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摘要 

本文採用門檻誤差修正模型(TVECM)來探討台灣證券交易所股市升降單位

縮小前後，台指期貨與現貨間的非線性動態關係。資料從民國九十三年五月一日

至民國九十四年十二月三十日，並將樣本期間以股市升降單位縮小前後區分成兩

組樣本期間。實證結果顯示：台指期貨與現貨間存在著顯著的門檻共整合及非線

性短期動態關係，意味著門檻誤差修正模型比線性誤差修正模型更能有效配適期

貨對現貨的價格動態。而由於股市升降單位縮小可減少價差成本，因此套利門檻

值降低，股市升降單位縮小確實有效提升期貨與現貨的長期連動關係。整體而

言，台指期貨相對於台指現貨具有較強的領先性。最後，股市升降單位縮小可有

效減少定價誤差，改善期貨與現貨的定價效率。 

 

關鍵字： 定價效率; 套利; 非線性動態關係; 股價升降單位; 門檻共整合;  

門檻誤差修正模型; 股價升降單位
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ABSTRACT 

     This study employs the threshold vector error correction model (TVECM) to 
model the price dynamics between futures and spot markets across the pre- and post- 
reduction of tick size periods.  The sample period extends over two-year trading days 
from May 1, 2004 to December 31, 2005.  The sample period is divided into two 
sub-periods before and after the reduction of tick size on March 1, 2005.  First of all, 
the results confirm the presence of threshold cointegration, and nonlinear dynamic 
coefficients in both sub-sample periods, i.e., implying the threshold VECM model fits 
the price dynamics between futures and spot markets superior to the linear VECM 
model.  Next, the threshold value decreases after the reduction of tick size, because 
the decrease of tick size reduces the spread cost which comprises the main transaction 
cost and lower the arbitrage threshold for arbitrageurs.  Then, the long-run 
co-movement extent between these two financial markets turns stronger.  This result 
is caused by the lower transaction costs after the reduction of tick size, which reduces 
the obstacles for the two prices to return to long-run equilibrium.  Last, the dynamic 
coefficients show the futures clearly leads the spot in both sub-sample periods.  Last 
but not least, the reduction of tick size can effectively lower the mispricing error and 
improve the pricing efficiency. 

 

Keywords: pricing efficiency; arbitrage; nonlinear dynamic relationship; tick size; 

threshold cointegration; TVECM; tick size 
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1. Introduction 

     Tick size signifies the minimum stock price increment unit.  Reduction of tick 

size is crucial for the government officials since it might affect market liquidity, and 

consequently the entire functioning of financial markets.  If the price movement 

determined by investors turns out to be smaller than the minimum stock price 

increment unit settled by the stock exchange, the price movement will turn larger to 

the tick size restriction.  As a result, the spread which constitutes a major part of 

investors’ trading cost between best bid and ask prices will ascend.  Because the 

larger transaction cost impedes the investors to trade and trigger arbitrage, mispricing 

error (MPE) between futures and spot would become larger, meaning worse pricing 

efficiency.  Advocates of the adoption of reduction argue that the better formation of 

stock prices will benefit investors.  Because the restriction of pricing increment 

dominates the possible minimum bid-ask spread for every stock.  This spread means 

the difference between the lowest price an investor can get for selling the stock and 

the highest price an investor can pay for purchasing the same stock. 

     On the other hand, reduction of tick size may affect not only bid-ask spread.  

Harris (1994, 1997) and Furfine (2003) argue that a smaller tick size can inhibit 

incentives to provide liquidity, and potentially ruin market quality.  For large traders, 

quoted depth at the best-quoted prices may be insufficient to fill the desired order.  

In consequence, the effective transaction price lies somewhere outside the best bid 

and ask prices.  These costs originate from the lack of supply and demand shares that 

can be purchased and sold at the same price.  In general, these studies find that the 

smaller tick size decreases quoted and effective bid-ask spread, but also reduces 

liquidity provision. 

     For the purpose of studying the evidently contradictory findings reported in 

previous papers, many studies use different estimators to examine whether and/or to 
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what extent market liquidity was affected by decimalization.  Most of them 

eventually find that decimalization do improve the decrease of overall transaction cost 

(Harris, 1997; Bollen and Whaley, 1998; Chakravarty, Van Ness, and Van Ness, 2005; 

Furfine, 2003; Bessembinder, 2003; Chakravarty, Panchapagesan, and Wood, 2003). 

     Taiwanese financial authorities enforce a succession of revolution in an 

endeavor to abate the trading restriction, liberalize financial market, attract more 

investors to enter into the market as well as connect to the international financial 

market further.  On March 1, 2005, the Taiwan Stock Exchange (TSE) reduced the 

minimum change for stock prices and quotes to lower the trading costs of investors 

and to promote stock price continuity.  Investors can memorize the new tick size and 

price interval combination much easier and have more tick to quote and trade 

according to their trading strategies. 

     This paper examines the effect of the decrease in transaction cost resulted from 

the shrink of tick size on Taiwan Stock Exchange Capitalization Weighted Stock 

Index (TAIEX) futures pricing efficiency.  Lower transaction cost is supposed to 

bring about a decline in the index futures mispricing error (MPE) that triggers 

arbitrage.  However, this supposition may be erroneous because of the following 

reasons.  First, Goldstein and Kavajecz (2000) and Jones and Lipson (2001) discover 

that transaction costs decrease only for small orders because cumulative market depth 

falls after the reduction of tick size.  Second, Neal (1996) finds that arbitrageurs earn 

on average only around half the quoted spread for each round-trip arbitrage trade.  

Therefore, arbitrageurs must be able to trade at prices inside the quoted spread for 

arbitrage to be profitable.  With above considerations in mind, we identify and 

investigate two important empirical questions.  First, does the reduction of the 

minimum price increment affect the level of the arbitrage costs, and second, has 

pricing efficiency improved in the new milieu. 
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Nevertheless, the volatility of spot and futures affects the arbitrage behavior 

heavily.  Higher volatility leads to an increase in timing risk and in tracking error 

risk incurred from trading only a subset of the stocks underlying the index.  

Increased volatility of the futures and the underlying market will enhance the 

execution risk for the position.  In periods of high volatility, one would expect 

arbitrageurs to initiate trades only at relatively higher MPEs to make up for the 

increased price risk of nonsimultaneous order execution (Henker, Thomas and Martin 

Martens (2005)).  The MPEs may be affected not only by the transaction cost but 

also by spot and futures volatility.  With the above consideration, this study will 

carry out the following examinations.  First, do the volatility of the spot and futures 

market significantly alter across the pre- and post-reduction period, and second, if the 

volatility of futures and spot significantly alter across two sample periods, has pricing 

efficiency improved in the new milieu after controlling for the volatility effect. 

The existence of transaction costs and other market imperfection factors might 

cause the error correction effects on the price adjustment be significant only when the 

deviation of price between futures and spot is larger than a certain threshold.  

Martens, Kofman and Vorst (1998) find strong evidence of nonlinear adjustment in 

the presence of transactions.  Dwyer, Locke, and Yu (1996) discover that a threshold 

error correction mechanism could characterize nonlinear dynamic relationship 

between the S&P500 futures and spot more properly.  Reduction of tick size would 

affect transaction costs heavily; therefore, we will further investigate the impact of the 

reduction of tick size on nonlinear dynamic relationship between TAIEX index 

futures and spot. 

Most of the previous studies focus the effect of tick size changes on the liquidity, 

volatility, market depth of the stock markets.  However, fewer studies investigated 

the impact of the reduction of tick size on index futures pricing efficiency, arbitrage 
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behavior and nonlinear dynamic relationship.  The theoretical price of index futures 

is derived from the spot index; therefore, spot index behavior is highly related with 

futures pricing efficiency.  Hence, this paper will examine the pricing efficiency, 

arbitrage opportunities and nonlinear dynamic relationship between index futures and 

spot in the intraday level before and after the reduction of tick size.   

The remainder of this paper is structured as follows.  Section 2 discusses the 

tick size change on the stock exchanges.  Section 3 is the literature review.  Data 

and methodology are presented in Section 4, followed, in Section 5, by a discussion of 

the empirical results.  Section 6 summarizes and concludes this paper. 

 

2. Tick Size Changes on the Stock Exchanges 

     Many existent articles examine the impact of tick size through the viewpoint of 

bid-ask spread which is the difference between the bid and ask quoted price.  The 

bid-ask spread is one of the main transaction costs for investors.  When the bid-ask 

spreads get smaller, the trade price which the stock demander pays and the stock 

supplier gets will become closer to the true price.  The stock demander just pays the 

price a little bit higher than the true price and the stock supplier just obtain the price a 

little bit lower than the true price; therefore, the liquidity-demander’s transaction cost 

falls.  If the tick size which stands for the minimum stock price increment unit is 

larger than the equilibrium bid-ask spread determined by the economy, the bid-ask 

spread representing the main transaction cost will turn larger to the tick size 

restriction and the market efficiency will get worse. 

     In order to improve the market efficiency, there is a trend at major stock 

exchanges in the world to reduce tick size with an intention to lower the investor’s 

transaction cost in these years.  For instance, the New York Stock Exchange (NYSE) 

reduced the tick size from eighths to sixteenths on June 24, 1997.  Both the New 
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York Stock Exchange and the American Stock Exchange (AMEX) switched to a 

decimal pricing system in quoting bid and ask prices at $0.01 increment.1  NASDAQ 

moved from eighths to sixteenths on June 2, 1997, and began converting to decimal 

pricing on March 12, 2001, finally completed the process on April 9, 2001.    

