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A Study of Hedging Effectiveness on
Minimum Risk Strategy and LPM Strategy

Student : Chung-Huei Chen Advisor : Her-Jiun Sheu

Institute of Business and Management
National Chiao Tung University

ABSTRACT

This study investigated the out-of-sample hedging effectiveness for 1,256
observations between 10 April 200%:t0.30. April 2006 for Taiwan futures market.
The underlying assets include Taiwan-weighted stock index (TX), electronic
sector index (TEs), financial sector-index-(TFs), Taiwan stock index futures (TX),
mini Taiwan stock index futures (MTX); electronic sector index futures (TE),
and financial sector index futures (TF). Two strategies are adopted to estimate
the average of hedge ratios. The associated hedging effectiveness are also
calculated. The first strategy focuses on examining minimum variance by
applying the naive, OLS, BI-GARCH, TGARCH, and ECM. The second
strategy aims to minimize the downside risk by adopting LPM model. All data
were collected and transferred to returns with the time expansions of 100-days
and 200-days. The hedging periods are 5-days, 10-days, and 20-days.

By applying the first strategy, the hedging effectiveness of GARCH (1,1)
performs best while naive performs worst. As to the second strategy, the
performance from LPM(c=y ) is larger than that from LPM(c=0). In average,
the hedging effectiveness of the first strategy is usually larger than that of the

second strategy.



When considering the time expansion, no matter which indices were
adopted, hedging strategies perform better with increasingly estimated period
and hedging period. Overall, it seems that the complicated models, such as
GARCH(1,1) and ECM, would result in better hedging effectiveness. It is worth
noting that the hedging effectiveness in MTX is lower than that in TX for all
hedging models. This may be explained by the fact that the contract value of

MTX is lower and the liquidity is better than that of TX.

Keywords: hedging strategy, minimum risk strategy, lower power
moment strategy.
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Chapter 1 Introduction

1.1 Background and Motivation

Since the introduction of Taiwan stock index futures markets in 1997,
investors can hedge risk by buying the future contracts. This makes our
investment full of variety. Because a stock index futures contract links to the
underlying index, it can reflect the price fluctuation in the market.

The more the investment channels, the higher degree of risk people are
forced to face. Thus, at present, the transaction trust is still weak and the
investment risk remains high. This situation may cause the under-performing
management, which harms shareholders and the companies. The fund being
managed may become risky, for examples, recent scandals happened on Enron,
WorldCom and other large comipanies, whose managers deceived in a manner
that eventually bankrupted: the companies.and destroyed shareholders’ wealth.
These events would havezinfluences-on people’s desire to enter the investment
markets and be harmful to business credit. In'this concern, risk management and
diminution will become a critical issue.

Although all kinds of strategies of the optimal hedge ratio have been
addressed in relevant literature, these previous researches only take TAIMEX to
practice and do not use the five future contracts of Taiwan for comparison at the
same time. For this reason, this article aims to add the other futures index in
Taiwan and adopt two major hedging strategies. The first strategy will focus on
minimum variances of portfolio. This thesis adopts the naive, OLS,
BI-GARCH(1,1), TGARCH, and ECM model as its representatives. The second

strategy is to minimize the downside risk. It can be measured by LPM model.



1.2 Purposes of Study

According to what have been mentioned above, the objectives of this study
are as follows:

(1) To compare the hedging effectiveness between the minimum risk
strategy and minimum downside risk strategy.

(2) To investigate the implication of different dynamic hedging models.

(3) Estimate the hedging effectiveness and optimal hedging ratio of futures
with the naive, OLS, bivariate generalized autoregressive conditional
heteroskedasticity (BI-GARCH), Threshold generalized autoregressive
conditional heteroskedasticity (TGARCH), error correction model (ECM), and
Lower partial moment (LPM) framework.

(4) Discuss the differences of the traditional naive hedging model with the
dynamics model.

(5) Investigate the results.of hedging effectiveness while the hedging period

is expended.

1.3 Composition of Study

This thesis is structured as follows: Chapter 1 describes the motivation,
goal, objectives, periods and research structure. Chapter 2 reviews the relevant
literature on stock indexes futures, hedging theories and relevant hedging
models. Chapter 3 describes the research methodology, including data collection,
sampling, and instrument. Chapter 4 illustrates the empirical experiment
procedures and examines the relationships of the index futures. Chapter 5
presents the hedging results and empirical finding. Chapter 6 concludes the

article and states the limitation, suggestions and economic implications.



The structure of this research is shown as follows:

Background and Motivation

Literature Review

Research Methodology I

| l
Minimum Variance Method

Minimum Downside Risk

Naive, OLS, - e
BI-GARCH, A Vo £ LPM
TGARCH,ECM | -

'

Empirical Result /
Hedging Effectiveness

Conclusion / Suggestions I

Figure 1.1 Research Flow Chart



Chapter 2 Literature Review

2.1 Stock Index Futures

The stock index is an indicator used to measure and report value changes in
a selected group of stocks. It is important that a stock index can track the market
movements depending on its composition and the weighing of individual stocks.
Besides, the futures contract is a type of derivative instrument, in which two
parties agree to transact a set of financial instruments or physical commodities
for future delivery at a particular price. In every futures contract, everything is
specified: the quantity and quality of the commodity, the specific price per unit,
and the date and method of delivery. And the “price” of a futures contract is
represented by the agreeable price of the underlying commodity or financial
instrument that will be delivered-in the future. Therefore, a stock index futures
contract has combined the function of two above and made the market more
diversified.

Trading in futures originated in=Japan during the 18th century and was
primarily used for the trading of rice and silk. It wasn't until the 1850s that the
U.S. started using futures markets to buy and sell commodities such as cotton,
corn and wheat. The first index future was born in the Kansas City Board of
Trade (KCBT). This contract takes the lead with a future on the Value Line
Index, which started trading in February 1982. It took the KCBT five years to
get the contract approved. As happens so often in the real world, the first was
not always necessarily the most successful. It was the next index launched to
become the leader: the S&P 500. The S&P 500 index was introduced in the
Chicago Mercantile Exchange (CME) on 21 April 1982. After that, there were
more and more other different index futures produced successively.

From the viewpoints of Taiwan, the Chicago Mercantile Exchange and
Singapore International Monetary Exchange (SIMEX) introduced the first future

contract, which treat TAIFEX stock index as underlying asset on January 1997.
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This was an important milestone for Taiwan’s future market. Some new
financial instruments, including warrant contracts on approved stocks, exchange
rate futures and foreign exchange options, were also listed on the Taiwan Stock
Exchange or allowed trading over-the-counter in 1997. Following the passage of
the Taiwan Futures Trading Law, the local futures exchange was opened in
October 1997 and the Taiwan stock index futures (TX) was inaugurated in July
1998. Trading on indexes of electronic sector (TE) and financial sector (TF)
futures was open in 1998 to make firms and individuals more flexible in hedging
their risks against the volatility of commodity prices, exchange rates, interest
rates and stock prices. Subsequently, the mini Taiwan stock index futures (MTX)
was launched on April 2001 and provided a smaller contract for investor to
transaction.

Until now, stock index futures contracts still play an important role in the
financial markets. The reason why it can succeed is that index future can reflect
fairly the demand and supply of the changeable economic society. There are
some vital economic functions of the'stock index futures as following.

Price Discovery -- Due to its highly competitive nature, the index futures
contracts has become an important economic tool to determine prices, based on
the estimated demands of today and tomorrow. Futures market prices depend on
a continuous flow of information from around the world and thus require a high
amount of transparency. Some continuous and open outcry auction is an
excellent method for accurately determining the price level, while the
information constantly changes the price of a commodity. This process is known
as price discovery.

Risk Reduction -- Futures markets are also a place for people to reduce risk
when making purchases. Risks are reduced because the price is pre-set, therefore
letting participants know how much they will need to buy or sell. This helps
reduce the ultimate cost to the retail buyer, because with less risk there is less

chance of manufacturers jacking up prices to make up for losses in the cash
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market.

Speculation -- Speculation involves the buying, holding, and selling of
stocks, commodities, futures, currencies, real estate, or any valuable thing to
profit from price fluctuations as contrary to buying it. The players in the futures
market fall into two categories: hedgers and speculators. A hedger buys or sells
in the futures market to secure the future price of a commodity intended to be
sold at a later date in the cash market. This helps protect against price risks.
However, a speculator aim to benefit from the every price change, while a
hedger focus on protecting themselves against. Speculators want to increase
their risk and therefore maximize their profits and hedgers want to minimize
their risk no matter what they're investing in. Table 1 illustrates the major

distinction between hedger and speculator.

Table'1l.1 .Hedger and Speculator

Long Short
Hedger Secure-a price how to Secure a price now to protect
protect against-future against future declining prices
rising prices
Speculator Secure a price now in Secure a price now in
anticipation of rising prices | anticipation of declining prices

Arbitrage -- The investor can simultaneous purchase and selling of an asset
to profit in different price. This usually takes place on different exchanges or
marketplaces. Also known as a "riskless profit”. In the process of risk arbitrage,
traders can find opportunity to profit and make the price of spot and future close
to each other. Therefore, the existences of future markets contribute to
improving the efficiency of the financial markets.

