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以考慮跳躍的信用市場模型定價信用衍生性商品 

學生 : 蔡呈偉        指導教授: 王克陸 博士 

                                        

國立交通大學財務金融研究所 

2006 年 6 月 

摘要 

本文以一個考慮跳躍的信用市場模型定價信用違約交換(credit default swaps)與信

用違約交換選擇權(credit default swaptions)。本文提出一個跳躍擴散模型，將信用違約

交換的價差當作主要變數來計算信用違約交換選擇權的價格，其中跳躍的部份是以標點

過程(marked point processes)以及複合波式過程(compound Poisson processes)來描

述。藉著對跳躍部份的特別設定我們能夠推導出解析的定價公式。我們也提出兩個數值

的實例來顯示本模型的彈性：第一個是違約機率的計算，第二個是信用違約交換選擇權

的隱含波動度曲線之重製。 

 
關鍵詞：信用市場模型，信用違約交換，跳躍擴散，標點過程，違約機率，隱含

波動度  
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Abstract 

 This paper describes the pricing of credit default swaps (CDS) and credit default 
swaptions using market model with jumps. We propose a jump-diffusion credit market 
model that treats the CDS spread as the major variable to value a credit default 
swaption, in which the jumps are modeled by the marked point processes (MPPs) as 
well as the compound Poisson processes. Analytic pricing formula exists under some 
appropriate specification on the jump part of the CDS spread dynamics. We also 
make two numerical illustrations to show the flexibility of this model: The first one is 
the calculation of default probability and the second one is the reproducing of implied 
volatility curve for credit default swaptions.  

 
 

 
 
 

Keywords: credit market model, jump-diffusion, CDS, marked point process, default 
probability, implied volatility 
 
 
 
 
 



 

 iii 
 

Acknowledgement 

首先感謝父母多年來的教養與培育，在我求學的路途中給予持續不斷的鼓勵

與支持，讓我得以無後顧之憂的在學校追求學問，並完成研究所的學業。接下來

我要感謝研究所之指導教授王克陸博士於我撰寫論文期間的教導。從論文題目，

論文架構，模型假設，乃至於結果之推導與解釋，王教授皆給予相當多有效且負

建設性的建議，讓我能夠完成一篇頗具水準的碩士論文，並順利獲得碩士的學

位。最後感謝其他在我就讀研究所過程中曾經給予我任何幫助的師長，與所有陪

伴我一起渡過研究所生涯之同學，共同奮鬥所收穫的果實是最甜美的。 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Content 
1. Introduction........................................................................................1 
2. Model Settings and Review of Credit Market Model.....................3 

2.1 Notations:........................................................................................................3 
2.2 Some Important Relationships: ....................................................................4 
2.3: A Brownian-motion-based Credit Market Model......................................5 

3. An Extension to Jump-diffusion Process .........................................5 
3.1 Model Pre-settings: Jumps in Two Forward Rates.....................................5 
3.2 Modeling with the Marked Point Processes ................................................7 
3.3: Constructing jump processes from MPPs ..................................................9 
3.4: Modeling with the Compound Poisson Processes ....................................10 

4. Pricing Credit Default Swaps and Swaptions ...............................11 
4.1 Credit Default Swaps ................................................................................... 11 
4.2: Pricing Credit Default Swaptions..............................................................13 

5. Numerical Illustrations....................................................................18 
5.1 Default Probability and Survival Curve ....................................................18 
5.2 Implied Volatilities of Credit Default Swaptions.......................................22 

6. Conclusion ...........................................................................................24 
References................................................................................................26 
Appendix A – Change of measure with the inclusion of jumps..........28 
Appendix B – Derivation of the swaption price...................................29 

 

 iv 
 



 

1. Introduction 
The blooming credit derivative market has rendered numerous market practitioners 

and scholars focusing their attentions on credit models. The research in credit risk 
modeling was pioneered by Black and Scholes (1973) and Merton (1977), who take 
the firm value as a latent variable and defined the credit event based on the firm value, 
and this kind of models is categorized as the structural form model. The other sort of 
credit model is called the reduced form model, or intensity model, which models the 
default intensity process and assumes the default time to be random (Jarrow and 
Turnbull (1995), Lando (1998), etc). 

In this paper, we model the discrete, simply compounded riskfree and risky 
forward rates and use the observable CDS spread to value the credit default swaption. 
Ever since Brace, Gatarek and Musiela (1997) developed the Libor Market Model 
(LMM), it has been used by market practitioners as a standard method to model the 
discrete compounded, market quoted forward rates. Due to the popularity of market 
models in the interest rate market, some scholars are applying the market model for 
the credit risk problems. Schönbucher (2000) takes the forward credit spread, the 
difference between the risky forward rate and the riskfree forward rate implied by the 
bond market, as a major variable and deduces the dynamics of CDS spread and the 
price of credit default swaption. Jamshidian (2002) introduces a numeraire–invariant 
approach in pricing default swaptions and derives a new formula on fractional 
recovery of pre-default contract value. Bennani and Dahan (2004) price the credit 
default swaptions in an equivalent risk neutral measure by imposing the default 
accumulator process that contains default time information. Brigo (2004) obtains a 
joint dynamics of CDS spreads under a single probability measure, and derives an 
approximated no-arbitrage valuation formula for constant term credit default swaps. 
Wu (2005) develops a new credit market model in which recovery rate is no longer an 
exogenously given input. The most crucial setting in the paper is his definition on 
defaultable zero coupon bonds which are backed by the coupons of corporate bonds. 
In that way, the pricing numeraire becomes tradable and CDS can be replicated by the 
defaultable bonds and annuities. 

A common feature of the above credit market models is the assumption of the 
geometric Brownian motion for the underlying asset. Although simple and tractable, 
this naive setting yields unreasonable financial implications: it cannot describe 
properly the leptokurtic and asymmetric feature of the distribution of asset returns. 
The first to apply jump-diffusion model in asset pricing is Merton (1976). As 
investigated by Bystrom (2005), the distribution of CDS spread returns is much more 
leptokurtic and skewed than that of stock returns. Figure 1.1 illustrates the historical 
path of some entity’s CDS spreads and exhibits the leptokurtic and asymmetric 
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distribution of its spread returns. The empirical study of Jorion and Zhang (2005) 
examines credit events by using jumps in CDS market, suggesting that drastic upward 
jumps in CDS spreads reflect unanticipated credit events. Other than the lognormal 
distribution, we embed jump processes on the dynamics of those underlying variables. 
There are several reasons why jumps should be included in pricing credit derivatives. 
First, the ranges of the market quoted CDS spreads are too wide for the pure-diffusion 
lognormal model to fit. Secondly, big drops in price of a financial asset often occur 
due to sudden unexpected events, especially for financial contingents related to credit 
risk. For example, the corporate bond value has a tendency to plunge when default 
event occurs, which pushes up its defaultable forward rate and credit spread. Thirdly, 
with the inclusion of the jump process our model has ability to explain various credit 
derivatives market phenomena, such as the leptokurtic distribution of CDS spreads 
and the volatility smile in credit default swaption.  

