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Chapter 1 

 

 

Introduction 
 

1.1 Motivations and Purposes 

With the recent development of high-throughput X-ray crystallography, the total number 

of structures will grow at an even greater speed[1]. And the enormous advances in genomics 

have resulted in a large increase in the number of potential therapeutic targets that are 

available for investigation. This growth in potential targets has increased the demand for 

reliable target validation, as well as technologies that can identify rapidly several quality lead 

candidates. Virtual screening methods are a primary source for the discovery of lead 

molecules for drug development, with high-throughput docking algorithms being among the 

most extensively used of these methods. The application of virtual high-throughput 

screening[2, 3], to the drug discovery process invariably produces a large number of potential 

lead candidates. And it is well known that current scoring functions used in virtual screening 

campaigns are often inadequate at predicting the true binding affinity of a ligand for a 

receptor[4]. These prospective ligands need to be filtered in order to reduce their number for 

more precise and labor-intensive studies.  

The purpose for utilizing post-analysis is to minimize the number of false positives in the 

selection list and to propagate the true hits to the top of the list. One of the post-analysis 

methods such as clustering based upon structural similarity can nonetheless generally improve 

the performance of the scoring function[5, 6] . Clustering molecules based upon similarity 

requires some quantitative measure (descriptor) of the similarity between two molecules. 

There are many different approaches to generate descriptor, include 2D and 3D methods. 
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Most of the 2D methods have focused on representing a molecule based upon its own 

structural and chemical composition, like Atom-Pair. But it regardless the information from 

protein that is important in the field of structure-based drug designs.  

Traditionally, similarity methods have focused on representing a molecule based upon its 

own structural and chemical composition. With the objective of developing a method for 

post-analysis, a detailed understanding of intermolecular interactions between proteins and 

their ligands is of critical importance to structure-based drug design. 

1.2 Relate Work 

Deng and co-workers[5] described a novel approach to representing the properties of a 

ligand. As opposed to calculating the properties of a ligand from the perspective of its own 

structural and chemical components, the Structural Interaction Fingerprint (SIFt) method 

represents a ligand by the interactions it forms in the binding site of a protein. Using seven 

bits per binding-site residue to represent seven different types of interaction, the SIFt method 

encoded a ligand-protein interaction into a binary string. The types of interaction that 

considered are hydrogen bond and physical contact. Recently another approach proposed by 

Amari et al,[7]have developed a clustering tool for visualized cluster analysis of 

protein-ligand interaction (VISCANA) that analyzes the pattern of the interaction of the 

receptor and ligand on the basis of quantum theory. They applied the ab initio fragment 

molecular orbital (FMO)[8] method for represent the interaction between protein and ligand, 

which used the ab initio electronic structure calculation of proteins and encoding each docked 

pose into real number string. But the FMO method needed to obtain more reliable 

descriptions of van der Waals interactions and hydrogen bonds that are important for 

receptor-ligand binding.  

In order to handle the large amounts of result from virtual screening and consider more 

specific information for protein-ligand binding, we used the empirical energy function from 
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GEMDOCK[9] which is specifically optimized for virtual screening, and utilized hierarchical 

clustering to help us better analyze the binding interactions between proteins and ligands. We 

have developed a method that using empirical energy function while sharing the basic premise 

of the above-mentioned SIFt method, extends it to encode more interaction-specific 

information into the real number string, hydrogen bond, Ven der Waal force, and electrostatic. 

By representing the interactions at the atomic-level as opposed to the residue level and 

including measures of the strength of the interactions, we were able to better describe a 

ligand-protein interaction and produced a more informative analysis of virtual screening. In 

order to select the representative compounds with diverse structure but similar binding 

interaction, we applied the 2D topology descriptor, atom-pair for grouping compounds with 

similar structure.  

GEMDOCK is a docking program with a good performance on the prediction of the 

target-bound conformation and orientation of docked ligand. It can predict known 

protein-bound ligand poses with averaged RMSD below 2.0 Å[9] and model the best possible 

poses of ligands in the target with no crystal protein complex[10]. GEMDOCK was improved 

and modified for virtual screening on large database with a suitable scoring function to reduce 

the number of false positive[11]. 

