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In this paper, the hypothesis testing and confidence region construction for a linear combination of mean
vectors for K independent multivariate normal populations are considered. A new generalized pivotal
quantity and a new generalized test variable are derived based on the concepts of generalized p-values
and generalized confidence regions. When only two populations are considered, our results are equivalent
to those proposed by Gamage et al. [Generalized p-values and confidence regions for the multivariate
Behrens–Fisher problem and MANOVA, J. Multivariate Aanal. 88 (2004), pp. 117–189] in the bivariate
case, which is also known as the bivariate Behrens–Fisher problem. However, in some higher dimension
cases, these two results are quite different. The generalized confidence region is illustrated with two
numerical examples and the merits of the proposed method are numerically compared with those of the
existing methods with respect to their expected areas, coverage probabilities under different scenarios.

Keywords: coverage probability; generalized confidence region; generalized pivotal quantity; general-
ized test variable; heteroscedasticity; type I error

1. Introduction

Suppose there exist K independent d-variate normal populations with mean vector μi and covari-
ance matrix �i , i = 1, 2, . . . , K , where μi and �i are possibly unknown and unequal among
groups. We want to make inferences on a linear combination of K mean vectors. This problem
arises because sometimes there is a theoretical reason for believing some characteristics of these
populations to be such that their mean vectors have some relationships or practitioners want to
know some characteristics of a compound material. For example, in the Edgar Anderson’s famous
Iris data, there is a theoretical belief that the four gene structures of three species are such that the
mean vectors of the three populations, (1) Iris versicolor (2) Iris setosa and (3) Iris virginica, are
related to 3μ1 = 2μ2 + μ3 [1].

If the difference between the covariance matrices is small and the sample sizes are large, the
Hotelling’s T 2-test for testing the linear combination of mean vectors has good performance.
However, if the covariance matrices are quite different and/or the sample sizes are small, the
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416 S.H. Lin and R.S. Wang

nominal significance level may be distorted. Therefore, in this paper, we intend to develop a
procedure to provide generalized inferences for the linear combination of the mean vectors,
θ = Gμ, where G is a designed d × dK matrix, and μ is the dK-variate mean vector with μ′ =
(μ′

1, . . . ,μ
′
K). That is, we will provide a generalized confidence region for θ and test the hypothesis

H0 : Gμ = θ0 vs. H1 : Gμ �= θ0, (1)

where θ0 is a given vector. For example, in the Iris data, we can set G = (3Id , −2Id , −Id) and
θ0 = 0 to perform this hypothesis.

Suppose that Xijs are independent random vectors of sample size ni . Define the ith sample
mean vector and sample covariance matrix as

X̄i = 1

ni

ni∑
j=1

Xij and Si = 1

ni

ni∑
j=1

(Xij − X̄i )(Xij − X̄i )
′, i = 1, . . . , K. (2)

It can be shown that

X̄i ∼ Nd

(
μi ,

�i

ni

)
and Ai = niSi ∼ Wd(ni − 1, �i ), i = 1, . . . , K, (3)

and both of them are independently distributed, where Nd(π, �) denotes d-variate normal distri-
bution with mean vector π and Wd(r, �) is the d-dimensional Wishart distribution with degrees
of freedom r and scale matrix �. Furthermore, ni is supposed to be greater than d, ni > d,
i = 1, . . . , K , to ensure S−1

i exist with probability one. Because the distributions of X̄i and Si are
affine invariant, we will test the problem (1) and construct a confidence region of θ(=Gμ) based
on these judicious condensations of the data. Using the underlying distribution assumptions, our
approach procedures are associated with an exact probability statement and a repeated sampling
interpretation.

For K = 2, G = (Id , −Id) and θ0 = 0, Equation (1) is reduced to the well-known multivariate
Behrens–Fisher problem. For this topic, there are several exact as well as approximate tests
considered in the literature for the past five decades. For example, Christensen and Rencher [3]
compared seven solutions for their type I error rates and powers and suggested that Kim’s [6] and
Nel and Van der Merwe’s [8] solutions had the highest powers among solutions whose Type I error
rates were not inflated. Krishnamoorthy and Yu [7] modified the Nel and Van der Merwe’s test
and provided an approximate invariant solution for the problem. In addition to those approximate
procedures, Bennett [2] provided an exact solution for the generalized Behrens–Fisher problem.
However, the power obtained by Bennett’s method was poor under unequal sample sizes because
the method was not based on sufficient statistics. Johnson and Weerahandi [5] provided an exact
Bayesian solution based on the Bayesian approach and Gamage et al. [4] provided the generalized
p-values and generalized confidence region for the Behrens–Fisher problem.

In this paper, we would like to further consider K nonhomogeneous multivariate normal popu-
lations with equal and unequal sample sizes and unequal covariance matrices, and then provide an
invariant generalized test variable (GTV) and construct a generalized confidence region for a lin-
ear combination of K multivariate normal mean vectors. In our proposed model, the multivariate
Behrens–Fisher problem can be treated as a special case of our model.