We suppose that both the defaultfree forward rate and the defaultable forward rate 
are described by the geometric Brownian motion plus some jump parts. This 
preliminary setting will make other variables such as credit spread, hazard rate, and 
CDS spread jump-diffusion processes. In addition to derive the pricing formulae of 
credit default swaps and swaptions, we will plot the implied volatility curves of 
swaptions and demonstrate the flexibility of this jump-diffusion model in reproducing 
multiple shapes of implied volatility. The price of credit default swaption attained in 
this model has an excellent explanatory power for the volatility smiles and skews of 
the instrument. Moreover, this model can forecast the widening of CDS spread and 
explain the shift of the survival curve.  

The rest of this paper is arranged as the following: In section 2 we review the 
diffusion version of the credit market model. Section 3 introduces the jump-diffusion 
credit market model characterized by the compound Poisson processes. In section 4 
we price some single-name credit derivatives, including CDS and option on CDS 
spread. Several numerical results are illustrated in section 5, including the default 
probability, the survival probability stripped from CDS quotes, and the implied 
volatility of credit default swaptions. Finally, we conclude in section 6. 
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Figure 1.1 Left: Historical path of General Motor’s CDS spreads; Right: 
The distribution of General Motor’s CDS spread returns. 

2. Model Settings and Review of Credit Market Model 
 In this section we review the market model in credit risk introduced by 
Schönbucher (2000) and build up some preliminary model settings. 
2.1 Notations: 
Here we assume all the cash flows occur at discrete tenor time: 

0 10 ... mT T T≤ ≤ ≤ ≤  , 
and assume a common length of time interval: 

1: , 0,1,... 1k k kT T k mδ δ += = − ∀ = − , 
And τ  is a stopping time, which is the time at which a credit event occurs. 
UBond Prices: 
The default-free (riskfree) zero-coupon bond price at time t  with maturity kT  is 

( , ) ( )k kB t T B t≡ . 
The defaultable zero-coupon bond (or the so-called corporate bond) price at time t  
with maturity kT  is 

( ) ( , ) ( ) ( )k kI t B t T I t B t≡ , 

where 

I(t) = 1{τ >t} is an indicator function representing the survival event until time t . 

{ }tτ >  is the event that no defaults happen at and before time t . 
UForward rates: 
 We then set the default-free forward rate（or simply forward Libor rate） implied 
by riskfree bond prices to be 

(2.1)      
   
Lk ( t ) = L (t ;Tk ,Tk +1 ) @1

δ
(

Bk (t )
Bk +1 ( t )

− 1) , 

and defaultable forward rate implied by defaultable bond price is 

(2.2)      
   
Lk (t ) = L (t ;Tk ,Tk +1 ) @1

δ
(

Bk (t )
Bk +1 (t )

− 1) .   

The forward credit spread is defined as 

(2.3)        k k kS L L−@  

The defaultfree annuity 

(2.4)       Bm,n (t) = δBk+1(t)
k=m

n−1

∑  

The defaultable annuity 
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(2.5)       Bm,n (t) = δBk+1(t)
k=m

n−1

∑  

The above two annuities, which accumulate each single-period bond value in a given 
interval, are used as discount factors in this model. 
The default risk factor: 

(2.6)        k
k

k

BD
B

@  

The quantity ( )kD t  has a significant financial implication. ( ) ( )kI t D t  is shown 
by Schönbucher (2000) to be the conditional survival probability of the underlying 
entity under the kP − forward measure. That is, 
(2.7)      ( ) ( ) ( | )k k k tI t D t P T Fτ= > , 
and 
(2.8)     (0) ( )k k kD P Tτ= > , 0,1,... 1k m∀ = − . 

Therefore (0)kD  can be regarded as the survival curve. Next, we define the 
forward default intensity (or discrete-tenor default intensity) 

(2.9)       
1

1 ( 1)k
k

k

DH
Dδ +

−@ . 

Schönbucher (2000) also verified that 

(2.10)    
  

1
δ

(1− Dk +1(Tk ))→ Hk (Tk )    as    δ → 0 . 

Hence, kH  can be interpreted as the default probability for the next infinitesimal 
small time step, which is called the instantaneous forward default probability. Besides 
its meaningful implication in finance, this variable also plays a crucial role in the 
later-on model derivation. kH is also named as hazard rate in some literatures. 
2.2 Some Important Relationships: 

The followings are some important relationships between the above notations. 
Relationship of forward rates and bond prices: 

(2.11)     
  

Bk (t)
Bk+1(t)

= 1+δLk (t)    

Let ( ) inf{ 0 : }it i T tη = ≥ ≥ , then 

(2.12)     
1

( )
( )

1( ) ( )
1 ( )

k

k t
j t j

B t B t
L tη

η δ

−

=

=
+∏ , 

1

( )
( )

1( ) ( )
1 ( )

k

k t
j t j

B t B t
L tη

η δ

−

=

=
+∏  

And 

(2.13) 
1

( )
( )

1( ) ( )
1 ( )

k

k t
j t j

D t D t
H tη

η δ

−

=

=
+∏  

Relationship of forward default intensity and credit spread： 
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(2.14)     (1 )k k kS L Hδ= +    
Relationship of forward default intensity and forward rates： 

(2.15)    

  

(1+ δ Lk ) = (1+ δ Lk )(1+ δH k )

H k =
1
δ

(
1+ δ Lk

1+ δ Lk

− 1)
   

2.3: A Brownian-motion-based Credit Market Model 
 They assume that both forward rates are driven by geometric Brownian motions. 
In the following we specify the dynamics of the fundamental variables under the 

1kT + -forward default measure, which is defined in the following. 
2.3.1: Definition (The Survival Measure) 

A kT -forward default measure kP  is a probability measure, under which any asset 

taking the defaultable bond price kB  as a numeraire is a martingale. 

Dynamics of two forward rates: 

  

dLk (t)
Lk (t−)

= γ k (t)dWk+1(t) , 

dLk (t)
Lk (t−)

= γ k (t)dWk+1(t)  

Dynamics of forward credit spread and default intensity: 
dSk (t)
Sk (t−)

= γ k
S (t)dWk+1(t) , 

dHk (t)
Hk (t−)

= γ k
H (t)dWk+1(t)  

These dynamics are owing to the assumption that risk-free interest rate and default 
intensity are independent. Schönbucher (2000) verifies that with this independence 
setup all the fundamental variables, including risk-free and risky forward rates, 
forward credit spread, and forward default intensities, are all martingales under the 
forward default measure under which assets taking the defaultable bond as numeraires 
are martingales. Brigo and Alfonsi (2003) provide evidence that correlation between 
interest rate and credit spread (or default intensity) has little effect on CDS prices. 
Independence assumption between riskfree rates and defaults can facilitate model 
derivation. 

