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The growing advance in wireless communications and electronics makes the de-

velopment of low-cost and low-power sensors possible. These sensors are usually small 
in size and are able to communicate with other sensors in short distance wirelessly. A 
sensor network consists of a number of sensors which cooperate with one another to ac-
complish some tasks. In this paper, we address the problem of resource inventory appli-
cations, which means a class of applications involving population calculation of a spe-
cific object type. To reduce energy consumption, each sensor only reports the number of 
the sensed objects to the server, and the server will estimate the number of the sensed 
objects according to the received reports of all sensors. To address this problem, we de-
sign in this paper a population estimation scheme, called algorithm GPE (standing for 
Grid-based Population Estimation), to estimate the numbers of the sensed objects. Sev-
eral experiments are conducted to measure the performance of algorithm GPE. Experi-
mental results show that algorithm GPE is able to obtain close approximations of the 
numbers of the sensed objects. In addition, experimental results also show that algorithm 
GPE is more scalable, and hence, is more suitable than prior schemes for practical use.    
 
Keywords: population estimation, resource inventory, sensor network, energy conserva-
tion, estimation algorithm 
 
 

1. INTRODUCTION 
 

The growing advance in wireless communications and electronics makes the devel-
opment of low-cost and low-power sensors possible. These sensors are usually small in 
size and are able to communicate with other sensors in short distance wirelessly. A sensor 
network consists of a number of sensors which cooperate with one another to accomplish 
some tasks [1]. Sensors can be deployed either in a random or in a predetermined manner. 
Since being self-organized, sensors are able to form a sensor network automatically. Due 
to the characteristics of wireless communication and configuration-free deployment, sen-
sor networks are suitable for various application areas including inventory management, 
product quality monitoring and disaster area monitoring [1, 2]. Hence, sensor networks 

Received March 14, 2007; revised June 7 & November 9, 2007; accepted December 27, 2007.  
Communicated by Chung-Ta King.  
* The preliminary version of this work has been presented at International Conference on Mobile Ad Hoc and 

Sensor Networks, 13-15 December, 2005, Lake View Hotel, Wuhan, China.  
* This work was supported in part by the National Science Council of Taiwan, R.O.C. under contract No. NSC

96-2221-E-009-161-MY2.  



JIUN-LONG HUANG, SHIH-CHUAN CHIU AND XIN-MAO HUANG 

 

202 

 

Sensor Sensed Object 
s1 o1, o2, o3, o4, o5, o6  
s2 o1, o2, o3, o7, o8, o9 
s3 o4, o5, o7, o8, o10, o11 

 

have attracted a significant research attention, including hardware and operating system 
design [3, 4], localization [5, 6], data aggregation methods [7-9] and applications of sen-
sor networks [10, 11]. 

Resource inventory, in this paper, is defined as a class of applications involving 
population calculation of a specific object type. To achieve this, a number of sensors are 
deployed in a flat surface and each sensor is able to sense the number of objects within 
its sensing region. These sensors then form a sensor network so that users are able to 
query the number of objects sensed by the sensor network via a server. For the sake of 
simplicity, we use “object number” to indicate the number of objects sensed by a sensor 
network. 

Since the sensors may be deployed randomly, the sensing regions of these sensors 
may overlap with one another. This phenomenon results in the difficulty of obtaining the 
exact object number due to the reason that one object may be sensed by more than one 
sensor. Suppose that each object has a unique identity. To calculate exact object numbers, 
each sensor should get the identities of all objects in its sensing region and send these 
identities to the server via a sink. After removing redundant identities, the server can get 
the exact object number by counting the number of remaining identities. 

Sensors are usually powered by batteries. Therefore, energy conservation becomes 
an important issue in the design of sensor networks [12, 13]. As mentioned in [14], the 
energy consumption for a sensor to transmit and receive a message is in proportion to the 
length of the message. To reduce power consumption, the removal of redundant identities 
should be performed in an in-network manner. 

s3

s1 s2

sensing range

directed 
communication

server

 
Fig. 1. An example scenario. 

