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Abstract
Auditory perception is one of the most important functions for robotics applications. Microphone arrays
are widely used for auditory perception in which the spatial structure of microphones is usually known. In
practice, microphone array calibration can be tedious and other devices or means are required. The structure
from sound (SFS) approach addresses the problem of simultaneously localizing a set of microphones and
a set of acoustic events that provides a great flexibility to calibrate different setups of microphone arrays.
However, the existing method does not take measurement uncertainty into account and does not provide
uncertainty estimates of the SFS results. In this paper, we propose a probabilistic structure from sound
(PSFS) approach using the unscented transform in which the uncertainties of the PSFS results are also
available. In addition, a probabilistic sound source localization approach using the PSFS results is provided
to improve sound source localization accuracy. The ample results of simulation and experiments using low-
cost, off-the-shelf microphones demonstrate the feasibility and performance of the proposed PSFS approach.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2009
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1. Introduction

While visual perception using cameras or laser scanners has been widely addressed
and discussed in the robotics literature, auditory perception using microphones
has attracted increasing attention over the last decade [1, 2]. To accomplish sound
source localization using microphone arrays, the methods using interaural time dif-
ference, interaural phase difference, interaural level difference or fusing different
cues have been demonstrated successfully [3–5]. Boll [6] proposed a method using
spectral subtraction to suppress acoustic noise in speech. In addition to noise sup-
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pression, Hu et al. [7] utilized Gaussian mixture models to deal with the issues of
complicated environment acoustics and microphone mismatch in situations such as
detecting a speaker’s position within a noisy vehicle cabinet. Mak and Furukawa
[8] proposed a time-of-arrival-based positioning technique to deal with non-line-
of-sight situations with low-frequency acoustic signals. Sasaki et al. [9] described
a method to localize multiple stationary and moving sound sources using a mov-
ing microphone array. Yamamoto et al. [2] show the capability of recognizing three
simultaneous speeches. Valin et al. [10, 11] demonstrated the feasibility of simulta-
neous multiple sound source localization. In Ref. [12], microphones are distributed
in the environment for acoustic robot localization in which the microphone array is
well calibrated. A comprehensive survey of auditory perception in robotics is avail-
able in Chapter 2 of Ref. [13]. It is shown that microphone arrays are widely used
for auditory perception.

In most auditory perception applications, the microphone locations are usually
known or calibrated. The calibration process could be tedious, in which case other
means or equipment are required. The structure from sound (SFS) problem is to si-
multaneously localize a set of microphones and a set of sound sources. A solution to
the SFS problem can provide a means to calibrate microphone arrays easily. With-
out using any additional equipment, creating sound events at different locations is
sufficient to complete the calibration process. In Ref. [14], Thrun proposed an affine
SFS algorithm and demonstrated its performance using a microphone array com-
prised of seven Crossbow sensor motes. However, measurement uncertainty is not
taken into account and the SFS estimate uncertainties are not provided. Figure 1a
shows a simulation result in which the affine SFS converges to an incorrect result
under measurement uncertainty.

Based on Thrun’s approach, we propose a probabilistic structure from sound
(PSFS) algorithm using the unscented transform [15]. Given the uncertainty es-
timates of interaural time differences between microphones, sample sets of time
delay estimates are generated and used as inputs of the SFS algorithm. Accordingly,
sample sets of estimated locations of microphones and sound sources are computed
using the SFS algorithm. The location estimates of microphones and sound sources
can be represented by these weighted SFS output samples. Unfortunately, as only
one microphone is selected as the origin of the coordinate system in the SFS frame-
work, the SFS output samples may suffer from the rotation effect and the mirror
effect as depicted in Fig. 2. To estimate the uncertainties correctly, these axis incon-
sistency problems should be dealt with. In this paper, the coordinate systems of the
SFS output samples in two-dimensional (2-D) cases are aligned by selecting one
microphone as the origin of the coordinate system and then letting another selected
microphone move only in the x-axis of this coordinate system.