3. An Extension to Jump-diffusion Process 
3.1 Model Pre-settings: Jumps in Two Forward Rates 

We first specify the jump-diffusion dynamics of defaultfree and defaultable 
forward rates. Glasserman and Kou (2003) incorporate the jump-diffusion in the term 
structure of simple compounded forward rate, proposing a “jump version” of Libor 
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market model. However, jumps in both defaultfree and defaultable forward rates are 
more complicated. When riskfree rate jumps, odds are high that risky rate would have 
a jump simultaneously. It may reflect changes in some macroeconomic conditions 
such as recessions, which could be regarded as part of the systematic risk. Jumps in 
the risky rate could reflect the non-systematic risk like the credit standing of a 
company. The value of the corporate debt has a tendency to drop if the company is 
alleged to have some financial crisis, or suffers from a down-grade in its credit rating. 
This will in turn cause an up-jump in the forward rate of its defaultable bond.  
3.1.1 Dynamics of forward rates and spreads 

The followings are the jump-diffusion dynamics of the forward rates: 
for defaultfree forward rates, 

(3.1)     
   

dLk (t )
Lk (t− )

= γ k (t )dWk +1(t ) + d %J k
L (t ) , 

and for defaultable forward rates, 

(3.2)    
   

dLk (t )
Lk (t− )

= γ k (t )dWk +1(t ) + d ( %J k
L (t ) + %J k

L (t )) , 

with the compensated jumps  
%Jk

L (t) = Jk
L (t) − EJk

L (t)  and %Jk
L (t ) = Jk

L (t) − EJk
L (t) , 

where 

  
Jk

L(t) = Lk (s) − Lk (s−)
0<s≤t
∑ = ∆Lk (s)

0<s≤t
∑ , 

and 

  
Jk

L (t) = Lk (s) − Lk (s−)
0<s≤t
∑ = ∆Lk (s)

0<s≤t
∑ . 

We can see that the defaultfree forward rate is driven by the single jump, L
kJ% , 

representing the systematic risk. The defaultable forward rate is affected by two types 
of jumps with the first one ( L

kJ% ) induced by the macroeconomic conditions, or the 
systematic risk, and the second one ( L

kJ% ) by the credit standing of the underlying 
entity. We impose the independence assumption noticed in section 2.3 on these two 
types of jump risks. 

The dynamics of forward default intensity H and credit spread S under the survival 
measure can be expressed as: 

(3.3)     
   

dHk (t)
Hk (t−)

= γ k
H dW k+1(t) + d %Jk

H (t)  

(3.4)     
   

dSk (t )
Sk (t− )

= γ k
S dW k +1(t ) + d %J k

S (t ) . 

Applying Ito’s Lemma, the following relationships specify the volatility and jump 
terms of kH in terms of two forward rates, 
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(3.5)     

  

γ k
H (t ) =

Lk (t− )γ k (t ) − Lk (t− )γ k (t )
Lk (t− ) − Lk (t− )

,

J k
H (t ) =

Lk (t− )
Lk (t− ) − Lk (t− )

∆Lk (s)
0< s≤ t
∑

+
Lk (t− )

Lk (t− ) − Lk (t− )
∆Lk (s)

0< s≤ t
∑

+
δ Lk (t− )

1 + δ Lk (t− )
∆Lk (s)

0< s≤ t
∑

2
+
δ 2 Lk

2 (t− ) Lk (t− )
Lk (t− ) − Lk (t− )

∆Lk (s)
0< s≤ t
∑

3

 

The cubic term, which is considerably small, can be neglected. Therefore, the jump 
part of the forward default intensity can be decomposed as: 

(3.6)     

  

Jk
H (t)

= C1 × Jump of defaultable forward rate
+C2 × Jump of defaultfree forward rate

+C3 × (Jump of defaultfree forward rate)2

for some constants C1,C2 ,C3.

 

(3.6) reveals that jump effects of both defaultfree and defaultable forward rates 
would contribute to the jumps of forward default intensity H , with first order in jump 
magnitude of L  and first order plus second order in jump magnitude of L . Jumps 
in forward default intensity are due to jumps in riskfree rate and risky rate, but jumps 
in riskfree rate would impact forward default intensity more than jumps in risky rate 
do. In the case of forward credit spread S, the relationships ( S

kγ  and S
kJ% ) can be 

derived in the same way by Ito’s Lemma, and S
kJ%  can be decomposed similarly as 

the above. Jumps in defaultfree and defaultable forward rates would give rise to jumps 
in forward credit spread as well. The difference is that jumps in riskfree rate and 
jumps in risky rate contribute equally to forward credit spread S. 

By using Ito’s Lemma, we can also derive the dynamics of H Bk B in terms of riskfree 
forward rate and credit spread: 

(3.7)   dHk (t)
Hk (t−)

= [ δ 2Lk (t−)2

(1+δLk (t−))2 γ k

2

−
δ

(1+δLk (t−))2 γ kγ k
S ]dt + (γ k

S −
δLk (t−)

1+δLk (t−)
γ k )dWk+1(t)  

   +d %Jk
S (t) . 

3.2 Modeling with the Marked Point Processes 
 Thanks to the succinct decompositions of jump terms in section 3.1, we are able 
to detect the influences of jumps in forward rates on the hazard rate and credit spread. 
Nevertheless, the jump part in expression (3.1) or (3.2) is not specific enough to be an 
effective mathematical representation. To build a pricing model we have to rely on a 
more solid and sound theoretical framework. As Bjork et al. (1997) models the 
continuous short rate by MPPs and Glasserman and Kou (2003) uses MPPs to explain 
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jump risk in riskfree forward rate, we are going to model the jumps of each forward 
rate by imposing a class of stochastic processes, the Marked Point Process (MPP), and 
scrutinize the insight of the jump model in this general framework. We shall first 
briefly introduce the definition of the marked point processes. 
3.2.1: Definition (Marked Point Process) 

Consider a filtered probability space (Ω, F ,{F}t , P) . A marked point process is meant 

by a pair of sequence {Tn , Xn}n≥1 , with the point Tn  increasing and Tn → ∞  as 

n → ∞  almost surely, and the mark Xn  is adapted, taking values on any abstract 

space E.  

 Although the marks may in general take values in any abstract space, it suffices 
to consider the non-negative real-valued marks. Tn  is a sequence of time point at 
which there is an occurrence of the mark Xn . When it talks to construct a jump 
process by MPPs, we need to define a function of the mark and point, 
namely, h(Tn , Xn ) . The function h  maps the mark Xn  from an abstract space into a 
real value. The jump process is to be formulated as the sum of function h: 

(3.7)       
=

=∑
1

( ) ( , )
tN

i i
i

J t h T X ,  

where Nt  is a counting process which counts the number of marks before time t . 
Let µ([0,t]× A)  be a random measure counting the number of occurrence of the pair 
(Tn , Xn )  within time interval [0,t]  with Xn  in A, namely, 

µ([0, t]× A) = #{i :Ti ∈[0, t], Xi ∈A} . 

Note that µ  is a positive integer-valued measure and is finite for every bounded set 
A. Hence, the jump process can also be expressed as an integral with respect to the 
counting measureµ : 

(3.8)      J(t) = h(s, x)
[0,t ]×E
∫ dµ(s, x) , 

with 

(3.9)      
×

= ∫
[0, ]

( ( )) ( , ) ( , )
t E

E J t h s x dv s x , 

where v  is called the intensity measure of the MMP. Furthermore, we require the 
following compensated version of the jump process, which is important in pricing 
financial contracts: 

(3.10)   µ
× ×

= −∫ ∫%

[0, ] [0, ]

( ) ( , ) ( , ) ( , ) ( , )
t E t E

J t h s x d s x h s x dv s x . 
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Note that such a process is a martingale. Later on the dynamics of every variable will 
be expressed as a diffusion term plus a compensated jump process so that it would 
retain the martingale property. 
 There are sufficient reasons why the marked point process is an appropriate 
candidate to be applied in this pricing model, the most important among which is that 
the jump intensity and distribution of jump magnitude may not be preserved under 
change of measure. Glasserman and Kou (2003) pointed out that even if jumps are 
presumed to be Poisson in one measure, we must suppose them to follow marked 
point process in other measures. 
3.3: Constructing jump processes from MPPs 
 Our next attempt is to re-specify the dynamics of forward rates with the MPP 
introduced earlier. 

