Multi-Partition RAID: A New
Method for Improving Performance
of Disk Arrays under Failure

WEN-JIIN TSAI AND SUH-YIN LEE

Institute of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu,
300, Taiwan, ROC
Email: wjtsai@infol .csie.nctu.edu.tw

Disk arrays have been proposed as a way of improving I/O performance by using parallelism
among multiple disks. This paper focuses, however, on improving the performance of disk
array systems in the presence of disk failures, which are significant for applications where
continuous operation is of concern. Although several approaches have been explored, the goals
of achieving high performance and storage efficiency often conflict. In this paper, we propose a new
variation of RAID organization, multi-partition RAID (mP-RAID), to improve storage efficiency
and reduce performance degradation when disk failures occur. The idea is to recognize that
frequently demanded data dominate the degree of the performance degradation when disk failures
occur. mP-RAID subdivides a disk array into several partitions associated with different block
organizations. Based upon data popularity, we assign data to appropriate partitions so that high
performance and better storage efficiency can be achieved simultaneously.

Received August 4, 1995, revised May 23, 1997

INTRODUCTION

for error correction. Patterson [12] presented five ways of

Disk arrays have been proposed as a way of improving
I/O performance by using parallelism among multiple
disks [1, 2]. For disk array systems, the performance
when all disks are operational, in for example, a fault-
free state, and the techniques for increasing the storage
efficiency have been well studied [4-7]. However, the
performance of disk arrays in the presence of failed
disks, in for example, a failure state, should also receive
attention so that lost data can be recovered without taking
the system off-line. This is especially important for
applications in which continuous operation is of concern
[8]. The failure state of disk arrays can be further
subdivided into degradation mode and recovery mode. The
degradation mode is the condition when a failed disk in
a RAID has not been replaced. In this mode, an on-
the-fly reconstruction takes place for every access that
requires data from the failed disk. The recovery mode
is the condition when the recovering process is working
to reconstruct the entire contents of a failed disk and
store them on a replacement disk. Several strategies for
reconstructing the data on failed disks were analysed in [9—
11]. We focus this paper, however, on the performance
of disk array systems in failure states, especially those
in degradation modes that are significant for continuous-
operation applications.

Fault-tolerance in storage subsystems is generally
achieved either by replication or by parity-encoding [1, 2]

organizing data on disks, popularized as Redundant Arrays
of Inexpensive Disks (RAID). Several approaches for im-
proving performance in failure state have also been explored.
For replication-based systems, Copeland and Keller [13]
presented a scheme called interleaved declustering, which
balances the reconstruction load over all surviving disks so
that performance is improved. There is also a variant called
chained declustering that increases the data reliability of disk
arrays [14]. Since replication-based systems consume a lot
of storage capacity for redundancy, several researchers have
focused on parity-based disk arrays. Unfortunately, stan-
dard parity-based systems suffer severe performance degra-
dation in failure state due to increased reconstruction over-
head [10]. Muntz and Lui [15] solved this problem by em-
ploying a declustered-parity RAID, which reduces the in-
creased load on surviving disks, while increasing storage re-
dundancy. For disk array systems, the goals of achieving
high performance and ensuring storage efficiency often con-
flict in the failure state.

In order to balance performance and storage efficiency,
HP AutoRAID systems [16] exploit a two-level storage
hierarchy implemented inside a single disk-array controller.
In the upper level of this storage hierarchy, RAID-1
(mirroring) is used to provide excellent performance for
write-active data, and in the lower level, RAID-5 is used
to provide the most cost-efficient storage for write-inactive
or read-only data, at somewhat lower performance. To
maintain the optimum balance, the system automatically

THE COMPUTER JOURNAL,

Vol. 40, No. 1, 1997

102 ‘8z |1dVy uo AreiqiT Aseaiun Bun] ceyd euoleN e /610°seuinolploixo: ulwod//:dny woly papeojumoq

http://comjnl.oxfordjournals.org/

MULTI-PARTITION RAID 31

DiskO Disk1 Disk2 Disk 3 DiskO Disk1 Disk2 Disk 3 Disk0 Disk 1 Disk2 Disk 3
Do D, D, D; Dool Doyl [Don| |PO Dyo| [Dgi| |PO Pl
D, Ds D D; D, Dy, |PI D, Dol Dy Dy P2
Dy Dy Dyo Dy Dyo| |P2 D,, D,, Dyl |Dso| |Ds; P3
Dy D'y D'y D'y P3 Dyl |Ds; D,

EAREARPANEA NN e]

oy | o (o [- -] | AR

(a) interleaved declustering (b) RAID Level 5 (c) declustered-parity RAID

FIGURE 1. Various block organizations of disk arrays.

migrates data between these two levels as access patterns
change.

This paper extends the above idea by mixing declustered-
parity RAIDs of different declustering ratio in a single disk-
array controller to improve the performance in the failure
state, where the declustering ratio indicates the fraction
of the surviving disks that must be accessed during the
reconstruction of a failed disk [15]. The idea is to recognize
that the data reconstruction performance is dependent on
the declustering ratio and that frequently demanded data
dominate the degree of the performance degradation (due
to reconstruction of the defective data). We subdivide a
disk array into several partitions with different declustering
ratio and then assign data to appropriate partitions based on
data popularity. We call this multi-partition RAID, denoted
by mP-RAID, inside which the storage hierarchy is not
restricted to just two levels, and the block organizations
used are not only restricted to RAID-1 and RAID-5. Note
that RAID-1 and RAID-5 are just two cases of declustered
RAIDs with extreme declustering ratios (the minimum
and the maximum, respectively). By combining various
declustering ratios within a single disk array, mP-RAID
offers more configuration options, thus its performance/cost
ratio for a wide variety of data-access patterns can more
easily be optimized. Two approaches for configuring mP-
RAID are also proposed in this paper, which are data-
independent and popularity-based schemes. Our simulations
show that mP-RAID does significantly increase storage
efficiency and reduce performance degradation in the failure
state.

The rest of this paper is organized as follows. Section 2
presents a closer look at the impact of disk failures on the
performance of various RAIDs, including mirroring, RAID-
5 and declustered RAID. Section 3 describes the system
architecture and block organization of the proposed mP-
RAID. Data-placement and partition-arrangement policies
for optimizing mP-RAID’s performance are also presented
in this section. Section 4 describes two schemes for

configuring mP-RAID by choosing appropriate parameters,
the number of partitions, partition size, and declustering
ratio. Analytical and simulation-based studies for mP-
RAIDs are presented in Sections 5 and 6, respectively.
Finally, conclusions are given in Section 7.

2. RELATED WORKS

Fault-tolerance in disk arrays is generally achieved either
by replication or parity-encoding for error correction.
Replication-based systems protect data by storing one or
more duplicate copies of all data on separate disks (mirrored
disks). To improve the performance in the failure state,
interleaved declustering [13] allocates only half of each disk
for primary data; the other half contains partial non-primary
copies from each primary data on all other disks as depicted
in Figure 1a, where D; denotes the primary data and D; the
non-primary copy. Note that, with interleaved declustering,
the workload associated with reconstructing a failed disk
will be distributed across all surviving disks in the array.
Assuming that there is one disk failure in Figure la, for
example, each surviving disk is imposed by only one-third
of the load in the failed disk.

