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This article considers the periodic review stochastic inventory models with service level constraint to provide an
improved solution procedure. The previous researchers assumed that the objective function is concave down in
the lead time so that the minimum must occur on the boundary points of each sub-domain. In this article, we will
show that their assumption is questionable since the minimum might not occur at the boundary points of each
sub-domain. In a recent paper in International Journal of Systems Science, Ouyang and Chuang studied this
problem. However, their solutions contained questionable results and their algorithm might not find the optimal
solution due to flaws in their solution procedure. We develop some lemmas to reveal the parameter effects and
then present our improved solution procedures for finding the optimal solution for periodic review stochastic
inventory models in which the lead time demand is a normal distribution. The savings are illustrated by solving
the same examples from Ouyang and Chuang’s paper to demonstrate the improvement using our revised
algorithm. In the direction of future research, we discuss the comparison between the reordered point being fixed
and the reordered point as a new variable.
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Nomenclature

A ordering cost per order
D expected demand per year
h holding cost per unit per year
L length of lead time
T the review period
R target level
X the lead time demand which has a distribution

function F with finite mean �L and standard

derivation �
ffiffiffiffi
L
p
ð4 0Þ

� proportion of demands that are not met from

stock so 1� � is the service level
� fraction of the demand during the stock-out

period that will be backordered
C(L) lead time crashing cost
xþ maximum value of x and 0, i.e. xþ ¼ maxfx, 0g
T#
i the minimum solution under the constraint

level, with T#
i ¼maxfT�i , ðB

2 � LiÞ
þ
g, for

EACi(T,Li) for (B
2
�Li)

þ
�T

T�
i for those i, that satisfies that B2

�Li, the

minimum solution under the constraint level,

with T�
i ¼MIDfB2 � Li, ðdi=bÞ

1=2, ðB2 � Li�1Þ
þ
g

for EACi(T,B
2
�T ) with (B2

�Li�1)
þ
�

T�B2
�Li.

1. Introduction

In the traditional inventory model, the lead time is
considered as a predetermined constant or a variable
as in Silver and Peterson (1985) such that lead time is
not controllable. Liao and Shyu (1991) developed
a new inventory model to decompose the lead time into
several components, each having a different piecewise
linear crash cost function for lead time reduction.
Therefore, lead time becomes a new decision variable.
Gallego (1992) created a wonderful two-point distribu-
tion to serve as the most unfavourable case among the
distributions with the same mean and variance to
estimate the total expected cost of the lost sales such
that the minmax distribution free approach of Scarf
(1958) can apply to the stochastic inventory models.
Moon and Gallego (1994) extended the minmax
distribution free approach for stochastic inventory
model with backorders and lost sales. Ouyang, Yeh,
and Wu (1996) generalised Ben-Daya and Raouf’s
(1994) assumption allowing shortages. Ouyang and
Wu (1997) extended it to inventory model with service
level constraint. Moon and Choi (1998) and Lan, Chu,
Chung, and Wan (1999) pointed out the problem in
Ouyang et al.’s (1996) method. Ouyang and Wu (1998)
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extended the Ouyang et al. (1996) article to apply the
minimax distribution free procedure. Ouyang and
Chuang (1999) studied stochastic inventory models
with service level constraint which are solved by the
minimax distribution free procedure. Ouyang and
Chuang (2000) developed periodic review stochastic
inventory models involving variable lead time with
a service level constraint for the lead time with normal
distribution and distribution free. Wu and Tsai (2001)
studied stochastic inventory models with a mixed
normal distribution from different customers. Pan
and Hsiao (2001) developed the model with backorder
discount to ensure that customers would be willing to
wait for backorders. Chu, Yang, and Chen (2005)
improved the results of Ouyang and Wu (1997), first
for lead time demand following a normal distribution,
and then extending the minmax distribution free
procedure to solve the problem.

