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考慮流動性下之選擇權訂價模型: 非線性拋物線偏微分方程

式的數值方法應用 

學生 : 楊家農                          指導教授: 鍾惠民 博士 

 

國立交通大學財務金融研究所 

2006 年 6 月 

 

摘要 

 

本篇論文提出一個在市場流動性不足情況發生時的選擇權訂價模型，並且發

展一個新的數值方法來求解一個非線性拋物線型態的偏微分方程式，同時利用湯

馬斯演算法來提升數值運算的效率。在實證研究的部份，我們使用美國的個股選

擇權資料來進行分析，首先運用非線性最小平方法來估計標的物的市場流動性，

並針對 Black-Scholes 與本文所運用的模型即 Frey 模型兩者之間對選擇權定價的

損失函數分析。 

 

關鍵字： 選擇權評價、非流動性的選擇權定價、非線性偏微分方程式、回饋效

果、價格影響力、有限差分法、湯馬斯演算法、非線性最小平方法。 
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applications in nonlinear parabolic PDE 
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ABSTRACT 

 
This paper considers the pricing model of options under illiquidity. A new 

numerical procedure for solving the nonlinear parabolic partial differential equation is 

explored and the Thomas algorithm is used to improving the efficiency of the 

numerical scheme. Using CBOE stock options, we employ the nonlinear least square 

method for obtaining the liquidity parameter of the underlying stock option in 

empirical work and then comparing the loss function between the Black-Scholes 

model and the model which is proposed by Frey and Patie (2001) and will be 

abbreviated as the Frey model in this paper. 
 
 

Keyword: Option Valuation; Illiquidity Option Pricing; Nonlinear PDE; Feedback 

Effect; Price Impact; Finite Difference Method; Thomas Algorithm; NLS. 
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1. Introduction 

Market liquidity is one of the most critical factors in investment decisions and 

derivative pricing. There is a growing support for the proposition that liquidity affects 

the asset dynamics and trading strategies. This paper aims to investigate how the price 

process is affected by dynamic trading strategy and how dynamic trading strategy is 

influenced by stock price process. Market prices are determined by the supply and 

demand of traded assets. However, most of financial models assume that the supply 

and demand are perfect elasticity, which means the orders, including market order and 

limit order, do not affect the traded asset price. All investors who are considered as 

small traders have tiny impact in financial market individually. As a manner of fact, 

the volume of traded assets must influence on the price of traded assets in real market 

circumstance. The large traders are persons who have a market power and significant 

part of the shares. Consequently, we argue that their hedging strategy have great 

impact on stock price and volatility. Hence, the stock price is very likely affected by 

their hedging strategy and the influence of the large trader hedging strategy becoming 

a critical issue in financial market. 

There are many theoretical studies and empirical studies which support the effect 

of liquidity of transaction cost on asset dynamics13. Furthermore, portfolio choice14 is 

also determined by the liquidity assets. Liquidity of assets is one of the factors which 

play a major role in the formulation of optimal trading policy followed by traders. 

This paper provides a comprehensive framework for the pricing of European 

option pricing and models the dynamic trading strategy in financial market due to 

illiquidity. According to many pervious research and related articles we know that it 

will have great influence on pricing and hedging strategy for traded asset such as 

                                                 
13 See, for example, Pastor and Stambaugh (2001) and Lo, Mamaysky and Wang (2001).  
14 Koren and Szeidl (2002) 
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derivatives when market becomes illiquid or transaction cost becomes higher. Thus, 

the hedgers can hardly completely replicate their portfolio in illiquidity market and 

thus result in a lot of hedging error. 

    In our model analysis, we focus on the circumstance under market illiquidity and 

perfect liquidity. The classical Black-Scholes (BS) framework is based on many 

assumptions and the most important Black-Scholes formula assumption relative to 

this paper is “The stock and option price are not affected by placing orders.” We relax 

this assumption for the following further analysis and figure out the relationship 

between the option pricing and the market liquidity. 

In market microstructure theory, we say that the feedback effect is based on the 

violation of this assumption. The large trader might be able to use his market power in 

order to manipulate market prices in his favor. Sometimes the large trader is called by 

informed trader who has more information than small trader in market. 

We examine how price impact on the underlying asset market that affect the 

replication of a European contingent claim and find out the best hedging strategy. If 

the feedback effect exists, we need to develop a new financial model fitting the real 

market condition and the large trader or investors can use this model for the option 

pricing and hedging. 

The standard market microstructure models of Kyle (1985) and Back (1992, 

1993) use an equilibrium approach to investigate how informed traders reveal 

information and affect the market price through the trading. The equilibrium asset 

prices are directly influenced by the informed trader’s trades that shown by Kyle 

(1985) and Back (1992, 1993). 

Jarrow (1992) investigates market manipulation trading strategy by large traders 

in the stock market and the large traders are defined as a person who has influence on 

prices by generalizing and extending Hart (1977) to a stochastic economy. 
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Furthermore, Jarrow make more generalization in model and distinguishing between 

the real wealth and the paper wealth while calculate the traders’ position. He argues 

that asymmetry creates the manipulation opportunity and the large trader can use their 

market power to manipulate prices and generate profit without any risk. 

Jarrow (1994) shows that the introduction of option markets might result market 

manipulation strategy. Simply speaking, he defines the manipulation strategy as 

arbitrage opportunity regarding the large trader. He shows that if the stock market and 

derivative market are perfectly aligned, so-called synchronous market condition, the 

large trader can hardly manipulate prices. Jarrow (1994) identifies this condition to be 

equivalent to the no arbitrage condition. But if the small trader or noise traders have 

only incomplete information about the large traders’ behavior and reaction, the small 

trader could fail to synthetically replicate the call options. 

Esser and Moench (2003) introduce a continuous-time model for an illiquid 

market and revise the market liquidity parameter from deterministic liquidity model to 

stochastic liquidity model (henceforth SL) which demonstrates that the market 

liquidity follows a stochastic process. Furthermore, they analyze positive feedback 

strategies and contrarian feedback strategies. They find the market volatility generally 

increasing compared to BS model when positive feedback strategies exist. Moreover, 

they derive a closed-form expression for the option pricing model and exploit a 

pragmatic method to calculate the price of liquidity from plain vanilla put options. 

However, the SL model is very sophisticated than the Frey model in numerical 

computation and empirical study. Thus, we do not consider the stochastic factor into 

the liquidity for Occam’s razor purpose. 

Cetin, Jarrow, Protter and Warachka (2006) use the stochastic supply curve 

modeling the liquidity risk and their empirical studies demonstrate that liquidity cost 

are a significant factor of option price. Furthermore, they find that in-the-money (ITM) 
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options are subject to the lowest percentage impact of illiquidity component, even 

thought ITM options is expensive. On the contrary, the out-of-the-money (OTM) 

options are significant affected by the factor of illiquidity despite OTM options are 

cheaper than ITM options. They define liquidity cost of the discrete trading strategies 

and estimate the liquidity parameter of the stochastic supply curve. The empirical 

evidence shows that the liquidity cost increases quadratically with transaction sizes. 

Recently research concentrates on the pricing and hedging aspects which are 

introduced by the market illiquidity and the presence of the price impact effects on 

stock prices regarding the large traders. Frey (1998, 2000), Schonbucher and Wilmott 

(2000), Frey and Patie (2001), Bank and Baum (2004), as well as Liu and Yong 

(2005).are some famous articles and they calibrate the nonlinear pricing PDE in the 

illiquidity of the option pricing. Cetin, Jarrow, Protter and Warachka (2006) is the 

latest paper which provide a “reduced form” illiquidity model for constructing a 

discrete trading strategy within temporary price impacts. They not only utilize a 

simple framework for estimating the parameter of the stochastic supply curve by 

regression but also build up an optimal discrete time hedging strategy rather than the 

nonlinear PDE pricing model. 

There would be a tough problem as we introduce the large traders’ trading and 

hedging actives into European option pricing model. In fact, the asset dynamics 

depend on many parameters such as the Delta hedging strategy, market liquidity, 

Gamma and so on. This characteristic renders the pricing problem nonlinear. Thus, we 

face the problem that the nonlinear PDE is more difficult than BS model for getting 

the exact solution. In section 3, we show a better way of numerical skill which can 

avoid solving the nonlinear PDE problem directly. 

In practice, the traders often use the Black-Scholes model that the stock price is 

described by a lognormal random process. Nevertheless in BS model the traders’ 
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trading or hedging their position according to a misspecified model that could 

generate serious pricing and hedging error especially when liquidity becomes worse. 

That is the reason why we use the nonlinear PDE model rather than BS-PDE pricing 

model and the nonlinear PDE model is designated as the Frey model in the following 

research. 

First of all, we provide the nonlinear parabolic partial differential equation (the 

Frey model) to modify the original Black-Scholes partial differential equation 

(BS-PDE) for option pricing under market illiquidity framework and the proof of the 

Frey model will present in Appendix. Secondly, we demonstrate the hedging error 

formula result from market illiquidity and claim the new volatility term for feedback 

effect trading strategies. 

In general, PDE problem can be solved by certain numerical method including 

finite difference method (FDM), finite element method (FEM), and finite volume 

method and so on. In fact, obtaining the analytical solution of PDE is not easily even 

though there are many well-developed numerical methods. In our methodology, we 

utilize FDM which is the most fundamental and simplest framework in the 

computation of PDE. 

    The rest of this paper is organized as follows. In section 2, we introduce the 

model that is modification of BS-PDE and derive the Frey model (nonlinear PDE 

model). In section 3, we provide numerical results of the nonlinear PDE pricing 

model for European calls. Section 4 provides the empirical study and verifies the 

estimation loss function. Section 5 contains the concluding remark and further 

research. Appendix provides the concept of the Thomas algorithm and the comparison 

of the heat equation and the BS-PDE. 
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2. The Model 

This paper considers the pricing model of options under illiquidity and the following 

several sections are the core of this paper. In this section, following Frey (2000) and 

Frey and Patie (2001), we assume that there are two traded assets: bond and stock in 

the market where bond is a risk-free asset (i.e. cash account) and stock is a risky asset 

which follows a stochastic process. Simultaneously, we consider the bond as a 

numeraire (i.e., sometimes called discount factor) and assume that bond market is 

perfect liquidity that there is no liquidity problem exist. Now we focus on liquidity 

problem in the stock market. 

The BS model assumes that the underlying stock have perfect liquidity, meaning 

that investors can buy or sell a large amount of stock without affecting the stock price 

in market so that there is no feedback effect in the market. However, we take the 

market liquidity variable into account in the model due to the liquidity problem is an 

existent fact in the stock market. In this study, we do not assume the parameter of 

liquidity following a certain stochastic process, meaning that the liquidity is 

deterministic and it is not stochastic.15 

The following sections will introduce the basic assumptions and asset dynamics 

firstly. Secondly, the Frey model will be conducted and then we introduce the 

tracking error of the model. After that we explore the numerical method applications 

in the model. Finally, we present the smooth version of the model which proposed by 

Frey and Patie (2001). 

 

                                                 
15 In Esser and Moench (2003), the liquidity follows a certain stochastic process. Their framework 
generalizes the constant liquidity model of Frey (2000) and they impose a stochastic factor into the 
liquidity. Hence, the stochastic liquidity model of Esser and Moench (2003) is more sophisticated than 
the Frey model; it’s becoming very complex in the modeling of option pricing and in constructing the 
hedging strategies when the market liquidity is considered as a random source. In this paper, we do not 
deal with this kind of complicated circumstance in the parameter of liquidity which follows a certain 
stochastic process. 
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2.1 Basic assumptions and asset dynamics 

We now introduce the basic model setup proposed by Frey and Patie (2001). The risky 

asset (i.e. the stock) follows the stochastic process without drift term 

( )t t t t t tdS S dW S S dσ ρλ α +
− − −= + ,                  (1) 

where α  is the number of stock shares held by large investor, i.e. the trading 

strategy of the large trader. The variableα+  denotes the right-continuous process, and 

ρ  is a non-negative constant liquidity parameter. A large value of the parameter ρ  

means that the market becomes more illiquid. Moreover, we state that the parameter 

ρ  is equal to zero as the market reduces to the BS world with perfect liquid. Recall 

that the drift term plays a role in stock dynamics in the assumption of the BS model. 

After the change of measure, however, the drift term is removed from the BS-PDE 

which is dominated by risk-free rate in risk neutral measure. 

 Frey (2000) and Frey and Patie (2001) discuss the influence of the trading 

strategy on the asset process with a smooth stock trading strategyα and suppose that 

the large trader utilize the strategy of the form ( , )tt Sα φ= . Thus, the asset dynamic 

becomes a new dynamics and then we can obtain the new effective asset dynamics by 

Ito formula16 with the following form 

( , ) ( , )t t t t t tdS v t S S dW b t S S dt= + ,                  (2) 

where 

[ ]
( , )

1 ( ) ( , )t
t t S t

v t S
S S t S
σ

ρλ φ
=

−
,                        (3) 

[ ]

2 21( ) ( , ) ( , ) ( , )
2( , )

1 ( ) ( , )

t t t SS t t t

t
t t S t

S t S t S v t S S
b t S

S S t S

ρλ φ φ

ρλ φ

⎛ ⎞+⎜ ⎟
⎝ ⎠=

−
,         (4) 

 

Derivation of the new asset dynamics 

We suppose that the large trader utilize the strategy of the form ( , )tt Sα φ=  for a 
                                                 
16 See Shreve (2004) chapter 4. 
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function α  and it is satisfying a mathematical assumption with two variables which 

are once continuously differentiable in time and twice continuously differentiable in 

stock17. The trading strategy of large trader expanded by Ito formula and thus we can 

get the form 

2 21( , ) ( , ) ( , ) ( , )
2t S t t t t SS t t td t S dS t S t S v t S S dtα φ φ φ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
.          (5) 

Firstly, we have already known the stock prices are controlled by the following 

stochastic process 

( )t t t t t tdS S dW S S dσ ρλ α= + . 

Secondly, we substitute the Equation (5) into the second term of the RHS of the 

Equation (1) and thus we obtain the Equation (6). 

2 21( ) ( , ) ( , ) ( , ) ( , )
2t t t t t S t t t t SS t t tdS S dW S S t S dS t S t S v t S S dtσ ρλ φ φ φ⎡ ⎤⎛ ⎞= + + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

. 

(6) 

By rearrangement, 

[ ] 2 211 ( ) ( , ) ( ) ( , ) ( , ) ( , )
2t t S t t t t t t t t SS t t tS S t S dS S dW S S t S t S v t S S dtρλ φ σ ρλ φ φ⎡ ⎤⎛ ⎞− = + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

(7) 

Therefore, generates the following explicit form for asset dynamics 

[ ] [ ]

2 21( ) ( , ) ( , ) ( , )
2

1 ( ) ( , ) 1 ( ) ( , )

t t t t SS t t t
t

t t
t t S t t t S t

S S t S t S v t S S
SdS dW dt

S S t S S S t S

ρλ φ φ
σ

ρλ φ ρλ φ

⎛ ⎞+⎜ ⎟
⎝ ⎠= +

− −
. 

(8) 

In this section, we provide a simple proof of the new effective asset dynamics. In next 

section, we interpret how the Frey model is controlled by the Equation (12) and 

clarify all of basic assumptions in the model. 

 

2.2 The Frey model (nonlinear parabolic PDE) 

The Frey model has two significant characteristics different from Black-Scholes PDE. 

                                                 
17 The stock is often designated as the space in the FDM application 
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First, the risk-free rate does not play a role in Frey model. Second, the Frey model 

argues that the volatility is not a constant volatility. In the Frey model, the volatility 

term is dominated by three main parameters ρ , λ and SSu  in the Frey model. 

However, we can utilize the three main parameters to capture the volatility behavior 

in real markets. The parameter λ can be utilized to describe the asymmetry of 

liquidity18. Generally, markets tend to be more liquid in the bull market than in the 

bear market. Thus, Frey and Patie (2001) denote the parameter in the following form 

{ }0 0

2
0 1 ( ) 2 ( )( ) 1 ( ) S S S SS S S a I a Iλ ≤ >= + − + ,               (9) 

where the parameter 1a is usually larger than 2a in empirical study. The parameterλ  

plays an important role in this model. The asymmetry of liquidity can be explained 

byλ with financial sense. The third critical factor is SSu . We are familiar with the 

Greeks in options pricing and hedging. In the Frey model, the parameter SSu  

represents the value of gamma and it is also a crucial factor in the model.  

First, SSu  plays a role in Equation (3) & (4) and thus it would affect the asset 

dynamic. If we want to simulate the sample path of the stock price afterward, the 

parameter SSu must be calculated by FDM before the simulation. Second, it goes 

without saying that SSu  has a great influence on the size of hedging error and the 

large trader’s trading strategy. In section 2.3, we will demonstrate the relationship 

between the parameter SSu  and tracking error with mathematical equation. 

There are two major trading strategy which include positive feedback trading and 

contrarian feedback trading. When 0SSu >  the large trader adopting the positive 

feedback trading strategy. On the other hand, the larger trader employs the contrarian 

feedback trading strategy as 0SSu < . Moreover, SSu  is also vital when we discrete 

                                                 
18  Kamara and Miller (1995) show that the relationship between moneyness and liquidity is 
asymmetric. Etling and Miller, Jr. (2000) also state that although the maximum value of liquidity is 
near the money, liquidity does not decrease symmetrically as strike price move away from at the money 
(ATM). 
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the Frey model in numerical computation and the detail of this part will be presented 

in section 2.4. 

 

The Frey Model (nonlinear parabolic PDE) 

We denote that there is a solution u of the Frey nonlinear PDE model. Specifically, 

the Frey model and terminal condition is given by 

( )

2
2

2
1( , ) ( , ) 0
2 1 ( ) ( , )t SS

SS

u t S S u t S
S Su t S
σ

ρλ
+ =

−
,           (10) 

( , ) ( )u T S h S= ,                                      (11) 

where ( , )( , )S
u t Su t S

S
∂

=
∂

 is the large traders’ strategy and it must satisfies a critical 

assumption with ( ) ( , ) 1SSS Su t Sρλ < . Obviously, we observe the Frey model setting 

risk-free rate equal to zero and illustrate the PDE formula under risk neutral measure 

without drift term (i.e. risk-free rate equal to zero). However, we can improve the 

Frey model by taking risk-free rate into account, making the pricing model more 

general than Frey’s and we present the form of the Frey model with risk-free rate. For 

tractability, we still assume that the parameter, risk-free rate, equal to zero the same as 

Frey’s model setting for “parsimonious principle” in numerical analysis. 

 

2.3 Tracking error (hedging error) 

Firstly, we realize the large traders following the trading strategy with ( , )t Su t Sα =  

and the volatility of asset price is
( )

( , )
1 ( ) ( , )u

SS

t S
S Su t S
σσ

ρλ
=

−
. Secondly, we 

employ the Ito formula to u so that we can obtain 

   2 21( , ) ( , ) ( , ) ( , )
2t S t t t SS t u tdu t S u t S dS u t S u t S S dtσ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
,       (12) 

equivalently, 

2 2
0 0 0

1( , ) (0, ) ( , ) ( , ) ( , ) ( , )
2

T T

T S t t t t SS t u t tu T S u S u t S dS u t S u t S t S S dtσ⎡ ⎤= + + +⎢ ⎥⎣ ⎦∫ ∫ ,  (13) 
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where we denote ( , )Tu T S is the payoff of derivative at maturity day. Hence, 

( ) ( , )T Th S u T S= and the payoff of derivative at maturity day can be represented in this 

form 

2 2
0 0 0

1( ) (0, ) ( , ) ( , ) ( , ) ( , )
2

T T

T S t t t t SS t u t th S u S u t S dS u t S u t S t S S dtσ⎡ ⎤= + + +⎢ ⎥⎣ ⎦∫ ∫   (14) 

Assuming we have already known the Frey nonlinear PDE model. If the Frey model 

holds, we can eliminate the last term in the right hand side (abbreviated RHS) of  the 

Equation (14). Now we denote the tracking error ( )M M
T T Te h S V= − . The tracking error 

measures the difference between the terminal payoff of the European option 

(i.e. ( )Th S ) and the replication of derivative (i.e. M
TV ) which duplicated by bond and 

stocks with the self-financing trading strategy. Using the tracking error can easily 

track and judge the performance of hedging strategy. In fact, we regard ( )Th S  and 

M
TV  as the total cost and the total revenue respectively in economic sense.  

We conclude that a positive value of M
Te  displays the large trader who loss the 

money in the hedging strategy, meaning the payoff of the replication of derivative can 

not completely cover the payment of European style option at maturity date. Thus, the 

large traders suffer loss from under-hedging at maturity day. 

According to self-financing trading strategy, we can obtain the option payoff at 

terminal time by the following representation 

0 0
( ( , )) ( , )

T

T t th S V dSρ α α ρ α= + ∫ ,                    (15) 

where ( , )BS
t S tu t Sα =  and 0 0(0, )BSV u S= . Next we demonstrate that the tracking 

error 0M
Te =  under BS world and as self-financing trading strategy holds. 
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( )0 0

( ( , ))

    ( ( , )) ( , )

    0

M M
T T T

T

T t t

e h S V

h S V dS

ρ α

ρ α α ρ α

= −

= − +

=

∫               (16) 

Frey (2000) demonstrates that the Black-Scholes hedging is costly under 

imperfectly liquid market and the tracking error is always absolutely positive-value in 

BS world. We can display the tracking error in the following form19 

( )
2 2

20

1 1 1
2 1

TM BS
T SS tBS

t SS

e u S dt
S u

σ
ρ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= −
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

∫ ,             (17) 

If 0BS
SSu > , then ( )1 1BS

t SSS uρ− < . Hence, we conclude 
( )2

1 1
1 BS

t SSS uρ
>

−
 and the 

tracking error is positive. When 0BS
SSu < , we can get the same result in this integral 

form. In a word, the value of the tracking error is always positive if the large trader 

uses the Black-Scholes option pricing model in illiquid market. 

 
 

2.4 Numerical method applications in the Frey model 

In this section, we are interested in how to discretize the Frey model which is a 

complex nonlinear PDE. Obviously, the coefficient of the Frey model is an unknown 

number which includes the solution that we want to solve it. In Frey and Patie (2001), 

they use the Newton method to solve the whole nonlinear system. However, using the 

Newton method might quite sophisticate and spending much more computational time 

in programming procedure. As a result, we provide an alternative approach that 

transfers the nonlinear problem into the linear system and this approach can reduce 

the computational costs. We will demonstrate the detail of methodology in the 

                                                 
19 Frey (2000) shows the basic concept of tracking error. Theoretically, the tracking error can be 
treated as a “cumulative dividend stream with instantaneous dividend.” By the way, we should notice 
that Frey (2000) does not consider the parameterλ in the model and in the tracking error. 
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following. 

Firstly, we use the explicit method for the calculation of the coefficient. After we 

solve the coefficient in the first step, the nonlinear PDE becomes the linear PDE and 

therefore the coefficient of the model is known at this moment. Secondly, we use the 

implicit method20 to solve every linear system at each time step. Recall the Frey 

model without the risk-free rate (zero drift) 

( )

2
2

2
1( , ) ( , ) 0
2 1 ( ) ( , )t SS

SS

u t S S u t S
S Su t S
σ

ρλ
+ =

−
, 

However, we impose the risk free rate term in the model which improves the model 

more general than the Frey model. 

( )

2
2

2
1( , ) ( , ) ( , ) ( , )
2 1 ( ) ( , )t SS S

SS

u t S S u t S rSu t S ru t S
S Su t S
σ

ρλ
+ + =

−
,   (18) 

Using the finite difference methods, the Frey model can be represented in this form 

( )
1 1 1 1 1 1

2 1 1 1 12 1
2

21
2 ( ) 2

i i i i i i i
j j j j j j ji i

j j j j

U U U U U U U
v S rS rU

t S S

− − − − − −
+ − + − −− − + −

+ + =
Δ Δ Δ ,    (19) 

where 

( )( )
1 1

2

21 ( )
1 ( )

( )

i
j i i ii

j j jj j SS
j j

v
U U US S u

S S
S

σ σ
ρλ

ρλ + −

= =
⎛ ⎞− +−
−⎜ ⎟⎜ ⎟Δ⎝ ⎠

.      (20) 

We denote that i
jU  is the numerical solution and u  is the exact solution of the Frey 

model, i  is the index of the time, j  is the index of the space. We have already 

known the value of i
jv  at time i due to the explicit method as computing the PDE at 

time 1i − . Therefore, all the gird of call option value can be obtained by FDM easily. 

Figure 1 displays the basic concept of the implicit method. 

                                                 
20 See Appendix, the implicit method is unconditional stable. Thus, we purpose to solve the Frey 
model via the implicit method. 
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[Insert Figure 1 here] 

 

2.5 The smooth version of nonlinear PDE 

We find a serious problem in this term (1 ( ) )SSS Suρλ− as we check the numerical data 

and find that this term violates the basic assumption “ ( ) ( , ) 1SSS Su t Sρλ < ” in 

programming process. If we do not address this numerical problem, the nonlinear 

PDE will display a non-smooth solution in option intrinsic value and generating bad 

numerical solution. Therefore, using some skill in nonlinear PDE, we revise the 

violation of the basic assumption by the following form: 

2

2 2
0

1

1 1max ,
2 1 min( , ( ) )t SS S

SS

u S u rSu ru
S Su

σ α
α ρλ

⎧ ⎫⎡ ⎤⎪ ⎪+ + =⎨ ⎬⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭
.     (21) 

In Frey and Patie (2001), they choose 0α =0.02 and 1α =0.8521 for the smooth 

version of nonlinear PDE. Frey and Patie (2001) do not explain how the parameter 

would be selected and the detail of methodology does not appear in their paper. If we 

do not impose artificial conditions in the PDE model, the denominator of second 

coefficient22 in Equation (21) could be greater than one. Frey and Patie (2001) 

provide this approach to settle the non-smooth numerical solution problem in option 

pricing. General speaking, the more smooth PDE we have, the more precise solution 

we get. 

The second coefficient of PDE in Equation (21) is controlled by some of the 

factors and the numerical boundary value are governed by 0α  and 1α . We can treat 

0α and 1α as the artificial condition or the barrier. We state that 1α is the maximum 

value of ( ) SSS Suρλ  and use the parameter 1α to control (1 ( ) )SSS Suρλ−  and thus 

                                                 
21 Two artificial conditions are imposed into the PDE model. 
22 The term is 1min( , ( ) )SSS Suα ρλ . 
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this term will not be negative anymore. Hence, we obtain smooth solution in the Frey 

model. Secondly, the parameter 0α control the volatility term in nonlinear PDE. The 

term 2 2
0σ α can be explained by the minimum value of the volatility under illiquidity 

market condition. The smooth version of PDE proposed by Frey and Patie (2001) 

sounds great but this approach might affect the stability of the numerical solution. 

Since the disadvantage of this revised PDE is too artificial that designedly limit the 

numerical value in certain boundary to avoid the violation of the basic assumption. 

We test the call option value, delta (i.e., first derivative) and gamma (i.e., second 

derivative) and finding the value of gamma will explode as 0.4ρ > . This 

phenomenon tells us that the smoothed version of PDE is absolutely not a unique 

approach as we calculate the second derivative. The second derivative represents the 

variation of the hedging strategy for large trader. Consequently, we should carefully 

use the smoothed version of PDE when we need to build up a hedging strategy in the 

certain period.
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3. Numerical Result 

Section 3 provides the numerical result of the Frey model. We compare the option 

pricing under different liquidity circumstances and compute the speed of 

programming with direct method and iterative method. Finally, we check the 

condition number of the linear system in each time step from “coarse grid” to “find 

grid.” 

 

3.1 Option pricing under perfect liquidity market 

In section 3.1, we set the parameter 0ρ = , which means that the Frey model is 

equivalent to the classical BS model. Our benchmark set of underlying parameters is 

reported in Table 1. 

 

[Insert Table 1 here] 

 

According to Table 1, we obtain that the exact solution of BS call option price is 

7.9260. Moreover, we display the profile of the numerical solution in Figure 1 and 

verify the numerical solution of the Frey model with the BS model in perfect liquidity 

market. The terminal payoff and intrinsic value of call option are showed in Figure 1. 

 

[Insert Figure 2 here] 

 

3.2 Option pricing under imperfect liquidity market 

In section 3.2, we implement the option pricing under illiquid market. The assumption 

and the parameter setting dose not change except the parameter ρ . We want to 

realize the call option value with different liquidity. In figure 2, we present the 

outcomes for a 1-year call option with other parameter setting for different values of 
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the market liquidity ρ  ranging from 0 to 0.5. Figure 2 shows that the relationship 

between ρ and call option value. However, we observe that the large trader will spend 

more money to hedge a call option under worse market liquidity condition. Thus, the 

hedge cost of the large trader is increasing in the parameter ρ . 

 

[Insert Figure 3 here] 

 

3.3 The computation speed of direct method and iterative method 

One of the important issues is to explore the efficient method for solving the 

tridiagonal system. While there are several methods for solving the linear system, the 

iterative and direct methods are explored in our study. Jacobi, Gauss-Seidel (GS) and 

successive over-relaxation (henceforth, SOR) are most prevailing iterative method 

(indirect method). For direct method, the Gauss-eliminate type is the basic routines 

for solving linear system and usually based on some forms of Gaussian elimination 

with pivoting. The LU decomposition and the Thomas algorithm are the most popular 

approach in direct method for solving the linear system. It notes worthy that the 

Thomas algorithm is the most efficient way for solving “the tridiagonal linear 

system.” If the linear system is not tridiagonal, the Thomas algorithm is not suitable 

and can not be used in non-tridiagonal type system. The setting of parameters is the 

same as Table 1 and the parameter ρ  is assumed to be zero. 

 

Table 2 demonstrates some of results from numerical method and compares the 

computational speed in three different methods. First, the Thomas algorithm is 

apparently the fastest way to address the tridiagonal system and it can save a lot of 

time for our procedure. According to the result of the Table 2 is not significant in the 

column of “elapsed time” because the mesh grid is “coarse.” If we increase the 
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partition of time and (stock) space, the Thomas algorithm will obviously exhibit its 

computational power. Second, the disadvantage of GS method is time-consuming and 

the accuracy of the solution depends on the number of iterations. The detail of the 

Thomas algorithm will show in Appendix. Hence, we abandon the iterative method 

because it is time-wasted. In our point of view, the Thomas algorithm is most efficient 

and fastest method for solving the tridiagonal system but a majority of textbook still 

uses LU-decomposition to solve the tridiagonal system in each time step. As a result, 

the Thomas algorithm provides a great improvement in numerical scheme and it 

decreases the computational costs. 

 

[Insert Table 2 here] 

 

3.4 The condition number of tridiagonal system 

The condition number measures the sensitivity of the linear system. As the size of the 

coefficient matrix increases, the condition number will increase and the solution of 

the linear system becomes sensitive to the numerical methods. Using a different way 

to take an inverse in the coefficient matrix will result in a different solution. Table 3 

shows that the relationship between the condition number and market liquidity. 

 

[Insert Table 3 here] 

 

Obviously, the condition number ( )Aκ is increasing in the liquidity parameter ρ  

when SΔ  holds constant. On the other side, we increase the partition of the space 

M  and the parameter ρ  holds constant at the same time. In Table 4, the condition 

number grows about quadruple as SΔ  decreases a half and thus we claim that the 

solution is stable. Consequently, we conclude the numerical solution of the Frey 
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model is not sensitive to the size of the coefficient matrix because the relative ratio of 

condition number is quite stable. The following table displays the relative ratio of 

condition number. 

 

[Insert Table 4 here] 

 

In this section, we not only check the condition number of the linear system at 

each time step but also list the maximum value of the condition number in each time 

step. We consider that the sensitivity of the numerical solution is highly correlated 

with the condition number23. At beginning, we conjecture that the coefficient of 

matrix could generate a great influence on numerical solution of the option pricing 

model as the market liquidity becomes worse. However, we demonstrate that the 

condition number increases quadruply as the partition of the space increases double 

and thus the sensitivity of the solution is conducted.24

                                                 
23 See Trefethen and Bau (1997). 
24 We should be careful as doing the numerical analysis especially for the application of the option 
pricing model in finance issue. 
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4. Empirical Study 

Bakshi, Cao and Chen (1997) not only provide an empirical study for the performance 

of alternative option pricing models but also demonstrate the detail of the estimation 

procedure which is the least square type estimation method. They implement each 

model by adapting this procedure. Hence, the following study for obtaining the 

liquidity parameter is based on the spirit of the estimation procedure. We present a test 

of the performance of the option pricing model under illiquidity for individual stock 

option prices for the sample period from January 1, 2000 through December 31, 2004. 

Our empirical study is based on call option contract's close quote price taken to be the 

bid-ask mid-point price and the rollover effect is conducted. Moreover, we check the 

integrity of the quotes and remove unreasonable data in our empirical work. First, we 

compute the Black-Scholes implied volatility (BS-IV) for each exercise price 

everyday and then the BS-IV with higher than 100% or lower than 0% are excluded in 

our dataset. Let ,i jC  denote the daily close price of options i  at day j .  In 

addition, we denote C  as call option prices from the Frey nonlinear PDE model. The 

liquidity parameter is estimated numerically with two stages by the following 

equations25. 

Stage 1: 

( )

2

*
, 1 2 0 1 ,

1 1         

arg  min , , , , ; , , , ,
jMN

avg obs
N j i j j j j initial i j

j i optionnumerical solution from the Frey nonlinear PDE Model
prices

C S K T r BSIV a a C
ρ

ρ ρ α α
= =

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∑ , (22) 

Stage 2: 

                                                 
25 The parameter ρ , 1a  and 2a  should not be estimated simultaneously since it does not easily 
obtain the accurate value of three parameters at the same time and it is time-consuming for getting 
three parameters. Therefore, we only focus on the estimation of the liquidity parameter ρ  rather than 
the other two in our empirical study. 
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( )

2

1
*

1 , 1 2 0 1 ,
2 1         

arg  min , , , , ; , , , ,
jMS

avg obs
S j i j j j j S i j

j S N i optionnumerical solution from the Frey nonlinear PDE Model
prices

C S K T r BSIV a a C
ρ

ρ ρ α α
+

+
= − + =

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ , (23) 

{ }, 1, 2, , 1S N N N n= + + − ,                                  (24) 

where the variable jM  presents the number of exercise quote price in each day and 

n  presents the number of trading day. The above Equation (22) is a nonlinear least 

square (henceforth, NLS) estimator because the element C  is the numerical solution 

from the Frey nonlinear PDE model. On the other hand, we can also claim that the 

above Equation (22) is a type of estimation loss function and therefore the parameter 

*ρ  is a minimum (squared) distance estimator. 

The following illustrates the detail procedure regarding the estimation of the 

liquidity parameter. First, we use the moving window method to do the whole 

estimation procedure. Second, we utilize the pattern search algorithm into the whole 

estimation procedure. Here the Pattern search algorithm can be employed for finding 

the minimum of objective function and obtaining the parameter ρ  which correspond 

to the local minimum objective function. Third, we determine the number of day N  

in the moving window and then calculate BS-IV for each exercise price per day. After 

that we compute the arithmetic mean of BSIV after excluding the unreasonable value 

of the BS-IV. We use the data of the first N days to determine the parameter of the 

1N + -th day. i.e., if we select N =2 for the number of the moving windows which 

means that we use the first two days’ observations to determine the parameter of the 

third day. Hence, the third parameter represents the first parameter that we estimated 

in our empirical study and then we use the same approach for getting the rest of 

parameters. As a result, we obtain a sequence of the parameter *ρ : 

* * * *
1 2( , , , )N N nρ ρ ρ ρ+ += ,                     (25) 
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where n is the length of date in the sample. We use the pattern search algorithm to 

determine the optimal parameter in the minimization of the square of the difference 

between the theoretical price and the observed price. We propose the pattern search 

algorithm for estimating liquidity parameter of the Frey model. The pattern search 

algorithm is a popular approach in optimization especially for solving bound 

constrained nonlinear programs, linear unconstrained problem and some kind of 

minimization problem26.  

However, we should give an initial-guess value, the lower bound and the upper 

bound of the parameter in this algorithm. Since the pattern search algorithm can not 

obtain the global minimum of the objective function. Hence, we set a vector of 

initial-guess which can be applied to find every optimal parameter for every different 

initial-guess value and then we pick up the most appropriate parameter27 to be the 

first estimator. After we get the first estimator, the rest of estimation procedures are 

the same except we impose the former estimator *
Sρ  to be the initial-guess value as 

we estimate *
1Sρ +  in the rest of estimation procedure. 

The empirical study can be divided into three parts. In the first part, we focus on 

the analysis of the bear market in short term period and then investigate the fitting 

ability of the Frey model from January 2002 to December 2002. Furthermore, we 

compare the pricing error ($MAE) with the BS and the Frey model. In the second part, 

we select a number of companies to be the sample of our empirical study and choice 

the period of time from 2000 to 2004. We want to figure out the practicability of the 

Frey model regarding the Top 20 of the average daily volume (ADV) of the 

underlying in stock option market and also make a comparison of the Top 20 with 
                                                 
26 If the reader have more interest in the pattern search algorithm, you might search related article or 
take a look at the MATLAB help file where provide the concise programming code and the condensed 
introduction. 
27 We denote that the most appropriate parameter corresponds to the smallest objective function. 
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other companies which have worst liquidity than the Top 20. In the last part, we not 

only verify the suitability of the estimation loss function but also check the validation 

of the Frey model via a variety of loss function. 

 

4.1 In bear market 

The underlying asset IBM is arbitrarily selected by us. We observe the trajectory of 

the IBM stock price and find the underlying asset having the down trend phenomenon 

in 2002. According to the market microstructure theory, we argue that the bear market 

often occur the market illiquidity. Thus, we have more interest in the fitting ability of 

the Frey model especially when illiquid market happened. Figure 4 displays the 

trajectory of the underlying stock price of the IBM Company from 2000 to 2004 and 

only 2002 respectively and Table 5 reports the descriptive statistics of the sample 

from January 2002 to December 2002. 

 

[Insert Figure 4 here] 

[Insert Table 5 here] 

 

The at-the-money (ATM) call options are only used in our empirical study 

because we consider that the OTM and ITM options are not suitable for the analysis 

of the pricing error. There are several empirical studies showing that the pricing error 

will generate more bias result from the volatility smile and skew pattern. 

 

[Insert Table 6 here] 

 

In Table 6, we compute the theoretical price of the BS model and the Frey model. 

First, we compare the mean of the ATM option pricing error of the IBM Company in 
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2002 and showing the numerical result with the different N  and UB and given the 

fixed LB. According to the numerical result of the Table 6, the pricing of the Frey 

model is smaller than the BS model significantly and the result of pricing error is 

nothing to do with the upper bound of the parameter. Moreover, we find the number 

of the moving window does not have great impact on the pricing. Thus, the second 

part of the empirical study set N =128. If the number of the moving window is given, 

no matter what the setting of UB, the pricing error of two option pricing model is not 

change almost surely. In Figure 5, we show that the profile of the liquidity parameter 

estimated from the Equation (23) & (24) by the pattern search algorithm. Obviously, 

we observe that the liquidity parameter is quite stable29 so that we obtain accurate 

and reliable result from the pricing error of two option pricing model. Figure 6 shows 

the graph of the stock option price and the pricing error respectively. 

 

[Insert Figure 5 here] 

[Insert Figure 6 here] 

 

4.2 The performance of the Top 20 & other companies 

We select a number of companies which is listed on Chicago Board Options Exchange 

(CBOE). Moreover, we pick up the Top 20 active stock options in CBOE and also 

select less liquidity companies for our analysis. We want to figure out the fitting 

ability of the Frey model with respect to differ underlying stock options with different 

liquidity state. Table 7 reports the symbol and the name of the sample in the Top 20 

                                                 
28 The more N  we set, the more computational time we need. However, the length of the moving 
window impact on the computational cost significantly but it does not affect the result of the pricing 
error of two option pricing model in our empirical study. As a result, we denote N =1 in the following 
analysis. 
29 The graph of liquidity parameter seems like unsmooth and volatile result from the scale of the 
vertical axis. In fact, the liquidity estimator is quite smooth as we readjust the range of the vertical axis. 
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active stock options and the less liquidity stock options. Table 8 provides the 

descriptive statistics of 27 stock options from Jan 2000 to Dec 2004 and the sample of 

the option prices are classified by moneyness and can be divided into three categories, 

respectively. We might notice that CE and XMSR are excluded in our empirical work 

due to their sample period are less than the length of the period from Jan 2000 to Dec 

2004. However, YAHOO is also excluded in our dataset result from the first day of 

the implied volatility (IV) is not available and it can not be replaced by the former 

value of the IV. Hence, we ignore three improper samples for the following study. 

 

[Insert Table 7 here] 

 [Insert Table 8 here] 

 

The Frey model displays unexpected fitting ability and it can track the asset 

dynamics for every stock option. Moreover, all of the stock options have pass through 

the $MAE of the pair t-test except the AMR. Although the pricing error of the Frey 

model 0.3494 is smaller than the BS model’s 0.4447, the outcome of the pair t-test is 

not significant result from the option price of the AMR have two jump phenomena 

happened on March 2000 and January 2001 respectively30. 

 

[Insert Table 9 here] 

[Insert Figure 7 here] 

 

If we eliminate the suspicious sample data which have jumps, the pricing error of 

the Frey model still significantly differs from the BS model in the AMR stock option 

                                                 
30 The jump effect is not the consideration of the Frey model since we can not significantly distinguish 
the Frey from the BS when jump phenomenon happened. Therefore, we get a very reasonable 
consequent on the underlying asset of the AMR. 
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during the period from February 2001 to December 2004. Hence, we conclude that 

the Frey model exhibits a gorgeous practicability for the stock option and it obtains 

more precise solution than the BS model especially for illiquid market.  

 

4.3 The loss function 

Christoffersen and Jacobs (2004) emphasize the consistency in the choice of the loss 

function is important. If a theoretical model is implemented using an inappropriate 

estimation loss function, then the more mean squared error (MSE) we get. In the 

following analysis, we introduce many loss functions for investigating the accurate 

estimation of the liquidity parameter when evaluating the Frey model. We compare 

the value of MSE between the Frey model and the BS model since the loss function 

can be treated as the criteria of the model selection. 

There are many loss functions are employed in literature and practice. First, the 

traditional loss function is composed of the dollar loss function and the percentage 

loss function and those can be divided into two categories respectively. Thus, mean 

squared dollar errors ($MSE), mean absolute dollar errors ($MAE), mean squared 

percentage errors (%MSE) and mean absolute percentage errors (%MAE) can be 

defined as 

( )2

1

1$
n

model obs
i i

i

MSE C C
n =

= −∑ ,                       (26) 

1

1$
n

model obs
i i

i

MAE C C
n =

= −∑ ,                         (27) 

2

1

1%
model obsn
i i

obs
i i

C CMSE
n C=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑ ,                      (28) 

1

1%
model obsn
i i

obs
i i

C CMAE
n C=

−
= ∑ ,                        (29) 

where iC  and iC  are the model call option prices and the observations respectively. 
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Secondly, we introduce the implied volatility loss function; that is, the implied 

volatility MSE and it also can be defined by 

( )2

1

1 n

i i
i

IVMSE
n

σ σ
=

−∑ ,                         (30) 

where the implied volatility are 

( )1 , , , ,i i i i i iBS C S K T rσ −= ,                        (31) 

( )1 , , , ,i i i i i iBS C S K T rσ −= ,                        (32) 

and 1BS −  is the inverse of the BS formula, the rest of inputs in the BS model are also 

given as we calculate the implied volatility MSE. 

 
[Insert Table 10 here] 

 

Table 10 reports the results of the loss functions of two models with respect to 24 

samples. The traditional loss functions show that the Frey model apparently performs 

better than the BS model and the IVMSE displays that the Frey model somewhat 

better than the BS model. Since jump phenomena are found by the trajectory of the 

implied volatility in the sample of AMR and WDC, the Frey model reduces the fitting 

ability per se. However, the rest of sample still exhibit a fabulous performance in the 

Frey model with smaller MSE or MAE and therefore we identify the performance of 

two theoretical option pricing models. Unquestionably, the Frey model shows that it 

can capture more the pattern of the market than the BS model by tracking the 

trajectory of the underlying asset. Furthermore, the estimation method of the liquidity 

is checked and it can obtain an accurate estimator by NLS method with respect to 

most of sample. Thus, we not only claim that the choice of the loss function is 

appropriate but also obtain the reliable results in our empirical work. 
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5. Conclusion 

This paper considers the pricing model of options under illiquidity. According to the 

model proposed by Frey and Patie (2001), we explore a new numerical approach for 

solving the nonlinear PDE rather than the Newton method. Furthermore, we employ 

the Thomas algorithm for solving the tridiagonal system and propose the pattern 

search algorithm for getting the liquidity parameter, respectively. Therefore, the 

calculating process is not time-wasting by two algorithms. After a preliminary 

numerical study of the model, we apply it to stock call option prices for the sample 

period from January 1, 2000 to December 31, 2004. We demonstrate that the pricing 

error results from market illiquidity (the bear market) in the first part of empirical 

study. In the second part of empirical study, we enlarge the sample period and check 

the practicability of the Frey model for various companies which is listed on CBOE. 

The Frey model, for the most of sample, not only exhibits good outcomes regardless 

the length of the sample period but also presents excellent performance in illiquid 

market. The Frey model really represents a vital improvement with respect to the BS 

model in terms of pricing error and it provides a reasonable option pricing model for 

the pricing of a block order in terms of price impact. We argue that the serious pricing 

biases of the BS model can be explained by the nonlinear feedback effect and thus if 

the large trader uses the Frey model rather than the BS model, they could avoid 

unnecessary loss from the stock option market where illiquidity occurred. 

In further research, the singularity separating method (SSM)31 can be applied to 

the option pricing. Since the SSM is adopted, precise numerical solution can be 

obtained very quickly. The SSM method is proposed by You-Lan Zhu who improves 

                                                 
31 Some of article says singularity removing transformation (SRT) method but they offer the same 
concept regarding the numerical method. 
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the terminal condition of the option32. There is a singularity point in the terminal 

payoff as the stock price equals to the exercise price and thus numerical solution will 

have a bad accuracy and reduced convergence rate around the singularity point even 

though the numerical solution will become smooth finally. However, we do not use 

the SSM method into our numerical scheme. If we want to get more rigorous solution 

of the PDE, we should adopt the SSM in our frameworks. 

Recently, the field of the computational finance grows up quickly. We believe 

that the Frey model can be calculated by other numerical schemes but until now we 

consider that the new approach of mine is the fastest way for solving the Frey model. 

Accordingly, the large trader who uses the Frey model obtaining the more accurate 

theoretical price and the fastest way in a short term period so that they make the right 

strategy immediately and establish the optimal position in the market. 

 

                                                 
32 See Zhu, Wu and Chern (2004) 
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Appendix 
 

A.1 The Thomas Algorithm 

An efficient algorithm for the solution of tridiagonal system is based on Gaussian 

elimination with the coefficient of the diagonal elements scaled to one at each stage. 

The Thomas algorithm takes advantage of the zero elements that already present in 

the coefficient matrix and avoids unnecessary computational operations. Therefore, 

we need to store only the non-zero elements and save a lot of memory in 

programming process. 

The Thomas Algorithm is an adaptation of the LU Decomposition (Gaussian 

elimination) idea to solution of a linear system with tridiagonal or band diagonal 

coefficient matrix. The fundamental linear system can be written in the form 

Ax b=  

Where x denote the unknown vector and b denote the right hand side (RHS) 

vector in this linear system. Here, the coefficient matrix A is full of zeros except for 

the diagonal, the super-diagonal and the sub-diagonal factors, as shown below 

1 1 1 1

1 2 2 2 2

2

1 1 1 1

1

0 0

0 0

0 0
n n n n

n n n n

x b
x b

x b
x b

α β
γ α β

γ
α β
γ α

− − − −

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

The size of the coefficient matrix A is n n× . When the matrix is extremely large 

(e.g., the dimension of A  is10000 10000× ), a considerable obviously reduction in 

memory requirements and increase in programming speed can be acquired by storing 

the nonzero elements in three vectors instead of saving the whole matrix A . By the 

way, this algorithm takes only ( )O n operations and the entire routine can be solved 

very fast, accurately and concisely. Finally, the Thomas algorithm works well when 
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the coefficient matrix A is diagonally dominant. We only introduce the Thomas 

algorithm for solving the tridiagonal system in this section. However, the detail of the 

Thomas algorithm or others can refer to the related textbooks or papers33. 

 
 
 

A.2 The Comparison of the heat equation and the BS-PDE 
 

Scheme 
Heat 

Equation.

Heat Equation 

Stability 

Condition34 

Local Truncation 

error 

Black-Scholes 

PDE (BS-PDE) 

BS-PDE 

Stability 

Condition35 

FTCS Explicit 0.5v ≤  2( ) ( )O t O xΔ + Δ Implicit 
unconditional 

stable 

BTCS Implicit 
Unconditional 

stable 
2( ) ( )O t O xΔ + Δ Explicit 2 2

1v
Sσ

≤  

Note: The implicit method presents an unconditional stable property since we use it 

for solving the Frey model and obtaining the theoretical option prices. The forward 

difference in time and central difference in space is abbreviated as FTCS. Similarly, 

the backward difference in time and central difference in space is abbreviated as 

BTCS. The mesh ratio v  is denoted as
( )2

t
x
Δ

Δ
. 

                                                 
33 See Fausett (2002). 
34 See Higham (2004), chapter 23 and 24. 
35 See Wilmott (2000), second volume, chapter 63. 
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Tables 
 
 

Table 1: The basic parameter setting in option pricing 
This table presents the basic parameter setting in the option pricing model and then we employ the 

finite difference method (FDM) for computing the theoretical option price which is based on the 

following parameter setting. 

0S = 50 r = 0 T = 1 σ = 0.4 
X = 50 maxS = 100 SΔ = 0.5 tΔ = 0.01 

1a = 0 2a = 0 0α =0.02 1α =0.85 

 
 
 

Table 2: The comparison of the computational speed with different method 
This table compares the different method for solving the linear system. Obviously, the Thomas 

algorithm displays the efficiency of the numerical scheme per se and therefore we use the Thomas 

algorithm in the following numerical analysis. However, the elapsed time is based on the following 

system requirement. The operation system of the computer is Windows XP SP2, CPU is AMD Athlon 

1800+ 1.54 GHz and RAM is 768 MB. The speed of computation might rely on the different operation 

system, and it could be accelerating the computational speed and improving the efficiency as we using 

a better-level computer than our system requirement currently. 

Method Call Option Price Elapsed Time (sec) Category 

X=inv(A)*b 7.9136 9.172  

X=A\b ("backslash operator") 7.9136 7.234  

Thomas algorithm 7.9136 6.281 direct method 

LU-decomposition 7.9136 8.125 direct method 

Gauss-Seidel (GS) 7.9134 79.344 iterative method 

Note: the syntax is based on MATLAB. 
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Table 3: The condition number of tridiagonal system 

This table shows the relationship between the condition number of the tridiagonal linear system and the 

market liquidity. Obviously, the condition number ( )Aκ is increasing in the liquidity parameter ρ  

when SΔ  holds constant.  

 condition number ( )Aκ  

SΔ  M  0ρ =  0.1ρ =  0.2ρ = 0.3ρ =  0.4ρ =  0.5ρ =  

2 50 7.70 78.82 263.98 310.61 346.66 365.08 

1 100 29.66 402.90 1155.90 1449.90 1613.50 1653.80 

0.5 200 120.50 1536.10 5331.40 6204.70 6888.90 7543.30 

0.25 400 491.48 6755.90 22713.00 26979.00 28570.00 30525.00 

 
 

Table 4: The relative of the condition number 
This table displays the relative of the condition number. As the size of the coefficient matrix increase 

twice, the ratio of the condition number is close to four. Thus, we consider that the solution of the linear 

system is not sensitive and is reliable. 

0ρ =  0.1ρ =  0.2ρ =  0.3ρ =  0.4ρ =  0.5ρ =  

3.8512 5.1117 4.3787 4.6679 4.6544 4.5300 

4.0624 3.8126 4.6123 4.2794 4.2695 4.5612 

4.0787 4.3981 4.2602 4.3482 4.1473 4.0466 

 
 
 

Table 5: The Descriptive Statistics of the IBM 
This table provides the descriptive statistics of the underlying sample, IBM, and the sample of the 

option prices can be classified by moneyness and divided into three categories, respectively. In this 

table, we only focus on the analysis of the bear market circumstance and thus the sample period is 

selected from January 2002 to December 2002. 

IBM   2002Jan-2002Dec 

 Average call price Standard error Number of contracts 

ITM 22.9692 0.3637 1691 

ATM 2.4345 0.0710 256 

OTM 0.1204 0.0057 2374 

Note: moneyness denotes S K , ATM denotes 0.97 1.03S K< < , ITM denotes 1.03 S K≤ and 

OTM denotes 0.97 S K≥ . 
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Table 6: The pricing errors of the BS model and the Frey model 

This table demonstrates the dollar absolute pricing errors ($MAE) with the different upper bound (UB) 

of the liquidity parameter and the different N . The Frey model shows smaller pricing error than the 

BS model significantly. However, we observe that the pricing error of two models are not sensitive 

with respect to UB and N . Thus, we let N =1 and UB=0.4 in the following empirical analysis and it 

can save a lot of time in the estimation of the liquidity as N =1. Furthermore, we relax the upper 

bound of the liquidity parameter in numerical scheme so that the liquidity parameter estimator is more 

closing to the real situation of the market. 

Underlying stock: IBM   2002Jan-2002Dec 

N  BS Frey t-statistic Std Dev p-value 

Panel A: UB = 0.1 

1 0.9361 0.2339 20.6333 0.3797 < 0.0001 

2 0.9379 0.2618 19.8031 0.3802 < 0.0001 

3 0.9340 0.2728 19.3945 0.3789 < 0.0001 

4 0.9363 0.2807 19.1376 0.3800 < 0.0001 

Panel B: UB = 0.2 

1 0.9361 0.2341 20.6183 0.3799 < 0.0001 

2 0.9379 0.2618 19.8031 0.3802 < 0.0001 

3 0.9340 0.2728 19.3945 0.3789 < 0.0001 

4 0.9363 0.2807 19.1376 0.3800 < 0.0001 

Panel C: UB = 0.3 

1 0.9361 0.2341 20.6183 0.3799 < 0.0001 

2 0.9379 0.2618 19.8031 0.3802 < 0.0001 

3 0.9340 0.2728 19.3945 0.3789 < 0.0001 

4 0.9363  0.2807  19.1376  0.3800  < 0.0001 

Panel D: UB = 0.4 

1 0.9361 0.2341 20.6183 0.3799 < 0.0001 

2 0.9379 0.2618 19.8031 0.3802 < 0.0001 

3 0.9340 0.2728 19.3945 0.3789 < 0.0001 

4 0.9363  0.2807  19.1376  0.3800  < 0.0001 
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Table 7: The sample of the underlying stock options 

This table displays the sample of the underlying stock options with two categories and the ranking 

order depends on the size of the total average daily volume (ADV) and the relative information of the 

ADV is listed on COBE official website. 

Rank Symbol Name Category 

1 INTC Intel Corporation TOP 20 

2 TWX Time Warner, Inc. TOP 20 

3 GE General Electric Company TOP 20 

4 MSFT Microsoft Corporation TOP 20 

5 MO Altria Group, Inc. TOP 20 

6 CE Concord EFS, Inc. TOP 20 

7 CSCO Cisco Systems, Inc. TOP 20 

8 JPM J.P. Morgan Chase & Co. TOP 20 

9 XMSR XM Satellite Radio Holdings, Inc TOP 20 

10 C Citigroup, Inc. TOP 20 

11 HPQ Hewlett-Packard Company TOP 20 

12 ORCL Oracle Corporation TOP 20 

13 WMT Wal-Mart Stores, Inc. TOP 20 

14 EP El Paso Corporation TOP 20 

15 GM General Motors Corporation TOP 20 

16 DELL Dell Computer Corp. TOP 20 

17 IBM International Business Machines Corporation TOP 20 

18 YHOO Yahoo! Inc TOP 20 

19 BAC Bank of America Corporation TOP 20 

20 QCOM QUALCOMM, Inc. TOP 20 

21 BBY Best Buy Co., Inc. Other 

41 AMR AMR Corporation Other 

61 WFC Wells Fargo & Company Other 

81 WDC Western Digital Corporation Other 

151 SNPS Synopsys, Inc. Other 

161 BAX Baxter International, Inc. Other 

181 HDI Harley-Davidson, Inc. Other 
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Table 8: The Descriptive Statistics of the sample 
This table provides the descriptive statistics of 27 stock options from Jan 2000 to Dec 2004 and the 

sample of the option prices are classified by moneyness and are divided into three categories, 

respectively. 

Moneyness  Mean Std Err Number Mean Std Err Number Mean Std Err Number

  INTC HPQ QCOM 

ITM  15.4374 0.1688 8630 12.0888 0.1839 5290 20.3920 0.1618 9751

ATM  2.3064 0.0706 912 2.9236 0.1053 781 2.9065 0.0743 966

OTM  0.1891 0.0051 10283 0.3007 0.0091 7845 0.3622 0.0080 11862

  TWX ORCL BBY 

ITM  13.2076 0.1386 9147 11.5472 0.1682 6533 15.6534 0.1092 9161

ATM  1.5013 0.0421 952 1.8708 0.0971 643 2.1737 0.0412 945

OTM  0.1261 0.0029 13863 0.2229 0.0090 9549 0.258 0.0058 7943

  GE WMT AMR 

ITM  11.2768 0.1112 7579 11.5798 0.0837 7061 5.4963 0.065 4369

ATM  1.6954 0.0485 1114 1.5231 0.0263 894 1.0598 0.0778 544

OTM  0.1316 0.0041 7456 0.1261 0.0034 5730 0.5762 0.0297 6527

  MSFT EP WFC 

ITM  17.0212 0.1372 9875 7.8182 0.1142 4399 9.7272 0.0861 4916

ATM  1.9208 0.0463 974 1.3309 0.0375 606 1.1482 0.0210 793

OTM  0.1264 0.0029 13517 0.1321 0.0035 5039 0.107 0.0032 3342

  MO GM WDC 

ITM  12.7872 0.1006 8150 10.6015 0.0960 5486 3.1452 0.0542 1830

ATM  1.1598 0.0173 1105 1.5204 0.0281 1058 0.352 0.0136 178

OTM  0.1012 0.0023 6341 0.1478 0.0036 6347 0.0795 0.0012 3766

  CSCO DELL SNPS 

ITM  13.1432 0.1521 7673 9.7914 0.0816 7105 10.1935 0.1190 4089

ATM  2.2815 0.0798 653 1.2041 0.0227 904 1.9231 0.0376 729

OTM  0.1598 0.0045 10592 0.1369 0.0031 7032 0.3284 0.0082 3904

  JPM IBM BAX 

ITM  9.7623 0.0802 5790 23.5886 0.1395 9297 10.1935 0.119 4089

ATM  1.3339 0.0325 894 3.0174 0.0445 1435 1.9231 0.0376 729

OTM  0.1489 0.0040 5521 0.2510 0.0057 9879 0.3284 0.0082 3904

  C BAC HDI 

ITM  10.7200 0.0670 7988 13.0720 0.0945 6324 9.673 0.0833 4345

ATM  1.2983 0.0210 1185 1.5334 0.0236 1107 1.5253 0.0277 867

OTM  0.1190 0.0030 5728 0.1420 0.0036 4906 0.231 0.0063 3110
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Table 9: The pricing errors of the BS model and the Frey model 

This table provides the empirical results of the pricing errors with respect to two different option 

pricing models in $MAE sense. Undoubtedly, the Frey model produces smaller pricing error than the 

BS model significantly and there is only one sample, AMR, which can not distinguish the Frey model 

from the BS model via $MAE. 

Jan 2000 - Dec 2004 

Rank Symbol BS $MAE Frey $MAE t-statistic Std Dev p-value 

1 INTC 0.3895 0.1343 24.9263 0.2556 < 0.0001 

2 TWX 0.3998 0.1264 29.1550 0.2341 < 0.0001 

3 GE 0.0518 0.0369 3.2271 0.1157 0.0013 

4 MSFT 0.9024 0.2437 50.1385 0.3279 < 0.0001 

5 MO 0.6302 0.1855 38.9870 0.2847 < 0.0001 

7 CSCO 0.3466 0.1547 16.9676 0.2823 < 0.0001 

8 JPM 0.4573 0.1411 33.0852 0.2383 < 0.0001 

10 C 0.6196 0.2030 35.8759 0.2895 < 0.0001 

11 HPQ 0.3390 0.1449 17.3203 0.2795 < 0.0001 

12 ORCL 0.2307 0.1178 11.7090 0.2405 < 0.0001 

13 WMT 0.7026 0.2347 34.0733 0.3428 < 0.0001 

14 EP 0.2557 0.0955 18.7780 0.2129 < 0.0001 

15 GM 0.5643 0.1478 36.7269 0.2831 < 0.0001 

16 DELL 0.3636 0.1230 30.3502 0.1979 < 0.0001 

17 IBM 1.1160 0.3569 33.4107 0.5670 < 0.0001 

19 BAC 0.7314 0.2228 33.2126 0.3823 < 0.0001 

20 QCOM 0.5068 0.2443 17.3666 0.3773 < 0.0001 

21 BBY 0.4812 0.2020 24.3921 0.2857 < 0.0001 

41 AMR 0.4447 0.3494 0.9267 2.5678 0.3542 

61 WFC 0.5254 0.1717 27.8892 0.3166 < 0.0001 

81 WDC 0.1254 0.0921 6.4311 0.1293 < 0.0001 

151 SNPS 0.3259 0.1577 19.6413 0.2139 < 0.0001 

161 BAX 0.5640 0.3686 10.5374 0.4628 < 0.0001 

181 HDI 0.3823 0.3518 2.4087 0.3157 0.0161 

Note: the pricing error is calculated by the mean absolute dollar errors ($MAE). 
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Table 10: The comparison of the loss function 
Model  $MAE $MSE %MAE %MSE IV_MSE  $MAE $MSE %MAE %MSE IV_MSE

  INTC  GM 

BS  0.3895 0.2430 0.4493 0.6340 0.0250  0.5643 0.4567 0.6179 1.0591 0.0259

Frey  0.1343 0.0573 0.1265 0.0594 0.0037  0.1478 0.0438 0.1782 0.1390 0.0027

  TWX  DELL 

BS  0.3998 0.2445 0.5739 0.9731 0.0318  0.3636 0.1950 0.4910 0.6063 0.0232

Frey  0.1264 0.0408 0.1776 0.1600 0.0051  0.1230 0.0306 0.1574 0.0837 0.0038

  GE  IBM 

BS  0.0518 0.0248 1.0508 1.7812 0.2079  1.1160 1.7377 0.6738 1.3286 0.0269

Frey  0.0369 0.0060 0.9417 0.9224 0.4560  0.3569 0.2776 0.2287 0.2419 0.0042

  MSFT  BAC 

BS  0.9024 0.9969 1.1259 5.8110 0.0602  0.7314 0.7738 0.9388 5.6094 0.0263

Frey  0.2437 0.0917 0.4297 1.3535 0.0093  0.2228 0.1028 0.3243 0.9943 0.0038

  MO  QCOM 

BS  0.6302 0.5269 0.9831 3.4754 0.0364  0.5068 0.4111 0.3454 0.3471 0.0198

Frey  0.1855 0.0666 0.3353 0.5740 0.0052  0.2443 0.1899 0.1274 0.0589 0.0142

  CSCO  BBY 

BS  0.3466 0.2109 0.6788 1.9420 0.0332  0.564 0.5571 0.3877 0.3863 0.0323

Frey  0.1547 0.0925 0.2358 0.2883 0.0071  0.3686 0.325 0.2057 0.0918 0.0163

  JPM  AMR 

BS  0.4573 0.3000 0.7047 1.9744 0.0264  0.4447 6.7816 0.372 0.3915 0.4365

Frey  0.1411 0.0426 0.2386 0.3501 0.0037  0.3494 6.7151 0.2059 0.1227 0.4525

  C  WFC 

BS  0.6196 0.5197 0.8433 2.2307 0.0323  0.5254 0.434 1.4964 15.6398 0.0247

Frey  0.2030 0.0729 0.3150 0.4883 0.0050  0.1717 0.0718 0.5514 2.7546 0.0042

  HPQ  WDC 

BS  0.3390 0.1952 0.5720 1.5650 0.0319  0.1254 0.0382 0.6473 1.0471 0.1025

Frey  0.1449 0.0968 0.1870 0.2403 0.0052  0.0921 0.0194 0.4417 0.3693 0.1908

  ORCL  SNPS 

BS  0.2307 0.1134 0.4485 0.5264 0.027  0.3259 0.1636 0.381 0.8984 0.0167

Frey  0.1178 0.0694 0.1559 0.0764 0.0061  0.1577 0.0588 0.1518 0.162 0.0042

  WMT  BAX 

BS  0.7026 0.6826 1.5098 14.8746 0.0345  0.564 0.5571 0.3877 0.3863 0.0323

Frey  0.2347 0.101 0.569 2.6561 0.0059  0.3686 0.325 0.2057 0.0918 0.0163

  EP  HDI 

BS  0.2557 0.1426 0.4010 0.4882 0.0313  0.3823 0.2624 0.5024 2.0671 0.0143

Frey  0.0955 0.0226 0.1489 0.0801 0.0113  0.1495 0.0481 0.1819 0.3581 0.0027



 42

 

Figures 
 

 
Figure 1: Implicit finite difference method 

 
 
 

 
Figure 2: Option pricing under perfect liquidity market 
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Figure 3: Option pricing under illiquidity market 

 
 
 

  

Figure 4: The trajectory of IBM stock price 
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Figure 5: The trajectory of the liquidity parameter ρ  

 
 
 

 
Figure 6: the option price and the pricing error of the IBM 
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Figure 7: The stock option price of the AMR Company 

 
 
 
 


