
Available online at www.sciencedirect.com
www.elsevier.com/locate/eswa

Expert Systems with Applications 36 (2009) 668–674

Expert Systems
with Applications
Detecting LTR structures in human genomic sequences using
profile hidden Markov models

Li-Ching Wu a, Hsien-Da Huang b, Yu-Chung Chang c, Ying-Chun Lee d,
Jorng-Tzong Horng a,d,*

a Institute of System Biology and Bioinformatics, National Central University, Taiwan
b Department of Biological Science and Technology, Institute of Bioinformatic National Chiao-Tung University, Taiwan

c Department of Biotechnology, Ming Chuan University, Taiwan
d Department of Computer Science and Information Engineering, National Central University, Taiwan
Abstract

More than 45% of human genome has been annotated as transposable elements (TEs). The human genome is expanded by the mobi-
lization of these TEs, which they may increase the plasticity and variation of the genome. Long terminal repeat (LTR) retrotransposons
are important components in TEs. LTRs include regulatory sites, which the authors believe could be conserved in evolution. Therefore,
these significant motifs in the sequence of LTRs are found and are used to train a Hidden Markov Model. These models are used as
fingerprints to detect most of the known LTRs detected by RepeatMasker. LTR instances are classified into families using the predictive
models proposed. These LTRs can support evolutionary analysis. A new method of detecting LTR is proposed. Analyzing LTR
sequences reveals some specific motifs as LTR fingerprints, which can be built into HMM profiles. Experimental results reveal that
the proposed experimental approach not only discovers most of the LTRs found by RepeatMasker, but also detects some novel LTRs.
Moreover, the novel LTRs may be structurally incomplete or degenerate.
� 2008 Published by Elsevier Ltd.
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1. Introduction

Long terminal repeats (LTRs) retrotransposons are
major components of a plant genome. For instance, the
grass genome contains around 14% LTR retrotransposons;
the maize genome contains 50–80% retrotransposons and
barley genome contains at least 70% retrotransposons
(McCarthy et al., 2002; McCarthy & McDonald, 2004;
Zhang & Wessler, 2004). According to another work, the
human and mouse genomes contain 8% LTR retrotranspo-
sons and 10% LTR retrotransposons (Li et al., 2001; Zhang
& Wessler, 2004), respectively. LTRs are also important
structures in retroviruses and endogenous retroviruses.
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They have LTRs at either end, which play a role in the
transposition process (Brown, 1999). Besides, several
works have shown that LTR retrotransposons cause some
mouse diseases (Kazazian, 1998).

Long terminal repeats and degenerated LTRs are
important and abundant components in eukaryotic gen-
omes. LTRs have an important impact on genomic func-
tions and structures. Using the conventional approach to
search for LTRs is time-consuming and labor intensive so
developing a system that can detect and classify the LTRs
is important.

In a recent investigation, two tools were used to detect
LTR retrotransposons. They were LTR_STRUC (McCar-
thy & McDonald, 2003) and RepeatMasker (Smit, 1993).
Another investigation mentioned that profile hidden Mar-
kov models (HMMs) represent a novel approach to detect
transposable elements (TEs) (Juretic et al., 2004).
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LTR_STRUC (McCarthy & McDonald, 2003) is an
approach that can find new LTR families. LTR_STRUC
successfully identified 12 families of Caenorhabditis elegans

LTR retrotransposons and 32 new families of LTR retro-
transposons in the rice genome (McCarthy & McDonald,
2003). LTR_STRUC uses four structural features to iden-
tify LTRs. These structural features are primer binding
sites, the polypurine tract, the dinucleotides ends of each
LTR and LTR insertion sites. The algorithm was based
on the fact that the LTRs are duplicated in the flanking
LTR retrotransposons. LTR_STRUC finds an initial pair
of matches and extends the pairs by alignment. After a pair
of matching regions is detected, the program identifies the
LTR endpoints.

RepeatMasker (Smit, 1993) is a tool that can identify the
interspersed repeats and the low-complexity sequences. The
RepeatMasker is always used with a search engine and a
sequence database. The sequence database is always RepBase
Update (Jurka, 2000) and the search engine is crossmatch,
which is implements the Smith–Waterman–Gotoh algorithm
developed by Phil Green (unpublished data). The Repbase
Update contains about 1840 transposable elements.