1.3 Application 

The presence of Helicobacter pylori on the human gastric mucosa induces gastritis 

and may further develop into peptic ulcer and gastric cancer. Several factors including 

differential bacterial virulence, host immunity, and environmental factors are considered to 

influence the development into various clinical sequelae[50]. H. pylori resistance to 

antibiotics is the main factor for therapy failure, while other features remain largely 

unknown[49].  

The shikimate pathway is a seven-step biosynthetic route that involves aromatic 
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amino acid biosynthesis and many aromatic secondary metabolites, including tetrahydrofolate 

and ubiquinone. The shikimate pathway is an attractive target for the discovery of new 

antimicrobial agents, herbicides and antiparasitic agents because it is essential in bacteria, 

fungi, and plants, but not mammals[46, 47, 51, 52]. 

Our research was cooperated with Dr. W. C. Wang. We have applied our two stages 

cluster method on the result of virtual screening of shikimate kinase from Helicobacter pylori 

By GEMDOCK. And we identified a potential inhibitor, furosemide (MCMC00000106). 
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Chapter 2 

 

 

Materials and Methods  

The Main Step of our Cluster analysis methodology is show in Figure 1, the overall 

process was shown in Figure 2. Our clustering analysis was a two stages clustering, first stage 

was protein-ligand interaction based clustering and the next stage was Compound structure 

based clustering. In the section of protein-ligand interaction based cluster analysis, in order to 

visualize and analyze the large data from virtual screening, we converted every docked pose 

into one dimensional real number string by calculating atom-based protein-ligand interaction, 

implemented from our original technique by Yang et al[9, 12]. Because of the representation 

of the protein-ligand interaction, we were able to evaluate the distance of binding mode 

between two docked poses. Hierarchical clustering analysis[13] were carried out with 

MATLAB[14] . Compounds with similar binding mode were visualized and grouped. In the 

section of Compound structure based clustering, each compound structure was represented by 

an one dimension atom-pair descriptor, implemented from an approach proposed by Carhart 

et al[15, 16]. By evaluating the distance of structure between two compounds, similar 

structure compounds within a cluster by first stage clustering could be grouped together for 

selecting compounds with covering most chemotype in all clusters. Finally, our cluster 

analysis could select diversely compounds by protein-ligand interaction and compound 
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structure for use in bioassay. After analysis the distance between active and non-active 

compounds, a reference threshold was decided for demarcating similar compounds. 

We generated two sets of structure-based virtual screening result and used them in our studies. 

First set was designed to verify the protein-ligand interaction descriptor is suitable for 

identifying compounds with similar binding mode. The dataset consist of five classes known 

inhibitors and each inhibitor in a class has the same target protein. The second set was 

designed to evaluate the database enrichment potential and the property of compounds in the 

same cluster by docking a diverse set of compounds spiked with known inhibitors into the 

same target protein. This dataset contain five target proteins. Our testing compounds database 

was constructed from the public compounds database, e.g., the Available Chemical Directory 

(ACD) or Comprehensive Medicinal Chemistry (CMC). 

 

2.1 Preparation of Target Protein and Compound Databases 

A. Preparing for target proteins 

We prepared virtual screening result against five target proteins 

1. TK (herpes simplex virus type 1 thymidine kinase) PDB id : 1kim[17], 

2. ERα (human estrogen receptor alpha) PDB id : 3ert[18],  
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3. ERα (human estrogen receptor alpha) PDB id : 1gwr[18],  

4. hDHFR (human dihydrofolate reductase) PDB id : 1hfr[19],  

5. NA (tern n9 influenza virus neuraminidase) PDB id : 1mwe[20], 

6. SK (helicobacter pylori shikimate kinase) PDB id : 1zui[21] 

Fifth and Sixth target proteins were also used on application study. Each structure file 

was first derived from the Protein Data Bank (PDB), then remove solvent and hydrogen by 

swiss pdb viewer. The Ligand binding site was defined as the collection of amine acids using 

a cutoff radius of 10Å from each atom on the bound ligand. The structure files were stored as 

PDB format for inputting into GEMDOCK. 

 

B. Preparing for compound databases 

We constructed two compound sets for screening against each target protein.  