Diversification Investment -- Owing to the underlying object of stock

index future is stock index, the calculation has regulator formulation and not



easy to be manipulated. Besides, investors spend less money buying the whole
stock market commodities indeed make the investment channel greatly
diversified.

The unique aspects of futures markets, as compared with other
marketplaces, have been the focus of discussion. For the most part, hedging
techniques involve using complicated financial instruments known as
derivatives, the two most common of which are options and futures. This
dissertation takes hedging function of futures as a starting point. From the
viewpoints of investors with spot market position usually take an opposite
contract position in the futures market, being used as a hedge strategy to reduce

risks.



2.2 Review of Hedging Theory

Hedging is a multivariate process for managing risks and achieving
objectives. The process of hedging is not the simple buying or selling of futures
and options against physicals. It is the prudent selection process whereby
regulatory, financial, operational, supply and demand, and other factors must be
continually evaluated in order to derive the maximum benefits from the process.

There are a broad variety of hedging theories available, which provide a
decision rule for people to hold the futures contracts and spot commodity. First
of all, Gray and Rutledge (1971) categorized hedge theory into four groups by
means of the purpose of hedging, including risk elimination, risk reduction,
profit maximization, and portfolio approach. Ederington (1979) showed that the
future hedging theories could be classified as three groups: traditional hedging
theory, selective hedging:theory, and portfolio: hedging theory. The traditional
hedging theory was inconsistent-with reality-Situation and selective hedging
theory not only concerned hedging strategy but also involved in speculative
strategy. In general, most of financial assumption took minimizing risks as
investors’ hedging strategy. Therefore, the portfolio hedging theory was the
most common method to be used nowadays. Among those, Junkus and Lee
(1985) adopted profit maximization, risk elimination, risk minimization and
utility maximization as the hedging strategy in an empirical study. Cecchetti,
Cumby and Figlewski (1988) used risk minimization and maximized expected
utility theory to estimate the optimal futures hedge strategy with spot and futures
prices dynamic distribution. The remainder of this section describes the three

measures of hedging theories from Ederington’s viewpoints.



2.2.1 Traditional Hedging Theory

Traditional hedging theory focuses on the ability to reduce risk by using
futures contracts. If people are long in the cash market, they take a short position
in the futures market and vice versa, because they counteract price changes in
the two markets against one another. This traditional view suggests that hedging
is carried out to reduce price risk (Cootner, 1967). The equal and opposite hedge
strategy assume implicitly that the hedger is unskilled or uninterested in forming
expectations on the movements of spot price, and that he derives his profits
solely from subjecting the transformation of another commodity (Ward and
Schimat, 1979). Thus, this hedger has been viewed as a sort of insurance
(Samuelson, 1973) against price risk, and the evaluation of its effectiveness is
related to risk elimination.

In other words, the=traditional approach:is to hold equal and opposite
positions in the futures market;whenever-a cash position is held. The positions
are supposed to be equal in size.and adverse-direction. Since it is presumed that
cash and futures prices of identical products will nearly be perfectly correlated,
losses on one position will be compensated for other position profits. As a result,
the traditional approach expects that hedging will virtually eliminate price risk
during the investment process.

Unfortunately, not all risks are eliminated by traditional hedging method.
Under the traditional theory, only the basis risk is zero and can be getting rid of
the price risk of the spot position. Therefore, this theory deviated from the truly

circumstances in reality.



2.2.2 Selective Hedging Theory

Holbrook Working (1953) modified the traditional view of hedgers by
arguing that the essence of hedging is speculation on the basis. He argued that
expected profit maximization, rather than pure risk minimization, is the
objective of hedgers.

Working’s Hypothesis took a different perspective of futures hedging. He
challenged the view that hedgers are pure risk-minimizers. Instead, he believed
that hedgers behave much like speculators who decide to hedge or not to hedge
according to their expectation of the change in spot-future price relation.
Therefore, in the 1960s Holbrook Working categorized alternative motives for
the futures hedging and these viewpoints continue to be valid in the 1990s. The
three categories are arbitrage hedging,-operational hedging, and anticipatory
hedging. Arbitrage hedging imeans that-people use the inconsistent of securities
value to trade, obtain therisk-free-premium through the basis change that has
already been anticipated. Operational hedging facilitates commercial business
by allowing firms to buy and sell on the futures markets as temporary substitutes
for subsequent cash market transactions. Anticipatory hedging involves buying
or selling futures contracts by commercial firms in “anticipation” of
forthcoming cash market transactions. Price expectations play an important role
in this hedge.

The selective hedging theory made it clears the speculative aspect of
hedging: Price changes will not be offset perfectly in any cash and futures
combination. The hedger is trading the risk of holding a commodity unhedged
for the smaller risk of changes in the basis (Cootner, 1967). In Working’s model,
this speculative aspect of hedging is taken limited, and the positions in the
futures and cash markets are determined simultaneously in order to capture

increased return arising from relative fluctuation in spot and futures prices.
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Working used an examination of the year-to-year constancy of the relation
between the size of the “spot premium” (means basis) and the gain or loss from
subsequent storage with hedging in wheat. At last, the theory detected that a
large negative basis (cash price subtract futures price) was likely to be followed
by a large positive change in the basis, and that a large positive basis was

followed by a large negative change in the basis.

2.2.3 Portfolio Hedging Theory

The traditional hedging theory emphasized on risk reduction, while the
selective hedging theory considered making the expected utility maximization.
The approaches above were partial and cannot be represented the reality
financial markets. However, the_portfolio hedging theories integrate these
concepts and believe that both reduce.the risk.and maximize the expected utility
should be considered together-while hedging: This kind of hedging behavior will
also be accordant with common.people’s behavior.

A portfolio explanation-of hedging was first strictly presented and
developed by Telser (1958), Stein (1961), and Jahnson (1960), who used the
Markowits (1959) conceptions of portfolio management. With this approach a
hedger is viewed as being able to hold several different cash and futures assets
in a portfolio and is assumed to maximize the expected value of his utility
function by choosing among the alternative portfolios on the basis of their
means and variances. Serveral researchers have drawn on this framework such
as Johnson and Steim (1960), Anderson and Danthine (1981), and Howard and
D'Antonio (1984).

The early researches about portfolio hedging theory can be taken as
"minimum variance hedge approach”. Johnson (1960) and Steim (1961) applied
the Markowitz two-product portfolio model to spot and futures markets. Their

approach has been widely used because it provides a method to identify the
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minimum-variance portfolio for each level of return. In this model, the hedger is
essentially infinitely risk-averse, and defines risk in terms of the variance of his
total position in the spot and futures markets. The variance of the return on a
hedged portfolio is minimized and the hedge ratio is expressed in terms of
expectations on the variation of price changes in the spot and futures markets.
Johnson's model differs from Working's in that the objective is to minimize risk
and that the position is defined in terms of absolute rather than relative price
changes.

Anderson and Danthine (1981) proposed the maximized expected utility
hedging model. A mean-variance utility formulation is used to obtain
operational results to generate the optimal hedge ratio. The framework is
equivalent to expected-utility maximization where net revenues are distributed
normally and agents' utility functions areexponential. Under the maximization
utility model, the theory -obtained -the ‘following conclusion. First of all, the
optima positions of spotzand futures are determined simultaneously and the
existence of hedge opportunities 'will=influence decision. Secondly, a perfect
hedge strategy can be reached by using the multiple-contracts portfolios. Thirdly,
a hedger's strategy is depended on the correlation of expected spot and futures
price. At last, the optimal hedging strategy concerns not only the minimized risk
but also maximized expected utility for the portfolio hedging.

Howard and D'Antonio (1984) considered that previous researches did not
submit appropriate risk-return measurement criterions about hedging
effectiveness. However, Howard and D'Antonio proposed that hedging
effectiveness was seen as comprising both risk and return components. The
major foundation of this theory is to utilize the mean-variance analysis to
maximize excess return of per unit risk. This theory indicated that hedging
effectiveness does not always improve as the spot-future correlation coefficient
increases, but depends heavily on the risk-return relative. It was found that this

practice can be decomposed into two components: one solely determined by the
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futures market conditions, the other affected by both cash and futures markets as
well as the hedger's cash portfolio. As the result, the model illustrates that when
the risk-return relation is equal to the spot-future correlation coefficient, there is

no benefit to holding futures.

2.3 Lower Partial Moment Theory

Portfolio theory is the application of decision-making tools in risk to
manage the risky investment portfolios. There have been numerous techniques
developed over the years in order to implement the theory of portfolio selection.
However, another strategy can be applied is downside risk measurement. The
most commonly used of downside risk methods are the semivariance and the
lower partial moment (LPM). In addition;,the semivariance has been used in
academic research in portfalio theory as long as the variance.

Markowitz (1952) provided a preliminary framework for measuring the
portfolio downside risk by using the semivariance. He employed the means of
returns, variances and covariances to derive an efficient frontier where every
portfolio on the frontier maximizes the expected return for a given variance or
minimizes the variance for a given expected return. Then Bawa (1975) and
Fishburn (1977) developed the research on downside risk with the lower partial
moment. Bawa was the first to define LPM as a general family of below-target
risk measures, one of which was the below-target semivariance. He has argued
that LPM model, which based on downside risk measures, is more general than
the traditional minimum-variance strategy. This model requires some
restrictions on utility functions or the return distribution. For any distributions, it
requires the evaluation of the LPM functional for all possible target rates of
returns.

