
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 25, 201-218 (2009)

201

GPE: A Grid-based Population Estimation Algorithm for
Resource Inventory Applications over Sensor Networks*

JIUN-LONG HUANG, SHIH-CHUAN CHIU AND XIN-MAO HUANG+

Department of Computer Science
National Chiao Tung University

Hsinchu, 300 Taiwan
E-mail: {jlhuang; scchiu}@cs.nctu.edu.tw

+Department of Computer Science and Information Engineering
Aletheia University
Taipei, 251 Taiwan

E-mail: xmhuang@mail.au.edu.tw

The growing advance in wireless communications and electronics makes the de-

velopment of low-cost and low-power sensors possible. These sensors are usually small
in size and are able to communicate with other sensors in short distance wirelessly. A
sensor network consists of a number of sensors which cooperate with one another to ac-
complish some tasks. In this paper, we address the problem of resource inventory appli-
cations, which means a class of applications involving population calculation of a spe-
cific object type. To reduce energy consumption, each sensor only reports the number of
the sensed objects to the server, and the server will estimate the number of the sensed
objects according to the received reports of all sensors. To address this problem, we de-
sign in this paper a population estimation scheme, called algorithm GPE (standing for
Grid-based Population Estimation), to estimate the numbers of the sensed objects. Sev-
eral experiments are conducted to measure the performance of algorithm GPE. Experi-
mental results show that algorithm GPE is able to obtain close approximations of the
numbers of the sensed objects. In addition, experimental results also show that algorithm
GPE is more scalable, and hence, is more suitable than prior schemes for practical use.

Keywords: population estimation, resource inventory, sensor network, energy conserva-
tion, estimation algorithm

1. INTRODUCTION

The growing advance in wireless communications and electronics makes the devel-
opment of low-cost and low-power sensors possible. These sensors are usually small in
size and are able to communicate with other sensors in short distance wirelessly. A sensor
network consists of a number of sensors which cooperate with one another to accomplish
some tasks [1]. Sensors can be deployed either in a random or in a predetermined manner.
Since being self-organized, sensors are able to form a sensor network automatically. Due
to the characteristics of wireless communication and configuration-free deployment, sen-
sor networks are suitable for various application areas including inventory management,
product quality monitoring and disaster area monitoring [1, 2]. Hence, sensor networks

Received March 14, 2007; revised June 7 & November 9, 2007; accepted December 27, 2007.
Communicated by Chung-Ta King.
* The preliminary version of this work has been presented at International Conference on Mobile Ad Hoc and

Sensor Networks, 13-15 December, 2005, Lake View Hotel, Wuhan, China.
* This work was supported in part by the National Science Council of Taiwan, R.O.C. under contract No. NSC

96-2221-E-009-161-MY2.

JIUN-LONG HUANG, SHIH-CHUAN CHIU AND XIN-MAO HUANG

202

Sensor Sensed Object
s1 o1, o2, o3, o4, o5, o6
s2 o1, o2, o3, o7, o8, o9
s3 o4, o5, o7, o8, o10, o11

have attracted a significant research attention, including hardware and operating system
design [3, 4], localization [5, 6], data aggregation methods [7-9] and applications of sen-
sor networks [10, 11].

Resource inventory, in this paper, is defined as a class of applications involving
population calculation of a specific object type. To achieve this, a number of sensors are
deployed in a flat surface and each sensor is able to sense the number of objects within
its sensing region. These sensors then form a sensor network so that users are able to
query the number of objects sensed by the sensor network via a server. For the sake of
simplicity, we use “object number” to indicate the number of objects sensed by a sensor
network.

Since the sensors may be deployed randomly, the sensing regions of these sensors
may overlap with one another. This phenomenon results in the difficulty of obtaining the
exact object number due to the reason that one object may be sensed by more than one
sensor. Suppose that each object has a unique identity. To calculate exact object numbers,
each sensor should get the identities of all objects in its sensing region and send these
identities to the server via a sink. After removing redundant identities, the server can get
the exact object number by counting the number of remaining identities.

Sensors are usually powered by batteries. Therefore, energy conservation becomes
an important issue in the design of sensor networks [12, 13]. As mentioned in [14], the
energy consumption for a sensor to transmit and receive a message is in proportion to the
length of the message. To reduce power consumption, the removal of redundant identities
should be performed in an in-network manner.

s3

s1 s2

sensing range

directed
communication

server

Fig. 1. An example scenario.

We use the example scenario in Fig. 1 to show the effect of in-network redundancy

removal. When in-network redundancy removal is not performed, s1, s2 and s3 will report
{o1, o2, o3, o4, o5, o6}, {o1, o2, o3, o7, o8, o9} and {o4, o5, o7, o8, o10, o11}, respectively, to
the server. After receiving these reports, the server removes redundant identities and re-
ports that there are 11 objects sensed by the sensor network. Consider the case that
in-network redundancy removal is performed. After receiving the reports of s1 and s2, s3
first removes redundant identities in the reports of s1, s2 and the list of objects sensed by
s3, and then reports {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11} to the server. Finally, the
server reports that there are 11 objects sensed by the sensor network. It is obvious that in-
network redundancy removal is able to reduce the power consumption of the sensor net-
work by reducing the lengths of messages.