Singapore Exchange (SGX) shrank the tick size on the stock price over SGD 

$25 from SGD $0.5 to SGD $0.1 on July 18, 1994.  Toronto Stock Exchange (TSE) 

diminished the tick size on stock price over CAD $5 from CAD $0.125 to CAD $0.05 

and on stock price between CAD $3 and CAD $5 from CAD $0.05 to CAD $0.01. 

Taiwan Stock Exchange trades stocks in fractions and narrows the tick size in 

every fraction to lower the trading costs of investors and to promote stock price 

continuity after March 1, 2005.  Investors can memorize the new tick size and price 

interval combination much easier and have more ticks to quote and trade according to 

their trading strategies.  Table 1 presents the minimum price increment comparison 

prior to and posterior to the reduction of tick size for every price interval. 

 

3. Literature Review 

3.1 Tick Size Effect 

     Decimalization of the U.S. stock exchanges has incurred a large number of 

contemporaneous researches during the past decades.  Harris (1994) uses data from a 

time when the minimum tick size is eighths and estimates the frequency of spreads at 

the minimum by fitting a regression model.  Using this relationship, Harris estimates 

that the impact of reducing the minimum tick size to sixteenths would be 

accompanied by both lower bid-ask spreads and lower quoted depth.  His results are 

therefore also consistent with the notion that optimal tick size is related to the size of a 

                                                
1 Specifically, the NYSE lowered the minimum tick size to a penny for seven securities on August 28, 
2000, 57 more securities on September 25, 2000, and an additional 94 securities on December 5, 2000.  
All remaining securities began trading in decimals on January 29, 2001. 
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trade.  He indicates that small traders would almost certainly benefit from smaller 

tick sizes, but that large traders might be hurt if the depth of the market falls 

sufficiently. 

     Unlike Harris (1994), Chakravarty, Panchapagesan, and Wood (2003) examine 

the effect of decimalization on institutional investors by using proprietary data.  

They find no evidence that decimalization increases trading costs for institutions.  In 

fact, institutional trading costs appear to decline by about 23 basis points (or, roughly 

5 cents per share) after decimalization.  In economic terms, this decrease roughly 

translates to an average monthly saving of $133 million in institutional trading costs.  

Estimations involving robust multivariate techniques that condition on order, manager 

and market characteristics yield roughly similar reductions as well.  They find 

significant changes in order routing practices overall because of increase usage of 

alternate brokers (represented by ECNs and crossing networks such as Instinet) for 

easy-to-fill (i.e., smaller) orders and independent research brokers for orders that are 

difficult to fill (i.e., larger size orders). 

     Goldstein and Kavajecz (2000) analyze the NYSE’s reduction in tick size from 

eighths to sixteenths and address the relationship between minimum tick size, bid-ask 

spread, and market liquidity.  What is unique about this study is that these authors 

not only look at the depth reported at the best bid and ask prices, they also collect data 

on liquidity available at some distance away from the best bid and ask prices.  This 

complete collection of prices and available depth is called the limit order book.  

They find that not only depth at the best bid and ask declines, but also cumulative 

depth similarly declines throughout the limit order book after the reduction in 

minimum tick size on the New York Stock Exchange (NYSE).  Using implied 

average price of a trade derived from the limit order book, these authors find that 
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large traders are not better off under the smaller tick sizes and are worse off for 

infrequently traded stock. 

     Chakravarty, Van Ness and Van Ness (2005) examine adverse selection costs 

around decimalization and relationship between adverse selection costs and trade size 

by using a sample of NYSE stocks around the implementation of decimalization.  

They find a significant reduction in adverse selection costs after decimalization on the 

NYSE.  This decline in adverse selection costs occurs for all stocks except the very 

small stocks.  They further try to understand the source of this decrease in adverse 

selection costs.  They find that both the number of trades and trading volume in 

medium and large trade size fall significantly after decimalization on the NYSE while 

those in small trade size increases significantly.  On estimating the adverse selection 

component by trade size classes, they find a decline in adverse selection costs in 

trades of all sizes, with the strongest evidence coming from medium size trades, 

followed by small and large size trades.  One implication of their findings is that 

there appears to be less stealth trading following complete decimalization and less 

institutional trading overall. 

Furfine (2003) examine the impact of decimalization on the liquidity of NYSE 

stocks.  Analyzing transaction data for a sample of 1,339 stocks listed on the NYSE 

over a five-week period.  He find that decimalization lead to a narrowing of average 

bid-ask spreads.  The largest declines in spreads are found for the most actively 

traded stocks, where the average decline in spread was over 35 percent.  The decline 

in depth is also most pronounced for the most actively traded stocks.  Because 

previous findings suggest that decimalization has an ambiguous impact on market 

liquidity using spreads and depth as proxies for liquidity, Furfine estimates the price 

impact of a trade for each stock in his sample and then find that actively traded stocks 

generally experience an increase in liquidity after decimalization. 
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     Bessembinder (2003) assesses trade execution costs and market quality for 

NYSE and NASDAQ stocks before and after the change to decimal pricing in 2001.  

Quoted bid-ask spreads declined substantially on each market, with the largest 

declines for heavily traded stocks.  The percentage of shares receiving price 

improvement increases on the NYSE, but not on NASDAQ.  However, those trades 

completed at prices within or outside the quotes are improved or disimproved by 

smaller amounts after decimalization, and trades completed outside the quotes reveal 

the largest reduction in trade execution costs.  Effective bid-ask spread as a 

percentage of share price which is the measure of execution costs for smaller trades is 

averaged 0.33% on a volume-weighted basis after decimalization for both NYSE and 

NASDAQ stocks. 

     Bollen and Busse (2003) measure changes in trading costs of equity mutual 

fund for two changes in tick size on NASDAQ and NYSE: the switch from eighths to 

sixteenths and the switch from sixteenths to decimals.  They estimate trading costs 

by comparing a mutual fund’s daily returns with the daily returns of a synthetic 

benchmark portfolio that matches the fund’s holdings but has zero trading costs by 

construction. They find that index fund performance is unaffected by the switch to 

pennies.  In contrast, actively managed funds underperform their benchmark by an 

additional one percent of fund assets per year after decimalization.  

Chakravarty, Wood, and Van Ness (2004) find that both quoted and effective 

bid-ask spreads and depths decline significantly after decimalization on the NYSE.  

Both trades and trading volume significantly decline in all trade size and stock size 

categories.  Stock return volatility reveals an initial increase but a latter decline 

during the longer period, probably when traders become more comfortable under their 

new regime. 
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     Henker and Martens (2005) find that market efficiency increases and the 

arbitrage link between index futures and the stock market strengthens after the 

reduction of minimum change for stock prices and quotes from an eighth to sixteenth 

on Jane 24, 1997.  They find a substantial increase in the number of arbitrage trades 

reported to the Securities and Exchange Commission after the change.  The average 

number of stocks traded and the average dollar amount underlying each arbitrage 

trade increases and decreases respectively.  The average mispricing error that 

triggers arbitrage reduces and reverts to zero more quickly. 

 

3.2 Non-linear Adjustment Mechanisms 

     In the recent time-series literature, the examination of non-linear adjustment 

mechanisms has attracted a growing numbers of research.  The ideal of threshold 

cointegration is introduced by Balke and Fomby (1997).  Deviations may exhibit 

unit root behavior within the transactions cost band because no adjustment takes place.  

The process for deviations is mean-reverting out side the band because adjustment 

takes place.  This phenomenon is referred to as a threshold cointegration.  Stoll and 

Whaley (1986) and MacKinlay and Ramaswamy (1988) discuss the impact of 

transaction costs on index-futures arbitrage strategy, starting with the 

forward-contract pricing relation.  The impact of transaction costs is to permit the 

futures price to fluctuate within a band around the formula value.  The width of the 

band derives from round-trip commissions in the stock and futures markets and the 

market impact costs of putting on the trade initially. 

     Many empirical studies find evidence on the presence of nonlinear equilibrium 

relations on cost-of-carry model.  For example, Martens, Kofman and Vorst (1998) 

use a threshold autoregressive model and a threshold VECM to explore the existence 

of different arbitrage regimes.  First, they investigate the location of possible 
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thresholds indicating a change in the pattern of mispricing error and possibly also in 

the relations between the index and futures returns and the error-correction term.  

They show that indeed different regimes exist for the S&P500 and that in fact the US 

markets respond to arbitrage opportunities in just a few minutes.  Second, they 

estimate an error-correction model in each regime.  By estimating transaction costs 

they also indicate which thresholds could indicate the band around the theoretical 

futures price in which arbitrage is not profitable.  Dwyer, Locke, and Yu (1996) 

indicate that the thresholds are signals for index arbitrage, which can affect the speed 

of convergence of the basis to its equilibrium value.  Further, their results indicate 

that nonlinear dynamics are important and are related to S&P500 index-futures 

arbitrage, and suggest that arbitrage is associated with more rapid convergence of the 

basis to the cost of carry than would be indicated by a linear model. 

     Other studies concerning economic behaviors affected by asymmetric 

transaction costs and institutional rigidities reveal that many economic variables and 

relations display asymmetry and nonlinear adjustment.  Michael, Nobay, and Peel 

(1997) find a nonlinear adjustment process toward purchasing power parity (PPP).  