Bawa (1975) provided a proof that the LPM measure is mathematically

13



related to stochastic dominance for risk tolerance values, denoted as n, of O, 1,
and 2. The LPM,- is sometimes called the below target probability. The later in
Fishburn’s (1977) work insisted that this risk measure is appropriate only for a
risk-loving investor. LPM,=; has the unmanageable name of the average
downside magnitude of failure to meet the target return (expected loss). Again,
the name of this measure is misleading because LPM.=; assumes an investor
who is neutral towards risk and, in actuality, is a very aggressive investor.
LPM,=; is the semivariance measure, which is sometimes called the below target
risk measure. This name is more appropriate to portfolio selection than the other
measures, since it actually measures below target risk and is consistent with a
risk-averse investor.

There is no limitation to what value of n should be used in the LPM except
that we have to make a final calculation, i.e., the only limitation is our
computational machinery. The |n value of risk tolerance degree does not have to
be a whole number. It can be fractional or mixed. It is the myriad values of n
that make the LPM wide shield. It-is-also.used to describe what an investor
considers to be risky. There is a utility function inherent in every statistical
measure of risk. We can’t measure risk without assuming a utility function. The
variance and semivariance only provide us with one utility function. The LPM
provides us with a whole horizon of utility functions. This is the source of the
superiority of the LPM risk measure over the variance and semivariance

measures. The complete descriptions of the LPM can be obtained in chapter 3.
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2.4 Relevant Literature Research

2.4.1 Foreign Empirical Results

1.

Junkus and Lee (1985)

A study was performed to test the applicability of traditional commodity
futures hedging models to the new stock index futures contracts. Four models of
hedging behavior applied to stock index futures are examined: (1) A
variance-minimizing model introduced by Johnson (1960), (2) The traditional
one to one hedge, (3) A utility maximization model developed by Rutledge
(1972), and (4) A basis arbitrage model suggested by Working (1953). An
optimal ratio or decision rule is estimated for each model, and measures of the
effectiveness of each hedge are devised.-Each hedge strategy performed best
according to its own criterion. The Working decision rule appeared to be easy to
use and satisfactory in mast cases. Although the maturity of the futures contract
used affected the size of-the~optimal~hedge ratio, there was no consistent
maturity effect on performance. Use of a particular ratio depends on how closely
the assumptions underlying the model used to generate it approach a hedger's

real situation.

2. Ghosh (1993)

A paper extends the traditional price change hedge ratio estimation method
by applying the theory of cointegration to hedging with stock index futures
contracts for S&P 500 index, Dow Jones Industrial Average (DJIA) and NYSE
composite index. The sample is daily data and the period is from January 1990
to December 1991. The finding of this study indicated that the hedge ratios
obtained from the error correction method are superior to those obtained from
the traditional method as evidenced by the likelihood ratio test and

out-of-sample forecasts. The improved optimal hedge ratios appear to reduce
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considerably the risk of minimizing portfolio. Finally, out-of-sample forcasts

from ECM perform better than traditional methods.

3. Park and Switzer (1995)

Under the minimum risk strategy, this study estimates the optimal hedge
ratio in the form of return rate. The data consists of daily closing prices for the
S&P 500 index and the Toronto 35 index from June 8 1988 to December 18
1991. The hedging performances are compared in-sample and out-sample with
the models of naive, OLS, OLS with cointegration (OLS-CI) and bivariate
GARCH model between spot and futures. Maximum likelihood estimation is
used to estimate the parameters in each of the models. The vital results can be
concluded as followed. First, the hedging effectiveness of bivariate GARCH
model is better than other .model. “Second, bivariate GARCH model still
outperform after considering the transaction cost. At last, the performance of
GARCH model gives a superior expression no mater S&P 500 index or Toronto

35 index.

4. Holme (1996 )

Hedging effectiveness is examined for the FTSE-100 Stock Index futures
contract from 1984 to 1992. The appropriate econometric technique to use in
estimating minimum variance hedge ratios is investigated by undertaking
estimations using OLS, and ECM and GARCH. Simple OLS outperforms more
complex econometric techniques. Additionally, the impact of hedge duration
and time to expiration on estimated hedge ratios and hedge ratio stability over
time is examined. It is shown that hedge ratios and hedging effectiveness
increase with hedge duration, hedge ratios have duration effects and while hedge

ratios vary over time they are stationary.
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5. Eftekhari (1998)
This article adopts LPM method to estimate the optimal hedge ratio with
dynamic rolling technique. The underlying asset is FTSE-100 index from 1985
to 1994. The conclusions can be summarized as three points: (1) If the investor
concerns overall risk, minimum-risk strategy is the best strategy. If the investor
concerns downside risk, LPM strategy is the best strategy. (2) The hedge ratio in
LPM usually smaller than minimum-risk strategy in research. (3) The hedge

ratio in LPM can provide a better combination of return and premium.

6. Lienand Tse (1998)

This article examines the performance of various hedge ratios estimated
from different econometric medels. The L:PM strategy with Asymmetric Power
ARCH model (APARCH) +is introduced asa new model for estimating the hedge
ratio. The object is Nikkei 225 from January 1989 to August 1996. The analysis
identifies that the hedge ratio is-larger-than it'is in minimum risk strategy except
the target return is —1.5%. While the risk tolerant is bigger and the target rate of
return is smaller, the difference of hedge ratio between LPM and minimum risk
strategy will become widen. Finally, as the target rate of return is bigger
than —1%, the volatility of hedge ratio is no difference between LPM and
minimum risk strategy. As the target rate of return is less than —1%, the

volatility of hedge ratio in LPM is bigger than minimum risk strategy.

7. Yeh and Gannon (2000 )

The constant and dynamic hedge models, with the presence of transaction
costs are compared for the share price index futures contract trading on the
Sydney Futures Exchange. The optimal hedge ratio is estimated by conditional
hedge ratios. Daily data on spot and futures market is from 1988 to 1996. The

portfolio constructed under the GARCH model makes the most profit, while the
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naive model makes the least. The out-of-sample forecasted performance in
GARCH model appears to capture arbitrage opportunities. Besides, when
portfolio projections are compared base on their profit positions (net of
transaction costs), the GARCH hedge model dominates the next best competitor

in terms of trading profit.

8. H.N.E. Bystrom (2003)

This article looks at electricity futures and how they can be used for
short-term hedging. The traditional naive hedge and the OLS hedge are
compared out-of-sample to more elaborate moving average and GARCH hedges.
By using the minimum variance hedge ratio to evaluate the effectiveness, the
daily spot and futures prices from Nord Pool, 2 January 1996 to 21 October
1999 obtains the following results. People. can make gains from hedging with
futures despite the lake of-straight-forward arbitrage possibilities. Furthermore,
this study indicates that the simple OLS hedge has a slightly better performance

to the conditional hedges.

2.4.2 Domestic Empirical Results

1. Cheng-Hung Wang (1999)

This paper extends the traditional price change hedge ratio estimation by
applying the model of NAIVE, OLS, ECM, GARCH, Q-GARCH, and
TFARMA to examines the hedging effectiveness of TAIMEX index futures
with different intervals. All are daily data, and the sample period is from 21 July
1998 to 31 March 1999. The major results are summarized as follows. First of
all, hedge ratio is less than one and the longer of hedge time makes the hedge
ratio decline. Besides, the hedge performance and risk reduction in ECM model

is outperformed.
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2. Chih-Liang Wei (2001)

This paper estimates the risk-minimizing futures hedge ratios for four types
of stock index futures: S&P 500 index futures, Nikkei 225 index futures, MSCI
Taiwan index futures and CAC 40 index futures. It compares the hedging
effectiveness of traditional model with time-varying model. OLS model, error
correction model, univariate GARCH, bivariate GARCH model and Kalman
filter are involved. The main empirical results are as follows: 1. There are a
significant evidence of unit roots and the relationship between spot and futures
prices have cointegration effect. 2. In terms of the within-sample hedging
effectiveness comparison, the bivariate GARCH model outperforms all other
hedging models except S&P500 stock index. 3. In the out-of-sample comparison,
the results are not consistent. The univariate GARCH model outperforms all
other hedging models in S&P.500. In"Nikkei 225, the Kalman filter is superior
to all other hedging models; InMSCI Taiwan index, the ECM model is the best;

In CAC 40, the OLS model outperforms all other hedging models.

3. Michael Huang (2002)

The research uses two hedging strategies including minimum variance (MV)
approach and minimum downside risk approach. To compare the hedging
effectiveness, there are several models about OLS, Near-VAR, ECM, LPM and
VaR to be considered. And sample period extends from July 1998 to September
2001. The major results are summarized as follows: 1. No matter what futures or
index to employ, hedging strategies will perform better generally when the
estimation period or hedging period increased. 2. If the hedger cares the
effectiveness of variance deduction, he should adopt Near-VAR-GARCH model
with TX or VECM-GARCH model with MTX. 3. If the hedger cares the
effectiveness of utility increasing degree, they should use ECM model whatever

the futures is.
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4. Yu-Jiuan Hung (2002)

This article has investigated the dynamic relationship between return and
volatility in the Taiwan stock index and stock index futures. The bivariate
EGARCH error correction model is used in this study. The empirical results
show that, there is a strong inter-market dependence not only in the returns of
the cash and futures market, but also in the volatility of the two markets. The
volatility in both markets is highly persistent and is found to be an asymmetric
function of past innovation. Results indicate that the short run dis-equilibrium
(measured by error correction term) is responsible not only for returns but also
for volatility (measured by conditional variance) of the two markets. These
results imply that more precise specification of return and volatility in the two
markets may be obtained by including the above factors found in these two

markets.