Our inferential procedures are based on the generalized approach introduced by Tsui and
Weerahandi [12] and then Weerahandi [13]; see the books by Weerahandi [14,15] for detailed
discussions along with numerous examples. The concepts of generalized p-value and generalized
confidence intervals have turned out to be extremely fruitful for obtaining tests and confidence
intervals involving ‘non-standard’ parameters. Several articles have appeared in the literature
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Journal of Applied Statistics 417

describing such applications. Therefore, we will use the idea to derive a new generalized pivot
quantity that is simple to use for both hypothesis testing and confidence region estimation of Gμ.

The rest of the paper unfolds as follows. The theory of generalized p-values and generalized
confidence interval will be briefly outlined in Section 2. Our procedures for hypothesis testing
and the generalized confidence region of Gμ construction are presented in Section 3. Several
methods in the multivariate Behrens–Fisher problem are also briefly introduced in Section 3.
Simulation studies are presented in Section 4 to compare the type I error rates, expected areas and
the coverage probabilities in different combinations of sample sizes and covariance matrices for
difference procedures, and then two sets of data will be illustrated for our procedures in Section 5.
Finally, some conclusions are provided in Section 6.

2. Generalized p-value and generalized confidence interval

Let X be a random variable whose distribution depends on a vector of unknown parameters
ζ = (θ, η), where θ is the parameter of interest, and η is a vector of nuisance parameters. Suppose
we are interested in testing

H0 : θ ≤ θ0 vs. H1 : θ > θ0, (4)

where θ0 is a prespecified quantity.
The GTV of the form T (X; x, θ, η) with x being the observed value of X is chosen to satisfy

the following requirements:

(i) For fixed x, the distribution of T (X; x, θ, η) is free of the vector of nuisance parameters η.
(ii) The value of T (X; x, θ, η) at X = x is free of any unknown parameters.

(iii) For fixed x and η, Pr[T (X; x, θ, η) ≥ t] is either an increasing or a decreasing function of
θ for any given t . (5)

Under the above conditions, if T (X; x, θ, η) is stochastically increasing in θ , then a generalized
extreme region is defined as C = {X: T (X; x, θ, η) ≥ T (x; x, θ, η)}. The generalized p-values
for testing the hypothesis in Equation (4) is defined as

p = Pr (C|θ0). (6)

Under the same setup, a generalized pivotal quantity (GPQ), T1(X; x, θ, η), satisfies the following
conditions:

(i) The distribution of T1(X; x, θ, η) is free of unknown parameters.
(ii) The observed value of T1(X; x, θ, η) is free of nuisance parameters η. (7)

Let c1 and c2 be such that

Pr[c1 ≤ T1(X; x, θ, η) ≤ c2] = 1 − α, (8)

then {θ : c1 ≤ T1(x; x, θ, η) ≤ c2} is a 100(1 − α)% generalized confidence interval for θ .
Furthermore, if the value of T1(X; x, θ, η) at X = x is θ , then {T1(x; α/2), T1(x; 1 − α/2)}
is a 100(1 − α)% confidence interval for θ , where T1(x; γ ) represents the rth quantile of
T1(X; x, θ, η).

3. Hypothesis testing and confidence region estimation for Gμ

Suppose we have K independent d-variate multivariate normal populations with mean vector μi

and unequal covariance matrices �i for the ith sample. Let X̄i and Si be the sample mean vector
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418 S.H. Lin and R.S. Wang

and sample covariance matrix for the ith population, which are defined in Equation (2). We will
consider the problem of estimating a linear combination of K multivariate normal mean vectors,
Gμ, based on the minimal sufficient statistics (X̄1, . . . , X̄K, S1, . . . , SK).

In this section, we first derive the generalized p-value and construct a generalized confidence
region of Gμ based on the generalized method in Section 3.1 and then review some commonly
used methods in Section 3.2. For some special cases, especially the multivariate Behrens–Fisher
problem, several methods are reviewed in Section 3.3.

3.1 Solutions based on the generalized method

It is noted that X̄i and Si are mutually independent with X̄i ∼ Nd(μi , �i/ni), Si ∼ Wd(ni − 1,
�i/ni) and Ai = niSi ∼ Wd(ni − 1, �i ), i = 1, . . . , K . Let X̄

′ = (X̄
′
1, . . . , X̄

′
K) then the MLE

(maximum likelihood estimator) of θ is

θ̂ = GX̄ ∼ Nd(θ, G�G′), (9)

where the block diagonal matrix (Bdiag) � = Bdiag(�1/n1, . . . ,�K/nK) ≡
(

n−1
1 �1 0
0 n−1

K �K

)
.

