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摘要 

 

蛋白質序列是一條由 20 種胺基酸所組成的線性結構，而這每一條蛋白

質序列都可以對應到其特定的三維結構。蛋白質由序列到三維結構的過程

稱之為「蛋白質摺疊」。蛋白質是如何摺疊為其特定的三維結構？序列和結

構之間又有著什麼樣的關係存在？在生物科學的領域裡，研究尋找這關係

的現象與作用一直以來都是相當重要的議題。我們試著藉由研究蛋白質摺

疊率與序列結構的關係，來了解蛋白質的摺疊。不同蛋白質的蛋白質有著

相當不一樣的摺疊率。通常比較小的蛋白質其摺疊所需花的時間往往比較

大的蛋白質所需花的時間來要少。在本研究中，我們利用向量支持回歸

(Support Vector Regression)作為主要的研究工具。在只使用序列資訊的情況

下，結果和蛋白質摺疊率的相關性達 80％左右。 
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ABSTRACT 

 

Understanding the principles of the relationship between a primary amino 

acid sequence and its unique three-dimensional structures is one of the most 

important issues in biology science. A related and challenging task is to 

understand the relationship between sequences and folding rates of proteins. 

Proteins have different rates of folding. Small proteins usually fold faster than 

larger ones. We currently use amino acid sequences (which predicts properties 

such as protein secondary structure) as feature vectors to predict protein folding 

rates, using support vector regression in machine learning tool. Preliminary 

results show 80% correlation between the predicted and experimental folding 

rates. 
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1 Introduction 

All the proteins begin their existence on a ribosome as a linear polypeptide chain. It is 

known that a protein sequence can fold into its unique three-dimensional conformation to 

achieve the biologically active native state. A protein structure evolves to have function only 

in a particular cellular environment. This kind of results is due to the evolution. But how does 

a sequence can find its most stable structure exactly? Proteins may lose their own function 

when only a simple mistake happens during the folding process. 

In recent years, to understand the principles of the relationship between a primary amino 

acid sequence and its unique three-dimensional structures become one of the most important 

challenges in biology science. A folded protein is stabilized by many specific interactions, as 

seen in an X-ray or NMR structure. When the protein is unfolded, the interactions and 

functions are lost.1 An understanding of this fundamental process would help in attempts to 

predict structure from sequence, in the rational design of proteins de novo, and in 

understanding how and why proteins misfold.2 Besides, to realize the issue of protein folding 

may be the molecular basis for a wide range of human genetic disorders. For example, cystic 

fibrosis is caused by defects in a membrane-bound protein called cystic fibrosis 

trans-membrane conductance regulator (CFTR), which acts as a channel for chloride ions.3 It 

could lead to new therapies for this kind of diseases by an improvement of comprehending 
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protein folding. A related and challenging task is to understand the relationship between 

sequences and folding rates of proteins.4  

Proteins have very different rates of folding. In general, small proteins usually fold faster 

than the large ones.5 Many proteins with differing structures, stabilities and sequences, have 

been shown to fold with two-state kinetics or multi-state kinetics.2 To be very similar, small 

proteins usually fold with two-state kinetics which are called two-state proteins; large proteins 

usually fold with multi-state kinetics which are called multi-state proteins. Two-state protein 

follows the simplest rule of protein folding. In this rule, it only contains two states, unfolded 

state and folded state. The rule of multi-state protein folding is more complicated than the 

two-state protein. Besides the unfolded state and the folded state, it contains various 

intermediate states. The intermediate states are between the unfolded state and the folded state. 

The number of intermediate states is based on the chemical and physical properties of a 

protein. If there is only one intermediate state between the unfolded and folded state, the 

protein is called three-stated protein. 