From the stochastic inventory models with crash-
able lead time, there are many generalised extensions
one can apply for more realistic inventory models.
However, there is a questionable result in Ouyang and
Chuang (2000) that deserves more detailed discussion.
Ouyang et al. (1996) proved that the expected annual
cost is a concave down function in lead time so that the
minimum value will occur on the boundary points of
each sub-domain. It is an excellent discovery that
dramatically simplifies the solution procedure. To
clearly indicate this property, we denote it as follows:
the minimum values for concave down functions
degenerate to the boundary points on the sub-
domain of the crash cost. However, Ouyang et al.
(1996) considered the stochastic inventory model
without service level constraint. The researchers who
followed them believed that this property also holds
with the service level constraint.

In this article, we will point out that the degeneracy
to the boundary points for the concave down function
requires more detailed examination. We will construct
a correct and efficient algorithm to find the optimum
order quantity and lead time, develop lemmas to reveal
the parameter effects and illustrate our improvement
by solving the same numerical example in Ouyang and
Chuang (2000) to indicate that sometimes their
algorithm does not find the optimal solution.

2. Assumptions

We use the same assumptions as Ouyang and Chuang
(2000) and several new expressions to clearly indicate
our solution procedure.

(A1) The inventory level is reviewed every T
units of time. A sufficient ordering quantity
is ordered up to the target level R and the

ordering quantity is arrived at after L units
of time.

(A2) The length of the lead time L is less than the
cycle length T so that there is never more
than a single-order outstanding in any cycle.

(A3) The target level R¼ expected demand during
protection intervalþ safety stock (SS), and
SS¼ k� (SD of protection interval demand),
that is, R¼D(TþL)þ k�(TþL)1/2 where k
is the safety factor and satisfies P(X4R)¼ q,
q representing the allowable stock-out prob-
ability during the protection interval and is
provided.

(A4) The lead time L has n mutually independent
components. The ith component has a mini-
mum duration ai, and normal duration bi and
a crash cost per unit time ci. Further, we
assume that c1� c2� � � � � cn. The lead time
components are crashed one at a time starting
with the least ci component and so on.

(A5) If we letL0 ¼
Pn

j¼1 bj andLi the length of lead
time with components 1, 2, . . . , i crash to their
minimum durations, then Li ¼

Pn
j¼iþ1 bjþPi

j¼1 aj. The lead time crash cost C(L) per
cycle for a given L2 [Li,Li�1] is given by
CðLÞ ¼ ciðLi�1 � LÞ þ

Pi�1
j¼1 cjðbj � ajÞ.

(A6) If X has a normal distribution function F(x),
according to Ravindran, Phillips, and
Solberg (1987), then B(r)¼ �L1/2 (k), where
 (k)¼ ’(k)� k[1��(k)]40, and ’, � are the
standard normal probability density function
and distribution function, respectively.

(A7) In the beginning, the domain for (T,L) is
T40 and Ln�L�L0. However, the cost for
crashed lead time is defined for each interval
L2 [Li,Li�1], where i¼ 1, . . . , n. Hence, we
need to consider EAC(T,L) for L2 [Li,Li�1],
where i¼ 1, . . . , n. In the next section, we will
only consider L2 [Li,Li�1] for the time
being.

(A8) fs(T ) is defined as 4((TþLs)/T
2)3/2� c/2as,

for a family of auxiliary functions.
(A9) gs(T ) is defined as� as/T

2
þ bþ c/2(TþLs),

for another family of auxiliary functions.
(A10) MID(x, y, z) is the middle term in x, y and z.

