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Instability analysis of modulated Taylor vortices

W.M. Yang and H.C. Lin*

Department of Mechanical Engineering, Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 30010, ROC

(Received 26 May 2009; final version received 25 September 2009)

This study investigates the instability analysis of modulated Taylor vortices flow by utilising a numerical method.
Based on the consideration that the outer cylinder is fixed and the inner cylinder rotates at a non-zero averaged
speed under varying modulated amplitudes and frequencies, the flow is converted from one-dimension Couette flow
to Taylor vortices. When the modulated amplitude is greater than 1 and the rotation speed of the inner cylinder
exceeds the threshold value for one-dimensional flow, the flow will be more stable at intermediate and high
frequencies. When the modulated amplitude is sufficiently large and the inner cylinder rotates at medium frequency,
subharmonic flow arises.
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1. Introduction

Fluid motion between two concentric rotating cylin-
ders is often investigated in the field of fluid dynamics.
This study uses numerical methods to analyse and
simulates flow patterns and relevant flow character-
istics between two concentric rotating cylinders. Coles
(1965) was the first researcher to definitively consider
Taylor vortex flow to be non-linear, although several
researchers had previously speculated that the Taylor
vortex problem could be solved by considering non-
linear flow. Donnelly (1964) experimentally analysed
modulated flow stability. When the outer cylinder
remains stationary and the inner cylinder rotates
periodically, parameters such as interval, rotational
frequency, and the modulated amplitude of the two
cylinders can be varied to determine how the flow is
affected by modulated rotation. Hall (1975) utilised
linear theory to determine low and high frequencies
and used non-linear theory to analyse the flow under a
high frequency. Carmi and Tustaniwskyj (1981)
examined modulated stability under a limited gap
and the influence of axial symmetry and asymmetry on
modulated flow. In a former study, it was shown that
the critical Reynolds number exhibits an increased
unstable offset under low frequency. Marques and
Lopez (1997) and Lopez and Marques (2001) intro-
duced and studied more cases of time-modulated
Taylor–Couette problems in which the inner cylinder
moves periodically along the axial direction. Youd
et al. (2003, 2005), who analysed zero-equivalent
modulated flow around concentric cylinders with a

radius ratio of Z ¼ 0.75, defined as Z ¼ R1/R2 where
R1 and R2, are the inner and outer radii of cylinders,
identified the formation of reversing and non-reversing
modulated Taylor–Couette flow. The main objectives
of the present work investigate the instability of
modulated Taylor vortices flow by utilising a numer-
ical method. It is practical to focus attention on the
transition based on varying modulated amplitudes and
frequencies.

2. Numerical method

The flow is described by the incompressible, three-
dimensional Navier–Stokes equations with cylindrical
coordinates (R, y, Z) in an absolute frame of reference
according to the velocity–pressure formulation. The
dimensionless factors r, z are the radial and axial
coordinates, t is the time and o is the modulated
frequency with corresponding dimensional quantities
of t and o0; Re is the Reynolds number of the inner
cylinder and a is the axial wave number; the velocity
components and pressure are �Vr, �Vy, �Vz, and �P,
with the respective dimensional quantities denoted by
lower-case symbols:

r ¼ R=d; z ¼ Z=d; t ¼ n � t=d2; o ¼ d2 � o0=n;
Re ¼ R1 � O1 � d=n; a ¼ 2p=l; �P ¼ p � d2=ðr � n2Þ;

�Vr ¼ vr � d=n; �Vy ¼ vy � d=n; �Vz ¼ vz � d=n

where d ¼ R27R1, n is the kinematic viscosity and O1

is the angular velocity of the inner cylinder; l is the
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wavelength of the Taylor vortex and r is the density of
the fluid, respectively.

The basic flow type is the one-dimensional Couette
flow with the modulated amplitude and frequency of
azimuthal velocity between two concentric cylinders.
Then the inner cylinder rotates with the increasing
Reynolds number Re, and the outer cylinder is
considered to be at rest under all conditions. The
dimensionless Navier–Stokes and continuity equations
are as follows:

@ V
!