There are a lot of factors which would affect the process of protein folding. One of them, 

which is relatively well understood, is the dependence of folding rate on temperature.36 At 

very high temperature, protein conformations are usually tend to fold faster. On the other hand, 

proteins are tend to fold slower from the denature state to the native state at very low 
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temperature. Therefore, in order to reduce the influence from the temperature, all the folding 

rates of protein sequences we choose in this work are observed at the experimental 

environment of around 25°C. Many theoretical studies have found some important factors 

which correlated with the protein folding rates. Plexco et al. proposed the relative contact 

order (CO), which is the average sequence distance between all pairs of contacting residues 

normalized by the total sequence length.7 Gromiha et al. define a parameter, long-range order 

(LRO) for a protein from the knowledge of long-range contacts (contacts between two 

residues that are close in space and far in the sequence) in protein structure.8 Ivankov et al. 

emphasize the importance of effective chain length (Leff) for protein folding.5 Leff is a specific 

number of the chain residues. By this kind of studies, we can realize the complex process of 

protein folding more. 

However, it comes an interesting issue which factors is the main determinant that affects 

the time of protein folding most. In this work, we build a method to predict the folding rate 

from the protein sequence and structure information. The first goal of this work is to compare 

the importance between each factor to understand the rules that govern protein folding. The 

second one is to develop a useful tool for predicting the protein folding rates from their 

sequence and structure information using support vector regression which is a novel machine 

learning skill. 

 3
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2 Material and Method 

2.1 Definition of folding rate 

The folding rate ( fk ) is a parameter which measures and describes how much time it 

takes in a protein folding process. It is an inverse of the time required for a folding process. 

The bigger folding rate is; the shorter time it takes. In this work, we use the logarithm of 

folding rate to do the experiments. The reason is based on the suggestion of both analytical 

theory9,10 and off-lattice computer simulations11 of folding. 

 

The folding rate is given by  

T
k f

1
=                                (1) 

where T is the time required for a folding trajectory to reach the native conformation. 

 

2.2 Dataset 

Our dataset includes 64 proteins12-69 that fold with two-state or multi-state kinetics which 

are shown in Table 1. The list including single-domain proteins and peptides that lack both 

disulfide bonds and covalent bonds to ligands is taken from Ivankov et al.5 All chemical and 

physical properties including in-water folding rates are collected from the experimental 

literatures. If folding of some protein is investigated at different temperatures, we use the 

closest to 25°C. Structural properties of the proteins are obtained from the literatures and 

Protein Data Bank70. 

 

2.2.1 Classification of two states and multi-states proteins 

The primary criterion for the classification of a given protein as either a two state or a 

multi-state protein is considered to be whether the folding kinetics is single-exponential or 
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multi-exponential71. However changing the environment condition (e.g. temperature or pH), a 

protein may switch from two state folding to multi-state folding and contrariwise. The 

classification of folding mechanism of each protein in our dataset is based on the experiment. 

The 64 proteins in our dataset includes 37 two state proteins, 25 multi-state proteins and 

two small artificial peptides which are shown in Table 2. 

 

2.2.2 Classification of protein secondary structure 

The rule of protein secondary structure classification is based on the SCOP Classification 

(version 1.69). We obtain from the experimental literatures and the website of Protein Data 

Bank. (http://www.rcsb.org/pdb/Welcome.do) The 64 proteins in our dataset includes 15 all 

alpha proteins, 18 all beta proteins and 31 mixed-class proteins which includes α+β and 

α/βproteins. Details are shown in Table 2. 

 

2.3 Support vector regression 

Support Vector Machines (SVM) was developed by Vapnik72 to solve the classification 

problem, but recently, SVM have been successfully extended to regression and density 

estimation problem73. The support vector regression (SVR) is a powerful regression method 

that has become popular in computational biology. The original idea of SVR like the 

traditional linear regression is to solve a linear function given training data 

)y,x(),...,y,x( nn11 . SVR maps the data to a high dimensional space by a function Φ(x) and 

avoids the under-fitting and over-fitting problems of the training data by minimizing the 

training error. 

