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Real-Time Implementation of MPEG-4 Video
Encoder Using SIMD-Enhanced Intel Processor

Student: Meng-Yuan Liu Advisor: Dr. David W. Lin

Degree Program of Electrical Engineering Computer Science
National Chiao Tung University

Abstract

The MPEG-4 standard is a very efficient coding standard for multimedia data
defined by ISO/IEC MPEG. In:this thesis; we use SIMD-enhanced Intel Processor to
deal with MPEG-4 video encoding and to-achieve.the goal of real-time coding. The
main technology is Intel’s MMX ‘including SSE and SSE2. The Intel MMX
technology was introduced into the Intel Architecture (1A) processor. The extension
introduced in the MMX technology support a single-instruction, multiple-data (SIMD)
execution model that is designed to accelerate the performance of advanced media
and communications applications.

In this thesis, we use the public-domain software, Microsoft MPEG-4 Visual
Reference Software, to establish an MPEG-4 coding and decoding system. We need
high-processing-speed hardware and effective software to achieve real-time MPEG-4
video compression and decompression, and parallel processing is the practical method
that can solve huge computation problem in MPEG-4 encoding and decoding. Parallel
processing means letting several independent operations or tasks run in parallel

simultaneously, and then it can speed up the whole processing by this method. In this



thesis, we modify some kernels of Microsoft MPEG-4 Visual Reference Software
using Intel’s MMX technology to get more parallel processing ability to speed up the
encoding processing. After optimization, we can encoder CIF foreman test sequence
with shape information up to 30 frame per second on our test system. The test system
is based on Intel Pentium 4 CPU 2.66G, 480MB RAM and Microsoft Windows XP
Professional Version 2002. The speed-up is approximately 6 times than the original
reference software.

In our thesis, we introduce the MPEG-4 and Intel’s MMX technology first. Then
we discuss the optimization of the MPEG-4 video encoder by using Intel’s MMX
technology. We also present experimental results on the speed and the rate-distortion
performance of the optimized code. Finally, we give a conclusion and point out some

subjects for potential future work.
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Chapter 1

Introduction

The MPEG-4 standard was originally intended for very high compression coding of
audio-visual information at very low bit-rate. Later the scope of MPEG-4 was extended
to address not only compression, but.alse new audio-video coding techniques for content-
based interactivity and universal access. '1n addition to the conventional “frame” based
functionalities of MPEG-1 and MPEG-2 standards, the MPEG-4 video coding will also
support access and manipulation of ‘‘objects™ withinvideo scenes.

Because the computation of MPEG-4 video encode is quiet huge, we need high-
processing-speed hardware and effective software to achieve real-time MPEG-4 video
compression and decompression, and parallel processing is a practical technique that can
solve huge computation problem in MPEG-4 encoding and decoding. Parallel processing
means letting several independent operations or tasks run in parallel simultaneously. Then
the speed of processing can be increased.

We consider implementation of the MPEG-4 video encoder in software on Intel pro-
cessor. The implementation is based on the code from Microsoft MPEG-4 Visual Ref-
erence Software. It is a public source for MPEG-4 encoding and decoding. In order to
achieve real-time performance, we use Intel’s MMX instructions to modify some ker-
nels of the reference software. Intel’s MMX technology was introduced in to the 1A
architecture processor [8]. The extension introduced in the MMX technology support a
single-instruction, multiple-data (SIMD) execution model that is designed to accelerate

the performance of advanced media and communications applications [8].



This thesis is organized as follows. Chapter 2 is an overview of MPEG-4. Chapter 3
describes Intel’s MMX technology and some software tools that we use. Chapter 4 dis-
cusses the detailed optimization methods for using Intel’s MMX technology. The overall
experimental results of the MPEG-4 encoder after optimization are described in Chapter

5. Finally, Chapter 6 contains the conclusion.



Chapter 2

Overview of MPEG-4

MPEG-4 is an ISO/IEC standard developed by MPEG (Moving Picture Experts Group),
the committee that also developed the well known MPEG-1 and MPEG-2 standards.
These standards made interactive videa on CD-ROM, DVD and Digital Television possi-
ble. MPEG-4 is a newer standard-started!in 1994; with the mandate to standardize algo-
rithms for audio-visual coding in-multimedia applications. MPEG-4, formally designated
“ISO/IEC 14496”, was finalized in October 1998 and became an International Standard
in the first months of 1999. The fully backward compatible extensions under the title of
MPEG-4 Version 2 were frozen at the end of 1999, to acquire the formal International
Standard Status early in 2000. Several extensions were added since and work on some

specific items is still in progress [2]. MPEG-4 builds on the proven success of three fields:
e digital television,
e interactive graphics applications (synthetic content), and

e interactive multimedia (World Wide Web, distribution of and access to content).

In this chapter, we introduce the overall organization of the MPEG-4 standard, its

video texture coding scheme, and some special video coding tools.
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Figure 2.1: A high level.view of an-MPEG-4 terminal (from[5]).
2.1 Organization of theMPEG-4 Standard

The MPEG-4 standard addresses the generic coding of audio-visual objects, as illustrated
in Figure 2.1. It (ISO/IEC 14496) consists of the following basic parts (The following

description of the different parts are mainly taken from [1] and [2]).

1. ISO/IEC 14496-1: Systems

The MPEG-4 Systems specification defines architecture and tools to create audio-
visual scenes from individual objects. A major tool for MPEG-4 systems is scene
description. The MPEG-4 scene description, a totally new component in the MPEG
specifications, is based on VRML (virtual reality modeling language) and specifies
the spatial-temporal composition of objects in a scene. The scene description is
at the core of the systems specification, and allows easy creation of compelling

audio-visual content.

2. ISO/IEC 14496-2: Visual



The MPEG-4 visual specification defines the main video codec. It consists of natu-

ral, arbitrary shape and synthetic video coding.

For natural video coding, the main video coding tools are still texture coding, simi-
larly to MPEG-1 and MPEG-2. For intra coding, the MPEG-4 visual specification
uses DCT, IDCT, intra prediction, quantization and de-quantization to reduce spa-
tial redundancy. For inter coding, the MPEG-4 visual specification uses motion
estimation and motion compensation to reduce temporal redundancy. In visual cod-
ing, the major difference from MPEG-1 and MPEG-2 is object coding. In MPEG-4,
each picture is considered as consisting of objects, since some MPEG-4 functional-

ities require access not only to entire pictures but also to objects.

For synthetic video coding, in MPEG-4, mesh-based representation is useful. MPEG-

4 includes a tool for triangular mesh-based representation of general objects.

. ISO/IEC 14496-3: Audio

ISO/IEC 14496-3 (MPEG-4 Audio) is anew kind of audio standard that integrates
many different types of audio coding--Aatural sound with synthetic sound, low bit-
rate delivery with high-quality delivery, speech with music, complex sound tracks
with simple ones, and traditional content with interactive and virtual-reality content.
MPEG-4, unlike previous audio standards created by ISO/IEC and other groups,
does not target at a single application such as real-time telephony or high-quality
audio compression. MPEG-4 Audio is a rather generic standard that applies to
applications requiring the use of advanced sound compression, synthesis, manip-
ulation, or playback. The subparts specify state-of-the-art coding tools in several
domains. However, MPEG-4 Audio is more than just the sum of its parts. As the
tools described are integrated with the rest of the MPEG-4 standard, new possibil-
ities for object-based audio coding, interactive presentation, dynamic sound tracks,

and other sorts of new media, are enabled.

. ISO/IEC 14496-4: Conformance Testing

This part of ISO/IEC 14496 specifies how tests can be designed to verify whether

bitstreams and decoders meet requirements specified in parts 1, 2, and 3 of ISO/IEC

5



14496. In this part of ISO/IEC 14496, encoders are not addressed specifically. An
encoder may be said to be an ISO/IEC 14496 encoder if it generates bitstreams
compliant with the syntactic and semantic bitstreams requirements specified in parts
1, 2 and 3 of ISO/IEC 14496.

. ISO/IEC 14496-5: Reference Software

Reference software is normative in the sense that any conforming implementation
of the software, taking the same conforming bitstreams, using the same output file
format, will output the same file. Complying ISO/IEC 14496 implementations are
not expected to follow the algorithms or the programming techniques used by the
reference software. Although the decoding software is considered normative, it
cannot add anything to the technical description included in parts 1, 2, 3 and 6 of
ISO/IEC 14496.

. ISO/IEC 14496-6: DMIF

DMIF, or Delivery Multi-media Integration Framework, is an interface between
the application and the transport; which-enables-the MPEG-4 application developer
to stop worrying about the transport:+A single application can run on different

transport layers when supported by the right DMIF instantiation.
MPEG-4 DMIF supports the following functionalities:
e A transparent MPEG-4 DMIF-application interface irrespective of whether
the peer is a remote interactive peer, broadcast or local storage media.

Control of the establishment of FlexMux channels.

Use of homogeneous networks between interactive peers: IP, ATM, mobile,
PSTN, Narrowband ISDN.

Support for mobile networks, developed together with ITU-T.

User commands with acknowledgment messages.

Management of MPEG-4 Sync Layer information.



2.2 MPEG-4 Video Coding Overview (from [3])

The target of MPEG-4 video is providing standardized core technologies allowing effi-
cient storage, transmission and manipulation of video data in multimedia environments.
It provides technologies to view, access and manipulate objects rather than pixels, with
great error robustness at a large range of bit-rates. In order to achieve this broad goal,
video activities in MPEG-4 aim at providing solutions in the form of tools and algo-
rithms enabling functionalities such as efficient compression, object scalability, spatial
and temporal scalability, error resilience, and fine granularity scalability. The standard-
ized MPEG-4 video provides a toolbox containing tools and algorithms bringing solutions

to the above mentioned functionalities and more.

2.2.1 Structure of MPEG-4 Video.Data

An input video sequence can be defined;as a sequence of related snapshots or pictures,
separated in time. Many of MPEG-4 functionalitiesrequire access not only to entire
sequence of pictures, but to an entire object-and-further, not only to individual pictures,
but also to temporal instances of these ebjects within a picture.

The concept of Video Objects (VOs) and their temporal instances, Video Object Planes
(VOPs) is central to MPEG-4 video. A VOP can be fully described by a set of luminance
and chrominance values and shape representation. In Figure 2.2, we show the decompo-
sition of a picture into a number of separate VOPs.

Each VO is encoded separately and multiplexed to form a bitstream that users can
access and manipulate. The encoder sends, together with VOs, information about scene
composition to indicate where and when VOPs of a VO are to be displayed. Figure 2.3

shows the organization of coded MPEG-4 Video in a top-down hierarchical structure.

e VideoSession (VS): A Video session is the highest syntactic structure of the coded
visual bitstream and simply consists of an ordered collection of video objects. The
complete MPEG-4 scene which may contain any 2-D or 3-D natural or synthetic

objects.
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Figure 2.3: Logical structure of coded video data (from [7]).
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Figure 2.4: Types of VOP.

VideoObject (VO): A Video object (2D + time) represents a complete scene or a
portion of a scene with a semantic. In the simplest case this can be a rectangular
frame, or it can be an arbitrarily shaped object corresponding to a physical object

or background of the scene.

VideoObjectLayer (VOL): Each video: object can be encoded in scalable (multi-
layer) or non-scalable form(single layer), depending on the application, represented
by VOL. The VOL provides support for.scalable coding. A video object can be

encoded using spatial or temporal sealability, going from coarse to fine resolution.

GroupOfVideoObjectPlanes (GOV): Group of video object planes are optional en-
tities. The GOV groups together video object planes. GOVs can provide points
in the bitstream where video object planes are encoded independently from each

other, and can thus provide random access points into the bitstream.

VideoObjectPlane (VOP): A VOP is a time sample of a video object. Figure 2.4
shows three of the four types of VOP that use different coding methods:

. An Intra-coded (I) VOP is coded using information only from itself.

. A Predictive-coded (P) VOP is a VOP which is coded using motion compensated

prediction from a past reference VOP.

. A Bidirectionally predictive-coded (B) VOP is a VOP which is coded using motion

compensated prediction from a past and/or future reference VOP(s).

9
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Figure 2.5: Positions of luminance and-chrominance samples in 4:2:0 data (from [6])

4. A sprite (S) VOP is a VOP for a sprite object or a VOP which is coded using

prediction based on global motion compensation from a past reference VOP.

The macroblock (MB) is a basic coding structure constructing VOP. In the MPEG-
4 standard, a macroblock contains a section of the luminance component and the sub-
sampled chrominance components in 4:2:0 format. In this format, there are 4 luminance
blocks and 2 chrominance blocks in a macroblock. The luminance and chrominance

samples are positioned as shown in Figure 2.5.

2.3 MPEG-4 Video Texture Coding (from [5], [6] and [7])

Figure 2.6 shows a high level logical structure of a VO based encoder. The main compo-
nents are VO segmenter/formatter, VO encoders, system multiplexer/demultiplexer, VO

decoders and VO compositor. We will introduce more details of VO encoders in this

10
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section.