The verifying dataset contained five class compounds and all compounds within a class 

were active compounds for a specific target protein. All structures excluded NA active 

compounds were derived from previous work[22]. The TK active compounds and ERα

antagonists were proposed by Bissantz et al,[23], contain ten TK active compounds and 

eleven ERαantagonists. The ERαagonist were proposed by Lipzig et al,[24], also contain 
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ten ERαagonist. The NA active compounds was proposed by Birch et al,[25], contain twenty 

NA active compounds. The hDHFR active compounds were derived from Protein Data Bank 

(PDB), contain ten active compounds. All compounds were list as follow : 

1. TK active compounds : 10[23], 

2. ERαantagonists : 11[23],  

3. ERαagonists : 10[24],  

4. hDHFR active compounds : 10 ,  

5. NA active compounds : 20[25], 

Totally the verifying dataset contained 61 compounds. 

Testing dataset contained 990 randomly selected compounds combined with known active 

compounds for each target protein. The set of 990 randomly selected compounds were derived 

from Bissantz et al,[23] . All compound structures were converted to mol format and removed 

hydrogen by CORINA3.0 for inputting into GEMDOCK. 

The compound set for the helicobacter pylori shikimate kinase (SK) and neuraminidase of 

influenza virus (NA) was derived from the Comprehensive Medicinal Chemistry (CMC). All 

compounds in CMC were first filtered with molecular weight between 200 and 800, and then 

removed small fragments and hydrogen by CORINA3.0. The structure files were stored as 
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mol format for inputting into GEMDOCK. 

 

2.2 Preparation of Virtual Screening Result for Cluster analysis 

A. Molecular docking 

 The GEMDOCK program was used to prepare the docked pose and predict binding 

affinity for each compound in dataset, which was enhanced and modified from our original 

technique[12] Two key component of the GEMDOCK is the searching algorithm and the 

scoring function. The searching algorithm of GEMDOCK is a generic evolutionary method, 

the detail of the algorithm was on our previous research by Yang et al,.[9]. Scoring function 

was based on an empirical energy function. This function consists of a simple empirical 

binding score and a pharmacophore-based score to reduce the number of false positives. The 

energy function can be dissected into the following terms: 

ligprepharmabindtot EEEE ++=  (1) 

where Ebind is the empirical binding energy, Epharma is the energy of binding site 

pharmacophores (hot spots), and Eligpre is a penalty value if a ligand does not satisfy the ligand 

preferences. Epharma and Eligpre (see Mining pharmacological consensuses subsection) are 

especially useful in selecting active compounds from hundreds of thousands of non-active 

compounds by excluding ligands that violate the characteristics of known active ligands, 
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thereby improving the number of true positives. The values of Epharma and Eligpre are 

determined according to the pharmacological consensus derived from known active 

compounds and the target protein. In contrast, the values of Epharma and Eligpre are set to zero if 

active compounds are not available.  

The empirical-binding energy (Ebind) is given as 

penalintrainterbind EEEE ++=  (2) 

where Einter and Eintra are the intermolecular and intramolecular energies, respectively, and 

Epenal is a large penalty value if the ligand is out of the range of the search box. For our 

present work, Epenal was set to 10,000. The intermolecular energy is defined as 
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Where rij is the distance between the atoms i and j; qi and qj are the formal charges and 332.0 

is a factor that converts the electrostatic energy into kilocalories per mole. The lig and pro 

denote the numbers of the heavy atoms in the ligand and receptor, respectively. ( )ijB
ijrF  is a 

simple atomic pair-wise potential function (Figure 3), as defined in our previous 

study[9]where ijB
ijr is the distance between atoms i and j with interaction type Bij formed by 

pair-wise heavy atoms between ligands and proteins, Bij is either a hydrogen bond or a steric 

state. The energy value of a hydrogen bonding should be larger than that for steric potential. 

In this model, atoms are divided into four different atom types[9]: donor, acceptor, both, and 
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nonpolar. A hydrogen bond can be formed by the following pair-atom types: donor-acceptor 

(or acceptor-donor), donor-both (or both-donor), acceptor-both (or both-acceptor), and 

both-both. Other pair-atom combinations are used to form the steric state. We used the atom 

formal charge to calculate the electrostatic energy[9], which is set to 5 or −5, respectively, if 

the electrostatic energy is more than 5 or less than −5.  

