
ð9Þ

qqe

qt
þ q
qxj
ðqvjeÞ ¼

q
qxj

k
qT

qxj

� �
� p

qvj

qxj
þ sij

qvj

qxi
ð10Þ

where k is the heat conduction coefficient and sij is the viscous stress tensor:

sij ¼ �
2

3
m
qvk

qxk
dij þ 2m

qvj

qxi
ð11Þ

The mathematic problem is closed by the equation of state,

P ¼ qRT ð12Þ

DISCRETIZATION

The cells (or control volumes) used to construct an unstructured grid can be of
arbitrary topology, which renders the finite-volume method more suitable for discre-
tization. The governing equations are first integrated over a control volume. This is
followed by applying the divergence theorem such that the volume integrals of the
convection and diffusion terms are transformed into surface integrals. For a variable
/, the equation can be cast into the following general form:

Z
CV

qq/
qt

dV þ
Z

CS

ðq~VV/Þ d~SS ¼
Z

CS

Cr/ d~SS þ
Z

CV

S/ dV ð13Þ

where C stands for the diffusion coefficient and S/ represents all the terms not
appearing in the equation, which are lumped into a source.

The above equation can be discretized by the following approximation:

½ðq/ÞP � ðq/ÞoP�
DV

Dt
þ
X

_mmf /f ¼
X

Cfr/f �~SSf þ S/ DV ð14Þ

Here the fully implicit scheme is employed for the time differencing. The subscript f
denotes the surface faces of the considered cell P, and the summation is taken over
all the surrounding faces. In the equation, _mmf is the mass flux through the face and
~SSf is the surface vector of the face. The second term on the left-hand side represents
the total convective fluxes across the control-volume surface, and the first term on

18 Y.-Y. TSUI AND T.-C. WU

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

6:
46

 2
5 

A
pr

il 
20

14
 



the right-hand side is the total diffusive fluxes. These two transport fluxes together
with the mass fluxes require further approximation.

Diffusive Fluxes

Consider a cell P and a neighbor cell C with a common face f as shown in
Figure 1. The diffusive flux F D

f across the face f is approximated by [25]

FD
f ¼

Cj~SSf j2
~ddPC � ~SfSf

ð/C � /PÞ þ Cr/f � ð~SSf �~ddÞ ð15Þ

where ~ddPC is the distance vector connecting the node P and the node C, and ~dd is
defined as

~dd � j~SSf j2
~ddPC �~SSf

~ddPC ð16Þ

The overbar on the face gradient indicates that it is obtained via interpolation from
the two nodes P and C. The first part of the expression represents the derivative
along the local coordinate ~ddPC and the second part stands for the cross-derivative
arising in nonorthogonal grids when ~ddPC is not perpendicular to the face f.

Convective Fluxes

For the convective flux, the face value /f is estimated using neighboring nodal
values as

/f ¼ /B þ
cf ðrÞ

2
ð/D � /BÞ ð17Þ

Figure 1. Illustration of a typical control volume with neighboring cells.
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where /B denotes the value at an upstream node B and /D the value at a node D
downstream of the face f, as shown in Figure 2. In the expression, the second term
represents the antidiffusion correction to the upwind difference scheme. For cf ¼ 0,
1, 2, it simply represents the upwind, central, and downwind difference schemes,
respectively. The coefficient cf ðrÞ stands for a flux-limiting function depending on
the ratio of gradients r defined by

r ¼ /B � /U

/D � /B

ð18Þ

where /U is the value at a node far upstream of the face f. It was shown by Sweby [8]
that the limiter must lie in the range between 0 and 2 to satisfy the TVD conditions.

In determination of the gradient ratio r, the far upwind node value /U needs
to be known. We assume that the solution / is distributed in a piecewise-linear sense.
Let the node U be placed at a location �~ddBD away from node B (see Figure 2). Then
the value /U can be estimated by

/U ¼ /D � 2r/B �~ddBD ð19Þ

Substituting this into Eq. (18) leads to

r ¼ 2r/B �~ddBD

/D � /B

� 1 ð20Þ

The above formulations can also be expressed in terms of normalized variables,
as was done by Leonard [10].

~// ¼ /� /U

/D � /U

ð21Þ

Thus,

r ¼
~//B

1� ~//B

ð22Þ

Figure 2. Illustration of calculation of the far upstream value /u.
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where

~//B ¼ 1� /D � /B

2r/B �~ddBD

ð23Þ

There are a vast number of TVD and NVD schemes to be used [24]. In the following,
the SUPERBEE limiter of Roe [26] and that of Van Albada [27] are chosen in our
calculations.