ModelGenerator (Frech et al., 1997) is a program for
modeling mammalian and avian C-type LTRs, Lentivirus
LTRs and B1 elements. This method has two parts – model
generation and model recognitions. Each generated model
is composed of various components. ModelInspector iden-
tifies LTR elements based on this information. They are
consensus elements, matrix elements, hairpins, direct
repeats, short multiple repeats, terminal repeats, element
classes and regions.

Some functional and significant regions in LTRs are
conserved in most instances of the family. This investiga-
tion presents a data-mining method for learning significant
conserved regions as fingerprints of LTRs. These finger-
prints can be used efficiently to find LTRs but also to eval-
uate the specificity, sensitivity and accuracy of
RepeatMasker, LTR_STRUC and the proposed method.
These novel LTRs are useful in analyzing the distribution
of LTR retrotransposons and the relationship between
LTR retrotransposons and evolution.

2. Materials and methods

This study proposes a data-mining system, which identi-
fies and analyzes LTRs in the human genome. Scanning the
human genome is scanned by RepeatMasker to collect the
training dataset. Finding motifs and clustering motifs gen-
erates the profiles of each LTR family. Putative LTRs are
detected by scanning the genomic sequences with profiles,
and classified into LTR families. Fig. 1 presents an over-
view of the system flow.

2.1. Data-preprocessing phase

RepeatMasker is a tool used to mask transposable ele-
ments based on RepBase Update. RepBase 8.2 includes
624 human TE consensus sequences, in 130 LTR families.
The source of the human genome sequence is obtained
using Ensembl 19.34a. Ensembl (Hubbard et al., 2002) is
a joint project between EMBL-EBI and the Sanger Insti-
tute to develop a software system that automatically anno-
tates eukaryotic genomes. Ensembl contains 26,614 contigs
and a total of 2.84 billion nucleotides distributed in 24
chromosomes. RepeatMasker detected 12,232 LTR
sequences in the human genome sequence.

2.2. Training phase

For each LTR family, about 100 sequences were chosen
and five motifs, five conserved regions among 100
sequences, were found using MEME (Bailey & Elkan,
1994). Twenty-five motifs were found by performing the
above process five times. However, some of the motifs
are highly similar to each other and are redundant for
LTR detection. Similar motifs are combined into motif
clusters based on CompareACE (Hughes et al., 2000) and
K-mean clustering (Han & Kamber, 2001). CompareACE
is a scoring method based on the Pearson correlation coef-
ficient between two motif alignments. K-mean clustering is
an algorithm for clustering or grouping motifs into clusters
by considering CompareACE scores. The centroids of the
motif clusters are chosen to represent the group of motifs
and profile HMMs are constructed.

2.3. Detection phase

First, these profile HMMs are used to scan genomic
sequences. HMMER (Eddy, 1998) returns both a score
and an E-value. The HMMER bit scores are the base-
two logarithm of the ratio between the probabilities that
the query sequence is a significant match to the probability
that a null model matches it. The E-value indicates the
expected number of false positives at a given bit score.
The E-value measures the statistical significance of the bit
score, which indicates how well the sequence matches the
HMM. Therefore, HMMER bit scores are used as the
scoring function herein.

For each sequence of the input sequences, all possible
regions of motif hits are generated. In Eq. (1), Mi,j(Fk)
are the motifs in a region between positions i and j and
belong to the LTR family Fk

Mi;jðF kÞ ¼ fxjx 2 F k; i 6 P ðxÞ 6 jg ð1Þ

where x is the motif that belongs to Fk, which is defined in
RepBase, and P(x) is the position of motif x. Each region
will be treated as a candidate LTR, if the region contains
at least one motif. Each candidate LTR is classified into
one LTR family, if the candidate LTR satisfies the following
limitations.

