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a b s t r a c t

To speed up the process of performing a large statistical simulation study, it is natural and
common to divide the large-scale simulation task into several relatively independent sub-
tasks in a way that these sub-tasks can be handled by individual processors in parallel. To
obtain a good overall simulation result by synthesizing results from these sub-tasks, it is
crucial that good parallel random number generators are used. Thus, designing suitable
and independent uniform random number generators for the sub-tasks has become a very
important issue in large-scale parallel simulations. Two commonly used uniform random
number generators, linear congruential generator (LCG) and multiple recursive generator
(MRG), have served as backbone generators for some parallel random number generators
constructed in the past. We will discuss some general construction methods. A systematic
leapfrog method to automatically choose different multipliers for LCGs to have the maxi-
mum-period and a method to construct many maximum-period MRGs from a single
MRG are available in the literature. In this paper, we propose to combine both approaches
to generate different MRGs ‘‘randomly”, quickly and automatically, while retaining the
maximum-period property.

Published by Elsevier B.V.
1. Introduction

Linear congruential generator (LCG) and multiple recursive generator (MRG) are two of the most popular uniform random
number generators (RNGs). They follow a similar procedure: choose a starting seed or seeds, compute a linear recurrence
equation with properly chosen multipliers and, if any, some additive constants, and compute the next number under a prime
modulus.

For a large-scale simulation study, it is common to run simulations in parallel on several processors to speed up the sim-
ulation process. To perform a parallel simulation on different processors, we need a method of generating ‘‘independent”
streams of random numbers. It is possible to achieve this by either choosing different (a) moduli, (b) additive constants,
(c) starting seeds, or (d) multipliers for different processors. For more details on various methods, please see Deng et al.
[5], Mascagni [18], Mascagni and Srinivasan [19], Srinivasan et al. [21], and L’Ecuyer et al. [15].

The approaches (a) and (b) are not recommended. Unless appropriate parameters have been pre-computed and stored,
using different moduli is not feasible. In general, storing pre-computed parameters is not a good idea unless the number
of processors is small. These methods are not scalable because they cannot easily be applied in a large-scale simulation where
the number of available processors are unknown. Choosing different additive constants is also not advisable and is only suit-
able for LCG. This approach also introduces serious inter-stream correlation. Thus, it is more common to use either (c) or (d).
Choosing different starting seeds for different processors is popular with some efficient skip-ahead schemes. Since LCG’s
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period length is short, there is a problem of overlapping between two ‘‘independent” streams. As to MRGs, with the long
period, one can avoid the overlapping problem by skipping very far ahead and computing/storing various sets of starting
seeds. We remark that the jump-ahead scheme might result in power-of-two correlations between computations in different
processors. However, this problem can be easily remedied by using a modulus that is not power of two.

Alternatively, the approach (d) that chooses different multipliers for different processors can avoid the inter-stream cor-
relation problem. The main objective of this paper is to provide a method to produce quickly and automatically different
multipliers, for which the corresponding generators are of the maximum-period. The term ‘‘maximum-period” is defined
as the maximum period that a generator in a particular class can possibly achieve.

For LCG, Deng et al. [5] proposed a systematic leapfrog method to automatically choose different multipliers such that the
corresponding LCGs are of the maximum-period. For MRG, Deng [2] proposed an efficient method to find a large order MRG
with the maximum-period and a method to construct maximum-period MRGs from a single MRG. In this paper, we extend
his approach to generate different MRGs ‘‘randomly”, quickly and automatically, while retaining the maximum-period
property.

In addition to speeding up the simulation process, parallel random number generators can be useful in some Markov
Chain Monte Carlo (MCMC) methods. One of the simple and widely used MCMC methods is called Gibbs sampling introduced
by Geman and Geman [9]. Instead of generating independent sequences as most of the Monte Carlo simulations do, Gibbs
sampling generates dependent Markov chains that will converge to the desired stationary distribution. One of the difficult
problems in MCMC is knowing when to stop the iteration. The answer depends on when the sequence is converging to a
stable distribution. In practice, it is common to run several independent Gibbs sampling sequences simultaneously and
watch their sampling behaviors to determine the convergence. These sequences (streams) can be run on a multi-processor
computer system or on several different processes of a same computer.

In Section 2, we review some results of the classical LCG and MRG. A class of efficient MRGs called DX-k-s generators,
proposed by Deng and Xu [7], to be used as the backbone generators for parallel RNGs in this paper is also reviewed. In Sec-
tion 3, we briefly discuss some general approaches of parallel RNGs. In Section 4, we introduce an automatic generating
method for parallel MRGs. In Section 5, we give tables of many maximum-period MRGs of very large orders ranging from
101 to 4001. In addition, an illustrative example of our proposed automatic generating method is given with k ¼ 4001.
We show that up to 1,071,535,582 different MRG generators, each with the maximum-period of 1037;333:5, can be systemat-
ically constructed. Finally, in Section 6, we report the latest results on the search of DX generators. For k ranging from 5003 to
10,007, several DX-k-s generators have been found and reported in Deng [4]. We can then apply the proposed method to any
of these newly found generators to construct quickly many distinct MRGs, for which the largest maximum-period is as large
as 1093;383:7.