SUPERBEE cf ðrÞ ¼ maxf0;minðr; 2Þ;minð2r; 1Þg ð24Þ

Van Albada cf ðrÞ ¼
ðr2þrÞ
ðr2þ1Þ r � 0

0 r < 0

�
ð25Þ

These schemes can also be expressed in the normalized variable formulation (NVF)
as

SUPERBEE

~//f ¼ 2~//B 0 < ~//B � 1
3

~//f ¼ 1
2 ð~//B þ 1Þ 1

3 <
~//B � 1

2
~//f ¼ 3

2
~//B

1
2 <

~//B � 2
3

~//f ¼ 1 2
3 <

~//B < 1
~//f ¼ ~//B otherwise

8>>>>>><
>>>>>>:

ð26Þ

Van Albada
~//f ¼ ~//B

~//B � 0 or ~//B � 1

~//f ¼ ~//B þ
~//Bð1�~//BÞ

2�4~//Bþ4~//2
B

0 < ~//B < 1

(
ð27Þ

It is obvious that with the use of the limiting functions, the programming becomes
much easier and more efficient because those IF statements, as required in the
NVF, become unnecessary.

Mass Fluxes

In our calculations, all variables are stored at the centroid of each control vol-
ume. It is known that with the collocated grid arrangement, checkerboard oscilla-
tions may arise in the solution due to the decoupling between the velocities and
pressure on the same node. To avoid this problem, the velocities on the face are esti-
mated by

~VVf ¼ ~VVf �Df ðrPf �rPf Þ ð28Þ

where

Df ¼
DV

AP

� �
f

¼ 1

2

DV

AP

� �
P

þ DV

AP

� �
C

� �
ð29Þ

Here AP is the principal coefficient of the discretized momentum equation. The
face values ~VVf and rPf are obtained via interpolation from nodes P and C.
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The mass flux across the face is then calculated in the following way:

_mmf ¼ qf
~VVf � ~SfSf � qf Df ðrPf �rPf Þ �~dd ¼ qf

~VVf
~SSf � BC ½ðPC � PPÞ � rPf �~ddPC �

ð30Þ

where

BC ¼ qf Df
j~SSf j2

~ddPC � ~SfSf

ð31Þ

In Eq. (30), term in brackets plays the role of a third-order correction to the mass
flux.

In compressible flows, the density is a transport property governed by the
continuity equation. Thus, the density on the face in calculating the mass flux is also
calculated using the flux-limiter method shown by Eq. (17).

CHARACTERISTIC-BASED LIMITERS

In calculating the convective flux, as given in Eq. (17), the antidiffusion term is
based on the primitive variables. In the following, we will show how to determine
this antidiffusion term from characteristic variables. Let /l be the primitive variables
(i.e., q, u, v, and e) and Tlm and T�1

lm be the matrices, given by Eq. (7), to form the
similarity transformation. The characteristic variables are then defined as

ul ¼ T�1
lm /m ð32Þ

Multiplying Eq. (17) by T�1
lm yields

um
f ¼ um

B þ
cm

f ðrmÞ
2

Dum ð33Þ

where

Dum ¼ um
D � um

B ð34Þ

The gradient ratio rm is now based on characteristic variables:

rm � um
B � um

U

um
D � um

B

ð35Þ

Equation (33) is then multiplied by Tlm to convert the characteristic variables back to
primitive variables to yield

/l
f ¼ /l

B þ
1

2

X
m

cm
f ðrmÞTlm Dum ð36Þ

where the summation is taken over the four characteristic variables.
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To implement the above method, there are different ways to determine the
characteristic variables at nodes D, B, and U, which may have a great effect on
the solution. In one method, the characteristic variables are determined from

uD ¼ T�1
B /D uB ¼ T�1

B /B uU ¼ T�1
B /U ð37Þ

where the matrix T�1 at the upstream node B is used in the determination of uD, uB,
and uU . This approach is termed method 1 in the following. It is easy from Eq. (32)
to show the characteristic variables in the following form:

u1 ¼

ðc� 2Þq=c
ðk2u� k1vÞ=k2

k1u=2k þ k2v=2k þ c=c
�ðk1u=2k þ k2v=2kÞ þ c=c

2
664

3
775 ð38Þ

Thus, an alternative approach, termed method 2, is to use the primitive variables
directly at nodes D, B, and U to find the above characteristic variables at these
nodes.