The intramolecular energy of a ligand is 

( ) ( )[ ]∑ ∑ ∑
= += =

−−+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

lig

i

lig

ij

dihed

k
k

ij

jiB
ijintra mA

r
qq

rFE ij

1 2 1
02 cos1

4
0.332 θθ  (4) 

where ( )ijB
ijrF  is defined as for Equation 3 except the value is set to 1000 when ijB

ijr  < 2.0 Å, 

and dihed is the number of rotatable bonds in a ligand. We followed the work of Gehlhaar et 

al. [26] to set the values of A, m, and θ0. For the sp3-sp3 bond, A = 3.0, m = 3, and θ0 = π; for 

the sp3-sp2 bond, A = 1.5, m = 6, and θ0 = 0.  

B. Mining pharmacophore consensus 

From our previous research[11], GEMDOCK evolves the binding-site pharmacological 

consensus and ligand preferences from both known active ligands and the target protein to 

improve screening accuracy. We used the premise that previously acquired interactions (hot 

spots) between ligands and the target protein can be used to guide the selection of lead 

compounds for subsequent investigation and refinement. When known active ligands were 

available, GEMDOCK used a pharmacophore-based scoring function (Equation 1). On the 
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other hand, LPelec and LPhb were set to zero and GEMDOCK used a purely empirical-based 

scoring function (Equation 2) if known active compounds were not available.  

For each known active compound, GEMDOCK first yielded 10 docked ligand 

conformations by docking the compound into the target protein, and only the docked ligand 

conformation with the lowest energy was retained for pharmacological consensus analysis. 

The protein-ligand interactions were extracted by overlapping these lowest-energy docked 

conformations, and the interactions were classified into two different types, including 

hydrogen bonding and hydrogen-charged interactions. After all of the protein-ligand 

interactions were calculated, the atom interaction-profile weight of the target protein 

representing the pharmacological consensus of a particular interaction was given as  

N
f

Q
k
jk

j =  (5) 

Where N is the number of known active compounds and k
jf is the total interaction number of 

an atom j (in a protein) interacting with an atom of known active ligands with the interaction 

type k (e.g., hydrogen bonding or hydrogen-charged interactions). An atom j in the reference 

protein was considered a hot-spot atom when k
jQ  was more than 0.5.  

The pharmacophore-based interaction energy (Epharma) between the ligand and the protein is 

calculated by summing the binding energies of all hot-spot atoms: 

( ) ( )∑∑
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where CW(Bij) is a pharmacological-weight function of a hot-spot atom j with interaction type 

Bij, ( )ijB
ijrF  is defined as in Equation 3, lig is the number of heavy atoms in a screened ligand, 

and hs is the number of hot-spot atoms in the protein. The CW(Bij) is given as  
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j

ij  and 5.0 if          0.5)-(55.1

or  5.0Q if                              0.1
)(  (7) 

k
jQ  is the atomic pharmacological-profile weight (Equation 5) and k is the interaction type of 

the hot-spot atom j.  

The ligand preferences (Eligpre) from known ligands to reduce the deleterious effects of 

screening ligand structures that are rich in charged or polar atoms. Docking methods using 

energy-based scoring functions are often biased toward such compounds, which abound with 

charged and polar atoms (i.e., hydrogen donor or acceptor atoms) because the pair-atom 

potential of the electrostatic energy and hydrogen bonding energy is always larger than the 

steric energy. The ligand preference (Eligpre) is a penalty value for those screened ligands that 

violate the electrostatic or hydrophilic constraints. The Eligpre is given as 

hbelecligpre LPLPE +=  (8) 

Where LPelec and LPhb are the penalties for the electrostatic (i.e., the number of charged atoms 

of a screened ligand) and hydrophilic (i.e., the fraction of polar atoms in a screened ligand) 

constraints, respectively.  LPelec is defined as 
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, NAelec is the number of charged atoms of a screened ligand and UBelec is the upper bound 

number of charged atoms derived from known active compounds. θelec is the maximum 

number of charged atoms among known active compounds, and σelec is the standard derivation 

of the charged atoms of known active compounds. LPhb is defined as 
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, rhb is the fraction of polar atoms (i.e., the atom type is both, donor, or acceptor) in a screened 

compound and Urhb is the upper bound of the fraction of polar atoms calculated from known 

active compounds. NAhb and NAt are the number of polar atoms and the total number of the 

heavy atoms of a screened ligand, respectively. θhb and σhb are the maximum ratio and the 

standard derivation of the ratios of polar atoms evolved from known compounds, respectively. 