2. LCG and MRG

Until recently, the LCG proposed by Lehmer [16] is the simplest and most widely used uniform random number generator
Xi ¼ BXi�1 modp; i P 1; Ui ¼ Xi=p; ð1Þ
where the multiplier B and prime modulus p are positive integers, and X0 is any non-zero seed. For a prime p, the maximum-
period of an LCG in (1) is p� 1, which is achieved if B is chosen to be a primitive root of a finite field with p elements,
Zp ¼ f0;1;2; . . . ; p� 1g. An integer B is a primitive root modulo a prime number p, if and only if Bðp�1Þ=q – 1modp for any
prime factor q of p� 1. Also, for a prime modulus p, B is a primitive root or a primitive element of p if and only if the above
LCG achieves the maximum-period. Following this definition, when the modulus is a composite number m, B is called a prim-
itive element modulo m if its corresponding LCG yields a maximum-period. Knuth [12] described a general method of finding
such primitive elements, using the ‘‘Chinese remainder algorithm” for a system of congruential equations.

MRG is a natural extension of LCG, which generates the next number based on a linear combination of the most recent k
numbers:
Xi ¼ ða1Xi�1 þ � � � þ akXi�kÞmodp; i P k; ð2Þ

where the multipliers a1; . . . ;ak and prime modulus p are all positive integers, fX0; . . . ;Xk�1g are initial seeds which can be
chosen arbitrarily from Zp with the restriction that not all of them are equal to zero. Here, the integer k is called the order of
MRG. When k ¼ 1, MRG is degenerated to LCG. To generate a real value Ui between 0 and 1, one can use either Ui ¼ Xi=p or, as
recommended by Deng and Xu [7], Ui ¼ ðXi þ 0:5Þ=p.

The characteristic polynomial corresponding to the MRG in (2) has the following form:
f ðxÞ ¼ xk � a1xk�1 � � � � � ak: ð3Þ

The maximum-period of such an MRG is pk � 1, which is achieved if and only if its characteristic polynomial f ðxÞ is a primitive
polynomial modulo p. A maximum-period MRG of order k enjoys a nice equi-distribution property up to k dimensions. That is,
every m-tuple of integers between 0 and p� 1 appears exactly the same number of times over the entire period pk � 1 with
the exception that the all-zero tuple appears one time less. For further details, please see Lidl and Niederreiter [17].

When the order k becomes large, we need to overcome two major barriers when considering an MRG. One is the efficient
implementation problem and the other is the efficient searching problem. An MRG of the general form (2) is not as efficient as
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an LCG, because it demands many more multiplication operations than an LCG. To improve the efficiency, many researchers
considered a special form of MRG that has only two non-zero terms. Please see, for example, Grube [11] and L’Ecuyer and
Blouin [13]. Deng and Lin [6] proposed a special form of MRG, called Fast MRG (FMRG), that requires only a single multipli-
cation. Deng and Xu [7] and Deng [3] extended FMRG and introduced a new class of MRGs, called DX-k-s generators, as
follows:

1. DX-k-1 ða1 ¼ 1;ak ¼ BÞ,
Xi ¼ Xi�1 þ BXi�k modp; i P k: ð4Þ
2. DX-k-2 ða1 ¼ ak ¼ BÞ,
Xi ¼ BðXi�1 þ Xi�kÞmodp; i P k: ð5Þ
3. DX-k-3 ða1 ¼ adk=2e ¼ ak ¼ BÞ,
Xi ¼ BðXi�1 þ Xi�dk=2e þ Xi�kÞmodp; i P k: ð6Þ
4. DX-k-4 ða1 ¼ adk=3e ¼ ad2k=3e ¼ ak ¼ BÞ,
Xi ¼ BðXi�1 þ Xi�dk=3e þ Xi�d2k=3e þ Xi�kÞmodp; i P k: ð7Þ
The notation dxe, denoting the ceiling function of a real number x, returns the smallest integer P x. For DX-k-s, k is the
order of the generator and s is the number of non-zero terms with the same coefficient B. Because a DX generator requires
only one multiplication and few additions to compute the recurrence equation, there are efficient implementations that are
almost as fast as the traditional LCGs.