In the SFS framework, the location estimates of microphones are more accurate
than the sound source location estimates as more measurements or constraints are
involved with microphones than with sound sources. However, given the PSFS re-
sults, sound source localization can be further improved with more measurements.
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(a) (b)

Figure 1. A microphone array is located around the origin and nine sound events are generated at
different locations surrounded the microphone array. Noises are added to measurements. (a) Results
using the affine SFS algorithm in which measurement uncertainty is not taken into account. (b) Results
using the proposed probabilistic SFS algorithm in which the measurement uncertainty is properly dealt
with. The ellipses show 2σ estimates of the sound sources.

(a) (b)

Figure 2. Axis inconsistency problems. The different results all satisfy the constraints. (a) SFS output
samples can be rotated around the origin (the selected microphone). (b) SFS output samples can be
flipped over around some axis.

We again utilize the unscented transform to accomplish probabilistic sound source
localization (PSSL). In addition, we demonstrate that sound source localization can
be further improved with a moving microphone array using the proposed frame-
work. Ample simulations and experiments using off-the-shelf microphones verify
the proposed PSFS and PSSL algorithms.

The rest of this paper is organized as follows. In Section 2, the affine SFS al-
gorithm is briefly reviewed. Section 3 addresses the proposed PSFS algorithm in
detail. Section 4 describes our PSSL algorithm. The simulation and experimental
results are given in Section 5, and the conclusions and future work are given in
Section 6.
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2. Affine SFS

In this section, the affine SFS algorithm [14] is described briefly to provide a foun-
dation for understanding the proposed PSFS algorithm. The SFS problem is to
localize the N microphones and M sound sources simultaneously. All the sound
sources are emitted from unknown locations at unknown time and all the micro-
phones are located at unknown positions. It is assumed that all microphones are
synchronized.

Let X be the microphone location matrix of size N ×2 and A be the sound source
location matrix of size M × 2:

X =

⎡
⎢⎢⎣

x1 y1
x2 y2
...

...

xN yN

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

a1 b1
a2 b2
...

...

aM bM

⎤
⎥⎥⎦ . (1)

Let the first microphone be located at the origin of the coordinate system and let
the second microphone only move in the x-axis of this coordinate system:

x1 = 0, y1 = 0, y2 = 0. (2)

The matrix of relative arrival time is defined as:

� = c−1

⎡
⎢⎢⎣

d2,1 − d1,1 d2,2 − d1,2 · · · d2,M − d1,M

d3,1 − d1,1 d3,2 − d1,2 · · · d3,M − d1,M
...

...
. . .

...

dN,1 − d1,1 dN,2 − d1,2 · · · dN,M − d1,M

⎤
⎥⎥⎦ , (3)

where dm,n denotes the distance between microphone m and sound source n, and
c denotes the speed of sound. The difference between the distance from the j th
sound source to the ith microphone and the distance from the j th sound source to
the reference microphone, �i,j , can be expressed as:

�i,j = c−1
{∣∣∣∣

(
xi

yi

)
−

(
aj

bj

)∣∣∣∣ −
∣∣∣∣
(

aj

bj

)∣∣∣∣
}

. (4)

The time delay �i,j can be measured using the synchronized microphone array.
These time delays are the only inputs of the whole SFS system. The SFS problem
can be formulated as a least-squares problem in which X and A are computed by
minimizing the cost function:

arg min
A,X

N∑
i=2

M∑
j=1

{∣∣∣∣
(

xi

yi

)
−

(
aj

bj

)∣∣∣∣ −
∣∣∣∣
(

aj

bj

)∣∣∣∣ − �i,j · c
}2

. (5)

This problem can be solved through the gradient descent method. However,
a good initial guess of the locations of microphone and sound sources is critical
to minimize (5). Following the idea of affine structure from motion [16] in the com-
puter vision literature, the affine SFS approach assumes that sound sources are far

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

5:
44

 2
5 

A
pr

il 
20

14
 



C.-C. Wang et al. / Advanced Robotics 23 (2009) 1687–1702 1691

(a) (b)

Figure 3. A simulation of the affine SFS algorithm. (a) Results under the far field approximation. The
affine solution is then used as the initial guess for minimizing (5) using the gradient descent method.
(b) Final result that converges to the correct locations. Note that no measurement uncertainty is added
in this simulation.

away from the microphones and the incoming sound wave hits each microphone at
the same incident angle. The SFS problem is simplified to recover the incident an-
gles of the sound sources. This assumption is used to get a reasonable initial guess
of the locations of microphones and sound sources for minimizing (5). The gra-
dient descent method is then applied to recover the microphone and sound source
locations. Figure 3 shows the results of a simulation. Note that no measurement
uncertainty is added in this simulation. The affine SFS algorithm often converges
to incorrect results if measurements are uncertain.