3. Review of previous results

Ouyang and Chuang (2000) tried to solve the following
problem:

min EACi T,Lð Þ ¼
Aþ C Lð Þ

T
þ
h

2
DT

þ h�ðTþ LÞ1=2 kþ 1� �ð ÞG kð Þð Þ

ð1Þ
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subject to

�G kð Þ � D�ðTþ LÞ1=2 ð2Þ

with GðkÞ ¼
R1
k ðz� kÞfzðzÞdz and CðLÞ ¼ ciðLi�1 � LÞþPi�1

j¼1 cjðbj � ajÞ for L2 [Li,Li�1].
The proper domain for the lead time should be

L2 [Ln,L0], but they only considered the domain for
the lead time for L2 [Li,Li�1], with i¼ 1, 2, . . . , n.
The reason is that the crashing costs are different in
each sub-domain [Li,Li�1] with i¼ 1, 2, . . . , n, so the
minimum problem must be divided into sub-domain
[Li,Li�1] with i¼ 1, 2, . . . , n. However, the crashing
costs have similar expressions, hence the results for one
sub-domain can be applied to others. Therefore,
Ouyang and Chuang (2000) only studied one sub-
domain.

They had derived that

@

@T
EACiðT,LÞ ¼ �

Aþ CðLÞ

T2
þ
h

2
Dþ

h�

2
ðTþ LÞ�1=2

� ðkþ ð1� �ÞGðkÞÞ, ð3Þ

@2

@T2
EACi T,Lð Þ ¼

hD

T
þ
3Tþ 4L

4T
h�ðTþ LÞ�3=2

� kþ 1� �ð ÞG kð Þð Þ, ð4Þ

and

@2

@L2
EACi T,Lð Þ ¼

�h�

4
ðTþ LÞ�3=2 kþ 1� �ð ÞG kð Þ½ �:

ð5Þ

They claimed that EACi(T,L) is a convex function of T
and a concave down function of L. Hence, they
assumed that, for fixed T, the minimum total expected
annual cost will occur at the end points of the interval
[Li,Li�1]. Consequently, they only considered the
minimum problem for EACi(T,Li) and EACi(T,Li�1)
for L2 [Li,Li�1].

We will accept Equations (3) and (5), but
Equation (4) is questionable (that will be explained
by Equation (12)) and may require revision. We will
point out that their assumption that the minimum cost
will occur at Li or Li�1 as the end points of the interval
[Li,Li�1] is questionable that will be demonstrated in
Example 2. And finally, we will discuss why the
minimum solution is existent and unique.

4. Our improvement

Fixing i in f1, . . . , n}, we will find the minimum value
for EACi(T,L) with L2 [Li,Li�1]. We consider the
vector (T,L) in the first quadrant that satisfies the
service level constraint �G(k)�D�(TþL)1/2, which
implies that the service level constraint being satisfied

is equivalent to B2
�TþL where B¼ (�G(k)/D�).

Hence, we may divide the first quadrant into two

sub-regions, where the vectors in the sub-region

f(T,L): B2
�TþL} satisfy the service level constraint

and the vectors in the other sub-region f(T,L):

TþL5B2} do not satisfy the service level constraint.

For a fixed i in f1, 2, . . . , n}, we handle the minimum

problem for L2 [Li,Li�1] as L must reduce to

boundaries and satisfies the constraint B2
�T�L,

then we divide the problem into three cases: (I) along

the vertical line L¼Li, with T� (B2
�Li)

þ, (II) along

the vertical line L¼Li�1, with T� (B2
�Li�1)

þ and

(III) along the skew line TþL¼B2, with

(B2
�Li)

þ
�T� (B2

�Li�1)
þ.

Moreover, owing to EACi(T,Li)¼EACiþ1(T,Li),

we consider Cases (I) and (II) to reveal that we may

merge them into one general case as follows: Case (1),

along the vertical line L¼Ls, with T� (B2
�Ls)

þ, for

s¼ i or s¼ i� 1.
Here, we may point out that for Case (III), we only

examine the minimum problem when B2
�Li, since if

B25Li, then (B2
�Li)

þ
¼ 0 and (B2

�Li�1)
þ
¼ 0, there

is no need to consider the skew line. Therefore, we

rewrite Case (III) to Case (2) as follows: Case (2), for

those i that satisfies B2
�Li, along the skew line

TþL¼B2, with B2
�Li�T� (B2

�Li�1)
þ.

For Case (1), the minimum problem becomes

min EACiðT,LsÞ ¼
Aþ CðLsÞ

T
þ
h

2
DTþ h�ðTþ LsÞ

1=2

� ðkþ ð1� �ÞGðkÞÞ ð6Þ

where s¼ i or s¼ i� 1, under the condition

T� (B2
�Ls)

þ. To simplify the expression, we assume

that as¼AþC(Ls), b¼ (h/2)D and c ¼ h�ðkþ
ð1� �ÞGðkÞÞ, then rewrite Equation (6) in the

following:

min EACiðT,LsÞ ¼
as
T
þ bTþ cðTþ LsÞ

1=2: ð7Þ

It yields that

d

dT
EACiðT,LsÞ ¼

�as
T2
þ bþ

c

2
ðTþ LsÞ

�1=2 ð8Þ

and

d2

dT2
EACiðT,LsÞ ¼

2as
T3
�

c

4
ðTþ LsÞ

�3=2: ð9Þ

Rewriting Equation (9),

d2

dT2
EACiðT,LsÞ ¼

2as
4
ðTþ LsÞ

�3=2

�
4

T3
ðTþ LsÞ

3=2
�

c

2as

� �
: ð10Þ
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By Equation (10), we define a family of auxiliary
functions, say fs(T ), as follows:

fsðT Þ ¼ 4
Tþ Ls

T2

� �3=2

�
c

2as
: ð11Þ

Since (d/dT )fs(T )¼�6((TþLs)/(T
2))1/2((1/T2)þ

(2Ls/T
3))50, fs(T ) is a decreasing function of T, from

limT!0 fsðTÞ ¼ 1 to limT!1 fsðTÞ ¼ �ðc=2asÞ such that
there is a unique point, say T#

s with fsðT
#
s Þ ¼ 0.

Moreover, fs(T )40 for 05T5T#
s and fs(T )50 for

T#
s 5T so we obtain that (d2/dT2)EACi(T,Ls)40 for

05T5T#
s and (d2/dT2) EACi(T,Ls)50 for T#

s 5T.
Hence, EACi(T,Ls) is a convex function for
05T5T#

s , and a concave down function for T#
s 5T.

For completeness, here we point out that the
corrected expression for Equation (4) should be

@2

@T2
EACi T,Lð Þ ¼

2 Aþ C Lð Þ½ �

T3

�
h�

4
ðTþ LÞ�3=2 kþ 1� �ð ÞG kð Þð Þ

ð12Þ

so that Ouyang and Chuang claimed that EACi(T,L)
being a convex function of T is questionable. This
should be revised as follows: EACi(T,Ls) is a convex
function for 05T5T#

s , and a concave down function
for T#

s 5T, where s¼ i or s¼ i� 1.
To simplify the expression, we assume another

family of auxiliary functions, say gs(T ), as follows:

gsðT Þ ¼
d

dT
EACiðT,LsÞ ¼

�as
T2
þ bþ

c

2
ðTþ LsÞ

�1=2:

ð13Þ

Next, we will prove that gsðT
#
s Þ4 0.

Since ðT#
s Þ

2
¼ 4ðas=cÞ

2=3
ðT#

s þ LsÞ, we have that
ðT#

s Þ
2 4 4ðas=cÞ

2=3T#
s and then

T#
s 4 4 as=cð Þ

2=3: ð14Þ

Using ðT#
s þ LsÞ

�1=2
¼ 2ðas=cÞ

1=3
ðT#

s Þ
�1, by Equation (14),

we imply that

g T#
s

� �
¼ bþ a1=3s c2=3 T#

s

� ��2
T#
s � ðas=cÞ

2=3
� �

4 0:

ð15Þ

Moreover, we get that limT!0 gsðTÞ ¼ �1
and limT!1 gsðTÞ ¼ b4 0. By Equation (13), we
know that (d/dT )gs(T )¼ (d2/dT2)EAC(T,Ls), then
(d/dT )gs(T )40 for 05T5T#

s and (d/dT )gs(T )50
forT#

s 5T. gs(T ) increases from limT!0 gsðTÞ ¼ �1 to
gðT#

s Þ4 0 and gs(T ) decreases from gðT#
s Þ4 0 to

limT!1 gsðTÞ ¼ b4 0. Therefore, there is a unique
point, say T�s with gsðT

�
s Þ ¼ 0. Consequently,

(d/dT )EACi(T,Ls) is negative for T 2 ð0,T�s Þ and
positive for T 2 ðT�s ,1Þ so T�s is the minimum point

for EACi(T,Ls), before we consider the constraint

(B2
�Ls)

þ
�T.

It yields that the minimum value of EACi(T,Ls)

for (B2
�Ls)

þ
�T that occurs, say T#

s , with
T#
s ¼ maxfT�s , ðB

2 � LsÞ
þ
g, for s¼ i or s¼ i� 1, and

i¼ 1, 2, . . . , n.
According to above discussions, we know that

it yields for 1� i� n, the minimum value of

EACi(T,Li) under the condition (B2
�Li)

þ
�T that

occurs at T#
i . We summarise our results in the next

theorem.

Theorem 1: For Case (1), with 0� i� n, the minimum
value occurs at T#

i .
Next, we study the Case (2), along the skew line

TþL¼B2 to consider the minimum problem of
EACi(T,B

2
�T ) under the condition B2

�Li�

T� (B2
�Li�1)

þ.
We know that

EACi T,B
2 � T

� �
¼

di
T
þ bTþ ei ð16Þ

with di ¼ Aþ ciðLi�1 � B2Þ þ
Pi�1

j¼1 cjðbj � ajÞ, b¼(hD/2)

and ei ¼ ci þ h�Bðkþ ð1� �ÞGðkÞÞ. We may rewrite
Equation (16) as

EACiðT,B
2�T Þ ¼

di
T

� �1=2

�ðbT Þ1=2

 !2

þ2ðdibÞ
1=2
þ ei:

ð17Þ

By Equation (17), it shows that without considering the

condition B2
�Li�T� (B2

�Li�1)
þ, the minimum point

is T¼ (di/b)
1/2. To simplify the expression, we use a new

expression, sayMIDfx, y, z}, which stands for the middle

term of x, y and z. For example, MIDf7, 1, 5}¼ 5 and
MIDf6, 2, 6}¼ 6.We combine the above discussion in the

next theorem. To simplify the expression, we assume that

T�
i ¼MIDfB2 � Li, ðdi=bÞ

1=2, ðB2 � Li�1Þ
þ
g.

Theorem 2: For Case (2), the minimum solution for T

of EACi(T,B
2
�T ) occurs at T�

i .
We summarise our findings in the last theorem.

Theorem 3: The minimum for EAC(T,L) with
L2 [Ln,L0] is expressed as (T*,L*) so that

EAC(T*,L*) is the minimum value among

(a) EACiðT
#
i ,LiÞ, for 1� i� n, (b) EAC1ðT

#
0 ,L0Þ and

(c) for those i that satisfies B2
�Li, EACðT�

i ,LiÞ.