Alanen and Knuth [1] and Knuth [12] described some conditions for a polynomial to be a primitive polynomial. However,
it is difficult to check their conditions directly in practice, especially when the values of k and p are large. Alternatively, Deng
[2] proposed an efficient algorithm that bypasses the difficulty of factoring a large number and provided an early exit strat-
egy for a failed search to achieve a better efficiency. We remark that the idea of bypassing factoring a large number was first
suggested by L’Ecuyer et al. [14]. To bypass the factorization problem, for a given prime k, Deng [2] proposed to find a prime p
such that Rðk; pÞ � ðpk � 1Þ=ðp� 1Þ is a prime number. Such Rðk; pÞ ¼ ðpk � 1Þ=ðp� 1Þ is termed by Deng [2] as a generalized
Mersenne prime (GMP). The idea is based on the fact that the problem of prime number checking is much easier than the
problem of factorization.

3. Parallel random number generators based on LCG and MRG

Using LCGs and MRGs as backbone generators to design PRNGs, as mentioned before, the approaches (a) and (b) for
designing PRNGs by choosing different moduli and additive constants for different processors, respectively, are not recom-
mended. Thus, it remains to discuss the approaches of choosing (c) starting seeds and (d) multipliers.

3.1. Changing starting seeds for LCGs

Choosing different starting seeds with some efficient skip-ahead schemes for different processors/processes is a popular
approach in designing parallel generators. It only uses a single RNG but carefully selects a distinct subsequence for each pro-
cessor/process. The Lehmer trees method proposed by Frederickson et al. [8] is a typical method of this approach, in which
two LCGs were used:
LðXÞ ¼ BLX modp and RðXÞ ¼ BRX modp; ð8Þ
where LðXÞ is used to generate a new starting seed and RðXÞ is used when a random variate is needed. If the maximum num-
ber of random numbers is known, say n, a simpler method is to use the starting seed BknX0 modp for the kth processor. This
strategy was used in the random number generator of the NAS parallel benchmarks. Because of the short period of subse-
quences generated by LCGs, choosing different starting seeds will further shorten the lengths of non-overlapping subse-
quences. Hence, we do not recommend any method of changing seeds for LCGs.

3.2. Changing different multipliers for LCGs

Choosing different multipliers for different processors or processes can avoid the problems of inter-stream correlation
and possible overlapping subsequences. The crucial point of using this approach is: how to quickly and automatically pro-
duce different multipliers for which all the corresponding generators are of the maximum-period.

To solve this problem, Deng et al. [5] proposed a systematic leapfrog method to automatically choose different multipliers
of LCG generators that each achieves the maximum-period. The idea is that, given a primitive element B modulo p, one can
produce a new primitive element by Bnew ¼ Br modp if r is relatively prime to p� 1. Its theoretical foundation is based on the
following well-known result in number theory. (See, e.g., Niven and Zuckerman [20].)
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Theorem 1. Let p be a prime number and B be a primitive element modulo p. For any positive integer C less than p, there exists an
integer r, 1 6 r 6 p� 1, such that C ¼ Br modp. Furthermore, C is also a primitive element modulo p if and only if
gcdðr; p� 1Þ ¼ 1.

Deng et al. [5] proposed to use another LCG to generate systematically and randomly a sequence of such r’s satisfying the
condition that every generated r is relatively prime to p� 1. More specifically, we first choose an R that is a primitive element
modulo p� 1 and is relatively prime to p� 1. For simplicity, setting the initial value r0 ¼ 1, we can then generate a sequence
of such r’s by the following recursive equation:
ri ¼ R ri�1 mod ðp� 1Þ; i P 1: ð9Þ
It is straightforward to see, by (9), that one can produce different ri’s (within the period of the LCG in (9)) that are relatively
prime to p� 1. Deng et al. [5] further proposed to choose p to maximize the generating period of the LCG in (9).

The systematic leapfrog method proposed by Deng et al. [5] is summarized as follows:

1. Whenever a new processor is initiated, generate a new r by
rnew ¼ R rold mod ðp� 1Þ:
2. Calculate a new multiplier B for the new processor by
Bnew ¼ Brnew modp:
3. New processor will use a new LCG with coefficient Bnew as
Xi ¼ BnewXi�1 modp; i P 1:
As an example, choose p ¼ 231 � 69 ¼ 2,147,483,579 as the prime modulus, the multiplier B ¼ 1;747;834;819 as a prim-
itive element modulo p, and R ¼ 693;352;593 as a primitive element modulo p� 1. Here the prime p is chosen so that
p� 1 ¼ 2Q and Q ð¼ 1;073;741;789Þ is a prime number. Set the initial value rold ¼ r0 ¼ 1. With these setups, we can generate
a new r by
rnew ¼ 693;352;593rold mod214;7483;578:
With rold ¼ 1, we have rnew ¼ 693,352,593. Next, we calculate a new B by
Bnew ¼ 1;747;834;819rnew mod2;147;483;579 ¼ 315;852;573:
Then, we have a new LCG generator for the new processor as
Xi ¼ 315;852;573Xi�1 mod2;147,483,579, i P 1:
Repeating the above procedure, one can quickly and randomly construct Q � 1 ¼ 1,073,741,788 different LCGs, each with a
maximum-period of 2,147,483,578.