3. PSFS

In this section, we describe the proposed PSFS approach using the unscented trans-
form [15].

3.1. Unscented Transform

Let x be a L-dimensional Gaussian with the mean μx and covariance matrix �x . Let
y = f (x) be a nonlinear transformation from x to y. In the unscented transform,
the mean and covariance of x can be presented by the 2L + 1 sigma points. The
2L + 1 sigma points are generated according to the following rule:

χ0 = μ,

χi = μ + (√
(L + λ)�

)
i

for i = 1, . . . ,L (6)

χi = μ − (√
(L + λ)�

)
i

for i = L + 1, . . . ,2L,

where λ = α2(L+ k)−L. α and k are scaling parameters that determine the spread
of the sigma points from the mean. Each sigma point Xi has two weights associated
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with it. The first one, w
(m)
i , is used to recover the mean and the second one, w

(c)
i ,

is used to recover the covariance. These sigma points are passed through the the
function f :

Yi = f (Xi ) i = 0, . . . ,2L. (7)

The corresponding sigma point Yi can be computed. Finally, the mean μy and
covariance �y can be calculated by:

μy =
2L∑
i=0

w
(m)
i Yi

(8)

�y =
2L∑
i=0

w
(c)
i (Yi − μy)(Yi − μy)

T.

3.2. PSFS

As the relative arrival time matrix � of size (N −1)×M is the input of the nonlinear
SFS process, the sigma points can be computed given � and the corresponding
covariance matrix. To apply the formula of the unscented transform, � is reformed
as a long L = (N − 1) × M-dimensional random vector:

μ� = [μ1 · · · μL ]T. (9)

As each element in μ� is a time delay with a variance σ 2
i , the corresponding

covariance matrix is a diagonal matrix of the form:

�� = diag ( σ 2
1 · · · σ 2

L ) . (10)

Now the mean μ� and covariance matrix �� can be used to extract the sigma
points using the unscented transform. These sigma points are reformed as matrices
of size (N − 1) × M , which are passed through the standard SFS procedure. The
location mean and covariance of each microphone and each sound source are recov-
ered with the weighted combination of each corresponding sigma point using (8).
Figure 4 shows the simulations results of PSFS using the same microphone array
with different sound source configurations. Although the performances of sound
source localization may depend on sound source configurations, microphone array
calibration remains accurate. The experimental results using low cost, off-the-shelf
microphones are shown in Section 5.

4. PSSL

As the PSFS framework may not provide very accurate sound source localization
under uncertainty, a PSSL algorithm to improve accuracy and performance of sound
source localization is proposed and addressed in this section. The process we apply
to solve the SSL problem is similar to SFS. The SSL problem can be formalized as
an optimization problem in which we need to find a sound event location to min-
imize the quadratic difference between the predicted and real measurements. The
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Simulation results of the PSFS algorithm with uncertain measurements. Different sound
source configurations were tested to show the generality of the proposed approach: (a), (c) and (e)
show the PSFS results, and (b), (d) and (f) are the enlargements of (a), (c) and (e). The centers of
the circles show the true locations of microphones and sound sources, respectively. (a, c, e) Crosses
and ellipses show the means and the 2σ bounds of the sound source estimates. (b, d, f) Crosses and
ellipses show the means and the 2σ bounds of the microphone estimates. (a) The sound source con-
figuration 1. Sound sources were equally distributed with a constant distance around the microphone
array. (b) The enlargement of (a) to show the microphone structure estimates. (c) The sound source
configuration 2. (d) The enlargement of (c) to show the microphone structure estimates. (e) The sound
source configuration 3. Sound sources were only distributed on one-side of the the microphone array.
(f) The enlargement of (e) to show the microphone structure estimates.
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proposed PSSL algorithm applies the unscented transform to utilizes the micro-
phone array estimate and the corresponding uncertainty from PSFS with the new
measurements.