 
We use the example scenario in Fig. 1 to show the effect of in-network redundancy 

removal. When in-network redundancy removal is not performed, s1, s2 and s3 will report 
{o1, o2, o3, o4, o5, o6}, {o1, o2, o3, o7, o8, o9} and {o4, o5, o7, o8, o10, o11}, respectively, to 
the server. After receiving these reports, the server removes redundant identities and re-
ports that there are 11 objects sensed by the sensor network. Consider the case that 
in-network redundancy removal is performed. After receiving the reports of s1 and s2, s3 
first removes redundant identities in the reports of s1, s2 and the list of objects sensed by 
s3, and then reports {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11} to the server. Finally, the 
server reports that there are 11 objects sensed by the sensor network. It is obvious that in- 
network redundancy removal is able to reduce the power consumption of the sensor net-
work by reducing the lengths of messages.   
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There are some scenarios that energy conservation is of the highest priority and 
knowing only estimated object number is useful enough. Consider the scenario of long- 
term inhabitant monitoring. Some scientists deploy several sensors in a wild field to ob-
serve the number of some species of animals. We assume that the individual animals can 
be distinguished at the sensor by voice signatures, visual features, or pre-implanted arti-
ficial identifications (RFID for example) [15]. Since changing the batteries of the sensors 
is quite difficult, to facilitate long-term monitoring, energy-conservation is of the highest 
priority and the obtained object number is not necessary to be exact. 

In view of this, Lin et al. suggested in [15] that each sensor only reports the number 
of the sensed objects to the server. In the example scenario in Fig. 1, s1, s2 and s3 only 
send, respectively, {s1:6}, {s2:6} and {s3:6} to the server. For convenience, we name the 
scheme proposed in [15] as scheme SDARIA (i.e., the acronym of the title of [15]) in the 
rest of this paper. The amount of lengths of messages produced in in-network redundancy 
removal is 23 units, while the amount of lengths of messages produced by scheme 
SDARIA is 6 units. Since the energy consumption for a sensor to transmit and receive a  
message is in proportion to the length of the message, the energy saving of scheme  
SDARIA over in-network redundancy removal in this example is around 

23-6
23 ≈ 73.91%. 

After receiving all reports, the server will estimate the object number according to 
the received reports. To achieve this, they proposed two algorithms to calculate the lower 
bounds and the upper bounds of the exact object numbers based on the received reports. 
Although being shown to be able to conserve much energy than other schemes, scheme 
SDARIA has the following drawbacks.  
 
1. The time complexity of the lower bound calculation algorithm is high. 

The time complexity of the lower bound calculation algorithm in scheme SDARIA is 
O(1.2226n) where n is the number of sensors. Such high complexity makes scheme 
SDARIA not suitable for practical use. 

2. The obtained lower bounds and upper bounds are not informative. 
In our experiments, the upper bounds obtained by scheme SDARIA are around 190%- 
300% of the exact numbers, while the lower bounds are around 60%-80% of the exact 
numbers. Such high error rates make users not able to get enough information about 
the exact object numbers. 
 

In view of this, we design in this paper a population estimation algorithm, called 
algorithm GPE (standing for Grid-based Population Estimation), for the server to esti-
mate the object numbers based on the received reports. Similar to scheme SDARIA, all 
sensors only report the number of the sensed objects to the server. To estimate the num-
ber of the sensed objects, algorithm GPE first partitions the flat surface into several dis-
joint grids, and identifies overlapping grids of each sensor. Algorithm GPE then esti-
mates the object number of each grid, and finally estimates the object numbers according 
to the estimated object number of each grid. Several experiments are conducted to meas-
ure the performance of algorithm GPE. The experimental results show that algorithm 
GPE is able to obtain close approximations of object numbers. In our experiments, the 
approximations of algorithm GPE are around 95%-115% of the exact object numbers. In 
addition, algorithm GPE is more scalable than scheme SDARIA. These features make 
algorithm GPE more suitable for practical use. Finally, we have proposed a two-phase 
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framework to strike a balance between estimation accuracy and energy-conservation by 
using scheme ADARIA and algorithm GPE in turn. 