3.3. Changing starting seeds for MRGs

Let f ðxÞ ¼ xk � a1xk�1 � � � � � ak as in (3) be a primitive polynomial and
Mf ¼

0 1 0 � � � 0
0 0 1 � � � 0
0 0 0 � � � 0
� � � � � � �

� � � � � �
0 0 0 � � � 1
ak ak�1 � � a1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð10Þ
be the companion matrix of f ðxÞ.
Among several important applications of the companion matrix Mf to MRG, we show below that, when k is small, Mf can

be used to compute efficiently the seeds that are far apart and to generate other maximum-period MRGs quickly.
To generate the k-dimensional seed vector that is ‘‘d-apart” from the initial seed vector xold ¼ ðX0;X1; . . . ;Xk�1Þ0, we use

the following:
xnew ¼Md
f xold modp:
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As already mentioned in L’Ecuyer et al. [15], the above jump-ahead matrix Md
f modp can be computed efficiently by the di-

vide-and-conquer algorithm using the following recursion:
Md
f modp ¼

Mf ; d ¼ 1;

ðMd=2
f modpÞ � ðMd=2

f modpÞmodp; d > 1; d is even;

Mf � ðMd�1
f modpÞmodp; d > 1; d is odd:

8>><
>>:
When k is small, the matrix Md
f modp can be pre-computed in time OðlogðdÞÞ and then be saved for later use. However, it is

clear that the task of pre-computing and saving the jump-ahead matrix becomes inefficient when k is large, say, k > 100.

3.4. Changing different multipliers for MRGs

Another application of the companion matrix Mf is to construct other primitive polynomials quickly by the following the-
orem stated in Deng [2].

Theorem 2. Let f ðxÞ in (3) be a primitive polynomial and Mf in (10) be the companion matrix of f ðxÞ. Define
frðxÞ ¼ detðxI�Mr
f Þmodp;
where r is a nonnegative integer. Then

1. frðxÞ is a primitive polynomial if and only if r is relatively prime to pk � 1.
2. If r; s are relatively prime to pk � 1, then the following two conditions are equivalent:

(a) frðxÞ ¼ fsðxÞ.
(b) r ¼ spt modðpk � 1Þ, for some integer t P 0.
Similar statements to the above theorem can also be found in Golomb [10] and Zierler [22] concerning the equivalence
relation among decimation of M-sequences. While the first part of this theorem gives a simple verification condition for a
new primitive polynomial, the second part is useful for seeing if two primitive polynomials are identical. This theorem in
theory is useful in finding all primitive polynomials, but it has no control over the number of non-zero terms in the primitive
polynomials generated, a criterion crucial for computational efficiency. Moreover, as discussed earlier, calculating powers of
a matrix and the corresponding determinants can be time-consuming or even infeasible when the order k is large.

For MRG, Deng [2] proposed an automatic generating method to construct many maximum-period MRGs from a single
MRG. Based on his method, we propose a more efficient way than the method described above for generating primitive poly-
nomials from an already known primitive polynomial in the next section.

4. Automatic generating method for parallel MRGs

4.1. Constructing MRGs with different multipliers

Following Deng [2], we denote MRG-k-s as a class of maximum-period MRGs with order k and s non-zero terms in their
linear congruential equations. If f ðxÞ is an irreducible polynomial, then c�kf ðcxÞ and xkf ðc=xÞ are also irreducible polynomials
for any non-zero constant c. Using this fact, Deng [2] gave the following theorem.

Theorem 3. Let Rðk; pÞ ¼ ðpk � 1Þ=ðp� 1Þ be a GMP and c be any non-zero integer. Let f ðxÞ in (3) be a primitive polynomial and
define
GðxÞ ¼ c�kf ðcxÞ ¼ xk � G1xk�1 � G2xk�2 � � � � � Gk modp; ð11Þ
HðxÞ ¼ �a�1

k xkf ðc=xÞ ¼ xk � H1xk�1 � H2xk�2 � � � � � Hk modp; ð12Þ
where Gj ¼ c�jaj modp and Hj ¼ �a�1
k ak�jcj;modp, for j ¼ 1;2; . . . ; k; a0 ¼ �1. If the constant term Gk ð¼ c�kakÞ is a primitive

element modulo p, then both GðxÞ and HðxÞ are kth degree primitive polynomials.

As mentioned in Deng [2], there are two advantages in considering GðxÞ and HðxÞ: (i) they can be calculated very effi-
ciently from the polynomial f ðxÞ and (ii) both of them have exactly the same number of non-zero terms as that in f ðxÞ. There-
fore, if f ðxÞ is the characteristic polynomial of a DX-k-s generator, then the induced generator with characteristic polynomial
GðxÞ or HðxÞ has only a small number of non-zero terms, thus can be implemented very efficiently in practice.