   

dLk (t )
Lk (t− )

= γ k (t )dWk +1(t ) + d %J k
L (t )   

and 

   

dLk (t )
Lk (t− )

= γ k (t )dWk +1(t ) + d ( %J k
L (t ) + %J k

L (t ))  

are respectively the jump-diffusive dynamics of defaultfree and defaultable forward 
rates. Therein, we consider the compensated jump processes described in the previous 
subsection: 

(3.11)   

 

%J L (t) = hL (s, x)
[0,t ]×E
∫  dµ L (s, x)− hL (s, x) 

[0,t ]×E
∫ dvL (s, x)

         = hL (Ti , Xi )
i=1

Nt

∑ − hL (s, x)
[0,t ]×E
∫  dvL (s, x),

 

and 

(3.12)   

 

%J L (t) = hL (s, x)
[0,t ]×E
∫  dµL (s, x) − hL (s, x) 

[0,t ]×E
∫ dvL (s, x)

         = hL (Ti , Xi )
i=1

Nt

∑ − hL (s, x)
[0,t ]×E
∫  dvL (s, x)

 

Sometimes it is more favorable for us to have the jump of defaultable forward 
rate represented as a single term. For this reason, the two jumps in L  are merged 
into one jump. 

First we define two sets, which respectively describes the events that a jump 
occurs on riskfree and defaultable forward rate,  

A(s) = {s | ∆Lk (s) ≠ 0},   

 A(s) = {s | ∆Lk (s) ≠ 0} . 

The merged jump term is 
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(3.13)   
Jk

*(t) = Jk
L (t) + Jk

L (t) = hk
L (Ti , Xi )

i=1

Nt
k

∑ + hk
L (Ti , Xi )

i=1

Nt
k

∑

        = hk
*(Ti , Xi )

i=1

Nt
*k

∑ ,

 

where N
t

*k  is the Poisson process associated with the jump Jk
*(t) .  

(3.14)     N
t

*k = N
t

k + N
t

k − 1A(s )∩A(s )
0<s≤t
∑ ,  

and 

(3.14)    hk
*(Ti , Xi ) = 1A(Ti ) hk

L (Ti , Xi ) +1A(Ti ) hk
L (Ti , Xi )  

3.4: Modeling with the Compound Poisson Processes 
 Though the generalized setting of marked point process contributes to a 
comprehensive and constructive mathematical approach, it is somewhat abstract and 
difficult to be implemented in practice. We are going to restrict the big framework to a 
more specific class, in which jumps of forward rates are assumed to be the compound 
Poisson processes made up of jump times and jump magnitudes. The compound 
Poisson process possesses information of “when the jump occurs” and “how large the 
jump is.” 
3.3.1: Definition (Compound Poisson Processes) 

A compound Poisson process (CPP) takes the form 

J (t) = ( Xi
i=1

Nt

∑ −1) , 

where tN  is a Poisson process that counts the jump times from time 0 to time t  

with mean jump rate λ , and the random variable iX  is i.i.d. with some 

density.  X i − 1 denotes the jump magnitude as a fraction of the i-th jump.  

A marked point process in which the points follow a Poisson process, the marks 

are i.i.d. random variables and the function h is represented as h(Ti , Xi ) = Xi − 1 is a 

compound Poisson process. The intensity measure of X can be written as 

 (3.15)      λ=( , ) ( )v dt dx f dx dt  

Expression (3.15) enables us to calculate an integral with respect to the intensity 
measure in the particular compound Poisson case: 
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h(s, x)∫ v(ds,dx) = (x
° ×[0,t ]
∫ −1)λ f (dx)ds

= λ ⋅ (x −1) f (dx)
°
∫ ⋅ ds

0

t

∫
= λmt

 

Hence, we have the compensated compound Poisson process 

(3.16)      ( ) ( )J t J t mtλ= −% . 

 The followings are the specifications of compound Poisson dynamics of the 
forward rates, 

(3.17)  
   
%Jk

L (t) = Jk
L (t) − λk mk

Lt = (Yk ,i
L

i=1

Nt
k

∑ −1) − λk mk
Lt,  E(Yk ,i

L −1) = mk
L ,  

(3.18)  
   
%Jk

L (t) = Jk
L (t) − λk mk

Lt = (Yk ,i
L −1)

i=1

Nt
k

∑ − λk mk
Lt,  E(Yk ,i

L −1) = mk
L  

The jump magnitudes can be arbitrarily distributed, but attaining a closed-form 
swaption pricing formula requires a specific setting on the jump size distributions. 
The jump part of kH  is 

(3.19)   
   
%J k

H (t ) = J k
H (t ) − λ k

H mk
H t = (Yk , i

H

i=1

N t
H k

∑ − 1) − λ k
H mk

H t ,  

where 

N
t

Hk = N
t

k + N
t

k − 1A(s )∩A(s)
0< s≤t
∑ ,   

and 

mk
H = E(Yk ,i

H −1) . 

Note that the expression of Poisson process of kH  makes sense because either a 
jump in riskfree forward rate or in defaultable forward rate will cause a jump in the 
forward default intensity. 

4. Pricing Credit Default Swaps and Swaptions 
4.1 Credit Default Swaps 
 In this subsection we are going to determine the fair “spread” or “premium” of a 
CDS contract.  
4.1.1: Definition (Credit Default Swap) 

A Credit Default Swap is a financial contract that allows the buyer to gain default 

protection from the seller by paying a periodical premium in exchange for 
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compensation on loss of the underlying credit. If default occurs between tenor time 

  [Tk−1,Tk ] , the compensation paid by the protection seller will be postponed to  Tk . The 

premium, called CDS spread, could be either fixed or variable over the contract life. 

For the sake of simplicity we would assume the CDS spread to be a constant, S . To 

analyze the cashflow stream of a CDS, we shall introduce the two separated parts of a 

CDS, which are the fee leg and the protection leg. Suppose the CDS contract is signed 

at start date  Tm  and matures at maturity date Tn
, then the time-t value of the fee leg 

in terms of basis points proportional to the tenor length is 

(4.1)       
1

, 1( ) ( )
n

m n k
k m

S t B tδ
−

+
=
∑ ;    

while the protection leg paid by the protection seller as long as default occurs is 

defined as 

(4.2)     
1

1

1 { }( ) [(1 )1 ] (1 ) ( )
k k

n

k t T T k
k m

B t E R R e tτ +

−

+ < ≤
=

− = − ∑ ,    

where ( )ke t  denotes time-t value of 1 dollar at Tk +1  if default occurs in the interval 

  [Tk ,Tk+1] , and R is the recovery rate. Some literatures refer 1− R  to Loss Given 

Default (LGD). ke  could be written as Bk+1(t)Et[(1− R)1{Tk <τ ≤Tk+1}]  which was proven by 

Schönbucher (2000) and also mentioned by Bannani and Dahan (2004). 

4.1.2: The Fair CDS Spread  
The value of a CDS contract is the difference of the fee leg and protection leg 

1 1

, 1 1( ) ( ) ( ) (1 ) ( )
n n

m n k k k
k m k m

S t B t B t R e tδ
− −

+ +
= =

− −∑ ∑ . 