If the covariance matrices �i’s are given, it is known that from Equation (9) we can get

(
G�G′)−1/2

G(X̄ − μ) ≡ Zd ∼ Nd(0, Id). (10)

If the covariance matrix �i for the ith population is unknown, we can define

R = [
s−1/2�s−1/2

]−1/2 [
s−1/2Ss−1/2

] [
s−1/2�s−1/2

]−1/2
, (11)

where S = Bdiag(S1, . . . , SK) is the block diagonal matrix with the observed value s =
Bdiag(s1, . . . , sK) and Sis are the sample covariance matrices with the observed values sis. �1/2

means the positive definite square root of the positive definite matrix � and �−1/2 = (�1/2)−1.
It should be noted that R also stands for a block diagonal matrix with R = Bdiag(R1, . . . , RK),
where

Ri =
[
s−1/2
i

(
�i

ni

)
s−1/2
i

]−1/2 [
s−1/2
i Sis

−1/2
i

] [
s−1/2
i

(
�i

ni

)
s−1/2
i

]−1/2

. (12)

Since Ri ∼ Wd(ni − 1, Id) is free of any unknown parameters, and for the fact that at S = s,
the observed value r of R is

[
s−1/2�s−1/2

]−1
, it is clear that s1/2R−1s1/2 = � at S = s. That

means we can use the information of s and R to make an inference about the nuisance parameters,
�. Furthermore, we can derive the generalized inferences for Gμ based on X̄ and R. Let x̄ and
r be the corresponding observed values of X̄ and R, respectively, the generalized pivot quantity
can be expressed as

T(X̄, R; x̄, r) = Gx̄ −
(
Gs1/2R−1s1/2G

′)1/2 (
G�G′)−1/2

G(X̄ − μ)

= Gx̄ −
(
Gs1/2R−1s1/2G

′)1/2
Zd . (13)

It is noted that the value of T in Equation (13) at (X̄, S) = (x̄, s) is Gμ, which is the parameter of
interest. Furthermore, T is the function of the Wishart distributions Ris, the standard multivariate
normal distribution Zd and the observed values (x̄, s). The distribution of T is independent of any
unknown parameters, therefore, T in Equation (13) satisfies the two conditions in Equation (7)
and is truly a GPQ, which can be used to construct the confidence region for Gμ.
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Journal of Applied Statistics 419

3.1.1 The generalized p-value

For given(x̄, s), the distribution in Equation (13) is independent of unknown parameters and
hence the Monte Carlo method can be utilized to construct a confidence region of Gμ, and test
the hypothesis

H0 : Gμ = θ0 vs. H1 : Gμ �= θ0, (14)

where θ0 is a given vector. Suppose mT and ST are the mean and covariance matrix of T, and
T̃ = S−1/2

T (T − mT) is the standardized expression of T, then the generalized p-value for testing
Equation (14) can be computed by

p = Pr{‖T̃‖>‖θ̃0‖|x̄, r}, (15)

where θ̃0 = S−1/2
T (θ0 − mT), ‖T̃‖ and ‖θ̃0‖ are norms of T̃ and θ̃0, respectively, with ‖T̃‖ =

√
T̃

′
T̃,

and the null hypothesis (14) will be rejected whenever p ≤ α.
Furthermore, if we want to test the MANOVA problem of the form H0 : μ1 = · · · = μK which

can be expressed as H0 : G∗μ = 0. One convenient choice for G∗ in this particular problem is

G∗ =

⎡
⎢⎢⎢⎣

Id −Id 0 0 . . . 0
Id 0 −Id 0 . . . 0
...

Id 0 0 . . . 0 −Id

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

G(2)

G(3)

...

G(K)

⎤
⎥⎥⎥⎦ ,

where

G(i) = (c
(i)
1 Id , . . . , c

(i)
K Id), c

(i)
j =

⎧⎪⎨
⎪⎩

1 j = 1

−1 j = i

0 o.w.

Similar to T in Equation (13), the generalized test variable can be expressed as T∗ = G∗x̄ −(
G∗s1/2R−1s1/2G∗′)1/2

Zd(K−1). And the p-value can also be computed in the similar way as
Equation (15).

3.1.2 The generalized confidence region

If we are interested in constructing confidence interval of θ, since T in Equation (13) also fulfills
two requirements of the generalized pivotal quantity and the observed value of T is θ, so it can
be used to construct the confidence region of θ. Let q{‖T̃‖;1−α} be the 100(1 − α)th percentile of

‖T̃‖, such that

Pr
{
T̃

′
T̃ = (T − mT)′S−1

T (T − mT) ≤ q2
{‖T̃‖;1−α}

}
= 1-α, (16)

Therefore, the 100(1 − α)% confidence region of θ can be solved through{
θ : (θ − mT)′S−1

T (θ − mT) ≤ q2
{‖T̃‖;1−α}

}
. (17)

3.2 Solutions based on the classical methods

In the classical procedure, the Hotelling’s T 2 test and the Chi-square test are the commonly
used methods. In Hotelling’s T 2 test, we assume the population covariance matrices are the
same, whereas in the classical Chi-square method, practitioners usually replace the population
covariance matrices with the sample covariance matrices. We will briefly introduce these two
methods to deal with our problem.
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420 S.H. Lin and R.S. Wang

3.2.1 The Hotelling’s T 2 test

In this method, we will assume that �1 = · · · = �K = � and G = (c1Id , · · · , cKId), then the
point estimator of θ = Gμ = ∑K

i=1 ciμi and the pool covariance matrix are

μ̂ =
K∑

i=1

ciX̄i and SH = 1

N − K

K∑
i=1

ni∑
j=1

(
Xij − X̄i

)(
Xij − X̄i

)′ = 1

N − K

K∑
i=1

niSi , (18)

respectively, where N = ∑K
i=1 ni and X̄i and Si are defined in Equation (2), respectively. The

criterion is

Q2 =
(

K∑
i=1

ciX̄i − θ

)
′
[

K∑
i=1

c2
i SH

ni

]−1 ( K∑
i=1

ciX̄i − θ

)