Based on Theorem 3, many maximum-period MRGs (corresponding to GðxÞ or HðxÞ) can be constructed quickly from a
single maximum-period MRG (corresponding to f ðxÞ). However, there are some drawbacks here: (i) we still need to check
the primitive root condition of the constant term (Gk or Hk) in the generated polynomial; (ii) it appears that the sequential
selection of c should be randomized; but then (iii) the random selection of c causes no guarantee for the generated MRGs to
be distinct.

Next, we propose an automatic generating method to overcome these drawbacks.
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4.2. Automatic generating method (AGM) algorithm

For efficiency consideration, we choose a DX-k-s as the backbone generator for constructing a sequence of maximum-per-
iod MRGs. Thus, for the maximum-period, the constant term ak ð¼ BÞ in the chosen backbone DX generators must be a
primitive element modulo p. Then, to automatically generate a sequence of maximum-period MRGs, it suffices to generate
a sequence of constants c’s such that c�kB (or equivalently, its inverse ckB�1) is also a primitive element modulo p by
Theorem 3.

Since B is a primitive root modulo p, using Theorem 1, any non-zero c can be written as c ¼ Bd modp for some d. Then,
producing a sequence of primitive roots of the form
ckB�1 ¼ Bkd�1 modp
means we need to find a sequence of exponents d’s such that
gcdðkd� 1;p� 1Þ ¼ 1:
Denote such a sequence by fdng. To generate fdng, we first generate a sequence frng in which rn is relatively prime to p� 1
for every n by (9). For each rn, let dn satisfy
kdn � 1 ¼ rn mod ðp� 1Þ;
since gcdðkdn � 1; p� 1Þ ¼ 1. Thus, we can obtain dn by dn ¼ k�1ðrn þ 1Þmod ðp� 1Þ and then cn by cn ¼ Bdn modp. Here, the
notation k�1 stands for the inverse of k modulo p� 1. We write k�1 ¼ k�mod ðp� 1Þ if k�k ¼ 1mod ðp� 1Þ. When k is a prime
number and it is not a factor of p� 1, k�1 modðp� 1Þ always exists. For a given k, we can certainly put this restriction on p,
but instead, we propose choosing a prime p such that p ¼ 2Q þ 1 and Q is a prime number. Such Q is called a Sophie–Germain
prime number. Since k must be an odd prime number, k and p� 1 are relatively prime if k–Q . In practice, the order k usually
is much smaller than Q, hence k–Q . Consequently, k�1 modðp� 1Þ always exists if we choose a p such that Q ð¼ ðp� 1Þ=2Þ is
a Sophie–Germain prime number. Another benefit of this approach is that the maximum-period, Q � 1, of the LCG in (9) can
be achieved.

Thus, we will consider only the prime number p for which Q ¼ ðp� 1Þ=2 is a Sophie–Germain prime hereafter.

AGM Algorithm. Let Rðk; pÞ ¼ ðpk � 1Þ=ðp� 1Þ be a GMP and f ðxÞ in (3) be a primitive polynomial corresponding to a DX-k-s
generator in which the non-zero coefficient is B as in Eqs. (4)–(7). Let R be a primitive element modulo p� 1 with
gcdðR; p� 1Þ ¼ 1. The following procedure will randomly generate a sequence of maximum-period MRGs:

1. Whenever a new processor is initiated, generate rn by
rn ¼ Rrn�1 mod ðp� 1Þ; n P 1 with r0 ¼ 1:
2. Calculate dn and then cn for the new processor by
dn ¼ k�1ðrn þ 1Þmodðp� 1Þ and cn ¼ Bdn modp:
3. With the given cn, compute the primitive polynomial GðxÞ or HðxÞ by
GðxÞ ¼ c�k
n f ðcnxÞmodp;

HðxÞ ¼ �B�1xkf ðcn=xÞmodp:
4. The new processor can use the newly constructed maximum-period MRG of order k corresponding to the characteristic
polynomial GðxÞ or HðxÞ as follows:
Xi ¼ G1Xi�1 þ � � � þ GkXi�k modp;

Xi ¼ H1Xi�1 þ � � � þ HkXi�k modp:
5. Tables of DX-k-s and MRG-k-s generators

To construct a sequence of distinct maximum-period MRGs, we first find some DX-k-s generators and use them as the
backbone generators, where k ranges from 101 to 4001 and s ¼ 1, 2, 3, 4.