5. Wei-Chu Lin (2003)

Several approaches with~different-hedge ratios, such as OLS, single
GARCH, BI-GARCH, TRI-GARCH, ‘and TRI-EGARCH, are applied. To
estimate the effectiveness the data period from July 1998 to March 2003 are
collected and transferred to returns of single-day, 5-day, 10-day, and 20-day for
the comparison of the effectiveness with different approaches. The conclusion is
that local futures market has a better correlation with local spot market and a
better performance on a specific stock than overseas futures market does.
Therefore an investor owning local spot should pursue better hedging
effectiveness by adopting local futures rather than oversea ones. Hence an
investor should adopt proper approach portfolio by considering different

hedging periods to pursue best hedging effectiveness.

6. Yi-Ling Chen (2004 )

The study investigates the price discovery and lead-lag relationships in the
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three markets: "Taiwan stock index-Taiwan stock index futures”, "Taiwan stock
index-Taiwan Top 50 Tracker Fund"”, and "Taiwan stock index futures-Taiwan
Top 50 Tracker Fund". The main research is to examine all data with
error-correction models, Granger causality test and EGARCH model. Results of
the study show that Taiwan stock index futures lead spot and Taiwan Top 50

Tracker Fund.
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Chapter 3 Research Methodology

3.1 Data Source

This study investigated the out-of-sample hedging effectiveness from 10th
April 2001 to 30th April 2006 daily 1,256 observations. The underlying assets
include Taiwan weighted stock index (TXs), electronic sector index (TEs),
financial sector index (TFs), Taiwan stock index futures (TX), mini Taiwan
stock index futures (MTX), electronic sector index futures (TE), and financial
sector index futures (TF). If there were no transactions in some day, the data
would be deleted. The prices quoted in Taiwan Economics Journal databank
(TEJ) 1,256 observations are obtained. The calculating tools we adopt are
Eviews 5.0 and Matlab 6.0.

This paper confines the analysis to'the near contract because preliminary
research showed that there is not very: much-difference between the hedging
properties of the nearest and the second contract. The trading volume of nearby
contract is greater, and ‘the ‘nearby“contract can be representative of the
long-term relationship of spot ‘and futures. Owing that there are five future
contracts of different months in the markets everyday, this study adopts the
nearby contract as the best choice. The definition of nearby contract here
iIs —The data on five days before last trading day is quoted price on that month,
while the data from next day to the last day of month is regarded at next month
quotation.

This study takes the daily stock index with the associated stock index
futures to compute its daily rate of return. The rate of returns is computed by
differentiating the logarithm of the daily stock index and futures index. Besides,
the hedging periods of this article are setting at one day, one week (5 days), and
one month (20 days). The rate of return on spot and futures are computed as

follows:
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The stock index spot rate of return is calculated as:

Ry,=UnP *—InP  ,°)x100 (3.1)

Where
R}, = the daily return of the spot x at time t,
In P, * = the closing prices of the stock index for spot x at time t,

InP,,_,° = the closing prices of the stock index for spot x at time t-1.

The stock index futures rate of return is calculated as:
R =(nP. " =InP,,")x100 (3.2)
Where
R/, : = the daily return of the futures x at time t,
InP,," = the closing prices of the stock index for futures x at time t,

InP,,_," = the closing prices of the stock index for futures x at time t-1.
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3.2 Unit Root Test and Cointegration Test

When we begin to form models for time series, we have to check whether
the underlying stochastic process that generated the series is invariant with
respect to time. If the trends of the stochastic processes are fixed in time, one
can model the stationary process through an equation with fixed coefficients that
can be estimated from past data. Although the traditional OLS approach often
assumes the time series are stationary and its disturbances are almost white
noise. Granger and Newbold (1974) have proposed that if we assume the
non-stationary time series as stationary to analysis, it may result in "spurious
regression™ situation. It will cause the problem that a higher coefficient of
determination (R®) and a lower Durbin-Watson value (a much significant t
value). Therefore, we should check.whether.the properties of all variables are
stationary before analysis. If the time<series-become stationary through the
process of k-times differentiate, it can be significantly reject the alternative
hypothesis and is called integrated of order n'as 1(k). That means the series 1(1)
has one unit root.

There are plenty of methods to measure the stationary test. The most
famous test is the Dickey-Fuller test, the Phillips-Perron test, and the
Augmented Dickey-Fuller (ADF) unit root test. This study follows the method

of the Augmented Dickey-Fuller unit root test.

3.2.1 Augmented Dickey-Fuller Test

According to the AR (1) process proposed by Dickey and Fuller (1979), a
simple AR(1) model is:

Y, =, +aY & (3.3)

where the ¢ ¢ is white noise error term. This model can be estimated and tested

for a unit root with the null hypothesis of ¢ 1=1. If it is rejected, the series is
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stationary statistically. This is so-call DF (Dickey-Fuller) test.

The above-mentioned DF test must assume the error term is white noise.
While it always happen that the residual term of regression equations reveal
autoregressive situation. The range of test may be restricted by the DF test. If
the series is correlated at higher order lags, the assumption of white noise
disturbance is violated. Therefore, Dickey and Fuller (1981) made a parametric
correction for higher-order correlation by adding the lags term of the dependent
variable in the left side and adjusting the test methodology. The main purpose of
this process is to eliminate the series correlation. Following shows the general
form of the process.

Y, =Y, + Zp:ﬂth_i +&, Pure Random Walk (3.4)
Y, =a, + alYt:_ .+ Zp: LY. +&  Random Walk with Intercept (3.5)
Y, =a, +o Y, + ,bl’:T1 + Zp: LY. +&. Random Walk with Intercept

E and Time Trend (3.6)

Unless we know the actual data-generating process, it is a problem to
concern whether it is most. appropriate to estimate (3.4), (3.5), (3.6). It is
important to use a regressed equation that mimics the actual data-generating

process. This specification is used to test Ho: «:=0. If the result rejects null

hypothesis, it means the time series are stationary without unit root vice versa.

3.2.2 Cointegration Test

After examining the variable stationary property, we examine whether
there is any cointegrating relationship, to appropriately construct the following
other models. Engle and Granger (1987) recognized that a linear combination of
two or more non-stationary series might exist stationarity. If such a stationary,
or 1(0), linear combination exists, the non-stationary time series are said to be
cointegrated. This can be interpreted as a long-term equilibrium relationship

between variables.
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According to Engle and Granger's statements, a stochastic process with no
deterministic components is defined to be integrated of order d, denoted I(d).
Let vector X, subjects to I(d), if there exists a vector « (#0) such that Zi=a 'X;
~ 1(d-b), b>0, the components of the vector X; are said to be cointegrated of
order (d, b). Usually the case with d=b=1 is considered. The general estimated
method is the two-stage analysis which testing the cointegration between
variables by estimating the serial correlation of residuals estimated from OLS
approach mainly.

Another method of cointegration test is Johansen's (1988) procedure which
maximizing the canonical correlation between the first differenced series and the
level series. This method followed the idea of Engle and Granger and proposed
the maximum likelihood ratio test. The great contributions of it are extended the
analysis structure from two variables to-more variables and employ the trace and
maximal eigenvalue statistic to estimate the numbers of cointegrating vector.
The main assumptions of both tests is that series are exactly 1(1).

Y, =a+BX/ ¥, Y:and X; ~ 1(0) (3.7)

This study investigated the "Johansen's (1988) approach to make the
cointegrate test. We firstly use OLS method to estimate the long-term relation of
spot and futures index returns as equation (3.7), called cointegrating regression.
Secondly, test and verify the residual term does not have unit root so that
cointegrating relationship exists.

Further, The Akaike Information Criteria (AIC) and the Schwarz criteria
(SC) can be used to choose the optimal lag length. This article adopted the

minimum AIC criteria to determine the lag terms.
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3.3 Residual Test

3.3.1 Autocorrelation Residual Test

The Durbin-Watson (1950) is used to test the presence of first-order
autocorrelation in the residuals of a regression equation. The test compares the
residual in time t with the residual in time t-1 and develops a statistic that
measures the significance of the correlation between these successive

comparisons. The formula for the statistic is:

n

Z (et - et—1)2

DW= 2 (3.8)

pICH
t=1
e =Y -V (3.9)

The statistic can be- used to test-the.presentation of both positive and
negative correlation in the residuals. The critical value of upper limit (dy) and
lower limit (d_) can be taken/by checking the professional table. The following

is the decision criteria.

positive cannot no cannot negative
correlation judgment | correlation judgment correlation

0 de du 4-dy 4-d. 4

If the data appears a higher-order autocorrelation, the Durbin-Watson test
cannot be used. Ljung and Box (1978) proposed the following (3.10) Q statistic
to measure the circumstances. The Ljung-Box Q statistic is corresponding to the
kth autocorrelation test whether the first k autocorrelations are zero, as white
noise. Under the null hypothesis of no autocorrelation the Q statistic is

distributed chi-square with q degrees. Where o is the k-th autocorrelation and
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T is the number of observations.