The fair CDS spread is attained by equating the fee leg and protection leg of a CDS. 
As a consequence the CDS spread is valued to be 
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(4.3)     

   

Sm,n(t) @
Bk+1(t)

k=m

n−1

∑ Et[(1− R)1{Tk <τ ≤Tk+1}]

δBk+1(t)
k=m

n−1

∑

= (1− R)
ek

k=m

n−1

∑

δBk+1(t)
k=m

n−1

∑

   

Furthermore, some notational computations yield 

(4.4)     

  

ek
k=m

n−1

∑

δBk+1(t)
k=m

n−1

∑
=

δBk+1(t)
k=m

n−1

∑ Hk (t)

Bm,n(t)
,   

so the CDS spread could be represented as 

(4.5)      
  
Sm,n(t) = α k+1(t)

k=m

n−1

∑ Hk (t) ,      

where 

  α k+1(t) = 1 1
1

,
1

( ) ( )(1 ) (1 )
( ) ( )

k k
n

m n
k

k m

B t B tR R
B t B t

δ + +
−

+
=

− = −

∑
. 

The expression (4.5) is a useful relationship enabling us to link CDS price and 
default probability through weighted average, which is analogous to what we have 
seen in interest rate swap pricing from the Libor market model. This formula makes 
the separation of CDS quotes and survival probabilities (also default probabilities) 
possible, though just for the case that independence between interest rate and defaults 
is assumed. Recall that ( )kH t  is the discrete tenor hazard rate: 

1

1 ( 1)k
k

k

DH
Dδ +

= − , 

and that the default probability is just the ratio of defaultable bond price to defaultfree 
bond price. Hence the expression of CDS spread in (4.5) is linked to default 
probability which can be determined without any information of defaultable bonds. 
The details are left in section 5. A closed-form pricing formula of credit default 
swaption will be obtained by manipulation of equation (4.5) and change of measure. 
Due to the jump-diffusion setting here, the pricing formula is supposed be similar to 
that of interest swaption in Glasserman and Kou (2003), which takes the form of an 
infinite series, composed of Black-Scholes option formulae.  
4.2: Pricing Credit Default Swaptions 
4.2.1: Definition (Credit Default Swaption or Credit Spread Option) 

A payer credit default swaption is a financial contract providing the buyer the right to 
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sign a CDS contract with a predetermined spread *S （”the strike price”）. Assume the 

swaption starts at time 0 and terminates at timeT . The payoff of a payer credit 

swaption at maturity mT T≤  is 

  

[(Sm,n(T ) δBk+1(T )
k=m

n−1

∑ − (1− R) ek
k=m

n−1

∑ (T )) − (S * δBk+1(T )
k=m

n−1

∑ − (1− R) ek
k=m

n−1

∑ (T ))]+

= δBk (T )
k=m

n−1

∑ × [Sm,n(T ) − S*]+
 

Similarly, the payoff of a receiver credit swaption at maturity is 

  
δBk (T )

k=m

n−1

∑ × [S *−Sm,n(T )]+  

Since it can be considered as an option on CDS spread, the credit default swaption is 

also named as Credit Spread Option (CSO). 

Note: Hereafter all the cases of credit default swaptions we consider are payer-type 
swaptions. 

 As our goal is to price a credit default swaption, we will change the original 
probability measure to another one called the default swap measure, or forward 
survival measure as applied by Schönbucher (2000) and Bennani and Dahan (2004). 
The definition of a default swap measure is given as the following. 
Definition 4.2.3 (Default Swap Measure) 
The PBm,n B - default swap measure is a probability measure, under which any security 

taking the defaultable annuity ,m nB  as a numeraire is a martingale.  

Manipulating change of measure requires the application of Girsanov theorem. 
However, while change of measure with respect to a geometric Brownian motion only 
makes the drift term altered, change of measure in a jump-diffusion model will 
simultaneously yield different jump parameters. In this model change of measure will 
also lead the jump intensity and jump size mean and volatility to change. Bjork et al. 
(1997) proved a generalized version Girsanov theorem to deal with jumps in 
underlying variables, which is restated in the following. 
Theorem 4.2.4 (Girsanov) 

Consider a filtered probability space (Ω, F ,{F}t , P) . Let W (t)  be a standard 

Brownian motion and θ(t)  a predictable process such that 

 |θ(s) |
0

t

∫  ds < ∞ . 
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If we define a process Z  such that  

(4.6)  dZ(t) = Z(t)θ(t)dW (t)+ Z(t−) (Φ(t, x)−1){µ(dt,dx) −  v(dt,dx)}
E∫ , 

where Φ(t, x)  is a process satisfying 

|Φ(s, x) | λ(s,dx)
E∫0

t

∫  ds < ∞ , 

and 

EPZ (t) = 1, 

then there exists a measure Q  equivalent to P with 

Z(t) =
dQ
dP

(t)  

such that 

 dW (t) = θ(t)dt + d %W (t) , 

where  
%W (t)  is a standard Brownian motion under Q,  

and the jump intensity under Q is  

(4.7)      
  
vQ (t,dx) = Φ(t, x)vP (t,dx)  

Glasserman and Merener (2003) give a thorough mathematical procedure on how 
to derive the function Φ , and the details are restated in appendix A. Rewrite (4.6) in 
integral form we have 

(4.8)   Z(t) = exp{ [−
1
2
θ(s)2 ds +θ(s)dW (s) + (1− Φ(s, x))v(ds,dx)

E∫ ]
0

t

∫  

+ ln
i=1

Nt

∑ Φ(Ti , Xi )} . 

Where the function Φ  is 

( )

1 ( )
( , )

1 ( )(1 )

kn
j

k
k m j t j

L t
t x b

L t xη

δ
δ= =

+
Φ =

+ +∑ ∏ , 

where 

  

bk =
B k+1(t)

δB k+1(t)
k=m

n−1

∑
=

B k+1(t)
B m,n(t)

 

4.2.5 The dynamics of forward CDS spread 
Before deriving the swaption pricing formula, the process of a forward CDS 

spread needs to be specified. From definition (4.2.3) we can inferred that a CDS 
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spread is a martingale under the associated default swap measure. Hence by 
martingale representation theorem, the process of spread SBm, n B (t) can be expressed in 
the following differential form 

 (4.9)     
   

dSm,n(t)
Sm,n(t−)

= γ m,n(t)dWm,n(t) + d %Jm,n(t),  

where 

(4.10)   
 
d %Jm,n (t) = hm,n (Ti , Xi )

i=1

Nt

∑ − hm,n (s, x
0

∞

∫ )dvm,n (s, x)
0

t

∫ , 

or in integral form 

(4.11)   Sm,n (t) = Sm,n (0) ⋅ exp{ [−
1
2
γ m,n (s)2 ds + γ m,n (s)dWm,n (s)

0

t

∫  

− hm,n (s, x)dvm,n (s, x)
0

∞

∫ ]+ ln
i=1

Nt

∑ (hm,n (Ti , Xi ) +1)} . 

In the compound Poisson setting we are able to derive a closed-form swaption 
pricing formula as long as the distribution of jump magnitude is appropriately 
assumed. Glasserman and Kou (2003) assume the jumps to be lognormally distributed, 
while Kou (2002) uses double exponential distribution to describe the jumps. Here we 
will apply the lognormal assumption on the jump distribution. 