(1) Mi,j(Fk) is the largest for all families between posi-
tions i and j. If more than one maximum motif set



Searching PhaseTraining Phase

Pre-processing Phase

RepBase

Finding
Transposable
Elements by

RepeatMasker

Human
Genome

Long Terminal
Repeats Extration

Finding motifs by
MEME

Motif clustering by
K-mean method

Random sampling
in LTR sequences

Five rounds

Constructng
profile HMM by

HMMER

Scanning motifs
by HMMER

Putative
LTRs

Motifs in
each LTR

family

Motif
clusters

Grouping detected
motifs

Scoring the motif
groups

LTR family
determination

Fig. 1. Overview of system flow.
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exists, the one with the largest score is selected. The
scoring equation is
scoreðMÞ ¼
X

m2M

hmmscorem ð2Þ

where M is one of the maximum motif sets, and hmm-

scorem is the HMM bit score of motif m.

(2) The length of candidate LTR (i.e. j–i) must be less

than or equal to length (Fk).
(3) The score(M) of each motif set must be greater than

or equal to scorelb, where scorelb is a user-defined
threshold. (see below.)
2.4. Selecting optimal threshold

The detected LTRs are compared to the result of
RepeatMasker to maximize the accuracy. The characteris-
tics of LTR families differ, so the most accurate threshold
for each LTR family is sought and the threshold of scorelb

is determined. All data are selected from each family as
true data and the sequences are randomly sampled from
the other families as false data (Table 1). Each dataset con-
tains equal numbers of true and false data. The experimen-
tal dataset herein is tested in 15 rounds and the average
sensitivity and specificity are calculated to revise the thresh-
old scorelb.
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Fig. 2. The algorithm is to find the optimal threshold of scorelb.
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The accuracy is determined for each combination and
the thresholds at maximum F_measure are determined.
Fig. 2 presents the algorithm used to find the threshold.
Fig. 3 presents the results of the model evaluation and
the average F_measure is 0.94.

3. Results

A total of 1077 profiles were built after the motif set was
clustered and each family contains about 8.2 non-redun-
dant motifs.

An all-against-all comparison of 1077 profiles is per-
formed using the program CompareACE to assess the
specificity of the whole profiles. For each profile, the most
similar motif in other profiles, except those in the same
family, are sought. Fig. 4 reveals that the X-axis represents
the percentage of all 1077 motifs and the Y-axis represents
the similarity of the most similar motif. About 75% of the
motifs are family-specific and about 25% are similar to
those of the other families. This result reveals that most
profiles can be used to classify putative LTRs into correct
families.

3.1. Datasets for detection

Chromosomes 21 and 22 are placed in the first and sec-
ond dataset, respectively. 45 Mb, or �1.8% of the human
genome, is also randomly sampled from the Ensembl data-
base, as the third dataset given in Table 2.

3.2. Comparison between LTR_STRUC and RepeatMasker

Several experiments were designed to reveal the differ-
ences among the proposed approach, LTR_STRUC and
RepeatMasker. Initially, the LTRs were detected by
RepeatMasker and treated as real LTRs. Each putative
LTRs detected by the proposed approach were classified
into three groups.

� Overlap: LTRs were successfully found by both
methods.
� Novel: LTRs were successfully found by LTR_STRUC

but not by RepeatMasker.
� Lost: LTRs were found only by RepeatMasker.

The LTR_STRUC approach is based on searching for a
pair of similar regions. Therefore, LTR_STRUC and
RepeatMasker yield quite different results. The following
comparison is made to show the differences between them.
Table 1
Evaluation datasets for family A

Datasets Source Description

Positive samples All family A LTRs Sequences that were classifi
Negative samples All LTRs except family A Sequences that were classifi

samples
All datasets were scanned by LTR_STRUC with default
parameters. The overlapping groups are the LTRs that
are detected by both methods.

Table 3 compares LTR_STRUC and RepeatMasker. In
the first dataset, two (2.5%) LTRs were detected by
LTR_STRUC and RepeatMasker. A total of 1690 (99%)
LTRs were detected only by RepeatMasker. In the second
dataset, eight (7.2%) LTRs were detected by LTR_STRUC
and RepeatMasker. A total of 1156 (99%) LTRs were
detected only by RepeatMasker. The LTR_STRUC found
only a few LTRs, totaling 10% of the LTRs found by
RepeatMasker. About 0.6% of the LTRs were identified
by both approaches.