5. Numerical example

Example 1: To illustrate our improvement, we
consider the same numerical example as Ouyang and

Chuang (2000) with the following data: D¼ 625 units
per year, A¼ $350 per order, h¼ $35 unit per year,

240 C.-Y. Hung et al.
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�¼ 11 units per week, �¼ 7 units per week, (� ¼ 7
ffiffiffiffiffi
52
p

units per year), �¼ 1 (backorders case), The lead time

has three components with c1¼ $0.4 per day, a1¼

6 days, b1¼ 20 days, c2¼ $1.0 per day, a2¼ 6 days,

b2¼ 20 days, c3¼ $5.0 per day, a3¼ 9 days, b3¼

16 days. It yields L0¼ (8/52)¼ 0.154 years, L1¼

(6/52)¼ 0.115 years, L2¼ (4/52)¼ 0.077 years, and

L3¼(3/52)¼ 0.058 years. It is assumed that q¼ 0.2,

so the safety factor k can be found directly from the

standard normal table, and it equals 0.845.
Since B¼ (�G(k)/D�), it shows that B2

¼ 0.201.

Here, we must point out that if we use D¼ 625 units

per year, then our results cannot compare with those of

Ouyang and Chuang (2000). We slightly modify the

value of D to D¼ 624 units per years, then our results

are consistent with their results. Hence, we modify D as

D¼ 624 units per years.
For the first numerical example, we assume that the

service level 1��¼ 0.98, i.e. the proportion of demand

that is not met from stock is at most �¼ 0.02. We

compute the local minimum value for each interval

L2 [Li,Li�1] and list them in Table 1.
For easy comparison with the results of Ouyang

and Chuang (2000), we quote their results in

Table 2. They found that the optimal review period

T*¼ 8.84 weeks, that is, T*¼ 0.170 years and the

optimal lead time L*¼L1¼ 6, with

EAC(T*,L*)¼ 4745.68. We may say that Ouyang

and Chuang (2000) and our improved method both

have the same minimum solution for the first

numerical example with �¼ 0.02.

Example 2: We have the same value for parameters
except that �¼ 0.015. We obtain that B2

¼ 0.358 and
then based on Theorem 2, we find that

MID B2�L0¼ 0:048,
ffiffiffiffiffiffiffiffiffi
d1=b

p
¼ 0:179, B2�L1¼ 0:086

n o
¼ 0:086¼B2�L1,

MID B2�L1¼ 0:086,
ffiffiffiffiffiffiffiffiffi
d2=b

p
¼ 0:180, B2�L2¼ 0:125

n o
¼ 0:125¼B2�L2,

and

MID B2�L2¼ 0:125,
ffiffiffiffiffiffiffiffiffi
d3=b

p
¼ 0:184, B2�L3¼ 0:144

n o
¼ 0:144¼B2�L3,

such that there is no need to compute the minimum
value along the skew line TþL¼B2, and then list the
results in Table 3.

We find that the optimal review period, T*¼
B2
�L0¼ 0.204, the optimal lead time, L*¼L0¼ 0.154

and the minimum value EAC(B2
�L0,L0)¼ 4837.378.

We compare the results with Ouyang and Chuang.
From Table 2, the sixth column, according to
Ouyang and Chuang’s method, without considering
the service level constraint in Table 2, the fourth
row, they find the absolute minimum expected
average cost ETC(T1¼ 8.84,L1¼ 6)¼ 4745.68, then
check (E(X�R)þ/D(TiþLi))¼ 0.01684�¼ 0.015, so
it has not satisfied the service level constraint. Ouyang
and Chuang will consider the next minimum value

Table 1. Local minimum values for each case.

Theorem Minimum point Minimum value

1 MaxfT�0 ¼ 0:169,B2 � L0 ¼ 0:047g 4764.731
1 MaxfT�1 ¼ 0:170,B2 � L1 ¼ 0:086g 4745.681
1 MaxfT�2 ¼ 0:173,B2 � L2 ¼ 0:125g 4771.886
1 MaxfT�3 ¼ 0:180,B2 � L3 ¼ 0:144g 4941.206

2 MIDfB2 � L0 ¼ 0:048,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd1=bÞ

p
¼ 0:179,B2 � L1 ¼ 0:086g 5742.229

2 MIDfB2 � L1 ¼ 0:086,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2=bÞ

p
¼ 0:180,B2 � L2 ¼ 0:125g 4998.109

2 MIDfB2 � L2 ¼ 0:125,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd3=bÞ

p
¼ 0:184,B2 � L3 ¼ 0:144g 5054.462

Table 2. Results from Ouyang and Chuang (2000).

i Li (weeks) C(Li) (US $) Ti (weeks) Ri (units)
EACðTi,LiÞ

ðUS $ per yearÞ EðX� RÞþ=DðTi þ LiÞ

0 8 0 8.80 226 4764.73 0.0158
1 6 5.6 8.84 201 4745.68 0.0168
2 4 19.6 8.97 177 4771.89 0.0180
3 3 24.6 9.37 169 4941.21 0.0184
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in Table 2, as ETC(T1¼ 8.80,L1¼ 8)¼ 4764.73 and
then check the service level constraint to find that
failed again. Following this pattern, the ratios of
(E(X�R)þ/D(TiþLi)) are all greater than 0.015.

This means that by Ouyang and Chuang’s method
all their solutions do not satisfy the service level
constraint, so they concluded that the inventory system
has no feasible solution. We discover that the solution
procedure of Ouyang and Chuang sometimes cannot
obtain the minimum solution.

6. Directions for future research

Here we want to discuss a possible direction for
future research. Since Ouyang et al. (1996) devel-
oped a mixed inventory model with backorders and
lost sales for variable lead time, there is a trend to
treat the reordered point as a decision variable as
pointed out by Moon and Choi (1998), Hariga and
Ben-Daya (1999) and Yang, Ronald, and Chu
(2005). Ouyang and Chuang (2000), for the
normal distribution model, considered the reordered
point being fixed, and for the distribution free
model, they used the reordered point as a new
decision variable.

In this article, we still take the fixed reordered point
for the normal distribution model, such that one
possible direction for the future research is to examine
the normal distribution model where the reordered
point is a new decision variable.

Taking the reordered point as a new decision
variable is equivalent to saying that the safety factor, k,
is a new variable such that the objective function
becomes EAC(T,L, k). On the other hand, if we treat
the safety factor as fixed, then the objective function is
EAC(T,L). It is of little significance that the minimum
value for EAC(T,L, k) is less than or equal to the
minimum value of EAC(T,L). Generally speaking, if
we are allowed to introduce another new parameter,
say A (ordering cost per order), then EAC(T,L, k,A)
will have even an smaller minimum value. Here, we
face a problem how to compare the results from
EAC(T,L), EAC(T,L, k) and EAC(T,L, k,A). If we

directly use the minimum value then definitely
EAC(T,L, k,A) will be the best choice.

There are two methods, AIC or CAIC (Hartley and
Helmbold 1995, p. 609–643), to test the difference
between different methods with different numbers of
parameters. The formulas for AIC and CAIC are given
below, where p¼ the number of variables, n¼ number
of constant data and Min¼minimum value for each
method: AIC( p)¼ n ln (Min/n)þ 2p and CAIC( p)¼
AIC( p)þ p(ln n� 1). In both statistics, the smaller the
value, the better.

Up to now, we cannot solve the minimum problem
for the EAC(T,L, k) for the normal distribution model
so that the comparison between EAC(T,L, k) and
EAC(T,L) by AIC or CAIC may be a direction for the
future research.

7. Conclusion

In the above discussions, we pointed out the question-
able results in the paper of Ouyang and Chuang so that
the minimum may not occur at the boundary points of
sub-domain for the crash lead time cost. We offered
the corrected algorithm to find the optimal solution.
Our refined algorithms are easy to use and mathema-
tically sound and provide the optimal replenishment
solution for decision makers. In the second numerical
example, we illustrated that sometimes Ouyang and
Chuang cannot derive the optimal solution and so our
improved method still provides the optimal solution
for the decision makers.
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