5.1. List of DX-k-s generators

Finding a DX-k-s generator can be tedious and time-consuming when the order k is large. For a given prime k, we search
for a prime p ¼ 231 �w with restrictions that Q ¼ ðp� 1Þ=2 and ðpk � 1Þ=ðp� 1Þ are also prime numbers. We then search for
B in DX-k-s generators with a certain bound on B to achieve portability and efficiency. Following IEEE double precision stan-
dard, one can use the following upper bounds on B for portable DX-k-s generators:



Table 1
List of p

k

101
211
307
401
503
601
701
809
907
1009
1103
1201
1301
1409
1511
1601
1709
1801
1901
2003
2111
2203
2309
2411
2503
2609
2707
2801
2903
3001
3109
3203
3301
3407
3511
3607
3701
3803
3907
4001
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B < 2d; where d ¼ 20 when s ¼ 1;2; and d ¼ 19 when s ¼ 3;4: ð13Þ
Because of the limited time and space, we only consider the smallest prime k in each interval of 100 starting from k ¼ 101 to
4001. For each such k, we are able to find the largest prime p < 231 for which both Q ¼ ðp� 1Þ=2 and ðpk � 1Þ=ðp� 1Þ are also
prime numbers. Using the efficient algorithm proposed in Deng [2], we have found some DX-k-s generators and list them in
Table 1.

The first column in Table 1 is the order k, the second column is the w for which p ¼ 231 �w given in the third column is a
prime, the fourth column is the number of digits for the maximum-period pk � 1, the fifth column is the primitive element R
modulo ðp� 1Þ for AGM, and the final four columns are the values of B we found for the DX-k-s generators corresponding to
s ¼ 1, 2, 3, 4, respectively. It is possible to choose the same primitive element R modulo ðp� 1Þ for various prime p. For sim-
plicity, we choose the same R for a group of 10 p’s listed in Table 1.

Choosing an appropriate size for k from Table 1 depends on the type of applications. A smaller value of k requires a smal-
ler memory space and a quicker initialization. On the other hand, a larger value of k is suitable when the high-dimensional
equi-distribution property is a major concern.

The actual searching time needed for a DX-k-s generator is fairly random and the most important factor concerning the
searching time is the size of k. For k ¼ 101, the searching time can be as short as a few seconds, whereas for k ¼ 4001, the
required searching time ranges widely from a few hours to a few days on PCs with Pentium 4 at 2.8 GHz.

The implementation of the DX-k-s generators is easy and a C program can be found in the web site http://www.cs.mem-
phis.edu/~dengl/dx-rng/.
rime modulus p, primitive element R, and B < 2d for DX-k-s, s 6 4.

w p ¼ 231 �w log10ðpk � 1Þ R Bðs ¼ 1Þ Bðs ¼ 2Þ Bðs ¼ 3Þ Bðs ¼ 4Þ

82,845 2,147,400,803 942.5 25,533 1,048,575 1,048,498 524,190 524,288
841,329 2,146,642,319 1969.0 25,533 1,048,216 1,047,751 524,256 523,715

52,545 2,147,431,103 2864.9 25,533 1,046,286 1,048,079 524,121 524,181
57,189 2,147,426,459 3742.1 25,533 1,048,334 1,048,222 523,843 522,593

174,489 2,147,309,159 4693.9 25,533 1,048,331 1,047,794 523,798 524,161
1,327,485 2,146,156,163 5608.3 25,533 1,043,822 1,047,906 521,759 522,311

220,665 2,147,262,983 6541.7 25,533 1,046,874 1,047,056 522,314 522,625
2,010,789 2,145,472,859 7549.2 25,533 1,044,987 1,036,488 522,692 522,901
4,400,889 2,143,082,759 8463.3 25,533 1,047,699 1,044,229 516,836 523,609
2,368,869 2,145,114,779 9415.4 25,533 1,047,683 1,047,799 522,555 523,048
7,316,361 2,140,167,287 10,291.5 25,239 1,047,649 1,048,009 521,115 519,187
1,113,705 2,146,369,943 11,207.4 25,239 1,044,395 1,048,136 522,631 524,018
1,070,901 2,146,412,747 12,140.6 25,239 1,047,834 1,046,992 524,187 521,141
4,320,189 2,143,163,459 13,147.5 25,239 1,046,153 1,046,464 524,103 523,743
2,771,205 2,144,712,443 14,099.7 25,239 1,048,520 1,039,829 519,262 519,614

368,961 2,147,114,687 14,940.3 25,239 1,048,172 1,047,402 522,467 522,321
1,032,441 2,146,451,207 15,947.9 25,239 1,043,790 1,044,769 518,391 523,880
5,789,241 2,141,694,407 16,804.7 25,239 1,045,648 1,040,074 517,427 518,459

267,321 2,147,216,327 17,739.9 25,239 1,047,198 1,042,940 512,463 520,954
44,961 2,147,438,687 18,691.8 25,239 1,043,074 1,039,648 519,539 523,999

3,536,385 2,143,947,263 19,698.2 32,809 1,048,318 1,045,032 517,247 522,842
6,043,089 2,141,440,559 20,555.5 32,809 1,041,675 1,047,569 523,406 523,680

340,185 2,147,143,463 21,547.3 32,809 1,046,953 1,041,010 524,185 511,205
9,256,449 2,138,227,199 22,494.8 32,809 1,046,643 1,041,950 524,025 524,010