POPULATION ESTIMATION OVER SENSOR NETWORKS

203

There are some scenarios that energy conservation is of the highest priority and
knowing only estimated object number is useful enough. Consider the scenario of long-
term inhabitant monitoring. Some scientists deploy several sensors in a wild field to ob-
serve the number of some species of animals. We assume that the individual animals can
be distinguished at the sensor by voice signatures, visual features, or pre-implanted arti-
ficial identifications (RFID for example) [15]. Since changing the batteries of the sensors
is quite difficult, to facilitate long-term monitoring, energy-conservation is of the highest
priority and the obtained object number is not necessary to be exact.

In view of this, Lin et al. suggested in [15] that each sensor only reports the number
of the sensed objects to the server. In the example scenario in Fig. 1, s1, s2 and s3 only
send, respectively, {s1:6}, {s2:6} and {s3:6} to the server. For convenience, we name the
scheme proposed in [15] as scheme SDARIA (i.e., the acronym of the title of [15]) in the
rest of this paper. The amount of lengths of messages produced in in-network redundancy
removal is 23 units, while the amount of lengths of messages produced by scheme
SDARIA is 6 units. Since the energy consumption for a sensor to transmit and receive a
message is in proportion to the length of the message, the energy saving of scheme
SDARIA over in-network redundancy removal in this example is around

23-6
23 ≈ 73.91%.

After receiving all reports, the server will estimate the object number according to
the received reports. To achieve this, they proposed two algorithms to calculate the lower
bounds and the upper bounds of the exact object numbers based on the received reports.
Although being shown to be able to conserve much energy than other schemes, scheme
SDARIA has the following drawbacks.

1. The time complexity of the lower bound calculation algorithm is high.

The time complexity of the lower bound calculation algorithm in scheme SDARIA is
O(1.2226n) where n is the number of sensors. Such high complexity makes scheme
SDARIA not suitable for practical use.

2. The obtained lower bounds and upper bounds are not informative.
In our experiments, the upper bounds obtained by scheme SDARIA are around 190%-
300% of the exact numbers, while the lower bounds are around 60%-80% of the exact
numbers. Such high error rates make users not able to get enough information about
the exact object numbers.

In view of this, we design in this paper a population estimation algorithm, called
algorithm GPE (standing for Grid-based Population Estimation), for the server to esti-
mate the object numbers based on the received reports. Similar to scheme SDARIA, all
sensors only report the number of the sensed objects to the server. To estimate the num-
ber of the sensed objects, algorithm GPE first partitions the flat surface into several dis-
joint grids, and identifies overlapping grids of each sensor. Algorithm GPE then esti-
mates the object number of each grid, and finally estimates the object numbers according
to the estimated object number of each grid. Several experiments are conducted to meas-
ure the performance of algorithm GPE. The experimental results show that algorithm
GPE is able to obtain close approximations of object numbers. In our experiments, the
approximations of algorithm GPE are around 95%-115% of the exact object numbers. In
addition, algorithm GPE is more scalable than scheme SDARIA. These features make
algorithm GPE more suitable for practical use. Finally, we have proposed a two-phase

JIUN-LONG HUANG, SHIH-CHUAN CHIU AND XIN-MAO HUANG

204

framework to strike a balance between estimation accuracy and energy-conservation by
using scheme ADARIA and algorithm GPE in turn.

The rest of this paper is organized as follows. Section 2 gives a description of re-
source inventory applications and an overview of scheme SDARIA. The design of algo-
rithm GPE is given in section 3. Section 4 shows the performance study of algorithm
GPE and discusses some possible combined use of scheme SDARIA and algorithm GPE.
Finally, section 5 concludes this paper.

2. PRELIMINARIES

2.1 System Architecture

Similar to [15], the system architecture of resource inventory applications is shown

in Fig. 2. To calculate the number of objects, a number of sensors are deployed in a flat
surface and each sensor is able to sense the objects within its sensing region. These sen-
sors then form a sensor network and users are able to query the number of objects via a
server. For energy conservation, each sensor only reports the number of the sensed ob-
jects to the server when the server requests all sensors to report their sensing status. We
assume that the server is able to get the sensing regions of all sensors. The location of
each sensor can be obtained from manual measurement by human or automatic meas-
urement by sensors when they are equipped with GPS [16]. We also assume that the
sensing region of each sensor is determined as a circle centered by the sensor’s location.
The radius of the circle is called the sensing radius of the sensor. For simplicity, we as-
sume that each sensor has the same sensing radius r and let n denote the number of sen-
sors. For better readability, the symbols used is listed in Table 1.

Overlap Graph

Server

Estimated
Population

3

8

12

8

15
9

8

15

12

9

3

8

Sink

Sensing Ranges

Fig. 2. System architecture.

Table 1. Description of symbols.
Symbol Description

n Number of sensors
r Sensing radius
G Overlap graph
V Vertices in the overlap graph
E Edges in the overlap graph
α Grid size ratio

POPULATION ESTIMATION OVER SENSOR NETWORKS

205

2.2 Related Work

Basically, scheme SDARIA comprises the following two phases.