Hansen and Seo (2002) and Enders and Siklos (2001) applies nonlinear models to the 

term structure model of interest rates and finds strong evidence for the asymmetric 

mature of error correction among interest rates of different maturities.  Chung, Ho, 

and Wei (2005) follow the Hansen and Seo’s (2002) model to develop a multivariate 

threshold VECM.  The model is employed to estimate the threshold parameters, to 

construct asymptotic confidence intervals for the threshold parameters, and to develop 

new tests for the threshold effects of ADRs and their underlying stocks prices.  Their 

study provides strong evidence to show that threshold effect does exist in the prices of 

ADRs and their underlying stocks. 
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4. Data and Methodology 

4.1 Data 

The intraday data used for exploring the change of TAIEX futures-spot 

dynamic relationship before and after the reduction of tick size are extracted from the 

Taiwan Economic Journal Data Bank (TEJ) and are computed in five-minute intervals.  

In order to have better liquidity to trade and quote, this study takes the nearby contract 

into account at any given time until the first trading day prior to the maturity date of 

the nearby contract.  We adopt the next maturing contract from the first day prior to 

the maturity date of the nearby contract, because the volume of the next maturing 

contract usually surpasses that of the nearby contract on that day.  To form trading 

pairs, this investigation matches every reported index with the most recent futures 

trade prices prior to or at exact every five minute.  Since there is a delay before the 

first trade of each stock on a new trading day and the bid-ask spread widens and 

quotes are older at the end of each trading day, futures and spot will have large and 

continuing deviations2.  Therefore, we follow Henker and Martens (2005) to delete 

the first 30 and the last 10 minute of each day, leaving 47 observations from 9:30 to 

13:20 per day (Henker, Thomas and Martin Martens (2005)).  The sample period 

extends over two-year trading days from May 1, 2004 to December 31, 2005.  The 

sample period is divided into two sub-periods according to the reduction of tick size 

on March 1, 2005.  We eliminate the data on January 13, 2005, because of a large 

number of missing data after 10:00 am.  Therefore, the first sample before the 

reduction of tick size from May 1, 2004 through February 28, 2005 comprises 203 

trading days with 9,541 observations.  The second sample after the reduction of tick 

                                                
2 See, for example, Aggarwal and Park (1994) for the effects of the staleness of the index at the start of 
the day. 
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size from March 1, 2005 through December 30, 2005 comprises 213 trading days with 

10,011 observations. 

 

4.2 Construction of the TAIEX Index Futures MPE 

     Futures and spot prices are connected by the following cost-of-carry model: 

)(
,, )( tTr

titit
teDivSF −−=                          (1) 

∑
=

−−+×=
T

t

t
t

rdDiv
τ

τ
τ

)()
365

1(                      (2) 

where Ft,i  stands for the theoretical futures price on day t in 5-minute interval i for a 

contract expiring at time T, Divt is the present value of the cash dividends that will be 

paid during the remaining life of the futures contract from the 50 daily largest 

companies about 69% of overall market value on the stock market, and r is annualized 

one-month post office deposit rate as the risk-free rate of interest.  rt is the effective 

interest rate of r.  The rate rt is often refereed to as carrying charge, since it 

represents the opportunity cost of carrying the spot asset to maturity of the futures 

contract.  The buyer of stock index securities incurs the opportunity cost of his funds 

but receives dividends.  Therefore, the futures price should equal the cost of buying 

the spot index securities, including the opportunity cost adjusted for dividends paid 

during the remaining life of the futures contract.  As the futures contract approaches 

maturity, the futures price converges to the value of the spot index.  Equivalently, 

the basis meaning the difference between futures and spot prices converges to zero at 

expiration.  The implicit assumptions underlying the cost-of-carry model include 

perfect markets and constant carrying charges.  Any price deviations from Equation 

(1) will be corrected as arbitrageurs sell the overpriced instrument and buy the 

underpriced one.  Furthermore, we take the logarithm on the Equation (1) and define 

the percentage mispricing error (MPE) as  
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)()ln(ln ,, tTrDivSFMPE ttitit −−−−=                (3) 

 

4.3 Identifying Arbitrage Opportunities and Transaction Costs 

     Arbitrage opportunities can be identified as follows. 

     Buy program: purchase stocks and sell futures 

itit UMPE ,, >                          (4) 

     Sell program: sell stocks and purchase futures 

itit LMPE ,, −<                         (5) 

An arbitrage buy program is triggered while the MPE penetrates the upper 

bound, .  An arbitrage sell program is triggered while MPE falls below the lower 

bound, .  We introduce the Threshold Vector Error Correction Model 

(TVECM) to identify the upper and lower bound for arbitrage.  The existence of 

transaction costs and other market imperfection factors might cause the error 

correction effects on the price adjustment be significant only when the deviation of 

prices between futures and spot is larger than a certain threshold. 

itU ,

itL ,−

 

4.4 Linear Vector Error Correction Model (VECM) 

     Let xt be a p-dimensional I(1) time series, with n observations, with d as the 

maximum lag length.  A linear VECM of order d+1 can be written briefly as 

ttt uXAx +=Δ − )(' 1 β                         (6) 

where 

]'x ,...,x  x  x  )(  w1[)( d-t3-t2-t1-t1-t1 ΔΔΔΔ=− ββtX            (7) 

and  is the first-order difference operator; the repressor XΔ t-1(β) is k×1; A is k × p; 

and k = pd+2.  The error term, ut= [ ]′tt uu 21  , is assumed to be a vector martingale 
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difference sequence with finite covariance matrix Σ= ) .  Note that 

w

'( ttuuE

t-1(β)= 1' −txβ  is an I(0) error correction term.  For the bivariate case of futures and 

index prices (p=2), xΔ t corresponding to [Δ Ft,i  Δ St,i] denotes the first-order time 

difference , β represents 2×1 cointegrating vector, [  and  

stands for 

1−−=Δ ttt xxx ]

]

′-b  1 tx

[ ′
tt SF   .  The error term ut= [ ]′tt uu 21   is i.i.d.(0, Σ). 

     The parameters (β,A,Σ) are estimated by maximum likelihood under the 

assumption that the errors ut are i.i.d. Gaussian.  Let these estimated parameters be 

denoted  and be the residual vectors. )~,~,~( ΣAβ )~(~~
1 β−′−Δ= ttt XAxu

 

4.5 Threshold VECM for Futures and Underlying Spot 

     Consider now an extension of Equation (1), provided by: 
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where γ is the threshold parameter.  Note that this paper uses the absolute value of 

error correction term as a threshold variable.  In addition to the merit of parsimony in 

the modeling of threshold effect, the assumption is reasonable since transaction costs 

tend to be symmetric for either long or short position in the futures for its arbitrage.  

Alternatively, this may be written as 

tttttt udXAdXAx ++=Δ −− ),()(),()( 21
'
211

'
1 γββγββ             (9) 
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t
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d

d
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and 1(.) denotes the indicator function.  The existence of the threshold effect is 

confirmed if 0< ))(w ( 1-t γβ ≤P <1, otherwise the model simplifies to linear 

cointegration. 

     The threshold VECM of futures and spot can be estimated using the maximum 

likelihood method proposed by Hansen and Seo (2002).  Under the assumption that 

the errors ut are i.i.d. Gaussian, the likelihood function is 

∑
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− Σ∑Σ−∑−=∑
n

t
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where 
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^^^

2

^

1

^
γβ∑AAMLE ),,,,( 21 γβ∑AALn  in 

order to maximize the log-likelihood, to hold (β, γ) fixed and to compute the 

constrained MLE for (A1,A2,Σ).  This is just OLS regression: 

⎟
⎠

⎞
⎜
⎝

⎛
Δ⎟

⎠

⎞
⎜
⎝

⎛
= ∑∑

=
−

−

=
−−

∧ n

t
ttt

n

t
ttt dxXdXXA

1
11

1

1
1111 ),(')(),()'()(),( γββγβββγβ   (13) 

⎟
⎠

⎞
⎜
⎝

⎛
Δ⎟

⎠

⎞
⎜
⎝

⎛
= ∑∑

=
−

−

=
−−

∧ n

t
ttt

n

t
ttt dxXdXXA

1
21

1

1
2112 ),(')(),()'()(),( γββγβββγβ  (14) 

),),,(),,((),( 21 γβγβγβγβ
∧∧∧

= AAuu tt              (15) 

and 

( ) )',(),(1,
1

γβγβγβ t

n

t
t uu

n

∧

=
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     Note that Equation (13) and (14) are the OLS regressions of xΔ t on Xt-1(β) for 

the samples of which γβ ≤)(w 1-t  and γβ >)(w 1-t , respectively. 
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     To execute a grid search procedure, one needs to pick a region over which to 

search.  Hansen and Seo (2002) suggest calibrating this region based on the 

consistent estimate β~  obtained from the linear model.  Set , let )~(~
11 β−− = tt ww

[ UL ]γγ ,  denote the empirical support of 1
~

−tw , and construct an evenly spaced grid 

on [ UL ]γγ , . Let [ ]UL ββ ,  denote a (large) confidence interval for β  constructed 

from the linear estimate β~  (based, for example, on the asymptotic normal 

approximation) and construct an evenly spaced grid on [ ]UL ββ , .  The grid search 

over ),( γβ  then examines all pairs ),( γβ  on the 300×300 grids on [ UL ]γγ ,  and 

[ UL ]ββ , , conditional on .  For each value of ∑
=

− <≤′<
n

t
txn

1

1 95.0)(105.0 γβ ),( γβ  

on this grid, we calculate , , and ),(11 γβ
∧∧

= AA ),(22 γβ
∧∧

= AA ( )∑∑
∧∧

= γβ ,  

From the grid search procedure, we find  as the value )ˆ,ˆ( γβ ),( γβ  on this 

grid which yields the lowest value of ( )∑
∧

γβ ,log  to provide the , while 

the limitation of β is 

),(
^^
γβMLE

01-t0 1))(w ( πγβπ −≤≤≤ P , where 10 0 << π  is a trimming 

parameter; this paper sets 05.00 =π .  Finally, we set , 

, , and  to obtain . 
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4.6 Tests for Threshold Effects 

     Let H0 represent the class of linear VECM in Equation (6), and H1 represent the 

class of two regime threshold VECM in Equation (9).  These models are nested, with 
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the constraint H0 being the models in H1 which gratify .  Our test will 

compare H

'
2

'
1 AA =

0 (linear cointegration) with H1 (threshold cointegration). 