Parity-based systems incorporate redundancy by main-
taining error-correction code or parity code computed over
subsets of the data. The set of data units, over which a parity
unit is computed, plus the parity unit itself, is called a parity
group. When any single disk fails, its data can be recon-
structed by reading data in the corresponding parity group,
including the parity unit, and by computing the cumulative
exclusive-or of this data. Figure 1b shows the block orga-
nization of parity-based redundancy, called RAID Level 5,
where D;g, D;; and D;, denote the data blocks in parity
group i protected by parity P;. Unfortunately, disk failures
cause large performance degradations in RAID Level 5 due
to an increase in the loads imposed on all the surviving disks
for every reconstruction of data in the failed disk. For ex-
ample in Figure 1b, when disk 1 fails, the defective data
block Dy must be reconstructed by accessing Dy, Do

THE COMPUTER JOURNAL,

Vol. 40, No. 1, 1997

102 ‘8z |1dVy uo AreiqiT Aseaiun Bun] ceyd euoleN e /610°seuinolploixo: ulwod//:dny woly papeojumoq

http://comjnl.oxfordjournals.org/

32 W.-J. TSAI AND S.-Y. LEE

TN Y Y TN
N A N N
Partition 1 — —
N A N N N
Partition 2 —{ —
N A N N
. . e oo
.
Partition n= —_1———| —
N A N N N
Partition m [——~ —— —
A N N

(a) System architecture of mP-RAID

Disk O Disk 1 Disk 2 Disk 3
D, D, D, D,
Partition 1 D, D, Dy D3
(RAID 3) D, D, D, Ds
Dg D, D, D,

Partition 2 Do Dy D, Po,12)
(RAID 3) D; Dy P45 Ds
Dg P6,7,8) D, Dyg
P 10,11) Dy Do) Py

24)

(b) Block organization in 2P-RAID

FIGURE 2. The proposed multi-partition RAID.

and Py. Thus, all surviving disks, 0, 2 and 3 are involved.
Reconstruction of Dy ; and D3 is also carried out in a sim-
ilar manner. Assuming that all the disks are equally loaded,
a disk failure can double the load on each of the surviving
disks. Note that this is only for the case in which the disk ar-
ray is completely loaded with small reads (one block is read
at a time) before the disk fails. When there are write requests
or request sizes are not limited to one block at a time, the im-
pact of a disk failure on the workload of a RAID-5 disk array
is not as simple as just doubling that of the surviving disks
as we have described. A better understanding of this impact
can be found in [17].

Muntz and Lui [15] resolved this problem by introducing
declustered-parity RAID, which regards a disk array as
several RAIDs with smaller parity-group size. Due to these
small parity-group sizes, the reconstruction overheads can
be reduced. Figure 1c gives an example of declustered-parity
RAID with an array size of four disks and a parity-group
size of three. When disk 1 fails, the defective block Dy
can be reconstructed by accessing Dy and Py, i.e. only two
(instead of three) disks are involved in each reconstruction.
Assuming that all the disks in Figure 1c are equally loaded,
a failed disk increases the workload on each of the surviving
disks by only two-thirds. The penalty is a lower storage
efficiency.

In the following presentation, we shall generally refer to
RAID?, (N,G > 0) as a declustered-parity RAID with an
array size of N disks and a parity-group size of G, except
that G = 2 (i.e. RA]D%V) denotes a replication-based disk
array that can be RAID Level 1 (mirroring) or interleaved
declustering as described above.

3. THE MULTI-PARTITION RAID

The defective data unit in a RAIDS, must be reconstructed by
accessing the associated G — 1 surviving units in the array.
That is, in a RAID% (RAID Level 5), all the surviving disks

will be involved in each reconstruction (due to G — 1 =
N — 1). The increased workload, which may significantly
degrade performance, of course, can be reduced by choosing
a smaller G. For example, in a RAID%V (replication-
based), the defective data can simply be reconstructed by
reading its non-primary copy from one of the surviving
disks (G — 1 = 1). However, a RAID$ with a small
G, while yielding higher failure-state performance, suffers
from increased storage consumption for redundant data. In
RAID%V, 50% of the storage capacity is used for redundancy,
but in RAIDY,, only 1/N is required. This implies that the
goals of achieving high storage efficiency and high failure-
state performance often conflict. For a RAID, the trade-off
between performance and storage efficiency is governed by
the parity-group size G. Our hypothesis is that mP-RAID
offers a better way to optimize these factors.

3.1. System architecture

In mP-RAID, we divide a disk array into several partitions
associated with different parity-group sizes as depicted in

disk array, meaning that an array of N disks is a collection
of m partitions with parity-group sizes equal to Gy, G, .. .,
and G,, respectively.
in fact, a collection of RAIDS', RAIDS’,..., RAIDS",
except that they share the common N disks. For an

with parity-group size equal to G; will be arranged like that
in a RAIDg". Figure 2b shows the block organization of a
disk array, 2P-RAIDA(12’4), which comprises two partitions,
a RAIDf‘ (replication-based) partition at an upper address
space and a RAID] (RAID Level 5) partition at a lower
address space. Assuming that disk 2 fails, reading of the
defective data units in partition RA]Di (e.g. partition 1: D)
can easily be achieved by accessing another disk (i.e. disk 3).
However, reading of the defective data units in partition

THE COMPUTER JOURNAL,

Vol. 40, No. 1, 1997

102 ‘8z |1dVy uo AreiqiT Aseaiun Bun] ceyd euoleN e /610°seuinolploixo: ulwod//:dny woly papeojumoq

http://comjnl.oxfordjournals.org/

MULTI-PARTITION RAID 33

RAID} (e.g. partition 2: D,) must involve reconstruction of
the data by reading from all the surviving disks (i.e. disks O,
1 and 3).

Disk-array systems must have a function that maps data
blocks to physical disk locations and identifies the parity
layouts. Block mappings in mP-RAID are essentially dif-
ferent from those used in conventional disk arrays because
different block organizations can exist simultaneously in
mP-RAID (for partitions with different parity-group sizes).
Fortunately, there are several algorithms for block mapping
in a declustered-parity RAID of any parity-group size. Hol-
land and Gibson [8] proposed a method, called block design,
which maintains a block design table including every pos-
sible mapping of parity-group members to disks such that
the parity layout on the disks can easily be identified using a
simple mapping function. They also proposed an alternative
called balanced incomplete block design for reducing the
table size. The use of balanced incomplete block designs
for constructing a declustered array were also proposed by
Ng and Mattson [17] at almost the same time. In addition
to block-design-based methods, Merchant and Yu [18] pre-
sented a fast algorithm for distributing parity groups over
disks. Their algorithm is based on almost-random permu-
tations generated by shuffling the identity permutation. All
these algorithms have been shown to meet several criteria
for a good parity layout: single failure correction, dis-
tributed parity, distributed reconstruction, efficient mapping,
for example.