@t
þ V

!
�r

� �
V
!
¼ �r �Pþ 1

Re
DV
!
; r � V

!
¼ 0 ð1Þ

where V
!
¼ �Vr; �Vy; �Vzð Þ. The time scheme is semi-

implicit and second-order accurate. It corresponds to
a combination of the second-order backward implicit
Euler scheme (for the time term) and an explicit
Adam–Bashforth scheme (for the non-linear terms).
The discretised form of the momentum equation is

3V
!

jþ1 � 4V
!

j þ V
!

j�1

2dt
þ 2 V

!
j � r

� �
V
!

j

� V
!

j�1 � r
� �

V
!

j�1 ¼ �r �Pjþ1 þ 1

Re
DV
!

jþ1
ð2Þ

where V
!

j is the solution at time tj ¼ jdt, dt being the
time step.

Cole (1976) investigated the effect of cylinder
height on flow stability experimentally. Cole demon-
strated that cylinder height does not influence the
critical point for transformation from a Couette flow
to a Taylor vortex flow unless the aspect ratio
between cylinder height and interval is less than 8.
Additionally, according to the study by Hall and
Blennerhasset (1979), when the aspect ratio L/
d � 12, the numerical and experimental results
have no significant differences, indicating that the
effect of cylinder height on flow stability can be
neglected. We assume infinite cylinders and a
periodic solution in the axial direction. The bound-
ary conditions are

�Vr ¼ �Vz ¼ 0; �Vy ¼ Re 1þ e cos otð Þ

at r ¼ Z
1� Z

; and V
!
¼ 0 at r ¼ 1

1� Z

ð3Þ

where e and o are the modulated amplitude and
frequency, respectively.

The flow velocity and pressure profile of the Taylor
vortices can be regarded as a one-dimensional flow
with a perturbation and can be expressed as

�Vr ¼ 0þ V
0

r r; z; tð Þ ð4Þ

�Vy ¼ V
¼
y r; tð Þ þ V

0

y r; z; tð Þ ð5Þ

�Vz ¼ 0þ V
0

z r; z; tð Þ ð6Þ

�P ¼ 0þ p
0
r; z; tð Þ ð7Þ

The perturbations are determined using a pseudo-
spectral Fourier–Chebyshev collocation method, tak-
ing advantage of the orthogonality properties of
Chebyshev polynomials and assuming exponential
convergence (see Daoyi and Gerhard 1994, Speetjens
and Clercx 2005).

V
0

r ¼
XM�1
m¼0

XNþ1
n¼2

Amn tð Þfn xð Þ cosmaz ð8Þ

V
0

y ¼
XM�1
m¼0

XNþ1
n¼2

Bmn tð Þfn xð Þ cosmaz ð9Þ

V
0

z ¼
XM
m¼1

XNþ1
n¼2

Cmn tð Þfn xð Þ sinmaz ð10Þ

p
0 ¼

XM�1
m¼0

XN�1
n¼0

Dmn tð ÞTn xð Þ cosmaz ð11Þ

Here, M and N are the number of terms in the
Fourier series expansion and Chebyshev polynomial
expansion, respectively, and Amn, Bmn, Cmin, and Dmn

are amplitude coefficients. The space can be defined as
Tn(x) ¼ cos(n � cos71x), and fn is a basis function that
satisfies the boundary conditions. fn is expressed as

fn xð Þ ¼ Tn � 1� �1ð Þn½ �T1

2

� 1þ �1ð Þn½ �T0

2
; n ¼ 2; 3; 4

ð12Þ

where x2[71,1]. The domain of r in the governing
equation is transformed from Z/(17Z) � r � 1/(17Z)
to 71 � x � 1 through the relational equation
x ¼ 2r� 1þ Zð Þ= 1� Zð Þ � V

¼
y r,tð Þ is the velocity of

one-dimensional Couette flow and can be expressed as

V
¼
y r; tð Þ ¼ �ZRe

1þ Z
rþ ZRe

1� Zð Þ 1� Z2ð Þ r
�1 þ real

Re � e K1 sr2ð ÞI1 srð Þ � I1 sr2ð ÞK1 srð Þ
I1 sr1ð ÞK1 sr2ð Þ � I1 sr2ð ÞK1 sr1ð Þ

� �
exp iot

� �

ð13Þ
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where s ¼
ffiffiffiffiffi
io
p

r1 ¼ Z
1�Z and r2 ¼ 1

1�Z are the position
of inner and outer cylinders respectively. I1 and K1 are,
respectively, the first and second kind first order
modulated Bessel functions.