2

Q=T(T+ Z)Zq: (rp_kk) (3.10)

3.3.2 ARCH Effect Test

The previous research has found that many of the time series data follow
the three features: leptokurtic, fat tails, and volatility clustering. These situations
can be precisely be observed by the Autoregressive Conditional
Heteroskedasticity (ARCH) model. Besides, the generation of the General
Autoregressive Conditional Heteroskedasticity (GARCH) model is to correct the
residual heteroskedasticity of the Ordinary Lest Square (OLS) model. Because
that when the error term has hetergskedastic variance, the OLS no longer satisfy
BLUE presupposition. Therefore,we have to make the ARCH test for residual
terms before estimating -the hedge ratio with GARCH model. The general
method of testing is Lagrange Multiplier Test, briefly named ARCH-LM test.
The process is as following.

The autoregressive model is

& =Y, —xa, (3.11)

& =vo! , (3.12)

and vi~ N (0,1). The variance equation can be displayed as (3.12) while the

ARCH (q) exists. If there were no ARCH effect, the variance is a constant. It
means o /=ao. The null assumptionis Ho: a1 =a:=...=a.

OF = O+ 60, + &L, + .+ a8l (3.13)

One then estimates the equation (3.12) and computes the R-square. Come
after the test statistic and its asymptotic distribution are given by

ARCHLm(a) = T*R* ~ x *(q) (3.14)

and T is the total amounts of samples.
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3.4 Hedging Strategy and Model

3.4.1 Hedging Strategy

This paper employs the two strategies to analysis the hedging effectiveness
of the four kinds of stock index futures in Taiwan. The first is focus on
minimum variances of portfolio hedging strategy. This thesis uses the naive,
OLS, BI-GARCH (1,1), TGARCH, and ECM model as representative. The
second strategy is to make the downside risk minimum. It can be measured by
LPM model. By using the fundamental hedging model to estimate its hedge
ratios in these two strategies, and the detail descriptions is introduced as bellow.

Individual stocks and all stock portfolios, except for those specifically
designed to have zero beta, are exposed to some market risk. The purpose of
first strategy is to make the variance minimum. This article adopts the minimum
variance model of Johnson+(1960) and-Ederington (1979) as analysis foundation.

Assuming that the only hedging instrument available to the investor is the
futures contract, a hedge portfolio consisting of spot and futures is constructed.
Let Si+1 and fiq is the changes inispot.and futures price, respectively, between
time t and t+1, and h; is the hedge ratio at time t. Then the return to a trader
going long in the spot market and going short in the futures market with h; units
at time tis X!

Xir1=Str1—ht fraa (3.15)
var, (X,,,) = var,(S,,,) +h’ var, (f_,)—2h cov,(S.,, f.,) (3.16)

The variance of this return portfolio is displayed in equation (3.15) and the
minimum variance ratio, hy*, can be derived by simply minimizing this variance
with respect to ht. The symbols of ¢ and o + mean the variances of spot and
futures, and o & is covariance between spot and future. To find the constant
hedge ratio that minimizes risk, we differentiate (3.15) once with respect to

vary(Xiw+1) equal to zero and ends up with the following expression for hy*:
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(3.17)
var, (f.,,) O'?

h

The second strategy of this article is to make the downside risk minimum.
It can be measured by Lower Partial Moment (LPM) model. The first person
used the semivariance to measure the loss risk is Markowitz (1959). He
recognized d that investors are interested in minimizing downside risk for the
two reasons that only downside risk is relevant to an investor and the security
distributions may not be normally distributed. Therefore a downside risk
measure would help investors make proper decisions when faced with unnormal
security return distributions. Markowitz shows that when distributions are
normally distributed, both the downside risk measure and the variance provide

the correct answer.

sV, = %Zk: max[0. (E 2R )] (3.18)
v, =IO E=RT (3.19)

However, if the distributions "are not normally distributed only the
downside risk measure provides the correct answer. There were two kinds of
methods to measure the downside risk from Markowitz: a semivariance
computed from the mean return or below-mean semivariance (SVy) and a
semivariance computed from a target return or below-target semivariance (SV,).
These two measures compute a variance using only the returns below the mean
return (SVn,) or below a target return (SV4). Since only a subset of the return
distribution is used, Markowitz called these measures partial or semi- variances.

The lower partial moment function is derived from the conceptions of SV..
This theory describes the below-target risk in terms of risk tolerance. Given an
investor risk tolerance value n, the general measure of the lower partial moment,

is defined as:
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LPM(c,n,r,) = E[max(0,c—r,)"] = fw (c—r,)"dF(r,), (3.20)

where c is the target return, n is the degree of the lower partial moment, and r, is
the return for the portfolio during time period of T. The symbol of F( ¢ ) means
the distribution of r, and the "max" is a maximization function which chooses
the largest of O or (c- rp).

This thesis computes the LPM by adopting the risk tolerance degrees is 2,
which is the opinion of Markowitz (1959) proposed. It is the only considering
that the target returns are c=0 and the mean of return on spot during historic
periods (c= ). Therefore, we can obtain the equation (3.21) by substituting

(3.14) for (3.20).

LPM (c,2,r,) = E[max(0, R, — R’ +bR,)J?
= E[max(0,c - r.+br, )’ (3.21)

While partial differentiate-at equation (3:21).with by, and then the optimal hedge
ratio (him) Which is under the minimum:lower partial moment can be obtained

and N is the amount of sample.

N N
z Ir, _CZ r,

r,<c r,<c

h =" = (3.22)

Ipm N

3.4.2 Naive Model

The naive model directly adopts the 1:1 hedge ratio to avoid the risk. That
is, the traditional hedger's concepts. The theory insists people should hold equal
amounts in futures market to hedge the spot position. This is so-call that classic
hedge ratio claims for a futures position that is equal but opposite in sign to the

cast position.
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3.4.3 OLS Model

The use of ordinary least square (OLS) model to evaluate the hedge ratio is
the most convenient way and the calculation is easier than other methods.

Benninga et al. (1984) derived the minimum-variance hedge ratio from an
ordinary least squares (OLS) regression with cash price levels (or price changes)
as the dependent variable and futures price levels (or price changes) as the
explanatory variable. The minimum-variance hedge ratio is simply the slope

coefficient of the OLS regression, or equivalently:

h = cov(spot, futures)
var( futures)

(3.23)

This ratio was developed as the optimal hedge ratio for any unbiased
futures market. If the futures market is unbiased, the only advantage to
hedging is to reduce risks associated with déviations from the expected income.
By using the minimum-variance hedge ‘ratio; a producer will eliminate the
maximum amount of uncertainty.-that can possibly be eliminated by hedging.
Therefore, if the futures market is unbiased, the minimum-variance hedge ratio
will always be the optimal hedge ratio for any risk averse producer regardless of
the degree of risk aversion.

Thus, each minimum-variance hedge ratio will be determined by the slope
coefficient and the hedging effectiveness will be measured by the R? coefficient

from an OLS regression of cash price changes on futures price changes.

3.4.4 GARCH Model

It has long been recognized that heteroskedasticity can pose problems in
ordinary least squares analysis. The standard warning is that in the presence of
heteroskedasticity, the regression coefficients for an ordinary least squares
regression are still unbiased, but the standard errors and confidence intervals

estimated by conventional procedures will be too narrow, giving a false sense of
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precision. The ARCH and GARCH model can solve the problem of the
conditional variance.The most widely used specification is the GARCH (1,1)
model introduced by Bollerslev (1986) as a generalization of Engle(1982). The
(1,1) in parentheses is a standard notation in which the first number refers to
how many autoregressive lags appear in the equation, while the second number
refers to how many lags are included in the moving average component of a
variable.

The GARCH (1,1) model can be generalized to a GARCH (p,q) model;
that is, a model with additional lag terms. Such higher order models are often
useful when a long span of data is used, like several decades of daily data or a
year of hourly data. With additional lags, such models allow both fast and slow
decay of information. A particular specification of the GARCH (2,2) by Engle
and Lee (1999), sometimes called the ¢omponent model, is a useful starting

point to this approach. Thus, ad GARCH (p,q) model for hedging strategy looks

like this:
S, =a+hf, +¢ (3.24)
& 19, ~ N(0, O-tz) (3.25)
ol =a,+aEl, + 6,00, (3.26)

Where S; = return rate of spot,
f; = return rate of futures,
a = intercept

h = optimal hedge ratio.

Park and Switzer (1995) proposed that the hedge ratio should be a dynamic

form when the distributions of spot and futures price vary with time path. The

bivariate distributions of spot and futures are as follows.
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S =+ al(st—l - 7Ft—1) + &y (3.27)

fo=by+b (S —yF.)+é&q (3.28)
{i} 1Q,, ~ N(O,H,) (3.29)
ft

h,, h, h, 01 h, O
H, =[ L RS ( pj ! ] (3.30)

hy t hff,t 0 hf,t p 1 0 hf,t
hy =c +ael,+ B, (3.31)
h?t =Gy +af‘9$,t—l+ﬂfhf2,t—l 1 (3.32)

where St = return rate of spot,

f; = return rate of futures,
€ « = residual term-of spot,
¢ # = residual'term-of futures,
Q.1 = information set of time t-1,
H = covariance metric of timet,
o0 = coefficient of correlation between ¢ g and ¢ .
In this paper we adopt above approach and use the maximum likelihood

estimate (MLE) to acquire the hedge ratio, h* .

h* = st (3.33)

Another version of GARCH models takes an asymmetric view by
estimating positive and negative returns separately. Typically, higher volatilities
follow negative returns than positive returns of the same magnitude. The
threshold ARCH (TGARCH) model is one of asymmetric approach to compute.