Assumption 4.2.5 We assume Yi
m,n  is lognormally distributed with mean 1+ mY  

and log-volatility s, and 
 
lnYi

m,n : N (ln(1+ mY ) −
1
2

s2 , s2 ) . 

Therefore, in the particular compound Poisson case we have 

(4.12)  Sm,n (t) = Sm,n (0) ⋅ exp{ [−
1
2
γ m,n (s)2 ds + γ m,n (s)dW (s)

0

t

∫ ]− λm,nmt  

+ ln
i=1

Nt

∑ (Yi
m,n )} . 

Where we replace hm,n  by Yi
m,n −1, which is the jump magnitude of Sm,n  as a 

fraction of Sm ,n . 

4.2.6 Value of a credit default swaptions 
Denote C(t,Tm ,Tn ,S*)  by the time-t value of a payer credit default swaption 

providing the buyer enter into a CDS contract starting at Tm  and terminating at Tn  

with the strike spread S* . The swaption’s payoff at the maturity T is 

  
C(T ,Tm ,Tn ,S*) = δBk (T )

k=m

n−1

∑ × [Sm,n(T ) − S*]+ . 
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By the definition 4.2.3 we know that the CDS spread is a martingale under the 
default swap measure. Hence, via operation of conditional expectation under 
PBm,n B-default swap measure and knowing the initial CDS spread, the value of a payer 
credit default swaption at time t can be obtained. 

(4.13)  

  

C(t,Sm,n(t),Tm ,Tn ,S*) = Bm,n(t)Et
m,n[

C(T ,Tm ,Tn ,S*)
Bm,n(T )

]

= Bm,n(t)Et
m,n{[Sm,n(T ) − S*]+}

=
e−λm ,n (T − t )[λm,n(T − t)] j

j!
BC(Sm,n

( j ) (t)
j=0

∞

∑ ,T − t,S*,Vj
2 (t), Bm,n(t))

 

where  

  

Sm,n
( j ) (t) = Sm,n(t) ⋅ e−λm ,n (T − t ) ⋅ (1+ m) j ,

Vj
2 (t) =

ρ2 (t) + js2

T − t
,ρ2 (t) = γ m,n

2(s)ds
t

T

∫ ,

E(Yk ,i
m,n ) = 1+ m,  Var(lnYk ,i

m,n ) = s2

 

and BC represent the Black-Scholes call price formula 
(4.14)    BC(S ,T , K ,σ 2 , DF ) =  

  
DF[S ⋅Φ(

ln(S) − ln(K ) + 1
2
σ 2T

σ T
) − K ⋅Φ(

ln(S) − ln(K ) − 1
2
σ 2T

σ T
)] , 

with DF the discount factor. 
In (4.13) the conditional expectation is computed by taking an iterated 

expectation on the number of jumps on CDS spread, and the proof will be left in the 
appendix. To obtain the price of a CSO the only required inputs are the initial 
underlying CDS spread, the estimated CDS spread volatility and the defaultable 
forward rate term structure implied by the prices of the corporate zero coupon bonds 
of the same company, which are constructed by the coupon-bearing corporate bonds.  

Apparently, if 
  
λm,n = 0  we have  

  
C(t,Sm,n(t),Tm ,Tn ,S*) = BC(Sm,n(t),T − t,S*,

γ m,n
2(s)ds

t

T

∫
T − t

, Bm,n(t))  

 We note that when the jump rate of TBmB,TBn B - CDS spread is zero, the pricing 
formula is reduced to Black-Scholes formula since there are no jumps on the 
underlying CDS spread. When λm,n  is large, the CSO must be considerably more 
expensive since more jumps on the underlying asset results in higher potential payoffs 
for the holder. 
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4.2.7 A freezing approximation 
In this subsection we are going to process to an approximation that will simplify 

the computation of the dynamics of CDS spread and enable the volatility and jump 
term of CDS spread to be expressed in terms of those of HBk B’s. This “freezing” 
approximation, as indicated by Brigo in 2004 and Brigo et al. in (2005), has been 
working pretty well in LIBOR market model. By this approximation a succinct 
linkage between the multi-period spread and the single-period spread is obtained.  
Recall expression (4.5), in which CDS spread is written as a linear combination of 
forward default intensities. By chain rule the differential form of TBmB, TBn B- CDS spread 
is 

 

dSm,n (t) =
∂Sm,n (t)
∂H k (t)k=m

n−1

∑ ⋅dH k (t) =
∂Sm,n (t)
∂Hk (t)k=m

n−1

∑ ⋅Hk (t−)(γ k
H dW k+1(t) + d %Jk

H (t))

= Sm,n (t)
∂Sm,n (t)
∂Hk (t)k=m

n−1

∑ ⋅
H k (t−)
Sm,n (t)

(γ k
H dW k+1(t) + d %Jk

H (t))

 

Then we use the approximation 
∂Sm,n (t)
∂H k (t)

H k (t−)
Sm,n (t)

≈
∂Sm,n (0)
∂H k (0)

H k (0)
Sm,n (0)

. 

Therefore 

 

dSm,n (t)
Sm,n (t−)

= γ m,n (t)dWm,n (t)+ d %Jm,n (t)

≈
∂Sm,n (0)
∂Hk (0)k=m

n−1

∑ ⋅
Hk (0)
Sm,n (0)

(γ k
H dW k+1(t) + d %Jk

H (t))

 

Since ∂Sm,n (0)
∂Hk (0)

= α k+1(0) , we have 

(4.14) 

 
and 
(4.15) 

 Expression (4.14) and (4.15) are useful in simulation because the volatility term 
and jump part of a forward CDS spread can be chosen in accordance with the two 
relationships.  

5. Numerical Illustrations 

5.1 Default Probability and Survival Curve 
 We first show that the CDS spread can be represented as survival probability of 
the underlying entity. Recall expression (4.5), 

 
%Jm,n (t) =

1
Sm,n (0)

α k+1(0)
k=m

n−1

∑ Hk (0) %Jk
H (t)

γ m,n (t)Wm,n (t) =
1

Sm,n (0)
α k+1(0)

k=m

n−1

∑ Hk (0)γ k
HW k+1(t)
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1
1

,
,

( )( ) (1 ) ( )
( )

n
k

m n k
k m m n

B tS t R H t
B t
δ−

+

=

= −∑ . 

Replace the risky bond price ( )B t  by ( ) ( )D t B t  for all k, and ( )kH t  by 

1

( )1 ( 1)
( )

k

k

D t
D tδ +

−  we obtain 

(5.1)     

  

Sm,n(t) =
1− R
δ

Bk+1(t)(Dk (t) − Dk+1(t))

Bk+1(t)Dk+1(t)
k=m

n−1

∑k=m

n−1

∑ .  

From section 2 we know that DBk B(t) is equivalent to the conditional survival 
probability at time t under Tk -forward default measure. The above formula exhibits 
the linkage between CDS spread and default probability, which can be attained by 
using market CDS quotes and the riskfree rate curve. For simplicity, we set 
m = 0 and n = i  in the spread of a CDS contract starting at Tm  and terminating at 
Tn , namely,  

  
Sm,n ≡ S0,i ≡ Si , for i = 1,2,...  