In characteristic variables, the two constants k1 and k2 need to be specified. In
one method, these constants can be the directional cosines of the normal vector of
the considered face. With this approach the characteristic variables need to be recal-
culated at each face in a cell. Another method is to use a unified direction. The direc-
tion of local pressure gradient in cell B is a suitable choice. This way is more
economical in terms of computing time and is adopted in the following.

It is noted that instabilities may arise in some flow problems and prevent the
solution procedure from converging. To suppress the instability, the convective flux
needs to be further limited to introduce more diffusion into the scheme. This is
achieved by limiting the limiter to a value less than 1, as will be discussed in the case
of a NACA airfoil in the tests. It is noted that a value of cf smaller than 1 indicates
that the scheme is biased toward the upwind direction, whereas for cf greater than 1
it becomes toward the downwind direction.

GRADIENT CALCULATIONS

As seen above, the gradients of variables need to be determined before calcu-
lating the diffusive and mass fluxes. Moreover, in determining the flux-limiting func-
tion, the far-upwind value uU depends on the gradient in the considered cell. The
method used to estimate the gradient has significant effects on the accuracy. A sim-
ple approach to calculate the gradient is to use the discretized Gauss theorem.

r/ ¼ 1

DV

X
/f
~SSf ð39Þ

where summation is over the surrounded faces of the control volume. The face value
may be obtained from a simple interpolation from the two nodes sharing the same
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face:

/f ¼ w/C þ ð1� wÞ/P ð40Þ

where w is a weighting factor.
The above linear interpolation approach is generally regarded as low-order-

accurate in the gradient calculation because only the nearest neighbors are involved.
For high-order accuracy, more neighboring nodes need to be included [17, 18, 28]. A
second-order-accurate approach is based on a linear reconstruction of the solution in
the cell to obtain the face value as [29]

/f ¼
1

2
½ð/P þr/ð1ÞP �~ddPf Þ þ ð/C þr/ð1ÞC �~ddCf Þ� ð41Þ

where~ddPf and~ddCf are the distance vectors directed from node P and node C to face f,
respectively. The gradients r/ð1Þ are obtained using the simple interpolation
approach [Eq. (40)] for /ð1Þf . The resulting /f may not be bounded and may become
greater than the nodal values surrounding the considered cell, which may lead to ser-
ious overshoots or undershoots in the region with a large change of gradient. Thus,
the following limitation is imposed:

/f ¼ min maxðminf/Cg;/f Þ;maxf/Cg
� �

ð42Þ

where f/Cg is a set consisting of all the values of the considered node and the nearest
neighbors.

SOLUTION ALGORITHM

Adopted from the SIMPLE algorithm, the transport equations for the momen-
tum and energy together with the continuity equation are solved sequentially in an
iterative manner. The procedure consists of predictor and corrector steps in each
iteration. In the predictor step the momentum equation is solved for the velocity
~VV � using the old Spressure field. The velocity and the pressure are then adjusted
in the corrector step such that the continuity constraint is satisfied. The continuity
equation can be discretized as

q0
DV

Dt
þ
X

f

_mmf ¼ 0 ð43Þ

Here the mass flux can be expressed as

_mmf ¼ _mm�f þ _mm0f ¼ q�f ~VV
�
f �
~SSf þ ðq�f ~VV 0f þ q0f ~VV

�
f Þ �~SSf ð44Þ

where the superscripts � denote the prevailing values, and the superscripts the
corrections. The velocity and density corrections can be related to the pressure
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correction by

~VV 0f ¼ �DfrP0f ð45Þ

q0 ¼ KP0 ð46Þ

Thus,

_mm0f ¼ �q�f DfrP0f �
~SSf þ

_mm�f
q�f

Kf P0f ð47Þ

In this equation, the first term represents the diffusion of P0 and the second term
stands for the convection. In incompreesible flows, the convection term does not
exist. The ratio the coefficients of the two terms is a function of Mach number.
At high Mach number, the convection becomes dominant and the expression
behaves in a hyperbolic manner. Using the same treatment described above for
the convective and diffusive fluxes [Eqs. (15) and (17)], the mass flux correction
can be written as