Figure 2.7 presents the internal structure of the VO encoder. The same encoding
scheme is applied in coding all the MOPs of a given.session. The encoder has an entirely

new component compared to previous video coding standards: arbitrary shape coding.

2.3.1 VOP Formation

After segmentation, the video object shape information is obtained. The shape informa-
tion is hereafter referred to as alpha plane. There are two kinds of alpha plane. One is
binary alpha plane which contains two kinds of data. The value 255 is assigned to pixels
belonging to the objects and 0 is assigned to pixels outside the objects. The other one is
grey scale alpha plane which is used for hybrid (of natural and synthetic) scenes generated
by blue screen composition and is represented by an 8-bit component.

The alpha plane is used to form a VOP. For the binary alpha plane, a rectangular
bounding box enclosing the shape to be coded is formed such that its horizontal and
vertical dimensions are extended to multiples of 16 pixels (MB size). For efficient coding,

it is important to minimize the number of macroblocks contained in the bounding box.
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Figure 2.7: Detailed structure of VO encoder (from [5]).

2.3.2 Shape Coding

After VOP formation, the alpha plane of VOP Will be coded prior to coding motion vector
and texture based on the VOP image-bounding- box. ‘Binary alpha planes are encoded
by modified context-based arithmetic encoding (CAE) while grey scale alpha planes are
encoded by motion compensated DCT similar to texture coding. An alpha plane is also
bounded by an extended rectangular bounding box. The bounded alpha plane is par-
titioned into blocks of 16x16 samples (hereafter referred to as alpha blocks) and the

encoding/decoding process is done per alpha block.

Binary Shape Coding

The basic tools for encoding binary alpha blocks (BABs) are CAE and motion compensa-
tion. InterCAE and IntraCAE are the variants of the CAE algorithm used with and without
motion compensation, respectively. Motion vectors can be computed by searching for a
best match position. The motion vectors themselves are differentially coded. Every BAB

can be coded in one of the following modes:

1. The blockis all transparent. In this case no coding is necessary. Texture information
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is not coded for such blocks either.

2. The block is all opaque. Again, shape coding is not necessary for such blocks, but

texture information needs to be coded (since they belong to the VOP).
3. The block is coded using IntraCAE without use of past information.
4. Motion vector difference (MVD) is zero but the block is not updated.
5. MVD is non-zero, but the block is not updated.
6. MVD is zero and the block is updated. InerCAE is used for coding the block update.
7. MVD is non-zero, and the block is coded by InterCAE.

If the encoder need rate control and rate reduction, the encoder realizes these through
size-conversion of binary alpha information. The estimation of conversion ratio (CR) is
iterative and consists of using the same factor in. both dimensions and determining the
acceptability of resulting shape quality. To be specific, a 4:1 downsampled binary alpha
block is used first and if the shape errors-are-higher than acceptable, a 2:1 downsampled
binary alpha block is used next, again.ifit is found unacceptable, an unsubsampled binary
alpha block is used. Figure 2.8 shows the block diagram of CR determination. The selec-
tion is done based on the conversion error between the original BAB and the BAB which
is once down-sampled and then reconstructed by up-sampling. The conversion error is
computed for each 4times4 sub-block respectively by taking the sum of the absolute dif-
ference. If the sum is greater than a designated threshold value, this sub-block is called
“Error-PB (Pixel Block)”

CAE encoding is used to code each binary pixel of the BAB. Prior to coding the first
pixel, the arithmetic encoder is initialized. Each binary pixel is then encoded in raster

order. The process for encoding a given pixel is the following:
1. Compute a context number.
2. Index a probability table using the context number.

3. Use the indexed probability to drive an arithmetic encoder.
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Figure 2.9: Pixel templates used for (a) INTRA and (b) INTER context determination of
BAB. The pixel to be coded is marked with *“?”.

When the final pixel has been processed, the arithmetic code is terminated. Figure 2.9

shows the computation of the contexts for INTRA:and-INTER modes.

Gray Scale Shape Coding

The gray scale shape information has a structure similar to that of binary shape with the
difference that every pixel can take on a range of values (usually 0 to 255) representing
the degree of the transparency of that pixel. The gray scale shape corresponds to the
notion of alpha plane used in computer graphics, in which 0 corresponds to a completely
transparent pixel and 255 to a completely opaque pixel. Intermediate values of the pixel
correspond to intermediate degrees of transparencies of that pixel.

Gray level alpha plane is encoded as its support function and the alpha values on
the support. The support is obtained by thresholding the gray level alpha plane by O.
The support function is encoded by binary shape coding as described previously and the
alpha values are encoded using a block based motion compensated DCT similar to that of

texture coding. Figure 2.10 shows the block diagram of gray shape coding.
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Figure 2.10: Gray shape coding (from [6]).

2.3.3 Motion Coder

There are four types of VOPs (see Figure 2.4:and associated discussion) that use differ-
ent coding methods. Motion coding is necessary only for P-VOP and B-VOP to reduce
temporal redundancy. The motion coder consists of-a motion estimator, motion compen-
sator, previous/next VOPs store and motion vector (MV) predictor and coder. In order to
perform motion prediction on a per MOP basis, the motion estimation of the blocks on the
VOP borders has to be modified from block matching to polygon matching. Furthermore,

a special padding technique is required for the reference VOP.

Padding Process

The padding process defines the values of luminance and chrominance samples outside
the VOP for prediction of arbitrarily shaped objects. Figure 2.11 shows a simplified dia-
gram of this process.

A decoded MB d[y][x] is padded by referring to the corresponding decoded shape
block s[y][z]. A MB that lies on the VOP boundary is padded by replicating the boundary
samples of the VOP towards the exterior. This process is divided into horizontal repetitive
padding and vertical repetitive padding. The remaining MBs that are completely outside

the VOP are filled by extended padding.

e Horizontal repetitive padding: Each sample at the boundary of a VOP is replicated
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horizontally to the left and/or right direction in order to fill the transparent region
outside the VOP of a boundary macroblock. If there are two boundary sample

values for filling a sample outside of a VOP, the two boundary samples are averaged.

e \fertical repetitive padding: The remaining unfilled transparent samples from above
procedure are padded by a similar process as the horizontal repetitive padding but in
the vertical direction. The samples already filled in the horizontal repetitive padding

are treated as if they were inside the VOP for the purpose of this vertical pass.

e Extended padding: Exterior MBs immediately next to boundary macroblocks are
filled by replicating the samples at the border of the boundary macroblocks. Note
that the boundary macroblocks have been completely padded in horizontal and ver-
tical repetitive padding. If an exterior macroblock is next to more than one boundary
macroblocks, one of the macroblecks’isichosen, according to the priority shown as
Figure 2.12. The exterior magcroblockisthen padded by replicating upwards, down-
wards, leftwards, or rightwards the row-of samples from the horizontal or vertical
border of the boundary macroblock having the largest priority number. The remain-
ing exterior macroblocks (not'located next to any boundary macroblocks) are filled
with 128.

Motion Estimation

Motion estimation (ME) is a method of prediction between adjacent frames/pictures. This
technique falls into two categories, pixel-based algorithms and block-based algorithms
(BMA). The motion estimation method used in MPEG-4 encoder is block-based.

In general, the ME techniques used in MPEG-4 can be seen as an extension of standard
MPEG-1/2 or H.263 block matching techniques with modified block (polygon) matching.

Figure 2.13 illustrates an example for polygon matching. The bounding rectangle of
the VOP is first extended on the right-bottom side to multiples of macroblock size. Zero
stuffing is used for these extended pixels. The alpha value of the extended pixels is set
to zero. The MBs are formed by dividing the extended bounding rectangles into 16 x16

blocks. SAD is used as error measure. The original alpha plane for the VOP is used to
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Figure 2.13: Polygon matching for an arbitrary shape VOP (from [6]).

exclude the pixels of the MB that are outside the VOP. SAD is computed only for the
pixels with nonzero alpha value. This forms a polygon for the MB that includes the VOP
boundary.

The reference VOP is padded based on its own shape information. For example, when
the reference VOP is smaller than the current VOP, the reference is not padded up to the
size of the current VOP.

The basic motion estimation is perfermed.on 16 x 16 luminance MB. The motion
vector is specified to half-pixel accuracy. _Inmmany coding software implementations, the
motion estimation is performed by full search to integer pixel accuracy vector and, using
it as the initial estimate, a half pixel search-is performed around it.

In the MPEG-4 standard, besides motion vectorfor 16 x 16 MB, motion vector can
be sent for individual 8 x 8 blocks to reduce more prediction errors. Both the 8 x 8 block
motion compensation and overlapped motion compensated prediction are referred to as
advanced prediction in H.263 and are adapted in MPEG-4 to work with arbitrary shaped
VOPs.

Because the motion vector may be non-integer number, sample interpolation is neces-
sary. The process for interpolation of half sample values is carried out only in half sample
mode, where the half sample values are calculated by bilinear interpolation as depicted in

Figure 2.14. Using interpolation, the half-pixel motion vector can be calculated.

Motion Vector Encoder

When using INTER mode coding, the motion vector must be coded. Horizontal and verti-
cal motion vector are coded differentially by using a spatial neighborhood of three motion

vectors already coded (see Figure 2.15). These three motion vectors are candidate pre-
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dictors for the differential coding=The differential.coding of motion vectors is performed

with reference to the reconstructed shape. In-the special cases at the borders of the current

A B
a® pO + + Integer pixel position

cO 4O () Half pixel position

a=A,

b=(A+B+1-rounding_control) / 2
c=(A+C+1-rounding_control) / 2,
d=(A+B+C+D+2-rounding_control) / 4

Figure 2.14: Interpolation,scheme for half sample search.

VOP the following decision rules-are applied:

1.

3. If the MBs of all three candidate predictors are outside the VOP, they are set to zero.

The motion vector coding is performed separately on the horizontal and vertical com-

ponents. For each component, the median value of the three candidates for the same

If the MB of one and only one candidate predictor is outside the VOP, it is set to

Zero.

. If the MBs of two and only two candidate predictors are outside the VOP, they are

set to the third candidate predictor.

component is used as predictor, denoted Pz and Py, respectively:

After finding the predictors, the vector differences MV Dx(= MVzx — Px) and

Pz = Median(MV 1z, MV 2x, MV 3x),

Py = Median(MV 1y, MV 2y, MV 3y).

MV Dy(= MVy — Py) are coded by variable length coding.
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Figure 2.15: Motion vector prediction (from [6]).

Motion Compensation

The motion compensator uses motion vectors:to compute motion compensated prediction
block, pred]i][j] from the same reference VOP. In addition to basic motion compensation
processing, three alternalties are supported; -namely, unrestricted motion compensation,
four MV motion compensation and overlapped motion compensation.

For unrestricted motion compensation, the motion vectors are allowed to point out-
side the decoded area of a reference VOP. For an arbitrary shape VOP, the decoded area
refers to the area within the bounding box, padded as described above. When a sample

referenced by a motion vector is outside the decoded VOP area, an edge sample is used.

The pred]i][7] is defined as follows:

zref = min(max(zcurr + dx, vhmesr), xdim + vhmesr — 1),

yref = min(max(ycurr + dy, vomesr), ydim + vomesr — 1),

where vhmecsr = vop_horizontal_mc_spatial _ref, vomcsr = vop_vertical_mc_spatial _ref,
(ycurr, xcurr) are the coordinates of a sample in the current VOP, (yref,zref) are

the coordinates of a sample in the reference VOP, (dy, dx) is the motion vector, and

(ydim, xdim) are the dimensions of the bounding rectangle of the reference VOP.
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One/two/four vectors decision is indicated by the MCBPC codeword and field_prediction
flag for each macroblock. If one motion vector is transmitted for a certain macroblock,
this is defined as four vectors with the same value as the MV. When two field motion vec-
tors are transmitted, each of the four block prediction motion vectors has the value equal
to the average of the field motion vectors (rounded such that all fractional pixel offsets
become half pixel offsets). If MCBPC indicates that four motion vectors are transmitted
for the current macroblock, the information for the first motion vector is transmitted as the
codeword MVD and the information for the three additional motion vectors is transmitted
as the codewords MVD2-4. If four vectors are used, each of the motion vectors is used
for all pixels in one of the four luminance blocks in the macroblock.