• Report collection phase: In report collection phase, each sensor reports the number of

the sensed objects to the server via the sink. After receiving the reports of all sensors,
the server transforms the received reports into the corresponding overlap graph G = {V,
E}, where V and E are, respectively, the sets of vertices and edges in G. The transfor-
mation procedure is as follows. Each sensor is modelled as a vertex, and the weight of
the vertex is the number of objects sensed by the corresponding sensor. In addition,
there is an edge between two sensors if these two sensors’ sensing regions overlap. Af-
ter building the overlap graph, the server then enters population estimation phase.

• Population estimation phase: In population estimation phase, the server estimates the
object number according to the overlap graph G. In scheme SDARIA, two algorithms
are proposed to calculate the upper bound and the lower bound, respectively, of the ex-
act object number, and these two bounds are taken as the results of scheme SDARIA.

In scheme SDARIA, lower bound calculation is modelled as the maximal inde-

pendent set problem. However, according to [17], the fastest algorithm for maximal in-
dependent set problem is of complexity O(1.2226n) where n is the number of sensors.
Thus, the lower bound calculation is not scalable. On the other hand, upper bound calcu-
lation is modelled as finding a subset of V which includes solely the vertices whose
sensing regions cannot be replaced by the combinations of other vertices’ sensing regions.
Interested readers can refer to [15] for details. In our experiments, the obtained upper
bounds are around 190%-300% of the exact object numbers, and the lower bounds are
around 60%-80% of the exact object numbers. Such high error rates make users not able
to get enough information about the exact object numbers. Due to the above drawbacks,
scheme SDARIA is suitable for practical use.

3. GPE: GRID-BASED POPULATION ESTIMATION

In algorithm GPE, the monitored region is partitioned into several non-overlapping
grids. The length and width of each grid are set to α × r, where the value of α is called
grid size ratio and r is the sensing region of each sensor. We will discuss how to deter-
mine the value of α in section 4.2. Consider the sensing region of a sensor shown in Fig.
3. A grid g is called the full grid of a sensor s if all the area of grid g is covered by the
sensing region of sensor s. Similarly, a grid g is called the partial grid of a sensor s if
only part of the area of grid g is covered by the sensing region of sensor s. A grid g is
called the overlapping grid of sensor s if grid g is a full or a partial grid of sensor s. In
Fig. 3, the full and partial grids of the sensor are marked as ‘F’ and ‘P,’ respectively.

To facilitate the estimation of the exact object numbers, we have the following as-
sumptions.

1. The objects sensed by sensor s are uniformly distributed in the sensing region of sensor s.
2. The objects in a grid g are uniformly distributed in the area of grid g.

JIUN-LONG HUANG, SHIH-CHUAN CHIU AND XIN-MAO HUANG

206

P P P

P P F P P

P F F F P

P P F P P

P P P Grid

Sensing
Region

(x1,y1)

d

(0,0)

g
s

 Fig. 3. Full and partial grids. Fig. 4. An example object distribution.

The reasons that we make these two assumptions are as follows.

1. The assumption that the objects in the sensing region are uniformly distributed is used
only as an initial setting. Algorithm GPE will automatically adjust the distribution of
objects in a sensing region according to the numbers of objects sensed by all sensors.
At the end of algorithm GPE, the objects in each sensing region will not be considered
as uniformly distributed.
Consider the example shown in Fig. 5. As shown in Fig. 5 (b), algorithm GPE first as-
sumes that the objects in the sensing region of sensor s1 are distributed uniformly. Thus,
the numbers of the objects in the grids of sensor s1 are equal. At the end of algorithm
GPE, the distribution of the objects in each sensing region is adjusted according to the
numbers of objects in each sensing region. As a result, in Fig. 5 (d), the numbers of the
objects in the grids of sensor s1 become different.

2. Algorithm GPE indeed relies on the assumption that the objects within a grid are dis-
tributed uniformly. We believe that when the grid size becomes small enough, the dis-
tribution of objects in a grid will become close to uniform distribution. Thus, algo-
rithm GPE becomes more accurate when grid size is set to be smaller. We use the fol-
lowing lemma to explain this assumption. Moreover, this intuition conforms to the
experimental result shown in Fig. 7 (a).

Sensing region of sensor s

Grid g

Overlapping
region

Grid g

Sensing region of sensor s

 (a) Full grid. (b) Partial grid.

Fig. 5. Overlapping between grid g and the sensing region of sensor s.

Lemma 1 Suppose that the objects are distributed normally. When the grid size be-
comes smaller, the distribution of objects in a grid will become closer to uniform distri-
bution.

POPULATION ESTIMATION OVER SENSOR NETWORKS

207

Proof: Consider the example shown in Fig. 4. Without lost of generality, we assume that
the grid g lies in Quadrant I. Let the coordinate of the bottom-left point in g be (x1, y1)
and the grid size be d. Let pdf(x) be the probability that the x-coordinate of an object is x.
Since the objects are distributed normally, we have

() ()
() ()

2 2() (+)1 1
2 22 2

2 2() ()1 1
2 22 2

2 2 2() () 2()1 1
2 2 22 2 2

1 10

0

0

0

 lim[() ()]

1 1lim
2 2

1 lim
2

1 lim
2

1
2

x x d

x x d

x x x d d

d

d

d

d

pdf x pdf x d

e e

e e

e e e

μ μ

σ σ

μ μ

σ σ

μ μ μ

σ σ σ

σ π σ π

σ π

σ π

σ

− −

− + −

− − − − −

→

− −

→

− −
→

− −
→

− +

⎡ ⎤⎛ ⎞ ⎛ ⎞
= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤= × −⎢ ⎥⎣ ⎦

⎡ ⎤= × −⎢ ⎥⎣ ⎦

=

2
1

22 2()
22

()
2

0
lim 1

0.

x d d

x

d
e e

μ

σ

μ
σ

π
− − −

−
−

→
⎡ ⎤× × −⎣ ⎦

=

The above result shows that pdf(x1 + d) becomes closer to pdf(x) when d becomes
closer to zero. Since probability density function is monotonic decreasing when x > 0,
pdf(x1 + d′), d′ ≤ d is close to pdf(x) when d is close to zero. With similar method, we can
also show that when y > 0, pdf(y1 + d′), d′ ≤ d becomes closer to pdf(y) when d becomes
closer to zero. Thus, with smaller grid size, the distribution of objects in a grid will be-
come closer to uniform.

Let g.Area be the area of grid g, s.Area be the area of the sensing region of sensor s

and s.ObjNo be the number of objects sensed by s. Then, according to these assumptions,
we have the following lemma.

Lemma 2 Consider the case that a grid g overlaps the sensing region of a sensor s.
Suppose that sensor s expects that there are g.ObjNo objects in grid g. Then, we have

.. . .
.

g Areag ObjNo s ObjNo
s Area

= × (1)

Proof: Since g overlaps the sensing region of s, by definition, g is either a full grid or a
partial grid of s. Consider the case shown in Fig. 5 (a) that g is a full grid of s. According
to assumption 1, it is obvious that the ratio between the object number in g and the object
number sensed by s is equal to the ratio between the area of g and the area of the sensing
region of s. Thus, we have

. . .
. .

g ObjNo g Area
s ObjNo s Area

=

By rewriting the above equation, we have

JIUN-LONG HUANG, SHIH-CHUAN CHIU AND XIN-MAO HUANG

208

.. . .
.

g Areag ObjNo s ObjNo
s Area

= ×

Thus, Eq. (1) is true when g is a full grid of s.
We next consider the case shown in Fig. 5 (b) that g is a partial grid of s. Let OA.Area

be the area of the overlapping region of grid g and the sensing region of sensor s and
OA.ObjNo be the number of objects in this overlapping region expected by sensor s. Ac-
cording to assumption 1, we have

. . .
. .

OAObjNo OA Area
s ObjNo s Area

=

By rewriting the above equation, we have

.. . .
.

OA AreaOA ObjNo s ObjNo
s Area

= × (2)

According to assumption 2, we have

. . .
. .

OAObjNo OA Area
g ObjNo g Area

=

By rewriting the above equation, we have

.. . .
.

g Areag ObjNo OAObjNo
OA Area

= ×

After rewriting the above equation by substituting the right hand side of Eq. (2) for
OA.ObjNo, we have

. .. .
. .

. . .
.

g Area OA Areag ObjNo s ObjNo
OA Area s Area

g Area s ObjNo
s Area

⎛ ⎞= × ×⎜ ⎟
⎝ ⎠

= ×

Thus, Eq. (1) is true when g is a partial grid of s.
As a result, this lemma is proven since Eq. (1) is true when g is a full grid or a par-

tial grid of s.

Note that these assumptions are made only to guide the design of algorithm GPE,

and are not the limitations of algorithm GPE. They will be relaxed in the experiments in
section 4.

The procedure of algorithm GPE is as follows. Initially, each sensor is marked as
UNSELECTED. Algorithm GPE is an iterative algorithm and selects one sensor marked
as UNSELECTED in each iteration. Consider the case that sensor s is selected. Accord-
ing to Lemma 2, sensor s suggests that

.
. .g Area

s Area s ObjNo× objects are in each of its over-

POPULATION ESTIMATION OVER SENSOR NETWORKS

209

lapping grids. Finally, sensor s is marked as SELECTED. Algorithm GPE repeats the
above procedure until all sensors are marked as SELECTED. Since the expected object
number in grid g may be suggested by several sensors, the expected object number in
grid g is determined as the average of possible object numbers suggested by all sensors.
Finally, the estimated object number is determined as the summation of the expected
object numbers of all grids. The algorithmic form of algorithm GPE is as follows.

Algorithm GPE
1: for each grid g do /* Initialization */
2: g.AvgObjNo ← 0
3: g.SensorNo ← 0
4: end for
5: Mark all sensors as UNSELECTED
6: while (at least one sensor is marked as UNSELECTED) do
7: Pick one sensor which is marked as UNSELECTED
8: overlap ← overlap grids of sensor s
9: for each grid g in overlap do

10: expectation =
.
. .g Area

s Area s ObjNo×

11: 1
. 1. (. * .)g SensorNog AvgObjNo g AvgObjNo g SensorNo expectation+← × +

12: g.SensorNo ← g.SensorNo + 1
13: end for
14: Mark sensor s as SELECTED
15: end while
16: total ← 0
17: for each grid g do
18: total ← total + g.AvgObjNo
19: end for
20: return total

Since the width and the length of each grid are set to α × r, the number of grids in the
flat surface is proportional of 2

1 ,α while the number of overlapping grids of each sensor
is also in proportion to 2

1 .α Since being dominated by the loop in lines 6-15, the time

complexity of algorithm GPE is 2()nO α where n is the number of sensors. Finally, we
use the following example to illustrate the execution of algorithm GPE.

Example 1: Consider a sensor network consisting of two sensors, sensor s1 and sensor s2,
which sense 50 and 25 objects, respectively. The locations of these sensors are shown in
Fig.6 (a). The value of α is set to 0.5. Thus, the server partitions the monitored field into
35 non-overlapping grids and marks sensor s1 and sensor s2 as UNSELECTED. Since the
width and the length of each grid g are α × r, we have g.Area = (α × r)2. In addition, we
also have s.Area = π × r2. Thus,

.
.

g Area
s Area is

2 2 2

2
. () 0.5 0.08.
. 3.1415...

g Area r
s Area r

α α
ππ

×
= = = ≈

×

JIUN-LONG HUANG, SHIH-CHUAN CHIU AND XIN-MAO HUANG

210

Suppose that s1 is selected. According to Lemma 2, s1 expects each of its overlap-
ping grids is of

.
.

g Area
s Area × s.ObjNo = 0.08 × 50 = 4 objects. The server marks sensor s1 as

SELECTED. The server then selects sensor s2. Similarly, the server determines that sen-
sor s2 expects that there are 0.08 × 25 = 2 objects in each overlapping grid of sensor s2.

After selecting all sensors, the server then calculates the estimated object number in
each grid. We use three grids, g1, g2 and g3, to demonstrate the calculation. Since grid g1
does not overlap the sensing region of each sensor, the server determines that there is no
object in grid g1. Grid g2 is only covered by the sensing region of sensor s1. The server
determines that there are four objects in grid g2 due to the reason that sensor s1 suggests
that there are four objects in each overlapping grid of sensor s1. Since sensor s1 and s2
suggest there are, respectively, four and two objects in grid g3, the server determines that
there are

4 2
2 3+ = objects in grid g3. The result of this step is shown in Fig. 6 (d). Finally,

the server summarizes the estimated object numbers of all grids and reports that there are
93 objects in the monitored field.

g1 g2

g3

s1 s2

4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4

(a) Cutting grids. (b) Selecting sensor s1.

2 2

2 2 2

2 2 2

2 2 2

2 2

2

2

2

2

2

2

2

2

0 4 4 3 2

4 4 3 3 3

4 4 3 3 3

4 4 3 3 3

0 4 4 3 2

2

2

2

2

2

0

2

2

2

0

(c) Selecting sensor s2. (d) Collecting the suggestions of all sensors.
Fig. 6. A running example.

4. PERFORMANCE EVALUATION

4.1 Simulation Model

Similar as [15], the sensors are uniformly placed in to a 500m × 500m flat surface

and the sensing radius of each sensor is set to 100m. We use GSTD tool [18] to generate
the synthetic datasets used in this simulation. We synthesize the locations of objects by
three distributions: uniform distribution, Gaussian distribution with standard deviation
100 and Gaussian distribution with standard deviation 50, and they are shown in Figs. 7
(a)-(c), respectively. In addition to synthetic datasets, we also use real spatial dataset

POPULATION ESTIMATION OVER SENSOR NETWORKS

211

(a) Uniform. (b) Gaussian-100. (c) Gaussian-50. (d) Real.

Fig. 7. Datasets.

Table 2. Default system parameters.
Parameter Value

Number of sensor (n) 30
Number of objects 2000

Sensing radius 100m
Grid size (Grid size ratio = 2%) 2m

which contains the locations of 5922 cities and villages of Greece [19]. We normalize
these locations into the flat surface, and the normalized result is shown in Fig. 7 (d).
Since focusing on population estimation phase, in data aggregation phase, algorithm GPE
adopts the data aggregation method used in scheme SDARIA. In addition to algorithm
GPE, we also implement scheme SDARIA for comparison purposes. We implement both
schemes in C++ and the simulation is executed in a PC with one Pentium III 500MHz
CPU and 512MB memory. The default system parameters are listed in Table 2.

Since both schemes use the same data aggregation method, the energy consumption
of the sensors in both schemes is the same. Hence, we take accuracy and execution time
as the performance metrics of both schemes. Error rate, which is defined as below, is
taken to measure the accuracy of population estimation.

Estimated number of the sensed objects Exact number of the sensed objectsError rate =
Exact number of sensed objects

−

Note that error rate smaller than zero indicates that the estimated object number is
smaller than the actual object number. The accuracy is higher when error rates are closer
to zero. That is, the accuracy is high when the absolute values of error rates are small.

4.2 Effect of Grid Size Ratio

In this subsection, we investigate the effect of grid size ratio in the error rates of the

results and the execution time of algorithm GPE. The length and width of grids are de-
termined as “sensing radius × α,” where α is called grid size ratio.

Fig. 8 (a) shows the error rates of algorithm GPE with grid size ratio varied in vari-
ous datasets. In this experiment, grid size ratio is set from 0.5% to 16%. According to the
design of algorithm GPE, it is intuitive that the results of algorithm GPE will be better
when the grid size ratio becomes smaller. Such intuition can be observed in Fig. 8 (a).

JIUN-LONG HUANG, SHIH-CHUAN CHIU AND XIN-MAO HUANG

212

-15

-10

-5

0

5

10

15

20

0.5 1 2 4 8 16
Grid Size Ratio (%)

Er
ro

r R
at

e
(%

)

Uniform Gaussian-150
Gaussian-100 Gaussian-50
Gaussian-20 Real

0

5

10

15

20

25

0.5 1 2 4 8 16
Grid Size Ratio(%)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

(a) Error rate. (b) Execution time.

Fig. 8. Effect of grid size ratio.

Algorithm GPE performs very well in dataset Uniform. It is because that the design of
algorithm GPE is under the premise that objects are distributed uniformly. The error rate
in dataset Uniform is around 0.05% when grid size ratio is set to 0.5%. In the same con-
dition, the error rates are ranging from 9.6% to 12.58% in other datasets.

In addition, we also observe that the distribution of objects also affects the error
rates. Consider the cases that the distributions of objects are Gaussian distributions. Al-
gorithm GPE performs well when the object distribution is close to uniform (e.g., Gaus-
sian-150). When the object distribution becomes more centralized, the error rates of al-
gorithm GPE becomes larger and more unstable. With the same distribution, the accuracy
of algorithm GPE is unstable and is affected by the random number generator used in the
simulation. In our experiment, when the object distribution is very centralized (e.g.,
Gaussian-20), algorithm GPE even underestimates the number of the sensed objects.

The execution time of algorithm GPE with grid size ratio varied is shown Fig. 8 (b).
The complexity analysis of algorithm GPE in section 3 shows that the execution time
will increase drastically as grid size ratio decreases. The result in Fig. 8 (b) conforms to
such analysis. Therefore, there is a trade-off between accuracy and execution time, and
users should determine a suitable grid size ratio to strike a compromise between estima-
tion accuracy and execution time of algorithm GPE. The experimental results suggest
users to set the grid size ratio to 2% to get good estimations with reasonable execution
time. As a result, we set the grid size ratio to 2% in the following experiments.

4.3 Effect of Sensor Number

This experiment is conducted to measure the effect of the number of sensors. Fig. 9

shows the error rates and execution time of all algorithms in different datasets with the
number of sensors varied. The number of sensors is set from 30 to 180.

As observed from Figs. 9 (a)-(d), the error rates of the upper bound calculation al-
gorithm range from 80% to 205%, and the error rates of the lower bound calculation al-
gorithm are between − 10.7% and − 57.1%. In addition, the error rates of algorithm GPE
are between − 2.9% and 14.3% in this experiment. Since the absolute values of the error
rates of algorithm GPE are smaller than those of the lower bound and the upper bound

POPULATION ESTIMATION OVER SENSOR NETWORKS

213

-100

-50

0

50

100

150

200

250

30 60 90 120 150 180
Number of Sensors

Er
ro

r R
at

e
(%

)

Upper bound
GPE
Lower bound

-100

-50

0

50

100

150

200

250

30 60 90 120 150 180
Number of Sensors

Er
ro

r R
at

e
(%

)

Upper bound
GPE
Lower bound

(a) Error rate, uniform. (b) Error rate, Gaussian-100.

-100

-50

0

50

100

150

200

250

30 60 90 120 150 180
Number of Sensors

Er
ro

r R
at

e
(%

)

Upper bound
GPE
Lower bound

-100

-50

0

50

100

150

200

250

30 60 90 120 150 180
Number of Sensors

Er
ro

r R
at

e
(%

)

Upper bound
GPE
Lower bound

(c) Error rate, Gaussian-50. (d) Error rate, real.

0

2

4

6

8

30 60 90 120 150 180
Number of Sensors

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

GPE

(e) Execution time.

Fig. 9. Effect of sensor number.

calculation algorithms, algorithm GPE is able to give users closer estimations than
scheme SDARIA. Fig. 9 (e) shows the execution time of algorithm GPE. We observe that
the execution time of algorithm GPE increases linearly as the number of sensors in-
creases. This result agrees to the complexity analysis of algorithm GPE in section 3.
Fortunately, the execution time of algorithm GPE is still acceptable even when the num-
ber of sensors is set to 180.

JIUN-LONG HUANG, SHIH-CHUAN CHIU AND XIN-MAO HUANG

214

4.4 Effect of Object Number

This experiment is to investigate the effect of the number of objects. Fig. 10 shows
the error rates of all algorithms by setting object number from 500 to 5000. Since the
execution time of all algorithms is not affected by object number and the distribution of
objects, we only show their error rates in this subsection. As shown in Fig. 10, the error
rates of all algorithms are affected by the distribution of objects. Since being designed
under the premise that objects are distributed uniformly, algorithm GPE performs very
well in dataset Uniform. It is also observed that except dataset Uniform, error rates of
algorithm GPE slightly increase as the number of objects increases. In this experiment,
the error rates of algorithm GPE increase from − 0.81% to 0.1%, from 10.2% to 13.08%
and from 8% to 10.6%, respectively, in datasets Uniform, Gaussian-100 and Gaussian-50.

-50

0

50

100

150

200

500 1000 2000 3000 4000 5000
Object Number

Er
ro

r R
at

e
(%

) Upper bound
GPE
Lower bound

-50

0

50

100

150

200

500 1000 2000 3000 4000 5000
Object Number

Er
ro

r R
at

e
(%

) Upper bound
GPE
Lower bound

-50

0

50

100

150

200

500 1000 2000 3000 4000 5000
Object Number

Er
ro

r R
at

e
(%

)

Upper bound
GPE
Lower bound

(a) Error rate, uniform. (b) Error rate, Gaussian-100. (c) Error rate, Gaussian-50.

Fig. 10. Effect of object number.

4.5 Effect of Sensor Distribution

We measure the effect of the sensor distribution and the experimental results are

shown in Fig. 11. Since the execution time of scheme SDARIA and algorithm GPE is not
affected by sensor distribution, we only show the error rates in this subsection. We model
the sensor distribution as uniform distribution, Gaussian distribution with standard devia-
tion 100 and Gaussian distribution with standard deviation 50, respectively. As shown in
Fig. 11, the accuracy of scheme SDARIA and algorithm GPE becomes lower when sen-
sor distribution becomes centralized. We also observe that algorithm GPE is less sensi-
tive in sensor distribution than scheme SDARIA. Consider the case that the objects are
distributed uniformly. When the sensor distribution is set to Gaussian-100 and Gaus-
sian-50, the error rates of algorithm GPE are 1.64% and 6.56%, respectively. On the
other hand, the error rates of lower and upper bounds of scheme SDARIA increase from
− 36.88% to − 50% and from 123.97% to 214.11%, respectively. In addition, the accu-
racy degradation becomes severer when the object distribution becomes centralized. It is
because that when the sensors and the objects are centrally distributed, many objects will
locate in the common sensing regions of many sensors. Such situation will increase the
difficulty of estimating the object numbers.

POPULATION ESTIMATION OVER SENSOR NETWORKS

215

-100

0

100

200

300

400

500

Uniform Gaussian-100 Gaussian-50

Object Distribution

Er
ro

r R
at

e
(%

)

Upper bound
GPE
Lower bound

-100

0

100

200

300

400

500

Uniform Gaussian-100 Gaussian-50

Object Distribution

Er
ro

r R
at

e
(%

)

Upper bound
GPE
Lower bound

(a) Error rate, uniform. (b) Error rate, Gaussian-100.

-100

0

100

200

300

400

500

Uniform Gaussian-100 Gaussian-50

Object Distribution

Er
ro

r R
at

e
(%

)

Upper bound
GPE
Lower bound

-100

0

100

200

300

400

500

Uniform Gaussian-100 Gaussian-50

Object Distribution

Er
ro

r R
at

e
(%

)

Upper bound
GPE
Lower bound

(c) Error rate, Gaussian-50. (d) Error rate, real.

Fig. 11. Effect of sensor distribution.

4.6 Remarks

Although algorithm GPE outperforms scheme SDARIA in accuracy, in fact, the re-

lationship between algorithm GPE and scheme SDARIA is collaborative instead of com-
petitive. Thus, we propose a combined use of algorithm GPE, scheme SDARIA and re-
dundancy removal to take their relative merits for practical use.

As shown in Fig. 12, the proposed algorithm consists of two phases, object number
calculation phase and object number estimation phase, and these two phases are activated
in turn. The descriptions of these two phases are as follows.

• In object number calculation phase, scheme redundancy removal is used to get the ex-

act number of the sensed objects. As mentioned in section 1, all sensors report the iden-
tities of all sensed objects, and redundant identities will be removed in an in-network
manner for power saving.

• In object number estimation phase, scheme SDARIA and algorithm GPE are both used
to get the lower bounds, upper bounds and estimations of the sensed objects. Although
the resultant lower bounds, upper bounds and estimations are not the exact object num-
bers, they are still able to give users some information about the exact object numbers.

JIUN-LONG HUANG, SHIH-CHUAN CHIU AND XIN-MAO HUANG

216

Object Number
Calculation Phase

Object Number
Estimation Phase

threshold
ObjNo

ObjNoObjNo

Prev

PrevCur <
−

threshold
EstObjNo

EstObjNoEstObjNo

Prev

PrevCur >
−

Fig. 12. The phase transition diagram of the proposed two-phase algorithm.

The phase transition conditions are as follows. Let ObjNoCur and ObjNoPrev be the

exact object numbers in, respectively, current and previous calculations in object number
calculation phase. We also let EstObjNoCur and EstObjNoPrev be the estimated object
numbers in, respectively, current and previous estimations in object number estimation
phase. The system administrators have to specified a parameter threshold where 0 <
threshold < 1. The algorithm will step from object number estimation phase into object
number calculation phase when

.Cur Prev

Prev

EstObjNo EstObjNo
threshold

EstObjNo
−

>

In addition, the algorithm will step from object number calculation phase into object
number estimation phase when

Cur Prev

Prev

ObjNo ObjNo
threshold

ObjNo
−

<

for a while. When energy-conservation is of high importance, the value of threshold
should be set to close to one. Thus, the algorithm will be in object number estimation
phase for a long time to reduce energy consumption. On the other hand, when accuracy is
of high importance, the value of threshold should be set to close to zero.

By using the proposed algorithm, users can get more information on object numbers
than by using scheme GPE and algorithm SDARIA only. In addition, using the proposed
algorithm makes the sensors save more power than using scheme redundancy removal.

5. CONCLUSION

In this paper, we addressed the problem of resource inventory applications over
wireless sensor networks. To reduce energy consumption, each sensor reports only the
number of the sensed object to the server, and the server will estimate the object number
according to the received reports of all sensors. In view of this, we designed algorithm
GPE to estimate the object numbers. Several experiments were conducted to measure the
performance of algorithm GPE. The experimental results showed that with a proper grid
size ratio, algorithm GPE was able to obtain close approximations of object numbers in
reasonable execution time. In our experiments, the approximations of algorithm GPE

POPULATION ESTIMATION OVER SENSOR NETWORKS

217

were around 95%-115% of the exact object numbers. This result showed that algorithm
GPE is more suitable than prior schemes for practical use.

REFERENCES

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor
networks,” IEEE Communications Magazine, 2002, pp. 102-114.

2. S. D. Glaser, “Some real-world applications of wireless sensor nodes,” in Proceed-
ings of SPIE Symposium on Smart Structures and Materials, 2004, pp. 344-355.

3. A. Chen, R. R. Muntz, S. Yuen, I. Locher, S. Park, and M. B. Srivastava, “A support
infrastructure for the smart kindergarten,” IEEE Pervasive Computing, Vol. 1, 2002,
pp. 49-57.

4. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System architec-
ture directions for network sensors,” in Proceedings of the 9th International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, 2000, pp. 93-104.

5. K. Chintalapudi, R. Govindan, G. Sukhatme, and A. Dhariwal, “Ad-hoc localization
using ranging and sectoring,” in Proceedings of the IEEE INFOCOM Conference,
2004, pp. 2662-2672.

6. Y. Shang and W. Ruml, “Improved MDS-based localization,” in Proceedings of the
IEEE INFOCOM Conference, 2004, pp. 2640-2651.

7. J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate aggregation techniques
for sensor databases,” in Proceedings of the 20th IEEE International Conference on
Data Engineering, 2004, pp. 449-460.

8. C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact of network
density on data aggregation in wireless sensor networks,” in Proceedings of the 22nd
IEEE International Conference on Distributed Computing Systems, 2002, pp. 457-458.

9. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: A tiny aggrega-
tion service for ad hoc sensor networks,” in Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, 2002, pp. 131-146.

10. G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai,
and K. Frampton, “Sensor network-based countersniper system,” in Proceedings of
the 2nd ACM International Conference on Embedded Networked Sensor Systems,
2004, pp. 1-12.

11. N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and D.
Estrin, “A wireless sensor network for structural monitoring,” in Proceedings of the
2nd ACM International Conference on Embedded Networked Sensor Systems, 2004,
pp. 13-24.

12. N. Heo and P. K. Varshney, “Energy-efficient deployment of intelligent mobile Sen-
sor networks,” IEEE Transactions on System, Man, and Cybernetics − Part A: Sys-
tems and Humans, Vol. 35, 2005, pp. 78-92.

13. A. Rogers, E. David, and N. R. Jennings, “Self-organized routing for wireless mi-
crosensor networks,” IEEE Transactions on System, Man, and Cybernetics − Part A:
Systems and Humans, Vol. 35, 2005.

14. W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient commu-

JIUN-LONG HUANG, SHIH-CHUAN CHIU AND XIN-MAO HUANG

218

nication protocol for wireless microsensor networks,” in Proceedings of the 33rd
Hawaii International Conference on System Sciences, 2000.

15. T. H. Lin and P. Huang, “Sensor data aggregation for resource inventory applica-
tions,” in Proceedings of the IEEE Wireless Communications and Networking Con-
ference, 2005, pp. 2369-2374.

16. D. M. Doolin, S. D. Glaser, and N. Sitar, “Software architecture for GPS-enabled
wildfire sensorboard,” TinyOS Technology Exchange, 2004.

17. V. Dahllof and P. Jonsson, “An algorithm for counting maximum weighted inde-
pendent sets and its applications,” in Proceedings of the 13th Annual ACM/SIAM
Symposium on Discrete Algorithms, 2002, pp. 292-298.

18. Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento, “On the generation of spatial-
temporal datasets,” in Proceedings of the 6th International Symposium on Large
Spatial Databases, 1999, pp. 147-164.

19. The R-Tree Portal, http://www.rtreeportal.org/.

Jiun-Long Huang (黃俊龍) received his B.S. and M.S. de-

grees in Computer Science and Information Engineering De-
partment in National Chiao Tung University in 1997 and 1999,
respectively, and his Ph.D. degree in Electrical Engineering De-
partment in National Taiwan University in 2003. Currently, he is
an assistant professor in Computer Science Department in Na-
tional Chiao Tung University. His research interests include: mo-
bile computing, wireless networks and data mining.

Shih-Chuan Chiu (邱士銓) received the B.S. degree in
Computer Science and Information Engineering from Tamkang
University and the M.S. degree in Computer Science from Na-
tional Chengchi University, in 2002 and 2004, respectively. He is
currently working towards the Ph.D. degree in the Department of
Computer Science at National Chiao Tung University. His current
research interests include data mining, computer music and mo-
bile computing.

Xin-Mao Huang (黃信貿) received his M.S. and Ph.D. de-
gree from the Electrical Engineering Department of National
Taiwan University, Taipei, Taiwan, R.O.C., in 1998 and 2005,
respectively. Currently, he is an assistant professor in Computer
Science and Information Engineering in Aletheia University. His
research interests include data mining, distributed system, and
multimedia applications.