3.3. Comparison with RepeatMasker

Initially, RepeatMasker detected LTRs, which were
treated as real LTRs. Each putative LTR detected by the
proposed approach was classified into one of four groups.

� Consistent: The LTRs were found and classified into
correct families.
ed into family A by RepeatMasker
ed into other families and randomly sample to the same size of positive



Table 2
Datasets for detection

Dataset Source # of configs Total length (Mb) Description

HUMAN_21 Ensembl Database 485 34 Human chromosome 21
HUMAN_22 Ensembl Database 539 32 Human chromosome 22
HUMAN_RND Ensembl Database 500 45 Randomly sample 500 human contigs from Ensembl Database

Table 3
Comparison between LTR_STRUC and RepeatMasker

Dataset # Found by RepeatMasker # Found by LTR_STRUC Overlap Novel Lost

HUMAN_21 1692 80 2 78 1690
HUMAN_22 1164 110 8 102 1156
HUMAN_RND 1877 136 8 128 1871

Table 5
Top five families in the inconsistent group

LTR family Consistent Inconsistent Novel Lost

LTR13A 0 16 0 0
LTR2 5 16 0 0
LTR28 5 16 39 2
LTR12 17 15 1 0
LTR8 51 15 10 5
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Fig. 4. Searching for the most similar motif in other families.

Table 6
Top five families in the novel group

LTR family Consistent Inconsistent Novel Lost

LTR66 3 1 1058 3
LTR48B 10 6 120 1
LTR33A 30 13 102 6
LTR37A 26 6 92 5
LTR65 5 0 88 1
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� Inconsistent: The LTRs were found but were classified
into inappropriate families.
� Novel: The LTRs were found by the proposed approach

but not by RepeatMasker.
� Lost: The LTRs were found only by RepeatMasker.

The datasets for each experiment are those constructed
in the above section and the statistics are given in the fol-
lowing section.

Table 4 compares the proposed approach and Repeat-
Masker. In the first dataset, 1457 LTRs were detected by
both the proposed approach and RepeatMasker. The fam-
ily classifications of 272 (19%) LTRs are differ between the
proposed approach and RepeatMasker. A total of 218
(11%) LTRs were detected only by RepeatMasker.

In the second dataset, 963 LTRs were detected by the
proposed approach and RepeatMasker. The family classifi-
cations of 189 (19%) LTRs differed between the proposed
approach and RepeatMasker. A total of 157 (13%) LTRs
were detected only by RepeatMasker. Table 5 presents
the top five families in the inconsistent group. A compari-
son the results depicted in Fig. 4 demonstrated that the
differences between classifications were caused by the
common motifs.

As indicated by Table 6, the top five families are in
the novel group. The number of LTRs that belong to
LTR66 greatly exceeds the numbers in other families
because two of the LTR66 motifs were also present in
L1MC4, MER63C and MER63D. (See Discussions in
Section 4.)

In the experiments herein, about 90% of the LTRs were
identified by both RepeatMasker and the proposed
approach. Basically, about 63% LTRs of the results of
Table 4
Comparison with RepeatMasker

Dataset # Found by RepeatMasker # Found by our a

HUMAN_21 1692 4090
HUMAN_22 1160 2538
HUMAN_RND 1876 4405
the proposed method are novel. The results of these
experiments reveal that most of the LTRs detected by
pproach Overlap Novel Lost

Consistent Inconsistent

1185 272 2633 218
774 189 1575 157

1321 305 2779 208
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RepeatMasker were covered by the proposed approach.
Besides, the motif profiles can correctly classify LTRs into
families.
3.4. Case study: HERV15 recombination

A case of real recombination was tested using the pro-
posed method to prove its ability to detect the special
recombination of LTRs. It is a HERV recombination in
Table 7
HMMsearch result of LTR66-0 in RepBase