Overlapped motion compensation is performed when the flag obmc_disable = 0. Each
pixel in an 8 x 8 luminance prediction block is a weighted sum of three prediction values,
divided by 8. The creation of each pixel'P(s,5)sin an 8 x 8 luminance prediction block

is governed by the following equation;

?(i j) = (p(i+MVR j+MVD)xHo(,g) +plat MV g+ MV, ) Hy (i,5) +p(i+ MV j+MV7)«Hs (i,5)+4)
) - 8 9

where (MV;), M V) denotes the motion vector for'the current block, (MV,', MV de-
notes the motion vector of the block either above or below, (MV2 M Vj) denotes the
motion vector either to the left or right of the current block, and H, (s, j), H:(i,7), and
H, (i, j) denote the weighting of each pixel in the current block and neighbor blocks.
Since the VOP may be coded in P or B mode, there are three types of motion vec-
tors, forward mode, backward mode, and bi-directional mode. The different modes make

different predictions P(i, j).
1. Forward mode
Only the forward vector (MVFx,MVFy) is applied in this mode. The prediction
blocks P, (i, 5), P.(i, ), P, (i, ) are generated from the forward reference VOP,

2. Backward mode

Only the Backward vector (MVBXx,MVBY) is applied in this mode. The prediction
blocks P, (i, 5), Pu(i, j), P, (i, j) are generated from the backward reference VOP.
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3. Bi-directional mode

Both the forward vector (MVFx,MVFy) and the backward vector (MVBx,MVBY)
are applied in this mode. The prediction blocks P, (i, j), P.(i, j), P.(i, j) are gen-
erated from the forward and backward reference VOPs by doing the forward pre-

diction, the backward prediction and then averaging both predictions pixel by pixel.

2.3.4 Texture Coder

The texture information of a video object plane is present in the luminance Y and two
chrominance components Cb and Cr of the video signal. In the case of an I-VOP, the tex-
ture information resides directly in the luminance and chrominance components. In the
case of motion compensated VOPs the texture information represents the residual error
remaining after motion-compensated prediction. The texture coder includes padding pro-
cess (if needed), 8 x 8 block based'DCT, guantization, coefficient prediction, coefficient

scan and variable length coding.

Padding Process

When the shape of the VOP is arbitrary, there are two types of MBs that belong to an
arbitrarily shaped VOP:

1. Those that lie completely inside the VOP shape.

2. Those that lie on the boundary of the shape.

The macroblocks that lie completely inside the VOP are coded using a technique iden-
tical to the technique used in H.263. The macroblocks that lie on the boundary of the
shape need to be padded before texture coding. For residual error blocks after motion
compensation, the region outside the VOP within the blocks are padded with zero. For
intra blocks, the padding is performed in a three-step procedure called low pass extrapo-

lation (LPE). This procedure is as follows:
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1. Compute the arithmetic mean vale m of the pixels f (i, 7) in the blocks that belong
to the VOP as

m=(1/N) > f(ij),

(3,7)eVOP

where N is the number of pixels situated with the VOP. Division by N is done by

rounding to the nearest integer.

2. Assign m to each block pixel situated outside of the VOP region, that is,

£(i,§) = mforall (i,j) ¢ VOP.

3. Apply the following filtering operation to each block pixel f(i,7) outside of the

VOP region, in raster-scan order:

f,5) =165 = 1) + flasdsg) + f(6,5 + 1) + f(i +1,5)]/4

Division is done by rounding to the nearest integer. If one or more of the four pixels
used for filtering are outside the black, the corresponding pixels are not included
into the filtering operation and the divisor-4 is reduced accordingly. For example,

fori =0and j = 0, we have
@) =17+ + fl+1,5)]/2
After this padding operation the resulting block is ready for DCT coding.

Discrete Cosine Transform Coding

Similar to MPEG-1 and MPEG-2, the 2D (8 x 8) DCT is used for spatial data compression
in MPEG-4 inter and intra coding. The encoder dose forward transform before quantiza-
tion and inverse transform after inverse quantization in the loop. The reason for inverse
quantization and inverse transform is to obtain reconstructed image for the next temporal

frame.
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Figure 2.16: Quantizers in H.263. (a) For intra DC coefficient only. (b) For inter DC and

all AC coefficients.

Table 2.1: Default Quantization Matrix Q (from [3])

(intra) (non intra)

8 16 19 22 26 27+ 29k 34 6 16+ 16 16 16 16 16 16
16 16 22 24 27 29 3437 16716 16 16 16 16 16 16
19 22 26 27 29 34 34 38 6 16 16 16 16 16 16 16
22 22 26 27 29 34 37 40 16 16 16 16 16 16 16 16
2 26 271 29 32 35 40 48 16 16 16 16 16 16 16 16
26 27 29 32 35 40 48 58 16 16 16 16 16 16 16 16
26 27 29 34 38 46 56 69 16 16 16 16 16 16 16 16
27 29 35 38 46 56 69 83 16 16 16 16 16 16 16 16

Table 2.2: Nonlinear Scaler for DC Coefficients of DCT Blocks (from[3])

component DC scaler for Quantizer (Q) range

1-4 5-8 9-24 25-31
Luminance 8 2Q Q+8 2Q+16
Chrominance 8 Qtls Q+16
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Quantization

MPEG-4 video supports two techniques of quantization (Q), one referred to as the H.263
quantization method and the other, the MPEG quantization method. The H.263 quantiza-
tion method is with dead zone for intra and inter AC coefficients and with no dead zone
for intra DC coefficients. The MPEG quantization method is uniform quantizer with the
default matrix.

Figure 2.16 shows the quantizer characteristics in H.263. It has uniform quantization
for intra DC coefficients and nearly uniform midtread quantization for the inter DC and
all AC coefficients. For AC data, input between —Th and +Th is quantized to zero.
All coefficients in a macroblock go through the same quantizer. The step size Q can be
changed in increments of 2 from 2 to 62 depending on rate controller.

In the MPEG quantizer, each coefficient produced by 2D DCT is quantized with a
uniform quantizer. The default quantizer matrix is defined as shown in Table 2.1. The
default quantizer matrix can be changed by-the rate controller if the required channel
bandwidth is unavailable.

Typically, the DC coefficients’of DCT of-blocks belonging to an intra macroblock are
scaled by a constant scaling factor of 8. However, in MPEG-4 video, a nonlinear scaler
as shown in Table 2.2 is used to provide a higher coding efficiency. The characteristics of
nonlinear scaling are different between the luminance and chrominance blocks and further

depend on the quantizer used for the block.

Intra Prediction

After guantization, the DC coefficients and many AC coefficients of an intra block are
coded by intra prediction. Intra prediction is a new operation used in MPEG-4 standards
to reduce the spatial redundancy between 8 x 8 blocks. There are two types of prediction,
DC prediction and AC prediction.

Figure 2.17 shows the prediction of DC coefficients in intra 8 x 8 blocks. The quan-
tized intra coefficients are predicted with three previous decoded DC coefficients. For
example, the DC coefficients of block X is predicted from the DC coefficients of blocks

A, B and C. Unlike MPEG-2, the method of prediction in MPEG-4 standards is gradient
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Figure 2.17: Prediction of DC caefficients.of blocks in an intra MB (from[5]).
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Figure 2.18: Prediction of AC coefficients of blocks in an intra MB (from[5]).
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Figure 2.19: Scans for 8 <8 blocks (from[3]).

based. In computing the prediction of block X if the‘'absolute value of a horizontal gradi-
ent is less than the absolute value of avertical gradient, then the QDC of block C is used
as the prediction, else QDC value of block A is used.

The AC prediction depends on DC prediction, as shown in Figure 2.18. The AC
coefficients in the first row or in the first column are predicted with three previous decoded

AC coefficients. The direction of prediction is the same as DC prediction.

Scan and VLC

The predicted DC and AC coefficients (as well as the un-predicted AC coefficients) of
DCT blocks are scanned by one of three scans: alternate-horizontal, alternate-vertical
and zigzag (normal scan used in H.263 and MPEG-1) to change the 2D image to one
dimensional data, see Figure 2.19. The actual scan used depends on the coefficient pre-
dictions used. For instance, if the DC prediction refers to the horizontally adjacent block,
alternate-vertical scan is selected for the current block. If the DC prediction refer to the

vertically adjacent block, alternate-horizontal scan is used for the current block. For all
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other blocks, the 8 x 8 blocks of transform coefficients are zigzag scanned.

The coefficients after scan usually become data with many zeros at the end. This
kind of a data stream is good for run-length coding. In the MPEG-4 standard, differen-
tial DC coefficients in intra blocks are encoded in variable length codes. However, the
AC coefficients are encoded by the variable length codes for EVENTs. An EVENT is
a combination of a last non-zero coefficient indication, the number of successive zeros
preceding the coded coefficient (RUN), and the non-zero value of the coded coefficient
(LEVEL). Some statistically rare events have no variable length codes to represent them.

For them an escape coding method is used.

2.4 Other Video Coding Tools (from[5]) and Profiles and
Levels (from[3])

2.4.1 Other Video Coding Tools

In addition to texture video coding, there-aressome special tools defined in MPEG-4. In

this section, we shortly introduce robust.video coding and scalable coding.

Robust Video Coding

Since the MPEG-4 standard supports the ability to access audio or video data over a
diverse range, especially over wireless networks, error resilience is necessary. In the error

resilient mode, the MPEG-4 video offers a number of tools as follows:

1. Object priorities

The object based organization of MPEG-4 video potentially makes it easier to
achieve a higher degree of error robustness due to the possibility of prioritizing

each semantic object based on its relevance.

Further, VOP types lend themselves to a form of automatic prioritization since, B-
VOPs are noncausal and do not contribute to error propagation and thus can be

assigned a lower priority and perhaps even be discarded in case of severe errors.
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. Resynchronization

It is possible for an encoder to offer increased error resilience by placing resynchro-
nization (resync) markers in the bitstreams with approximately constant spacing,

such as beginning of each MB.

. Data partitioning

Data partitioning provides a mechanism to increase error resilience by separating
the normal motion and texture data of all macroblocks in a video packet and send
all of the motion data followed by a motion marker, followed by all of the texture

data.

. Reversible VLCs

The reversible VLCs offer a mechanism.for a decoder to recover additional texture
data in the presence of errors:since the special design of reversible VLCs enables

decoding of codewords in both the forward (normal) and the reverse direction.

. Intra update and scalable cading

To prevent error propagation, intra-update is a simple method to reduce this prob-
lem. However, more intra reduces less coding efficiency. Another method is scal-

able coding, which can prevent error propagation without more intra coding.

Scalable Coding

The scalability tools in MPEG-4 Video are designed to support applications beyond that

supported by single layer video. The applications of scalability include internet video,

wireless video, multi-quality video services, video database browsing, etc. In scalable

video coding, it is assumed that given a coded bitstream, decoders of various complex-

ities can decode and display appropriate reproductions of coded video. MPEG-4 Video

provides several different forms of scalabilities that address non-overlapping applications

with corresponding complexities.

The basic scalability tools offered are temporal scalability and spatial scalability. The

Fine Granularity Scalability (FGS) which supports continuous scalability of bit rate and
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video quality is also defined.

2.4.2 Profiles and Levels

Although there are many tools in the MPEG-4 standard, not every MPEG-4 decoder will
have to implement all of them. Similar to MPEG-2, profiles and levels are defined as sub-
sets of the entire bitstreams syntax of all the tools. The purpose of defining conformance
points in the form of profiles and levels is to facilitate interchange of bitstreams among
different applications. There are eight profiles defined by MPEG-4: simple, core, main,
simple scalable, animated & mesh, basic animated texture, still scalable texture profile
and simple face. The detailed definitions are given in Table 2.4.

Compared with the previous standards, the simple profile of MPEG-4 is similar to the
coding method in H.263. The difference is that the simple profile has error resilience but
does not have B-frame coding. The simple scalable.profile is the same as simple profile,
but with the rectangular scalability added.- The core profile is the profile with all tools
of the simple profile, temporal scalability, B-VVOP coding and binary shape coding. The
main profile is the profile with all-tools.in core-profile, gray shape coding, interlace and
sprite coding. The other profiles are for particular purposes, such as 2D dynamic mesh

coding and facial animation coding.
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Table 2.3: Profiles and Tools (from[3])

Visual Tools

Simple

Core

Main

Simple
Scalable

Animated
2D Mesh

Basic
Animated

Texture

Still
Scalable

Texture

Simple
Face
Face

Basic

1.1 VOP

2. PVOP

3. AC/DC Prediction

4. AMV Unrestricted MV

Error resilience

1. Sice Resynchronization
2. Data Partitioning

3. Reversible VLC

Sort Header

B-VOP

<

<

<

Method 1/Method 2

quantization

P-VOP based
temporal scalability
1. Rectangular

2. Arbitrary Shape

<

Binary Shape

Grey Shape

Interlace

Sprite

<|I<|<|<

Temporal Scalability

(Rectangular)

Spatial Scalability
(Rectangular)

Scalable Still
Texture

2D Dynamic Mesh
with uniform topology

2D Dynamic Mesh
with Delaunay topology

Facial Animation

Parameters

32




Chapter 3

Intel’s MMX Technology and Tools for

Software Optimization

As discussed previously, our goal is:to achieve real-time implementation of MPEG-4
video encoder using Intel’s MMX technology. “In.this chapter, we will introduce Intel’s
MMX technology including features-of MMX, instruction set of MMX and extensions
of MMX termed SSE and SSE2:. We also introduce the software tools we use to help

development.