When the normalization strategy is applied, the energy function (Equation 1) is given as 

ligprepharma
MW
bindtot EEEE ++=  (12) 

  

C. Verifying dataset 
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 This dataset was designed to verify the protein-ligand interaction and atom-pair 

descriptor is suitable for identifying compounds with similar binding mode and similar 

structure. We constructed the verifying dataset by docking all 61 active compounds into each 

target protein. GEMDOCK yielded 10 docked conformations for each compound and filter 

out the conformation if the conformation didn’t docked into the binding site. After filtering 

out the wrong conformation, only the conformation with lowest energy retained for generating 

the representative docked pose of each compound. Number of docked pose of each dataset 

was as follow.  

1. TK (1kim) : 53 docked poses, 

2. ERα (3ert) : 61 docked poses, 

3. ERα (1gwr) : 52 docked poses, 

4. hDHFR (1hfr) : 61 docked poses, 

5. NA (1mwe) : 61 docked poses. 

The parameter of GEMDOCK was listed on Table 4. 

D. Testing dataset 

The compound set for each target protein combined 990 randomly selected compounds and 

known active compounds of each target protein. GEMDOCK yielded 3 docked conformations 
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for each compound and only the conformation with lowest energy retained for generating the 

representative docked pose of each compound. Number of docked pose of each dataset was as 

follow. 

1. TK (1kim) : 10 + 990 docked poses, 

2. ERα (3ert) : 11 + 990 docked poses, 

3. ERα (1gwr) : 10 + 990 docked poses, 

4. hDHFR (1hfr) : 10 + 990 docked poses, 

5. NA (1mwe) : 20 + 990 docked poses. 

The parameter of GEMDOCK was listed on Table 5. 

 

2.3 Generation of Descriptors 

A. protein-ligand interaction descriptors 

We convert 3D docked pose into one dimension real number string by calculating the 

energy between each atom on protein and ligand. The protein-ligand interaction definition is 

show in Figure 4. We used the energy function of GEMDOCK for calculating the 

protein-ligand interaction. The protein-ligand interaction is divided into three types of 

interaction, steric, hydrogen bond, and electrostatic. The interaction energy of each atom j on 



 17

protein is defined as 
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Where 
ijB

ijr is the distance between atoms i and j with interaction type Bij formed by pair-wise 

heavy atoms between ligands and proteins, Bij is either a hydrogen bond or a steric state. 

These two potentials are calculated by the same function form but different parameters, 

V1, . . . , V6 given in (Figure 3). qi and qj are the formal charges and 332.0 is a factor that 

converts the electrostatic energy into kilocalories per mole .The lig and denote the numbers of 

the heavy atoms on the ligand. ( )ijB
ijrF  is a simple atomic pair-wise potential function (Figure 

3). In this atomic pair-wise model, atoms are divided into four different atom types[9]: donor, 

acceptor, both, and nonpolar. A hydrogen bond can be formed by the following pair-atom 

types: donor-acceptor (or acceptor-donor), donor-both (or both-donor), acceptor-both (or 

both-acceptor), and both-both. Other pair-atom combinations are used to form the steric state. 

We used the atom formal charge to calculate the electrostatic energy[9], which is set to 5 or 

−5, respectively, if the electrostatic energy is more than 5 or less than −5. By doing so, each 

atom of protein was represented by a three type of interaction real number string.  

In this study, we have test varies type of coding of protein-ligand interaction on our verifying 

dataset. We used the atom-based, real number coding. Because the setting has the best 

discrimination between active and non-active compounds. After the atom-pair descriptor was 
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generated, we removed the columns with values were all zero.  

B. Atom pair descriptors 

Atom-pair descriptors are 2D topological descriptors, which count the distance between 

two atoms as the shortest path of bonds. The atom-pair definition is show in Figure 4. Atom 

pair descriptors was generated from the atom-pair generator program developed by our 

laboratory, the methodology was first proposed by Carhart et al.[15, 16]. Two major 

components for constructing a set of atom-pair descriptors include the definition of atom type 

and the number of distance bins between two atom types. An atom-pair is a simple type of 

substructure defined in term of the atom types and the shortest path graph distance between 

two atoms. The graph distance is defined as the smallest number of atoms along the path 

connecting two atoms in a molecular structure. The formula of an atom-pair is as follows： 

atom type i—(distance)—atom type j 

Where the (distance) is the graph distance between atom i and j in the case of a 2D atom-pair 

description. (The distance can also be defined as the physical distance between atom i and j in 

the case of a 3D atom-pair description.) 

