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ABSTRACT

This paper considers the pricing, model. of ‘options under illiquidity. A new
numerical procedure for solving the nonlinear parabolic partial differential equation is
explored and the Thomas algorithm_.is-used to improving the efficiency of the
numerical scheme. Using CBOE stock“options, we employ the nonlinear least square
method for obtaining the liquidity parameter of the underlying stock option in
empirical work and then comparing the loss function between the Black-Scholes
model and the model which is proposed by Frey and Patie (2001) and will be

abbreviated as the Frey model in this paper.
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1. Introduction

Market liquidity is one of the most critical factors in investment decisions and
derivative pricing. There is a growing support for the proposition that liquidity affects
the asset dynamics and trading strategies. This paper aims to investigate how the price
process is affected by dynamic trading strategy and how dynamic trading strategy is
influenced by stock price process. Market prices are determined by the supply and
demand of traded assets. However, most of financial models assume that the supply
and demand are perfect elasticity, which means the orders, including market order and
limit order, do not affect the traded asset price. All investors who are considered as
small traders have tiny impact in financial market individually. As a manner of fact,
the volume of traded assets must influence. on the price of traded assets in real market
circumstance. The large traders are persons'who have a market power and significant
part of the shares. Consequently,”we argue that their hedging strategy have great
impact on stock price and volatility. ‘Hence;‘the stock price is very likely affected by
their hedging strategy and the influence ‘of the'large trader hedging strategy becoming
a critical issue in financial market.

There are many theoretical studies and empirical studies which support the effect
of liquidity of transaction cost on asset dynamics™. Furthermore, portfolio choice' is
also determined by the liquidity assets. Liquidity of assets is one of the factors which
play a major role in the formulation of optimal trading policy followed by traders.

This paper provides a comprehensive framework for the pricing of European
option pricing and models the dynamic trading strategy in financial market due to
illiquidity. According to many pervious research and related articles we know that it

will have great influence on pricing and hedging strategy for traded asset such as

13 See, for example, Pastor and Stambaugh (2001) and Lo, Mamaysky and Wang (2001).
¥ Koren and Szeidl (2002)



derivatives when market becomes illiquid or transaction cost becomes higher. Thus,
the hedgers can hardly completely replicate their portfolio in illiquidity market and
thus result in a lot of hedging error.

In our model analysis, we focus on the circumstance under market illiquidity and
perfect liquidity. The classical Black-Scholes (BS) framework is based on many
assumptions and the most important Black-Scholes formula assumption relative to
this paper is “The stock and option price are not affected by placing orders.” We relax
this assumption for the following further analysis and figure out the relationship
between the option pricing and the market liquidity.

In market microstructure theory, we say that the feedback effect is based on the
violation of this assumption. The large trader might be able to use his market power in
order to manipulate market prices.in his favor. Sometimes the large trader is called by
informed trader who has more information than small-trader in market.

We examine how price impact:on-the-underlying asset market that affect the
replication of a European contingent claim and find out the best hedging strategy. If
the feedback effect exists, we need to develop a new financial model fitting the real
market condition and the large trader or investors can use this model for the option
pricing and hedging.

The standard market microstructure models of Kyle (1985) and Back (1992,
1993) use an equilibrium approach to investigate how informed traders reveal
information and affect the market price through the trading. The equilibrium asset
prices are directly influenced by the informed trader’s trades that shown by Kyle
(1985) and Back (1992, 1993).

Jarrow (1992) investigates market manipulation trading strategy by large traders
in the stock market and the large traders are defined as a person who has influence on

prices by generalizing and extending Hart (1977) to a stochastic economy.
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Furthermore, Jarrow make more generalization in model and distinguishing between
the real wealth and the paper wealth while calculate the traders’ position. He argues
that asymmetry creates the manipulation opportunity and the large trader can use their
market power to manipulate prices and generate profit without any risk.

Jarrow (1994) shows that the introduction of option markets might result market
manipulation strategy. Simply speaking, he defines the manipulation strategy as
arbitrage opportunity regarding the large trader. He shows that if the stock market and
derivative market are perfectly aligned, so-called synchronous market condition, the
large trader can hardly manipulate prices. Jarrow (1994) identifies this condition to be
equivalent to the no arbitrage condition. But if the small trader or noise traders have
only incomplete information about the large traders’ behavior and reaction, the small
trader could fail to synthetically replicate the call options.

Esser and Moench (2003) introduce a.-continuous-time model for an illiquid
market and revise the market liquidity parameter from deterministic liquidity model to
stochastic liquidity model (henceforth. SL)-which demonstrates that the market
liquidity follows a stochastic process. Furthermore, they analyze positive feedback
strategies and contrarian feedback strategies. They find the market volatility generally
increasing compared to BS model when positive feedback strategies exist. Moreover,
they derive a closed-form expression for the option pricing model and exploit a
pragmatic method to calculate the price of liquidity from plain vanilla put options.
However, the SL model is very sophisticated than the Frey model in numerical
computation and empirical study. Thus, we do not consider the stochastic factor into
the liquidity for Occam’s razor purpose.

Cetin, Jarrow, Protter and Warachka (2006) use the stochastic supply curve
modeling the liquidity risk and their empirical studies demonstrate that liquidity cost

are a significant factor of option price. Furthermore, they find that in-the-money (ITM)
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options are subject to the lowest percentage impact of illiquidity component, even
thought ITM options is expensive. On the contrary, the out-of-the-money (OTM)
options are significant affected by the factor of illiquidity despite OTM options are
cheaper than ITM options. They define liquidity cost of the discrete trading strategies
and estimate the liquidity parameter of the stochastic supply curve. The empirical
evidence shows that the liquidity cost increases quadratically with transaction sizes.

Recently research concentrates on the pricing and hedging aspects which are
introduced by the market illiquidity and the presence of the price impact effects on
stock prices regarding the large traders. Frey (1998, 2000), Schonbucher and Wilmott
(2000), Frey and Patie (2001), Bank and Baum (2004), as well as Liu and Yong
(2005).are some famous articles and they calibrate the nonlinear pricing PDE in the
illiquidity of the option pricing. Cetin, Jarrow, Protter and Warachka (2006) is the
latest paper which provide a “reduced form” illiquidity model for constructing a
discrete trading strategy within temporary—price impacts. They not only utilize a
simple framework for estimating ‘the-parameter of the stochastic supply curve by
regression but also build up an optimal discrete time hedging strategy rather than the
nonlinear PDE pricing model.

There would be a tough problem as we introduce the large traders’ trading and
hedging actives into European option pricing model. In fact, the asset dynamics
depend on many parameters such as the Delta hedging strategy, market liquidity,
Gamma and so on. This characteristic renders the pricing problem nonlinear. Thus, we
face the problem that the nonlinear PDE is more difficult than BS model for getting
the exact solution. In section 3, we show a better way of numerical skill which can
avoid solving the nonlinear PDE problem directly.

In practice, the traders often use the Black-Scholes model that the stock price is

described by a lognormal random process. Nevertheless in BS model the traders’
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trading or hedging their position according to a misspecified model that could
generate serious pricing and hedging error especially when liquidity becomes worse.
That is the reason why we use the nonlinear PDE model rather than BS-PDE pricing
model and the nonlinear PDE model is designated as the Frey model in the following
research.

First of all, we provide the nonlinear parabolic partial differential equation (the
Frey model) to modify the original Black-Scholes partial differential equation
(BS-PDE) for option pricing under market illiquidity framework and the proof of the
Frey model will present in Appendix. Secondly, we demonstrate the hedging error
formula result from market illiquidity and claim the new volatility term for feedback
effect trading strategies.

In general, PDE problem can‘be solved by certain numerical method including
finite difference method (FDM), finite element method (FEM), and finite volume
method and so on. In fact, obtaining:the-analytical solution of PDE is not easily even
though there are many well-developed.numerical methods. In our methodology, we
utilize FDM which is the most fundamental and simplest framework in the
computation of PDE.

The rest of this paper is organized as follows. In section 2, we introduce the
model that is modification of BS-PDE and derive the Frey model (nonlinear PDE
model). In section 3, we provide numerical results of the nonlinear PDE pricing
model for European calls. Section 4 provides the empirical study and verifies the
estimation loss function. Section 5 contains the concluding remark and further
research. Appendix provides the concept of the Thomas algorithm and the comparison

of the heat equation and the BS-PDE.



2. The Model

This paper considers the pricing model of options under illiquidity and the following
several sections are the core of this paper. In this section, following Frey (2000) and
Frey and Patie (2001), we assume that there are two traded assets: bond and stock in
the market where bond is a risk-free asset (i.e. cash account) and stock is a risky asset
which follows a stochastic process. Simultaneously, we consider the bond as a
numeraire (i.e., sometimes called discount factor) and assume that bond market is
perfect liquidity that there is no liquidity problem exist. Now we focus on liquidity
problem in the stock market.

The BS model assumes that the underlying stock have perfect liquidity, meaning
that investors can buy or sell a large amount ,of stock without affecting the stock price
in market so that there is no feedback effect in the market. However, we take the
market liquidity variable into account in the model due to the liquidity problem is an
existent fact in the stock market. In-this study, we - do not assume the parameter of
liquidity following a certain stochastic: ‘process, meaning that the liquidity is
deterministic and it is not stochastic.™

The following sections will introduce the basic assumptions and asset dynamics
firstly. Secondly, the Frey model will be conducted and then we introduce the
tracking error of the model. After that we explore the numerical method applications
in the model. Finally, we present the smooth version of the model which proposed by

Frey and Patie (2001).

5 In Esser and Moench (2003), the liquidity follows a certain stochastic process. Their framework
generalizes the constant liquidity model of Frey (2000) and they impose a stochastic factor into the
liquidity. Hence, the stochastic liquidity model of Esser and Moench (2003) is more sophisticated than
the Frey model; it’s becoming very complex in the modeling of option pricing and in constructing the
hedging strategies when the market liquidity is considered as a random source. In this paper, we do not
deal with this kind of complicated circumstance in the parameter of liquidity which follows a certain
stochastic process.



2.1 Basic assumptions and asset dynamics
We now introduce the basic model setup proposed by Frey and Patie (2001). The risky

asset (i.e. the stock) follows the stochastic process without drift term
dS, =oS, dW, + pA(S, )S, de,", 1)

where « is the number of stock shares held by large investor, i.e. the trading
strategy of the large trader. The variablea™ denotes the right-continuous process, and
p Is a non-negative constant liquidity parameter. A large value of the parameter p
means that the market becomes more illiquid. Moreover, we state that the parameter
p 1s equal to zero as the market reduces to the BS world with perfect liquid. Recall
that the drift term plays a role in stock dynamics in the assumption of the BS model.
After the change of measure, however, the drift term is removed from the BS-PDE
which is dominated by risk-free rate in riskineutral measure.

Frey (2000) and Frey and Patie (2001) discuss the influence of the trading
strategy on the asset process with a smooth-stock trading strategy « and suppose that
the large trader utilize the strategy of‘the form™ o = ¢(t,S,) . Thus, the asset dynamic
becomes a new dynamics and then we can obtain the new effective asset dynamics by

Ito formula™® with the following form

dS, =v(t,S,)S,dW, +b(t,S,)S,dt, (2)
where
t,S,) = o , 3
S = )5 )] ©)
p/i(St)(qﬁt(t,St)+1¢Ss(t,St)V2(t,St)St2j
b(t,S,) = 2 , @)

[1_ pﬂ(st)st¢s (t' St)]

Derivation of the new asset dynamics

We suppose that the large trader utilize the strategy of the form «a =¢(t,S,) for a

1° See Shreve (2004) chapter 4.



function « and it is satisfying a mathematical assumption with two variables which
are once continuously differentiable in time and twice continuously differentiable in
stock’. The trading strategy of large trader expanded by Ito formula and thus we can

get the form
1
da, = ¢ (t,S,)dS, +(¢t(t,5t)+§¢ss (t,St)vz(t,St)Sfjdt- ()

Firstly, we have already known the stock prices are controlled by the following

stochastic process
dS, =oS,dW, + pA(S,)S,de, .
Secondly, we substitute the Equation (5) into the second term of the RHS of the

Equation (1) and thus we obtain the Equation (6).

dS, = oS, AW, + pA(S,)S, [@ (t,5,)ds, +(¢t(t,st>+§¢ss (t,st)vz(t,st)sfjdt]

(6)

By rearrangement,

1= pA(S,)S.ds (t S)1dS, = S, dW, £ASISEH AL S,) +— e (t, SVA(L, S,)S? |
2

(7)
Therefore, generates the following explicit form for asset dynamics
1
oS PA(S,)S, (¢t(t,st)+2¢55S (t,St)vz(t,St)Sfj
ds, = : dw, + dt.
[1_pﬂ“(st)st¢s (t’St)] [l_p/l(st)sﬁs (t’St)]
(8)

In this section, we provide a simple proof of the new effective asset dynamics. In next
section, we interpret how the Frey model is controlled by the Equation (12) and

clarify all of basic assumptions in the model.

2.2 The Frey model (nonlinear parabolic PDE)

The Frey model has two significant characteristics different from Black-Scholes PDE.

' The stock is often designated as the space in the FDM application
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First, the risk-free rate does not play a role in Frey model. Second, the Frey model
argues that the volatility is not a constant volatility. In the Frey model, the volatility
term is dominated by three main parameters p, Aandug in the Frey model.
However, we can utilize the three main parameters to capture the volatility behavior
in real markets. The parameter A can be utilized to describe the asymmetry of
liquidity'®. Generally, markets tend to be more liquid in the bull market than in the

bear market. Thus, Frey and Patie (2001) denote the parameter in the following form

A8) =1+(S=S,)* {al (sos) + BN 5.5, | 9)
where the parametera, is usually larger thana,in empirical study. The parameter A
plays an important role in this model. The asymmetry of liquidity can be explained
by A with financial sense. The third critical factor is ug. We are familiar with the
Greeks in options pricing and,:hedging:=inthe*Frey model, the parameter ug
represents the value of gamma and-it is also-a crucial factor in the model.

First, ug plays a role in Equation (3)-& (4) and thus it would affect the asset
dynamic. If we want to simulate the sample’ path of the stock price afterward, the
parameter ug must be calculated by FDM before the simulation. Second, it goes
without saying that ug has a great influence on the size of hedging error and the
large trader’s trading strategy. In section 2.3, we will demonstrate the relationship
between the parameter ug and tracking error with mathematical equation.

There are two major trading strategy which include positive feedback trading and
contrarian feedback trading. When ug >0 the large trader adopting the positive
feedback trading strategy. On the other hand, the larger trader employs the contrarian

feedback trading strategy as u, <0. Moreover, ug is also vital when we discrete

8 Kamara and Miller (1995) show that the relationship between moneyness and liquidity is
asymmetric. Etling and Miller, Jr. (2000) also state that although the maximum value of liquidity is
near the money, liquidity does not decrease symmetrically as strike price move away from at the money
(ATM).



the Frey model in numerical computation and the detail of this part will be presented

in section 2.4.

The Frey Model (nonlinear parabolic PDE)
We denote that there is a solution u of the Frey nonlinear PDE model. Specifically,

the Frey model and terminal condition is given by

2
O

1
,S)+= S%ug (t,8) =0, 0
ut )+2(1—pz(8)8uss(t,5))2 s (4:5) (10
u(T,S)=h(s), (11)

ou(t,S)

where ug(t,S) = is the large traders’ strategy and it must satisfies a critical

assumption with pA(S)Sug (t,S) <1. Obviously, we observe the Frey model setting
risk-free rate equal to zero and illustrate the PDE formula under risk neutral measure
without drift term (i.e. risk-freg: rate equal: to. zero). However, we can improve the
Frey model by taking risk-freg rate into-account, making the pricing model more
general than Frey’s and we present the form of the ‘Frey model with risk-free rate. For
tractability, we still assume that the parameter, risk-free rate, equal to zero the same as

Frey’s model setting for “parsimonious principle” in numerical analysis.

2.3 Tracking error (hedging error)

Firstly, we realize the large traders following the trading strategy with o, =u(t,S)

- . . (o2
and the volatility of asset price iso,(t,S)= . Secondly, we
(1_,0&(8)8”55“'8))
employ the Ito formula to u so that we can obtain
du(t,S,) =ug(t,S,)dS +[Ut (t,S,) +%uSS (t, St)ajsfjdt : (12)

equivalently,

U(T,S;) =u(0,S,)+ [, U (t,S,)dS, + [ {ut (t,SI)+%uSS (t,St)aj(t,St)Sf}dt . (13)

10



where we denote u(T,S;)is the payoff of derivative at maturity day. Hence,
h(S;) =u(T,S,;)and the payoff of derivative at maturity day can be represented in this

form
h(S:) =u(0,5,)+ [ us(t,8)dS, + [ [ut (t,st>+§uss (t,saaf(t,st)stﬂdt (14)

Assuming we have already known the Frey nonlinear PDE model. If the Frey model

holds, we can eliminate the last term in the right hand side (abbreviated RHS) of the
Equation (14). Now we denote the tracking errore}’ =h(S;)-V," . The tracking error
measures the difference between the terminal payoff of the European option
(i.e.h(S;)) and the replication of derivative (i.e.V;") which duplicated by bond and

stocks with the self-financing trading strategy. Using the tracking error can easily

track and judge the performance of hedging strategy. In fact, we regard h(S;) and

VM as the total cost and the total revenue respectively in economic sense.

We conclude that a positive value of e displays the large trader who loss the

money in the hedging strategy, meaning the payoff of the replication of derivative can
not completely cover the payment of European style option at maturity date. Thus, the
large traders suffer loss from under-hedging at maturity day.

According to self-financing trading strategy, we can obtain the option payoff at

terminal time by the following representation
T
h(S: (p,@)) =V, + |, @dS,(p,a), (15)
where o, =ug®(t,S,) and V,=u®(0,S,). Next we demonstrate that the tracking

error e =0 under BS world and as self-financing trading strategy holds.
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e =h(S, (@) - V"
—h(S, (p, ) —(v0 +[ s, (p,a)) (16)
=0
Frey (2000) demonstrates that the Black-Scholes hedging is costly under

imperfectly liquid market and the tracking error is always absolutely positive-value in

BS world. We can display the tracking error in the following form*®

el = LT %azufss ;Bsz—l S? |dt, (17)
(1_pstuSS )
If ug >0, then (1-pSu&)<1. Hence, we conclude ;zﬂ and the

(1—pStu§§)
tracking error is positive. When ug <0, we can get the same result in this integral

form. In a word, the value of the.tracking error is always positive if the large trader

uses the Black-Scholes option pricing model in illiquid market.

2.4 Numerical method applications in the Frey model

In this section, we are interested in how to discretize the Frey model which is a
complex nonlinear PDE. Obviously, the coefficient of the Frey model is an unknown
number which includes the solution that we want to solve it. In Frey and Patie (2001),
they use the Newton method to solve the whole nonlinear system. However, using the
Newton method might quite sophisticate and spending much more computational time
in programming procedure. As a result, we provide an alternative approach that
transfers the nonlinear problem into the linear system and this approach can reduce

the computational costs. We will demonstrate the detail of methodology in the

9 Frey (2000) shows the basic concept of tracking error. Theoretically, the tracking error can be
treated as a “cumulative dividend stream with instantaneous dividend.” By the way, we should notice

that Frey (2000) does not consider the parameter A in the model and in the tracking error.
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following.

Firstly, we use the explicit method for the calculation of the coefficient. After we
solve the coefficient in the first step, the nonlinear PDE becomes the linear PDE and
therefore the coefficient of the model is known at this moment. Secondly, we use the
implicit method® to solve every linear system at each time step. Recall the Frey

model without the risk-free rate (zero drift)

2
(o}

0 (t,S)+~

S (t,5) =0,
2 (1~ pA(S)Sug (t,S))

However, we impose the risk free rate term in the model which improves the model

more general than the Frey model.

2
(o}

0 (t,S)+~

2 (- i (S)sug s () ok )=t s), - 19)

Using the finite difference methads,.the Frey model can be represented in this form

Ui-U" 1, SUR L0y s ity
—3 73 L =(v) S? j+1 i i g T i
At 2( ) s (AS)® I 2AS i, (19
where
. o -
! (i) , , .
(1=p2()53) @-msj)sjUm—(iz;;uj_l]

We denote that U} is the numerical solution and u is the exact solution of the Frey
model, i is the index of the time, j is the index of the space. We have already
known the value of vij at timei due to the explicit method as computing the PDE at

time i-1. Therefore, all the gird of call option value can be obtained by FDM easily.

Figure 1 displays the basic concept of the implicit method.

% gee Appendix, the implicit method is unconditional stable. Thus, we purpose to solve the Frey
model via the implicit method.
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[Insert Figure 1 here]

2.5 The smooth version of nonlinear PDE

We find a serious problem in this term (1- pA(S)Su ) as we check the numerical data
and find that this term violates the basic assumption “ pA(S)Sug (t,S)<1” in
programming process. If we do not address this numerical problem, the nonlinear
PDE will display a non-smooth solution in option intrinsic value and generating bad
numerical solution. Therefore, using some skill in nonlinear PDE, we revise the

violation of the basic assumption by the following form:

2
1 ,., 1
U +=0o°S*Imax| \/a,, - Uee +rSU. =T1U. 21
17 { { Ol—mln(al,pﬂ(S)Suss)}} 710 1)

In Frey and Patie (2001), théy choose '@,=0.02 and «,=0.85°" for the smooth
version of nonlinear PDE. Frey and:Patie-(2001) do not explain how the parameter
would be selected and the detail of methodoloegy‘does not appear in their paper. If we
do not impose artificial conditions in the PDE model, the denominator of second
coefficient? in Equation (21) could be greater than one. Frey and Patie (2001)
provide this approach to settle the non-smooth numerical solution problem in option
pricing. General speaking, the more smooth PDE we have, the more precise solution
we get.

The second coefficient of PDE in Equation (21) is controlled by some of the
factors and the numerical boundary value are governed by ¢, and ¢, . We can treat
a,and ¢, as the artificial condition or the barrier. We state that ¢, is the maximum

value of pA(S)Sug and use the parameter ¢;to control (1-pA(S)Sug) and thus

1 Two artificial conditions are imposed into the PDE model.
2 The termis min(ey, pA(S)Sug) .
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this term will not be negative anymore. Hence, we obtain smooth solution in the Frey

model. Secondly, the parameter ¢, control the volatility term in nonlinear PDE. The
termo°a can be explained by the minimum value of the volatility under illiquidity

market condition. The smooth version of PDE proposed by Frey and Patie (2001)
sounds great but this approach might affect the stability of the numerical solution.
Since the disadvantage of this revised PDE is too artificial that designedly limit the
numerical value in certain boundary to avoid the violation of the basic assumption.
We test the call option value, delta (i.e., first derivative) and gamma (i.e., second
derivative) and finding the value of gamma will explode as p>0.4 . This
phenomenon tells us that the smoothed version of PDE is absolutely not a unique
approach as we calculate the second derivative. The second derivative represents the
variation of the hedging strategy. for large trader. Consequently, we should carefully
use the smoothed version of PDE when we-need to build up a hedging strategy in the

certain period.
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3. Numerical Result

Section 3 provides the numerical result of the Frey model. We compare the option
pricing under different liquidity circumstances and compute the speed of
programming with direct method and iterative method. Finally, we check the
condition number of the linear system in each time step from “coarse grid” to “find

grid.”

3.1 Option pricing under perfect liquidity market

In section 3.1, we set the parameter p =0, which means that the Frey model is
equivalent to the classical BS model. Our benchmark set of underlying parameters is

reported in Table 1.

[Insert Table 1 here]

According to Table 1, we obtain that the exact solution of BS call option price is
7.9260. Moreover, we display the profile of the numerical solution in Figure 1 and
verify the numerical solution of the Frey model with the BS model in perfect liquidity

market. The terminal payoff and intrinsic value of call option are showed in Figure 1.

[Insert Figure 2 here]

3.2 Option pricing under imperfect liquidity market

In section 3.2, we implement the option pricing under illiquid market. The assumption
and the parameter setting dose not change except the parameter p. We want to
realize the call option value with different liquidity. In figure 2, we present the

outcomes for a 1-year call option with other parameter setting for different values of
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the market liquidity o ranging from 0 to 0.5. Figure 2 shows that the relationship
between p and call option value. However, we observe that the large trader will spend

more money to hedge a call option under worse market liquidity condition. Thus, the

hedge cost of the large trader is increasing in the parameter p.

[Insert Figure 3 here]

3.3 The computation speed of direct method and iterative method

One of the important issues is to explore the efficient method for solving the
tridiagonal system. While there are several methods for solving the linear system, the
iterative and direct methods are explored in our study. Jacobi, Gauss-Seidel (GS) and
successive over-relaxation (henceforth, SOR) are. most prevailing iterative method
(indirect method). For direct method, the Gauss-eliminate type is the basic routines
for solving linear system and usually.-based-on.some forms of Gaussian elimination
with pivoting. The LU decomposition and the Thomas algorithm are the most popular
approach in direct method for solving the linear system. It notes worthy that the
Thomas algorithm is the most efficient way for solving “the tridiagonal linear
system.” If the linear system is not tridiagonal, the Thomas algorithm is not suitable
and can not be used in non-tridiagonal type system. The setting of parameters is the

same as Table 1 and the parameter o isassumed to be zero.

Table 2 demonstrates some of results from numerical method and compares the
computational speed in three different methods. First, the Thomas algorithm is
apparently the fastest way to address the tridiagonal system and it can save a lot of
time for our procedure. According to the result of the Table 2 is not significant in the

column of “elapsed time” because the mesh grid is “coarse.” If we increase the
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partition of time and (stock) space, the Thomas algorithm will obviously exhibit its
computational power. Second, the disadvantage of GS method is time-consuming and
the accuracy of the solution depends on the number of iterations. The detail of the
Thomas algorithm will show in Appendix. Hence, we abandon the iterative method
because it is time-wasted. In our point of view, the Thomas algorithm is most efficient
and fastest method for solving the tridiagonal system but a majority of textbook still
uses LU-decomposition to solve the tridiagonal system in each time step. As a result,
the Thomas algorithm provides a great improvement in numerical scheme and it

decreases the computational costs.

[Insert Table 2 here]

3.4 The condition number-of tridiagonal system

The condition number measures-the sensitivity-of the linear system. As the size of the
coefficient matrix increases, the condition number will increase and the solution of
the linear system becomes sensitive to the numerical methods. Using a different way
to take an inverse in the coefficient matrix will result in a different solution. Table 3

shows that the relationship between the condition number and market liquidity.

[Insert Table 3 here]

Obviously, the condition number x(A) is increasing in the liquidity parameter p
when AS holds constant. On the other side, we increase the partition of the space
M and the parameter p holds constant at the same time. In Table 4, the condition
number grows about quadruple as AS decreases a half and thus we claim that the

solution is stable. Consequently, we conclude the numerical solution of the Frey
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model is not sensitive to the size of the coefficient matrix because the relative ratio of
condition number is quite stable. The following table displays the relative ratio of

condition number.

[Insert Table 4 here]

In this section, we not only check the condition number of the linear system at
each time step but also list the maximum value of the condition number in each time
step. We consider that the sensitivity of the numerical solution is highly correlated
with the condition number®. At beginning, we conjecture that the coefficient of
matrix could generate a great influence on numerical solution of the option pricing
model as the market liquidity becomes worse. However, we demonstrate that the
condition number increases quadruply as the-partition of the space increases double

and thus the sensitivity of the solution is-conducted

% See Trefethen and Bau (1997).
2 \We should be careful as doing the numerical analysis especially for the application of the option
pricing model in finance issue.
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4. Empirical Study

Bakshi, Cao and Chen (1997) not only provide an empirical study for the performance
of alternative option pricing models but also demonstrate the detail of the estimation
procedure which is the least square type estimation method. They implement each
model by adapting this procedure. Hence, the following study for obtaining the
liquidity parameter is based on the spirit of the estimation procedure. We present a test
of the performance of the option pricing model under illiquidity for individual stock
option prices for the sample period from January 1, 2000 through December 31, 2004.
Our empirical study is based on call option contract's close quote price taken to be the
bid-ask mid-point price and the rollover effect is conducted. Moreover, we check the
integrity of the quotes and remove unreasonable data in our empirical work. First, we
compute the Black-Scholes implied volatility (BS-1V) for each exercise price

everyday and then the BS-1V with higher than 100% or lower than 0% are excluded in
our dataset. Let C;; denote the daily close price of options i at day j. |In
addition, we denote C as call option prices from the Frey nonlinear PDE model. The

liquidity parameter is estimated numerically with two stages by the following

equations®.

Stage 1:
2
N M] b
avg obs
" =arg min > > (85 KTy 1 BSIV™: oy 81,8y 20, ) = CF |, (22)
=1 i= —
== numerical solution from the Frey nonlinear PDE Model %F?E'C%’;
Stage 2:

» The parameter p, a, and a, should not be estimated simultaneously since it does not easily

obtain the accurate value of three parameters at the same time and it is time-consuming for getting
three parameters. Therefore, we only focus on the estimation of the liquidity parameter o rather than

the other two in our empirical study.
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2

s+l M

* : ~ avg . obs
ps.a=arg min > > C(S).K; ;. T,r;, BSIV, g,ps,ai,az,ao,al)—& . (23)

j=S-N+2 i=1

numerical solution from the Frey nonlinear PDE Model %F?E'C%’;

S={N,N+LN+2,----- ,n-1}, (24)
where the variable M, presents the number of exercise quote price in each day and

n presents the number of trading day. The above Equation (22) is a nonlinear least
square (henceforth, NLS) estimator because the element C is the numerical solution
from the Frey nonlinear PDE model. On the other hand, we can also claim that the
above Equation (22) is a type of estimation loss function and therefore the parameter
o is aminimum (squared) distance estimator.

The following illustrates the detail, procedure regarding the estimation of the
liquidity parameter. First, we use the rmoving window method to do the whole
estimation procedure. Second, we ‘utilize the pattern-search algorithm into the whole
estimation procedure. Here the Rattern.search-algorithm can be employed for finding
the minimum of objective function and‘obtaining the parameter o which correspond
to the local minimum objective function. Third, we determine the number of day N
in the moving window and then calculate BS-1V for each exercise price per day. After
that we compute the arithmetic mean of BSIV after excluding the unreasonable value
of the BS-1V. We use the data of the first N days to determine the parameter of the
N +1-th day. i.e., if we select N =2 for the number of the moving windows which
means that we use the first two days’ observations to determine the parameter of the
third day. Hence, the third parameter represents the first parameter that we estimated
in our empirical study and then we use the same approach for getting the rest of

parameters. As a result, we obtain a sequence of the parameter 5 :

B =(Pusr Prszrs Pa) s (25)
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where nis the length of date in the sample. We use the pattern search algorithm to
determine the optimal parameter in the minimization of the square of the difference
between the theoretical price and the observed price. We propose the pattern search
algorithm for estimating liquidity parameter of the Frey model. The pattern search
algorithm is a popular approach in optimization especially for solving bound
constrained nonlinear programs, linear unconstrained problem and some kind of
minimization problem?.

However, we should give an initial-guess value, the lower bound and the upper
bound of the parameter in this algorithm. Since the pattern search algorithm can not
obtain the global minimum of the objective function. Hence, we set a vector of
initial-guess which can be applied to find every optimal parameter for every different
initial-guess value and then we pick up the most. appropriate parameter?’ to be the

first estimator. After we get the first estimator, the rest of estimation procedures are

the same except we impose the-former estimator p; to be the initial-guess value as

we estimate pg,, in the rest of estimation‘procedure.

The empirical study can be divided into three parts. In the first part, we focus on
the analysis of the bear market in short term period and then investigate the fitting
ability of the Frey model from January 2002 to December 2002. Furthermore, we
compare the pricing error (SMAE) with the BS and the Frey model. In the second part,
we select a number of companies to be the sample of our empirical study and choice
the period of time from 2000 to 2004. We want to figure out the practicability of the
Frey model regarding the Top 20 of the average daily volume (ADV) of the

underlying in stock option market and also make a comparison of the Top 20 with

%6 |f the reader have more interest in the pattern search algorithm, you might search related article or
take a look at the MATLAB help file where provide the concise programming code and the condensed
introduction.

2" \We denote that the most appropriate parameter corresponds to the smallest objective function.
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other companies which have worst liquidity than the Top 20. In the last part, we not
only verify the suitability of the estimation loss function but also check the validation

of the Frey model via a variety of loss function.

4.1 In bear market

The underlying asset IBM is arbitrarily selected by us. We observe the trajectory of
the IBM stock price and find the underlying asset having the down trend phenomenon
in 2002. According to the market microstructure theory, we argue that the bear market
often occur the market illiquidity. Thus, we have more interest in the fitting ability of
the Frey model especially when illiquid market happened. Figure 4 displays the
trajectory of the underlying stock price of the IBM Company from 2000 to 2004 and
only 2002 respectively and Table 5.reports the, descriptive statistics of the sample

from January 2002 to December:2002.

[Insert Figure 4 here]

[Insert Table 5 here]

The at-the-money (ATM) call options are only used in our empirical study
because we consider that the OTM and ITM options are not suitable for the analysis
of the pricing error. There are several empirical studies showing that the pricing error

will generate more bias result from the volatility smile and skew pattern.

[Insert Table 6 here]

In Table 6, we compute the theoretical price of the BS model and the Frey model.

First, we compare the mean of the ATM option pricing error of the IBM Company in
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2002 and showing the numerical result with the different N and UB and given the
fixed LB. According to the numerical result of the Table 6, the pricing of the Frey
model is smaller than the BS model significantly and the result of pricing error is
nothing to do with the upper bound of the parameter. Moreover, we find the number
of the moving window does not have great impact on the pricing. Thus, the second
part of the empirical study set N =1?. If the number of the moving window is given,
no matter what the setting of UB, the pricing error of two option pricing model is not
change almost surely. In Figure 5, we show that the profile of the liquidity parameter
estimated from the Equation (23) & (24) by the pattern search algorithm. Obviously,
we observe that the liquidity parameter is quite stable”® so that we obtain accurate
and reliable result from the pricing error of two option pricing model. Figure 6 shows

the graph of the stock option price.and the pricingerror respectively.

[Insert Figure-5-here]

[Insert Figure 6 here]

4.2 The performance of the Top 20 & other companies

We select a number of companies which is listed on Chicago Board Options Exchange
(CBOE). Moreover, we pick up the Top 20 active stock options in CBOE and also
select less liquidity companies for our analysis. We want to figure out the fitting
ability of the Frey model with respect to differ underlying stock options with different

liquidity state. Table 7 reports the symbol and the name of the sample in the Top 20

%% The more N we set, the more computational time we need. However, the length of the moving
window impact on the computational cost significantly but it does not affect the result of the pricing
error of two option pricing model in our empirical study. As a result, we denote N =1 in the following
analysis.

» The graph of liquidity parameter seems like unsmooth and volatile result from the scale of the
vertical axis. In fact, the liquidity estimator is quite smooth as we readjust the range of the vertical axis.
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active stock options and the less liquidity stock options. Table 8 provides the
descriptive statistics of 27 stock options from Jan 2000 to Dec 2004 and the sample of
the option prices are classified by moneyness and can be divided into three categories,
respectively. We might notice that CE and XMSR are excluded in our empirical work
due to their sample period are less than the length of the period from Jan 2000 to Dec
2004. However, YAHOO is also excluded in our dataset result from the first day of
the implied volatility (IV) is not available and it can not be replaced by the former

value of the IV. Hence, we ignore three improper samples for the following study.

[Insert Table 7 here]

[Insert Table 8 here]

The Frey model displays -unexpected fitting ability and it can track the asset
dynamics for every stock option. Moreover,-all-of the stock options have pass through
the SMAE of the pair t-test except the. AMR.-Although the pricing error of the Frey
model 0.3494 is smaller than the BS model’s 0.4447, the outcome of the pair t-test is
not significant result from the option price of the AMR have two jump phenomena

happened on March 2000 and January 2001 respectively*.

[Insert Table 9 here]

[Insert Figure 7 here]

If we eliminate the suspicious sample data which have jumps, the pricing error of

the Frey model still significantly differs from the BS model in the AMR stock option

* The jump effect is not the consideration of the Frey model since we can not significantly distinguish
the Frey from the BS when jump phenomenon happened. Therefore, we get a very reasonable
consequent on the underlying asset of the AMR.
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during the period from February 2001 to December 2004. Hence, we conclude that
the Frey model exhibits a gorgeous practicability for the stock option and it obtains

more precise solution than the BS model especially for illiquid market.

4.3 The loss function

Christoffersen and Jacobs (2004) emphasize the consistency in the choice of the loss
function is important. If a theoretical model is implemented using an inappropriate
estimation loss function, then the more mean squared error (MSE) we get. In the
following analysis, we introduce many loss functions for investigating the accurate
estimation of the liquidity parameter when evaluating the Frey model. We compare
the value of MSE between the Frey model and the BS model since the loss function
can be treated as the criteria of the.model selection.

There are many loss functions.are employed.in-literature and practice. First, the
traditional loss function is composed.of-the-dollar loss function and the percentage
loss function and those can be divided.into.two-categories respectively. Thus, mean
squared dollar errors ($MSE), mean absolute dollar errors ($MAE), mean squared

percentage errors (%MSE) and mean absolute percentage errors (%MAE) can be

defined as
$MSE = EZ(éimodel _CiObS )2 ' (26)
i=1
$MAE = 12 Cre —c™|, (27)
i=1
1& é'model _C'obs 2
%MSE =— 41 |, 28
oMSE =3 | = ] (28)
n |(model  ~obs
%MAE = =3 |S_ G| (29)
n C

where (fi and C, are the model call option prices and the observations respectively.
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Secondly, we introduce the implied volatility loss function; that is, the implied

volatility MSE and it also can be defined by

IVMSE é;i(@ ~a,), (30)

i=1

where the implied volatility are

& =BS(C,, S, K, T,.5), (31)
o, =BS™(C,,S,, K, T,.1), (32)

and BS™' is the inverse of the BS formula, the rest of inputs in the BS model are also

given as we calculate the implied volatility MSE.
[Insert Table 10 here]

Table 10 reports the results of the loss functions of two models with respect to 24
samples. The traditional loss functions show that the-Frey model apparently performs
better than the BS model and the IVMSE displays that the Frey model somewhat
better than the BS model. Since jump-phenomena are found by the trajectory of the
implied volatility in the sample of AMR and WDC, the Frey model reduces the fitting
ability per se. However, the rest of sample still exhibit a fabulous performance in the
Frey model with smaller MSE or MAE and therefore we identify the performance of
two theoretical option pricing models. Unquestionably, the Frey model shows that it
can capture more the pattern of the market than the BS model by tracking the
trajectory of the underlying asset. Furthermore, the estimation method of the liquidity
is checked and it can obtain an accurate estimator by NLS method with respect to
most of sample. Thus, we not only claim that the choice of the loss function is

appropriate but also obtain the reliable results in our empirical work.
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5. Conclusion

This paper considers the pricing model of options under illiquidity. According to the
model proposed by Frey and Patie (2001), we explore a new numerical approach for
solving the nonlinear PDE rather than the Newton method. Furthermore, we employ
the Thomas algorithm for solving the tridiagonal system and propose the pattern
search algorithm for getting the liquidity parameter, respectively. Therefore, the
calculating process is not time-wasting by two algorithms. After a preliminary
numerical study of the model, we apply it to stock call option prices for the sample
period from January 1, 2000 to December 31, 2004. We demonstrate that the pricing
error results from market illiquidity (the bear market) in the first part of empirical
study. In the second part of empirical study,.we enlarge the sample period and check
the practicability of the Frey model for various companies which is listed on CBOE.
The Frey model, for the most of sample, nat only exhibits good outcomes regardless
the length of the sample period-but-also-presents excellent performance in illiquid
market. The Frey model really represents a vital improvement with respect to the BS
model in terms of pricing error and it provides a reasonable option pricing model for
the pricing of a block order in terms of price impact. We argue that the serious pricing
biases of the BS model can be explained by the nonlinear feedback effect and thus if
the large trader uses the Frey model rather than the BS model, they could avoid
unnecessary loss from the stock option market where illiquidity occurred.

In further research, the singularity separating method (SSM)** can be applied to
the option pricing. Since the SSM is adopted, precise numerical solution can be

obtained very quickly. The SSM method is proposed by You-Lan Zhu who improves

1 Some of article says singularity removing transformation (SRT) method but they offer the same
concept regarding the numerical method.
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the terminal condition of the option®. There is a singularity point in the terminal
payoff as the stock price equals to the exercise price and thus numerical solution will
have a bad accuracy and reduced convergence rate around the singularity point even
though the numerical solution will become smooth finally. However, we do not use
the SSM method into our numerical scheme. If we want to get more rigorous solution
of the PDE, we should adopt the SSM in our frameworks.

Recently, the field of the computational finance grows up quickly. We believe
that the Frey model can be calculated by other numerical schemes but until now we
consider that the new approach of mine is the fastest way for solving the Frey model.
Accordingly, the large trader who uses the Frey model obtaining the more accurate
theoretical price and the fastest way in a short term period so that they make the right

strategy immediately and establish.the optimal pasition in the market.

% See Zhu, Wu and Chern (2004)
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Appendix

A.1 The Thomas Algorithm
An efficient algorithm for the solution of tridiagonal system is based on Gaussian
elimination with the coefficient of the diagonal elements scaled to one at each stage.
The Thomas algorithm takes advantage of the zero elements that already present in
the coefficient matrix and avoids unnecessary computational operations. Therefore,
we need to store only the non-zero elements and save a lot of memory in
programming process.

The Thomas Algorithm is an adaptation of the LU Decomposition (Gaussian
elimination) idea to solution of a linear system with tridiagonal or band diagonal

coefficient matrix. The fundamental linearisystem can be written in the form
Ax=b
Where x denote the unknown vector.-and-.b denote the right hand side (RHS)

vector in this linear system. Here, the coefficient matrix Ais full of zeros except for

the diagonal, the super-diagonal and the sub-diagonal factors, as shown below

o B 0 - 0 X b,
noa, B : X, b,
oy . .0 N
: . . an -1 ﬁ n-1 Xn -1 bn -1
_O 0 Vna an__Xn_ _bn_

The size of the coefficient matrix Aisnxn. When the matrix is extremely large
(e.g., the dimension of A is10000x10000), a considerable obviously reduction in
memory requirements and increase in programming speed can be acquired by storing
the nonzero elements in three vectors instead of saving the whole matrix A. By the
way, this algorithm takes only O(n) operations and the entire routine can be solved

very fast, accurately and concisely. Finally, the Thomas algorithm works well when
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the coefficient matrix Ais diagonally dominant. We only introduce the Thomas

algorithm for solving the tridiagonal system in this section. However, the detail of the

Thomas algorithm or others can refer to the related textbooks or papers®.

A.2 The Comparison of the heat equation and the BS-PDE

Heat Equation ) BS-PDE
Heat . Local Truncation Black-Scholes .
Scheme ) Stability Stability
Equation. . error PDE (BS-PDE) .
Condition®* Condition®
o ) o unconditional
FTCS | Explicit v<0.5 O(At) +0O(AX?) Implicit
stable
o Unconditional ) o 1
BTCS | Implicit O(AL)+O(AX") Explicit VS ——
stable oS

Note: The implicit method preSents an_unconditional stable property since we use it

for solving the Frey model and obtaining the theoretical option prices. The forward

difference in time and central difference in space is abbreviated as FTCS. Similarly,

the backward difference in time and central difference in space is abbreviated as

BTCS. The mesh ratio v is denoted as—" >

¥ See Fausett (2002).
¥ See Higham (2004), chapter 23 and 24.

(4x)

¥ See Wilmott (2000), second volume, chapter 63.

34




Tables

Table 1: The basic parameter setting in option pricing
This table presents the basic parameter setting in the option pricing model and then we employ the
finite difference method (FDM) for computing the theoretical option price which is based on the

following parameter setting.

S,=50 =0 T=1 =04
X =50 S, = 100 AS=05 At=0.01
3,=0 a,= 0 a,=0.02 ,=0.85

Table 2: The comparison of the computational speed with different method
This table compares the different method for solving the linear system. Obviously, the Thomas
algorithm displays the efficiency of the numerical scheme per se and therefore we use the Thomas
algorithm in the following numerical analysis. However, ‘the elapsed time is based on the following
system requirement. The operation system of the computer-is Windows XP SP2, CPU is AMD Athlon
1800+ 1.54 GHz and RAM is 768 MB. The speed-of computation might rely on the different operation
system, and it could be accelerating the computational'speed and improving the efficiency as we using

a better-level computer than our system requirement currently.

Method Call Option Price  Elapsed Time (sec) Category
X=inv(A)*b 7.9136 9.172
X=A\b ("backslash operator") 7.9136 7.234
Thomas algorithm 7.9136 6.281 direct method
LU-decomposition 7.9136 8.125 direct method
Gauss-Seidel (GS) 7.9134 79.344 iterative method

Note: the syntax is based on MATLAB.
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Table 3: The condition number of tridiagonal system
This table shows the relationship between the condition number of the tridiagonal linear system and the

market liquidity. Obviously, the condition number x'(A) is increasing in the liquidity parameter o

when AS holds constant.

condition number x(A)

AS M p=0 p=01 p=02 p=03 p=04 p=05
2 50 7.70 78.82 263.98 310.61 346.66 365.08
1 100 29.66 402.90 1155.90 1449.90 1613.50 1653.80

0.5 200 120.50 1536.10 5331.40 6204.70 6888.90 7543.30

0.25 400 491.48 6755.90 22713.00 26979.00 28570.00 30525.00

Table 4: The relative of the condition number
This table displays the relative of the condition number. As the size of the coefficient matrix increase
twice, the ratio of the condition number is close to four. Thus, we consider that the solution of the linear

system is not sensitive and is reliable.

p=0 p=0.1 2 =02 p.=0:3 p=04 p=05
3.8512 5.1117 4.3787 4.6679 4.6544 4.5300
4.0624 3.8126 4.6123 4.279%4 4.2695 4.5612
4.0787 4.3981 42602 4.3482 4.1473 4.0466

Table 5: The Descriptive Statistics of the IBM
This table provides the descriptive statistics of the underlying sample, IBM, and the sample of the
option prices can be classified by moneyness and divided into three categories, respectively. In this
table, we only focus on the analysis of the bear market circumstance and thus the sample period is

selected from January 2002 to December 2002.

IBM  2002Jan-2002Dec

Average call price Standard error Number of contracts
™ 22.9692 0.3637 1691
ATM 2.4345 0.0710 256
OoT™ 0.1204 0.0057 2374

Note: moneyness denotes S/ K , ATM denotes 0.97 < S/K <1.03, ITM denotes 1.03< S/K and
OTM denotes0.97 > S/K .
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Table 6: The pricing errors of the BS model and the Frey model
This table demonstrates the dollar absolute pricing errors (SMAE) with the different upper bound (UB)

of the liquidity parameter and the different N . The Frey model shows smaller pricing error than the

BS model significantly. However, we observe that the pricing error of two models are not sensitive

with respect to UB and N . Thus, we let N =1 and UB=0.4 in the following empirical analysis and it

can save a lot of time in the estimation of the liquidity as N =1. Furthermore, we relax the upper

bound of the liquidity parameter in numerical scheme so that the liquidity parameter estimator is more

closing to the real situation of the market.

Underlying stock: IBM

2002Jan-2002Dec

N BS
Panel A: UB =0.1

1 0.9361
2 0.9379
3 0.9340
4 0.9363
Panel B: UB =0.2
1 0.9361
2 0.9379
3 0.9340
4 0.9363
Panel C: UB =0.3
1 0.9361
2 0.9379
3 0.9340
4 0.9363
Panel D: UB =0.4
1 0.9361
2 0.9379
3 0.9340
4 0.9363

Frey

0.2339
0.2618
0.2728
0.2807

0.2341
02618
0.2728
0.2807

0.2341
0.2618
0.2728
0.2807

0.2341
0.2618
0.2728
0.2807

t-statistic

20.6333
19.8031
19.3945
19.1376

20.6183
19.803%
19.3945
19.1376

20.6183
19.8031
19.3945
19.1376

20.6183
19.8031
19.3945
19.1376

Std Dev

0.3797
0.3802
0.3789
0.3800

0.3799
0.3802
0.3789
0.3800

0.3799
0.3802
0.3789
0.3800

0.3799
0.3802
0.3789
0.3800

p-value

< 0.0001
< 0.0001
< 0.0001
<0.0001

<0.0001
< 0.0001
< 0.0001
< 0.0001

< 0.0001
< 0.0001
< 0.0001
<0.0001

< 0.0001
< 0.0001
< 0.0001
< 0.0001

37



Table 7: The sample of the underlying stock options
This table displays the sample of the underlying stock options with two categories and the ranking
order depends on the size of the total average daily volume (ADV) and the relative information of the
ADV is listed on COBE official website.

Rank  Symbol Name Category
1 INTC Intel Corporation TOP 20
2 TwWX Time Warner, Inc. TOP 20
3 GE General Electric Company TOP 20
4  MSFT Microsoft Corporation TOP 20
5 MO Altria Group, Inc. TOP 20
6 CE Concord EFS, Inc. TOP 20
7 CSCO Cisco Systems, Inc. TOP 20
8 JPM J.P. Morgan Chase & Co. TOP 20
9 XMSR XM Satellite Radio Holdings, Inc TOP 20
10 C Citigroup, Inc. TOP 20
11 HPQ Hewlett-Packard Company. TOP 20
12 ORCL Oracle Corporation TOP 20
13 WMT Wal-Mart Stores, Inc. TOP 20
14 EP El Paso Corporation TOP 20
15 GM General Motors Gorporation TOP 20
16 DELL Dell Computer Corp: TOP 20
17  IBM International Business Machines Corporation TOP 20
18 YHOO Yahoo! Inc TOP 20
19 BAC Bank of America Corporation TOP 20
20 QCOM QUALCOMM, Inc. TOP 20
21 BBY Best Buy Co., Inc. Other
41 AMR AMR Corporation Other
61 WFC Wells Fargo & Company Other
81 wDC Western Digital Corporation Other

151 SNPS Synopsys, Inc. Other
161 BAX Baxter International, Inc. Other
181 HDI Harley-Davidson, Inc. Other
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Table 8: The Descriptive Statistics of the sample
This table provides the descriptive statistics of 27 stock options from Jan 2000 to Dec 2004 and the

sample of the option prices are classified by moneyness and are divided into three categories,

respectively.

Moneyness Mean Std Err Number  Mean Std Err Number  Mean Std Err Number
INTC HPQ QCOM

I™ 15.4374 0.1688 8630 12.0888 0.1839 5290 20.3920 0.1618 9751

ATM 2.3064 0.0706 912 2.9236 0.1053 781 2.9065 0.0743 966

O™ 0.1891 0.0051 10283 0.3007 0.0091 7845 0.3622 0.0080 11862
TWX ORCL BBY

I™ 13.2076 0.1386 9147 11.5472 0.1682 6533 15.6534 0.1092 9161

ATM 1.5013 0.0421 952 1.8708 0.0971 643 2.1737 0.0412 945

O™ 0.1261 0.0029 13863 0.2229 0.0090 9549 0.258 0.0058 7943
GE WMT AMR

I™ 11.2768 0.1112 7579 11.5798 0.0837 7061 5.4963 0.065 4369

ATM 1.6954 0.0485 1114 1.5231 0.0263 894 1.0598 0.0778 544

O™ 0.1316 0.0041 7456 0.1261 " 0:0034 5730 0.5762 0.0297 6527
MSFT EP WFC

I™ 17.0212 0.1372 9875 7.8182 +0.1142 4399 9.7272 0.0861 4916

ATM 1.9208 0.0463 974 | 1.3309 0.0375 606  1.1482 0.0210 793

OT™M 0.1264 0.0029 13517 = -0.1321:.0.0035 5039 0.107 0.0032 3342
MO GM WDC

IT™™ 12.7872 0.1006 8150 10.6015 0.0960 5486  3.1452 0.0542 1830

ATM 1.1598 0.0173 1105 1.5204 0.0281 1058 0.352 0.0136 178

OT™M 0.1012 0.0023 6341  0.1478 0.0036 6347  0.0795 0.0012 3766
CSCO DELL SNPS

I™ 13.1432 0.1521 7673 9.7914 0.0816 7105 10.1935 0.1190 4089

ATM 2.2815 0.0798 653 1.2041 0.0227 904 1.9231 0.0376 729

OT™M 0.1598 0.0045 10592  0.1369 0.0031 7032  0.3284 0.0082 3904
JPM IBM BAX

IT™™ 9.7623 0.0802 5790 23.5886 0.1395 9297 10.1935 0.119 4089

ATM 1.3339 0.0325 894  3.0174 0.0445 1435  1.9231 0.0376 729

OT™M 0.1489 0.0040 5521  0.2510 0.0057 9879  0.3284 0.0082 3904
Cc BAC HDI

IT™M 10.7200 0.0670 7988 13.0720 0.0945 6324 9.673 0.0833 4345

ATM 1.2983 0.0210 1185  1.5334 0.0236 1107 1.5253 0.0277 867

OT™M 0.1190 0.0030 5728  0.1420 0.0036 4906 0.231 0.0063 3110
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Table 9: The pricing errors of the BS model and the Frey model
This table provides the empirical results of the pricing errors with respect to two different option
pricing models in $MAE sense. Undoubtedly, the Frey model produces smaller pricing error than the
BS model significantly and there is only one sample, AMR, which can not distinguish the Frey model
from the BS model via $SMAE.

Jan 2000 - Dec 2004

Rank  Symbol BS SMAE Frey SMAE t-statistic Std Dev p-value
1 INTC 0.3895 0.1343 24.9263 0.2556 <0.0001
2 TWX 0.3998 0.1264 29.1550 0.2341 <0.0001
3 GE 0.0518 0.0369 3.2271 0.1157 0.0013
4 MSFT 0.9024 0.2437 50.1385 0.3279 <0.0001
5 MO 0.6302 0.1855 38.9870 0.2847 <0.0001
7 CSCO 0.3466 0.1547 16.9676 0.2823 <0.0001
8 JPM 0.4573 0.1411 33.0852 0.2383 <0.0001
10 C 0.6196 0.2030 35.8759 0.2895 <0.0001
11 HPQ 0.3390 0.1449 17.3203 0.2795 <0.0001
12 ORCL 0.2307 0.1478 11.7090 0.2405 <0.0001
13 WMT 0.7026 0.2347 34.0733 0.3428 <0.0001
14 EP 0.2557 0.0955 18.7780 0.2129 <0.0001
15 GM 0.5643 0:1478 36.7269 0.2831 <0.0001
16 DELL 0.3636 0.1230 30.3502 0.1979 < 0.0001
17 IBM 1.1160 0.3569 33.4107 0.5670 <0.0001
19 BAC 0.7314 0.2228 33.2126 0.3823 <0.0001
20 QCOM 0.5068 0.2443 17.3666 0.3773 <0.0001
21 BBY 0.4812 0.2020 24.3921 0.2857 <0.0001
41 AMR 0.4447 0.3494 0.9267 2.5678 0.3542
61 WFC 0.5254 0.1717 27.8892 0.3166 <0.0001
81 WDC 0.1254 0.0921 6.4311 0.1293 <0.0001

151 SNPS 0.3259 0.1577 19.6413 0.2139 < 0.0001
161 BAX 0.5640 0.3686 10.5374 0.4628 <0.0001
181 HDI 0.3823 0.3518 2.4087 0.3157 0.0161

Note: the pricing error is calculated by the mean absolute dollar errors (SMAE).
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Table 10: The comparison of the loss function

Model $MAE $MSE %MAE %MSE IV_MSE  $MAE $MSE %MAE %MSE IV_MSE
INTC GM

BS 0.3895 0.2430 0.4493 0.6340 0.0250 0.5643 0.4567 0.6179 1.0591 0.0259

Frey 0.1343 0.0573 0.1265 0.0594 0.0037 0.1478 0.0438 0.1782 0.1390 0.0027
TWX DELL

BS 0.3998 0.2445 0.5739 0.9731 0.0318 0.3636 0.1950 0.4910 0.6063 0.0232

Frey 0.1264 0.0408 0.1776 0.1600 0.0051 0.1230 0.0306 0.1574 0.0837 0.0038
GE IBM

BS 0.0518 0.0248 1.0508 1.7812 0.2079 1.1160 1.7377 0.6738 1.3286 0.0269

Frey 0.0369 0.0060 0.9417 0.9224 0.4560 0.3569 0.2776 0.2287 0.2419 0.0042
MSFT BAC

BS 0.9024 0.9969 1.1259 5.8110 0.0602 0.7314 0.7738 0.9388 5.6094 0.0263

Frey 0.2437 0.0917 0.4297 1.3535 0.0093 0.2228 0.1028 0.3243 0.9943 0.0038
MO QCOM

BS 0.6302 0.5269 0.9831 3.4754 0.0364 0.5068 0.4111 0.3454 0.3471 0.0198

Frey 0.1855 0.0666 0.3353 0.5740.1.0.0052 0.2443 0.1899 0.1274 0.0589 0.0142
Csco BBY

BS 0.3466 0.2109 0.6788 19420 0.0332 0564 0.5571 0.3877 0.3863 0.0323

Frey 0.1547 0.0925 0.2358 0.2883 | 0.0071 03686 0.325 0.2057 0.0918 0.0163
PM AMR

BS 0.4573 0.3000 0.7047 1.9744 +0.0264 0.4447 6.7816 0.372 0.3915 0.4365

Frey 0.1411 0.0426 0.2386 0.3501 0.0037 0.3494 6.7151 0.2059 0.1227 0.4525
c WFC

BS 0.6196 0.5197 0.8433 2.2307 0.0323 0.5254 0.434 1.4964 15.6398 0.0247

Frey 0.2030 0.0729 0.3150 0.4883 0.0050 0.1717 0.0718 05514 2.7546 0.0042
HPQ WDC

BS 0.3390 0.1952 0.5720 15650 0.0319 0.1254 0.0382 0.6473 1.0471 0.1025

Frey 0.1449 0.0968 0.1870 0.2403 0.0052 0.0921 0.0194 0.4417 0.3693 0.1908
ORCL SNPS

BS 0.2307 0.1134 0.4485 05264 0.027 0.3259 0.1636 0.381 0.8984 0.0167

Frey 0.1178 0.0694 0.1559 0.0764 0.0061 0.1577 0.0588 0.1518 0.162 0.0042
WMT BAX

BS 0.7026 0.6826 1.5098 14.8746 0.0345 0.564 0.5571 0.3877 0.3863 0.0323

Frey 0.2347 0.101 0569 2.6561 0.0059 0.3686 0.325 0.2057 0.0918 0.0163
EP HDI

BS 0.2557 0.1426 0.4010 0.4882 0.0313 0.3823 0.2624 05024 2.0671 0.0143

Frey 0.0955 0.0226 0.1489 0.0801 0.0113 0.1495 0.0481 0.1819 0.3581 0.0027
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