Substituting Equations (4)–(7) into the continuity
Equation and Equation (2), the equations are trans-
formed into an algebraic equation, which can be
expressed as a matrix equation

AXjþ1 ¼ Fj;j�1 ð14Þ

where A is a matrix of coefficients and vector X ¼
(Amn, Bmn, Cmn, Dmn)

T. The unknown values of vector
F, F ¼ (F1,F2,F3,0)

T, are the summation of radial,
azimuthal, and axial velocity components for linear
term at time tj and non-linear term at time tj71. The
coefficients Amn, Bmn, Cmn, and Dmn are determined
iteratively until the convergence condition is satisfied.
When the inner cylinder rotates with a fixed rotational
speed, the convergence condition is

Xjþ1 � Xj

Xjþ1

				
				 < 10�4 ð15Þ

We adopt the tolerance (1074) to avoid the
computation process to become time consuming and
larger error ratio compared with those obtained by
Jones (1985). When the pressure coefficient is conver-
ging to the tolerance (1074), the other coefficients in
velocity components had been converging and lower to
the tolerance (1074). The coefficient that satisfies the
convergence condition is substituted in the appropriate
equation among Equations (4)–(7); the speed and
pressure in each time interval can then be determined.
If the cylinder rotates periodically, the largest value of
axial speed attained in a particular time interval at a
selected observation point in the flow is compared with

the axial speed in the preceding time interval, the
convergence condition is

�Vz
iþ1 � �Vz

i

�Vz
iþ1

				
				 < 10�4 ð16Þ

where i is the periodic counter. If the difference is less
than 1074, then the convergence condition is consid-
ered to be satisfied.

3. Results and discussion

Prior to the computation of the flow field, we analyse
the degree of accuracy, which serves as the basis for the
post computation. In theory, the greater the number of
terms expanded, the higher is the accuracy; however,
the limit to the increase of the number of terms will
come from the round-off error and the computation
process becomes time consuming. Therefore, the best
option is to use the expansion with the least number of
terms for which a certain degree of accuracy can be
guaranteed. The results computed from the expanded
number of terms, M and N in the computation mode
of Taylor vortices, were compared with the results
obtained by Jones (1985) when the inner cylinder
rotated at a constant velocity. Jones (1985) used the
Taylor number to obtain the rotating velocity of the
inner cylinder, as shown in Table 1. For a low Re value
(Re ¼ 72.5), the radial velocity at the point of
observation can be converged with the expanded terms
6 6 6. The difference ratio compared with the
expanded terms 6 6 6 and 7 6 7 is converging to
0.19%. However, for a high Re value (Re ¼ 259.8), the
radial velocity at the point of observation can be
converged with the expanded terms 10 6 10. The
difference ratio compared with the expanded terms
10 6 10 and 11 6 11 is converging to 0.14%. These

Table 1. When the outer cylinder is fixed and the inner cylinder rotates at a constant velocity, the radial velocity at the point of
observation is (x ¼ 0, z ¼ 0) when Z ¼ 0.5.