Recall that PSFS provides a location mean mi and covariance matrix �mi
for

each microphone i. For any new measurement of a sound source/event, we can
compute a vector of time delays between microphones:

� = [ δ1,2 δ1,3 δ1,4 · · · δN−1,N ]T, (11)

where δi,j denotes the time delay between the ith microphone and the j th micro-
phone. This data vector is of dimension CN

2 × 1. We can also have the variance of
each time delay estimate σ 2

i,j .
To extract sigma points in the unscented transform, the microphone estimate X

and the time delay estimates � are combined and reformed as:

μ = [x1 y1 · · · xN yN δ1,2 · · · δN−1,N ]T, (12)

where μ is of dimension L = (2N + CN
2 ) × 1.

The covariance matrix of the input can be computed by:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�m1
. . . 0

�mN

σ 2
1,2

0
. . .

σ 2
N−1,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

The sigma points can be computed straightforwardly using the unscented trans-
form formulation. These sigma points are of the form:

χi = [
x

(l)
1 y

(l)
1 · · · x

(l)
N y

(l)
N δ

(l)
1,2 · · · δ

(l)
N−1,N

]T
l = 0, . . . ,2L. (14)

Each sigma point is then passed through a least-squares problem solver:

A(l)∗ = arg min
A

N−1∑
i=1

N∑
j=i+1

{∣∣∣∣
(

x
(l)
i

y
(l)
i

)
−

(
a(l)

b(l)

)∣∣∣∣

−
∣∣∣∣∣

(
x

(l)
j

y
(l)
j

)
−

(
a(l)

b(l)

)∣∣∣∣∣ − δ
(l)
i,j · c

}2

l = 0, . . . ,2L. (15)

A location of the sound source A(l) = (a(l), b(l)) is found accordingly. The mean
μ′ and covariance �′ of the sound source location can be recovered through the
standard unscented transform procedure (8). Figure 5 shows a real experimental
result of the proposed PSSL algorithm using three microphones. The microphone
array is pre-calibrated using PSFS. The result demonstrates that PSSL provides a
proper sound sound location estimate. The experiment details will be described in
the next section.
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Figure 5. Experimental result of PSSL using three microphones.

5. Experimental Results

In this section, the proposed PSFS and PSSL algorithms are evaluated through ex-
periments using real speech collected from a person. Figure 6 shows the experiment
setup in which an eight-channel A/D board is used to collect sound source data
and six low-cost, off-the-shelf microphones are mounted on the NTU-PAL2 robot.
A SICK S200 laser scanner is used for collecting ground truth. Two types of exper-
iments were conducted: one to calibrate the microphone array using the proposed
PSFS algorithm and the other to localize the sound source with the calibrated mi-
crophone array using the proposed PSSL algorithm. We further demonstrate PSSL
with a moving microphone array.

5.1. Time Delay Estimation

In each experiment, 10 s of speech data at different locations were collected from six
microphones. All sound source signals were sampled at 44.1 kHz. The time delay
of arrival (TDOA) estimation was performed using 1024 samples and 512 samples
were shifted at the next frame. The generalized cross-correlation approach [17] is
utilized to estimate time delays between microphones. As there are silent segments
in these speeches, the TDOA estimates may be unstable. The peak of the histogram
of the TDOA estimates of 10 s of speech was chosen as the input of PSFS or PSSL.
Figure 7 illustrates the approach to estimate time delay between microphones.

5.2. PSFS Results

The PSFS experiments were conducted in two different environments in terms of
environment sizes. The first experiment was performed in a seminar room for the
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(a)

(b) (c)

Figure 6. Experiment setup. (a) The NTU-PAL2 robot, a person and a SICK S200 laser scanner.
(b) The microphone positions. (c) The microphone positions.

near-field condition. The room is about 6 m × 6 m in size. The second experiment
was performed in an atrium for the far-field condition. The atrium is about 16 m ×
18 m in size. The laser scanner was used to detect the speaker’s location for evalu-
ation.

5.2.1. Near-Field Condition
The experiment was conducted in the seminar room and the sound sources were
about 2–3 m away from the microphones. Six speeches were collected at differ-
ent locations. Figure 8 shows the experimental results of PSFS with six sound
sources. The average angular error is 0.35◦. The average microphone location error
is 0.0081 m. The average sound source location error is 0.75 m.