13,539,249 2,133,944,399 23,351.0 32,809 1,048,517 1,046,984 521,989 522,846
8,811,681 2,138,671,967 24,342.4 32,809 1,033,756 1,046,240 517,271 522,508
1,113,585 2,146,370,063 25,260.9 32,809 1,048,221 1,045,429 522,221 519,553
1,095,609 2,146,388,039 26,138.1 32,809 1,047,344 1,044,242 524,187 522,942

14,055,825 2,133,427,823 27,082.3 32,809 1,048,504 1,039,239 523,893 523,072
3,058,401 2,144,425,247 28,003.3 32,809 1,048,008 1,047,926 523,804 523,972
6,741,129 2,140,742,519 29,008.7 33,455 1,045,716 1,045,095 519,235 521,537
4,718,889 2,142,764,759 29,887.1 33,455 1,047,794 1,045,174 522,472 520,906

14,881,185 2,132,602,463 30,794.7 33,455 1,048,195 1,047,412 520,728 524,261
6,243,009 2,141,240,639 31,789.6 33,455 1,040,788 1,036,658 522,501 520,394
1,412,961 2,146,070,687 32,763.4 33,455 1,044,201 1,048,511 516,578 519,482
1,026,585 2,146,457,063 33,659.5 33,455 1,044,732 1,045,641 515,337 520,749

11,576,625 2,135,907,023 34,528.8 33,455 1,045,455 1,034,828 509,071 516,104
32,058,129 2,115,425,519 35,464.5 33,455 1,037,342 1,044,969 517,351 519,156
17,381,649 2,130,101,999 36,446.1 33,455 1,042,792 1,046,828 512,332 518,758

4,412,481 2,143,071,167 37,333.5 33,455 1,044,560 1,031,978 516,937 520,508

http://www.cs.memphis.edu/~dengl/dx-rng/
http://www.cs.memphis.edu/~dengl/dx-rng/
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5.2. Finding MRG-k-s generators

For each DX-k-s generator, s ¼ 1, 2, 3, 4, we can apply the proposed AGM algorithm to automatically and quickly construct
a sequence of GðxÞ’s or HðxÞ’s. The most simple cases are when s ¼ 1 and 2, for which both GðxÞ and HðxÞ have only two non-
zero terms, and thus the corresponding MRG generators are very efficient.

For illustration purpose, let us take k ¼ 4001 as a concrete example. For k ¼ 4001, we find from the last row of Table 1 that
p ¼ 231 � 4;412;481 ¼ 2;143;071;167. One can easily verify that Q ¼ ðp� 1Þ=2 ¼ 1;071;535;583 is indeed a Sophie–Germain
prime. From the column under s ¼ 2, we find B ¼ 1,031,978, which implies that the following polynomial of degree 4001
Table 2
List of t

n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
f ðxÞ ¼ x4001 � 1;031;978 x4000 � 1;031;978
is a primitive polynomial. Consequently, the corresponding DX-4001-2 generator is
Xi ¼ 1;031;978ðXi�1 þ Xi�4001Þmod2;143;071;167; i P 4001;
with the period length of 1037;333:5.
To apply AGM algorithm, we find a primitive element R ¼ 33,455 modulo 2,143,071,166 from Table 1. We then use
rn ¼ 33,455 rn�1 mod2,143,071,166, r0 ¼ 1;
to generate a random sequence frng that all of the elements are relatively prime to 2,143,071,166. In total, there are
Q � 1 ¼ 1;071;535;582 different rn that can be generated using the above LCG. With each rn, we can calculate dn and then
cn easily by dn ¼ k�1ðrn þ 1Þmod ðp� 1Þ and cn ¼ Bdn modp. With cn, we then compute the corresponding GðxÞ or HðxÞ to con-
struct a new MRG of the maximum-period. Consequently, we have constructed many MRG-4001-2 generators, each with the
maximum-period of 1037;333:5 and enjoying the nice 4001-dimensional equi-distribution property. The generated rn, cn, coef-
ficients of GðxÞ and HðxÞ of the first 30 iterations of AGM algorithm are listed in Table 2.

While it may take a long time to find a single DX-4001-2 generator, the total time to construct all MRG-4001-2 generators
given in Table 2 was less than 1 second.

From the first row of Table 2, we find G1 ¼ 538;038;547, G4001 ¼ 466;567;840 and its corresponding MRG-4001-2
generator,
Xi ¼ 538;038;547Xi�1 þ 466;567;840Xi�4001 mod2;143;071;167; i P 4001;
he first 30 iterations of AGM algorithm for constructing MRG-4001-2.

rn cn G1 G4001 H4000 H4001

33,455 271,596,069 538,038,547 466,567,840 377,755,423 784,137,450
1,119,237,025 869,504,607 550,884,537 478,847,729 657,202,932 1,753,090,457