From previous study in our laboratory, SYBYL 23 atom types were clustered into 10 atom 

types (Table 1) in order to reduce the number of atom-pair descriptors and improve the 

accuracy.  
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In this study, we have test varies type of coding of atom-pair on our verifying dataset. We 

found that the setting of distance bins, coding, and similarity measurement which has the most 

discrimination in our dataset is the similar to the research by Hans Matter[27] 

Procedure for preparing atom-pair descriptors： 

1. Structure file in mol format 

2. Remove hydrogen 

3. Transform to mol2 format by utilizing CORINA3.0 

4. Calculating atom-pair descriptor by atom-pair generator 

Distance bins：15  

5. Store in binary coding form 

The total number of pairwise combinations of all 10 atom types is 55. Furthermore, 15 

distance bins were defined in the interval between graph distance zero (i.e., zero atoms 

separating an atom-pair) to 14. Thus, a total of 825 (55 x 15) atom-pair descriptors were 

generated for each molecular structure[28]. After the atom-pair descriptor was generated, we 

removed the columns with the values were all zero. 

2.4 Reference Threshold for Protein-ligand Interaction and Atom-pair 

Descriptor 
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 A reference threshold of protein-ligand interaction should distinguish between similar 

binding mode and non-similar binding mode. The similar binding mode was defined as the 

binding modes of active compounds docked into its target protein, and the non-similar 

binding mode was defined as the binding mode of non-active compounds docked into the 

same target protein. The distance between similar binding modes it self should smaller then 

the distance between similar binding modes and non-similar binding modes. For designing a 

reference threshold of protein-ligand interaction, verifying dataset was used to deciding a 

reference threshold of distance by determining a maximum discrimination between similar 

and non-similar binding mode. The equation as followed 

max / 2intra-d t inter-d t

intra inter

C C
C C

< >
⎛ ⎞⎛ ⎞

+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
(14) 

Where t is the reference threshold. intra-d tC <  is the number of intra active compound pairs 

with the distance < threshold. interC  is the number of compound pairs between active and 

non-active compounds. 

Designing a reference threshold of Atom-pair descriptors was similar, but the hDHFR and NA 

active compounds were divided into two classes because of the diverse compound structure 

(Figure 9) (Figure 10). 

(Figure 17) shows the result of designing a reference threshold. 
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2.5 Method of Cluster Analysis 

 Hierarchical methods have the advantage of building up an interpretable relationship 

between the clusters. Hierarchical clustering analyses were carried out with MATLAB[14].  

After translating the docked poses by protein-ligand interaction into real number string and 

compound structure into bit strings, we applied a simply two stages hierarchical clustering to 

visualize and analyze the protein-ligand interaction and atom-pair descriptor for each dataset 

by using an agglomerative hierarchical clustering approach[13]. At the first stage, we used 

protein-ligand interaction descriptor for clustering compounds with similar binding mode and 

applied the correlation coefficients as similarity measurements. Formula was as followed. 
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− −
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Where corr
xyD  is the correlation distance between docked pose X and Y . The xS  is the 

standard deviation of X. iX  is the ith value of X. n is the number of descriptors. We applied 

the standard UPGMA clustering method for calculating the distance between two clusters 

while constructing the dendrogram. Formula was as followed. 
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D D
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The reference threshold was calculated from verifying dataset by equation (14) for 

determining the number of clusters.  
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At the second stage, we applied atom-pair descriptor for clustering compounds within each 

cluster from first stage clustering and applied the tanimoto coefficients as similarity 

measurements. Formula was as followed.  

tani
xy

X Y
D

X Y
=

∩
∪ (17) 

Where tani
xyD  is the tanimoto distance between X and Y. X Y∩  is the number of ON bits 

common in both X and Y, and the X Y∪  is the number of ON bits present in either X or Y. 