3.1 Intel’s MMX Technology (from [8], [9] and [10])

The multimedia extensions (MMX) for the Intel Architecture (IA) were designed to en-
hance performance of advanced media and communication applications. The MMX tech-
nology introduces new general-purpose instructions. These instructions operate in parallel
on multiple data elements packed into 64-bit quantities. These instructions accelerate the
performance of applications with compute-intensive algorithms that perform localized, re-
curring operations on small native data. This includes applications such as motion video,
combined graphics with video, image processing, audio synthesis, speech synthesis and
compression, telephony, video conferencing, 2D graphics, and 3D graphics.

The MMX technology uses the single instruction, multiple data (SIMD) technique.

This technique speeds up software performance by processing multiple data elements in
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Figure 3.1: MMX execution environment.

parallel, using a single instruction. s«The MMX-technology supports parallel operations on

byte, word, and doubleword data elements, and the new quadword (64-bit) integer data

type.

3.1.1 MMX Technology Overview

The MMX technology defines a simple and flexible SIMD execution model to handle
64-bit packed integer data. This model adds the following new features to the 1A: New
data types, MMX registers and enhanced instruction set. All MMX instructions operate

on MMX registers, the general-purpose registers, and/or memory as shown in Figure 3.1.

e MMX registers: These MMX registers are used to perform operations on 64-bit

packed integer data.

e General-purpose registers: The eight general-purpose registers are used along with

the existing 1A-32 addressing mode to address operands in memory.
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Figure 3.2: MMX packed data types (from [8]).

MMX Data Types

The MMX technology introduced the following four new 64-bit data types as illustrated
in Figure 3.2:

e Packed byte: 8 bytes packed into one 64-bits quantity.
e Packed word: 4 words packed into one 64-bits quantity.
e Packed doubleword: 2 doubleword packed into one 64-bits quantity.

e Packed quadword: One 64-bits quantity.

The 64 bits are numbered 0 through 63. Bit 0 is the least significant bit (LSB), and
bit 63 is the most significant bit (MSB). The low-order bits are the lower part of the data
element and the high-order bits are the upper part of the data element. Bytes in a multi-
byte format have consecutive memory addresses. The ordering is little endian. That is,

the bytes with lower addresses are less significant than the bytes with higher addresses.
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Figure 3.3: MMX register set.

MMX Registers

The MMX register set consists of eight 64-bit registers as shown in Figure 3.3, which
are used to perform calculations on the MIMX packed: data but cannot be used to address
memory. Values in MMX registers have the same format as a 64-bit quantity in memory.
These registers are aliased to the-floating-peintregisters. The MMX instructions access

the MMX registers directly using the register names MMO to MM7.

Enhanced Instruction Set

The MMX instruction set supplies a set of instructions that operate in parallel on all
data elements of a packed data type. The MMX instructions implement two principles:

operation on packed data and saturation arithmetic.

e Operations on packed data: The MMX uses the SIMD technique for performing
arithmetic and logic operations on bytes, words or doublewords packed into MMX

registers as shown in Figure 3.4.

e Saturation arithmetic: When performing integer arithmetic, an operation may result
in an out-of-range condition, where the true result cannot be represented in the
destination format. The MMX technology provide three ways to handle out-of-

range conditions.
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Figure 3.4: SIMD execution model (form [9]).

1. Wraparound arithmetic. With wraparound arithmetic, an out-of-range value is
truncated. That is, the carry or overflow bit is ignored and only the least signif-
icant bits of the result are return to the destination. Wraparound arithmetic is
suitable for applications that control the range of operands to prevent out-of-
range results in the end. If the range of operands is not controlled, wraparound

arithmetic can lead ta-large errors.

2. Signed saturation arithmetic:*With'singed arithmetic, out-of-range values are
limited to the representable range of signed integers for the integer size being

operated on.

3. Unsigned saturation arithmetic. With unsinged arithmetic, out-of-range values
are limited to the representable range of unsigned integers for the integer size

being operated on.

3.1.2 MMX Instruction Sets Introduction

This section provides an overview of MMX instruction groups. Detailed information on
instructions, can be found in [10]. The MMX instructions are grouped into the following

categories:
e Data transfer

e Arithmetic
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Comparison

Conversion

Unpacking

Logical
e Shift
e Empty MMX state instruction (EMMS)

Table 3.1 gives a summary of the instructions in the MMX instruction set.

Data Transfer Instructions

We can transfer 32-bit or 64-bit data from memery to MMX registers and visa versa, or
from integer registers to MMX registers-and viSa versa by a single instruction. We can
transfer 32-bit data by MOVD and 64-bit data-by MOVQ.

Arithmetic

The arithmetic instructions perform addition, subtraction, multiplication, and multiply-
add operation on packed data types. For example, PADDB, PADDSB and PADDUSB
instructions add signed or unsigned packed byte integers in wraparound mode, signed
packed byte integers in signed saturation mode, unsigned packed byte integers in unsigned

saturation mode, respectively.

Comparison Instructions

The comparison instructions compare the packed data in the source and destination operands
for equal to or greater than. These instructions generate a mask of ones or zeros which

are written to the destination operand.

38



Table 3.1: MMX Instruction Set Summary

Category Wraparound Signed Usinged
Saturation Saturation
32-bit Transfers 64-bit Transfers
Data Transfer
Register to Register MOVD MOVQ
Load from Memory MOVD MOVQ
Store to Memory MOVD MOVQ
Arithmetic
Addition PADDB, PADDW, PADDSB, PADDUSB
PADDD PADDSW PADDUSW
Subtraction PSUBB, PSUBW, PSUBSB, PSUBUSB,
PSUBD PSUBSW PSUBUSW
Multiplication PMULL, PMULH
Multiply and Add PMADD
Comparison
Compare for Equal PCMPEQB,
PCMPEQW,
PCMPEQD
Compare for PCMPGTPB,
Greater Than PCMPGTPW,
PCMPGTPD
Conversion
Pack PACKSSWB, PACKUSWB
PACKSSDW
Unpack
Unpack High PUNPCKHBW,
PUNPCKHWD,
PUNPCKHDQ
Unpack Low PUNPCKLBW,
PUNPCKLWD,
PUNPCKLDQ
Packed Full 64-bit
Logocal
And PAND
And Not PANDN
Or POR
Exclusive OR PXOP
Shift
Shift Left Logical PSLLW, PSLLD PSLLQ
Shift Right Logical PSRLW, PSRLD PSRLQ

Shift Right Arithmetic

PSRAW, PSRAD

Empty MMX State

EMMX
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FD: C| B A{

64-Bit DEST

Figure 3.5: PACKSSDW instruction operation using 64-bit operands (form [10]).

Conversion Instructions

The conversion instructions perform conversions between the packed data types. For ex-
ample, PACKSSDW instruction converts packed signed doubleword integers into packed
signed word integers, using saturation to handle overflow conditions as shown in Figure

3.5 for an example of the packing operation.

Unpack Instructions

The unpack instructions unpack-bytes, words, or doublewords from the high- or low-
order elements of the source and destination operands and interleave them in destination
operand. By placing all Os in the source operand, these instruction can be used to convert
byte integers to word integers, word integers to doubleword integers, or doubleword in-
tegers to quadword integers. For example, The PUNPCKLBW instruction interleaves the

low-order bytes of the source and destination operands as shown in Figure 3.6

SRC| Y7 |Y6 | Y5 | Y4 *0 |DEST

Figure 3.6: PUNPCKLBW instruction operation using 64-bit operands (from [10])
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Logical Instructions

The logical instructions perform bitwise logical operations on 64-bit quantities. For ex-
ample, we can generate a zero register in MMO by using “PXOR mmO0, mm0.”

Shift Instructions

The shift instructions have two types: logical shift and arithmetic shift. Logical shift
instructions perform a logical left or right shift of the data elements and fill the empty high
or low order bit position with zeros. Arithmetic shift instructions perform an arithmetic
right shift, copying the sign bit for each data elements into empty bit positions on the

upper end of each data elements.

EMMS Instructions

The EMMS instruction empties thesMM X state.This-instruction must be used to clear the
MMX state at the end of an MMX routine before calling other routines that can execute

floating-point instructions.

3.1.3 SSE and SSE2, Later Extensions of MMX Technology

The streaming SIMD extensions (SSE) were introduced into 1A-32 architecture in the
Pentium 111 processor family and the stream SIMD extensions 2 (SSE2) were introduced
into 1A-32 architecture in the Pentium 4 and Intel Xeon processor.

Overview of SSE Extensions

The SSE extensions extend the SIMD execution model, by adding facilities for handling
packed or scalar single-precision floating-point values contained in 128-bit registers. The

SSE extension add the following features to the 1A-32 architecture.
e Eight 128-bit data registers, call the XMM registers named by XMMO to XMM?7.

e The 32-bit MXCSR register, which provides control and status bits for operations

performed on the XMM registers.
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e The 128-bit packed single-precision floating-point data (four IEEE single-precision

floating-point values packed into a double quadword).

e Instructions that perform SIMD operation on single-precision floating-point values

and that extend the SIMD operations that can be performed on integers:

— 128-hit packed and scalar single-precision floating-point instructions that op-

erate on operands located in XMM registers.

— 64-bit SIMD integer instructions that support additional operations on packed

integer operands located in the MMX registers.
¢ Instructions that save and restore the state of MXCSR register.

e Instruction that support explicit prefetching of data, control of the cacheability of

data, and control the ordering of store'operations.

e Extensions to the CPUID instruction:;

SSE Programming Environment

Figure 3.7 shows the execution environment:-for the SSE extensions. All SSE instructions

operate on the XMM registers and/or memory as follows:

e XMM registers: These eight registers are used to operate on packed or scalar single-
precision floating-point data. The scalar operations are performed on individual
single-precision floating-point values stored in low doubleword of an XMM regis-

ter.

e MXCSR register: This 32-bit register provides status and control bits used in SIMD

floating-point operations.
e MMX registers: This portion is the same as MMX.
e General-purpose registers: This portion is the same as MMX.

e EFLAGS register: This 32-bit register is used to record results of some compare

operations.
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Figure 3.7: SSE execution environment (from [9]).

SSE Instruction Set

The SSE instructions are divided-into four functional groups

e Packed and scalar single-precision floating instructions.

e 64-bit SIMD integer instructions

e State management instructions

e Cacheablility control, prefetch, and memory ordering instructions.

The instructions we used are 64-bit SIMD integer instructions for example, PSADBW.

Detailed information on SSE instructions can be found in [9]

Overview of SSE2 Extensions

The SSE2 extensions use the same SIMD execution model that is used with the MMX

technology and SSE extensions. The SSE2 extensions add the following features to the

IA-32 architecture.

e Five data types:
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— 128-hit packed double-precision floating-point (two IEEE Standard 754 double-

precision floating-point values packed into a double quadword).

128-bit packed byte integers.

128-bit packed word integers.

128-Dbit packed doubleword integers.

128-bit packed quadword integers.

Instructions that support explicit prefetching of data, control of the cacheabil-

ity of data, and control the ordering of store operations.

e Instructions to support the additional data type and extend existing SIMD integer

operations:

— Packed and scalar double-precision floating-point instructions.
— Additional 64-bit and428-bit SIMD integer instructions.

— 128-bit versions of SEIMD integer instructions introduced with MMX technol-

ogy and the SSE extensions.

— Additional cacheability-control'and instruction-ordering instructions.

The SSE2 program environment is same as SSE and no new registers are defined with the

SSE2 extensions.

SSE?2 Instruction Set

The SSE2 instructions are divided into four functional groups
e Packed and scalar double-precision floating instructions.
e 64-bit SIMD and 128-bit SIMD integer instructions

e 128-bit extensions of SIMD integer instructions introduced with the MMX technol-

ogy and the SSE extensions
e Cacheablility-control and instruction-ordering instructions.
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The instructions we used are 128-bit SIMD integer instructions. All of the 64-bit SIMD
integer instructions introduced with the MMX technology and the SSE extensions have
been extended with the SSE2 extensions to operate on 128-bit packed integer operands
located in the XMM registers. For example, where the 64-bit version of PADDB instruc-
tion operates on 8 packed bytes, the 128-bit version has been extended to operate on 16

packed bytes. Detailed information on SSE2 instructions can be found in [9]

3.2 Software Tools for Implementation

In this section, we introduce some tools that help software development. The first is Intel
C++ compiler. The compiler is used to compile C and C++ code for Intel 1A-32 and
Itanium-based systems running Microsoft operating systems. The second is the “VTune
Performance Analyzer,” which can help to analyze the performance of applications by

locating hotspots. Hotspots are areas in code that.take-a long time to execute.