3.2. Data placement policy in mP-RAID

As we have mentioned, a RAID% with a small G, while
achieving good performance, consumes more storage for
redundancy. A RAIDS, with a large G has better storage
efficiency, but incurs the penalty of significant performance
degradation in the failure state. For a RAID%, the trade-
off between performance and storage efficiency is often
governed by the parity-group size G. The idea behind mP-
RAID is to make compromises among different Gs. Note
that there is an exception that a large G can achieve better
write performance if the writes are sufficiently large. In
this case, the trade-off between performance and storage
efficiency never exists because a large G is always the best
solution. Thus, we focus this study on applications that are
not large-write intensive.

In degradation mode, defective data blocks with higher
access frequencies often cause more severe performance
degradation due to higher reconstruction overheads. A
RAIDS, of smaller G is preferred for these data blocks to
improve performance. However, for data blocks with lower
access frequencies, a RAIDS, of larger G may be preferred
for storage efficiency. With consideration of data popularity
in mP-RAID, we assign data to appropriate partitions
and take advantage of different Gs to achieve higher
performance and greater storage efficiency. Moreover, for
systems in which every file is accessed as a whole each
time, data units can be set in terms of files rather than
data blocks because data blocks belonging to the same file

must have the same access frequencies. Let workload(f;)
denote the popularity of file f;, defined by workload(f;) =
size(f;) x access frequency(f;). We assign files with higher
workloads to partitions with smaller Gs (say hot partitions),
and files with lower workloads to partitions with larger Gs
(say cold partitions).

However, since data popularity may change, the data
stored on mP-RAID must be adjusted accordingly. Hot data
that becomes less popular must be moved to a cold partition;
and data, possibly newly added data, which becomes more
popular must be moved to a hot one. That is, the
system must periodically migrate data between partitions to
accommodate changes in data-access patterns. Data
migration causes overhead due to data movement and
redundancy reconstruction. Fortunately, data popularity in
real systems often change slowly over time [19, 20]. In
movie systems, for example, the migration period can be
several weeks or months. The migration operations can
thus be performed at times when the system can tolerate the
overhead.

3.3. Partition arrangement

The performance of magnetic disks can be improved by
placing frequently accessed data near the middle tracks of
the disks to reduce the overhead that disk head movement
entails. In this section, we use an organ-pipe arrangement
for locating partitions in mP-RAID to achieve this goal.
With this arrangement, the partition with the smallest G,
which will contain the data with highest workload, is
located on the middle tracks of the disk. Successively,
the next two partitions with the next larger Gs are located
adjacently on alternative sides. This process is continued
with the remaining partitions of the mP-RAID. The ranks
of Gs for M partitions placed on disks by organ-pipe
arrangement can then be represented as the vector (M —
I,M—-3,...,5,3,1,0,2,4,6,..., M — 2, M). Assuming
that partitions are sorted in an ascending order of G, the
mapping between partitions and disk locations is illustrated
in Figure 3. Moreover, within each partition, we can
place the more frequently accessed data on the side near
the middle tracks to further improve the performance as
indicated by the directions of the arrows shown in Figure 3.
For systems where the data access probabilities are known in
advance, and are identically and independently distributed,
the organ-pipe arrangement which exhibits the minimal
average access cost has been shown to be optimal for
physical layouts on magnetic disks [21, 22].

3.4. Comparison with multiple independent disk ar-
rays

An alternative to mP-RAID is to partition vertically an array
of disks into several independent RAIDs (without sharing
the same disks), each associated with different parity-group
size G as depicted in Figure 4. Here we give the reasons why
we use mP-RAID instead of multiple independent RAIDs as
our platform:

THE COMPUTER JOURNAL,

Vol. 40, No. 1, 1997

102 ‘8z |1dVy uo AreiqiT Aseaiun Bun] ceyd euoleN e /610°seuinolploixo: ulwod//:dny woly papeojumoq

http://comjnl.oxfordjournals.org/

34

W.-J. TSAI AND S.-Y. LEE

Logical Partitions

Po

P1

P2

P3

P4

Physical Locations

-—
hot data cold data

FIGURE 3. Partition arrangement by using the organ-pipe arrangement.

G
RAIDy RAIDY?

e o o RAIng
m

FIGURE 4. Multiple independent RAIDs.

Load balancing in fault-free state. In mP-RAID, since
all the partitions (no matter what G is used) reside
across all the disks, both high- and low-demand data
are uniformly spread among disks. With multiple
independent RAIDs, however, unbalanced loads result,
with heavier loads imposed on the disks associated with
RAIDs of small G.

Seek-time optimization. In mP-RAID, due to the
partition arrangement, the high-demand data can be
arranged near the middle tracks of all disks to reduce
disk-head movements. ~With multiple independent
RAIDs, such optimization may be less successful
because high-demand data is concentrated on only one
set of disks.

Load balancing in failure state. In mP-RAID, a failed
disk causes all the partitions to be equally damaged
and, therefore, all the surviving disks must share
involvement in partial reconstruction. With multiple
independent RAIDs, only the RAID containing the
failed disk is involved in reconstruction, which may
create a hot spot that significantly degrades system
performance.

Deterministic performance degradation upon failure.
With multiple independent RAIDs, a failed RAID with
a larger G will result in less performance degradation,
while a failed RAID with a smaller G will lead to
larger degradation. Since we have no way of knowing
which RAID will fail, the performance degradation

during failure is unpredictable. In mP-RAID, any failed
disk must contain both high- and low-demand data
and, therefore, the increased load for reconstruction is
deterministic and predictable.

However, there are some shortcomings that mP-RAID might
suffer in comparison with multiple independent RAIDs.

With mP-RAID, it becomes impossible to grade
existing disks according to usage, with high-demand
data on smaller, faster, but presumably more expensive
disks (e.g. SCSI disks) and low-demand data on larger,
slower, but presumably cheaper disks (e.g. IDE disks).
With multiple independent RAIDs, however, it is easy
to do so.

Using mP-RAID, it is possible for distinct partitions to
reside across different numbers of disks so that all the
disks in the array need not have equal capacity (and
need not be identical). However, this may add block-
mapping complexity and may lose some advantages
that mP-RAID has as described above. In order to
take advantage fully of mP-RAID, all disks must be
identical, so when the disks need to be upgraded, all
disks must be replaced. With multiple independent
RAIDs, however, only subsets of disks need to be
replaced.

THE COMPUTER JOURNAL,

Vol. 40, No. 1, 1997

102 ‘8z |1dVy uo AreiqiT Aseaiun Bun] ceyd euoleN e /610°seuinolploixo: ulwod//:dny woly papeojumoq

http://comjnl.oxfordjournals.org/

MULTI-PARTITION RAID 35

4. TWO MP-RAID CONFIGURATION
STRATEGIES

Given a set of disks, there are several configurations for
mP-RAID characterized by number of partitions, partition
size and G-vector. We refer to the sequence of parity-
group size used in mP-RAID as the G-vector. For example,
the G-vector of mP-RAID'U" %> is (G|, Gy, ..., Gw).
Different configurations may lead to different performance
and storage efficiency. In this section, we describe two
schemes that might be employed in configuring an mP-
RAID.

