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Abstract: Maximizing transport diversity is critical
to the equitable achievement of stakeholder needs. Re-
source allocation policies help planners decide when and
how to invest transportation infrastructure and services.
However, policies for improving transport diversity are
difficult to design, implement, and quantify because of
the uncertainty, feedback interaction, and complexity of
system relationships. This study proposes a hybrid model
integrating system dynamics, cognitive maps, and a sen-
sitivity model to tackle the problems. The model applica-
tion is illustrated through an empirical study to enhance
the managerial implications in the Taipei metropolitan
area.

1 INTRODUCTION

Transportation systems consist of infrastructure, modes,
and stakeholders. Different transport stakeholders with
diverse demands have different needs for transporta-
tion infrastructure and services, resulting in a diversity
of needs. In fact, in transportation planning, transport
policy makers must simultaneously consider the trade-
off between the differences in the supply of transport
infrastructure or modes and the various needs of stake-
holders. Feng and Hsieh (2009) suggested the concept
of transport diversity, defined as different levels of sat-
isfaction within stakeholder needs and measured using
the variations in achievement among needs, to assess
the urban transportation performance. The two ap-
proaches to improve transport diversity are goal setting
(demand side) and resource management (supply side).
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If demand-side parameters are given, the critical issue
for decision makers is how to allocate finite resources to
realize greater transport diversity, thus denoting more
equitable stakeholder need achievement.

Resource allocation is the main tool used to influ-
ence transportation performance, while the quantity
and capacity of resources are finite and either expensive
or difficult to increase. Applying inappropriate invest-
ments to given needs causes bias, which reduces equity
and wastes resources that could otherwise be utilized
more efficiently (Senouci and Adeli, 2001; Shohet and
Perelstein, 2004). The efficient and effective resources
allocation offers a realistic management opportunity for
improving transportation performance. Several sources
proposed optimization models to allocate the asset of
the magnitude and scheduling of maintenance and re-
habilitation (Adeli and Karim, 1997; Karim and Adeli,
1999; Kuhn and Madanat, 2006; Dridi et al., 2008) as
well as to illustrate the allocation of social infrastruc-
ture (Bigotte and Antunes, 2007) and facilities (Castillo
et al., 2008; Fan and Machemehl, 2008) via exact and
heuristic methods. Moreover, Chu and Durango-Cohen
(2008) introduced a time-series model for support-
ing the resource allocation to preserve infrastructure
facilities.

Resource allocation policies impact system perfor-
mance. However, few studies have explored resource
allocation policies because of the difficulty of design-
ing, implementing, and quantifying system relation-
ships, owing to the associated uncertainty, feedback in-
teraction, and complexity (Kang and Jae, 2005). The
policies of resource allocation are complicated by itera-
tion and by delays in implementing allocation decisions
(Udwadia et al., 2003). Iteration creates a closed work-
flow in which interactive or interdependent relation-
ships between parameters can be traced and checked for
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optional change requirement. Accordingly, this study
proposes a systematic model to simulate the effects of
resource allocation policies on transport diversity. The
decision support model for resource allocation policies
can help planners decide when and how to invest trans-
portation infrastructure and services. The definition of
transport diversity is illustrated in the next section, fol-
lowed by the research approaches. The construction of
the decision support model is then discussed in Section
4, followed by the application and results.

2 TRANSPORT DIVERSITY

Transport diversity refers to the satisfied level, which is
measured as the gap between expected goal and present
values, of stakeholder needs in the form of the entropy
to tackle the issue of how to equitably satisfy diverse
stakeholder needs. When the stakeholders and their
needs are determined, minimizing the need gaps, the
remainder of the needs achievement, between the ex-
pected goals and the present values (as shown in Equa-
tion (1)) is a key objective.

mi = OMax
i − Vi

OMax
i − OMin

i

(1)

H = −
∑

i

ni∑

i

ni

× ln
ni∑

i

ni

(2)

where mi denotes the normalized gap of need i, OMax
i

and OMin
i represent the expected goal and minimum

threshold of need i, respectively, Vi is the present value
of need i, and H is the value of diversity. The normalized
value prevents need gaps resulting from the differences
in unit scale. Meanwhile, ni denotes the positive remain-
der of the gap of needs, namely, the achievement. More-
over, transport diversity deals with the equal satisfac-
tion of stakeholder needs, the other critical objective
of transportation planning, in the form of the entropy
presented in Equation (2). Greater diversity indicates
that as the distribution between compartments becomes
more equitable, the gradients between compartments
reduce and larger numbers of compartments come to
be involved in the system.

3 RESEARCH APPROACH

Resource allocation for systems in which diverse vari-
ables are linked by rich interactions offers various
macro benefits (Simon, 1996). The interactions among
system elements are crucial for understanding and man-

Fig. 1. Torn system approaches.

aging the behavior and performance of transport sys-
tems. However, effectively explaining and controlling
system evolution over time is difficult (Lee et al., 2007).
To overcome the weakness of traditional techniques,
including the inability of traditional tools to explain
compounding effects as well as the inability to han-
dle uncertainty, feedback loops, and iterative processes
(Nguyen and Ogunlana, 2005), system simulation ap-
proaches have been introduced to model complex and
uncertain behavior and performance of systems (Ulker
et al., 2008). Simulated outputs are inadequate for op-
timizing policy decisions but useful for discussing allo-
cation policies and performances (Wang et al., 2008).
System dynamics, one of the primary established tools
for system analysis, can address the rationality in sys-
tem management (Lane, 2000). Quantitative methods
are adopted in system dynamics; for example, the travel
speed shown in Figure 1a is calculated precisely as trip
distance divided by travel time.

However, the precise relationships between factors
might be unavailable, owing to the complexity of sys-
tems (Stylios and Groumpos, 2000). System dynamics
emphasize process, data, and exact cause–effect rela-
tionships, whereas cognitive maps imply that decision
makers make sense of reality and decide what they
should do to forecast how the world would be more
preferable in the future (Eden and Ackermann, 2004).
For instance, the impacts of driver behavior and travel
speed on safety, shown in Figure 1b, are identified via
the qualitative cognition of experienced experts. More-
over, Kwahk and Kim (1999) identified the features of
cognitive maps as understanding causal relationships,
facilitating system thinking, and promoting the iden-
tification of opportunities and threats. A major diffi-
culty of cognitive maps lies in determining relationship
intensity with a qualitative feature reflecting the cog-
nitive condition of individuals, something that cannot



Resource allocation policies for transport diversity 527

be directly measured. Some researchers indicated re-
lationships using weighted connections; that is, simple
additive weighting and analytic hierarchy process
(Georgopoulos et al., 2003; Kwahk and Kim, 1999).
Carbonara and Scozzi (2006) suggested that a collective
map representing the consensus should be created by
analyzing the maps of participants in a decision-making
group.

The most severe challenge of the cognitive maps
refers to the algorithm of multiplying an input vector
with an adjacency matrix. This implies that the rela-
tionships between all factors are linear and addible,
while the impact intensions are constant. The sensitivity
model is thus employed, which includes system think-
ing, fuzziness, and simulation of semiquantitative data.
The sensitivity model focuses on pattern recognition
and feedback mechanism rather than on mono-causal
relationship and enabling analysis of complex systems
possible via fuzzy logic (Adeli and Karim, 2000; Karim
and Adeli, 2002a; Adeli and Jiang, 2003), which pro-
vides a systematic method in which systems can be un-
derstood without detailed precision but accurate ordinal
parameters (Chan and Huang, 2004). The relationship
between variables is identified as the adjustment fac-
tors. For example, the variation in trip patterns over
time (Figure 1c) is influenced by the levels of cost,
accessibility, safety, and speed via a semiquantitative
connection. Consequently, to obtain different kinds of
relationships that fit a real-world situation, a hybrid
model integrating system dynamics, cognitive maps, and
a sensitivity model is described in the next section.

Fig. 2. Simplified interaction in the urban transportation system.

4 DECISION SUPPORT MODEL

A decision support model is developed to help decision
makers understand system behavior and make invest-
ment decisions in relation to urban transportation sys-
tems. The decision support model is suitable for any
spatial scale that is considered a holistic system of trans-
portation planning regardless of individual stakeholder
needs. The Taipei metropolitan area provides the em-
pirical study to discuss the managerial implications of
the model. Owing to the dynamic interactions between
the various elements, systems seem to be misinterpreted
by excessive insistence on a specific sector without con-
sideration of the interrelationships. Therefore, the sim-
plified interactions in the urban transportation system
are represented in Figure 2.

The model comprising various items and equations is
divided into four subsystems, namely, mass rapid tran-
sit (MRT), bus, passenger car, and motorcycle. Shared
parameters, such as congestion, safety, and so on, inter-
relates these subsystems. Feedback loops are then built
with all of the variables and connections. Furthermore,
the subsystems of pedestrians and bicycles as well as
parking and the land-use patterns are assumed as the
external factors.

The MRT subsystem (Figure 3) describes both the
supply of infrastructure and the needs of MRT users.
The crowd phenomenon and subsidy strategy involve
two balancing feedback loops, whereas several grow-
ing feedback loops are involved in stakeholder needs.
The subsystem is capable of self-adjustment because of
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Fig. 3. Feedback structures in MRT subsystems.
→: a causal relationship, with + (−) signs indicating a

positive (negative) effect; signs on the arrows represent the
delay effect; : variables reflecting stakeholder needs; :

policy variables.

the negative feedback loops. The negative feedbacks
also make the subsystem independent from quantitative
growth. The common management instruments for at-
tracting people from other modes, such as infrastructure
investment, pricing, and subsidy, are taken into account
in the subsystem.

The feedback structures of other subsystems, shown
in Figure 4, resemble the MRT subsystem described
above. These subsystems consider the policies includ-
ing infrastructure building, road space allocation, pric-
ing, subsidy, regulation, and tax and fees to improve
urban transportation systems (European Commission,
2006). The model maps the causality of transporta-
tion behaviors and resources allocation. The interac-
tions among the components represent the use of in-
formation and managerial policies to impact system
progress.

This study utilizes experimental approaches to ex-
amine the relationships between resource allocation
policies and transportation system performance. Many
critical inputs are obtained by data mining and ex-
pert discussion during pattern identification, model
construction, and system simulation. Open participa-
tory meetings emphasize communication, cooperation,
and compromise among different participants with the

objective of building consensus regarding system be-
havior. Experts fully understanding the information of
transportation in Taipei, including planners, govern-
ment, and scholars, are invited to build consensus. This
process is relatively time-consuming but provides a sig-
nificant incentive for group learning.

The decision support model integrates the algorithms
of system dynamics, cognitive maps, and a sensitivity
model. Different equation types are applied to distinct
interactions according to the various attributes linking
different elements. For example, the MRT accessibil-
ity in Figure 3 is defined as the ratio of the population
served by the MRT and feeder buses to the total popu-
lation. This is a precise quantitative relationship and is
represented by Equation (3).

acMRT
t = PMRT

t

Popt
(3)

where acMRT
t denotes the accessibility of the MRT at

time t, PMRT
t represents the population served by the

MRT and feeder buses, and Popt refers to the total pop-
ulation. Additionally, some linear addible parameters
are simulated in the form of cognitive maps. For ex-
ample, the service population of the MRT comprises
the population served by the MRT and feeder buses,
and the served population should be related to the
length of the MRT and feeder bus routes. However, it
is difficult to obtain the exact relationships between the
length of operating routes and the served population.
The method of regression is used here and is shown in
Equation (4).

PMRT
t = β

f −bus
t Lf −bus

t + βMRT
t LMRT

t (4)

βMRT
t = 15 − 2 × ln

LMRT
t

30
(5)

where Lf−bus
t and LMRT

t imply the operation length of
feeder bus routes and the MRT lines at time t, respec-
tively, and β

f−bus
t and βMRT

t represent the influence in-
tension of the lengths of feeder bus routes and the MRT
lines on the population served by feeder buses and the
MRT, respectively. In Taipei, the regression coefficient
βMRT

t , revealed in Equation (5), differs from a constant
in past research of cognitive maps. All the estimated co-
efficients are statistically significant (p < 0.05), and R2

of Equation (5) reaches 0.92.

tripMRT
t = f MRT

af f MRT
ac f MRT

ab f MRT
cr tripMRT

t−1 (6)

Besides, the sensitivity model is applied to formulate in-
teractions acting as the adjustment coefficient. For ex-
ample, Figure 3 shows that the MRT trips are impacted
by MRT accessibility, affordability, crowdedness, and
ease of use and are presented as Equation (6). The pa-
rameter tripMRT

t denotes the MRT trips at time t, and
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f MRT
af , f MRT

ac , f MRT
ab , and f MRT

cr indicate the adjustment fac-
tors between the MRT trips and MRT affordability, ac-
cessibility, ease of use, and crowdedness, respectively.
The functions of these adjustment relationships are de-
fined such that the horizontal axis is the status value of
the influencing variable and the vertical axis is the per-
cent change of the affected variable. Figure 5 illustrates
the effect of MRT affordability, defined as the ratio of
monthly spending on MRT travel to disposable income
on MRT trips. When the value of MRT affordability
is below 0.1, the MRT trips increase by approximately
3%. The value of the MRT trips diminishes exponen-
tially when MRT affordability exceeds 0.1. If the value
of MRT affordability is greater than 0.4, over 95% of
MRT trips transfer to other modes.

5 APPLICATION AND RESULTS

The validation of the proposed model is tested via
boundary adequacy tests. Many methods of system as-
sessment are used in the model formulation such as
structure diagrams, inspection of model equations, and

expert opinions. All structures are first verified by schol-
ars and professionals experienced in urban transporta-
tion planning. The structure of the model is thus able
to illustrate the real urban transportation system well.
Besides, the constructed model has two features that
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significantly impact resource allocation policies: (1) sen-
sitivities of external factors, such as population, income,
etc., and (2) policy delay size and uncertainty. Trans-
port diversity under different conditions is explored to
understand the influence of uncertainty on policy ef-
fectiveness. Scenarios that might impact system behav-
ior and the efficiency of policies are undertaken in this
analysis. Different amounts of uncertainty about the
impact of policy implementation delays on system be-
havior are also modeled to reflect levels of managerial
implication.

To investigate external conditions involving different
levels of socioeconomic factors from the present situa-
tion, system behaviors are simulated, with the change
percentage ranging from −10% to 10%. Figure 6a
shows the result of a sensitivity analysis of external fac-
tors. The variations in transport diversity vary from 2%
(average length of trips) to 11% (income and amount
of trips per month). Diversity is slightly inversely pro-
portional to total population, while all parameters are
fixed except the changes of served population because
consideration of more stakeholders implies the need to
satisfy more diverse needs and thus brings lower di-
versity. Notably, travel behavior varies with increasing
disposable income, suggesting that the increased dispos-
able income can enhance the affordability of private
modes and then increase the emission, energy con-
sumption, and accident rate and lower the diversity. In
comparison, the reduction of disposable income does
not transfer trips from private modes to public tran-
sit. Moreover, decision makers cannot control delays in
implementation of policies of resource allocation that
impact the system behaviors. The delays in effects of
the strategies experienced for policy implementation in
Taipei from 1 to 12 months are simulated to discuss
the impact of delay durations on system behavior. The

effects of delay size and adopted policy on transport di-
versity are illustrated in Figure 6b. The relationship be-
tween the delay sizes and the diversity is consistently
concave, suggesting that improving resource allocation
policies by adjusting the delays does not simply in-
volve reducing delay sizes. However, reductions in di-
versity vary slightly from 0% to 1.8%. Impacts of delays
in strategy implementation on system behavior are in-
significant and thus delay sizes might not be an impor-
tant feature of resource allocation effectiveness. Con-
sequently, the model is a robust replication of resource
allocation policies for transportation systems.

To obtain a baseline, a 5-year simulation without pol-
icy intervention is conducted for the Taipei metropoli-
tan transportation system. The results of the baseline
simulation are shown in Figure 7. Figure 7a is the sim-
ulation of transport diversity and summation of the
normalized gaps. It shows that transport diversity is ap-
proximately negatively related with the gaps between
stakeholder needs. The baseline result of the modal
trips is illustrated in Figure 7b. This figure shows that
car trips rise smoothly after the 16th month, most of
which are transferred from motorcycle and bus trips.
Besides, the gaps in Figure 7a are closely related to car
trips in Figure 7b, providing evidence that controlling
car trip growth significantly impacts the reduction in
gaps of stakeholder needs. These baseline simulations
demonstrate possible problems for Taipei if there is no
effective policy to implement. Moreover, decision mak-
ers are supported via the baseline simulation in deciding
when and how to adopt strategies.

To improve the performances shown in the base-
line simulation above, some feasible policies subject to
the budget are proposed by gathering information from
the previous discussions. Figure 8 shows the results of
simulation of policies invention. To curb the excessive
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growth of car trips, strategies including levying taxes,
restricting car entry, and gradually reallocating road
space were introduced in periods 5, 21, and 23, and
Figure 8b shows a lower average number of car trips
than Figure 7b. The new MRT infrastructure operates at
period 30, in which transport diversity increases sharply
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and the gap is bridged (Figure 8a). However, the MRT
trips do not go up with a leap because MRT accessibility
remains low and MRT capacity does not increase sig-
nificantly. Travel speed (Figure 8d) causes the previous
trend to move upward and the average accident rate to
decline by more than 25% (Figure 8c) as a result of the



532 Feng & Hsieh

decreasing number of motorcycle trips because of the
policies.

6 CONCLUSIONS

Traditionally, there has been little discussion of trans-
portation system behavior, and decision makers lack
specific and operational methods for clearly represent-
ing “what-if” scenarios in urban transportation system
behavior. A hybrid model is introduced to help deci-
sion makers obtain a comprehensive understanding of
transportation system behavior and to investigate the
influence of resource allocation policies on transport
diversity, representing the degree to which different
stakeholder needs are satisfied. A hybrid model inte-
grating system dynamics, a quantitative method, cog-
nitive maps, a qualitative approach, and a sensitivity
model, a semiquantitative tool, provides a practical so-
lution for dealing with the complex relations among
variables. The results of the sensitivity analysis reveal
that the increase in private vehicle trips reduces trans-
port diversity because of the increased energy consump-
tion, emissions, and accident rate. However, tuning pol-
icy implementation delays does not significantly impact
system performance through managerial choices of re-
source allocation in Taipei.

This study contributes to systems research on trans-
portation by establishing a practical model for formu-
lating and evaluating policies designed to improve sys-
tem performance. The model presented in this article
has application in and can be integrated in an advanced
traveler information system to be used in intelligent
transportation systems (Samant and Adeli, 2000; Karim
and Adeli, 2002b, 2003a, 2003b; Jiang and Adeli, 2003,
2005; Ghosh-Dastidar and Adeli, 2003, 2006; Dharia
and Adeli, 2003).
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