We also used the standard UPGMA clustering method for calculating the distance between 

two clusters while constructing the dendrogram. The equation is similar with equation (16) , 

instead corr
xyD  by tani

xyD . The reference threshold was calculated from verifying dataset by 

equation (14) for determining the number of clusters. Compounds with similar structure were 

grouped together within each cluster from first stage clustering, and the representative 

compounds were selected by the lowest energy compounds within each cluster. The 

dendrogram graph was plotted for visualizing the binding mode of multi docked poses by 

protein-ligand interaction.  
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Chapter 3 

 

 

Results  

We applied our cluster method to analyze two datasets of docking result. The target 

proteins were hDHFR (human dihydrofolate reductase) PDB id : 1hfr, ERα (human estrogen 

receptor alpha) PDB id : 3ert, ERα (human estrogen receptor alpha) PDB id : 1gwr, NA (tern 

n9 influenza virus neuraminidase) PDB id : 1mwe, and TK(herpes simplex virus type 1 

thymidine kinase) PDB id : 1kim. The verifying dataset was constructed by cross-docking of 

all 61 known active compounds against 5 target proteins. And the testing dataset was 

constructed by docking known active compounds spiked into 990 randomly selected 

compounds against 5 target proteins. The docked pose and the Fitness (predicted binding 

affinity) were prepared by GEMDOCK for each compound. 

First, we evaluated the accuracy of GEMDOCK for molecular docking. Second, we 

tested the significance of the distance generated by protein-ligand interaction and atom-pair 

using T-test on verifying dataset. Third, we decided a reference threshold of distance on 

protein-ligand interaction and atom-pair by determining a maximum discrimination between 

similar and non-similar binding mode and structure. Forth, we applied the cluster method to 

analyze the result of molecular docking on verifying and testing dataset. Fifth, we applied our 
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two-stage cluster method on virtual screening of NA and SK, and selected several potential 

candidates for use in bioassay. 

3.1 Molecular Recognition and Setting of Pharmacophore Consensus  

From previous study[9, 11, 12], GEMDOCK evolved a pharmacophore consensus and a 

ligand preference from the target protein and known active compounds by overlapping the 

docked poses and quantified the consensus of protein-ligand interaction and the property of 

those known active compounds. After incorporating into scoring function while flexible 

docking, it was proved to reducing the number of false positives on screening large database. 

In this work, we applied the pharmacophore consensus and the ligand preference for each set 

of target protein by superimposing known active compounds, respectively. The 

pharmacophore consensus was used on each molecular docking, while screening, we applied 

both the ligand preference and the pharmacophore consensus. The ligand preference and the 

pharmacophore consensus for each target protein were listed on Table 6 and Table 7.  

The setting of GEMDOCK parameters applied on verifying dataset and testing dataset 

were listed on Table 4 and Table 5. 

We evaluated the accuracy of GEMDOCK by performing molecular recognition on each pair 

of target protein and its known active compounds. After docking all known active compounds 

into the target protein, we based the result on root mean square deviation (RMSD) error 
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between docked pose and the original crystal ligand for verifying GEMDOCK. Each ligand 

systematically named with four characters followed by three characters. For example, in the 

ligand “1kim.THM”, “1kim” denotes the PDB code and “THM” is the ligand name in the 

PDB. The overall performance for each target protein was shown on Table 8. 

A. TK (Thymidine kinase) 

Virtual screening for exploiting diverse lead compounds of TK would be of considerable 

value in many fields. Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) could cause 

painful epithelial ulcers near the mouth, on the cornea and genitals, as well as fatal 

encephalitis. HSV-1 TK is the center of phosphorylation of nucleosides or nucleoside analogs 

such as acyclovir[29, 30]. Many antiviral drugs attack the replication of the viral genome with 

nucleoside analogs. These analogs are activated by phosphorylation with TK and prevent 

DNA synthesis by the introduction of a chain-terminating nucleoside at the 3’ end of the 

growing DNA strand.  

 The crystal coordinates of the ligand and protein atoms were taken from PDB, and were 

separated into different files. All active compound structures were shown on Figure 6. We 

thought that choosing the crystal coordinates of TK in complex with its nature substrate 

(deoxythymidine) was a reasonable choice since the active site is opened enough to 

accommodate a broad variety of ligands. The average RMSD of all ten docked poses was 1.44 

Å. The result was shown on Table 8.  
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  Figure 11 shows the alignment of ligands from crystal structure and the pharmacological 

consensus of the binding site. The ligand preferences those were identified by superimposing 

10 crystal structures of TK were listed on Table 6.  