4.1. Data-independent scheme

With the data-independent scheme, the number of partitions,
the partition size and the G-vector of an mP-RAID are
determined by the system designer only, and are independent
of data popularity. For example, we can simply use a two-
partition RAID, 2P-RAID§5’N) , with equally sized partitions,
and then assign the more popular data to the hot partition
(i.e. the RAID%\, partition) and the less popular data to
the cold partition (i.e. the RAIDY partition). Using such
a scheme, the system designer only needs to make sure
that the multi-partition RAID is capable of accommodating
all the data that will be stored on the array. Thus, for

must ensure that the following inequality is satisfied:

Z[Ci x (1 —1/G;)] > total data size, (D
i=1
where Cy, C,, ..., C,, are partition sizes of m partitions and
Y, C; is equal to the total capacity of the entire disk array.
To satisfy the data-placement policy, we store data in an mP-
RAID with a data-independent configuration based on the
following steps:

1. Files are sorted in descending order of workload and
are distributed across disks of the mP-RAID in a round-
robin fashion.

2. Within each disk, the partition with smallest G, say P;,
is allocated for file placement first. When the available
capacity of partition P; is exhausted, the next partition
is then allocated, so that the partitions with the smallest
G are allocated first. This process is continued until all
the files are located.

4.2. Popularity-based scheme

The popularity-based scheme is based on the assumption
that data popularity is known a priori. Given a set
of files that will be stored on the disk array, the mP-
RAID configuration is determined by clustering these files
according to their workloads so that files with similar
popularity are assigned to the same set. Set clustering can be
accomplished using the following process. Assume that the
files are pre-sorted in descending order of workload, such
that workload(f;) > workload(f;) fori < j. We start
with f;, forming a single clustered set t; and setting the

minimum workload of ty, say min,,, to workload(f,) and
the working set to 7;. Then we check to see whether the next
file f, belongs to t;. If |workload(f,) — min,,| < & then
f> is merged into t; and min,, is modified to workload(f>).
Otherwise, f, forms a new set 7, with min,, being equal
to workload(f,) and the working set being set to 7,. The
@ above is used as a threshold for clustering files among
different sets. In this way, we check to see whether each
file, f;, belongs to the working set or must form a new
set. The process is continued with all the remaining files.
The pseudo-code for our clustering algorithm is given in the
Appendix. Using the popularity-based scheme, we configure
the mP-RAID with the number of partitions being equal to
the number of clustered file sets, and the partition capacity
being proportional to the size of file sets. Let size(t;) denote
the total size of the data in set 7;. We use the following
equation along with Equation (1) to determine partition size.

Ci(1-1/Gy) : C(1=1/Gy):...: C,,(1 =1/Gp)

= size(ty) : size(1p) : ... :size(tyn), (2)

where C; denotes the size of partition i and (G, G,

.., Gp) the G-vector. Note that in Equation (2), the
partition size is determined by the size of the clustered file
set along with the G-vector. For an array of N disks and
m partitions, (N — 1) possible G-vectors may result from
the potential combinations of parity-group sizes (say Gs),
where (N — 1) is the number of candidates for G, ranging
from 2 to N. Among the (N — 1)" different G-vectors,
the one that leads to the highest effective throughput and
storage efficiency is selected. Both effective throughput and
storage efficiency of a disk array are defined in Section 5.
In summary, we select the popularity-based configuration as
follows:

1. Compute the workload of each file and sort files in a
descending order of workload.

2. Cluster files into sets using a clustering algorithm and
determine the number of partitions.

3. Generate CN=! possible G-vectors, representing the
possible assignments of m partitions to N — 1 objects.
For each G-vector, determine the partition size by using
Equation (2) together with Equation (1).

4. Among the C¥~! configurations, select the best one
based on the evaluation model.

To satisfy this data placement policy, we store data in an
mP-RAID based on the following two steps.

1. All the files are sorted in a descending order of
workloads and are distributed across all the disks in a
round-robin fashion.

2. For each disk, the files in the same clustered file set
are located in the same partition. The clustered file sets
with higher workloads are assigned to partitions with
smaller G and those with lower workloads are assigned
to partitions with larger G.

THE COMPUTER JOURNAL,

Vol. 40, No. 1, 1997

102 ‘8z |1dVy uo AreiqiT Aseaiun Bun] ceyd euoleN e /610°seuinolploixo: ulwod//:dny woly papeojumoq

http://comjnl.oxfordjournals.org/

36 W.-J. TSAI AND S.-Y. LEE

TABLE 1. The effective throughput of various RAIDs in degradation mode [k = 1 for G; > 2 (parity-based partition) and k = 0 for G; =2

(replication-based partition)].

RAID types Small read Small write s Large ready Large writey
1 1 G-1 G -1
RAIDS, =1 —— =1
G-1 G-1)xk+1 G-1 G-—-1
m WR m WR m m
P-RAIDG 1+ Cm ! ! WR; = 1 WR; = 1
" N ZG,-—I Z(G,-—1)><k+1 ; a

i=l1

i=1

5. PERFORMANCE DEGRADATION ANALYSIS

The idea behind mP-RAID is to maintain high performance
during a failure state, especially when the system is affected
by a failed disk that has not yet been replaced, i.e. is
in degradation mode. To show how effective this is, an
analytical model similar to that used by Patterson et al. [12]
for a fault-free state is presented here. We first summarize
the notation used.

W;: the workload on partition i in terms of number
of block units per second, which is defined by W; =
Zworkload(ﬁlej), Vfile; € partition;. WR;: the workload
ratio of partition i, which is defined by the ratio of W; to
total workload. C;: the capacity of partition 7, in terms of the
number of block units. CR;: the capacity ratio of partition i,
which is defined by the ratio of C; to the total capacity.

5.1.

5.1.1. Effective throughput

Let the term logical request refer to a user request after it
has been mapped to the disk array. A user request that
involves all data in a stripe (i.e. one that involves G logical
requests) is called a large request. A user request that
requires data on only one disk (i.e. one that consists of
one logical request) is called a small request. Let the term
physical request denote physical disk accesses invoked by
logical requests. Due to redundancy in the disk array, a
logical request often involves multiple physical requests. For
example, a small write that consists of one logical write,
will invoke two physical reads and two physical writes.
Effective throughput, a measure of RAID performance, is
defined by the ratio of logical requests to physical requests.
In this paper, we focus on the effective throughput in
degradation mode. Let a (large/small) request, refer to
a user request that involves data located on the failed
disk. In degradation mode, a (large/small) request; often
involves several physical requests on surviving disks due to
reconstruction of defective data. Table 1 shows the effective
throughputs for RA]Dg in degradation mode. Since a small
write; on a RAIDS with G = 2 only needs to access the
non-primary copy, no reconstruction is required, so for that
case the parameter k in Table 1 is equal to 0. The effective
throughput for an mP-RAID in degradation mode can also
be easily calculated. For example, a 2P-RAID§3’N) with p per
cent of its workload falling in the RAID?, partition, and g per
cent in the RAID% partition (where p + g = 1), will have an

1

effective throughput for small read y equal to p x1+g x 5,

The analytical model

and one for small writer equal to p x 14¢ x % Table 1 also

shows the effective throughput of an mP-RAIDE\,qucz """),
where WR; is the workload ratio for partition i.

Note that the above equations for ‘large’ reads and writes
are only for the case when a request of size equal to a
stripe also happens to be aligned with a stripe boundary.
In fact, only a small fraction of stripe-size requests exactly
fit this definition of ‘large request’. For RAID,?,, let us
consider a large read that accesses G — 1 blocks across two
stripes: e blocks (¢ < G — 1) in one stripe that contains
a failed disk and the other G — 1 — e blocks in the other
stripe. The effective throughput for this request is given
by %(Ge_l + 1), which, being less than 1, is less than the
effective throughput of aligned large reads given in Table 1.
That is, large reads that are not perfectly aligned will have
lower effective throughputs. Similar results also hold for
mP-RAID'" %>+~ and for large writes.

5.1.2. Storage efficiency

The storage efficiency, a measure of redundancy capacity
cost, is defined as the effective (user) data capacity divided
by the total disk capacity. For a disk array, RAIDS, the
storage efficiency equals 1 — 1/G because a fraction 1/G
of the capacity is used for redundancy. For an mP-RAID,

Y (CR; x (1 = 1/G;)), where CR; is the capacity ratio

for partition i. For example, a 2P-RAID§3’N), for which p

per cent of capacity is used for the RAID?V partition and g

per cent for the RAIDY partition (where p + g = 1), has a
N—1

storage efficiency equal to p x % +g x 5.

5.2. Analytical evaluation

To simplify evaluation of the analytical model, we assumed
that data popularity was known a priori and remained
unchanged over some period, although we have described
how to eliminate such a constraint by migrating data
between partitions. Five different levels of demand
skew, 90-10, 80-20, 70-30, 60—40 and 50-50 (uniform
distribution) were used in our model, where ‘X-Y’ indicates
X % of the disk accesses are to Y % of the data in the storage
subsystem.

Muntz and Lui [15] have defined the ratio (G — 1) /(N —
1) as a, where N is the number of disks and G is the
parity-group size for a disk array. This parameter o,
which is called the declustering ratio, indicates the fraction
of each surviving disk that must be accessed during the

THE COMPUTER JOURNAL,

Vol. 40, No. 1, 1997

102 ‘8z |1dVy uo AreiqiT Aseaiun Bun] ceyd euoleN e /610°seuinolploixo: ulwod//:dny woly papeojumoq

http://comjnl.oxfordjournals.org/

MULTI-PARTITION RAID 37

1.0p N o e o R T e | SRS o110
] -
= 0.8} b | b T 1 Tt] T 0.8
£ B 5 IR
2 L 5
2 06} AT | b | FA 1 L L] b o | - 0.6 3 Cw
3 g o
2 04l B8 S OO I O SO I OO OO O 04 % —
= = o—=a S
[} Q
b=l 7
S o0a2f : :] ‘. -' -------------------------- 0.2
0 —I —. —. —. —.— 0 Declustering
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ratio (a)
(a) Conventional RAID (single partition)
[JR [W | r I v o—aS [JR [W | r I o0—aS
LO -~ -1 - o REREE SRR 1.0 LOp=-F7---" T - . 1.0
= 08F-l | b 1] N-- 08 5 08f | - - - --0.8
2 . : 5 E g
< = < 5
2 £ 2 5
2 0.6f-| [f---- -- -- -- 1063 2 060 | o - 06 2
= T £ ©
o o o gﬁ
=z 04¢- - - - -- -- --04 = > 04r-- -- -- =04 =
@ 02t- - -- -- -- -102 7 3@ 02f- - -- -- --0.2
Skew 0 Skew
50-50 60-40 70-30 80-20 90-10. Level 50-50 60-40 70-30 80-20 90-10. Level

(b) mP-RAID: Data independent scheme

(c) mP-RAID: Popularity-based scheme

FIGURE 5. Comparison between various RAID organizations.

reconstruction of a failed disk. In the following, the analysis
of storage efficiency and effective throughput of RAIDs in
degradation mode was parametrized by «. For the mP-
RAID, we performed analysis on both data-independent and
popularity-based configurations. In the data-independent
configuration, we used a 2P—RAID§21’“) with equal partition
sizes as our platform. Since the capacity ratio of partition
RAID?, to RAID}| is around 1:2 (due to 1—1/2:1-1/11~1:2),
we assigned one-third of the data (with high workload) to
partition RAID?, and the other two-thirds of the data to
partition RAID]| for each of the five demand-skew levels.
In the popularity-based configuration, we clustered the data
according to the demand-skew levels. For example, on the
90-10 level, 10% of the data, which comprises 90% of the
workload, was clustered in one set and 90% of the data,
which comprises 10% of the workload, was clustered in the
other set. Again, G = 2 for the hot partition and G = 11 for
the cold partition.

Figure 5 shows a comparison between various RAID
organizations in terms of effective throughput and storage
efficiency in degradation mode, where labels R, W, r, w
and S denote large ready, large write s, small ready, small
writey and storage efficiency, respectively. Figure 5a
shows the effective throughput and the storage efficiency
of the conventional RAID as a function of «, while
Figure 5b and c show those of the mP-RAID for the two
distinct configurations, data-independent and popularity-
based, parametrized by five demand-skew levels. We used

11 disks for the analysis so that « = 0.1 for a replication-
based RAID organization (where G = 2) and ¢ = 1 for
RAID Level 5 (where G = 11).

Figure 5a shows that while the effective throughputs of
r and w improved as « decreased, the storage efficiency S
degraded significantly. In the case of @ = 0.1, the storage
efficiency S is only 0.5, meaning that half of the total
storage capacity was used for redundancy, and the results
are essentially independent of demand skew. However,
in Figure 5b and c, the effective throughputs of r and
w improved as demand-skew level increased, without
degrading the storage efficiency S. For the data-independent
mP-RAID shown in Figure 5b, the storage efficiency S
was fixed at 0.7 and the effective throughputs of r and w
varied from 0.4 to 0.93 for different demand-skew levels.
In contrast, for the conventional RAID shown in Figure 5a
the effective throughputs of r and w were only 0.5 and 0.37
for storage efficiency S = 0.7 (i.e. when @ = 0.2). The
popularity-based mP-RAID shown in Figure 5c also had
a significant performance advantage over the conventional
RAID because storage efficiency S and effective throughputs
r and w approximated 0.9 at skew-level 90-10. The
results in Figure 5 show that mP-RAID achieved a
better performance(throughput)/cost(storage) ratio than a
conventional RAID.

THE COMPUTER JOURNAL,

Vol. 40, No. 1, 1997

102 ‘8z |1dVy uo AreiqiT Aseaiun Bun] ceyd euoleN e /610°seuinolploixo: ulwod//:dny woly papeojumoq

http://comjnl.oxfordjournals.org/

38 W.-J. TSAI AND S.-Y. LEE

TABLE 2. Simulation parameters. G = parity-group size, CR = the ratio of partition capacity to total capacity.

(a) Disk parameters

Cylinders per disk
Tracks per cylinder
Sectors per track
Bytes per sector
Revolution time (ms)
Seek time (ms)

2667
21
99

512
11.1

11 (avg), 1.7 (min), 22.5 (max)

(b) RAID parameters

Number of disks
Stripe unit
Parity layout
Parity overhead
Parity updating

10

One track (49.5 kbyte)
Block design based
17%
Read—modify—write

(c) Partition parameters

RAIDs Partition 1 Partition 2 Partition 3 Parity overhead(%)

SP G=6,CR=10 1/6 = 16.67

2P G=2,CR=0.07 G=7,CR=0093 1/2x0.07+1/7 x 0.93 = 16.78
2POP G=7,CR=093 G=2,CR=0.07 1/7x0.93+1/2 x0.07 =16.78

3P G=2,CR=002 G=3,CR=0.10 G=7,CR=0.88 1/2x0.02+1/3 x0.104+1/7 x 0.88 = 16.9
3POP G=3,CR=0.10 G=2,CR=0.02 G=7,CR=0.88 1/3 x0.10+1/2 x0.02+4+1/7 x 0.88 = 16.9

6. SIMULATION

This section presents a simulation-based comparison of five
different RAIDs: a single-partition RAID (SP), a two-
partition RAID (2P), a two-partition RAID with organ-pipe
(2POP), a three-partition RAID (3P) and a three-partition
RAID with organ-pipe (3POP). Throughput (Mbyte/s) is
used as our main performance metric.

6.1. The simulation model

6.1.1. The workload model
In order to model workloads according to demand skew, we
used a Zipf-like probability distribution function, Z (b;) [23],
as follows:

Z(by) = ¢/i",

where

B
c= 1/2(1/;’“*9)) 1<i<B,
i=1

with B being the number of blocks accessed, and 6 being de-
rived from 6 = log(fraction of data accesses)/ log(fraction
of data blocks). For example, the 6 value for the ‘80-
20’ degree of demand skew (in which 80% of the data ac-
cesses were to 20% of the blocks in the storage system)
was 0 = log0.8/1og0.2 = 0.1386. As 6 varies from 1
to 0, the probabilities vary from a uniform distribution to the
pure Zipf distribution. Our simulations used five 6 values,
0.0458, 0.1386, 0.2962, 0.5575 and 1.0, representing the
demand-skew levels, 90-10, 80-20, 70-30, 60—40 and 50—
50 (uniform distribution). In addition, the workloads in

our simulations were also characterized according to request
size, request type (read/write) and read/write ratio.

6.1.2. The disk model

Our simulations were based on the use of Seagate Elite3
ST-43400N 3.5” SCSI disk drives. The relevant parameters
are summarized in Table 2a. We modelled the seek profile
as seekTime(x) = a(x — 1)'/? + b(x — 1) + ¢, where x
was the seek distance in cylinders, and a, b and ¢ were
constants chosen to satisfy the single-cylinder seek time,
max-stroke seek time and average seek time. For the disk
we modelled, a = 231, b = 0.003 and ¢ = 1.7. The
square root term in the above equation models the constant
acceleration/deceleration period of the disk head and the
linear term models the period after maximum disk head
velocity is reached. Chen and Lee [24] have shown that such
a model closely approximates the seek profile of an actual
disk.

6.1.3. The RAID model

The block design, proposed by Holland and Gibson [8], was
used for locating parity stripes on SP as well as on all the
partitions in 2P, 2POP, 3P and 3POP, because it meets several
criteria for a good parity layout as we have described. The
only exception was that we implemented the partitions with
G = 2 as replication-based partitions. Table 2b summarizes
the relevant parameters of the disk arrays we modelled in this
study. Moreover, for fair comparison, all the RAIDs were
simulated with equal amounts of parity overhead. In this
study, the parity overhead was set at 17% of total storage;

THE COMPUTER JOURNAL,

Vol. 40, No. 1, 1997

102 ‘8z |1dVy uo AreiqiT Aseaiun Bun] ceyd euoleN e /610°seuinolploixo: ulwod//:dny woly papeojumoq

http://comjnl.oxfordjournals.org/

MULTI-PARTITION RAID 39

L e

R e - - - -- H | -
2 T Jsp
= ol -)
E [12pPOP
2 o8] i | _[sp
oh [3POP
g
£ 241 - R

20 Demand

50-50 60-40 70-30 80-20 90-10. Skew
(b) 10 blocks per read

FIGURE 6. Read performance (fault-free state).

35 oo e
g 30r e - [sp
z 2P
m
s 2 - o © [2pOP
g 3P
g 207 - i " [3POP
g
£ 15f - .

Demand

50-50 60-40 70-30 80-20 90-10. Skew
(a) 1 block per read
0

25 THY - -
8 |
= =il Csp
=) N)) g
E} [2pOP
§o C3p
E -] . - .- [3POP
Sl

Demand

50-50 6040 70-30 80-20 90-10. Skew

(a) 1 block per read

QOp---- s
] S e |
g o
B 3l o _ase
z CJ2p
5 [2pPOP
£ 28t -- - -
£ 13p
2 [3POP
£ 24} -- - -
20 Demand
50-50 60-40 70-30 80-20 90-10. Skew

(b) 10 blocks per read

FIGURE 7. Read performance (degradation mode).

the parameters for all the RAIDs are given in Table 2c.

6.1.4. The RAID simulator

The raidSim software developed at UC Berkeley is an event-
driven simulator for modelling disk arrays. It consists of
a workload module for generating synthetic I/O requests, an
array module for implementing a variety of RAID levels, and
a disk module for modelling disk behaviour. In this study,
we extended the workload module and the array module
in raidSim with no modification to the disk module. The
workload module was modified to accommodate workloads
with demand skews based on the Zipf-like distribution
function, and the array module was modified to support
block-design-based parity layouts and handling partition
information.

6.2. Simulation results and discussion

For each workload, both the fault-free state and degradation
mode were simulated. Figures 6 and 7 show the throughputs

of the five RAIDs for the read workload (100% reads),
Figures 8 and 9 for the write workload (100% writes) and
Figure 10 for a mixed workload (50% reads and 50% writes).

6.2.1. Read workloads

We observed that mP-RAID yields minimal difference in
read performance relative to SP in the fault-free state
because all the disk arrays achieved almost the same
throughputs, as shown in Figure 6. However, Figure 7
shows that, in the degradation mode, the four mP-RAIDs
(2P, 2POP, 3P and 3POP) had significant performance
advantages over SP for small reads at high demand-skew
levels because the four mP-RAIDs incorporated partitions
with smaller Gs for placement of frequently accessed data.
For these partitions, reads from the failed disk imposed
lower overheads on surviving disks and hence led to higher
throughputs. ~ Moreover, although Table 1 implies no
performance gains for degraded mP-RAIDs for large reads,
Figure 7b shows a small improvement in performance for
mP-RAIDs relative to SP at high skew levels. The reason

THE COMPUTER JOURNAL,

Vol. 40, No. 1, 1997

$T0Z ‘8z |udy uo AriqiT Aisieaiun Buny ceiyD euoieN e /61o0'sfeulnolpiofxo juloo//:dny woiy papeojumod

http://comjnl.oxfordjournals.org/

40 W.-J. TSAI AND S.-Y. LEE

| e -

12f------mmmmemmm e —}----- --
g 10p- [T A - c=se
2 Jdrmm i]] Caee
2 [C12pOP
‘é 6 - - - - - -- [J3p
£ [3POP
s 4t -- -4 - - --
=
=
E o} - - - - -

Demand

50-50 6040 70-30 80-20 90-10. Skew
(a) 1 block per write

R L L P L L R
18 """"""""""" Tttt ; [----- 1"
S st ke T HE- TR c=ose
= _ B]]] 3
e 12 [2POP
2 9 . - - . - 3P
o] [3POP
j=1 6_ L _ _ _ _ _
£
0 Demand

50-50 60-40 70-30 80-20 90-10. Skew
(b) 10 blocks per write

FIGURE 8. Write performance (fault-free state).

Q
Q
= ISP
=) 2P
E [2pPOP
] 3P
2 [3POP
H

Demand

50-50 60-40 70-30 80-20 90-10. Skew

(a) 1 block per write

._.
)
]
]
I
|
|
]

—_
9]
T
T
'

1
!

'

'

—
S

T

T

'

1

s

'

'

Throughput (MB/sec)
O

075050 6040 70-30 8020 90-I0. Skew
(b) 10 blocks per write

FIGURE 9. Write performance (degradation mode).

is that large reads will be broken into several smaller reads
when the requested blocks reside across multiple stripes.
These results demonstrate the superiority of mP-RAIDs for
read workloads in the degradation mode.

6.2.2. Write workloads

It is observed that the write throughputs shown in Figure 8
were uniformly lower than the read throughputs shown in
Figure 6 because writes entail extra overheads to maintain
redundancy. A fault-free small write to parity-based
partitions must execute four, instead of one, separate disk
accesses for read—modify—write parity updating. This so-
called small write problem often degrades the performance
of RAIDs dramatically. However, Figure 8a shows that
mP-RAIDs (2P, 2POP, 3P and 3POP) obtained better fault-
free small write throughputs at high demand-skew levels as
compared with SP because there was a replication-based
partition on each of the four mP-RAIDs. For these partitions,
a small write only needs to execute two, rather than four,
disk accesses for redundancy updating, and hence, the better

performance. This also explains why 2P-RAIDs (i.e. 2P
and 2POP) performed better than 3P-RAIDs (i.e. 3P and
3POP) over most parameter ranges, since the replication-
based partitions in 2P-RAIDs were much larger than those
in 3P-RAIDs, as shown in Table 2c. Figure 9 shows
that the four mP-RAIDs also had better degradation-mode
performance than SP for reasons similar to those given
for read workloads. Note that although several techniques
have been proposed for solving the small-write problem in
the fault-free state [25, 6], the results in Figure 9 indicate
that mP-RAID not only relieves the small-write problem
in the fault-free state, but also significantly improves write
performance in degradation mode.

6.2.3. Mixed workloads

Figure 10 shows the throughputs of disk arrays for 50%
reads and 50% writes. The request sizes were randomly
set from 1 to 10 blocks. Large sequential requests were
not used because the sequentiality is much less meaningful
when more than one request is generated to the same array

THE COMPUTER JOURNAL,

Vol. 40, No. 1, 1997

$T0Z ‘8z |udy uo AriqiT Aisieaiun Buny ceiyD euoieN e /61o0'sfeulnolpiofxo juloo//:dny woiy papeojumod

http://comjnl.oxfordjournals.org/

MULTI-PARTITION RAID 41

T4 mmmm e R
2 —1----- -
8 10}----ccoooee ——TTHA B cose
2 T - |
2 o) | - Cep
=] 2POP
2 6} - . - [sp
2 [3POP
g 4 - - -
=
F
2t - i -
0 Demand

50-50 60—40 70-30 80-20 90-10. Skew
(a) 1 block per write

Throughput (MB/sec)

21-------------------------------_ -------- m----
18 """"""" ;"""'__ """ —]] -
15} - R - ISP
12t)) i 2P
[12POP
of -] - 33
[3POP
6. - i -
3. - 4
Demand
50-50 6040 70-30 80-20 90-10. Skew

(a) 10 block per write

FIGURE 10. Performance for 50% reads and 50% writes.

(the RAIDs will thrash between these sequential request
streams). Figure 10 indicates that, no matter whether
in fault-free state or in degradation mode, mP-RAIDs
performed better than SP over most ranges of demand-skew
levels.

6.2.4. Remarks

The simulation results show that mP-RAID exhibits many
benefits, especially for applications with demand skew.
Fortunately, several real systems are characterized by highly
skewed data-access patterns. For movie systems, there
are empirical results showing that accesses to movies are
often non-uniform [26] and can be approximated by a
Zipf distribution with parameter 0.271, i.e. between skew
level 70-30 and 80-20 [27]. For text-based database
systems with indexed files based on terms or keywords,
the distribution of term accesses has been shown to
approximately follow a Zipf law with a ‘80-20’ rule [28].
According to the simulation results, mP-RAIDs performed
better than conventional RAIDs for most cases with skew
level 80-20. This implies that mP-RAID does have an
advantage for some real-world applications.

Moreover, since all the RAIDs were simulated with equal
amounts of redundancy as we have shown in Table 2c,
we can conclude that not only does mP-RAID achieve a
better performance (throughput)/cost (storage) ratio than
conventional RAIDs, but also that the performance gains
provided by mP-RAID do not come at the cost of consuming
more storage. We also found that 2POP and 3POP obtained
better performance than 2P and 3P over most parameter
ranges. This means that, by using organ-pipe assignment
for locating partitions, the performance of mP-RAID can be
further improved.

7. CONCLUSIONS

In this paper, we proposed a new variety of disk arrays
mP-RAID to improve the performance in the presence
of disk failures. In mP-RAID, we divide a disk array

into several partitions with different block organizations
(and thus different performance) and then assign data to
appropriate partitions based on the data popularity. Two
schemes were proposed to configure the mP-RAID, which
are the data-independent scheme and the popularity-based
scheme. In order to demonstrate the superiority of mP-
RAID, both analytical and simulation-based experiments
have been conducted. The results show that mP-
RAID is more tolerant of disk failure than conventional
RAIDs because performance degradation during failure was
reduced. Moreover, gains can also be achieved in the
fault-free state for write workloads. In conclusion, we
believe that mP-RAID does show promise for improving the
performance of disk arrays in failure states without incurring
extra storage cost.

The work in this paper is based upon the assumption
that data popularity changes slowly over time and is known
in advance, and thus appropriate data migrations between
partitions can be performed periodically. However, for
applications where data popularity and changes over time
are not predictable, a working set model would probably
be more suitable so that data migration could be performed
dynamically in the background as the access patterns
change. More work needs to be done in this area and is the
subject of our future research.