Support vector regression proceeds two modifications to avoid over-fitting problems. 

The first one is to give a thresholdεso that if the ith data satisfies the followed equation: 

( )( ) εφε ≤+−≤− bxwy i
T

i , it is considered a correct approximation. Then 0* == ii ξξ .The 

second one is to smooth the function ( ) bxw i
T +φ , an additional term wwT  is added to the 

objective function. Clearly, iξ  is called the upper training error ( *
iξ is the lower) subject to 
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the ε-insensitive tube ( )( ) εφ ≤+− bxwy i
T

i . If ix  is not in the tube, there is an error iξ  or 

*
iξ  which we would like to minimize in the objective function. SVR avoids underfitting and 

overfitting the training data by minimizing the training error ∑=
+

l

li iiC *ξξ as well as the 

regularization term wwT

2
1 . The addition of the term wwT  can be explained by a similar 

way to that for classification problems. 

This article uses LIBSVM74 as computing tools to perform all the calculations. The 

version of LIBSVM is 2.8. In the SVR training procedure, it is necessary to use 

cross-validation to find the best parameter C, γ and p for RBF kernel. The LIBSVM 

provides a tool called gridregression to find the best parameters. The prediction result is 

correlated with these three parameters. Using the wrong parameters may generate worst 

prediction result. We use leave-one-out cross-validation to do the experiment. The system 

flowchart is illustrated in Figure 1. 

 

2.4 Cross validation method 

In order to check the performance and the efficiency of prediction methods, the method 

is often developed by cross-validation method or jack-knife method. In the cross-validation 

method, the datasets are divided into N groups for N fold cross-validation. One of each group 

would be the testing set and the other N-1 groups would be the training set. This process is 

repeated by N times. Every group would be the testing set by turns. The final prediction 

results would be averaged over N testing sets. If the number of groups N equals the size of the 

whole dataset, it is called jack-knife method or leave-one-out cross-validation method. In this 

study, a leave-one-out cross-validation technique is used. One protein is removed from the 

whole dataset. The training is done on the remaining 63 proteins and the testing is done on the 

removed protein. This process is repeated 64 times by removing each protein in turn. 
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2.5 Feature vectors 

Several different input features for SVR are considered in our experiments. They are 

including sequence and structure information. After combining and comparing these feature 

vectors by different protein classification, we use SVR to generate the prediction results. 

Details are shown in Table 3. 

 

2.5.1 Sequence information 

In this part, 10 major feature vectors are selected to do the experiments. They are 

sequence length (L), number of residues in helical conformation (LH), number of helices (NH), 

number of residues in strand conformation (LS), number of strands (NS), number of residues 

in coil conformation (LC), and number of coil (NC). The information of secondary structure is 

predicted by ALB75 (http://i2o.protres.ru/alb) and PSIPRED76 (http://www.psipred.net). 

The residues predicted as helical are marked by H by PSIPRED and by H and & by ALB, 

and those predicted as strand are marked by E by PSIPRED and by S and B by ALB, and 

those predicted as coil are marked by C by PSIPRED. 

 

2.5.2 Structure information 

Relative contact order4 (RCO) and absolute contact order77 (ACO) are collected as 

feature vectors in this work. They are define by Plaxco et al. and Ivankov et al respectively. 

The RCO is given by 

∑∆
×

=
N

ijL
NL

RCO 1                            (2) 

Where N is the number of contacts within a cutoff of 6 angstrom between non-hydrogen 

atoms in the protein, L is the length of protein in amino acid residues, and ijL∆  is the number 

of residues separating the interacting pair of non-hydrogen atoms. For example, adjacent 

residues are assumed to be separated by one residue. 
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The ACO is given by 

LRCOL
N

ACO
N

ij ×=∆= ∑1                         (3) 

2.6 Performance measure 

The performance is measure by Correlation Coefficient (CC). The value of CC is 

between -1 and 1. When the value is closer to 1 or -1, it means there is a stronger positive or 

negative correlation between two variables respectively. 

The CC is given by 

21

21

σσ
=

)X,X(CovCC                            (4) 

Where )X,X(Cov 21  is the covariance of two random variables, 1X and 2X , 1σ and 

2σ are the standard deviations of sample 1 and 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 Result and Discussion 

3.1 Comparison with previous work 

We use the same coding scheme as Ivankov’s. Instead of using their mathematical 

formula which is based on knowledge, we use SVR to perform the prediction to verify 

whether there is a correlation between the feature vectors and the folding rates. Our results 

achieve a 0.86 correlation coefficient compared to 0.82 in the feature vector of PSIPRED and 

achieve a 0.86 correlation coefficient compared to 0.78 in the feature vector of ALB and 

achieve a 0.86 correlation coefficient compared to 0.81 in the feature vector of DSSP. Our 

results are all better than the Ivankov’s. The comparison is listed in Table 4. The correlation 

coefficient plots are showed as Figure 2 to Figure 4. 

 

3.2 Comparison among different secondary structure coding features 

The features used to encode include the helical, strand, and coil conformation predicted 

by PSIPRED and ALB respectively. The best result is given by the helical conformation. The 

features predicted by PSIPRED and ALB are almost have the same performance. The results 

are listed in Table 5. The correlation coefficient plots are showed as Figure 2 to Figure 3 and 

Figure 5 to Figure 8. 

 

3.3 Comparison among different protein classification with different 

secondary structure coding features 

Besides the classify the protein into two state protein and multi-state protein, we also do 

the classification by the secondary structure which are All-αprotein, All-β protein and 

Mixed-class protein. Different features play the different abilities. The performances of helical 

conformation divided into several groups are not as good as training and predicting using the 

whole dataset. It seems that the coil conformance play an important role in the dataset 
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grouping by secondary structure. And the strand conformation get the better performance 

when the dataset classified by the mechanism of folding. The results are listed in Table 6. The 

correlation coefficient plots are showed as Figure 2 to Figure 3 and Figure 5 to Figure 23. 

 

3.4 Comparison among different protein classification with contact order 

Comparing the results between RCO and ACO, we can tell RCO has the better 

performance in multi-state proteins and ACO has the better result in two state proteins. The 

results are listed in Table 7. 
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Tables 

Table 1 List of 64 proteins 

PDB_id Length Log(kf) State SS ref 

1PGB 16 5.2 peptide  All-β 12 

1L2Y 20 5.4 two-state protein All-α 13 

- 21 6.7 peptide  All-α 14 

1PIN 34 4.1 two-state protein All-β 15 

1VII 36 5 two-state protein All-α 16 

2PDD 41 4.3 two-state protein All-α 17 

1DIV 56 2.6 two-state protein Mix 18 

1PGB 57 2.6 two-state protein Mix 19 

1BDD 58 5.1 two-state protein All-α 20 

1ENH 61(54) 4.6 two-state protein All-α 21 

1SHG 62(58) 0.6 two-state protein All-β 22 

1HZ6 62 1.8 two-state protein Mix 23 

1C8C 64 3 two-state protein Mix 24 

1SRL 64(55) 1.7 two-state protein All-β 25 

2CI2 64 1.7 two-state protein Mix 26 

1C9O 66 3.1 two-state protein All-β 27 

1G6P 66 2.7 two-state protein All-β 27 

1SHF 67 2 two-state protein All-β 28 

1CSP 67 2.9 two-state protein All-β 27 

1PSF 69 1.4 two-state protein All-β 29 

1MJC 69 2.3 two-state protein All-β 30 

2CRO 71(64) 1.6 multi-state protein All-α 31 
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Table 1 List of 64 proteins (Continued) 

PDB_id Length Log(kf) State SS ref 

1UBQ 76 2.6 multi-state protein Mix 32 

1LMB 80 3.7 two-state protein All-α 33 

1AYE 80 3 two-state protein Mix 34 

1POH 85 1.2 two-state protein Mix 35 

2ABD 86 2.9 two-state protein All-α 36 

1IMQ 86 3.2 two-state protein All-α 37 

1CEI 87 2.5 multi-state protein All-α 37 

1TIT 89 1.6 multi-state protein All-β 38 

1BRS 89 1.5 multi-state protein All-β 39 

1FNF 90 -0.4 two-state protein All-β 40 

1TEN 90 0.5 two-state protein All-β 41 

1PNJ 90(84) -0.5 two-state protein All-β 42 

1GXT 91(88) 1.9 multi-state protein Mix 43 

1WIT 93 0.2 two-state protein All-β 44 

1FNF 94 2.4 multi-state protein All-β 45 

1APS 98 -0.7 two-state protein Mix 46 

2ACY 98 0.4 two-state protein Mix 47 

1HNG 98(97) 0.8 multi-state protein All-β 48 

1RIS 101(97) 2.6 two-state protein Mix 49 

1URN 102(96) 2.5 two-state protein Mix 50 

256B 106 5.3 two-state protein All-α 51 

1FKB 107 0.7 two-state protein Mix 52 

1BNI 110 1.1 multi-state protein Mix 53 

1SCE 113 1.8 multi-state protein Mix 54 

2VIK 126 3 two-state protein Mix 55 
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Table 1 List of 64 proteins (Continued) 

PDB_id Length Log(kf) State SS ref 

1EAL 127 0.6 multi-state protein Mix 56 

3CHY 129(128) 0.4 multi-state protein Mix 57 

1IFC 131 1.5 multi-state protein Mix 58 

1OPA 133 0.6 multi-state protein Mix 58 

1CBI 136 -1.4 multi-state protein Mix 58 

1A6N 151 0.5 multi-state protein All-α 59 

1AON 155 0.3 multi-state protein Mix 60 

2RN2 155 0 multi-state protein Mix 61 

2A5E 156 1.5 multi-state protein All-α 62 

1RA9 159 2 multi-state protein Mix 63 

1LOP 164 2.9 two-state protein Mix 64 

2LZM 164 1.8 multi-state protein Mix 61 

1PHP 175 1 multi-state protein Mix 65 

1PHP 219 -1.5 multi-state protein Mix 66 

1QOP 268 -1.1 multi-state protein Mix 67 

1L8W 341 0.7 two-state protein All-α 68 

1QOP 396 -3 multi-state protein Mix 69 
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Table 2 Classification of 64 proteins 

Classification Two-state Multi-state Peptidesa Total 

All-α  10 4 1 15 

All-β  13 4 1 18 

Mixed-class  14 17 - 31 

Total 37 25 2 64 

a Artificial peptidesα-helix and β-hairpin 

bStructural properties of the proteins are obtained from Protein Data Bank 
cAll chemical and physical properties are collected from the literatures12-69
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Table 3 List of feature vectors 

Feature vectors Description 

L+LH+NH（PSIPRED） Helical conformation predicted by PSIPRED 

L+LH+NH（ALB） Helical conformation predicted by ALB 

L+LH+NH（DSSP） Helical conformation predicted by DSSP 

L+LS+NS（PSIPRED） Strand conformation predicted by PSIPRED 

L+LS+NS（ALB） Strand conformation predicted by ALB 

L+LC+NC（PSIPRED） Coil conformation predicted by PSIPRED 

L+LC+NC（ALB） Coil conformation predicted by ALB 

RCO Relative contact order 

ACO Absolute contact order 
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Table 4 Comparison with Ivankov’s results 

Input Feature Vectors Ivankov et al This Work 

L+LH+NH（PSIPRED） 0.82 0.86 

L+LH+NH（ALB） 0.78 0.86 

L+LH+NH（DSSP） 0.81 0.86 
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Table 5 Comparison different predicted secondary structure features 