3.2.1 Intel C++ Compiler (from-[11})

The Intel C++ compiler optimizes performance forapplications running on Intel architecture-
based computers. The features and benefits of Intel C++ compiler are summarized in
Table 3.2. This compiler has minimum system requirements including hardware and soft-

ware. In order to use this compiler correctly we suggest to read the Release Note first.

3.2.2 Intel VTune (from [12])

Intel VTune Analyzer helps to locate and remove software performance bottlenecks by
collecting, analyzing, and displaying performance data from the system-wide level down
to the source level. The VTune Analyzer provide multiple profiling technologies that
enable optimization across multiple operating system platforms and development envi-

ronments and support the latest Intel processors.
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Table 3.2: Features and Benefits of Intel C++ Compiler (from [11])

‘ Features Benefits ‘

High Performance Achieve a significant performance gain by using optimizations

Support for Streaming SIMD Extensions  Advantage of new Intel microarchitecture

Automatic vectorizer Advantage of parallelism in your code achieved automatically
OpenMP Support Shared memory parallel programming

Floating-point optimizations Improved floating-point performance

Data prefetching Improved performance due to the accelerated data delivery
Interprocedural optimizations Achieve a significant performance gain by optimizing

between modules

Whole program optimization Improved performance between modules in larger applications

Profile-guided optimization Improved performance based on profiling frequently-used
functions

Processor dispatch Taking advantage of the latest Intel architecture features

while maintaining object code compatibility with previous generations of

Intel PentiumR processors

Performance Tuning

Performance tuning helps to optimize code and make the maximum use of the latest Intel
architecture. Figure 3.8 is a performance tuning methodology for analyzing and tuning
application and system performance. Thisis'the'methodology generally recommended by
performance analysts at Intel.

Data Collectors

To optimize the performance of our application or system, we can do one or more of the

following to find the performance bottlenecks:

e Determine how our system resources, such as memory and processor, are being

utilized to identify system-level bottlenecks.
e Measure the execution time for each module and function in our application.

e Determine how the various modules running on our system affect the performance

of each other.
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e Determine how our application is executing at the processor level to identify microarchitecture-

level performance problems.

The VTune Analyzer can find the above information by automating the process of data
collection with three types of data collectors, namely, sampling, call graph, and counter
monitor. We need to use the right collector or use a combination of collectors based on
their characteristics to collect the type of data that will help address the problem we are
trying to isolate. Table 3.3 shows the characteristics of each collector. Knowing the char-
acteristics will help us make the right decision when choosing collectors for performance

tuning.
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Table 3.3: Functional Units and Operations Performed (from [12])

Characteristics

Sampling

Call Graph

Counter Monitor

Intrusiveness

Non-intrusive.

Intrusive

Non-intrusive

System-wide per-

formance data

Provides system-wide software per-

formance data.

Only application-specific data.

Provides system-wide hardware
and software performance counter
data.

Parent and child
function relation-

ship

Does not determine the “relation=

ships.

Determine s the 'relationships and
critical-calls-and call sequences

Does not associate counter data
with a specific application or code.

Program flow

Does not determine program flow
but provides a statistical analysis of

the data collected on an application.

Determines program flow of an ap-
plication.and displays the data func-
tion calls and critical call sequences

in graphs and charts.

Does not determine program flow
since data is not associated with any

application.

System
and micro-
architecture-level

performance data

Monitors processor events, such
as Cache Misses, to help iden-
tify microarchitecture-level perfor-
mance problems associated with

specific sections of your code.

Does not monitor

microarchitecture-level perfor-

mance problems.

Monitors hardware and software
performance counters over a speci-
fied duration to help identify system
and microarchitecture-level perfor-

mance data.
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Chapter 4

MPEG-4 Video Encoder Optimization
by Intel MMX Technology

We now discuss our optimization ofithe the video encoder using Intel MMX technol-
ogy. Our implementation employs the public source*Microsoft MPEG-4 Visual Refer-
ence Software (version: Microsoft-FDAMZ1-2.4-021205) as the basis, and we optimize
both frame-based and shape-based video encoding. And our development system is based
on Intel Pentium 4 CPU 2.66G, 480MB RAM and Microsoft Windows XP Professional
Version 2002, Service Pack 1. In section 4.1, we introduce the Microsoft MPEG-4 Visual
Reference Software. In section 4.2, we discuss our approaches to code acceleration. And

lastly in section 4.3, we give a conclusion.

4.1 Introduction to Microsoft MPEG-4 Visual Reference

Software

The Microsoft MPEG-4 Video Reference Software is a public source for encoding and
decoding video sequence using the MPEG-4 compression format. The C++ code of this
reference software is provided in three executables. Theses are encoder.exe, decoder.exe
and converpar.exe. The convertpar.exe is a utility program for upgrading from old to new

parameter files.
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Table 4.1: Source Files and Directories Arrangement of MPEG-4 Video Reference Soft-

ware
Encoder
\app'\encoder\encoder.dsp Encoder project file
\app\encoder\encoder.cpp Encoder main()
\sys Common files
\sys\encoder Encoder specific
\tools
\type Common types
\vtc Wiavelet code
Decoder
\app\decoder\decoder.dsp Decoder project file
\app\decoder\decoder.cpp Decoder main()
\sys Common files
\sys'\decoder Decoder specific
\tools
\type Common types
\vtc Wavelet code
Paremeter File Conversion Utility
\app\convertpar\convertpar.dsp | Convertpar project file
\app\ convertpar\convertpar.copp | Convertpar main()

The source files and directories are arranged as Table 4.1. and Table 4.2 indicates
which tools are supported in this software. The funtionalities defined by this reference
software conforms to main and simple scalable profiles of MPEG-4. Not all the function-
alities of MPEG-4 are present, only natural video is covered. System layer functionality
and 3D/SNHC parts are not included. We try to optimize this software without affecting

the original functionality.
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Table 4.2: Funtionalities of Microsoft MPEG-4 Video Reference Software

Tool Version | Comments

Basic 1 Supported

(I-VOP, P-VOP, AC/DC Prediction, 4MV, Unresticted

MV)

B-VOP 1 Supported. No MPEG rate control.

P-VVOP with OBMC 1 Supported

Method 1, Method 2 Quantisation 1 Supported

Error Resilience 1 Syntax only.No recovery from error
supported.

Short Header (H.263 emulation) 1 Decode only.

Binary Shape (progressive) 1 Supported. No automatic VOP gen-
eration.

Grayscale Shape 1 Supported

Interlace 1 Supported

N-Bit 1 Supported

Sprite 1 Supported. No warping parameter
estimation.

Still Texture 1 Supported

Dynamic Resolution Conversion 2 Supported

NEWPRED 2 Upstream signaling is simulated not
implemented.

Global Motion Compensation 2 Supported

Quarter-pel Motion Compensation 2 Supported

SA-DCT 2 Supported

Error Resilience for Still Texture Coding 2 Supported

Wavelet Tiling 2 Supported

Object Based Spatial Scalability (Base) 2 Supported

Object Based Spatial Scalability (Enhancement) 2 Supported

Multiple Auxiliary Components 2 Supported

Complexity Estimation Support 2 Bitstream syntax supported only.
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Figure 4.1: Breakdown of execution time mn-Micresoft MPEG-4 Visual Reference Soft-

ware.

4.2 Code Acceleration

Figure 4.1 shows breakdown of complexity (execution time) of different functions in the
Microsoft MPEG-4 Visual Reference Software. The test sequence is CIF Foreman with
the encoding sequence “I B B P | B B P” and we use a binary mask for object based cod-
ing. As we can see, the functions motion estimation, VOP formation, DCT, IDCT, motion
compensation, quantization and inverse quantization (IQ) occupy most of the execution
time. In order to accelerate the encoder, we have to optimize these functions.

We explore methods to accelerate the encoder. These methods fall into two categories.
One is to use MMX technology to modify the most computation-intensive kernel opera-
tions of the encoder while the other is at algorithm level. The first category attempts to
enhance the parallelism by using suitable MMX instructions, while the second modifies

the video coding algorithm for decreasing complexity.
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Table 4.3: Major Functions of Motion Estimation

Functions Execution Time Rate w.r.t. whole encoder | Execution Time Rate w.r.t. ME
blkmatch16 64.66% 69.04%
blkmatch16WithShape 23.88% 25.50%
blkmatchForShape 4.07% 4.34%
blockmatch8 0.22% 0.23%
blockmatch8WithShape 0.03% 0.03%
Others 0.79% 0.85%

Hotspots code segment of blkmatch16

Clockticks Events per VOP

for (iy = 0; iy < MB_SIZE; iy++){
for (ix =0; ix < (MB_SIZE; ix++)
mbDiff += abs (ppxlcTmpC [ix] - ppxIcRefMB [ix]);
if (mbDiff >= iMinSAD)
goto NEXT_POSITION; //skip the current.position
ppxIcRefMB += m_iFrameWidthY;
ppxlcTmpC += MB_SIZE;

17,665,616
354,874,222
624,059,434

63,822,424

14,245,596
11,929,677

Figure 4.2: Code segment'of hotspots of blkmatch16.

4.2.1 Motion Estimation Optimization

Figure 4.1 shows that the most computation is spent on functions relating to motion esti-

mation. Hence our first target is to reduce the complexity of these functions. The major

functions of motion estimation are summarized in Table 4.3 and we also show the percent-

age complexity of each function with respect to the encoder and to the motion estimation.

Optimization of blkmatch16

The blkmatch16 function finds the best matched MB in the previous reconstructed VOP

and is applied to MBs which are totally in VOP. The search method in the original refer-

ence software is spiral full search. To reduce the complexity we need to find the hotspots.

The hotspots of blkmatch16 are shown in Figure 4.2.
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As we can see, the most complexity is to calculate SAD (sum of absolute differences)
at integer pixel displacements. In order to reduce the complexity we use MMX instruc-
tions to modify the original loop. Firstly, we do not change the search algorithm (using
full search as the original code). We just modify the SAD kernel by using MMX instruc-
tions. The modified code is shown in Figure 4.3.

The major instruction we use is “psadbw.” The psadbw instruction computes the ab-
solute differences of 8 unsigned byte integers using 64-bit operands. These 8 differences
are then summed to produce an unsigned word integer result that is stored in the destina-
tion operand. Figure 4.4 shows the operation of the psadbw instruction. The original C++
code contains a premature breakout mechanism that saves iterations loop by comparing
the SAD value accumulated after each row with the current minimum SAD value. Ac-
cording to [13], this premature breakout mechanism will decrease the efficiency. But after
experiment we find that if we comment out this: mechanism the efficiency will be a little
lower than we keep it and unroll the loop:four times so that each loop iteration calculates
the SAD for 4 rows of the macroblock.

We also modify the SAD kernel of half-sample search by MMX instruction. The
original C++ code is shown in Figure 4.5.

As we can see, the SAD kernel of half sample motion search is a little different from
the SAD kernel of integer pixel search. The difference is that the half sample positions in
the reference VOP for calculating SAD are not continuous. We need to modify the MMX
SAD kernel of integer pixel search to suit this condition for efficiently. The modified code
is shown in Figure 4.6. The major differences with MMX SAD kernel of integer pixel
search are that we need to shift pixel values in MMX register left and right to reserve
pixel values we need. Then we pack the pixel values in two MMX registers to one for
psadbw instruction.

After modifying the original code by the above methods, the number of clockticks
events of blkmatch16 is reduced to around 91M clockticks events per VOP, achieving a

1936% speedup comparing with the original code. We show the comparison in Table 4.4.
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for (iy = 0; iy < 4; iy++){

_asm

{
pxor mm6, mme6;
pxor mm7, mm7;
mov edx, ppxIcRefMB;
mov ebx, ppxlcTmpC;
movg mm1,[edx]; //read 1st 8 pixels of reference block
movq mm2,[edx+8]; // read next 8 pixels of reference block
psadbw mm1, [ebx]; // calculate SAD of pairs of 1st 8 pixels
psadbw mmz2, [ebx+8]; // calculate SAD of pairs of next 8 pixels
paddw mm6, mm1; // add to buffer for final SAD
paddw mm7, mm2; // add to buffer for final SAD
mov eax, dword ptr [iFrameWidthY] // Calculate SAD of next row
movg mm1, [edx][eax];
movg mmz2, 8[edx][eax];
psadbw mm1, [ebx+16];
psadbw mm2, [ebx+24];
paddw mm6, mml,;
paddw mm7, mm2;
mov eax, dword ptr [iFrameWidthYx2]; // Calculate SAD of 3rd row
movqg mm1, [edx][eax];
movg mmz2, 8[edx][eax];
psadbw mm1, [ebx+32];
psadbw mm2, [ebx+40];
paddw mm6, mml;
paddw mm7, mm2;
mov eax, dword ptr [iFrameWidthYx3]; // Calculate SAD of 4th row
movq mm1, [edx][eax];
movg mmz2, 8[edx][eax];
psadbw mm1, [ebx+48];
psadbw mm2, [ebx+56];
paddw mm6, mm1l;
paddw mm7, mm2;
paddd mm7, mme; // Calculate the SAD of 4 rows
movd eax, mm7;
add  eax, dword ptr [mbDiff]
mov  dword ptr [mbDiff], eax
emms

if (mbDiff >= iMinSAD)

goto NEXT_POSITION; // skip the current position
ppxIcRefMB += iFrameWidthYx4;
ppxIcTmpC += iMB_SIZEx4;

Figure 4.3: Revised code segment of SAD kernel of integer pixel motion search.