ACKNOWLEDGEMENTS

We thank the anonymous referees for their valuable
comments and suggestions. This work was partially
sponsored by the National Science Council, Taiwan, ROC
under the Contract No. NSC85-2622-E009-006R.

REFERENCES

[1] Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H. and
Patterson, D. A. (1994) RAID: high-performance, reliable
secondary storage. ACM Comput. Surv., 26, 145-185.

[2] Ganger, G. R., Worthington, B. L., Hou, R. Y. and Patt,
Y. N. (1994) Disk arrays: high-performance, high-reliability

THE COMPUTER JOURNAL,

Vol. 40, No. 1, 1997

¥T0z ‘gz |Ludy uo Arigi Alsieniun Buny celyD euoieN e /Blo'seulnolployxo’ julwooy/:dny woly papeojumoq

http://comjnl.oxfordjournals.org/

42 W.-J. TSAI AND S.-Y. LEE

storage subsystem. IEEE Comput., 27, 30-37.

[3] Chen, P. M., Gibson, G., Katz, R. and Patterson, D. A. (1990)
An evaluation of redundant arrays of disks using an Amdahl
5890. In Proc. of the 1990 ACM SIGMETRICS Conference on
Measurement and Modelling of Computer Systems, Colorado,
pp- 74-85.

[4] Chen, P. M. and Patterson, D. A. (1990) Maximizing
performance in a striped disk array. In Int. Symp. on Computer
Architecture, pp. 322-331. IEEE, New York.

[5] Rosenblum, M. and Ousterhout, J. K. (1991) The design and
implementation of a log-structured file system. In Proc. of
the 13th ACM Symp. on Operating Syst. Principles, pp. 1-15.
ACM, New York

[6] Menon, J. and Kasson, J. (1992) Methods for improved
update performance of disk arrays. In Proc. of the Hawaii Int.
Conference on System Sciences, pp. 74-83.

[7] Stodolsky, D. and Gibson, G. A. (1993) Parity logging:
overcoming the small write problem in redundant disk
arrays. In Proc. of the 1993 Int. Symposium on Computer
Architecture, San Diego, CA.

[8] Holland, M. and Gibson, G. (1992) Parity declustering for
continuous operation in redundant disk arrays. In Proc.
of the 5th Int. Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
V), pp- 23-35. New York, IEEE.

[9] Menon, J. and Mattson, R. (1992) Comparison of sparing
alternatives for disk arrays. In Proc. of Int. Symposium on
Computer Architecture, Gold Coast, Australia. IEEE.

[10] Chandy, J. and Reddy, A. L. N. (1993) Failure evaluation
of disk array organization. In Proc. of the Int. Conf. on
Distributed Computing Systems, pp. 319-326. Los Alamitos,
CA, IEEE Computer Society.

[11] Holland, M., Gibson, G. and Siewiorek, D. (1993) Fast, on-
line failure recovery in redundant disk arrays. In Proc. of the
23th Int. Symposium on Fault Tolerant Computing, pp. 422—
431. IEEE, Washington, DC.

[12] Patterson, D. A., Gibson, G. and Katz, R. H. (1988) A case for
redundant arrays of inexpensive disks (RAID). In Proc. of the
Int. Conf. on Management of Data (SIGMOD), pp. 109-116.
ACM, New York.

[13] Copeland, G. and Keller, T. (1989) A comparison of high-
availability media recovery techniques. In Proc. of the ACM
SIGMOD Conference, pp. 98—-109. ACM, New York.

[14] Hsiao, H. 1. and DeWitt, D. (1990) Chained declustering:
a new availability strategy for multiprocessor database
machines. In Proc. of the 6th Int. Data Engng. Conf., pp. 456—
465. IEEE, New York.

[15] Muntz, R. R. and Lui, C. S. (1990) Performance analysis of
disk arrays under failure. In Proc. of the 16th Conference on
Very Large Databases, pp. 162-173.

[16] Wilkes, J., Golding, R., Staelin, C. and Sullivan, T. (1996)
The HP AutoRAID hierarchical storage system, ACM Trans.
Comput. Syst., 14, 108-136.

[17] Ng, S. and Mattson, R. (1992) Maintaining good performance
in disk arrays during failure via uniform parity group
distribution. In Proc. of the Ist Int. Symposium on High
Performance Distributed Computing, pp. 260-269. IEEE,
New York.

[18] Merchant, A. and Yu, P. S. (1992) Design and modelling of

clustered RAID. In Proc. of the 22th Int. Symposium on Fault-
Tolerant Computing, pp. 140-149. IEEE, Washington.

[19] Floyd, R. A. and Schlatter, E. C. (1989) Directory reference
patterns in hierarchical file systems. IEEE Trans. Knowl. Data
Eng., 1,238-247.

[20] Deshpande, M. B. and Bunt, R. B. (1988) Dynamic file
management techniques. In Proc. of the 7th IEEE Phoenix
Conf. on Computers and Commun., pp. 86-92. IEEE, New
York.

[21] Grossman, D. D. and Silverman, H. F. (1973) Placement of
records on secondary storage device to minimize access time.
J. ACM, 20, 429-438.

[22] Yue, P. C. and Wong, C. K. (1973) On the optimality of
probability of ranking scheme in storage applications, J.
ACM, 20, 624-633.

[23] Knuth, D. E. (1973) The Art of Computer Programming, 3rd
edn. Addison-Wesley, Reading, MA.

[24] Chen, P. M. and Lee, E. K. (1995) Striping in a RAID level 5
disk array. In Proc. of the Int. Conf. on Measurement and
Modelling of Comp. Sys., pp. 136-145. ACM, New York.

[25] Carson, S. and Setia, S. (1992) Optimal write batch size
in log-structured file systems. In USENIX Workshop on File
Systems, pp. 79-91. USENIX Assoc., Berkeley, CA.

[26] Video Store Magazine (1992), December.

[27] Dan, A., Sitaram, D. and Shahabuddin, P. (1994) Scheduling
policities for an on-demand video server with batching. In
Proc. of the ACM Multimedia 94, San Francisco, CA, pp.
15-23.

[28] Salton, G. and McGill, M. (1983) Introduction to Modern
Information Retrieval. McGraw-Hill, New York.

APPENDIX

The clustering algorithm

Input: A set of files (fi, f2, ..
order of workloads.

., fn) sorted in a descending

Qutput: A sequence of clustered file sets (t1, 72, . . ., Tn)-
Begin
k:=1,7t:={f1} /" kis the index of the working

set (the last set clustered) */
ming, 1= workload(f1)
fori:=2ton{
if (|min.. — workload(f;) < ®|) {
/* Current file f; is merged into the working
set . */
=1 U {fi}
ming;, = workload(f;)
} else {
/* A new set is created only containing the
current file f; */
k:=k+1
T = {fi}
min;, = workload(f;)
}
} /* end of for loop */
End

THE COMPUTER JOURNAL,

Vol. 40, No. 1, 1997

102 ‘8z |1dVy uo AreiqiT Aseaiun Bun] ceyd euoleN e /610°seuinolploixo: ulwod//:dny woly papeojumoq

http://comjnl.oxfordjournals.org/