Input Features Vectors Ivankov et al This Work 

L+LH+NH（PSIPRED） 0.82 0.86 

L+LS+NS（PSIPRED） - 0.71 

L+LC+NC（PSIPRED） - 0.74 

L+LH+NH（ALB） 0.78 0.86 

L+LS+NS（ALB） - 0.71 

L+LC+NC（ALB） - 0.72 
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Table 6 Comparison with different classification 

Class (number) 
L+LH+NH 

（PSIPRED） 

L+LS+NS 

（PSIPRED） 

L+LC+NC 

（PSIPRED） 

All-α proteins(15) 0.64 0.72 0.75 

All-β proteins(18) 0.76 0.77 0.82 

Mixed-class proteins(31) 0.51 0.52 0.81 

Two-state proteins(37) 0.77 0.87 0.61 

Multi-state proteins(25) 0.68 0.68 0.70 

All(64) 0.86 0.71 0.74 
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Table 7 Comparison with different classification 

Class (number) RCO ACO 

All-α proteins(15) -0.87 0.75 

All-β proteins(18) -0.83 0.80 

Mixed-class proteins(31) 0.56 0.52 

Two-state proteins(37) 0.56 0.78 

Multi-state proteins(25) 0.75 0.64 

All(64) -0.78 0.72 
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CC = 0.86

Figure 2 Correlation between experimental and predicted folding rates using L+LH+NH

（PSIPRED）with all dataset 
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Figure 3 Correlation between experimental and predicted folding rates using L+LH+NH

（ALB）with all dataset 
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Figure 4 Correlation between experimental and predicted folding rates using L+LH+NH

（DSSP）with all dataset 
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CC = 0.71

Figure 5 Correlation between experimental and predicted folding rates using L+LS+NS

（PSIPRED）with all dataset 
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CC = 0.74 

Figure 6 Correlation between experimental and predicted folding rates using L+LC+NC

（PSIPRED）with all dataset 
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Figure 7 Correlation between experimental and predicted folding rates using L+LS+NS 

（ALB）with all dataset 
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Figure 8 Correlation between experimental and predicted folding rates using L+LC+NC 

（ALB）with all dataset 
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Figure 9 Correlation between experimental and predicted folding rates using L+LH+NH 

（PSIPRED）with all-αprotein 
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Figure 10 Correlation between experimental and predicted folding rates using L+LH+NH 

（PSIPRED）with all-βprotein 
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Figure 11 Correlation between experimental and predicted folding rates using L+LH+NH 

（PSIPRED）with mixed-class protein  
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Figure 12 Correlation between experimental and predicted folding rates using L+LH+NH 

（PSIPRED）with two-state protein  
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Figure 13 Correlation between experimental and predicted folding rates using L+LH+NH 

（PSIPRED）with multi-state protein 
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Figure 14 Correlation between experimental and predicted folding rates using L+LS+NS 

（PSIPRED）with all-αprotein 
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Figure 15 Correlation between experimental and predicted folding rates using L+LS+NS 

（PSIPRED）with all-βprotein 
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CC = 0.52

Figure 16 Correlation between experimental and predicted folding rates using L+LS+NS 

（PSIPRED）with mixed-class protein 
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Figure 17 Correlation between experimental and predicted folding rates using L+LS+NS 

（PSIPRED）with two-state protein  
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Figure 18 Correlation between experimental and predicted folding rates using L+LS+NS 

（PSIPRED）with multi-state protein 
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Figure 19 Correlation between experimental and predicted folding rates using L+LC+NC 

（PSIPRED）with all-αprotein 
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CC = 0.82 

Figure 20 Correlation between experimental and predicted folding rates using L+LC+NC 

（PSIPRED）with all-βprotein 
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CC = 0.81 

Figure 21 Correlation between experimental and predicted folding rates using L+LC+NC 

（PSIPRED）with mixed-class protein 
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