55




SRC AT *6 x5 x4 X3 X2 X1 X0

DEST| y7 YE Y5 ¥4 Y3 Y2 Y1 Y0

TEMP |ABS(X7-Y7)| ABS({¥6-Y8)| ABS(X5-v5)| ABS(¥4-v4)| ABS(X3-v3)| ABS(X2-¥2Z) | ABS(X1-¥ 1) ABS(X0-v0)

DEST 00H 00H 00H 00H 00H DOH | SUMTEMFT..TEMPO)

Figure 4.4: PSADBW instruction operation using 64-bit operands(from [10]).

for (iy = 0; iy < MB_SIZE; iy++){
for (ix = 0; ix < MB_SIZE; ix++)
mbDiff += abs (ppxIcTmpC [ix] - ppxlcRefZoomMB [2 * ix]);
if (mbDiff > iMinSAD)
goto NEXT_HALF_POSITION;
ppxlcRefZoomMB += m_iFrameWidthZoomY * 2;
ppxlcTmpC += MB_SIZE;

Figure 4.5: Original code segment of the SAD kernel of half pixel motion search.

Table 4.4: Execution Result of Optimized blkmatch16 Function Using MMX

Function Clockticks/VOP of Original Code | Clockticks/VOP of Modified Code | Speedup

blkmatch16 1,763,013,601 91,043,523 1936.45 %

56




for (iy = 0; iy < MB_SIZE ; iy++) {

_asm{
mov eax, ppxlcTmpC;
mov ecx, ppxlcRefZoomMB;
movg mm1, [eax];
movg mm2, [eax + 8];
movg mma3, [ecx]; // read 1st 8 pixels of reference zoom block
movq mm4, [ecx + 8]; // read next 8 pixels of reference zoom block
movg mmb5, [ecx + 16];
movq mm6, [ecx + 24];
psllw mma3, 8; // shift left to reserve pixels we need
psllw mm4, 8;
psliw mmb5, 8;
psliw mmé, 8;
psrlw mma3, 8; // then shift right for packuswhb instruction
psrlw mm4, 8;
psrlw mmb5, 8;
psrlw mme, 8;
packuswb mm3, mm4; // pack the two 4 pixels to one MMX register
packuswb mm5, mme;
psadbw mm1, mm3;
psadbw mm2, mmb5;
paddd mm1, mmz2;
movd temp, mm1;

}

mbDiff += temp;

if (mbDiff > iMinSAD)
goto NEXT_HALF_POSITION;

ppxlcRefZoomMB += m_iFrameWidthZoomY * 2;

ppxlcTmpC += MB_SIZE ;

Figure 4.6: Revised code segment of the SAD kernel of half pixel motion search.
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for (iy = 0; iy < MB_SIZE; iy++) {

for (ix = 0; ix < MB_SIZE; ix++) {

if (ppxlcTmpCBY [ix] != transpValue)

mbDiff += abs (ppxIcTmpC [ix] - ppxIcRefMB [ix]);

}
if (mbDiff > iMinSAD)

goto NEXT_HALF_POSITION; // skip the current position
ppxIcRefMB += m_iFrameWidthY;
ppxlcTmpC += MB_SIZE;
ppxlcTmpCBY += MB_SIZE;

Figure 4.7: Code segment of hotspots of blkmatch16WithShape function.

Table 4.5: Execution Result of Optimized blkmatch16WithShape Function Using MMX

Function Clockticks/VVOP of Original Code | Clockticks/VVOP of Modified Code | Speedup

blkmatch16WithShape 651,183,211 95,240,399 683.73%

Optimization of blkmatch16WithShape

The blkmatch16WithShape functien is‘the same as.blkmatchl6 but is applied to MBs
which are on the boundary of VOP. The ‘hotspots of blkmatch16WithShape is the same
as blkmatchl6, that is, integer pixel SAD computation for the MB. The original code is
shown in Figure 4.7.

The SAD kernel adds a conditional statement “if (ppxlcTmpCBY [ix] != transp-
Value)” because the pixels out of VOP will not be calculated in SAD computation. We
modify our optimized integer pixel SAD kernel of blkmatch16 to include this conditional
statement. The modified code is in Figure 4.8. The major differences with MMX integer
SAD kernel of blkmatch16 are that we use 128-bit SIMD integer instructions of SSE2 to
handle 16 pixels in a single instruction and we use pand instruction to substitute the added
conditional statement. After modifying the original code, the execution result is shown in

Table 4.5.
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for (iy = 0; iy < MB_SIZE; iy++){

_asm{
mov eax, ppxlcTmpCBY:; // move the memory address of current BAB MB to eax
mov ecx, ppxlcTmpC; // move the memory address of current MB to ecx
mov edx, ppxIlcRefMB; // move the memory address of reference MB to eax
movdqu xmma0, [eax]; // read 16 pixels of current BAB MB
movdqu xmm1, [ecx]; //read 16 pixels of current MB
movdqu xmm2, [edx]; // read 16 pixels of reference MB
pand xmm1, xmm0O;  // Using pand to substitute the original "if statement"
pand xmm2, xmmo;
psadbw xmm1, xmm2;
movdga xmm3, xmm1;
psrldg xmma3,8;
ddd xmm1, xmm3;
vd temp, xmm1;
emms;

}

mbDiff += temp;

if (mbDiff > iMinSAD)
goto NEXT_POSITION; // skip the current position

ppxIcRefMB += m_iFrameWidthY;

ppxlcTmpC += MB_SIZE,;

ppxIcTmpCBY += MB_SIZE;

Figure 4.8: Revised code segment of integer pixel SAD kernel of blkmatch16WithShape

function.
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Table 4.6: Execution Result of Optimization of Motion Estimation Using MMX

Encoder Block Clockticks/VVOP of Original Code | Clockticks/\VOP of Modified Code | Speedup

Motion Estimation 2,553,489,414 203,983,469 1251.81%

Optimization of Other Functions

The hotspots of the other functions for motion estimation are mostly the integer pixel
SAD computation of 16 x 16 or 8 x 8 block. The optimization method is almost the same.
We only use MMX or SSE2 instructions to modify the SAD kernel with full search. We
do not go through the detail methods for optimizing each functions. We introduce each
function and summarize the experimental result after we optimize all major functions for
motion estimation.

The blkmatchForShape function finds best 'matched binary alpha plane MB. After
searching for 16 x 16 motion vectors; additional search-is made for 8 x 8 vectors. Again,
the search is made with integer pixel displacements and for the Y component. The same
as 16 x 16 motion estimation, the 8 x.8 integer.motion estimation also employs block-
matching. Using the 16 x 16 motion vector as the search center, the search range of
8 x 8 motion estimation is £2 pixels. The blockmatch8 and blockmatch8WithShape are
functions to implement the 8 x 8 integer motion estimation with respect to MB totally in
VOP and MB on VOP boundary. Table 4.6 shows the summary result of optimization for
motion estimation using MMX. The clockticks per VOP is reduced from 2,553,489,414
to 203,983,469, which is 92.01% reduction.

4.2.2 Motion Estimation Optimization Using Fast Motion Search

Besides using MMX technology with full-search (FS) motion estimation to speed up the
functions for motion estimation, we also consider some fast search methods: two dimen-
sional logarithm search (2DLS) [13], diamond search (DS) [16] and new diamond search
(NDS) [15] to optimize blkmatch16 and blkmatch16WithShape functions to reduce the

execution time furthermore.

60



The 2DLS is similar to a binary search. First, the algorithm computes SAD(i,j)
at 9 locations within the search region: (0,0) and 8 points located along the rectangle
[-SR/2,SR/2] where SR is the search range. Using the best matched location as the
new starting point (0,0), the algorithm computes SAD(i,j) at 9 more locations: the new
starting point and 8 points located along the rectangle [—-SR/4, S R/4]. This process con-
tinues until the search region cannot be divided further. Figure 4.9 show an example of
2DLS.

The method of diamond search is a suitable way for slow-moving video. Figure 4.10
illustrates the method. With the center point corresponding to zero MV as initial point,
the first step involves ME based on 1-pel/1-line resolution at the four locations denoted
1. If the best solution is the center point, the motion estimation is finished. Otherwise,
repeat the same method of the first step using the best solution of the last search step as
the center point.

The new diamond search method jis-shown'in Figure 4.11. The search procedure is

summarized as follows.

e Step 1: The initial large diamond search pattern.(LDSP) is centered at the origin of
the search window, and the 9 check-points of LDSP are tested. If the best matched

point is located at the center position, go to Step 3; otherwise, go to Step2.

e Step 2: The best matched point found in the previous search step is re-positioned
as the center point to form a new LDSP. If the new best matched point obtained is

located at the center position, go to Step 3; otherwise, recursively repeat this step.

e Step 3: Switch the search pattern form LDSP to small diamond search pattern

(SDSP). The best matched point in this step is the final solution.

The SAD kernel of these methods is the same as described last section and Table 4.7

gives a comparison of these fast motion search methods.

Summary

Table 4.8 gives the summary results of optimization for motion estimation using MMX

and fast motion search methods. The clockticks per VOP for full search by using MMX/SSE2
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Figure 4.9: The method of 2D-legarithmic search (from [13]).

Figure 4.10: The method of diamond search (from [16]).
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Figure 4.11: The method of new diamond search (from [15]).

Table 4.7: Execution Results of Optimization of blkmatch16 and blkmatch16WithShape
Using Fast Motion Search Method

Function Search Approach Clockticks/VOP | Speedup Respect to Original Code
blkmatch16 Original Code 1,763,013,601 None
2D Logarithmic Search 6,381,165 27628.40%
Diamond Search 3,666,585 48083.26%
New Diamond Search 4,275,402 41236.20%
blkmatch16WithShape | Original code 651,183,211 None
2D logarithmic search 5,089,205 12795.38%
Diamond search 3,224,729 20193.42%
New diamond search 3,981,227 16356.35%
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Table 4.8: Execution Result of Optimization of Motion Estimation

Encoder Block Search Approach

Clockticks/VOP

Speedup respect to original code

Motion Estimation | Original code
Full search with MMX
2D logarithmic search

Diamond search

New diamond search

2,553,489,414
203,983,469
29,700,425
24,448,053
27,836,810

None
1251.81%
8597.48%

10444.55%
9173.07%

only is reduced from 2,553,489,414 to 203,983,469, which is 92.01% reduction. The re-

ductions in clockticks per VOP for fast motion estimation method are 98.84%, 99.04%

and 98.91% for 2DLS, DS and NDS search methods, respectively.

4.2.3 VOP Formation Optimization

MPEG-4 video coding can handle objects within video scenes. In order to get a higher

coding efficiency and to handle VYOPs with-arbitrary shape, the encoder needs to create a

rectangle that completely contains'the object but'with.the minimum number of MBs in it.

The VOP formation has the following procedure (from [6]).

1. Generate the tightest rectangle with even numbered top left position.

2. If the top left position of this rectangle is the same as the origin of the image frame,

skip the formation procedure. Form a control MB at the top left corner of the

tightest rectangle as shown in Figure 4.12.

3. Count the number of MBs that completely contain the object, starting at each even

numbered point of the control MB. The details are as follows:

(a) Generate a bounding rectangle from the control point to the right bottom side

of the object which consists of multiples of 16x16 blocks.

(b) Count the number of MBs in this bounding rectangle, which contains at least

one object pixel. It is sufficient to take into account only the boundary pixels

of an MB.
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Control MB

Q- } B B r T_i_ghtest_Rectaqgle
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: ] ' Bounding
Box

t Intelligently generated VOP
© : controlpoint

Figure 4:12: VOP formation (from [6]).

4. Select that control point that results in the smallest number of MBs for the given

object.

5. Extend the top left coordinate of the tightest rectangle generated in Figure 4.12 to
the selected control coordinate. This will create a rectangle that completely contains

the object but with the minimum number of MBs in it.

The Microsoft MPEG-4 Visual Reference Software has two functions to implement
the above procedure for VOP formation: findTightBoundingBox and findBestBounding-
Box. The clockticks of findBestBoundingBox are 20 times than findTightBoundingBox.
We target at reducing the complexity of findBestBoundingBox.

After we examine the code, we find that the hotspots is the for-loop shown in Figure
4.13. The loop is used for counting the number of MBs in this bounding rectangle which
contains at least one object pixel, as described in Step 3(b) of the above procedure.

We use MMX instructions to sum one row of binary alpha plane to substitute for the

“for (UInt iX = 0; iX < MB_SIZE; iX++)” loop. The revised code is shown in Figure
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Ulnt nOpaquePixel = 0;
for (UIntiY =0;iY < MB_SIZE; iY++){
for (UIntiX = 0; iX < MB_SIZE; iX++)
nOpaquePixel += *ppXIcBY ++;
ppxIcBY += m_iFrameWidthY - MB_SIZE;
}
if (nOpaquePixel 1= 0)
nNonTransparentMB++;

Figure 4.13: Code segment of hotspots of findBestBoundingBox function.

for (UIntiY =0;iY < MB_SIZE; iY++) {
_asm{

mov edx, ppxIcBY;
pxor mmO, mmO; // let mmO to be all zero
movg mm1, [edx]; // move 8 pixels of binary block to mm1
movg mm3, [edx+8]; // move next 8 pixels of binary block to mm3
psadbw mm1, mmoO; // sum of 1st 8 pixels
psadbw mm3, mmO; // sum of next 8 pixels
paddd mm1l, mm3; // sum of one row
movd eax, mml1,;
add  eax, dword ptr[nOpaquePixel];
mov  dword ptr [nOpaquePixel], eax;
emms

¥
ppxIcBY += m_iFrameWidthY;

Figure 4.14: Revised code segment of hotspots of findBestBoundingBox function.

4.14 and the execution result is shown in Table 4.9.

4.2.4 DCT and IDCT Optimization

DCT and IDCT are used for the 8 x 8 blocks in the intra and inter pictures. The DCT/IDCT
in Microsoft MPEG-4 Visual Reference Software is Fast DCT using floating-point com-

putation. We implement DCT and IDCT by using matrix multiplication as in the following

equation:
[Ymn]gxs = [Cmn]ngza [an]8><8 [Cmn]gxza
where
Cyn = K, cos [7(2771 i 1)n7r] K, = 12 =0
16 1/2v/2, otherwise.
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Table 4.9: Execution Result of Optimization of findBestBoundingBox Function

Function Clockticks/\VVOP of Original Code | Clockticks/VVOP of Modified Code | Speedup
findBestBoundingBox 27,907,394 5,270,853 529.47%
Table 4.10: Execution Result of Optimization of DCT and IDCT
Function Clockticks/VOP | PSNR_Y | PSNR_U | PSNR_V

Floating-Point Fast DCT/IDCT 22,966,734 35.4783 | 40.2630 | 40.1919
Integer DCT/IDCT with MMX 16,705,303 35.4703 | 40.287 | 40.1541

In order to speed up computation, we use scaled 16-bit integer to substitute the floating-
point coefficients of matrix [C]. We use themethod | C'(m, n) x2'°+0.5] or | —C'(m, n) x
215 4 0.5] [14] to get scaled constants storediind6-bit integer format in an order suitable
for applying the PMADDWD instrugtion.

The revised DCT code is shown in'Figure 4.15 and the implementation of IDCT is
almost the same as DCT except for the transform matrix.

We compare the performance of the integer DCT/IDCT and the floating-point fast
DCT in Table 4.10. As the data show, the PSNR with integer DCT/IDCT is just a little
worse than the floating-point with a 137.48% speedup.

4.2.5 Motion Compensation Optimization

The hotspots of Motion Compensation is the function motionCompEncY. This function
copies data from reference image to the prediction block. And the bottleneck of motion-
CompEncY is as shown in Figure 4.16

We use MMX instructions to substitute the memcpy function and the “for (ix = 0; ix
< 1Size; ix++)” loop in the else-clause. The revised code is shown in Figure 4.17 and

Table 4.11 shows the experimental result.
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short sSDCT[64] = { 23170, 23170, 23170, 23170, 23170, 23170, 23170, 23170, // scaled 16-bit integer transform matrix C
32138, 27246, 18205, 6393 , -6393,-18205,-27246,-32138,
30274, 12540,-12540,-30274,-30274,-12540, 12540, 30274,
27246, -6393,-32138,-18205, 18205, 32138, 6393,-27246,
23170,-23170,-23170, 23170, 23170,-23170,-23170, 23170,
18205,-32138, 6393, 27246,-27246, -6393, 32138,-18205,
12540,-30274, 30274,-12540,-12540, 30274,-30274, 12540,
6393,-18205, 27246,-32138, 32138,-27246, 18205, -6393 };
short y[8][8], *psDCT, *pSrcTemp;
int tempy, tempz, i, j *z = rgiDst;
const PixelC* psrc = rgchSrc;
// 1D row transform
for (i=0; i < BLOCK_SIZE ; i++) {
psDCT =sDCT;
for (j=0; j<8; j++) {
_asm{
mov edx, psrc;
mov ebx, psDCT;
pxor xmmQO, xmmaO;
movqg xmml, [edx]; // move 8 pixel from src to xmm1
movdqu xmm2, [ebx]; // move DCT coeff. to xmm2
punpcklbw xmm1, xmmo0; // unpack 8-bits pixel data to 16-bits
pmaddwd xmm1, xmm2; // multiply and add packed integers
movdga xmm3, xmm1,;
movdga xmm4, xmm1;
movdga xmm5, xmm1;
psrldg xmma3, 4;
psrldg xmm4, 8;
psrldg xmmb5, 12;
paddd xmm1, xmm3;
paddd xmm4, xmm5;
paddd xmm1, xmm4;
movd tempy, xmm1;

}
y[illi] = ((tempy + 32768) >> 16); // Compensation before shift right
psDCT +=8;

psrc += nColSrc;
}
/1 1D column transform
pSrcTemp = &y[0][0];
for (i=0; i < BLOCK_SIZE ; i++) {
psDCT =sDCT,;
for (=0 ; j<8; j++) {
_asm{
mov edx, pSrcTemp;
mov ebx, psDCT;
movdqu xmm1, [edx]; // move 8 value from src after 1D to xmm1
movdqu xmm2, [ebx]; // move DCT coeff. to xmm2
pmaddwd xmm1, xmmz2; // multiply and add packed integers
movdga xmm3, xmm1;
movdga xmm4, xmm1;
movdga xmm5, xmm1;
psrldg xmma3, 4;
psrldg xmm4, 8;
psrldg xmm5, 12;
paddd xmm1, xmm3;
paddd xmm4, xmm5;
paddd xmm1, xmm4;
movd tempz, xmm1;

}
z[j*nColDst + i] = ((tempz + 32768) >> 16); // Compensation before shift right
psDCT +=8;

pSrcTemp +=8;

Figure 4.15: Revised code segment of DCT.
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if ('bYSubPx| && 'bXSubPxl) {
const PixelC* ppxlcRefMB = ppxIcRef
+ m_rctRefFrameY .offset (xHalf>>1, yHalf>>1);
for (iy = 0; iy < iSize; iy++) {
memcpy (ppxIcPred, ppxIcRefMB, iSize*iUnit);
ppxIcRefMB += m_iFrameWidthY;
ppxIcPred += MB_SIZE;

¥
¥
else {
const PixelC* ppxIcPrevZoomY = ppxlcRefZoom
+ m_puciRefQZoom0->where ().offset (xHalf, yHalf);
for (iy = 0; iy < iSize; iy++) {
for (ix = 0; ix < iSize; ix++)
ppxIcPred [ix] = ppxIcPrevZoomY [2 * ix];
ppxlcPrevZoomY += m_iFrameWidthZoomY * 2;
ppxIcPred += MB_SIZE;
}
¥

Figure 4.16: Code segment of hotspots.of motionCompEncY function.

/I memcpy (ppxIcPred, ppxIcRefMB, iSize*iUnit);
_asm{

mov eax, ppxIcPred;

mov ecx, ppxlcRefMB;

movdqu xmmoO, [ecx];

movdqu [eax], xmmoO;

emms

}

Il for (ix = 0; ix < iSize; ix++)
I ppxIcPred [ix] = ppxIcPrevZoomY [2 * ix];
_asm{
mov eax, ppxIcPrevZoomY;
mov ecx, ppxIcPred;
movdqu xmmO, [eax];
movdqu xmm1, [eax+16];
psliw xmmo, 8;
psliw xmm1, 8;
psrlw xmmoO, 8;
psrlw xmm1, 8;
packuswb xmmO0, xmm1;
movdqu [ecx], xmmO;
emms

Figure 4.17: Revised code segment of hotspots of motionCompEncY function.
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Table 4.11: Execution Result of Optimization of Motion Compensation

Function Clockticks/VVOP of Original Code

Clockticks/VVOP of Modified Code | Speedup

motionCompEncY

15,307,952

8,410,287 182.01%

/I Input: xmm1
// Output: abs(xmm1)

psubw xmm0, xmm1;

pxor xmmO0, xmmQO; // generate a zero register in xmmO

pmaxsw xmm1, xmmaO; // generate abs(xmm1)

Figure 4.18: Code segment of abs using SSE2.

4.2.6 Quantization Optimization

We use H.263 quantization method:to quantize the.transform coefficients. The quanti-

zation parameter QP may take integer values from 1-to 31. The quantization stepsize
is 2 x QP. For intra quantization, we have' LEVEL =:|COF| / (2 x QP), and for inter
quantization, we have LEVEL = ((JCOR{"—QP-/ 2)./ (2 x QP), where COF is a trans-

form coefficient to be quantized and LEVEL is ‘the absolute value of quantized version

of transform coefficient. Clipping to [—127:127] is performed for all coefficients except

intra DC.

The bottleneck of quantization is to calculate abs of COF. We use SSE2 instructions

to calculate abs as shown in Figure 4.18 and Table 4.12 shows the experimental result.

Table 4.12: Execution Result of Quantization Optimization

Function

Clockticks/VVOP of Original Code

Clockticks/\VVOP of Modified Code

Speedup

quantizelnterDCTcoefH263

7,123,176

6,016,844

118.39%
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Figure 4.19: Comparison between:originalreference'software and optimized code in ex-

ecution time for motion estimation.

4.3 Conclusion in Optimization

After optimization, the results are shown as Figures 4.19 and 4.20 for motion estimation
and other encoder blocks respectively.

The clockticks per VOP for motion estimation is reduced from 2,553M to 203M, 29M,
27M and 24M for full search, 2D logarithmic search, new diamond search and diamond
search, respectively.

The clockticks per VOP for VOP formation is reduced from 29.8M clockticks to 7.6M
clockticks which is 74.5% reduction. The clockticks per VOP for DCT/IDCT is reduced
from 22.9M clockticks to 16.7M clockticks which is 27.07% reduction. The clockticks
per VOP for motion compensation is reduced from 16.6M clockticks to 9.8M clockticks
which is 40.9% reduction. The clockticks for quantization and inverse quantisation is

reduced from 9.3M clockticks to 8.6M clockticks which is 7.5% reduction.
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Figure 4.20: Comparison between original reference software and optimized code in ex-

ecution time for other encoder blocks
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Chapter 5

Experimental Results

In the last chapter, we discussed how we optimized the major functions of the original
reference software. In this chapter, we present some experimental results on the speed

and the coding performance by encoding different/kinds of video sequence.

5.1 Encoding Speed:Performance

We first consider the overall encoding speed performance of the optimized MPEG-4 en-
coder in comparison to the original reference software. We will consider two different
coding methods, one is coding without shape and the other is with shape information. We
also compare the result of different motion search algorithms and different compilation
mode: debug mode and release mode. We will discuss rate-distortion performance in the

next section.

5.1.1 Frame Based Coding

We first encode video sequence without shape information. And we compare the original
reference software and the revised code. Table 5.1 shows the result for different kinds of
test sequence using debug compilation mode. The speedup is from 900% to 1400% by
using full search method and from 2400% to 4600% by using fast motion search methods.