The rest of this paper is organized as follows. Section 2 gives a description of re-
source inventory applications and an overview of scheme SDARIA. The design of algo-
rithm GPE is given in section 3. Section 4 shows the performance study of algorithm 
GPE and discusses some possible combined use of scheme SDARIA and algorithm GPE. 
Finally, section 5 concludes this paper. 

2. PRELIMINARIES 

2.1 System Architecture 
 
Similar to [15], the system architecture of resource inventory applications is shown 

in Fig. 2. To calculate the number of objects, a number of sensors are deployed in a flat 
surface and each sensor is able to sense the objects within its sensing region. These sen-
sors then form a sensor network and users are able to query the number of objects via a 
server. For energy conservation, each sensor only reports the number of the sensed ob-
jects to the server when the server requests all sensors to report their sensing status. We 
assume that the server is able to get the sensing regions of all sensors. The location of 
each sensor can be obtained from manual measurement by human or automatic meas-
urement by sensors when they are equipped with GPS [16]. We also assume that the 
sensing region of each sensor is determined as a circle centered by the sensor’s location. 
The radius of the circle is called the sensing radius of the sensor. For simplicity, we as-
sume that each sensor has the same sensing radius r and let n denote the number of sen-
sors. For better readability, the symbols used is listed in Table 1. 

Overlap Graph

Server

Estimated 
Population
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15
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8
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Sensing Ranges
 

Fig. 2. System architecture. 

Table 1. Description of symbols. 
Symbol Description 

n Number of sensors 
r Sensing radius 
G Overlap graph 
V Vertices in the overlap graph 
E Edges in the overlap graph 
α Grid size ratio 
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2.2 Related Work 
 
Basically, scheme SDARIA comprises the following two phases. 

 
• Report collection phase: In report collection phase, each sensor reports the number of 

the sensed objects to the server via the sink. After receiving the reports of all sensors, 
the server transforms the received reports into the corresponding overlap graph G = {V, 
E}, where V and E are, respectively, the sets of vertices and edges in G. The transfor-
mation procedure is as follows. Each sensor is modelled as a vertex, and the weight of 
the vertex is the number of objects sensed by the corresponding sensor. In addition, 
there is an edge between two sensors if these two sensors’ sensing regions overlap. Af-
ter building the overlap graph, the server then enters population estimation phase. 

• Population estimation phase: In population estimation phase, the server estimates the 
object number according to the overlap graph G. In scheme SDARIA, two algorithms 
are proposed to calculate the upper bound and the lower bound, respectively, of the ex-
act object number, and these two bounds are taken as the results of scheme SDARIA.  

 
In scheme SDARIA, lower bound calculation is modelled as the maximal inde-

pendent set problem. However, according to [17], the fastest algorithm for maximal in-
dependent set problem is of complexity O(1.2226n) where n is the number of sensors. 
Thus, the lower bound calculation is not scalable. On the other hand, upper bound calcu-
lation is modelled as finding a subset of V which includes solely the vertices whose 
sensing regions cannot be replaced by the combinations of other vertices’ sensing regions. 
Interested readers can refer to [15] for details. In our experiments, the obtained upper 
bounds are around 190%-300% of the exact object numbers, and the lower bounds are 
around 60%-80% of the exact object numbers. Such high error rates make users not able 
to get enough information about the exact object numbers. Due to the above drawbacks, 
scheme SDARIA is suitable for practical use. 

3. GPE: GRID-BASED POPULATION ESTIMATION 

In algorithm GPE, the monitored region is partitioned into several non-overlapping 
grids. The length and width of each grid are set to α × r, where the value of α is called 
grid size ratio and r is the sensing region of each sensor. We will discuss how to deter-
mine the value of α in section 4.2. Consider the sensing region of a sensor shown in Fig. 
3. A grid g is called the full grid of a sensor s if all the area of grid g is covered by the 
sensing region of sensor s. Similarly, a grid g is called the partial grid of a sensor s if 
only part of the area of grid g is covered by the sensing region of sensor s. A grid g is 
called the overlapping grid of sensor s if grid g is a full or a partial grid of sensor s. In 
Fig. 3, the full and partial grids of the sensor are marked as ‘F’ and ‘P,’ respectively. 