_mm0f ¼ BCðP0P � P0CÞ � q�f DfrP
0
f � ð~SSf �~ddÞ

þmax
_mm�f
q�f
; 0

 !
KPP0P þ

cf ðrÞ
2
ðKCP0C � KPP0PÞ

� �

þmin
_mm�f
q�f
; 0

 !
KCP0C þ

cf ðrÞ
2
ðKPP0P � KCP0CÞ

� �
ð48Þ

Introduction into Eq. (43) results in an equation for P0

APP0P ¼
X

C

ACP0C þ S ð49Þ

The coefficients AC take the form

AC ¼ BC �min
_mm�f
q�f
; 0

 !
KC ð50Þ

It is noted that the cross-derivative term of the diffusive flux and the antidiffu-
sion term of the convective flux are absorbed into the source S. They can be taken
into account by solving the pressure-correction equation in a predictor-corrector
way [24, 25].

The solution procedure is to solve the momentum equation first to obtain a
predicting velocity field. This followed by solving the pressure-correction equation.
In this step, the velocities and pressure are updated using the resulting pressure cor-
rections. Finally, the temperature field is found by solving the energy equation. The
new density is then obtained according to the equation of state. This completes a
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time step (or an iteration). The same procedure is repeated until the solution
converges.

VALIDATION OF THE ALGORITHM

Three different flow configurations are considered to validate the above sol-
ution procedure and to assess its accuracy. The first is the quasi-one-dimensional
flow in a convergent-divergent nozzle, which serves as a valuable benchmark because
the theoretical solution exists. Another test case is the trans-sonic flow over a NACA
0012 airfoil. The last test case is the flow through a double-throat nozzle in which the
Mach number at the outlet can be as high as 2.0. Reference data are available for the
last two flows, which have been selected as test cases in the GAMM Workshop [30],
among others.

In the following calculations, two difference schemes (the Van Albada scheme
and the SUPERBEE scheme), two different approaches for the characteristic-based
limiters (the matrix transformation approach, denoted method 1, and the direct use
of characteristic variables, denoted method 2), and two different ways for gradient
calculations (the linear-interpolation method and the linear-reconstruction method)
are applied. In addition, the limiters based on primitive variables are also incorpor-
ated for comparison. Convergence of the solution iteration is based on the L1 norm
of the residuals of the discretized momentum and pressure-correction equations
normalized by the corresponding intake fluxes.

Convergent-Divergent Nozzle

The inviscid flow in a convergent-divergent nozzle has been considered by the
present authors as a benchmark test problem [24]. The theoretical solution can be
obtained from one-dimensional gas dynamics theory. The variation of the cross-
sectional area of the considered nozzle is given by

SðxÞ ¼ 1þ 1� x

5

	 
2

0 � x � 10 ð51Þ

For back pressures of 0.87 Po, 0.769 Po, and 0.645 Po (Po being the stagnation press-
ure) a normal shock stands at locations x¼ 7, 8, and 9, respectively. The following
calculations are performed on a 200	 20 grid. It is seen from Figure 3a that, com-
paring with the Van Albada limiter, the SUPERBEE limiter gives rise to a sharper
gradient in the shock region, but the oscillations behind the shock become more ser-
ious. It is generally recognized that among a variety of TVD schemes the
SUPERBEE limiter is less diffusive and more compressive [31]. By shifting the
characteristic-based method 1 to method 2, the oscillating phenomenon is soothed,
but the shocks become more smeared. In the above computations, the gradients are
calculated using face values obtained from the simple interpolation of Eq. (40). The
use of the high-order linear-reconstruction approach, as given by Eq. (41), gives rise
to the results shown in Figure 3b. Comparing with Figure 3a, it is revealed that the
strengths of the oscillations are reduced, especially by method 2 along with the Van
Albada limiter. Another obvious benefit is that the smear of the shock becomes less
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prominent. The Van Albada limiter based on primitive variables is adopted in com-
putations as well. It leads to results similar to those obtained by the characteristic-
based method 1. The results for the first-order upwind difference scheme (UDS)
are also shown in the figures. As expected, the UDS results in serious smear in the
shock region. In the following, unless otherwise stated, the results obtained using
the SUPERBEE limiter and the linear-reconstruction method for gradient calcula-
tions are presented.