5.2.2. Far-Field Condition
The experiment was conducted in the atrium and the sound sources were about 6–
8 m away from the microphones. Six speeches were collected at different locations.
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(a) (b)

(c)

Figure 7. Example of TDOA estimation. (a) The waveforms of 10 s speech from two microphones.
(b) The histogram of TDOA of 10 s speech. (c) The overlap setting.

(a) (b)

Figure 8. Near-field situation. The result of the PSFS experiment performed in the seminar room. The
2σ ellipses show that our approach provides proper uncertainty estimates of the PSFS results under
the situations that measurements are uncertain. (a) The sound source estimates. (b) The microphone
structure estimates.

Figure 9 shows the experimental results of PSFS with six sound sources. The aver-
age angular error is 2.0245◦. The average microphone location error is 0.0041 m.
The average sound source location error is 7.0773 m.

5.2.3. Evaluation
The above results were all carefully evaluated. The average sound source location
errors of 0.75 m in the near-field condition and 7.0773 m in the far-field condition
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(a) (b)

Figure 9. Far-field situation. The results of the PSFS experiment performed in the atrium. (a) The
sound source estimates. (b) The microphone structure estimates.

are reasonable results given that the baselines of the microphones are very short.
Figures 8 and 9 demonstrate that our approach provides proper uncertainty esti-
mates of the PSFS results under the situations that measurements are uncertain.

5.3. PSSL Results

With the PSFS results, two experiments of PSSL were conducted. One was to lo-
calize the sound source using the static robot with more measurements. Figure 10
shows the PSSL results in a series of measurement updates. As both the microphone
array and the sound source are stationary, the PSSL results are roughly the same as
indicted by dark grey ellipses. Light grey ellipses become smaller after three mea-
surement updates, which demonstrates that the estimates are more accurate and
certain with more measurement updates.

The other experiment was to localize the sound source using a moving robot.
Figure 11 shows that the PSSL results can be greatly improved. The robot move-
ment was estimated by scan matching using laser scanner data. As odometry can
also provide good robot movement estimates locally, similar performance can be
achieved using inexpensive odometry.

6. Conclusions

Microphone arrays are widely used for auditory perception. However, microphone
array calibration can be tedious in practice and other devices or means are required.
The existing SFS framework provides a nice approach to simultaneously calibrate
microphones and sound sources without using any other devices. Unfortunately,
SFS does not take time delay estimate uncertainty into account. In this paper, we
proposed the PSFS approach using the unscented transform to deal with this issue.
The uncertainty estimates of the PSFS results are also available in our framework.
We have shown that the estimates of sound sources are more uncertain than mi-
crophones in both SFS and PSFS. Accordingly, we proposed the PSSL approach
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(a) (b)

(c)

Figure 10. PSSL results with a series of measurement updates. Black stars indicate the locations of
microphones. The black solid diamond is the location of the sound source. Ellipses show the estimate
uncertainty (2σ ) of the PSSL result. As both the microphone array and the sound source are stationary,
the PSSL results are roughly the same as indicted by dark grey ellipses. Light grey ellipses show the
estimate uncertainty (2σ ) of the PSSL result after the measurement update. The light grey ellipse in
(c) is smaller than in (a) and (b). (a) Update 1. (b) Update 2. (c) Update 3.

to improve the accuracy of SSL with more measurements. We also demonstrated
that the accuracy of PSSL can be greatly improved with a moving microphone ar-
ray/robot. The simulation and experimental results verify the proposed PSFS and
PSSL algorithms.

As SFS could converge to an incorrect result under measurement uncertainty,
PSFS may provide an incorrect estimate as well. Detecting SFS failures by ana-
lyzing time delay estimates between microphones could be a feasible approach to
deal with these issues. In addition, dealing with the issues of diffraction/reflection
of sound by robot itself, walls and obstacles, and applying particle filters to PSFS
and PSSL should be of our interests.
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(a) (b)

(c)

Figure 11. PSSL result with a moving robot. Circles show the true location of the sound source. Dark
grey ellipses show the estimate uncertainty (2σ ) of the PSSL result. Light grey ellipses show the
estimate uncertainty (2σ ) of the PSSL result after the measurement update. (a) Update 1. (b) Update
2. (c) Update 3.
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