     In order to assess the evidence, both linearity and the threshold VECM are 

tested by using the Lagrange Multiplier (SupLM) test developed by Hansen and Seo 

(2002).  The LM statistic employed is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )),,(),,()',,(, 21
1

2121 γβγβγβγβγβγβγβ
∧∧

−
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                                                                 (18) 

( )γβ
γγγ

,~LMSupSupLM
UL ≤≤

=                   (19) 

where β~  is the null estimate of β.  The bootstrap method proposed by Hansen and 

Seo’s (2002) is employed to calculate the asymptotic critical values and p-values. 

 

4.7 Conditioning Mispricing Errors on Volatility 

     We hypothesize that the MPE is reduced after the reduction of tick size, but that 

any reduction might be caused by the lower market volatility or be offset by the 

higher market volatility in the second sample period.  To test the robustness of these 

probable results, we implement the methodology of Jones and Lipson (2001).  The 

goal is to test whether the reduction of tick size diminishes the average mispricing 

error that triggers arbitrage while controlling for changes in the volatility and other 

control variables.  We estimate the regression in Equation (20) for all trades prior to 

the reduction of tick size and use the estimated coefficients to calculate MPE 

prediction errors under the second sample period in Equation (21). 

reductionpre
titititi

reductionpre
ti eSHORTBUYVOLAMPE −− ++++= ,,3,2,1, βββα   (20) 

where MPEi,t is the absolute value of percentage mispricing error on day t and 

intraday period i, while the superscript indicates the minimum price increment at the 
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period, VOLAi,t is the futures volatility in the 30 min prior to the every trade at time i, 

BUYi,t is an indicator variable with value one if the arbitrage trade is a buy program 

and zero otherwise, and SHORTi,t is an indicator variable with value one if the 

arbitrage trade involved short selling and zero otherwise.  We do not control for the 

prevailing spread since the reduced spreads are the reasons why we expect the 

mispricing error to be smaller when arbitrage programs are initiated. 

     The coefficient estimates from Equation (20) are then used to predict the MPEs 

after the reduction tick size and, to compute the prediction errors, 

tititi
reductionpost

ti
reductionpost

ti SHORTBUYVOLAMPEe ,3,2,1,,
ˆˆˆˆˆ βββα −−−−= −−   (21) 

where the hats for the coefficient estimates indicate the previously estimated 

coefficients are used.  We can now, while controlling for volatility, test whether 

hypothesis of the test is reductionpost
ti

reductionpre
ti eeH −− = ,,0 ˆˆ: , while the alternative 

hypothesis is reductionpost
ti

reductionpre
ti eeH −− > ,,1 ˆˆ: .  The bars indicate that we compute the 

average over all residuals. 

 

5. Empirical Results 

5.1 Sample Statistics for the Spot and Futures Returns and the MPE 

Spot and futures 5-minute returns eliminating overnight returns are computed in 

log differences.  The data are divided into two subsample periods.  The 

pre-reduction of tick size sample period from May 3, 2004 through February 25, 2005 

consists of 203 trading days with 47 observations each, but excluding January 13, due 

to TEJ data recording problems.  The post-reduction of tick size period from March 

1, 2005 through December 30, 2005 comprises 213 trading days with 47 observations 

each. 
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Table 2 displays the descriptive statistics of spot return, futures return, and 

absolute value of MPE including mean, standard deviation, and autocorrelation up to 

lag 4.  As expected, the mean MPE shrinks significantly at the 1% level after the 

reduction of tick size; nevertheless, the volatility of spot and futures returns also 

decreases significantly at the 1% level in the meantime.  This result implies two 

possible reasons.  First, the reduction of tick size, causing smaller spread costs could 

make arbitrageurs implement the arbitrage trade more precisely at the price they want; 

therefore, the MPE contracts after the reduction of tick size.  Second, the smaller 

volatility of index and futures returns could reduce the execution risk for the position.  

In consequence, arbitrageurs initiate trades only at relatively higher MPEs to 

compensate for the increased price risk of nonsimultaneous order execution.  

According to the above two reasons, we cannot figure out whether the reduction of 

tick size could cause the lower MPE only due to the lower spread costs.  Hence, we 

will employ further empirical study in Section 5.7 to distinguish the two possible 

reasons. 

The significantly smaller average MPE and significantly smaller volatility of 

MPE suggest that the extent of the two price series co-movement tends to turn 

stronger.  The Pearson’s correlation coefficient of the spot and futures returns 

reveals 0.5949 significantly at the 1% significance level before the reduction of tick 

size; whereas, 0.6203 significantly at the 1% significance level under the new tick 

size regime.  The higher and closer to the unity correlation coefficient of spot and 

futures returns implies the stronger cointegration relationship between the two 

markets.  The MPE autocorrelation up to lag 4 increases and the MPE volatility 

indicates less volatile significantly at the 1% significance level under the new tick size 

regime.  Hence, the two prices series tend to evolve more consistently after the 
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reduction of tick size, which the arbitrageurs can conduct the arbitrage trade more 

precisely. 

 

5.2 Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) Unit Root Test 

     In order to examine the pure price dynamics between futures and spot markets 

precluding the cash dividend effect, we adjust the spot index price by subtracting the 

present value of the cash dividends that will be paid during the remaining life of the 

corresponding futures contract, because the futures prices drop about the present value 

of that dividends in advance as Equation (2).  These futures and adjusted index 

prices will be employed to implement the following empirical research.  The 

log-prices of the futures and the adjusted index are used to fulfill our sequentially 

empirical analysis.  The returns of futures and adjusted index are calculated by 

taking the difference in the log-price.   

Stationary time series react to the shock transitorily and return to the long-term 

equilibrium with the shock passing by.  Conversely, nonstationary time series have 

permanent effects with the passage of shock.  We employ the two unit root tests 

examined for stationarity. 

1. Augmented Dickey-Fuller (ADF) Test 

∑
=

− +Δ+++=Δ
p

i
titit xx

1
1-tx t εθδγα  

where the null hypothesis, H0: δ=0, represents nonstationarity, and the alternative 

hypothesis, H1: δ≠0, interprets stationary.  The model constructed here contains a 

drift term, α and a time trend, t.  We employ Schwarz Bayesian Information 

Criterion (SBIC)3 to choose the optimal lag length based on the parsimony principle. 

2. Phillips-Perron (PP) Tests 

                                                
3 SBIC(p)=N log(SSR)+p log(N), where SSR is the residual sum of squares, N is the sample size, and p 
is the total number of parameters. 
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where  and *α α~  illustrate drift terms, t represents time trend, and T indicates the 

numbers of observation.  The null hypothesis, H0: =*δ δ~ =0, stands for 

nonstationarity, and the alternative hypothesis, H1≠H0, is on behalf of stationarity. 

     Table 3 addresses the results of the two unit root tests examined for stationarity.  

The ADF results and PP results are similar, both of which fail to reject the null 

hypothesis of unit root tests for each price series in level data, but reject it in first 

difference data at 1% significance level.  The results suggest all the data series are 

integrated of order one, I(1).  These results indicate that the futures price and spot 

price are integrated in the first difference, integrated of order one, I(1), before and 

after the introduction of new tick size regulation, and thus verify the fulfillment of the 

cointegration test. 

 

5.3 Johansen Cointegration Test 

     Given that the two price series are integrated of the same order one, I(1), this 

study builds two Johansen multivariate cointegration tests to judge whether the price 

series are cointegrated.  We set a 2×1 vector xt=[Ft St]′ where Ft stands for futures 

price and St stands for spot in our study.  If there exists a vector β (β≠0) that makes 

linear combination of two price series, β′xt, reduce the integrated order to stationarity, 

we can say the two price series exist cointegration relationship andβis the so-called 

cointegration vector.  

     The reduced form error correction model formulates the test hypothesis as 

follows The test hypothesis is formulated as the restriction for the reduced rank of Π: 

βα ′=Π  for the reduced form error correction model: 
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where βα ′=Π  denotes the impact matrix, α and β are both 2×1 matrices 

representing the adjustment speed of the parameter and cointegrating vector, 

respectively.   denotes short-term relation of .   is the error correction 

term.  The rank of  or the number of non-zero eigenvalue of 

itx −Δ tx tx

Π Π  determines the 

number of cointegration vector.  Johansen proposed two likelihood ratio statistics to 

test the number of cointegration vector. 