NACA 0012 Airfoil

The flow past a NACA 0012 airfoil has been chosen as a test problem for
evaluation of numerical schemes by numerous researchers [28, 30, 32]. In the follow-
ing, we consider (1) the inviscid flow with free-stream Mach number M1¼ 0.80 and
angle of attack a¼ 1.25
, and (2) the viscous flow with M1¼ 0.80, a¼ 10.0
, and
Reynolds number Re1¼ 500. As seen from Figure 4, the grid adopted is of O type

Figure 3. Variation of the Mach number along the centerline of the convergent-divergent nozzle.

Figure 4. Computational grid for the NACA 0012 airfoil.
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with 256 nodes on the surface of the airfoil. There are 256	 40 quadrilateral cells in
the field near the airfoil and 1,062 triangular cells in the far field. The results for the
inviscid and viscous flows are shown in Figures 5 and 6, respectively. The Mach
contours shown in Figure 5a for the inviscid flow indicate that a strong shock
appears on the upper surface. The distribution of pressure coefficient on the upper
surface given in Figure 5b implies good shock-capturing capability of the present
methods. It can be seen that a slight undershoot is detected in the solution just
behind the shock for the calculations using the primitive variable–based limiter. With
the characteristic-based methods this phenomenon diminishes. The capture of the
position and the strength of the shock by the characteristic-based method 1 agrees
well with the predictions of Amaladas and Kamath [32]. The shock is moved slightly
forward and becomes smeared using method 2. On the lower surface of the airfoil,
the predictions of Amaladas and Kamath [32] indicate the existence of a weak shock,
which can also be identified in the calculations by method 1, but is nearly smeared
out by method 2 and the primitive variable-based method.

Comparison of the convergence histories of the pressure-correction equation
for the consider methods is shown in Figure 5c. With the primitive variable-based
method the residual levels off early. The residuals for the two characteristic-based
methods can be reduced to lower values, with method 1 being slightly more effective
in this case.

Figure 5. Inviscid flow past the NACA 0012 airfoil with M1¼ 0.80 and a¼ 1.25
: (a) Mach contours;

(b) pressure coefficient along the airfoil surfaces; (c) convergence history.
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The most prominent feature of the viscous flow past the airfoil at an angle of
attack of 10
 and a Reynolds number of 500 is the presence of a large separation
region on the upper surface, covering more than half of the chord, as seen in
Figure 6a. The predicted pressure distribution over the upper and lower surfaces
shown in Figure 6b is similar to that reported by Jawahar and Kamath [28]. No shock
wave is generated on the airfoil surface in the viscous flow. The pressure coefficient is
a little too low on the upper surface predicted by the primitive variable–based
method. It is revealed from the convergence history shown in Figure 6c that the
curves for the characteristic-based method 1 tend to level off more quickly than those
for the characteristic-based method 2 and the primitive variable–based method.

The appearance of the strong shock in the inviscid flow and the large separ-
ation bubble in the viscous flow causes difficulty for the methods, especially the
characteristic-based method 1 and the primitive variable–based method, to converge.
The instabilities, in most flow calculations, can be suppressed by the characteristic-
based method 2 because of its dissipative nature. To introduce dissipation into the
solution procedure, a maximum value less than 1 must be imposed on the limiters
in the other two methods. For the characteristic-based method 1, a maximum value
of 0.9 is assigned to all the characteristic-based limiters in the above calculations. As
for the primitive variable–based method, limitation is imposed on the limiter for the
density only [24]. A value of 0.4 is used for the inviscid flow and a value of 0.2 for
the viscous flow. It is noted that as the maximum restrictive value becomes lower, the
higher is the dissipation and, usually, the faster is the convergence rate. This explains
why the characteristic-based method 2 does not always converge faster than the

Figure 6. Viscous flow past the NACA 0012 airfoil with M1¼ 0.80, a¼ 10.0
, and Re1¼ 500: (a) Mach

contours; (b) pressure coefficient along the airfoil surfaces; (c) convergence history.
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other methods. The results shown above were obtained using the SEPERBEE
limiter. It was found that by changing to the Van Albada limiter, the shock becomes
more smeared and the convergence rate is faster. This is not unexpected because of
its higher dissipation.

Double-Throat Nozzle

The viscous flow in a double-throat nozzle is used as a validation case for
high-speed-flow calculations. The compression waves in the region between the
two throats may cause separation, which makes this flow suitable to test the shock
wave=boundary-layer interaction. This flow problem also appeared in the GAMM
Workshop as a benchmark test case [30]. At the inlet, total pressure and total tem-
perature are specified, while extrapolations are undertaken for all variables at the
outlet. In addition, extrapolation is also used for the horizontal velocity com-
ponent at the inlet. On the solid wall, no-slip condition is imposed and the
temperature is set at the total temperature. The Reynolds numbers considered
are 100, 400, and 1,600. The grid used contains 315	 40 quadrilateral cells with
dense meshes in the region near the wall. A grid layout (157	 20) is illustrated
in Figure 7.