335,259,023 442,515,096 1,566,662,175 187,227,285 1,296,770,865 1,857,614,561
1,399,202,787 104,753,893 1,315,679,652 1,107,629,070 810,654,320 328,178,428
1,368,831,313 986,411,888 1,651,288,829 254,685,660 1,154,006,112 1,220,729,562
1,106,901,327 173,373,102 2,075,793,756 1,281,741,128 1,384,090,581 906,013,825
1,257,217,471 379,485,739 1,845,836,277 409,133,161 1,335,004,469 1,908,485,007

295,788,389 1,096,956,795 1,026,567,566 47,651,946 1,418,866,529 1,884,598,511
1,040,980,573 33,287,558 1,992,756,369 815,795,955 1,878,987,105 518,749,096
1,098,622,215 948,019,578 1,188,384,449 237,670,234 1,538,951,230 966,296,673

735,705,925 1,736,486,493 1,922,179,869 783,700,166 1,125,176,950 651,066,012
2,012,450,531 1,743,691,697 2,093,852,176 1,148,153,589 2,087,924,570 1,875,568,645
1,951,834,715 1,940,817,358 1,962,052,560 788,843,490 1,120,647,280 496,161,642
1,395,033,471 1,164,585,786 100,0823,826 2,090,072,189 1,793,563,909 1,630,879,776
1,183,990,323 1,242,931,911 1,134,617,119 1,105,902,684 35,171,343 41,708,201

11,894,787 1,788,163,231 143,622,906 356,341,728 1,144,623,554 2,016,376,913
1,471,933,375 26,911,583 1,391,019,115 1,651,184,672 1,885,722,755 2,126,035,671

41,808,277 1,136,237,452 721,007,986 805,583,938 2,123,397,604 2,075,579,134
1,413,506,803 348,179,413 1,501,753,337 1,577,403,115 939,249,849 823,191,446
2,004,816,575 1,461,887,585 628,558,650 838,743,597 614,541,364 1,013,965,539
1,583,305,489 986,509,896 323,113,640 597,147,228 1,099,408,787 354,393,032
1,338,195,639 1,967,919,631 1,796,691,331 756,335,575 755,747,818 1,026,021,504

578,445,005 217,682,663 1,397,322,851 2,128,793,813 57,165,708 1,852,038,451
2,088,084,461 2,121,691,915 911,105,958 499,380,695 656,877,729 1,378,697,530
1,317,915,819 1,993,594,908 1,530,936,371 1,926,134,047 458,919,955 495,348,848
1,470,626,527 567,138,616 1,419,063,622 618,427,520 642,345,579 974,042,996
1,325,702,923 1,241,853,267 98,160,160 1,287,104,077 1,642,600,570 1,341,631,739

533,508,595 1,482,853,899 1,268,809,337 2,040,508,059 675,468,491 1,311,372,269
1,033,375,277 872,212,602 1,325,677,274 520,430,780 152,482,690 1,229,037,168
1,688,913,289 268,268,315 251,241,551 963,812,485 2,074,449,625 1,765,384,041



Table 3
List of prime p, primitive element R, and B < 2d for DX-k-s, s 6 4, k 6 10;007.

k w p ¼ 231 �w log10ðpk � 1Þ R Bðs ¼ 1Þ Bðs ¼ 2Þ Bðs ¼ 3Þ Bðs ¼ 4Þ

5003 1,259,289 2,146,224,359 46,686.4 24,349 1,041,088 1,039,973 506,762 487,092
6007 9,984,705 2,137,498,943 56,044.7 24,349 1,046,897 1,015,366 519,071 519,501
7001 610,089 2,146,873,559 65,332.0 24,349 1,026,965 1,014,115 521,869 506,984
8009 5,156,745 2,142,326,903 74,731.1 24,349 1,041,446 1,046,062 519,082 518,174
9001 7,236,249 2,140,247,399 83,983.5 24,349 1,045,508 1,040,383 515,350 523,991
10,007 431,745 2,147,051,903 93,383.7 24,349 1,042,089 1,042,654 515,671 493,723
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has the maximum-period of 1037;333:5. Similarly, we can construct another maximum-period MRG-4001-2 generator from
HðxÞ
Xi ¼ 377;755;423Xi�4000 þ 784;137;450Xi�4001 mod214;3071;167; i P 4001:
In practice, if the number of processors is of moderate size, we can pre-compute the coefficients of GðxÞ and/or HðxÞ as given
in Table 2. If the number of processors is huge or unknown, then we can use the proposed AGM method to produce practi-
cally unlimited number of distinct MRGs each with a huge maximum-period.

6. Tables of DX-k-s generators of large order k

Recently, Deng [4] found some prime modulus p for k from 5003 up to 10007 such that Rðk; pÞ ¼ ðpk � 1Þ=ðp� 1Þ is prime.
Following the same procedure as previously discussed, Deng [4] found a list of DX-k-s generators as given in Table 3.

As an example, with k ¼ 10;007, we find several DX-10,007 generators each having the period length of 1093;383:7. We can
then use the automatic generating method to quickly find many MRGs of order 10,007 each with the same period length.
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