Sequence Start End HMM bit score E-value

LTR66 12 51 32.6 9.30E�08
LTR66 397 436 26.1 8.80E�06
L1ME4 367 406 15.8 0.011
LTR66 500 539 15.2 0.017
L1MC4 1375 1414 12.4 0.041
L1MC3 1351 1390 10.1 0.073
MER63C 40 79 10.0 0.075
MER63D 40 79 10.0 0.075

Table 8
HMMsearch result of LTR66-7 in RepBase

Sequence Start End HMM bit score E-value

LTR66 114 153 32.1 1.40E�07
LTR66 397 436 30.9 3.20E�07
L1MC4 1377 1416 20.7 0.00036
MER63C 38 77 16.2 0.0084
MER63D 38 77 16.2 0.0084
MER4BI 1160 1199 13.1 0.069

Table 9
Comparison among the LTR detection tools

RepeatMasker LTR_STRUC

Materials RepBase None
Characteristics Search for similar regions

with conensus sequences
Search for a pair of
similar regions as LTR

Searching
algorithm

Smith-Waterman-Gotoh
algorithm

Sequence comparison

Degenerated
LTRs
detection

Normal Few
human Y chromosome. The NCBI accession number of
this case is AJ511661.

RepeatMasker cannot detect this particular case and
Fig. 5 reveals the local alignment score with all LTR con-
sensuses. The proposed approach can detect and classify
it into the family LTR48B. The order of motifs in this case
and the complete structure differs greatly. The detection
method of RepeatMasker is based on sequence identity;
therefore, RepeatMasker cannot detect this case, which
can be detected using LTR fingerprints and the proposed
approach.

4. Discussions and conclusions

This work develops a novel method of LTR detection.
LTR sequences can be analyzed to find some specific motifs
as LTR fingerprints and built them into HMM profiles.
The experimental results indicate that the proposed
approach can not only discover most of the LTRs found
by RepeatMasker, but also detect some novel LTRs. Addi-
tionally, the novel LTRs may be structurally recombinant
or degenerated.

The main difference between the proposed approach and
the traditional approach, such as BLAST or RepeatMas-
ker, is that the former searches for the most conserved
region as the profile. Besides, the profiles can used to clas-
sify LTRs into the correct family. Restated, the LTRs with
particular combination of fingerprints were be detected
successfully.

About 63% of the novel LTRs were classified into
LTR66 and most were detected by motif LTR66-0 and
LTR66-7. Hence, LTR66-0 and LTR66-7 are searched in
all consensus sequences defined by RepBase. Tables 7
and 8 show that L1MC4, MER63C and MER63D contain
a similar region to those in LTR66-0 and LTR66-7.
Accordingly, these motifs may be significant regulatory
sites in these families.

Table 9 compares the LTR detection tools. RepeatMas-
ker links fragments that belong to a single transposable ele-
ment, but it does not consider the structure. LTR_STRUC
reports the putative primer binding site and the polypurine
tract and open reading frames in each LTR. ModelGener-
ator generates a consensus model from regulatory units,
direct repeats and hairpins in specified LTRs.
ModelGenerator/
ModelInspector

Our approach

Collected sequences RepBase
Generate consensus model
using collected sequences

Finding significant conserved motifs
and detect LTRs based on the motifs

ModelInspector HMMER

Few A lot
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Juretic et al. (Jurka, 1998) annotated transposable ele-
ments in the rice genome by establishing and scanning
HMM profiles of the Mutator-like element and the minia-
ture inverted-repeat transposable element superfamily.
They asserted that profile HMMs could support Repeat-
Masker and improve its capacity to detect degenerated
copies of TEs.

The scoring mechanism of the proposed approach consid-
ers only the similarity between fingerprints and the input
sequence. Therefore, the ordering or topology of motifs in
each family can be applied in the scoring mechanism. A
higher score implies greater similarity between structures.
Common/specific status can be considered in the scoring
function.

LTR is the major characteristic of the LTR retrotranspo-
son and the profiles of the other internal features such as gag,
pol and env gene can be established. Each feature of the
LTRs with complete structures can be identified precisely,
and novel LTRs are useful in analyzing the distribution of
LTR retrotransposons. This study focuses on human LTRs
and can be effectively applied to other species.
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