The Mach contours in an increment DM¼ 0.2 are shown in Figure 8. The iso-
Mach lines with Mach numbers 1 and 2 are marked in the plots. For the flow with
the lowest Reynolds number the viscous effects is more obvious; the subsonic flow
covers one-fourth of the outlet region. The flow separates from the wall in the diver-
gent part of the first throat to form a bubble. When the Reynolds number is
increased to 400, the extent of the subsonic region is reduced and a normal shock
is formed at about x¼ 5. For the highest Reynolds number, the separation bubble
becomes much thinner due to the reduction of the boundary-layer thickness. A weak
oblique shock wave can be identified in the region between x¼ 3 and x¼ 6, followed
by a stronger shock wave reflected from the centerline. A second separation bubble
can be found near the second throat, due to the interaction between the reflected
shock wave and the viscous layer. The resulting separation points Xs and the reat-
tachment points Xr obtained using the two characteristic-based methods and the
two limiters for the three cases are shown in Table 1. They agree well with the data
provided by various researchers at the GAMM Workshop. The distributions of

Figure 7. A typical grid for the double-throat nozzle.
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the Mach number and the pressure along the centerline as well as the skin friction
coefficient along the wall are given in Figure 9. Comparison with a number of
computational results provided at the GAMM Workshop at some selected points
validates the present calculations.

Figure 8. Distribution of Mach number for the flow through the double-throat nozzle at (a) Reo¼ 100, (b)

Reo¼ 400, and (c) Reo¼ 1600. The contour lines are plotted in an increment of 0.2.

Table 1. Separation and reattachment points of the separation zones

Reo¼ 100 Reo¼ 400
Reo¼ 1600

Authors Xs=Xr Xs=Xr Xs1
=Xr1

Xs2
=Xr2

Char. method1þVan Albada 3.024=4.811 2.995=6.245 3.429=4.708 8.114=8.322

Char. method1þ SUPERBEE 3.024=4.802 2.976=6.183 3.429=4.703 8.091=8.317

Char. method2þVan Albada 3.038=4.802 3.032=6.277 3.422=4.674 8.122=8.227

Char. method2þVan Albada 3.041=4.803 2.992=6.257 3.406=4.669 8.046=8.248

GAMM Workshop [30] 2.951–3.004=

4.811–4.848

2.962–3.005=

6.188–6.241

3.424–3.438=

4.688–4.739

8.006–8.077=

8.188–8.280
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CONCLUSIONS

A solution method, based on the pressure-correction approach and suited to all
flows ranging from incompressible to compressible, has been developed and tested. It
features the use of unstructured meshes and is applicable to flow fields with extremely
complicated geometry. To obtain high resolution in the region with large variation of
gradient, either the TVD scheme or the NVD scheme can easily be implemented to
limit the convective flux. The determination of the flux limiter is based on the use
of characteristic variables. Two different approaches have been proposed to deter-
mine the characteristic variables in determining the flux limiters: the matrix trans-
formation method (method 1) and the direct method (method 2). It has been shown
in the test cases that satisfactory results in the regions near the shock and the solid wall
are obtained. However, the wiggles in the shock region cannot be completely elimi-
nated, especially by method 1. This situation is alleviated with the use of method 2,
but at the cost of slight smear of the shock wave. This result implies that method 2
has slightly higher numerical dissipation. A further demonstration can be seen in
the flow past the NACA airfoil. With method 2, in general, there is no need to restrict
the flux limiter in most flow calculations, whereas a maximum value less than 1 must
be imposed on the limiter when method 1 or the primitive variable–based method is
used. Comparing with the primitive variable–based method, an advantage of using
the characteristic-based methods is the fast convergence rate. This is especially true
for method 2. It was seen that by using method 2, the residual can be reduced to a
small value without causing levelling off of the convergence curve too quickly.

Figure 9. The case of flow through the double-throat nozzle: (a) variation of Mach number along the cen-

terline; (b) variation of pressure along the centerline; (c) variation of skin friction coefficient along the wall.
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