B. ERα (Estrogen receptor) 

  The search for proper SERMs among both existing and new drugs has been a challenging 

task in recent years [31, 32]. Because there are often several intolerable side effects such as 

benign and malignant lesions of the uterus when patients take the treatment with SERMs for a 

long term. Estrogens such as 17β-estradiol are steroid hormones as key mediators of female 

reproductive glands and they also exert their actions on other systems. For example, estrogens 

contribute to the maintenance of bone tissue through a process involving bone resorption and 

bone formation [33]. Hormone replacement therapies have been used for the treatment of 

vasomotor symptoms related to the menopause and for prevention of osteoporosis [34, 35]. 

Compounds mimic estrogen in some tissues while antagonizing its action in others are named 

selective estrogen receptor modulators (SERMs) [36]. Many SERMs such as tamoxifen and 

raloxifene, are currently on the market for the treatment of hormone-dependent breast cancer 

[37] and prevention and treatment of osteoporosis [38], respectively.  

 The target protein structures of ERα (3ert) and ERα (1gwr) were derived from PDB, and 

the antagonists and agonists were derived from previous work[22]. We docked four 

antagonists into the target protein (3ert) and four agonists into another one (1gwr), and based 
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the results on root mean square deviation (RMSD) error in ligand heavy atoms between the 

docked pose and the crystal structure. The average RMSD of docked antagonists and agonists 

was 1.42 Å. In 1hj1.AOE and 1qkm.GEN, the values of RMSD were larger than 2.0 Å 

because the native proteins were crystal structures of Erβ-ligand complexes. 

The pharmacophore consensus of ERα antagonist (3ert) and ERα agonist (1gwr) were 

obtained by docking antagonists and agonists into their cavity, respectively. We have docked 

10 times for each antagonists and agonists, and retained the lowest energy conformation. The 

pharmacophore consensus was calculated by equation 5 and 7. Figure 12 shows the docked 

poses of 11 antagonists for calculating the pharmacophore consensus of the target protein 

(3ert). And Figure 13 shows the docked poses of 10 agonists for calculating the 

pharmacophore consensus of the target protein (1gwr). The ligand preferences those were 

obtained by superimposing known active compounds of ER (3ert) and ER (1gwr) were listed 

on Table 6. 

C. hDHFR (human dihydrofolate reductase) 

Dihydrofolate reductase (DHFR) catalyzes the reduction of 7,8-dihydrofolate or folate to 

5,6,7,8-tetrahydrofolate (THF) in an NADPH-dependent pathway. THF is an essential 

cofactor for other enzymes involving one-carbon-transfer reactions necessary for the 

biosynthesis of numerous amino acids and purines. The inhibition of DHFR activity reduces 

the intracellular pool of THF resulting in inhibition of DNA synthesis and leading to cell 
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death. Based on this mechanism, human DHFR (hDHFR) has become a major drug target in 

anticancer therapy. It is also a target for inhibition of bacterial, fungal, and protozoal DHFRs 

to treat human infectious diseases by many implicated microorganisms [39, 40]. With the 

wide use of these antifolate drugs, the resistance of DHFRs in human or other microorganisms 

is widespread. Therefore, it is urgent to search for new targets or new effective inhibitors to 

deal with the problem [41, 42]. 

 The structures of the ligand and target protein were derived from the protein data bank 

(PDB). All structures of active compound were shown on Figure 9. For evaluating the 

accuracy of GEMDOCK for molecular docking, we docked 10 known active compounds into 

the target protein, and compare the RMSD between the docked pose and the bound ligand in 

crystal structure. The average RMSD of all ten docked poses was 1.03 Å. The RMSD of All 

active compounds were lower than 2 Å. It means that GEMDOCK was suitable for molecular 

docking on this target. The result was shown on Table 8.  

  Figure 14 shows the alignment of ligands from crystal structure and the pharmacological 

consensus of the binding site. The ligand preferences those were identified by superimposing 

10 crystal structures of TK were listed on Table 6.  

D. NA (neuraminidase) 

Chemicals that inhibit neuraminidase (NA) can protect the host from viral infection[43]. 
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Influenza is a major respiratory infection associated with significant morbidity in the general 

population and mortality in elderly and high-risk patients. It is an RNA virus that contains two 

major surface glycoproteins, neuraminidase (NA) and hemagglutinin (HA). These proteins are 

essential for infection. Neuraminidase (NA) has been found to be a potential target to control 

influenza virus[44]. