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Abstract: In this article, we study the discounted penalty at ruin in a perturbed
compound Poisson model with two-sided jumps. We show that it satisfies
a renewal equation under suitable conditions and consider an application of
this renewal equation to study some perpetual American options. In particular,
our renewal equation gives a generalization of the renewal equation in Gerber
and Landry [2] where only downward jumps are allowed.
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1. INTRODUCTION

Consider a family of real-valued Markov processes X = �Xt��x�

and let � be the first-exit time of the process from the interval
�0��� (i.e., � = inf�t ≥ 0� Xt ≤ 0�). Given a bounded nonnegative Borel
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898 Chen and Sheu

function g ��− → �+ and r ≥ 0, the discounted penalty function is
defined by

��x� ≡ �x

[
e−r�g�X��

]
� (1.1)

with the convention that e−r·� = 0. Here, �x	Z
 =
∫
Z���d�x��� for a

random variable Z and we write � for �0 in the sequel.
The discounted penalty is considered in the insurance literature as

a generalized notion of the ruin probability. It has been widely studied
since the work of Dufresne and Gerber in [1]. In particular, Gerber and
Landry gave a renewal equation for the discounted penalty in [2] when
the Markov process X is a perturbed compound Poisson process which
has no positive jumps and whose jump distribution is only subject to
some mild technical conditions. They further showed that the optimal
exercise boundary of an American option can be determined explicitly
via this equation. This implies that the merit to derive such an equation
is an advanced analysis of the discounted penalty function, given the
fact that the explicit solution for the discounted penalty is unavailable in
most cases.

In addition to the example given by Gerber and Landry [2], the
discounted penalty function has been discussed widely in the literature
of financial mathematics. See Mordecki [3], Hilberink and Rogers [4],
Asmussen et al. [5], Alili and Kyprianou [6], Chen et al. [7], Lewis and
Modecki [8], and many others. Except for Hilberink and Rogers [4]
and Alili and Kyprianou [6], the authors worked under the classical
framework of Merton [11] that the logarithm of the asset value process
has two-sided jumps. In order to derive (semi-)explicit solutions for the
discounted penalty function, one needs to restrict the jump distribution
to some special class of probability distributions. Then, as shown by
the authors, one can derive the desired solution for some large, but
special, class of jump distributions via either differential equations or the
fluctuation identities for Lévy processes.

The aim of this article is to study the discounted penalty in a
perturbed compound Poisson model by another approach, without the
proviso that the jump distribution is either one-sided or follows a special
distribution. In Section 2, we follow Gerber and Landry [2] (see also
Tsai and Wilmott [9]) and derive a generalized renewal equation for
� (see Theorem 2.1 below). In particular, we have two byproducts of
independent interests. First, we give an equation in which the first-order
derivative of � at zero can be written as an integral of the function �; see
Section 3 for an application of this equation to option pricing. (We refer
to Chen et al. [7] for applications in credit risk modelling.) Second, by
a suitable change of probability measures, we obtain an upper bound
for the exponential decay rate for the function �. In Section 3, as an
application of the main result(Theorem 2.1), we revisit the perpetual
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Renewal Equation for Discounted Penalty at Ruin 899

American options considered in [2] and show that for some perpetual
American options the smooth-pasting condition is equivalent to some
first-order condition (see (3.10) below). By imposing the smooth-pasting
condition, we derive an equation for the optimal levels for perpetual
American options. When there are no upward jumps, we recover the
explicit formula in Gerber and Landry [2] for the optimal level of a
perpetual put option.

2. MAIN RESULT

From this point on, we assume that on a probability space ���� ���,
there are a standard Brownian motion W = �Wt t ∈ �+� and a
compound Poisson process Z = �Zt t ∈ �+� with Zt =

∑Nt

n=1 Yn. Here
N = �Nt t ∈ �+� is a Poisson process with parameter � > 0 and
Y = �Yn n ∈ �� are independent and identically distributed with
distribution F . We assume further that W�N , and Y are independent
and the jump distribution F has a density. For every x ∈ �, let �x be
the law of the process

Xt = X0 + ct + �Wt − Zt� t ≥ 0� (2.1)

where c ∈ �, � > 0 and X0 = x. Then the exponent of the Laplace
transform of X is given by

���� = log�	exp �X1
 = D�2 + c�+ �
∫

e−�ydF�y�− �� (2.2)

where D = �2/2. Set

� = sup
{
� ∈ �+

∫
e−�ydF�y� < ��∀� ∈ 	0� �


}
� (2.3)

We assume throughout this paper that the Lundberg’s condition holds
for X:

� > 0 and lim
s↑↑�

��s� > 0�

Under this condition, ��0�− r = −r < 0 given any r > 0 and � is strictly
convex on 	0� ��, and hence there exists a unique number �∗ ∈ �0� �� such
that ���∗�− r = 0. The number �∗ is called the Lundberg’s constant in
literature. An implication of �∗ is that �e−rt+�∗Xt  t ≥ 0� is a martingale
provided that e�

∗X1 satisfies some integrability condition. (See Gerber and
Landry [2].) Therefore, in risk-neutral pricing (that is, �Vt = eXt  t ≥ 0� is
the price process of a security and �e−rtVt t ≥ 0� is a martingale under a
risk-neutral probability measure), we have �∗ = 1.
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900 Chen and Sheu

In order to derive the renewal equation for �, we first give an explicit
formula for the first order (right-hand) derivative of � at zero and
sketch its proof. This formula is of independent interest and has many
interesting applications. (For details, see Chen et al. [7] or Gerber and
Landry [2]). In the sequel, we write h�∗�v� = e−�∗vh�v� for any function h.

Proposition 2.1. The derivative of � at 0 is given by

�′�0+� = �0 −
�

D

∫ 0

−�
dF�y�

∫ −y

0
dv��∗�v�e

−�∗y� (2.4)

where

�0 = −�g�0�+ �

D

∫ �

0
dv

∫ �

v
dF�y�e−�∗yg�∗�v− y�� (2.5)

Sketch of Proof. Recall that the discounted penalty � in (1.1) satisfies
the integro-differential equation

�2

2
�′′�x�+ c�′�x�+ �

∫ x

−�
��x − y�dF�y�

+ �
∫ �

x
g�x − y�dF�y�− ��+ r���x� = 0� (2.6)

Moreover, if r > 0, both ��x� and �′�x� tend to zero as x goes to infinity.
(For details and proofs, see Chen and Sheu [10].)

Multiplying both sides of the equation (2.6) by e−�∗v gives

e−�∗v
[
D

d2

dv2
+ c

d

dv
− ��+ r�

]
��v�+ �

∫ �

−�
��v− y�e−�∗vdF�y� = 0�

(2.7)

Note that ��v� = e�
∗v��∗�v� for v ∈ �. Hence, (2.7) becomes

0 = D�′′
�∗�v�+

(
c + �∗�2

)
�′

�∗�v�+ �
∫ �

−�
��∗�v− y�e−�∗ydF�y�

+ [
D��∗�2 + c�∗ − ��+ r�

]
��∗�v��

Recall that ���∗� = r. Then

0 = D�′′
�∗�v�+

(
c + �∗�2

)
�′

�∗�v�+ �
∫ �

−�
��∗�v− y�e−�∗ydF�y�

− ���∗�v�
∫

e−�∗ydF�y�� (2.8)

Integrate (2.8) from v = 0 to v = z gives

D	�′
�∗�z�−�′

�∗�0�
+ �c + �∗�2�	��∗�z�−��∗�0�


+ �
∫ z

0
dv

∫ v

−�
dF�y���∗�v− y�e−�∗y − �

∫ z

0
dv

∫
dF�y���∗�v�e

−�∗y

+ �
∫ z

0
dv

∫ �

v
dF�y�g�∗�v− y�e−�∗y = 0� (2.9)
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Renewal Equation for Discounted Penalty at Ruin 901

From this, we obtain

0 = D	�′
�∗�z�−�′

�∗�0�
+ �c + �∗�2�	��∗�z�−��∗�0�


+ �

[ ∫ 0

−�
dF�y�

∫ z

0
dv��∗�v− y�e−�∗y

−
∫ z

0
dv

( ∫ �

z−v
+
∫ 0

−�

)
dF�y���∗�v�e

−�∗y

+
∫ z

0
dv

∫ �

v
dF�y�e−�∗yg�∗�v− y�

]
� (2.10)

Recall that �′�z� and ��z� tend to zero as z → �. Letting z → � in the
last equation gives

�′
�∗�0� =

1
D

[
−�c + �∗�2�g�0�− �

∫ 0

−�
dF�y�

∫ −y

0
dv��∗�v�e

−�∗y

+ �
∫ �

0
dv

∫ �

v
dF�y�e−�∗yg�∗�v− y�

]
� (2.11)

Since �′�0� = �∗g�0�+�′
�∗�0�, we get (2.4). �

To state our next result, we define a function G by:

G�v� =




�

D

∫ v

0
dze−�ve�z

∫ �

z
dF�y�e−�∗y� v > 0�

�

D

∫ 0

v
dze−�ve�z

∫ z

−�
dF�y�e−�∗y� v < 0�

(2.12)

where

� = c

D
+ �∗ and � = � + �∗� (2.13)

Proposition 2.2. The function � satisfies the equation

��x� = g�0�e−�x + lim
n�m→�

( ∫ n

−m
��x − v�G�v�dv

− e−�x
∫ n

−m
��−v�G�v�dv

)
� x ∈ �+� (2.14)

Proof. We begin with (2.10). Based on the formula of �′
�∗�0� in (2.11),

(2.10) is simplified to

D�′
�∗�z�+ �c + �∗�2���∗�z�+ �U�z� = 0� (2.15)
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902 Chen and Sheu

where U = U1 + U2 + U3 and

U1�z� =
∫ 0

−�
dF�y�

∫ −y

0
dv��∗�v�e

−�∗y +
∫ 0

−�
dF�y�

∫ z

0
dv��∗�v− y�e−�∗y

−
∫ z

0
dv

∫ 0

−�
dF�y���∗�v�e

−�∗y =
∫ 0

−�
dF�y�

∫ z−y

z
dv��∗�v�e

−�∗y�

U2�z� = −
∫ �

0
dv

∫ �

v
dF�y�e−�∗yg�∗�v− y�+

∫ z

0
dv

∫ �

v
dF�y�e−�∗yg�∗�v− y�

= −
∫ �

z
dv

∫ �

v
dF�y�e−�∗yg�∗�v− y��

U3�z� = −
∫ z

0
dv

∫ �

z−v
dF�y���∗�v�e

−�∗y�

We multiply both sides of (2.15) by the integration factor e�z, where � is
defined in (2.13). Then

e�z
[
D�′

�∗�z�+ �c + �∗�2���∗�z�
] = −�e�zU�z�� (2.16)

On the other hand,

D�e�z��∗�z��
′ = e�z	D�′

�∗�z�+ �c + �∗�2���∗�z�
�

Then by (2.16), we obtain

D�e�z��∗�z��
′ = −�e�zU�z��

Integrating both sides of the last equation from z = 0 to z = x yields

De�x��∗�x�−Dg�0� = −�
∫ x

0
e�zU�z�dz�

Divide both sides of the equation by De�x, and we get

��x� = g�0�e−�x − �

D

∫ x

0
e−�x+�zU�z�dz�

Note by the definition of U ,

��x� = g�0�e−�x +
3∑

j=1

−�

D

∫ x

0
e−�x+�zUj�z�dz� (2.17)

To complete the proof, we write each summand into the desired form.
Using the results of Gerber and Landry [2, Equations (10) and (12)], we
have

− �

D

∫ x

0
e−�x+�zU3�z�dz =

∫ x

0
��v�G�x − v�dv =

∫ x

0
��x − v�G�v�dv�

(2.18)
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Renewal Equation for Discounted Penalty at Ruin 903

Next, we show that

− �

D

∫ x

0
e−�x+�zU1�z�dz

= lim
m→�

( ∫ 0

−m
��x − v�G�v�dv− e−�x

∫ 0

−m
��−v�G�v�dv

)
� (2.19)

− �

D

∫ x

0
e−�x+�zU2�z�dz

= lim
n→�

( ∫ n

x
g�x − v�G�v�dv− e−�x

∫ n

0
g�−v�G�v�dv

)
� (2.20)

To prove (2.19), we have

− �

D

∫ x

0
dze−�x+�zU1�z�

= − �

D

∫ x

0
dze−�x+�z

∫ 0

−�
dF�y�

∫ z−y

z
dv��v�e−�∗�v+y�

= − �

D

∫ x

0
dze−�x+�z

( ∫ x

z
+
∫ �

x

)
dv��v�e−�∗v

∫ z−v

−�
dF�y�e−�∗y

= − �

D

∫ x

0
dv��v�

∫ v

0
dze−�x+�z−�∗v

∫ z−v

−�
dF�y�e−�∗y

− �

D

∫ �

x
dv��v�

∫ x

0
dze−�x+�z−�∗v

∫ z−v

−�
dF�y�e−�∗y

= − �

D

∫ x

0
dv��v�e−��x−v�

∫ 0

−v
dze�z

∫ z

−�
dF�y�e−�∗y

− �

D

∫ �

x
dv��v�e−��x−v�

( ∫ 0

−v
−
∫ 0

x−v

)
dze�z

∫ z

−�
dF�y�e−�∗y

= lim
m→�

(
− �

D

∫ m

0
dv��v�e−��x−v�

∫ 0

−v
dze�z

∫ z

−�
dF�y�e−�∗y

+ �

D

∫ m

x
dv��v�e−��x−v�

∫ 0

x−v
dze�z

∫ z

−�
dF�y�e−�∗y

)

= lim
m→�

(
−e−�x

∫ 0

−m
dv��−v�G�v�+

∫ 0

−m
dv��x − v�G�v�

)
�

where the last equation follows from the definition of G in �−�� 0�.
So we see that (2.19) holds. To verify (2.20), we obtain

− �

D

∫ x

0
dze−�x+�zU2�z�

= �

D

∫ x

0
e−�x+�z

∫ �

z
dF�y�

∫ y

z
dve−�∗vg�v− y�
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904 Chen and Sheu

= �

D

∫ x

0
dze−�x+�z

∫ �

z
dF�y�

∫ y−z

0
dve�

∗v−�∗yg�−v�

= �

D

∫ x

0
dze−�x+�z

∫ �

0
dvg�−v�e�

∗v
∫ �

v+z
dF�y�e−�∗y

= �

D

∫ �

0
dvg�−v�

∫ x

0
dze−�x+�z+�∗v

∫ �

v+z
dF�y�e−�∗y

= �

D

∫ �

0
dvg�−v�

∫ x+v

v
dze−�x+�z−�v

∫ �

z
dF�y�e−�∗y

= �

D

∫ �

x
dvg�x − v�

( ∫ v

0
−
∫ v−x

0

)
dze�z−�v

∫ �

z
dF�y�e−�∗y

= lim
n→�

( ∫ n

x
dvg�x − v�G�v�− e−�x

∫ n

0
dvg�−v�G�v�

)
�

where the last equality follows from the definition of G in �0���.
The desired result now follows from (2.18)–(2.20) and (2.17). �

Consider the two improper integrals in (2.14). We now turn to study
the criterions under which both∫ �

0
g�−v�G�v�dv < � (2.21)

and ∫ 0

−�
��−v�G�v�dv < �� (2.22)

We consider the criterion for (2.21) first.

Lemma 2.1. Suppose that
∫
�0���

dF�y� > 0. Then � > 0 if and only if∫ �
0 h�v�G�v�dv < � for all nonnegative bounded Borel h on 	0���.

Proof. The proof of necessity is exactly given by Equations (13)–(16) in
Gerber and Landry [2]. We only show the proof of sufficiency here.

Take h ≡ 1. By the definition of the function G in (2.12), the
convergence of the integral

∫ �
0 G�y�dy implies that

0 = lim
v→� e−�v

∫ v

0
dze�z

∫ �

z
dF�y�e−�∗y�

If � ≤ 0 and
∫
�0���

dF�y� > 0, we get a contradiction. Hence, we have
� > 0. �

Note that, by the definition of �, the condition that � > 0
is equivalent to the condition that D��∗�2 + c�∗ > 0. The following
example shows that we need not always have � > 0. (In [2], Gerber and
Landry assumed implicitly that � > 0.)
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Renewal Equation for Discounted Penalty at Ruin 905

Example 2.1. Fix � > 0 and c < 0. Pick � > 0 such that Dx2 < −cx for
all x ∈ �0� ��. Consider the double-exponential jump distribution

F�dy� = p��+�e−��+�y1y>0dy + q��−�e�
�−�y1y<0dy� (2.23)

where �p� q� ∈ �0� 1�, p+ q = 1, and �± > 0. Then � = ��−� > 0 and
���−� = +�. If we take ��−� < �, then �∗ ∈ �0� �−� ⊂ �0� �� and
� = c

D
+ �∗ < 0 by the choice of �.

Next, we consider the validity of (2.22) and assume that � > 0.
Suppose

∫ 0
−� dF�v� > 0 and (2.22) holds. The convergence of the integral∫ 0

−� ��−v�G�v�dv implies that

0 = lim
v→���v�G�−v� = lim

v→���v�e�v
∫ 0

−v
dze�z

∫ z

−�
dF�y�e−�∗y� (2.24)

Since �> 0, we have �= �+ �∗ > 0 and 0<
∫ 0
−� dze�z

∫ z

−� dF�y�e−�∗y < �.
By (2.24), we get

lim
v→���v�e�v = 0�

Conversely, suppose for some small � > 0,

lim
v→���v�e��+��v = 0� (2.25)

Then ∫ �

0
��v�G�−v�dv

≤
∫ �

0
e−�v

(
��v�e��+��v

∫ 0

−�
dze�z

∫ z

−�
dF�y�e−�∗y

)
dv < ��

which gives (2.22). We need to give a criterion under which (2.25) holds.
In order to obtain an estimate of the exponential decay rate for �,

we use the change-of-measure technique. Let �̂�x� be the Laplace
exponent of the dual process X̂ = −X. Suppose that the Lundberg’s
condition for X̂ holds, that is with obvious notations, �̂ > 0 and
�̂��̂−� > 0. Then there exists a unique �̂∗ ∈ �0� �̂� such that �̂��̂∗� = r.

Lemma 2.2. Given g ≥ 0, the function � satisfies the estimate:

��x� ≤ �g��e−�̂∗x� x ≥ 0�

Proof. As noted before, �e−rt−�̂∗Xt  t ≥ 0� is a ��t��0�-martingale. Fix
x > 0. Define for each t a probability measure �∗

t on �t by

�∗
t �A� = �x

[
e−rt−�̂∗�Xt−x�1A

]
� A ∈ �t�
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906 Chen and Sheu

By Rolski et al. [12, Corollary 10.2.1], there exists a unique probability
measure �∗ defined on

∨
t≥0 �t such that �∗ agrees on �t with �∗

t .
Note the fact that �̂∗ ≥ 0 and X� ≤ 0 implies that e�̂∗X� ≤ 1. Since �

is an ��t�-stopping time, we have by Rolski et al. [12] Lemma 10.2.2

��x� = �x

[(
e−r�−�̂∗�X�−x�

)
e�̂

∗�X�−x�g�X�� � < �]
= �∗[g�X��e

�̂∗X� � < �]
e−�̂∗x ≤ �g��e−�̂∗x�

This completes the proof. �

Theorem 2.1 (Main Result). The discounted penalty � in (1.1) satisfies
the renewal equation

��x� = g�0�e−�x +
∫ �

−�
��x − v�G�v�dv− e−�x

∫ �

−�
��−v�G�v�dv� x ≥ 0

(2.26)

in the following cases:

(1)
∫
�0���

dF�y� = 1 and � > 0;
(2)

∫
�0���

dF�y� < 1, � > 0, and the following condition holds:

for some � > 0� ��x�e��+�� −→ 0 as x −→ �� (2.27)

In particular, (2.27) holds whenever the Lundberg’s condition holds for
the dual process X̂ and the constant � falls in �0� �̂∗�, where �̂∗ is the
Lundberg’s constant for X̂.

Proof. Firstly, assume (1) holds. Then G = 0 in �−�� 0�. Since
�> 0 and � is bounded, by Lemma 2.1, both

∫ �
0 ��−v�G�v�dv and∫ �

0 ��x− v�G�v�dv converge. Hence, � satisfies (2.26) under (1).
Secondly, assume (2) holds. Then by the discussion before

Lemma 2.2, the assumption (2.27) implies that
∫ 0
−� ��−v�G�v�dv < �.

Similarly,
∫ 0
−� ��x − v�G�v�dv < �. If

∫
�0���

dF�y� = 0, it follows that
G = 0 in �0��� and hence

∫ �
0 ��x − v�G�v�dv = ∫ �

0 g�−v�G�v�dv = 0.
If

∫
�0���

dF�y� > 0, it follows from Lemma 2.1 that the assumption � > 0
implies

∫ �
0 ��x − v�G�v�dv < � and

∫ �
0 g�−v�G�v�dv < �. In either

case, we see that (2.26) is satisfied under (2).
Finally, the last statement of the theorem follows from Lemma 2.2.

The proof is complete. �

Remark. Our result thus generalizes Theorem 3 in Gerber and
Landry [2] in which only (1) is considered. See also Tsai and Wilmott [9]
for a more general penalty scheme.
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Renewal Equation for Discounted Penalty at Ruin 907

We close this section by giving an example in which
∫
�0���

dF�y� < 1
and 0 < � < �̂∗.

Example 2.2. Fix � > 0 and let c = 0. We consider the jump
distribution F in (2.23). In addition, we assume that F satisfies the
following conditions: (i) ��+� > ��−�, (ii) p��+� > q��−�, (iii) q��+� > p��−�.
Since c = 0, we have � = �∗. We show that �∗ < �̂∗. Note that
�∗ ∈ �0� �� = �0� ��−�� ⊂ �0� ��+�� = �0� �̃� and �̂ is strictly convex
on �0� �̃�. Hence �∗ < �̂∗ if and only if �̂��∗�− r < 0 = ���∗�− r
(i.e., �̂��∗� < ���∗��. Now, we have

1
�

[
���∗�− �̂��∗�

] = ∫
e−�∗ydF�y�−

∫
e�

∗ydF�y�

=
(

p��+�

��+� + �∗ + q��−�

��−� − �∗

)
−

(
p��+�

��+� − �∗ + q��−�

��−� + �∗

)

= 2�∗���+���−�	�q��+� − p��−��
+ ��∗�2�p��+� − q��−���

	���+��2 − ��∗�2
	���−��2 − ��∗�2

�

which is > 0 by (ii) and (iii). Therefore, � = �∗ < �̂∗.

3. APPLICATIONS

Assume that there is a risk-free interest rate r > 0 in the market and
the price process �St t ≥ 0� of a stock (under a risk-neutral probability
measure �) is given by:

St = s exp�ct + �Wt − Zt�� t ∈ �+�

where s > 0 is a constant. We consider a perpetual American option with
a payoff function g�s�. In general, the price of this option is defined to be

v�s� = max
T

��	e−rT g�ST �  S0 = s


where T ranges over all stopping times and �� denotes the expectation
under the � measure. For simplicity, we assume that T only ranges over
all stopping times of the form:

�L = inf�t ≥ 0 St ≤ L�� (3.1)

and that the supremum is attained. This implies that

v�s� = max
L

V�s� L� = V�s� L∗�� (3.2)
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908 Chen and Sheu

Here, L∗ > 0 is called the optimal level in option pricing and the function
V�s� L� is defined by

V�s� L� = ��	e
−r�Lg�S�L�  S0 = s
� (3.3)

Fix L > 0 and set

Xt = log St − logL = X0 + ct + �Wt − Zt

where X0 = log s − logL. Then (3.1) becomes

�L = inf�t ≥ 0 Xt ≤ 0� = � (3.4)

and

V�s� L� = �x	e
−r�gL�X��
 ≡ ��x� L� (3.5)

where gL�y� = g�Ley� and x = log s − logL. From these, we see that (3.2)
is equivalent to

v�s� = max
L

V�s� L� = max
L

��x� L��

Hence, in option pricing and many financial applications, it is important
to derive an explicit formula for � as well as the explicit solution for the
optimal level L∗. For examples in which the (semi-)explicit solutions of
� are available, we refer to Asmussen et al. [5], Chen et al. [7] and Lewis
and Modecki [8].

In order to determine the optimal level, we impose the smooth-
pasting condition which is conventionally assumed in literature of
finance. (It is possible to show that the condition is necessary for the
optimality.) We show that the smooth-pasting condition is equivalent to
some condition on the first-order derivative of V�s� L� with respect to L
(see (3.10) below) and then derive an equation for the optimal level.

We start from the renewal equation

V�s� L� = ��x� L� = g�L�e−�x +
∫ �

−�
��x − v� L�G�v�dv

− e−�x
∫ �

−�
��−v� L�G�v�dv� (3.6)

Then we have

�

�s
V�s� L� = −�

s
g�L�e−�x + 1

s

∫ �

−�
��

�x
�x − v� L�G�v�dv

+ �

s
e−�x

∫ �

−�
��−v� L�G�v�dv (3.7)
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Renewal Equation for Discounted Penalty at Ruin 909

and

�

�L
V�s� L� =

[
g′�L�+ �

L
g�L�

]
e−�x − 1

L

∫ �

−�
��

�x
�x − v� L�G�v�dv

+
∫ �

−�
��

�L
�x − v� L�G�v�dv− �

L
e−�x

∫ �

−�
��−v� L�G�v�dv

− e−�x
∫ �

−�
��

�L
�−v� L�G�v�dv (3.8)

(Here as in Gerber and Landry [2], we have to impose some suitable
conditions on �V

�L
.) The smooth pasting condition (i.e., �

�s
V�s� L∗� s=L∗ =

g′�L∗�) and (3.7) imply that

g′�L∗� = − �

L∗ g�L
∗�+ 1

sL∗

∫ �

−�
��

�x
�−v� L∗�G�v�dv

+ �

L∗

∫ �

−�
��−v� L∗�G�v�dv (3.9)

By (3.8) and (3.9), we conclude that the smooth-pasting condition is
equivalent to the first-order condition

�

�L
V�L∗� L� L=L∗ = 0� (3.10)

Note that �
�s
V�s� L� s=L = �′�0� L� 1

L
. By Proposition 2.1 and the smooth-

pasting condition, we obtain that the optimal level L∗ satisfies the
equation

Lg′�L� = −�g�L�+ �

D

∫ �

0
dv

∫ �

v
dF�y�e−�∗vg�Le�v−y��

− �

D

∫ 0

−�
dF�y�

∫ −y

0
dve−�∗v��v� L�� (3.11)

In particular, if there are no upward jumps for X, then the equation
(3.11) becomes

Lg′�L� = −�g�L�+ �

D

∫ �

0
dv

∫ �

v
dF�y�e−�∗vg�Le�v−y��� (3.12)

Consider the special case that g�s� = �K − s�+, where K is the strike
price, and there are no upward jumps. Recall that �∗ = 1 (see Section 2).
We then get that, for L < K,

−L = Lg′�L� = �′�0� L�

= −��K − L�+ �

D

∫ �

0
dv

∫ �

v
dF�y�e−v�K − Lev−y�

= −��K − L�+ �

D

∫ �

0
dF�y�

∫ y

0
�e−vK − Le−y�dv

= −��K − L�+ �

D

∫ �

0
dF�y�K�1− e−y�− �L

D

∫ �

0
dF�y�ye−y�
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910 Chen and Sheu

The optimal level L∗ is given by

L∗ = �K − K
D

∫ �
0 ��1− e−y�dF�y�

� + 1− �
D

∫ �
0 ye−ydF�y�

= �K + K
D
�r −D − c�

c
D
+ 2− �

D

∫ �
0 ye−ydF�y�

= Kr

c + 2D − �
∫ �
0 ye−ydF�y�

� (3.13)

(In the last two equations we use respectively the fact ��1� = r and
� = c

D
+ 1.) The formula for the optimal level L∗ coincides with (36) in

Gerber and Landry [2].
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