     Two test statistics for cointegration under the Johansen approach are formulated 

as follows: 

1. Trace Statistic 
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2. Maximum Eigenvalue Statistic 
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ˆ1ln1, +−−=+ rTrr λλ  

where r is the number of cointegrating vectors under the null hypothesis, T is the 

sample size and  is the estimated value for the ith ordered eigenvalue from the Π 

matrix.  The null hypothesis for joint test statistics, 

iλ̂

traceλ , is that the number of 

cointegrating vectors is less than or equal to r against the unspecified or general 

alternative one that the number of cointegrating vectors is more than r.  Maximum 

Eigenvalue Statistic, maxλ , conducts separate tests on each eigenvalue.  The null 

hypothesis that the number of cointegrating vectors r is against an alternative that the 

number of cointegrating vectors r+1. 
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     The result of the cointegration test reported in Table 4 demonstrates the 

rejection the null hypothesis of no cointegration at the 5% significance level in the 

both sample period and the rejection of the null hypothesis of only one cointegration 

relationship at the 5% significance level before the reduction of tick size.  This 

evidence advocates that a stationary linear combination exists between the futures and 

spot prices in the both pre-reduction and post-reduction period.  Thus, the futures 

and spot markets are cointegrated and have long-term equilibrium relationship. 

 

5.4 Linear Vector Error Correction Model (VECM) 

     Since the futures and spot price are cointegrated, there must exists an error 

correction term in which so-called vector error correction model (VECM) 

constructing the dynamic system dominating the joint evolution of the futures and 

spot prices over time.  From Equation (6), we can know that the error correction 

terms, )(w t β , illustrate the long-term equilibrium dynamics between the price series, 

and the dynamic coefficients of the lagged price series which capture the short-run 

dynamics resulted from market imperfections.  Similarly, we employ Schwarz 

Bayesian Information Criterion (SBIC) to determine the optimal lag length d applied 

not only to the linear VECM but also to the threshold VECM.  Eventually, the 

optimal lag length is selected for four and three for the pre- and post-reduction of tick 

size, respectively.  The results of the linear VECM estimation are proposed in Table 

5. 

     For the pre-reduction of tick size period, we find the futures market have an 

obvious lead over the spot market.  In Panel A of Table 5, all the coefficients of the 

lagged futures prices (ΔF) in the spot equation (ΔS) are statistically significant at the 

1% level, but no for lagged spot prices (ΔS) in the futures equation (ΔF).  These 

results indicate that the futures market leads the spot market.  In addition, the 
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coefficients of the error correction terms for futures prices (ΔF) and spot prices (ΔS) 

equations are not statistically significant, so we cannot confirm that long-run 

co-movement exists between these two financial markets in the pre-reduction of tick 

size period. 

     For the post-reduction of tick size period, we discover appearance of 

bi-direction relationship between two markets.  In Panel B of Table 5, all the lagged 

futures prices (ΔF) in the spot equation (ΔS) are significant at 1% level; whereas, we 

detect only one significant impact of lag 1 spot price on futures at 1% level in the 

post-reduction period as opposed to that in the pre-reduction period, i.e., a feedback 

relation.  Besides, the coefficient of the error correction terms is only significant in 

the futures equation, suggesting that futures prices are inclined to adjust significantly 

as the prices deviate from long-run equilibrium took place.  The z statistics of the 

coefficient of the error correction term for both price series after the reduction of tick 

size are more significant than that before.  Evidently, this result imply that the 

reduction of tick size, lowering the spread cost, makes the long-run co-movement 

extent between these two financial markets turns stronger.  This can be confirmed by 

the higher and closer to the unity Pearson’s correlation coefficient between the two 

market, which is described in Section 5.1.  The cointegrating vector, 1.03697, in the 

post-reduction period is closer to unity than that, 1.03886, in the pre-reduction period.  

It implies the two price series approximate to each other stronger in the second sample 

period.  This result is caused by the lower transaction costs after the reduction of tick 

size, which reduces the obstacles for the two prices to return to long-run equilibrium. 

 

5.5 Threshold Vector Error Correction Model (TVECM) 
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     In Table 6 and Table 7, we employ a threshold VECM to expound the price 

dynamics and further employ SupLM statistics and Wald statistics to test for the 

threshold cointegration and the non-linear model, respectively. 

     The empirical results in Table 6 and Table 7 indicate the existence of threshold 

cointegration in both sub-periods of the pre- and post-reduction of tick size.  The 

Lagrange Multiplier threshold test statistic (SupLM) is significant at 1% level while 

adopting four and three lag length in the pre- and post-reduction of tick size periods, 

respectively.  Moreover, the threshold value (γ) decreases from 0.347891 to 

0.307617 after the reduction of tick size, because the decrease of tick size reduces the 

spread cost which comprises the main transaction cost and lower the arbitrage 

threshold for arbitrageurs, which is consistent with our expectation. 

     Next, the Wald test for the appearance of non-linearity in dynamic coefficients 

also advocates the nonlinear relationship between futures and spot markets in the both 

sub-periods..  On the other hand, the Wald test for the presence of non-linearity in 

the error correction terms does not support the nonlinear relationship in the both 

sub-periods.  For the pre-reduction of tick size period, we further compare the 

estimated coefficients of error correction terms in Table 6 with those in Table 5.  

These results show that the coefficients of the error correction terms in the second 

regime of threshold VECM appear to be larger than those in the linear VECM, which 

indicate that two price series have a faster convergence or mean-reversion to the 

long-run equilibrium in the second regime of nonlinear VECM than that in linear 

VECM model.  Our results in the pre-reduction of tick size period are consistent 

with Dwyer, Locke, and Yu’s (1996), but not for those in the post-reduction period.  

To look at short-run dynamic coefficients across two regimes, the null hypothesis of 

no difference is rejected and the result shows the significant difference across two 

regimes for both two periods.  By and large, the nonlinear relationship between 
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futures and spot prices is remarkable thanks to transaction costs and the threshold 

VECM is more suitable than a linear model to interpret the dynamics between the two 

markets. 

     Then, we define the upper regime and lower regime depending on error 

correction terms and threshold value.  In Table 6, the estimated cointegration relation 

is  and the estimated threshold value is ttt SFw 958673.0−= 347891.0ˆ =γ  for the 

first sample period.  Thus, the first regime occurs while 347891.0≤tw .  Given 

15.94% observations of no arbitrage opportunity in this regime, we follow Hansen 

and Seo, 2002 to label this as the typical regime.  By contrast, the second regime 

occurs while 347891.0>tw  with 84.06% arbitrage observations.  In this regime, 

arbitrageurs trigger buy or sell programs to buy (sell) the index securities and 

simultaneously sell (buy) index futures contracts.  We follow Hansen and Seo, 2002 

to label this regime as the extreme regime.  In Table 6, we know that the 

error-correction phenomena in futures (ΔF) and spot (ΔS) equations are more 

significant in the second regime, since the triggers of arbitrage trades enhance the 

convergence speed of two price series to the long-run equilibrium.  The sign of the 

error-correction coefficient is negative in both price series in the typical regime, but 

positive in the extreme regime.  This indicates structural change across two regimes.  

For the short-term dynamics, all the coefficients of the lagged futures prices (ΔF) on 

the spot equation (ΔS) are statistically significant.  These results confirm again that 

futures market leads the spot market before the introduction of new tick size, which is 

consistent with those in the linear VECM in Table 5. 

     Last but not least, for the second sample period shown in Table 7, the estimated 

cointegration relationship is ttt SFw 9649373.0−=  and the estimated threshold is 

307617.0ˆ =γ .  Consequently, the first regime, i.e., typical regime, occurs while 
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307617.0≤tw  with 75.43 observations and the second regime i.e., extreme regime, 

occurs while 307617.0>tw  with 24.57% observations. In the first regime, the 

error-correction phenomenon is only significant in the futures prices (ΔF) equation, 

which indicates that there exists mean reversion only in the futures price.  However, 

as contrary to the first regime, the error-correction effect is not significant both in the 

futures (ΔF) and spot (ΔS) equations, which means that there does not have any 

long-run equilibrium relationship between futures market and spot market in the 

extreme regime.  In other words, the two series behave like a random walk and free 

from the cointegration constraint (Tsay, 1998) probability due to the decrease of 

market depth at the best-quoted prices (Harris(1994, 1997) and Furfine (2003)) after 

the reduction of tick size.  Equilibrium relationship between futures market and spot 

market in the extreme regime becomes insignificant.  The decrease of arbitrage trade 

numbers might result from stronger co-movement between the two financial markets 

discovered in Section 5.4 after reduction of tick size.  Similarly, for the short-term 

dynamic coefficients, the result seems consistent with earlier findings.  The futures 

price tends to lead the spot price after the reduction of tick size. 

 

5.6 The GARCH Model 

     We further examine the volatility alteration across the two sub-periods 

following Section 5.1 by constructing a GARCH mode in Equation (23), (24), (25), 

and (26).  Before employing the GARCH model, we implement ARCH test in 

advance to investigate whether the futures and spot returns exist quadratic 

autocorrelation in the residuals.  The ARCH test is conducted as following.  First, 

we implement an OLS regression on the futures and spot returns with the constant as 

independent variable, and draw out the the residuals, tε̂ .  Second, we square the 
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residuals and run the autoregression on q own lags to test whether ARCH-effects 

exists in the residuals: 

tqtqttt νεγεγεγγε +++++= −−−
22

22
2

110
2 ˆ...ˆˆˆ                (22) 

where tν  represents an error term.  Third, we multiply the sample size by multiple 

correlation and get the test statistic, 2TR , which is the chi-square distribution with q 

degree of freedom, .  Finally, the null and alternative hypotheses are ( )q2χ

0:H 10 =γ , 02 =γ , 03 =γ  … and 0=qγ , 

0:H 11 ≠γ  or 02 ≠γ  or 03 ≠γ …or 0≠qγ . 

Therefore, we test if any coefficient of the autoregression for q lags in Equation 

(22) significantly different from zero meaning the ARCH-effect exists in the 

residuals. 

The chi-square test statistic is 315.4757 and 381.6646 for the futures and spot 

returns, respectively before the reduction of tick size, and 480.1283 and 502.4160 for 

the futures and spot returns, respectively after the reduction of tick size.  The results 

above significantly reject the null hypothesis at 1% level expressing ARCH-effect in 

the residuals for the futures and spot returns in both sample periods.  Thus, the 

conduction of following GARCH model is justified by the significant ARCH test 

results in both sample periods. 

We construct the following GARCH Equation (23), (24), (25), and (26) to 

investigate the return and conditional volatility alteration before and after the 

reduction of tick size. 

tFFtSFtFFFtF DRRR ,14,1,3,1,2,1,, εαααα ++++= −−                (23) 

tSStFStSSStS DRRR ,14,1,3,1,2,1,, εαααα ++++= −−             (24) 

13,1,2,
2

1,1,0,, Dhh FtFFtFFFtF ββεββ +++= −−                     (25) 

 28



13,1,2,
2

1,1,0,, Dhh StSStSSStS ββεββ +++= −−                      (26) 

where  and  are the returns of the futures and spot prices.  The conditional 

variance, , is composed of the lagged squared errors  in the return process and 

the lagged conditional variance, .  The variable  stands for the futures 

market lagged volatility and the variable  stands for the spot market lagged 

volatility.   is the event dummy taking the value one for the period before the 

reduction of tick size and the value zero for the period after the reduction of tick size. 

tFR , tSR ,

th 2
1−tε

1−th 2
1, −tFε

2
1, −tSε

1D

     In the mean Equation (23) and (24), coefficient, 2,iα , measures the lagged 

futures return (spot return) on present futures return (spot return) and the coefficient, 

3,iα , measures the effect of last period spot return (futures return).  The coefficient, 

4,iα , measures whether the return exists structural change after introduction of new 

tick size.  In the conditional variance Equation (25) and (26), coefficient, 1,iβ , 

measures the lagged squared error effect on this period conditional variance.  

Coefficient, 2,iβ , captures last period conditional variance impact on this period 

conditional variance.  Coefficient, 3,iβ , catches return volatility alteration across the 

two sample period. 

     From the result of Table 8, we can find last period futures and spot returns both 

have significant effect on the current period futures and spot returns at 1% level.  By 

the dummy variables in the two mean equations, we find futures and spot returns do 

not significantly differ in the two periods at any common significance level.  From 

the result of variance equation in the Table 8, we can find the lagged squared error 

and lagged conditional volatility both have significant effect on the current period 

conditional volatility for both futures and spot markets.  By the dummy variables in 

the variance equations, we can find the second sample period volatility significantly 

decrease at 1% level for both futures and spot markets.  This result is consistent with 
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Section 5.1.  We will further use this conditional volatility in the variance equations 

to implement the empirical research in Section 5.7. 

 

5.7 Conditioning Mispricing Errors on Volatility 

     In Section 5.1, we find MPE significantly decreases at 1% level in the second 

sample period; meanwhile, futures and spot volatility also significantly decreases at 

1% level in the same sample period discovered in Section 5.1 and 5.6.  Arbitrageurs 

can trigger arbitrage requiring smaller MPE, because the smaller volatility reduces the 

execution risk for them.  Hence, we cannot figure out the smaller MPE in the second 

sample period originated from smaller volatility or reduced tick size.  In order to 

identify the reason that results in the smaller MPE in the second sample period, we 

implement the methodology of Jones and Lipson (2001) that conditions the 

mispricing errors on volatility as introduced in Section 4.7. 

     The first regression of Table 9 shows the results of Equation (20) that 

conditions the data on the 30-minute volatility of the futures returns immediately 

preceding every trade following Henker and Martens (2005).  Equation (20) also 

conditions on the GARCH conditional volatility of futures returns, whose result is 

shown in the second regression of Table 9.  We  choose the futures volatility over 

the volatility of the underlying stocks because the bid-ask bounce in futures prices is 

regarded to be a less serious problem than the serial correlation in index returns 

(Henker and Martens (2005)).  The table demonstrates the empirical result in the first 

sample period.  We can confirm the futures volatility has the significantly positive 

relation to the MPE at 1% level in both regressions of Table 9, because the higher 

volatility could result in higher timing risk and tracking error risk for arbitrageurs’ 

position.  The GARCH conditional futures volatility in the second regression has the 

similar result to the 30-minute futures volatility in the first regression.  The indicator 
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variables of buy program and sell program both reveal significantly negative relation 

to the MPE at 1% level, because the trigger of arbitrage trades would shrink the MPE.  

The high R-square in both regressions of Table 9, 0.7268 and 0.7389 respectively, 

means the independent variables have high explanatory power to the MPE in the first 

sample period. 

     We employ Equation (21) that uses the estimated coefficients in Equation (20) 

to calculate MPE prediction errors under new regime.  While controlling for the 

change of volatility, buy program, and sell program effects, we further examine 

whether MPE shrinks after the reduction of tick size.  The null hypothesis of the test 

is reductionpost
ti

reductionpre
ti eeH −− = ,,0 ˆˆ: , and the corresponding alternative hypothesis is 

reductionpost
ti

reductionpre
ti eeH −− > ,,1 ˆˆ: .  The bar denotes the average residuals over the two 

sample periods, respectively.   

In order to implement above mean residual difference test, we should fulfill 

residual volatility difference test above all4 .  The test statistic conditioning on 

30-minute futures volatility is 2.8727, and that conditioning on GARCH conditional 

futures volatility is 0.2161.  Clearly, the residual volatility is statistically significant 

different across two sample periods in both conditioning cases.  Then, we further 

                                                
4 s1 denotes the residual volatility before the reduction of tick size, s2 indicates the residual volatility 
after the reduction of tick size, and n1 and n2 are their respective number of observations.  Test 

statistics 2
2

2
1

S
SF =  is F(n1-1, n2-1) distribution. 
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employ the mean residual difference test5 to explore whether MPE decreases after the 

reduction of tick size, while conditioning on the change for volatility and buy and sell 

program effects.  For conditioning on 30-minute futures volatility and GARCH 

futures volatility, the test statistics are 121.5890 and 115.6704, respectively.  In both 

cases, the null hypothesis is rejected in favor of the alternative hypothesis at any 

conventional significance level.  The results means the reduction of tick size can 

lower the mispricing error and improve the pricing efficiency. 

However, we use the arbitrage data drawn from the second regime of threshold 

VECM model instead to run the OLS regression of Equation (20) and Equation(21) 

again.  We find the mispricing error increases and pricing efficiency deteriorates for 

the arbitrage data after the reduction of tick size.  Because the market depth might 

reduce after the reduction of tick size, the error-correction terms of the second regime 

of threshold VECM model are insignificant which means long-term equilibrium 

relationship of futures and spot does not exist after the reduction of tick size.  Hence, 

mispricing error of arbitrage data does not reduce for the arbitrage data after the 

reduction of tick size. 

 

6. Conclusion 

     This study investigates the impact of the introduction of new tick size on the 

pricing efficiency and the long-run and short-run price dynamics between futures and 
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period, respectively. 

 32



spot markets.  The non-linear VECM can evidently characterize the arbitrageurs’ 

behavior.  When the futures and spot prices deviate from no-arbitrage boundary 

settled by the transaction costs mainly composed of spread costs, arbitrageurs would 

trigger the buy or sell program to make arbitrage immediately.  The smaller tick size 

settled by the Taiwan Stock Exchange Corporation (TSEC) after March 1, 2005 can 

effectively lower the spread costs between best bid and ask prices according to past 

researches.  The lower transaction costs make the arbitrageurs trigger the arbitrage 

program more easily, which lead mispricing error to shrink and improve the pricing 

efficiency after the reduction of tick size. 

     For the Linear VECM, our results show that the long-run co-movement extent 

between these two financial markets turn stronger and the two price series tend to 

approximate to each other after the reduction of tick size.  This result is caused by 

the lower transaction costs after the reduction of tick size, which reduces the obstacles 

for the two prices to return to long-run equilibrium.  The dynamic coefficients show 

the futures clearly lead the spot in both sub-sample periods and the feedback relation 

which means the impacts of spot on futures in the second period. 

     For the threshold VECM model, the results show the presence of threshold 

cointegration, and nonlinear dynamic coefficients in both sub-sample periods.  This 

implies the threshold VECM model fits the price dynamics between futures and spot 

markets superior to the linear VECM model.  Furthermore, the threshold value (γ) 

decreases from 0.347891 to 0.307617 after the reduction of tick size, because the 

decrease of tick size reduces the spread cost which comprises the main transaction 

cost and lower the arbitrage threshold for arbitrageurs, which is consistent with our 

expectation. 

In the first sample period, the error-correction phenomena in futures and spot 

equations are more significant in the extreme regime, since the triggers of arbitrage 
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trades enhance the co-movement extent across two price series.  The coefficients of 

error correction terms in the extreme regime of threshold VECM appear to be larger 

than those in the linear VECM, which indicates that two price series have a faster 

convergence or mean-reversion to the long-run equilibrium in the extreme regime of 

nonlinear VECM than that in linear VECM model.  This result is consistent with 

Dwyer, Locke, and Yu’s (1996). 