A general relationship between CDS market quote and the survival probability is 
derived as 

δ

− −

+
= =

−
= ⋅ −

+ − ∑ ∑
1 1

1
0 1

1 1(0) { (0) (0) (0) (0)}
(0) (0) 1

n n

n j j j j
j jn n

RD B D B D
B S R

 

or 

 Dn (0) =
1

Bn (0) ⋅ (δSn (0) +1− R)
⋅{(1− R)[ Bj+1(0)Dj (0) − Bj (0)Dj (0)

j=1

n−1

∑
j=0

n−1

∑ ]  

 −Sn (0) δ j Bj (0)Dj (0)
j=1

n−1

∑ }  

 Given market quoted, Tn -matured CDS spread, T1  up to Tn−1 - survival 
probability, riskfree interest rate curve up to Tn  and the recovery rate, we can obtain 
the Tn - survival probability. A survival curve from T1  to Tn  can be extracted by a 
recurrence procedure. In the following we give an example about how to plot a 
survival curve of a legal entity by the above procedure.  
Examples: 
 Besides extracting the survival curve of an entity from the CDS quote, we will 
also illustrate how the dynamics of survival probability and CDS spread term 
structure is affected when CDS spread has the possibility to jump. Since the hazard 
rate HBk B(t) is considered as a dynamic process, we can forecast the hazard rate term 
structure as well as default probabilities and predict the widening of CDS spreads 
provided that the parameters are appropriately estimated. In the first example we 
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derive the default probabilities of different terms from the CDS spread of IBM quoted 
on 1/20/2006, compare those to the default probabilities calculated by Bloomberg, and 
plot the default probability curve. In the second example, in which the specified 
reference entity is the British Airway, we plot the current CDS spread curve and use 
input different jump rates to simulate the corresponding CDS spread curve 0.5 year 
after that date to see how the CDS spread term structure would shift when the 
underlying CDS spread has different jump rates. A reasonable guess is that the default 
probability curve as well as the CDS spread curve has a greater up ward movement as 
the jump rate increases. The input CDS spreads of British Airways is quoted on 
4/11/2006 and the chosen parameters are: σ k

L = 0.25  and σ k
H = 0.35  for all k, 

mY = 0.5 , s = 0.2 . In both examples we use EURIBOR curve as the reference 
riskfree forward curve and set the recovery rate R be 0.4. Spreads data is listed in 
table 5.1.1. The results of example 1 and example 2 are respectively illustrated in 
figure 5.1.1 and figure 5.1.2. 

Table 5.1.1: CDS spreads and default probabilities of IBM on 1/20/2006  

Year Spread Model DP Bloomberg DP 
0.5 6.576 0.0005 0.0005 
1 6.576 0.0011 0.0011 
2 10.230 0.0034 0.0035 
3 13.915 0.0071 0.0071 
4 16.748 0.0114 0.0115 
5 19.581 0.0167 0.0169 
7 27.608 0.0333 0.0339 
10 39.642 0.0681 0.0707 
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QuickTime?and a
TIFF (LZW) decompressor

are needed to see this picture.

 
Figure 5.1.1 The default probability curve of IBM on 1/20/2006 derived 
by this model and that calculated by Bloomberg. 

Table 5.1.2 CDS mid spreads of British Airway (4/11/2006) 

 1y 2y 3y 4y 5y 6y 7y 
25.0 40.0 62.0 99.0 125.5 139.0 152.5 
8y 9y 10y     

CDS 
Spread 
(in bps) 166.3 180.2 194.0     

 

QuickTime?and a
TIFF (LZW) decompressor

are needed to see this picture.
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Figure 5.1.3 Widening of CDS spreads with different jump rates for 
the underlying CDS spread. 

5.2 Implied Volatilities of Credit Default Swaptions 
In this subsection we investigate the implied volatility structure of credit default 

swaption. Glasserman and Kou (2003) indicate the importance of jumps and 
stochastic volatility in implied volatility curve. Das and Sundarum (1999) investigate 
the shape of implied volatility in jump-diffusion and implied volatility models. We 
shall discuss how implied volatilities are related to jumps and discover how jump 
parameters of CDS spreads affect volatility structures of credit default swaption. 

Consider the case of payer swaptions. Different implied volatility structures are 
demonstrated with respect to different inputs of jump parameters, which are jump rate, 
mean value of jump size and log-volatility of jump size of the corresponding CDS 
spread. The numerical experiment sets the jump intensity (or jump rate) of the 
underlying CDS spread to be λm,n = λ , the initial CDS spread to be 500 basis points, 
swaption time to maturity (T ) to be two years with tenor-length (δ ) six months.We 
also fix the riskfree forward rate ( Lk ) at 4% and assume a constant CDS spread 
volatility γ m,n  to be 0.25. The strike spread is ranged from 200 bps to 800 bps 
increasing by 50 bps. The following three different cases are considered.  

In the first case we input different jump rates (λ ) and hold other parameters 
fixed. The implied volatility tends to be higher as jump rate grows (see Table 5.2.1). 
Larger jump rate means the underlying CDS spread jumps more frequently, which in 
turn will push up swaption price as well as implied volatility. 

Secondly, we allow the log-volatility of the jump size in CDS spread ( s ) to vary, 
with other parameters fixed, to examine how the implied volatility curve would 
fluctuate according to various inputs of s . The results are listed in Table 5.2.2. The 
climbing log-volatility of jump makes the implied volatility of CSO shift up. Since the 
more dispersed the underlying CDS spread is, the higher possibility big jumps would 
occur, which makes the CSO more hazardous and implied volatility larger. 

In the last case, different values of mean jump size of CDS spread ( mY ) are input 
and other parameters are held fixed. Table 5.2.3 demonstrates the numerical results. It 
shows the various shapes of implied volatility curves with different mY . When the 
mean jump size is zero, it yields a volatility “smile”; while the nonzero mean jump 
size brings into a volatility “skew”, with an upward skew if mY > 0  and downward 
skew if mY < 0 . The skew and smile phenomenon can be interpreted in terms of 
market’s expectation of jumps. In the case of positive mean jump size, an upward 
sloping volatility curve is the result of the possible large positive jumps which is 
concerned by the market participants. A downward skew volatility curve, where the 
mean jump size is negative, comes from the fear of large negative jumps. In the case 
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of mY = 0 , the market has a symmetric anticipation for jumps, so the volatility curve 
is shaped as a smile. As is shown in Table 5.2.3 and Figure 5.2.3, the implied volatility 
curve of CSO whose underlying mean jump size equals to zero falls below that of 
CSO whose underlying mean jump size is greater or less than zero. 
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Figure 5.2.1 Implied Volatility Curve of a credit default swaption with different jump 
rates and fixed jump size mean and log-volatility, where mY = 0 , = 0.3s  
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Figure 5.2.2 Implied Volatility Curve of a two-year credit default swaption with 
different jump size log-volatility and fixed jump size mean and jump rate, where 
λ = 0.5 , mY = 0.3.  
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Figure 5.2.3 Implied Volatility Curve of a two-year credit default swaption 
with different mean jump sizes and fixed jump rate and jump size 
log-volatility, where λ = 0.5 , = 0.25s  