The descriptions are as following.
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(1) Conditional Mean Equation

R Cy C, G F Est

&1, , ~N(@O,h)

(2) Conditional Variance Equation

h,, {vcll}(ws&l VDﬂjx h 4 +(VBll VEM]X Eirs
hy s VC,, VA, VD, he VB,, VE, 5?;—1

[hsf,t]=[vc12]+[\/p&2]x[hsfdt_l 0 ]

hfs,t—l

Where S; = return rate of spot,

and

F: = return rate of futures,

Q1 = information set of time t-1;

hs = conditional variance of spot return at time t,

h¢: = conditional variance of futures return at time t,

hst: = conditional variance of spot and futures time t.

By, =the effectof Styon'S; ,  Bis = the effect of F.y on S,
Cip=theeffectof SyonF; ,  Ci3 = the effect of Fi; on Fy,
Bi1,c11,VCi11,VCy,,VCy, are all intercepts,

VA = the effect of volatility of Si.; on volatility of S;,

VD,2 = the effect of volatility of Fi.; on volatility of F;,

VD, = the effect of volatility of Si.; on volatility of F;,

VA, = the effect of volatility of F.; on volatility of S;,

VB, = the effect of shock of Si.; on volatility of S;,

VE;, = the effect of shock of F.; on volatility of F;
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VE1 = the effect of shock of Si.; on volatility of F;,

VB,, = the effect of shock of F.; on volatility of S;,

VA, = the covariance of Si.;and F.; .

According to the maximum likelihood estimator (MLE) method, we can

obtain the following hedge ratio:

St (3.38)

3.4.5 ECM Model

Engle and Granger (1987) suggested that we should avoid losing long-term
information by using the cointegration method to illustrate the long-term
relationship between variables and resolve the doubts of losing information due
to the differential process. They.showed that as long as two economic variables
are cointegrated (even if the variables are affected by certain factors in the
short-term and turn into a process of random walks), they would return to the
long-term equilibrium through “thetprocess of the dynamic short-term
adjustment.

From the viewpoints of Granger, cointegrate is corresponding with error
correction model (ECM). If the cointegrated effect exists, the error correction

model can be constructed as following:

aS =ap+ayp  +baf +) diaf +>.6,aS_ +¢ (3.39)
-1 n-1

af =B+ P, +CaS +D eaS  +.6,af_ +uy, (3.40)
i-1 =1

where AS; represents the rate of return for spot market, Af; is the rate of
return for futures market, . is the error correction term, &.and u; shows the
stationary errors at time t, and the hedge ratio is b.

It can be observed that the ECM model adds the error correction term,
which was from the cointegrating regression, into autoregressive model. That is,
the ECM model considers not only the long-run equilibrium but also the

short-run (error correction term) adjustment processes.
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3.5 Hedging Effectiveness

The variance's reduction of the predicted returns in an unhedged spot
portion can be used to evaluate hedging performance. That is, the greater the
risk reduces, the better the hedging performance will be. The first hedging
effectiveness is derived from Ederington's (1979) conception.

Assuming that the hedger has one unit spot position (price is Si.1) at time
t-1, he decides to short at time t with St. Then the unhedged return and variance
is shown in equation (3.41) and (3.42):

E(U) =E(AS) (3.41)

Var(U) =Var(ASy), (3.42)
where ASi= S;—S.; .If the hedger wants to hedge and sell the future position
with b unit, the portfolio expected return and variance after hedging is as
bellow:

E(H) =E(AS)—b E(AR) (3.43)

Var(H) =Var(ASy) —2bCov(AS:, AF) +b*Var(AF)  (3.44)
where AF= F;—F¢1. The effectiveness of the minimum-variance hedge can be
evaluated by examining the percentage of risk reduced by the hedge (Ederington,
1979). Hence, the measure of hedging effectiveness is also defined as the ratio
of the variance of the unhedged position minus the variance of the hedged

position, over the variance of the unhedged position:

_Var(U)-Var(H)

H EEderington - Var (U )

(3.45)

In order to compute the average hedging effectiveness, the method of
moving window has been adopted. The overall hedging effectiveness can be
evaluated by the equation (3.46), HE,, where n is the times of rolling. The
higher the number is, the better the dynamic hedging performance is.

DHEY

HE, = 1= - _ (3.46)
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Chapter 4 Empirical Analysis

4.1 Descriptive Statistic

The implementation of this paper methodology is now summarized as
follows. First, choose a underlying sample. Second, pre-written the unhedged
portfolio and futures returns. There is some evidence that daily stock index
returns display significant and persistent autocorrelation in both levels and in
volatility. Hence, it has been down to calculate the return and analysis the data
descriptions. Once it is satisfied with stationary process, then proceed in third
stage by estimating the optimal hedge ratio of each different model. In the forth
stage this paper move x days forward, the updating and rebalancing frequency,
and compute the out-of-sample hedging error from t+1 to t+x. Then it is
necessary to return to stage 2 .and reiterate,the procedure until the results arrive
at the most recent observation. In-stage:fifth, this paper try to compute the
variance of the accumulated series of hedging errors and express this as the
hedged risk reduction, and-obtain‘the-hedging performance by equation (3.46).
Finally, compare the hedging performances of the competing models.

The scatter plots of daily closing price between spot and futures shows in
figure (4.1) to figure (4.3). It is displayed that four kinds of underlying index
near to homogeneous. This paper uses TX,, TEs and TFs as the symbol for
TAIFEX stock index, electronic sector stock index and financial sector stock
index. Besides, the symbols of MTX TX, TE and TF represent as mini Taiwan
stock index futures, Taiwan weighted stock index futures, electronic sector
index futures and financial sector index futures, respectively. It can be observed
that the trends of futures price corresponding to the trends of spot price. This
shows the highly correlation between each other.

The preliminary descriptions of data from July 10, 2001 to October 21,
2005 are showed in table (4.1). But only the MTX have lower mean and

different standard deviation. This is because the MTX has different contract
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specifications with TX. Besides, the standard deviation of MTX and TX is
higher than TXs may be the result of the characteristics of futures, which is price
discovery and low transaction cost. From table (4.2), the expressions of TE; and
TE are negative return. The deviation of TE and TF both higher than its spot

position, which means that the futures contract has relatively volatility risk. The

Kurtosis of spot and futures are all leptokurtic.
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Figure 4.2 Scatter Plot of Closing Price in TEsS,TE
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Figure 4.3 Scatter Plot of Closing Price in TFs,TF
Table 4.1 Statistic Descriptions of TXs, TX, MTX
TXs TX MTX
Mean 0.0054 0.0050 0.0050
Std. Dev. 1.5194 1.7538 1.7913
Maximum 5.6126 6.8460 6.8208
Minimum -6.9123 =7.4041 -7.5479
Skewness 0.0054 -0.5380 -0.0854
Kurtosis 4.6890 5.9612 5.9735
Jarque-Bera 133.8412* 411.9542* 416.2006*

Note:* represent 5 % significant level. Jarque-Bera represents the statistics of the
Jarque-Bera normality test and the null hypothesis is normal distribution.

Table 4.2 Statistic Descriptions of TEs, TE, TFs, TF

TEs TE TFs TF

Mean -0.0105 -0.0103 0.0157 0.0152
Std. Dev. 1.7888 2.0788 1.7180 1.8426
Maximum 6.0933 6.76587 6.3503 6.7601
Minimum -6.9306 -7.8394 -6.9862 -7.7844
Skewness 0.0418 -0.0710 0.0587 -0.2481
Kurtosis 4.1742 4.9536 4.4220 5.73712
Jarque-Bera 65.0176* | 180.0087* 95.5186* 363.048*

Note:* represent 5 % significant level. Jarque-Bera represents the statistics of the
Jarque-Bera normality test and the null hypothesis is normal distribution.
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4.2 Unit Root and Cointegration Test

In reality, the unit root test has to be down before estimating the hedge
ratios. This paper adopts the Augmented Dickey Fuller (ADF) method to make
the estimate. The results show in table (4.3) and table (4.4). In the only intercept
case, the results show that the spot and futures both exist unit root. In trend and
intercept case, the unit root results also appear. This shows strong evidence of
I(1) process of spot and futures in four contracts. It means that the series are 1(1)
and stationary to reject the null hypothesis under the significant level of 5 %.
After the analysis of unit root test, we know that the series are stationary and can
be further probed about the cointegrated effect.

Further, owing that the length of the time lags to be used is an important
consideration. One to twelve'days lag.periods.will be used for estimation and the
best choice of lag term is from'the theory of -Akaike Information Criteria (AIC).
Through the minimum AIC, this article uses the four-day lag for any of the next
spot/futures analysis.

Table (4.5) calculates the cointegrated relation between spot and futures.
The result can be used in ECM model and the error correction terms in the
GARCH model. The results can be concluded that there exist long-term
cointegrated relationship between spot and futures in four kinds of

combinations.