In the second sample period, the error-correction phenomenon is only 

significant in the futures price equation in the typical regime, which indicates that 

there exists mean reversion only in the futures price.  However, as contrary to typical 

regime, the error-correction effect is not significant both in the futures (ΔF) and spot 

(ΔS) equations, which means that there does not evidence any long-run equilibrium 

relationship between futures market and spot market in the extreme regime.  In other 

words, the two series behave like a random walk and free from the cointegration 

constraint (Tsay, 1998) probability due to the decrease of market depth at the 

best-quoted prices (Harris(1994, 1997) and Furfine (2003)) after the reduction of tick 

size.  Equilibrium relationship between futures market and spot market in the 

extreme regime becomes insignificant.  The decrease of arbitrage trade numbers 

might result from stronger co-movement between the two financial markets 

discovered in linear VECM after reduction of tick size. 

For the short-term dynamics, all the coefficients of the lagged futures prices on 

the spot equation are statistically significant in both periods.  These results confirm 

again that futures market leads the spot market, which is consistent with those in the 

linear VECM.  Nevertheless, we find some feedback relation which means the 

impact of spot on futures in the second period as the result in the linear VECM. 

Finally, while conditioning the change for volatility and buy and sell programs 

effects, we find the reduction of tick size can lower the mispricing error and improve 
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the pricing efficiency.  However, we use the arbitrage data drawn from the second 

regime of threshold VECM model instead to run the OLS regression again.  We find 

the mispricing error increases and pricing efficiency deteriorates for the arbitrage data 

after the reduction of tick size.  Because the market depth might reduce after the 

reduction of tick size, the error-correction terms of the second regime of threshold 

VECM model are insignificant which means long-term equilibrium relationship of 

futures and spot does not exist after the reduction of tick size.  Hence, mispricing 

error of arbitrage data does not reduce for the arbitrage data after the reduction of tick 

size. 

In the future, we can improve the threshold VECM by considering 

ARCH-effect into its error term and estimating the optimal lag time for arbitrage 

threshold, because financial markets in Taiwan usually have ARCH-effect and 

arbitrage time might not be just at lag one period.  We believe this improved model 

can fit the price dynamics more precisely.  In the meantime, we can do more 

research in all different futures contracts and even longer empirical period to confirm 

the impact of the new policy more robustly. 
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Table 1 Comparison of Old and New Tick Size Policy 

The table presents the minimum price increment comparison prior to and posterior to the reduction for 

every price interval on March 1, 2005. 

 
Old policy 

Before March 1, 2005 
New policy 

After March 1, 2005 
Minimum 
stock price 

Maximum 
stock price 

 
Tick 
Size Minimum 

stock price 
Maximum 
stock price 

$5 and below $0.01 $10 and below 
$5 $15 $0.05 $10 $50 
$15 $50 $0.1 $50 $100 
$50 $150 $0.5 $100 $500 
$150 $1000 $1 $500 $1000 

$1000 and above $5 $1000 and above 
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Table 2 Properties of Index and Futures Returns and the MPE 
Sample statistics includes sample mean, standard deviation (S.D.), and autocorrelation (ρ) of index 

returns, futures returns, and the absolute value of mispricing error (MPE).  The data frequency is 

5-minute intervals, with the first 30 and the last 10 min of each trading day excluded, leaving 47 

observations per day (eliminating January 13, 2005due to TEJ data recording problems).  Overnight 

price changes are excluded.  The index and futures are the last index value and futures transaction 

price prior to or on the 5-minute mark.  The MPE is based on the cost-of-carry model using the 

annualized one-month post office deposit rate as the risk-free rate of interest. 

 

Series Mean(%) S.D.(%) ρ1 ρ2 ρ3 ρ4

Panel A: Before the Reduction of Tick Size (May 3, 2004 - February 25, 2005) 
index  -0.00002  0.00120  0.17254*** -0.12231***-0.09679 *** 0.00576  
return    (<.0001)  (<.0001)  (<.0001)  (0.5739)  
futures -0.00001  0.00135  0.03519*** -0.04222***-0.00923  0.01485  
return    (0.0006)  (<.0001)  (0.3673)  (0.1470)  
MPE  0.00484  0.00497  0.97477*** 0.96450*** 0.95971 *** 0.95530 ***
    (<.0001)  (<.0001)  (<.0001)  (<.0001)  
Panel B: After the Reduction of Tick Size (March 1, 2005 - December 30, 2005) 
index  -0.00002  0.00071 a 0.31747*** -0.09959*** -0.14862 *** -0.04110 ***
return    (<.0001)  (<.0001)  (<.0001)  (<.0001)  
futures -0.00001  0.00081 a 0.00867  -0.05246*** -0.02859 *** -0.00854  
return    (0.3855)  (<.0001)  (0.0042)  (0.3930)  
MPE  0.00333 a 0.00318 a 0.98032*** 0.97002*** 0.96350 *** 0.95861 ***
    (<.0001)  (<.0001)  (<.0001)  (<.0001)  
The p-value is showed in the parentheses below each coefficient estimate. 

*: the coefficient estimate is statistically significant at 10% level. 

**: the coefficient estimate is statistically significant at 5% level. 

***: the coefficient estimate is statistically significant at 1% level. 
a Indicates that mean or standard deviation in panel (B) is significantly smaller than the corresponding 

mean or standard deviation in panel (A) at the 1% significance level, respectively. 
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Table 3 Unit Root Test for Log-Prices of Futures and Underlying Spot 
Panel A and Panel B present the results of the Augmented Dickey-Fuller (ADF) and Phillips-Perron 

(PP) tests of futures and spot during two sample periods.  Spot represents Taiwan Stock Exchange 

Capitalization Weighted Stock Index (TAIEX), Futures stands for TAIEX Futures, and *** denotes 

significance at the 1% level. 

 

Panel A: Before the Reduction of Tick Size (May 3, 2004 - February 25, 2005) 
 Augmented Dickey-Fuller test  Phillips-Perron test 
k=4 Level First Difference  Level First difference 
Futures -2.2407 -42.8296*** -2.2742 -94.6834 *** 
Spot -2.0284 -44.8171*** -2.0771 -82.4279 *** 
Panel B: After the Reduction of Tick Size (March 1, 2005 - December 30, 2005) 
 Augmented Dickey-Fuller test  Phillips-Perron test 
k=3 Level First Difference  Level First difference 
Futures -0.9243 -52.2905*** -0.9587 -99.0363 *** 
Spot -1.0257 -51.8933*** -1.0345 -71.1728 *** 
Note: k is the lag length and is chosen by minimum Schwarz Bayesian Information Criterion (SBIC).  

Critical values: 1%= -3.434 5%= -2.862 10%= -2.567. 
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Table 4 Johansen Cointegration Test for Log-Prices of Futures and Underlying 
Spot 
Panel A and Panel B present the results of trace test (Trace) and maximum eigenvalue test (Max-Eign) 

used to evaluate whether the variables in each respective period are cointegrated during two sample 

periods.  r is the number of cointegrating vectors, * denotes rejection of the hypothesis at the 5% level.  

Max-Eigen and Trace are two test statistics under Johansen’s approach, that is, maxλ  and traceλ  

respectively. 
 

Null 
Hypothesis 

Trace 
Statistic 

5 Percent 
Critical Value 

Max-Eigen 
Statistic 

5 Percent 
Critical Value 

Panel A: Before the Reduction of Tick Size (May 3, 2004 - February 25, 2005) 
r=0 38.6766 * 15.4947 34.4722 * 14.2646 
r=1 4.2044 *  3.8415 4.2044 *  3.8415 

Panel B: After the Reduction of Tick Size (March 1, 2005 - December 30, 2005) 
r=0 39.0463 * 15.4947 37.8830 * 14.2646 
r=1 1.1634   3.8415 1.1634  3.8415 
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Table 5 Linear VECM Estimations for Log-Prices of Futures and Underlying 
Spot 
The linear VECM is applied to determine the long-run equilibrium and short-run dynamics between 

two markets for two periods.  Std error indicates Eicker-White standard errors.  Schwarz Bayesian 

Information Criterion (SBIC) determines the optimal lag length.  S represents Taiwan Stock Exchange 

Capitalization Weighted Stock Index (TAIEX), F stands for TAIEX Futures, and EC is the error 

correction term. *, **, and *** denotes significant rejection of the hypothesis at the 10%, 5%, and 1% 

significance level, respectively. 

 
Panel A: Before the Reduction of Tick Size (May 3, 2004 - February 25, 2005) 
Dep. ΔFt ΔSt

Ind. Estimate Std error  Estimate Std error 
EC(wt-1) -0.006095  0.005771 0.005433  0.004407 
Constant -0.002067  0.001948 0.001846  0.001489 
ΔFt-1 0.013459  0.024874 0.344751 *** 0.024350 
ΔFt-2 -0.024618  0.026965 -0.297760 *** 0.022986 
ΔFt-3 0.002089  0.024441 0.178521 *** 0.020433 
ΔFt-4 -0.043311  0.027151 -0.211223 *** 0.021827 
ΔSt-1 0.035073  0.023905 0.102990 *** 0.019846 
ΔSt-2 -0.040734  0.026881 -0.117381 *** 0.022092 
ΔSt-3 -0.000317  0.023815 0.039103 ** 0.017639 
ΔSt-4 0.009781  0.025218 -0.038580 ** 0.019510 
AIC --125,002  SBIC  -124,962 
Cointegrating Vector 1.038860***  
Panel B: After the Reduction of Tick Size (March 1, 2005 - December 30, 2005) 
Dep. ΔFt ΔSt

Ind. Estimate Std error  Estimate Std error 
EC(wt-1) -0.007258 *** 0.002382 0.002652  0.002144 
Constant -0.002336 *** 0.000770 0.000860  0.000693 
ΔFt-1 -0.020466  0.017044 0.262395 *** 0.023332 
ΔFt-2 0.040090 ** 0.018470 -0.100863 *** 0.025669 
ΔFt-3 0.030867 * 0.018577 0.163832 *** 0.022777 
ΔSt-1 -0.081018 *** 0.020520 -0.159828 *** 0.023789 
ΔSt-2 0.024244  0.015823 0.082322 *** 0.016841 
ΔSt-3 -0.023990  0.016719 -0.074518 *** 0.016144 
AIC --141,562  SBIC  -141,530 
Cointegrating Vector 1.03697***  
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Table 6 Threshold VECM Estimations for Log-Prices of Futures and Underlying 
Spot before the Reduction of Tick Size at TSE(May 3, 2004-February 25, 2005) 
The threshold VECM is applied to determine threshold effect on the long-run equilibrium and short-run 

dynamics between two markets before the reduction of tick size.  Std error indicates Eicker-White 

standard errors.  Schwarz Bayesian Information Criterion (SBIC) determines the optimal lag length.  

S represents Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), F stands for 

TAIEX Futures, and EC is the error correction term. *, **, and *** denotes significant rejection of the 

hypothesis at the 10%, 5%, and 1% significance level, respectively. 

 

 
First Regime: |wt-1| 0.34≦ 7891 
Percentage of Obs = 0.159396 

Dep. ΔFt ΔSt

Ind. Estimate Std error  Estimate Std error 
EC(wt-1) -0.061548  0.048113 -0.030680  0.035392 
Constant 0.021325  0.016565 0.010539  0.012185 
ΔFt-1 0.116192 ** 0.056808 0.336968 *** 0.051529 
ΔFt-2 -0.155923 ** 0.066102 -0.306816 *** 0.058421 
ΔFt-3 0.029596  0.051302 0.171139 *** 0.038922 
ΔFt-4 -0.118747 * 0.069930 -0.280836 *** 0.050378 
ΔSt-1 0.069487  0.049682 0.078356 ** 0.037725 
ΔSt-2 -0.067445  0.066867 -0.121951 ** 0.050034 
ΔSt-3 0.021720  0.053655 0.006932  0.036526 
ΔSt-4 0.015154  0.073989 0.028471  0.053958 

 
Second Regime: |wt-1|＞0.347891 

Percentage of Obs = 0.840604 
Dep. ΔFt ΔSt

Ind. Estimate Std error  Estimate Std error 
EC(wt-1) 0.008166 *** 0.005789 0.011112 ** 0.004722 
Constant -0.002951 *** 0.002082 -0.003981 ** 0.001697 
ΔFt-1 -0.022832  0.025150 0.366853 *** 0.022536 
ΔFt-2 0.018898 ** 0.027715 -0.310540 *** 0.022479 
ΔFt-3 0.013230 * 0.028275 0.212948 *** 0.022476 
ΔFt-4 -0.030822  0.028101 -0.210293*** 0.022738 
ΔSt-1 0.030769 *** 0.027363 0.135923 *** 0.022851 
ΔSt-2 -0.035558  0.028087 -0.135454 *** 0.024011 
ΔSt-3 -0.011124  0.023957 0.059589 *** 0.020041 
ΔSt-4 0.011075  0.023196 -0.067512*** 0.019063 
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Threshold estimate = 0.347891           Cointegrating Vector = 0.958673;  
AIC = -125,042                       SBIC = -124,963 
Lagrange Multiplier threshold test 
  Fixed regressor (asymptotic) bootstrap = 44.0753*** (p-value < 0.0001). 
  Residual bootstrap = 38.4376*** (p-value < 0.0001). 
Wald test 
  Equality of dynamic coefficients = 68.0757*** (p-value < 0.0001). 
  Equality of EC coefficients = 2.35093 (p-value = 0.308675). 
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Table 7 Threshold VECM Estimations for Log-Prices of Futures and Underlying 
Spot after the Reduction of Tick Size at TSE(March 1, 2005-December 30, 2005) 
The threshold VECM is applied to determine threshold effect on the long-run equilibrium and short-run 

dynamics between two markets after the reduction of tick size.  Std error indicates Eicker-White 

standard errors.  Schwarz Bayesian Information Criterion (SBIC) determines the optimal lag length.  

S represents Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), F stands for 

TAIEX Futures, and EC is the error correction term. *, **, and *** denotes significant rejection of the 

hypothesis at the 10%, 5%, and 1% significance level, respectively. 

 

 
First Regime: |wt-1|≦0.307617 
Percentage of Obs = 0.754272 

Dep. ΔFt ΔSt

Ind. Estimate Std error  Estimate Std error 
EC(wt-1) -0.009054 ** 0.003709 -0.001640  0.003281 
Constant 0.002767 ** 0.001125 0.000495  0.000994 
ΔFt-1 -0.014178  0.018843 0.260894 *** 0.027508 
ΔFt-2 0.021899  0.022373 -0.127880 *** 0.030391 
ΔFt-3 0.044826 ** 0.019836 0.183949 *** 0.026573 
ΔSt-1 -0.101275 *** 0.021890 -0.190072 *** 0.025869 
ΔSt-2 0.035083 * 0.018046 0.096491 *** 0.020684 
ΔSt-3 -0.026505  0.019338 -0.074313 *** 0.020506 

 
Second Regime: |wt-1|＞0.307617 

Percentage of Obs = 0.245728 
Dep. ΔFt ΔSt

Ind. Estimate Std error  Estimate Std error 
EC(wt-1) 0.000008  0.006032 -0.000662  0.005474 
Constant -0.000040  0.001881 0.000230  0.001706 
ΔFt-1 -0.026894  0.040385 0.288709 *** 0.040929 
ΔFt-2 0.085844 *** 0.032192 -0.032528  0.042143 
ΔFt-3 -0.005057  0.041419 0.110046 *** 0.039256 
ΔSt-1 -0.027249  0.043015 -0.082448 ** 0.043974 
ΔSt-2 -0.015277  0.035868 0.023320  0.030155 
ΔSt-3 -0.021268  0.034245 -0.084224 *** 0.024544 
Threshold estimate = 0.307617          Cointegrating Vector = 0.964937 
AIC = -141,557                      SBIC = -141,493 
Lagrange Multiplier threshold test 
  Fixed regressor (asymptotic) bootstrap = 42.4844* (p-value = 0.066667). 
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  Residual bootstrap = 37.5842*** (p-value < 0.0001). 
Wald test 
  Equality of dynamic coefficients = 21.9461** (p-value = 0.0381278). 
  Equality of EC coefficients = 3.13770 (p-value = 0.208284). 
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Table 8 GARCH Model 
The table shows the result of the following GARCH model. 
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where  and  are the returns of the futures and spot prices.  The variable  in the 

table stands for the futures market lagged volatility and the variable  stands for the spot market 

volatility.   is the event dummy taking the value one for the period before the reduction of tick 

size and the value zero for the period after the reduction of tick size. 

tFR , tSR ,
2

1, −tFε
2

1, −tSε

1D

 

 Mean Equation  Variance Equation 
 tFR ,  tSR ,   tFh ,  tSh ,  

Constant 0.000007  -0.000008  Constant 0.00000002 *** 0.00000004 ***
 (0.1749)  (0.1243)  (<.0001)  (<.0001)  

1, −tFR  -0.038800 *** 0.000002*** 2
1−tε  0.106500*** 0.157800 ***

 (<.0001)  (<.0001)  (<.0001)  (<.0001)  
1, −tSR  0.082900 *** 0.024700*** 1−th  0.877700*** 0.744500 ***

 (<.0001)  (<.0001)  (<.0001)  (<.0001)  
D1 0.000002  0.146400 D1 0.00000001 *** 0.00000007 ***
 (0.7624)  (0.8107)  (<.0001)  (<.0001)  
The p-value is showed in the parentheses below each coefficient estimate. 

*: the coefficient estimate is statistically significant at 10% level. 

**: the coefficient estimate is statistically significant at 5% level. 

***: the coefficient estimate is statistically significant at 1% level. 
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Table 9 Ordinary Least Square (OLS) for Mispricing Errors in the 
Pre-Reduction of Tick Size Period 

reductionpre
titititi

reductionpre
ti eSHORTBUYVOLAMPE −− ++++= ,,3,2,1, βββα  

where MPEi,t is the absolute value of percentage mispricing error on day t and intraday period i, while 

the superscript indicates the minimum price increment at the period, VOLAi,t is the futures volatility in 

the 30 min prior to every trade at time i in the first regression and GARCH conditional futures 

volatility at time i in the second regression, BUYi,t is an indicator variable with value one if the 

arbitrage trade is a buy program and zero otherwise, and SHORTi,t is an indicator variable with value 

one if the arbitrage trade involved short selling and zero otherwise. 

 
 MPE MPE 

Intercept 0.01268 
(<.0001)

*** 0.01149 
(<.0001) 

*** 

30-minute futures VOLA 0.72477 
(<.0001)

***   

Conditional VOLA  1.44625 
(<.0001) 

*** 

BUY -0.01052 
(<.0001)

*** -0.01011 
(<.0001) 

*** 

SHORT -0.00351 
(<.0001)

*** -0.00365 
(<.0001) 

*** 

R2 0.72680  0.73890  
adjR2 0.72680  0.73880  
Sample size 9541  9540  

The p-value is showed in the parentheses below each coefficient estimate. 

*: the coefficient estimate is statistically significant at 10% level. 

**: the coefficient estimate is statistically significant at 5% level. 

***: the coefficient estimate is statistically significant at 1% level. 
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