6. Conclusion 

 In this paper we assume that defaultfree and defaultable forward rates 
follow the jump diffusion process and model the jump parts with compound 
Poisson process. By this setting the credit spread and the hazard rate also have 
jump-diffusion dynamics. We then deduce a fair CDS spread formula from 
which default probabilities can be stripped. In the valuation of credit default 
swaption we treat the underlying CDS spread as the major variable and 
determine its jump-diffusive dynamics under the default swap measure. With 
this jump diffusion setting we are capable of fitting the distribution of CDS 
spread returns to the leptokurtic feature as can be seen in the market. The price 
of credit default swaption is attainable under a specific compound Poisson 
setting with its jump magnitude assumed to be lognormal. The pricing formula 
appears to be an infinite series, and it converges to Black-Scholes formula 
when the jump rate of the underlying CDS spread attends zero. A larger jump 



 

rate will cause a higher swaption price. We also demonstrate how to derive the 
implied default probability from its CDS spread quote and show that the 
default probability curve has a greater upward movement as the jump rate is 
higher. Additionally, we exhibit the flexibility of our approach by illustrating 
the volatility “smiles” and “skews” from the swaption prices calculated by our 
pricing formula. Further empirical study is required in order to verify the 
effectiveness of this model. There are two more issues to be left for future 
studies: The first is to specify a more appropriate class of dynamics for the 
diffusion parts of the forward rates, and the mean-reversion process may be a 
good candidate; the second is to embed default correlations and extend this 
model to the pricing of multi-name credit derivatives such as CDOs.  
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Appendix A – Change of measure with the inclusion of jumps 
First we consider the case of marked-point-processes. For every defaultable bond 
price   B(t) , the corresponding Radon-Nikodym derivative under default swap 
measure is 

Z(t) =
dPm,n

dP
=

Bm,n (t)
B(t)

B(0)
Bm,n (0)

=
B(0)

Bm,n (0)
1

1+ δLj (Tj )
1

1+ δLj (t)j=η(t )

k

∏
k=m

n

∑
j=0

η(t )

∏
 

The jump magnitude of   Z(t)  is 

Z(t) − Z(t−) =
B(0)

Bm,n(0)
⋅

δ 1
1+ δLj (t−)(1+ hj ( y,t))j=η(t )

k

∏
k=m

n

∑

δ 1
1+ δLj (t−)j=η(t )

k

∏
k=m

n

∑

=
B(0)

Bm,n(0)
⋅ bk

1+ δLj (t−)
1+ δLj (t−)(1+ hj ( y,t))j=η(t )

k

∏
k=m

n

∑

 

where 

  

bk =
B k+1(t)

δB k+1(t)
k=m

n−1

∑
=

B k+1(t)
B m,n(t)

. 

Let y denotes the jump magnitude of the defaultable forward rate, then  Z(t)  can be 
written in a differential form: 

   

dZ(t)
Z(t−)

=
B(0)

Bm,n(0)
{...dW (t) + ( bk

1+ δLj (t)
1+ δLj (t)(1+ hj ( y,t))j=η(t )

k

∏
k=m

n

∑° D∫ −1)(µP (dy,dt) − vP (dy,dt))}  

where from the jump-diffusion version of Girsanov theorem there exists a function 
Φ  that satisfies the finite integrable condition such that 

  
v

Pm ,n (dy,t) = Φ( y,t)vP (dy,t) , 

Specifically for compound Poisson processes here, h( y,t)  will be replaced by y , and 
the compensated measure   v(dy,dt)  can be further specified by 

  v(dy,dt) = λ f (dy)dt , 

In consequence, we can write the desired function Φ( y,t)  in a more specific form 
representing a direct relationship between the jump rates and densities of y  in the 

original probability measure P  and those in the default swap measure ,m nP : 

Φ( y,t) =
λ P

m,n f p
m,n( y)

λ P f p ( y) ( )

1 ( )
1 ( )(1 )

kn
j

k
k m j t j

L t
b

L t yη

δ
δ= =

+
=

+ +∑ ∏ . 
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Appendix B – Derivation of the swaption price 

  

C(t,Sm,n(t),Tm ,Tn ,S*, Bm,n(t))

= Bm,n(t)Et
m,n[

C(T ,Tm ,Tn ,S*, Bm,n(T ))
Bm,n(T )

]

= Bm,n(t)Et
m,n{[Sm,n(T ) − S*]+}

= Bm,n(t)Et
m,n{Et

m,n{[Sm,n(T ) − S*]+ |σ (NT − Nt )}

= Bm,n(t) Et
m,n{[Sm,n(T ) − S*]+ | NT − Nt = j}⋅ Pm,n(NT − Nt = j}

j=0

∞

∑

= Bm,n(t)
e−λm ,n (T − t )[λm,n(T − t)] j

j!
⋅ Em,n{[Sm,n(T ) − S*]+ | NT − Nt = j}

j=0

∞

∑         (*)

 

By (4.7) we can replace 
  
Sm,n(T )  as 

  
Sm,n(T ) = Sm,n(t) ⋅exp{ [−

1
2
γ m,n(s)2 ds + γ m,n(s)dWm,n(s)

t

T

∫ ]− λm,nmY (T − t) + ln
i=1

NT −Nt

∑ (Yi
m,n )}}

So the infinite series becomes 

  

e−λm ,n (T − t )[λm,n(T − t)] j

j!
⋅ Em,n{[Sm,n(t) ⋅exp{ [−

1
2
γ m,n(s)2 ds + γ m,n(s)dWm,n(s)

t

T

∫ ]
j=0

∞

∑

−λm,nmY (T − t) + ln
i=1

j

∑ (Yi
m,n )}− S*]+}

=
e−λm ,n (T − t )[λm,n(T − t)] j

j!
⋅ Em,n{[Sm,n(t) ⋅ Yi

m,n

i=0

j

∏ ⋅exp{ [−
1
2
γ m,n(s)2 ds + γ m,n(s)dWm,n(s)

t

T

∫ ]
j=0

∞

∑
−λm,nmY (T − t)}− S*]+}

We also know that 
  
ln Sm,n(T )  is normally distributed with 

  
E ln Sm,n(T ) = ln Sm,n(t) −

1
2
γ m,n(s)2 ds + λmnmY (T − t)

t

T

∫ [ln(1+ mY ) −
1
2

s2 −1] , and 

  
var(ln Sm,n(T )) = γ m,n(s)2 ds + λmn(T − t)

t

T

∫ s2  

Hence, the expectation under TBmB,TBn B– measure is calculated as 
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[Sm,n(t) ⋅ e−λm ,n (T − t ) ⋅ (1+ mY ) j ⋅ N (
ln[Sm,n(t) ⋅ (1+ mY ) j ]− ln(S*) + 1

2
( γ m,n

2 (s)ds
t

T

∫ + js2 )

γ m,n
2(s)ds

t

T

∫ + js2
)

−S* ⋅ N (
ln[Sm,n(t) ⋅ (1+ mY ) j ]− ln(S*) − 1

2
( γ m,n

2 (s)ds
t

T

∫ + js2 )

γ m,n
2(s)ds

t

T

∫ + js2
)]

As a result, the swaption price is 

  

C(t,Sm,n(t),Tm ,Tn ,S*, Bm,n(t))

=
e−λm ,n (T − t )[λm,n(T − t)] j

j!
BC(Sm,n

( j ) (t)
j=0

∞

∑ ,T − t,S*,Vj
2 (t), Bm,n(t))

 

 
 
 
 
 
 

 