= (μ̂ − θ)′ (bSH)−1 (μ̂ − θ),

whereQ2 has the Hotelling’sT 2 distribution withN − K degrees of freedom andb = ∑K
i=1 c2

i /ni .
Thus

Q2

N − K
× N − K − d + 1

d
∼ Fd,N−K−d+1, (19)

so the p-value for testing H0 : ∑K
i=1 ciμi = θ0, where θ0 is a given vector, is

p = Pr

[
F(d,N−K−d+1) >

(
K∑

i=1

ci x̄i − θ0

)
′S−1

H

(
K∑

i=1

ci x̄i − θ0

)
· N − K − d + 1

bd(N − K)

]
, (20)

and the 100(1 − α)% confidence region of θ can be solved through the inequality{
θ : (μ̂ − θ)′S−1

H (μ̂ − θ) ≤ bd(N − K)

N − K − d + 1
F1−α(d, N − K − d + 1)

}
, (21)

where F1−α(d, N − K − d + 1)is the 100(1 − α)th percentile of the Fd,N−K−d+1 distribution.

3.2.2 The classical Chi-square test

The classical Chi-square method is valid when the covariance matrices are known. The statistics

H2
d , H2

d = (μ̂ − θ)′
[∑K

i=1 c2
i Si/(ni − 1)

]−1
(μ̂ − θ), is distributed approximately as a Chi-square

distribution with degrees of freedom d when the sample sizes tend to infinity, where μ̂ =∑K
i=1 ciX̄i and θ = ∑K

i=1 ciμi . The p-value for testing H0 : ∑K
i=1 ciμi = θ0 is

p = Pr

⎡
⎣χ2

d >

(
K∑

i=1

ci x̄i − θ0

)′ [ K∑
i=1

c2
i si

(ni − 1)

]−1 ( K∑
i=1

ci x̄i − θ0

)⎤⎦ , (22)

and the approximate 100(1 − α)% confidence region of θ may be obtained by evaluating⎧⎨
⎩θ : (μ̂ − θ)′

(
K∑

i=1

c2
i si

(ni − 1)

)−1

(μ̂ − θ) ≤ χ2
1−α(d)

⎫⎬
⎭ , (23)

where χ2
1−α(d) is the 100(1 − α)th percentile of the χ2 distribution with degrees of freedom d.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

6:
34

 2
5 

A
pr

il 
20

14
 



Journal of Applied Statistics 421

3.3 The multivariate Behrens–Fisher problem

If we are only interested in the multivariate Behrens–Fisher problem, that is, only two populations
are related and c1 = 1 and c2 = −1, i.e., G = (Id , −Id), then Equation (13) for the generalized
pivotal quantity becomes

T1(X̄, S; x̄, s)=(x̄1 − x̄2) −
(
s1/2

1 R−1
1 s1/2

1 + s1/2
2 R−1

2 s1/2
2

)1/2
Zd . (24)

The p-value for testing

H0 : μ1 = μ2 vs. H1 : μ1 �= μ2 (25)

is similar to Equation (15) by replacing T̃ and θ̃0 with T̃1 and 0̃, respectively.
Some other methods for dealing with the multivariate Behrens–Fisher problem are briefly

reviewed in the following.

3.3.1 Gamage, Mathew and Weerahandi

The p-value for testing Equation (25) derived by Gamage et al. [4] is

p = Pr

{
TGam ≥ (x̄1 − x̄2)

′
(

s1

n1 − 1
+ s2

n2 − 1

)−1

(x̄1 − x̄2)|H0

}
, (26)

where TGam is defined as

TGam = Z′[v1/2
1 �−1

1 v1/2
1 + v1/2

2 �−1
2 v1/2

2 ]Z. (27)

In Equation (27), Z ∼ Nd(0, Id), Vi = Vi(Si; s1, s2) = (s1/(n1 − 1) + s2/(n2 − 1))−1/2 Si(s1/

(n1 − 1) + s2/(n2 − 1))−1/2 with vi = Vi(si; s1, s2) being the observed values of Vi and �i ∼
Wd(ni − 1, Id), i = 1, 2.

Furthermore, they also defined T∗
Gam/t∗Gam, to test the MANOVA problem of the

form H0 : μ1 = · · · = μK , where T∗
Gam(�1, . . . , �K) = ∑K

i=1 ni(X̄i − μ̂)
′
�−1

i (X̄i − μ̂), μ̂ =(∑K
i=1 ni�

−1
i

)−1 ∑K
i=1 ni�

−1
i X̄i and t∗Gam is the observed value of T∗

Gam. However, as the authors
had mentioned in their paper, this new GTV T∗

Gam/t∗Gam was not invariant under nonsingular
transformation [4].

3.3.2 Krishnamoorthy and Yu

Krishnamoorthy and Yu [7] modified the Nel and Van der Merwe’s [8] test and provided an
approximate invariant solution for the multivariate Behrens–Fisher problem. They obtained a
nonsingular invariant statistic

TKri = [
(X̄1 − X̄2) − (μ1 − μ2)

]′ [
(n1 − 1)−1S1 + (n2 − 1)−1S2

]−1 [
(X̄1 − X̄2) − (μ1 − μ2)

]
,

(28)

which is approximately distributed as ωdFd,ω−d+1/(ω − d + 1) where ω = (d(d + 1))/

(n1 − 1)−1
[
tr	2

1 + (tr	1)
2
]+ (n2 − 1)−1

[
tr	2

2 + (tr	2)
2
]
, 	1 = S1/n1 − 1(S1/n1 − 1 + S2/

n2 − 1)−1, 	2 = S2/n2 − 1(S1/n1 − 1 + S2/n2 − 1)−1.
The p-value for testing Equation (25) is

p = Pr

{
Fd,ω−d+1 ≥ ω − d + 1

ωd
· (x̄1 − x̄2)

′
(

s1

n1 − 1
+ s2

n2 − 1

)−1

(x̄1 − x̄2)|H0

}
. (29)
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4. Simulation studies

In this section, we first consider the multivariate Behrens–Fisher problem compared with five
methods with their type I errors. Then, for the case of K = 3(> 2), we present expected areas and
coverage probabilities of three methods for various sample sizes and parameter configurations.
According to the eigen decomposition theorem, for any positive definite matrix �, there exists an
orthogonal matrix P such that P′�P is diagonal. Without loss of generality, the normal random
vectors are generated with zero mean vector and diagonal covariance matrices �i with �1 = Id

in our simulation studies. The simulation was processed using MATLAB software.

4.1 The multivariate Behrens–Fisher problem

We apply five methods to calculate the type I error probabilities of multivariate Behrens–Fisher
problem with various sample sizes (n1, n2), dimension numbers d and diagonal covariance matri-
ces �1 = Id and �2 = aId , where a stands for the heterogeneity rate. We consider d = 2 and
d = 4 with direct pairing and inverse pairing. The results are in Tables 1 and 2, respectively.

Table 1. Type I error with 10,000 iterations �1 = I2, �2 = aI2.

a General Hote Chi Gam Kri

n1 = 10, n2 = 15
9 0.045 0.032 0.082 0.045 0.053

25 0.046 0.034 0.098 0.046 0.056
100 0.048 0.030 0.097 0.048 0.048
400 0.051 0.034 0.103 0.050 0.053
n1 = 10, n2 = 10

9 0.046 0.088 0.106 0.046 0.053
25 0.050 0.098 0.118 0.048 0.052

100 0.049 0.102 0.122 0.049 0.049
400 0.051 0.114 0.135 0.052 0.053
n1 = 15, n2 = 10

9 0.048 0.116 0.112 0.048 0.055
25 0.050 0.192 0.124 0.049 0.051

100 0.048 0.208 0.129 0.048 0.050
400 0.050 0.219 0.132 0.051 0.051

Table 2. Type I error with 10,000 iterations �1 = I4, �2 = aI4.

a General Hote Chi Gam Kri

n1 = 10, n2 = 5
9 0.038 0.438 0.556 0 0.097

25 0.046 0.620 0.656 0 0.127
100 0.048 0.735 0.699 0.001 0.140
400 0.051 0.781 0.722 0.008 0.128
n1 = 10, n2 = 10

9 0.033 0.136 0.227 0.032 0.057
25 0.042 0.170 0.258 0.042 0.056

100 0.048 0.190 0.281 0.048 0.048
400 0.053 0.193 0.284 0.053 0.049
n1 = 10, n2 = 20

9 0.032 0.014 0.121 0.032 0.056
25 0.043 0.011 0.125 0.043 0.054

100 0.048 0.010 0.136 0.048 0.051
400 0.050 0.011 0.145 0.050 0.052
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The smaller sample sizes associated with smaller variances is called direct pairing, whereas the
smaller sample sizes associated with larger variances is called inverse pairing. Each combination
is based on 10,000 replicates with α = 0.05 and these comparisons presented correspond to:

(1) General: The generalized method proposed in this article.
(2) Hote: The classical Hotelling’s method.
(3) Chi: Classical Chi-square test.
(4) Gam: Gamage, Mathew and Weerahandi.
(5) Kri: Krishnamoorthy and Yu.

The methods (1) and (4) are both based on 5000 runs in each simulation. From Table 1, it is
interesting to find that the results based on our proposed method are very close to those proposed
by Gamage et al. [4] except those obtained only by simulation and rounding off errors. Both
of them have the type I error probabilities close to the nominal level. The method proposed by
Krishnamoorthy and Yu [7] also has similar results except for a few combinations. However, in
Table 2 with d = 4, excepting our proposed method, there are unanticipated results in the inverse
pairing case n1 = 10, n2 = 5. The method proposed by Gamage et al. [4] tends to accept the
null hypothesis (25) since the generalized p-values calculated by their test variable do not have a
uniform distribution in this case while we use the standardized GTV to calculate the generalized
p-values. And the type I error probabilities of the method proposed by Krishnamoorthy andYu [7]
range from 0.11 to 0.16. The type I error probabilities calculated based on the classical Hotelling’s
method are underestimated when direct pairing is considered and overestimated when two sample
sizes are equal or inverse pairing is considered. Those obtained based on the classical Chi-square
test are overestimated in all combinations and their performances grow worse as the degree of
nonhomogeneity increases. This comes to a similar conclusion with a number of other problems
solved based on generalized p-values, see Thursby [12], Zhou and Mathew [18] and many others.
They found that when the covariance matrices are quite different, the nominal significance level
obtained by the Hotelling’s and the Chi-square methods may be distorted.

Although the method proposed by Krishnamoorthy and Yu [7] is a strong candidate for the
multivariate Behrens–Fisher problem, it has some weaknesses for particular combinations of
sample sizes, dimensions and parameter configurations. When inverse pairing is considered and
the smallest sample size is close to the dimension, the type I error rates obtained by Krishnamoorthy
and Yu [7] are especially higher than the nominal level. As shown in Table 2, the type I errors
are about double to triple the nominal level 0.05 when variable number is 4 and sample sizes are
(10, 5). Moreover, it can be used only in two populations. Furthermore, we also calculate the type
I error probabilities for higher dimensions and large sample sizes. Since the results are similar
to Tables 1 and 2, we show some of them in Table 3 with d = 8, 10, 20 and n1 = 30, 50, 100.
Thus, for overall comparisons from Tables 1 to 3, we conclude that our proposed method is a
good alternative for the multivariate Behrens–Fisher problem especially when inverse pairing and
heteroscedastity are considered.

4.2 The expected areas and coverage probabilities

In simulation studies, we used 1000 iterations to calculate the expected areas of the 95% confidence
regions and the corresponding coverage probabilities of c1μ1 + c2μ2 + c3μ3 under different
scenarios. First, we chose (c1, c2, c3) = (1, −1, 0), which is known as the multivariate Behrens–
Fisher problem, and the results compared with five methods are in Table 4. Next, we choose
(c1, c2, c3) = (0.5, 0.5, −1) and the results compared with three methods are in Table 5.

From Table 4, we find that the coverage probabilities obtained by the Hotelling’s method are
overestimated when large sample sizes are associated with large covariance matrices and vice
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Table 3. Type I error with 10,000 iterations �1 = Id , �2 = aId .

a General Hote Chi Gam Kri

d = 8; (n1 n2) = (30 10)
9 0.039 0.715 0.718 0 0.096

25 0.045 0.875 0.787 0.001 0.100
100 0.049 0.939 0.816 0.014 0.088
400 0.050 0.961 0.830 0.038 0.072
d = 10; (n1 n2) = (50 15)

9 0.044 0.795 0.656 0.033 0.073
25 0.045 0.921 0.696 0.034 0.062

100 0.052 0.962 0.727 0.047 0.056
400 0.049 0.974 0.734 0.048 0.052
d = 10; (n1 n2) = (50 50)

9 0.046 0.090 0.142 0.045 0.054
25 0.050 0.102 0.165 0.050 0.050

100 0.051 0.111 0.176 0.051 0.051
400 0.050 0.114 0.175 0.050 0.047
d = 20; (n1 n2) = (100 25)

9 0.033 0.973 0.926 0 0.101
25 0.044 0.997 0.953 0.007 0.082

100 0.050 1.000 0.962 0.037 0.060
400 0.048 1.000 0.967 0.047 0.048
d = 20; (n1 n2) = (100 100)

9 0.045 0.092 0.173 0.044 0.051
25 0.048 0.113 0.203 0.048 0.050

100 0.053 0.128 0.224 0.053 0.053
400 0.050 0.131 0.226 0.048 0.049

Table 4. Expected areas of 95% confidence regions and coverage probabilities of μ1 − μ2 under
�1 = I2, and �2 = (n2/n1)aI2.

a General Hote Chi Gam Kri

n1 = 10, n2 = 20
15 36.758(0.963) 65.0438(0.993) 29.056(0.924) 36.765(0.963) 35.063(0.938)
25 59.280(0.958) 107.646(0.994) 47.089(0.922) 59.294(0.960) 57.072(0.957)
50 115.603(0.959) 214.151(0.996) 92.155(0.925) 115.664(0.961) 114.061(0.951)

100 228.298(0.959) 427.157(0.996) 182.275(0.926) 228.378(0.960) 224.332(0.953)
500 1129.820(0.959) 2131.21(0.997) 903.209(0.929) 1129.990(0.959) 1109.206(0.962)
n1 = 20, n2 = 10

15 22.078(0.961) 9.413(0.820) 13.574(0.896) 22.089(0.961) 21.249(0.936)
25 36.033(0.961) 14.124(0.791) 21.928(0.892) 36.061(0.961) 34.617(0.950)
50 70.938(0.955) 25.845(0.769) 42.801(0.891) 70.982(0.956) 69.578(0.944)

100 140.755(0.957) 49.233(0.751) 84.539(0.892) 140.829(0.956) 139.740(0.938)
500 699.357(0.959) 236.168(0.741) 418.422(0.889) 699.641(0.959) 693.913(0.957)

versa. The coverage probabilities obtained by the Chi-square method are underestimated in all
cases. On the other hand, the remaining three methods have good coverage probabilities and
similar expected areas in all cases. In Table 5, although the Hotelling’s method and the Chi-
square test have smaller average areas of 95% confidence regions, their confidence regions are
too small to ensure their coverage and probabilities are close to the nominal level of 0.95. On the
contrary, these simulated results support that our method not only assures the level of the test in
all cases, but also has good coverage probabilities comparing to those of the classical Hotelling’s
method and the classical Chi-square test.
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Table 5. Expected areas of 95% confidence regions and coverage probabilities of μ1/2 + μ2/2 − μ3 under
�1 = I2, �2 = 3I2 and �3 = aI2.

a General Hote Chi

(n1 n2 n3) = (10 8 5)
9 118.257(0.957) 18.319(0.716) 29.651(0.776)

25 297.648(0.954) 32.708(0.588) 71.844(0.738)
50 614.952(0.959) 56.745(0.536) 145.938(0.757)

100 1204.655(0.941) 101.422(0.486) 284.573(0.750)
500 5926.295(0.953) 452.362(0.463) 1388.306(0.756)
(n1 n2 n3) = (8 10 5)

9 110.010(0.959) 18.991(0.758) 27.637(0.790)
25 299.104(0.961) 34.243(0.602) 72.169(0.758)
50 616.133(0.954) 58.086(0.555) 145.488(0.755)

100 1208.969(0.953) 102.749(0.507) 284.487(0.770)
500 6063.718(0.952) 463.086(0.454) 1417.512(0.759)
(n1 n2 n3) = (5 10 8)

9 42.678(0.966) 20.266(0.884) 20.828(0.866)
25 106.023(0.954) 42.525(0.804) 52.563(0.846)
50 207.290(0.968) 77.877(0.807) 103.119(0.868)

100 401.150(0.941) 145.413(0.774) 200.280(0.841)
500 2061.426(0.945) 721.244(0.760) 1031.064(0.849)

5. Illustrative examples

5.1 Example 1

Zerbe [16] analysed the plasma inorganic phosphate flux data to study the association of hyper-
glycemia and relative hyperinsulinemia. The standard glucose tolerance tests were administered
to 13 control (C) and 20 obese (O) patients on the Pediatric Clinical Research Ward of the Uni-
versity of Colorado Medical Center. Zerbe and Murphy [17] divided the 20 obese patients into
two subgroups; the first 12 obese patients were nonhyperinsulinemic (NO) while the latter eight
were hyperinsulinemic (HO). The sample means of plasma inorganic phosphate measurements
determined from blood samples withdrawn 0, 0.5, 1, 1.5, 2, 3, 4 and 5 hours after a standard-dose
oral glucose challenge are reported in Table 6. The researchers wanted to compare the mean
curves separately over the first 3 and last 2 hours of the glucose tolerance test since the metabolic
mechanism responsible for the liver changes.

We consider the multivariate Behrens–Fisher problem twice to see whether two mean vectors
are equal. First, we want to test if the mean curves of the nonhyperinsulinemic obese group and
the hyperinsulinemic obese group are the same. If we cannot reject this null hypothesis, we further
discuss the equality of the mean curves of the control group and the obese group, and all results are
in Table 7. We regard the ratio of determinants of sample covariance matrices as the crude index
of the heteroscedasticity. From Table 7, mT and Gx̄ are very close, and ratios donot display strong

Table 6. Sample means of plasma inorganic phosphate (mg/dl).

Hours after glucose challenge

Group 0 0.5 1 1.5 2 3 4 5

C 4.092 3.262 2.723 2.631 3.046 3.346 3.515 3.939
O 4.530 4.140 3.780 3.480 3.195 3.375 3.700 4.015
| NO 4.358 4.033 3.567 3.292 3.100 3.333 3.708 4.000

O || HO 4.788 4.300 4.100 3.763 3.338 3.438 3.688 4.038
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Table 7. Various comparisons of mean flux curves over selected time intervals following oral glucose
challenge.

p-value

Groups Interval m′
T and (Gx̄)′ Ratios General Gam Kri

(NO, HO) 0–3 hours (10, 1) 0.695 0.670 0.4550.42, 0.26, 0.53, 0.47,0.23, 0.11
(0.43, 0.27, 0.53, 0.47, 0.24, 0.10)

(NO, HO) 3–5 hours (1, 1.9) 0.869 0.897 0.8800.10, −0.02, 0.04
(0.10, −0.02, 0.04)

(C, O) 0–3 hours (1, 1.6) 0.004 0.006 0.0000.44, 0.88, 1.06, 0.85, 0.15, 0.03
(0.44, 0.88, 1.06, 0.85, 0.15, −0.03)

(C, O) 3–5 hours (2.1, 1) 0.651 0.665 0.6170.028, 0.183, 0.078
(0.029, 0.185, 0.077)

(C, O) 0–5 hours (1, 2.0) 0.036 0.050 0.0010.4, 0.9, 1.1, 0.9, 0.1, 0.03, 0.19, 0.08
(0.4, 0.9, 1.1, 0.8, 0.1, 0.03, 0.18, 0.08)

Other comparisons
(C, NO) 0–3 hours (1.2, 1) 0.021 0.023 0.0070.25, 0.76, 0.83, 0.65, 0.05, −0.02

(0.27, 0.77, 0.84, 0.66, 0.05, −0.01)
(C, NO) 3–5 hours (3.4, 1) 0.642 0.642 0.579−0.015, 0.190, 0.058

(−0.013, 0.193, 0.062)
(C, HO) 0–3 hours (12, 1) 0.007 0.014 0.0010.69, 1.04, 1.37, 1.13, 0.29, 0.09

(0.70, 1.04, 1.38, 1.13, 0.29, 0.09)
(C, HO) 3-5 hours (1.8, 1) 0.899 0.923 0.9020.095, 0.178, 0.108

(0.091, 0.172, 0.099)

heteroscedasticity among groups. The p-values in Table 7 indicate that no significant evidence
exists to reject the null hypothesis that the mean curve of the nonhyperinsulinemic obese group
and that of the hyperinsulinemic obese group are equal. However, the mean curves of the control
group and the obese group are the same in the 3–5 hours interval, but different in the 0–3 hours
interval. Hence the metabolic mechanisms over the first 3 hours of the glucose tolerance test should
be quite different between the control group and the obese group. We also run some tests with the
similar conclusions as [17]. It should be noted that we used G∗ to test the equality of the mean
curves of three groups (C, NO, HO). In the 3–5 hours interval, the ratio of determinants is (3.37,
1, 1.92) and the p-value by our method is 0.905, which strongly supports the null hypothesis. In
the 0–3 hours’ interval, the ratio of determinants is (11.8, 9.88, 1) and the p-value is 0.035, which
reject the null hypothesis.

5.2 Example 2

Sterczer et al. [10] studied the effect of tap water and three kinds of cholagogues, magnesium
sulfate, clanobutin and cholecystokinin, on changes in the gallbladder volume (GBV) by two-
dimensional ultrasonography in six healthy dogs. In this experiment, the dogs were treated with
each test substance and GBV (ml) was measured immediately before the administration of each
test substance and at 10-minute intervals for 120 minutes thereafter. They found that the changes
in the GBV treated with magnesium sulfate were very similar to those treated with clanobutin.
The GBV data was available in Reiczigel [9].

Studying the human medical literature about the effects exerted by tap water and clanobutin, a
researcher experimented with cocktail therapy, mixing 70% tap water, 20% clanobutin and 10%
cholecystokinin. The knowledge of Gμ could help him to prevent the patients’uncomfortableness,
or the threshold value θ0. The ratio of canine GBV to human beings is about 3:1 (50:17.4), and the
ratios of one minus the maximal reductions in canine GBV to human beings are 0.75 and 0.87,
with respective to tap water and clanobutin. Hence he can set Gμ = 3 ∗ (0.7 ∗ 0.75μ1 + 0.2 ∗
0.87μ2 + 0.1μ3) = 1.575μ1 + 0.522μ2 + 0.3μ3. To ensure the inverse of the sample covariance
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Table 8. Sample means of GBV and the 95% confidence region of Gμ.

Minutes after treatment

20 40 60 80 100

Tap water 12.505 14.153 15.242 16.995 18.090
Clanobutin 12.082 13.248 13.890 14.480 15.232
Cholecystokinin 16.643 16.512 16.712 16.853 16.455
mT 30.654 33.817 35.821 39.016 40.977

2014.1
2552.8 3285.4

ST 2795.0 3588.4 3940.8
2901.5 3751.9 4110.0 4309.2
2984.2 3837.7 4212.5 4402.2 4520.6

The 95% confidence region of Gμ :
{
Gμ : (Gμ − mT)′S−1

T (Gμ − mT) ≤ 24.704
}

matrix exists with probability one, the dimension of the measurements must be less than six.
We take the first five measurements at 20-minute intervals for 100 minutes and the ratio of
determinants is (1217.8, 1, 1.6). The 95% confidence region of Gμ from Equation (17) and the
summary data are in Table 8. The researcher can check to see if θ0 is in the 95% confidence region
with q2

{‖T̃‖;95%} = 24.704.
In Example 1, we not only test the multivariate Behrens–Fisher problem twice but also test the

MANOVA problem. We illustrate the process to find G and the procedure for constructing the
95% confidence region based on our proposed method in Example 2. It should be noted that in
the Edgar Anderson’s Iris data, the 95% confidence region of 3μ1 − 2μ2 − μ3 does not contain
0, which means that such a relationship among the three species does not exist.

6. Conclusions

In this paper, the generalized method provides an alternative way of dealing with a linear combina-
tion of mean vectors with different covariance matrices among multiple groups. We demonstrate
the advantages of our proposed method when more measurements are taken and there are serious
heteroscedasticities among groups. The traditional methods usually are restricted to the equal
covariance matrices among group or known covariance matrices that are sometimes not available
in practical applications. According to the numerical examples, our proposed method is recom-
mended since the generalized p-values assure the level of the test in all simulated cases. Moreover,
the coverage probabilities and the expected areas are satisfactory while the other methods become
worse when the heteroscedasticities increased. Therefore, it is fair to say that our proposed method
with fitting G is quite applicable for practical use, especially in compound material, mixed aqueous
solution and cocktail therapy.
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