M 6 N

Re (Ta)

72.5 (3,500) 106.1 (7,500) 150 (15,000) 212.1 (30,000) 259.8 (45,000)

4 6 4 4.6991 17.5775 – – –
5 6 5 3.9956 17.1988 30.5700 41.92323 –
6 6 6 4.2333 17.8566 32.8350 52.7493 67.0024
7 6 7 4.2253 17.9733 33.5851 52.8491 69.8342
8 6 8 4.2340 17.9840 33.5712 54.9975 70.7955
9 6 9 4.2376 17.9733 33.6452 55.5914 71.8347
10 6 10 4.2354 17.9840 33.6900 55.6550 72.2764
11 6 11 4.2347 17.9840 33.6754 55.6763 72.3803
12 6 12 4.2354 17.9840 33.6754 55.6975 72.4063
13 6 13 4.2354 17.9840 33.6754 55.6975 72.4063
Study of Jones (1985) 4.2336 17.9733 33.6768 55.7187 72.2764

The definition of Ta is represented by Ta ¼ 2(17Z)Re2/(1 þ Z).
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results are in agreement with those obtained by Jones
(1985). For the computation in this study, both M and
N were expanded to 10 terms.

In Figures 1 and 2, the outer cylinder is fixed and
amplitude of the inner cylinder is modulated at e ¼ 1
and e ¼ 2, respectively. The axial speed changes with
time at different values of Reynolds number and
modulated frequency when x ¼ 0.5. For low fre-
quency, the dimensionless time t becomes time
consuming to obtain the iterative convergence under
different Reynolds number. But for high frequency, the
computation process is rapidly converged. When the
inner cylinder rotates at low frequency, the flow has

sufficient time to change with the velocity. Once the
rotation speed of the inner cylinder exceeds the
threshold value for one-dimensional flow, the flow is
transformed from one-dimensional circular Couette
flow to axisymmetrical Taylor vortex flow. When the
instantaneous Reynolds number reaches the maximum
value, the Taylor vortex flow disappears in process of
time; this phenomenon is referred to as transient
stability, as shown in Figure 1a, b and Figure 2a, b.
With an increase in the modulated frequency, transient
stability disappears because a Stokes layer is produced
near the wall. The flow beyond the Stokes layer cannot
completely reflect the velocity change in the inner

Figure 1. The outer cylinder is fixed and the inner cylinder rotates at different modulated frequencies: (a) o ¼ 0.126,
(b) o ¼ 6.283, (c) o ¼ 31.42, and (d) o ¼ 314.16. The axial speed �Vz changes with time t at the point of observation (x ¼ 0.5,
Z ¼ l/4), (Z ¼ 0.4833, e ¼ 1).
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cylinder (Figures 1c and 2c). Meanwhile, we can
employ a larger Reynolds number and ensure that
Taylor vortex flow occurs at an earlier time period.
The plots in Figures 1d, 2d show the flow sustains the
more stable Taylor vortex flow at high frequency. It is
worth noting that subharmonic flow exists at inter-
mediate and high frequencies when e ¼ 2, as shown in
Figure 2c. However, no such flow is observed when
e ¼ 1. The phenomenon is similar to Youd et al. (2003,
2005).

4. Conclusion

This study used numerical analysis to investigate the
behaviour of flow between two concentric cylinders.
The unstable Couette flow was transformed to Taylor

vortex flow by considering the flow under non-zero
averaged rotation speed at different modulated ampli-
tudes and frequencies. In general, the flow generates
larger instability at low-frequency modulation. At
intermediate and high frequencies, the flow instability
shows a gradually decreasing trend; when the modu-
lated amplitude is sufficiently large, the period of flow
at intermediate frequency is twice that of the rotational
period of cylinders, which is 4p/o of subharmonic
flow.

In addition to the modulated effects that affect the
instability of Taylor vortices flow, most of the unstable
state of supercritical Taylor vortices flow between
concentric cylinders are the wavy form, so-called
Taylor wavy vortices, at higher Reynolds numbers of
the cylinders. The transition from Taylor vortices to

Figure 2. The outer cylinder is fixed and the inner cylinder rotates at different modulated frequencies: (a) o ¼ 0.126, (b)
o ¼ 6.283, (c) o ¼ 31.42, and (d) o ¼ 314.16. The axial speed �Vz changes with time t at the point of observation (x ¼ 0.5,
Z ¼ l/4), (Z ¼ 0.4833, e ¼ 2).
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wavy vortices takes place via a number of intermediate
flow forms, and this article will be a milestone to
investigate the phenomenon of Taylor wavy vortices.
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