4



Table 4.3 Unit Root Test of Spot

with trend only with
spot lag : .
and intercept intercept
TXs 1 -41.1710* -41.1893*
4 -24.5574* -24.5683*
8 -18.1907* -18.1989*
12 -16.4401* -16.4466*
TEs 1 -39.9373* -39.9549*
4 -24.8610* -24.8721*
8 -18.1247* -18.1330*
12 -16.4125* -16.4193*
TFs 1 -23.7390* -23.7496*
4 -14.9404* -14.9470*
-10.7624* -10.7673*
12 -9.2857* - 9.2902*

Note:* represent 5 9% significant level, Critical

Dickey-Fuller (1981).
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Table 4.4 Unit Root Test of Futures

with trend only with
futures lag i i
and intercept intercept
X 1 -42.0489 -42.0677
-24.8197 -24.8307
8 -18.3693 -18.3777
12 -16.3996 -16.4064
MTX 1 -23.4781 -23.4867
-14.6582 -14.6632
8 -11.3912 -11.3915
12 -9.2610 -9.2611
TE 1 -41.1290 -41.1472
-25.3525 -25.3639
8 -18.2528 -18.2611
12 -16.4259 -16.4330
TF 1 -42.3644 -42.3833
25,3475 -25.3585
8 -18.9173 -18.9257
12 -16,2292 -16.2356

Note:* represent 5 % significant level. Critical value refers to
Dickey-Fuller (1981).
Table 4.5 Cointegration Test of Futures

TX MTX TE TF
a 0.0013 0.0012 -0.0020 | 0.0024
(Standard Error)|  (0.0156) (0.0142) (0.0165) | (0.0174)
s 0.8133 0.8239 0.8182 0.8769
(Standard Error)|  (0.0089) (0.0081) (0.0079) | (0.0095)
D-W value 2.5805 2.4956 2.4910 2.5767
ADEF test -18.1071* | -18.1255* | -18.1597* |-21.3690*
Critical Value | -3.4138 34138 34138 | -3.4138

Note:* represent 5 % significant level. «, /3 are the coefficients estimated from
model: R%=a + B8R+ e D-W value is the Durbin-Watson value of
cointegrated equation between spot and futures. ADF represents the unit root test
of Augemented Dickey-Fuller in eight-day lags:

p
Yo =a,+aY,  + BT+ Zﬂth—i + &
i-1
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4.3 Arch Effect

Table (4.6) and (4.7) express the details of tests for Autoregressive
Conditional Heteroskedasticity (ARCH) in residual terms. It must be down to
test residual terms from equation (3.27) and (3.28) with spot and futures whether
exist ARCH effects before adopting time series models. This article uses
Ljung-Box's statistics of Q and Lagrange Multiplier Test as the analysis
instruments. The autocorrelation test for modeling residual terms (&) and
residual term squares ( ¢ %), if ¢ does not exist autocorrelation but & % has
significant autocorrelation, it represents the heteroskedasticity exists. Therefore

we can obtain the results that the ARCH effect exists from table (4.6) and (4.7).

Table 4.6.+ Arch Test of Spot
spot TXs TEs TFs
Q(30) of ¢ 20:8905 20.8691 34.5562
(0.8915) (0:8924) (0.2594)
Q?(30) of ¢ 2| 298.3400* 385.9202* 303.7502*
(0.0000) (0.0000) (0.0000)
LM testof €. 4.3000* 4.6945* 4.8183*
(0.0000) (0.0000) (0.0000)
Note:* represent 5 % significant level. The number in bracket is

P-value.

Table 4.7 Arch Test of Futures
future X MTX TE TF

Q(30) of € 27.5413 26.8282 40.4126 34.4562
(0.5954) (0.6326) (0.0976) (0.2634)
Q2(30) of e | 245.7203* | 318.4009* | 339.5604* | 404.4604*
(0.0000) (0.0000) (0.0000) (0.0000)
LM testof € 3.8316* 4.4274* 5.1946* 5.0393*
(0.0000) (0.0000) (0.0000) (0.0000)
Note:* represent 5 % significant level. The number in bracket is P-value.
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4.4 Out-of-Sample Analysis

4.4.1 Hedge Ratio

Benet (1992) used foreign futures as objects and suggested that out-of
sample or ex-ante conception should be used to evaluate the hedging
effectiveness, which focus on outside effect would be more meaningful for
investors. Therefore, this article adopts rolling technology to measure the effects
on hedging periods and hedging effectiveness in different models. The
beginning of data is April 10, 2001 and we take 5 days, 10 days, and 20 days as
the hedging periods. The estimated time expansions of hedge ratio are set at 100
days and 200 days and the daily rolling is being used. Taking 5 days as an
example, as shown on figure 4:4, the first-loop uses the first 100 days' spot and
futures index to estimate the hedge ratio and then performs hedging for the next
one week (5 days). At the end of the'5 days, the hedging performs is evaluated

and so on.

5 Days 5 Days

Estimated Period (100days)
First Loop ] | |

Second Loop R doeme J

Figure 4.4 Dynamic Hedging Process
--100 Days Time Expansion and 5 Days Moving Window
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In order to obtain the out-of-sample empirical results, this article uses the
latest information to estimate the next period's hedge ratio. Table (4.8) presents
the hedging ratio for all possible combinations. The hedge ratio of naive model
is always equal one, and hedge ratio of OLS, GARCH (1,1), TGARCH, ECM,
and LPM model vary with time trends. Hence, we show the mean value of the
five models as represented. It is found that most hedge ratios are less than one.
The results are consistent with the studies of Ederington (1979), Junkus and
LEE (1985), and Holmes (1996). In addition, there are several hedge ratios are
higher than one in GARCH (1,1), which implies that it is not necessary to take
up 100 percent hedging of a futures position for a long spot position. The
investor would adopt higher futures position opposite to cash position to
diminish the risk in short-term. Generally. speaking, the differences of hedge
ratios in their group are no-more than:3'percent, this means that the hedge ratio
would not change with different model except naive model. Besides, the shorter
the data frequency is, the darger:the-hedge ratio is. Naive excepted, it can be
observed that the hedge ratio of ' ECM model is the largest and its of OLS is the
least.

No mater which model we adopt, the hedge ratio to be calculated is always
less than naive's hedge ratio (h=1), so the naive hedge may be result in
overhedging result. It also is found that the hedge ratio from complicated model
is higher than OLS model, which means the traditional hedge model may cause
underhedging result. Because the LPM considering only downside risk, the
hedge ratio is obviously lower than other models. In brief, the mean hedge ratio
in OLS is lower and in ECM is higher, while others vary with data frequency

and displays different amounts.
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Table 4.8 Hedge Ratio of Different Instruments in Various Models (out-of-sample)

Estimated Periods

100 days 200 days
X : :
Hedging Periods
5days | 10days | 20days | 5days | 10days | 20 days
naive 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
OLS 0.8231 | 0.8123 | 0.8034 | 0.8236 | 0.8205 | 0.8153
GARCH(1,1) 1.0451 | 1.0253 | 1.0003 | 1.0174 | 0.8531 | 1.0420
TGARCH 1.0032 | 0.9531 | 0.9432 | 0.9741 | 0.9234 | 0.9201
ECM 0.8789 | 0.8853 | 0.8934 | 0.8799 | 0.8803 | 0.8953
LPM(c=0) 0.8432 | 0.8543 | 0.8734 | 0.8502 | 0.8532 | 0.8834
LPM(c=pu) 0.8531 | 0.8341 | 0.8423 | 0.8341 | 0.8234 | 0.8261
Estimated Periods
100 days 200 days
MTX : :
Hedging Periods
5days | 10days 1| -20days {. 5days | 10 days | 20 days
naive 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
OLS 0.8164 | 0.8133-0.8031 |0.8134 | 0.8031 | 0.8002
GARCH(1,1) 0.8701 | 1.0004" | 0.8629 .| 0.8714 | 0.8513 | 0.8631
TGARCH 0.8903 | 0.923471110.9453 | 0.8995 | 0.9043 | 0.9064
ECM 0.9495 | 0.9502 | 0.9534 | 0.9543 | 0.9605 | 0.9684
LPM(c=0) 0.8234 | 0.8343 | 0.8679 | 0.8345 | 0.8386 | 0.8734
LPM(c=pu) 0.8238 | 0.8453 | 0.8734 | 0.8341 | 0.8403 | 0.8632
Estimated Periods
TE 100 days | | 200 days
Hedging Periods
5days | 10days | 20days | 5days | 10days | 20 days
naive 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
OLS 0.8253 | 0.8253 | 0.9243 | 0.8232 | 0.8253 | 0.8244
GARCH(1,1) 0.9333 | 0.9241 | 0.9245 | 0.9345 | 0.9245 | 0.9153
TGARCH 0.8635 | 0.8636 | 0.8624 | 0.8643 | 0.8637 | 0.8583
ECM 0.9843 | 0.9753 | 0.9532 | 0.9853 | 0.9445 | 0.9653
LPM(c=0) 0.8345 | 0.8965 | 0.8653 | 0.9543 | 0.9534 | 0.8953
LPM(c=p) 0.8436 | 0.8542 | 0.8245 | 0.8532 | 0.8653 | 0.8342
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Table 4.8 Hedge Ratio of Different Instruments in Various Models (out-of-sample) (cont.)

Estimated Periods
100 days 200 days

TF : :
Hedging Periods
5days | 10days | 20days | 5days | 10days | 20 days
naive 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
OLS 0.8801 | 0.8803 | 0.8653 | 0.8531 | 0.8863 | 0.9079

GARCH(1,1) 0.9234 | 0.9206 | 0.9183 | 0.9286 | 0.9251 | 0.9134
TGARCH 0.8453 | 0.8531 | 0.8531 | 0.8533 | 0.8631 | 0.8541
ECM 0.8496 | 0.8543 | 0.8643 | 0.8532 | 0.8634 | 0.8693
LPM(c=0) 0.8413 | 0.8381 | 0.8235 | 0.8451 | 0.8493 | 0.8341
LPM(c=pu) 0.8562 | 0.8461 | 0.8205 | 0.8463 | 0.8451 | 0.8234

4.4.2 Hedging Effectiveness

After obtaining the-hedge ratio; we compare the performances of these
models with HE, from equation (3:28). We ‘calculate all possible HE, with
rolling method from Eviews:and. Matlab tool in table (4.9). The hedging
effectiveness are positive under each model and hedging period, which means
the variance of a hedged portfolio is lower than that in unhedged portfolio.

When we use HE, as hedging indicator, GARCH (1,1) perform best and
naive perform worst in TX. The GARCH (1,1) perform best and LPM(c=0)
performs worst in MTX and TE. However, in TF, TGARCH performs best and
LPM(c=0) performs worst. Besides, no matter the estimated period is 100 days
or 200 days, the GARCH (1,1) display better effectiveness than other models.

When we compare both strategies of minimum variance (OLS, GARCH,
TGARCH, ECM) and the minimum downside risk (LPM(C:O), LPM(C:M), it
can be observed that LPM(c=0) and LPM(c=g) both performs worse than
minimum variance strategies. No matter what futures or hedging index we

employ, hedging effectiveness performs generally better when the estimated
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period or hedging period increased. In minimum variance strategies, the
GARCH (1,1) model seems to have higher HE; in 5 days, a short-term hedging
period. For the TX as example, the HE, in GARCH, TGAECH, and ECM in 5
days are 0.9642, 0.9541, and 0.9414, respectively. The value is respectively
close, but HE; in GARCH is higher than others. Taking a further look into
longer periods, this implies that the GARCH model can capture the short-term
dynamic effect. It means the investors will take higher futures position relative
to the spot position from the short-term period in order to lower the portfolio
risk. The results are useful to investors who prefer short-term hedging period in
TE and TF. This is similar to the studies of Yen and Gannon's (2000) suggestion
that the performance of GARCH model appears on average to persist over a
five-day horizon.

When testing the models-against data from a later period, it is found that
most of the results were consistent with those: found in the earlier estimations.
One must immediately notice that the hedging-effective in MTX is lower than
TX for all hedging models: This:may-be-explained by the fact that the contract
value of MTX (=NT 50 dollars) 1s lower:than TX (=NT 200 dollars).

Table 4.9 Hedge Effectiveness of HE, in Various Models (out-of-sample)

Estimated Periods

100 days 200 days

X : :
Hedging Periods
5days | 10days | 20days | 5days | 10 days | 20 days
naive 0.8864 | 0.8895 | 0.8915 | 0.8951 | 0.9014 | 0.9063
OLS 0.9520 | 0.9543 | 0.9555 | 0.9549 | 0.9642 | 0.9684

GARCH(1,1) | 09642 | 09761 | 0.9783 | 0.9634 | 0.9731 | 0.9831

TGARCH 0.9541 | 0.9553 | 0.9581 | 0.9643 | 0.9668 | 0.9702

ECM 09414 | 09513 | 0.9592 | 0.9473 | 0.9551 | 0.9651

LPM(c=0) 0.9194 | 0.9245 | 0.9341 | 0.9153 | 09198 | 0.9451

LPM(c=p) 0.9051 | 0.9236 | 0.9432 | 0.9234 | 0.9232 | 0.9542
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Table 4.9 Hedge Effectiveness of HE, in Various Models (out-of-sample) (cont.)

Estimated Periods

100 days 200 days

MTX ) )
Hedging Periods
5days | 10 days | 20 days || 5days | 10 days 20 days
naive 0.8931 | 0.8951 | 0.9034 | 0.8941 | 0.8965 0.9004
OLS 0.9415 | 0.9483 | 0.9518 | 0.9475 | 0.9496 0.9553

GARCH(1,1) | 0.9531 | 0.9631 | 0.9679 | 0.9544 | 0.9645 0.9631

TGARCH 0.9341 | 09363 | 0.9453 | 0.9363 | 0.9395 0.9475

ECM 0.9364 | 09432 | 0.9451 | 0.9464 | 0.9506 0.9513

LPM(c=0) 0.8234 | 0.8245 | 0.8345 | 0.8342 | 0.8345 0.8445

LPM(c= 1) 0.8253 | 0.8301 | 0.8414 | 0.8231 | 0.8335 0.8534

Estimated Periods

100 days 200 days

TE ) )
Hedging Periods
5 days.} 10 days |.20 days. | 5 days | 10 days 20 days
naive 0.8753-170.8853 | -0.9043 14 0.8774 | 0.8855 0.8964
OLS 0.93527] 0.9358°1°0.9532 4 0.9384 | 0.9462 0.9642

GARCH(1,1) | 0.9562 [©.0.9642 | 0.9704" | 0.9594 | 0.9694 0.9739

TGARCH 0.9435 | 095847109634 | 0.9472 | 0.9562 0.9652

ECM 0.9415 | 09462 | 0.9562 | 0.9524 | 0.9572 0.9695

LPM(c=0) 0.8325 | 0.8426 | 0.8504 | 0.8492 | 0.8503 0.8538

LPM(c=p) 0.8643 | 0.8735 | 0.8852 | 0.8695 | 0.8845 0.8953

Estimated Periods

100 days 200 days

TF ) )
Hedging Periods
5days | 10 days | 20 days | 5days | 10 days | 20 days
naive 0.9014 | 0.9123 | 0.9198 | 0.9042 | 0.9231 0.9274
OLS 0.9231 | 0.9483 | 0.9524 | 0.9384 | 0.9524 0.9642

GARCH(1,1) | 0.9434 | 0.9642 | 0.9685 | 0.9524 | 0.9594 0.9702

TGARCH 0.9584 | 0.9594 | 0.9685 | 0.9588 | 0.9594 0.9680

ECM 0.9452 | 09475 | 0.9495 | 0.9455 | 0.9503 0.9573

LPM(c=0) 0.8425 | 0.8473 | 0.8502 | 0.8504 | 0.8584 0.8623

LPM(c= ) 0.8583 | 0.8642 | 0.8743 | 0.8602 | 0.8704 0.8774
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Chapter 5 Conclusive Remarks

5.1 Conclusions

This study investigated the out-of-sample hedging effectiveness with
different models to alternative hedging strategies in four kinds of stock index
futures in Taiwan. Previous studies only consider one or two Taiwan index
futures and adopt only one strategy. Also in the past, the downside risk strategy
only adopts foreign exchange commodity. In this aspect, the magnitude of this
paper aims to adopt this strategy in stock index futures to estimate the hedging
effectiveness.

In the first strategy, derived from minimum variance, the hedging
effectiveness of GARCH(1,1) performs-best and the naive model performs worst.
The second strategy considers minkimizing, the: downside risk and assumes that
the target rate of returns:is equal to zero and-the mean of spot. The obvious
result is that the performance from=LEPM(e= ) is larger than that from
LPM(c=0). In average, the hedging effectiveness of the first strategy is usually
larger than that of the second strategy. More specifically, the performance of the
different hedge portfolios does not differ from each other in general.
Furthermore, it also depends on the choice of the evaluation measure as well as
the evaluation periods.

From the point of time expansion, no matter which index we adopts,
hedging strategies will perform better with the increase of estimated period and
hedging period. Overall, it seems that the complicated models, such as
GARCH(1,1) and ECM, display better effectiveness than other models. It is
worth noting that the hedging effective in MTX is lower than that of TX in all
hedging models. The possible reasoning is that the contract value is lower and
the liquidity is better for MTX.

In addition, some uncontrolled and unpredictable factors are excluded

51



(which may make the model oversimplified), such as transaction cost, tax,

regulation, brokerage fee, and consumer demand.

5.2 Suggestions

There are some limitations should be treated with caution during the
process of investigation. First of all, we had to make some assumptions about
investor’s behavior. Secondly, this article utilizes two alternative hedging
strategies and does not take the expected return into consideration. Further
research can consider other effectiveness measurements to evaluate the second
strategy. Thirdly, the degree of risk tolerance may not be always zero and
average situations. The technical to measure the downside risk still have other
choice such as VaR model.

In addition, there are-a lot of uncontrolled-factors and unpredictable factors,
such as transaction cost, tax, regulation, brokerage fee, and consumer demand.
Some hedgers may want to adjust hedge ratios during the period, depending on
the market conditions. These are topics for further research. Lastly, this article
utilizes two alternative hedging strategies and does not take the expected return
into consideration. Further research can consider other effectiveness

measurements to evaluate the second strategy.
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