To facilitate the estimation of the exact object numbers, we have the following as-
sumptions. 
 
1. The objects sensed by sensor s are uniformly distributed in the sensing region of sensor s. 
2. The objects in a grid g are uniformly distributed in the area of grid g. 
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  Fig. 3. Full and partial grids.               Fig. 4. An example object distribution. 

 
The reasons that we make these two assumptions are as follows. 
 

1. The assumption that the objects in the sensing region are uniformly distributed is used 
only as an initial setting. Algorithm GPE will automatically adjust the distribution of 
objects in a sensing region according to the numbers of objects sensed by all sensors. 
At the end of algorithm GPE, the objects in each sensing region will not be considered 
as uniformly distributed. 
Consider the example shown in Fig. 5. As shown in Fig. 5 (b), algorithm GPE first as-
sumes that the objects in the sensing region of sensor s1 are distributed uniformly. Thus, 
the numbers of the objects in the grids of sensor s1 are equal. At the end of algorithm 
GPE, the distribution of the objects in each sensing region is adjusted according to the 
numbers of objects in each sensing region. As a result, in Fig. 5 (d), the numbers of the 
objects in the grids of sensor s1 become different. 

2. Algorithm GPE indeed relies on the assumption that the objects within a grid are dis-
tributed uniformly. We believe that when the grid size becomes small enough, the dis-
tribution of objects in a grid will become close to uniform distribution. Thus, algo-
rithm GPE becomes more accurate when grid size is set to be smaller. We use the fol-
lowing lemma to explain this assumption. Moreover, this intuition conforms to the 
experimental result shown in Fig. 7 (a). 

Sensing region of sensor s

Grid g
          

Overlapping 
region

Grid g

Sensing region of sensor s

 
                   (a) Full grid.                         (b) Partial grid. 

Fig. 5. Overlapping between grid g and the sensing region of sensor s. 

 
Lemma 1  Suppose that the objects are distributed normally. When the grid size be-
comes smaller, the distribution of objects in a grid will become closer to uniform distri-
bution. 
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Proof: Consider the example shown in Fig. 4. Without lost of generality, we assume that 
the grid g lies in Quadrant I. Let the coordinate of the bottom-left point in g be (x1, y1) 
and the grid size be d. Let pdf(x) be the probability that the x-coordinate of an object is x. 
Since the objects are distributed normally, we have 
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The above result shows that pdf(x1 + d) becomes closer to pdf(x) when d becomes 
closer to zero. Since probability density function is monotonic decreasing when x > 0, 
pdf(x1 + d′), d′ ≤ d is close to pdf(x) when d is close to zero. With similar method, we can 
also show that when y > 0, pdf(y1 + d′), d′ ≤ d becomes closer to pdf(y) when d becomes 
closer to zero. Thus, with smaller grid size, the distribution of objects in a grid will be-
come closer to uniform.                                                   

 
Let g.Area be the area of grid g, s.Area be the area of the sensing region of sensor s 

and s.ObjNo be the number of objects sensed by s. Then, according to these assumptions, 
we have the following lemma. 
 
Lemma 2  Consider the case that a grid g overlaps the sensing region of a sensor s. 
Suppose that sensor s expects that there are g.ObjNo objects in grid g. Then, we have 

.. . .
.

g Areag ObjNo s ObjNo
s Area

= ×     (1) 

Proof: Since g overlaps the sensing region of s, by definition, g is either a full grid or a 
partial grid of s. Consider the case shown in Fig. 5 (a) that g is a full grid of s. According 
to assumption 1, it is obvious that the ratio between the object number in g and the object 
number sensed by s is equal to the ratio between the area of g and the area of the sensing 
region of s. Thus, we have 

. . .
. .

g ObjNo g Area
s ObjNo s Area

=  

By rewriting the above equation, we have 
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.. . .
.

g Areag ObjNo s ObjNo
s Area

= ×  

Thus, Eq. (1) is true when g is a full grid of s. 
We next consider the case shown in Fig. 5 (b) that g is a partial grid of s. Let OA.Area 

be the area of the overlapping region of grid g and the sensing region of sensor s and 
OA.ObjNo be the number of objects in this overlapping region expected by sensor s. Ac-
cording to assumption 1, we have 

. . .
. .

OAObjNo OA Area
s ObjNo s Area

=  

By rewriting the above equation, we have 

.. . .
.

OA AreaOA ObjNo s ObjNo
s Area

= ×     (2) 

According to assumption 2, we have 

. . .
. .

OAObjNo OA Area
g ObjNo g Area

=  

By rewriting the above equation, we have 

.. . .
.

g Areag ObjNo OAObjNo
OA Area

= ×  

After rewriting the above equation by substituting the right hand side of Eq. (2) for 
OA.ObjNo, we have 

. .. .
. .

.            . .
.

g Area OA Areag ObjNo s ObjNo
OA Area s Area

g Area s ObjNo
s Area

⎛ ⎞= × ×⎜ ⎟
⎝ ⎠

= ×
 

Thus, Eq. (1) is true when g is a partial grid of s. 
As a result, this lemma is proven since Eq. (1) is true when g is a full grid or a par-

tial grid of s.                                                            
 
Note that these assumptions are made only to guide the design of algorithm GPE, 

and are not the limitations of algorithm GPE. They will be relaxed in the experiments in 
section 4. 

The procedure of algorithm GPE is as follows. Initially, each sensor is marked as 
UNSELECTED. Algorithm GPE is an iterative algorithm and selects one sensor marked 
as UNSELECTED in each iteration. Consider the case that sensor s is selected. Accord- 
ing to Lemma 2, sensor s suggests that 

.
. .g Area

s Area s ObjNo×  objects are in each of its over- 
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lapping grids. Finally, sensor s is marked as SELECTED. Algorithm GPE repeats the 
above procedure until all sensors are marked as SELECTED. Since the expected object 
number in grid g may be suggested by several sensors, the expected object number in 
grid g is determined as the average of possible object numbers suggested by all sensors. 
Finally, the estimated object number is determined as the summation of the expected 
object numbers of all grids. The algorithmic form of algorithm GPE is as follows. 
 
Algorithm GPE 
1:  for each grid g do /* Initialization */ 
2:  g.AvgObjNo ← 0 
3:  g.SensorNo ← 0 
4:  end for 
5:  Mark all sensors as UNSELECTED 
6:  while (at least one sensor is marked as UNSELECTED) do 
7:  Pick one sensor which is marked as UNSELECTED 
8:  overlap ← overlap grids of sensor s 
9:   for each grid g in overlap do 

10:   expectation = 
.
. .g Area

s Area s ObjNo×  

11:   1
.   1. ( . * . )g SensorNog AvgObjNo g AvgObjNo g SensorNo expectation+← × +  

12:   g.SensorNo ← g.SensorNo + 1 
13:  end for 
14:  Mark sensor s as SELECTED 
15: end while 
16: total ← 0 
17: for each grid g do 
18: total ← total + g.AvgObjNo 
19: end for 
20: return total 
 

Since the width and the length of each grid are set to α × r, the number of grids in the 
flat surface is proportional of 2

1 ,α  while the number of overlapping grids of each sensor 
is also in proportion to 2

1 .α  Since being dominated by the loop in lines 6-15, the time 

complexity of algorithm GPE is 2( )nO α  where n is the number of sensors. Finally, we 
use the following example to illustrate the execution of algorithm GPE. 
 
Example 1: Consider a sensor network consisting of two sensors, sensor s1 and sensor s2, 
which sense 50 and 25 objects, respectively. The locations of these sensors are shown in 
Fig.6 (a). The value of α is set to 0.5. Thus, the server partitions the monitored field into 
35 non-overlapping grids and marks sensor s1 and sensor s2 as UNSELECTED. Since the 
width and the length of each grid g are α × r, we have g.Area = (α × r)2. In addition, we  
also have s.Area = π × r2. Thus, 

.
.

g Area
s Area is 

2 2 2

2
. ( ) 0.5 0.08.
. 3.1415...

g Area r
s Area r

α α
ππ

×
= = = ≈

×
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Suppose that s1 is selected. According to Lemma 2, s1 expects each of its overlap- 
ping grids is of 

.
.

g Area
s Area  × s.ObjNo = 0.08 × 50 = 4 objects. The server marks sensor s1 as  

SELECTED. The server then selects sensor s2. Similarly, the server determines that sen-
sor s2 expects that there are 0.08 × 25 = 2 objects in each overlapping grid of sensor s2. 

After selecting all sensors, the server then calculates the estimated object number in 
each grid. We use three grids, g1, g2 and g3, to demonstrate the calculation. Since grid g1 
does not overlap the sensing region of each sensor, the server determines that there is no 
object in grid g1. Grid g2 is only covered by the sensing region of sensor s1. The server 
determines that there are four objects in grid g2 due to the reason that sensor s1 suggests 
that there are four objects in each overlapping grid of sensor s1. Since sensor s1 and s2 
suggest there are, respectively, four and two objects in grid g3, the server determines that  
there are 

4 2
2 3+ =  objects in grid g3. The result of this step is shown in Fig. 6 (d). Finally,  

the server summarizes the estimated object numbers of all grids and reports that there are 
93 objects in the monitored field.    

g1 g2
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s1 s2
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(a) Cutting grids.                        (b) Selecting sensor s1. 
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(c) Selecting sensor s2.           (d) Collecting the suggestions of all sensors. 
Fig. 6. A running example. 

4. PERFORMANCE EVALUATION 

4.1 Simulation Model 
 
Similar as [15], the sensors are uniformly placed in to a 500m × 500m flat surface 

and the sensing radius of each sensor is set to 100m. We use GSTD tool [18] to generate 
the synthetic datasets used in this simulation. We synthesize the locations of objects by 
three distributions: uniform distribution, Gaussian distribution with standard deviation 
100 and Gaussian distribution with standard deviation 50, and they are shown in Figs. 7 
(a)-(c), respectively. In addition to synthetic datasets, we also use real spatial dataset  
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(a) Uniform.          (b) Gaussian-100.        (c) Gaussian-50.          (d) Real. 

Fig. 7. Datasets.  

Table 2. Default system parameters. 
Parameter Value 

Number of sensor (n) 30 
Number of objects 2000 

Sensing radius 100m 
Grid size (Grid size ratio = 2%) 2m 

 
which contains the locations of 5922 cities and villages of Greece [19]. We normalize 
these locations into the flat surface, and the normalized result is shown in Fig. 7 (d). 
Since focusing on population estimation phase, in data aggregation phase, algorithm GPE 
adopts the data aggregation method used in scheme SDARIA. In addition to algorithm 
GPE, we also implement scheme SDARIA for comparison purposes. We implement both 
schemes in C++ and the simulation is executed in a PC with one Pentium III 500MHz 
CPU and 512MB memory. The default system parameters are listed in Table 2. 

Since both schemes use the same data aggregation method, the energy consumption 
of the sensors in both schemes is the same. Hence, we take accuracy and execution time 
as the performance metrics of both schemes. Error rate, which is defined as below, is 
taken to measure the accuracy of population estimation. 

Estimated number of the sensed objects Exact number of the sensed objectsError rate = 
Exact number of sensed objects

−  

Note that error rate smaller than zero indicates that the estimated object number is 
smaller than the actual object number. The accuracy is higher when error rates are closer 
to zero. That is, the accuracy is high when the absolute values of error rates are small. 

 
4.2 Effect of Grid Size Ratio   

 
In this subsection, we investigate the effect of grid size ratio in the error rates of the 

results and the execution time of algorithm GPE. The length and width of grids are de-
termined as “sensing radius × α,” where α is called grid size ratio. 

Fig. 8 (a) shows the error rates of algorithm GPE with grid size ratio varied in vari-
ous datasets. In this experiment, grid size ratio is set from 0.5% to 16%. According to the 
design of algorithm GPE, it is intuitive that the results of algorithm GPE will be better 
when the grid size ratio becomes smaller. Such intuition can be observed in Fig. 8 (a).  
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(a) Error rate.                          (b) Execution time. 

Fig. 8. Effect of grid size ratio. 

 
Algorithm GPE performs very well in dataset Uniform. It is because that the design of 
algorithm GPE is under the premise that objects are distributed uniformly. The error rate 
in dataset Uniform is around 0.05% when grid size ratio is set to 0.5%. In the same con-
dition, the error rates are ranging from 9.6% to 12.58% in other datasets. 

In addition, we also observe that the distribution of objects also affects the error 
rates. Consider the cases that the distributions of objects are Gaussian distributions. Al-
gorithm GPE performs well when the object distribution is close to uniform (e.g., Gaus-
sian-150). When the object distribution becomes more centralized, the error rates of al-
gorithm GPE becomes larger and more unstable. With the same distribution, the accuracy 
of algorithm GPE is unstable and is affected by the random number generator used in the 
simulation. In our experiment, when the object distribution is very centralized (e.g., 
Gaussian-20), algorithm GPE even underestimates the number of the sensed objects. 

The execution time of algorithm GPE with grid size ratio varied is shown Fig. 8 (b). 
The complexity analysis of algorithm GPE in section 3 shows that the execution time 
will increase drastically as grid size ratio decreases. The result in Fig. 8 (b) conforms to 
such analysis. Therefore, there is a trade-off between accuracy and execution time, and 
users should determine a suitable grid size ratio to strike a compromise between estima-
tion accuracy and execution time of algorithm GPE. The experimental results suggest 
users to set the grid size ratio to 2% to get good estimations with reasonable execution 
time. As a result, we set the grid size ratio to 2% in the following experiments.  
 
4.3 Effect of Sensor Number 

 
This experiment is conducted to measure the effect of the number of sensors. Fig. 9 

shows the error rates and execution time of all algorithms in different datasets with the 
number of sensors varied. The number of sensors is set from 30 to 180. 

As observed from Figs. 9 (a)-(d), the error rates of the upper bound calculation al-
gorithm range from 80% to 205%, and the error rates of the lower bound calculation al-
gorithm are between − 10.7% and − 57.1%. In addition, the error rates of algorithm GPE 
are between − 2.9% and 14.3% in this experiment. Since the absolute values of the error 
rates of algorithm GPE are smaller than those of the lower bound and the upper bound  
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(a) Error rate, uniform.                  (b) Error rate, Gaussian-100.  
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(c) Error rate, Gaussian-50.                    (d) Error rate, real.  
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(e) Execution time. 

Fig. 9. Effect of sensor number. 

 
calculation algorithms, algorithm GPE is able to give users closer estimations than 
scheme SDARIA. Fig. 9 (e) shows the execution time of algorithm GPE. We observe that 
the execution time of algorithm GPE increases linearly as the number of sensors in-
creases. This result agrees to the complexity analysis of algorithm GPE in section 3. 
Fortunately, the execution time of algorithm GPE is still acceptable even when the num-
ber of sensors is set to 180.  
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4.4 Effect of Object Number 
 

This experiment is to investigate the effect of the number of objects. Fig. 10 shows 
the error rates of all algorithms by setting object number from 500 to 5000. Since the 
execution time of all algorithms is not affected by object number and the distribution of 
objects, we only show their error rates in this subsection. As shown in Fig. 10, the error 
rates of all algorithms are affected by the distribution of objects. Since being designed 
under the premise that objects are distributed uniformly, algorithm GPE performs very 
well in dataset Uniform. It is also observed that except dataset Uniform, error rates of 
algorithm GPE slightly increase as the number of objects increases. In this experiment, 
the error rates of algorithm GPE increase from − 0.81% to 0.1%, from 10.2% to 13.08% 
and from 8% to 10.6%, respectively, in datasets Uniform, Gaussian-100 and Gaussian-50. 
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(a) Error rate, uniform.            (b) Error rate, Gaussian-100.       (c) Error rate, Gaussian-50. 

Fig. 10. Effect of object number. 

4.5 Effect of Sensor Distribution 
 
We measure the effect of the sensor distribution and the experimental results are 

shown in Fig. 11. Since the execution time of scheme SDARIA and algorithm GPE is not 
affected by sensor distribution, we only show the error rates in this subsection. We model 
the sensor distribution as uniform distribution, Gaussian distribution with standard devia-
tion 100 and Gaussian distribution with standard deviation 50, respectively. As shown in 
Fig. 11, the accuracy of scheme SDARIA and algorithm GPE becomes lower when sen-
sor distribution becomes centralized. We also observe that algorithm GPE is less sensi-
tive in sensor distribution than scheme SDARIA. Consider the case that the objects are 
distributed uniformly. When the sensor distribution is set to Gaussian-100 and Gaus-
sian-50, the error rates of algorithm GPE are 1.64% and 6.56%, respectively. On the 
other hand, the error rates of lower and upper bounds of scheme SDARIA increase from 
− 36.88% to − 50% and from 123.97% to 214.11%, respectively. In addition, the accu-
racy degradation becomes severer when the object distribution becomes centralized. It is 
because that when the sensors and the objects are centrally distributed, many objects will 
locate in the common sensing regions of many sensors. Such situation will increase the 
difficulty of estimating the object numbers. 
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(a) Error rate, uniform.                   (b) Error rate, Gaussian-100. 
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(c) Error rate, Gaussian-50.                     (d) Error rate, real. 

Fig. 11. Effect of sensor distribution. 

 
4.6 Remarks 

 
Although algorithm GPE outperforms scheme SDARIA in accuracy, in fact, the re-

lationship between algorithm GPE and scheme SDARIA is collaborative instead of com-
petitive. Thus, we propose a combined use of algorithm GPE, scheme SDARIA and re-
dundancy removal to take their relative merits for practical use. 

As shown in Fig. 12, the proposed algorithm consists of two phases, object number 
calculation phase and object number estimation phase, and these two phases are activated 
in turn. The descriptions of these two phases are as follows. 

 
• In object number calculation phase, scheme redundancy removal is used to get the ex-

act number of the sensed objects. As mentioned in section 1, all sensors report the iden-
tities of all sensed objects, and redundant identities will be removed in an in-network 
manner for power saving. 

• In object number estimation phase, scheme SDARIA and algorithm GPE are both used 
to get the lower bounds, upper bounds and estimations of the sensed objects. Although 
the resultant lower bounds, upper bounds and estimations are not the exact object num-
bers, they are still able to give users some information about the exact object numbers.   
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Fig. 12. The phase transition diagram of the proposed two-phase algorithm. 

 
The phase transition conditions are as follows. Let ObjNoCur and ObjNoPrev be the 

exact object numbers in, respectively, current and previous calculations in object number 
calculation phase. We also let EstObjNoCur and EstObjNoPrev be the estimated object 
numbers in, respectively, current and previous estimations in object number estimation 
phase. The system administrators have to specified a parameter threshold where 0 < 
threshold < 1. The algorithm will step from object number estimation phase into object 
number calculation phase when   

.Cur Prev

Prev

EstObjNo EstObjNo
threshold

EstObjNo
−

>  

In addition, the algorithm will step from object number calculation phase into object 
number estimation phase when   

Cur Prev

Prev

ObjNo ObjNo
threshold

ObjNo
−

<  

for a while. When energy-conservation is of high importance, the value of threshold 
should be set to close to one. Thus, the algorithm will be in object number estimation 
phase for a long time to reduce energy consumption. On the other hand, when accuracy is 
of high importance, the value of threshold should be set to close to zero.   

By using the proposed algorithm, users can get more information on object numbers 
than by using scheme GPE and algorithm SDARIA only. In addition, using the proposed 
algorithm makes the sensors save more power than using scheme redundancy removal. 

5. CONCLUSION 

In this paper, we addressed the problem of resource inventory applications over 
wireless sensor networks. To reduce energy consumption, each sensor reports only the 
number of the sensed object to the server, and the server will estimate the object number 
according to the received reports of all sensors. In view of this, we designed algorithm 
GPE to estimate the object numbers. Several experiments were conducted to measure the 
performance of algorithm GPE. The experimental results showed that with a proper grid 
size ratio, algorithm GPE was able to obtain close approximations of object numbers in 
reasonable execution time. In our experiments, the approximations of algorithm GPE 
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were around 95%-115% of the exact object numbers. This result showed that algorithm 
GPE is more suitable than prior schemes for practical use. 
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