We also compile codes using release mode and Table 5.2 shows the result for different

kinds of test sequence. The speedup is from 160% to 260% by using full search method
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Table 5.1: Overall Coding Speed Without Shape in Average CIF Frame per Second Using

Debug Compilation Mode

QP

Test Sequence / Encoder 4 6 8 12 16 20 24 28

akiyo_cif / Original Code 1.31 132 | 131 | 128 | 1.23 | 1.19 116 | 111
akiyo_cif / Optimized Code (FS) 10.08+ 1 10:42, | 10.64 | 10.82 | 10.81 | 10.73 |10.66 |10.45
akiyo_cif / Optimized Code (2DLS) 22.86 |.24.39.] 25:10 | 25.88 |26.12 |26.22 |26.21 |25.79
akiyo_cif / Optimized Code (NDS) 23,53 125,03 (*25.88 | 26.67 | 26.99 |27.10 |27.11 |26.68
akiyo_cif / Optimized Code (DS) 24.02 | 25.27 | 26.06-| 26.90 | 27.19 |27.39 |27.28 |26.86
foreman_cif / Original Code 0A7-| 046-| 045 | 043 | 042 | 041 | 040 | 0.40
foreman _cif / Optimized Code (FS) 575 | 5754574 | 579 | 581 | 576 | 572 | 568
foreman_cif / Optimized Code (2DLS) | 13.99 | 14.34 | 14.43 |14.60 | 14.68 |14.70 |14.73 |14.78
foreman_cif / Optimized Code (NDS) | 14.42 | 14.73 | 15.09 |15.42 | 15.59 |15.70 |15.74 |15.78
foreman_cif / Optimized Code (DS) 14.44 | 14.83 | 15.12 | 15.58 | 15.84 | 16.00 |16.08 |16.11
stefan_cif / Original Code 038 | 038 | 038 | 037 | 037 | 036 | 036 | 0.35
stefan_cif / Optimized Code (FS) 541 | 549 | 555 | 554 | 557 | 559 | 556 | 553
stefan_cif / Optimized Code (2DLS) 13.31 | 13.65 | 13.94 | 14.21 | 14.35 |14.44 |14.51 |14.55
stefan_cif / Optimized Code (NDS) 13.61 | 14.38 | 14.83 | 15.27 | 15.52 | 15.68 |15.77 |15.83
stefan_cif / Optimized Code (DS) 13.72 | 1456 | 15.00 | 15.53 | 15.82 | 15.98 | 16.05 |16.22
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Table 5.2: Overall Coding Speed Without Shape in Average CIF Frame per Second Using

Release Compilation Mode

QP

Test Sequence / Encoder 4 6 8 12 16 20 24 28

akiyo_cif / Original Code 780 | 785 | 785 | 770 | 752 | 734 | 7.13 | 6.90
akiyo_cif / Optimized Code (FS) 1255 | 12,99 | 13.26 | 13.43 | 13.38 | 13.30 |13.16 |12.88
akiyo_cif / Optimized Code (2DLS) 32.03 | 33.91 | 34.71 | 35.86 |36.17 |36.44 |36.39 |35.85
akiyo_cif / Optimized Code (NDS) 33.29 | 3493 | 36.08 | 37.49 |37.89 |38.02 |38.10 |37.65
akiyo_cif / Optimized Code (DS) 33.65 | 35.20 | 36.35 | 37.65 |38.31 |38.42 |38.59 |37.98
foreman _cif / Original Code 315 | 3.02 | 308 | 299 | 291 | 286 | 281 | 275
foreman _cif / Optimized Code (FS) 712 | 712 | 7.09 | 701 | 694 | 6.87 | 6.82 | 6.76
foreman_cif / Optimized Code (2DLS) | 19.44 | 19.76 | 19.95 | 20.03 |20.18 |20.23 |20.29 |20.29
foreman _cif / Optimized Code (NDS) | 20.07+] 20:49- .| 20.79 |21.26 |21.48 |21.69 |21.73 |21.80
foreman_cif / Optimized Code (DS) 20.11 |,20.62.4 21700 | 21.50 |21.79 |21.98 |22.14 |22.09
stefan_cif / Original Code 2,58 [“2.61 | 269 | 265 | 262 | 257 | 254 | 250
stefan_cif / Optimized Code (FS) 6.54 | .6.68 | 6.72.| 6.71 | 6.67 | 6.62 | 6.58 | 6.53
stefan_cif / Optimized Code (2DLS) 18.717| 19.14-] 19.37 | 19.62 | 19.79 |19.91 |19.96 |19.87
stefan_cif / Optimized Code (NDS) 19.29 | 20.22.4°20.78 | 21.27 | 21.59 | 21.70 |21.94 |21.92
stefan_cif / Optimized Code (DS) 19.49 | 20.40 | 20.95 | 21.58 | 21.90 |22.08 |22.27 |22.30

and from 400% to 900% by using fast motion search methods.

5.1.2 Shape Based Coding

We next encode video sequence with shape information. And we compare the encoding

performance of the original reference code and that of the revised code. We only encode

the first 200 frames of each test sequence because the VO of foreman_cif.yuv is out of

scene after 206 frames.

Tables 5.3 and 5.4 show the result for different kinds of test sequence for debug com-

pilation mode and release compilation mode respectively. As we can see, the encoding

speed is variable depending on test sequence. Two major factors affect the execution
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Table 5.3: Overall Coding Speed With Shape in Average CIF Frame per Second Using

Debug Compilation Mode

QP

Test Sequence / Encoder 4 6 8 12 16 20 24 28

akiyo_cif / Original Code 203 | 2.00 | 2.04 | 1.99 193 | 189 184 | 1.78
akiyo_cif / Optimized Code (FS) 12.12 | 12.69 | 13.01 | 13.27 | 13.24 | 13.17 |13.07 |12.99
akiyo_cif / Optimized Code (2DLS) 23.72 | 24.81 | 25.46 | 26.14 | 26.51 | 26.62 |26.67 |26.37
akiyo_cif / Optimized Code (NDS) 23.65 | 25.03 | 25.67 | 26.70 |27.11 |27.27 |27.23 |27.09
akiyo_cif / Optimized Code (DS) 24.63 | 25.95 | 26.56 |27.36 | 27.74 |27.92 |27.97 |28.01
foreman_cif / Original Code 099 | 098 | 097 | 094 | 092 | 090 | 0.89 | 0.87
foreman _cif / Optimized Code (FS) 880 | 884 | 882 | 875 | 868 | 862 | 849 | 843
foreman cif / Optimized Code (2DLS) | 19.42 | 19.60 | 19.56 | 19.46 |19.46 |19.52 |19.50 |19.39
foreman _cif / Optimized Code (NDS) | 19.86%| 20:27 . 20.27 | 20.50 | 20.60 |20.58 |20.62 |20.61
foreman_cif / Optimized Code (DS) 20.22 |,20.62.4 20:75 | 20.97 |21.07 |21.14 |21.19 |21.23
stefan_cif / Original Code 3.74 (1373 3.70.| 3.66 | 3.61 | 358 | 3.53 | 3.48
stefan_cif / Optimized Code (FS) 26.64 | 26.87 | 26.86| 26.85 | 26.71 | 26.57 | 26.46 |26.29
stefan_cif / Optimized Code (2DLS) 54277 55.02:| 55:47 | 55.89 |55.94 |55.89 |55.94 |56.02
stefan_cif / Optimized Code (NDS) 54.96 | 55.68.56.10 | 56.31 | 56.37 |56.52 |56.52 |56.11
stefan_cif / Optimized Code (DS) 55.59 | 56.95 | 57.33 | 58.11 | 58.34 |58.34 |58.51 |58.62

time: motion and size of VO. The average percentages of VO with respect to whole frame

are 37.52%, 37.88% and 5.24% for akiyo_cif.yuv, foreman_cif.yuv and stefan_cif.yuv, re-

spectively. In debug compilation mode, the speedup is from 600% to 900% by using full

search method and from 1200% to 2400% by using fast motion search methods. In re-

lease compilation mode, the speedup is from 150% to 200% by using full search method

and from 350% to 600% by using fast motion search methods.

5.2 Rate-Distortion (R-D) Performance

In addition to encoding speed, the rate-distortion behavior is also an important characteri-

zation for an encoder. In this section we will show the performance of the optimized code

76




Table 5.4: Overall Coding Speed With Shape in Average CIF Frame per Second Using

Release Compilation Mode

QP

Test Sequence / Encoder 4 6 8 12 16 20 24 28

akiyo_cif / Original Code 10.33 | 10.46 | 10.57 | 10.45 | 10.30 |10.06 | 9.83 | 9.62
akiyo_cif / Optimized Code (FS) 15.654 1 116:24, | 16.63 | 16.90 | 16.90 |16.78 |16.51 |16.34
akiyo_cif / Optimized Code (2DLS) 34.90 |,35.58..|36:85 | 38.68 |39.29 |39.21 |39.47 |39.47
akiyo_cif / Optimized Code (NDS) 36.05 [137.737(:39.03: | 40.02 |40.59 |40.90 |40.90 |41.07
akiyo_cif / Optimized Code (DS) 36.65 | 38.26 | 39.68.| 40.68 |40.98 |41.32 |41.32 |41.46
foreman _cif / Original Code 564+ 5.62-| 553 | 544 | 533 | 523 | 517 | 5.09
foreman _cif / Optimized Code (FS) 10.89 | 10.89..410.83 | 10.71 | 10.64 |10.52 |10.47 |10.40
foreman_cif / Optimized Code (2DLS) | 29.16 | 29.43 | 29.53 |29.73 |29.67 |29.68 |29.71 |29.74
foreman _cif / Optimized Code (NDS) | 30.17 | 30.62 | 30.81 |31.11 |31.11 (31.19 |31.24 |31.30
foreman_cif / Optimized Code (DS) 30.71 | 31.19 | 31.45 | 31.63 |31.73 |31.80 |31.87 |31.84
stefan_cif / Original Code 17.21 | 17.17 | 1753 | 17.40 | 17.13 |17.02 |16.88 |16.43
stefan_cif / Optimized Code (FS) 34.27 | 34.14 | 34.14 | 33.87 | 33.68 |33.36 |32.78 |32.94
stefan_cif / Optimized Code (2DLS) 82.54 | 83.44 | 84.38 | 85.47 |85.73 |86.08 |85.84 |85.96
stefan_cif / Optimized Code (NDS) 83.79 | 84.27 | 85.00 | 85.84 | 86.33 |86.71 |86.83 |87.09
stefan_cif / Optimized Code (DS) 85.72 | 86.44 | 87.08 | 87.58 | 87.60 |87.73 |87.99 |87.09
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in comparison to the original software.

5.2.1 Frame Based Coding

Figures 5.1, 5.2 and 5.3 show the R-D performance for the test sequences akiyo_cif.yuv,
foreman_cif.yuv, and stefan_cif.yuv without shape information. The original frame rate
is 30 frame/sec in each case and we encode 300 frames for each sequence. As shown,
the R-D performance under optimized full search motion estimation is almost the same
as the original reference software at the same bits/frame, and the performance of fast
search motion estimation is about 0.5 to 2.5 dB lower depending on sequence and search

methods.

5.2.2 Shape Based Coding

Figures 5.4, 5.5 and 5.6 show the R-D performance for the test sequences akiyo_cif.yuv,
foreman_cif.yuv, and stefan_cif.yuvewith shape-information. The original frame rate is
30 frame/sec in each case and we encede 200 frames for each sequence. Same as frame
based coding, the performance under.optimized full search motion estimation is almost
the same as the original reference software ‘at the same bits/frame, and the performance
of fast search motion estimation is about 0.5 to 1 dB lower depending on test sequences

and search methods.
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Figure 5.1: R-D performance in‘coding akiyo _cif without shape.
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Figure 5.2: R-D performance in coding foreman_cif without shape.
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Figure 5.3: R-D performance in coding stefan_cif without shape.
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Figure 5.4: R-D performance in coding akiyo_cif with shape.
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Figure 5.5: R-D performance in‘coding foreman_cif with shape.
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Figure 5.6: R-D performance in coding stefan_cif with shape.
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Chapter 6

Conclusion and Future Work

We considered implementation of real-time MPEG-4 video encoder on personal com-
puter. The intended application is PC-based multipoint videoconferencing system.

We introduced the parallelism processing application on video encoding in this thesis
and we implemented the optimization of the MPEG-4 encoder using Intel MMX technol-
ogy and its extensions, SSE and-SSE2, based on the public-domain software, Microsoft
MPEG-4 Visual Reference Software. In‘ourwork, we tried to find out the major com-
plexity portion by using Vtune software tool.and reducing the computation. For coding
speed, we optimized the major complexity functions which are motion estimation, VOP
formation, DCT/IDCT, motion compensation and quantization.

Several experiments are performed to analyze the performance of the process in chap-
ter 5. The frame rate of encoding CIF foreman sequence with shape is approximately 10
frames per second using full search motion estimation and 30 frames per second using
fast search motion estimation under release compilation mode. It is almost two and six
times speed-up respectively.

For quality improvement we can do some improvements for the main projects, in the

future.

1. Other Optimization

Except full search algorithm, we also using fast motion search methods to speed

up the encoder. Although the speed up performance of fast motion search methods
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is good, the rate-distortion performance is a little worse than full search algorithm
especially for test sequence with fast moving video objects. In order to get the more
balance between speed and distortion, using other search algorithm is considerable.
DCT/IDCT method we used is matrix multiplication directly, the fast DCT/IDCT

method introduced from [14] can be adopted in the future.

. Object-Based Encoding with Gray Scale Alpha Plane

The gray scale shape information is used for hybrid scenes generated by blue screen.
For synthetic scene application, we also need to optimize the object-based encoder
with gray scale alpha plane.

. Combination MPEG-4 Encoder and Segmenter

The real-time segmenter is completed by another member in our laboratory. In the
future, we will combine the segmenter and MPEG-4 encoder to achieve a whole
video conference system.

. Real-Time Decoder

Real-time encoder is completed in this project. In order to complete point-to-point

communication, real-time decoder is necessary.
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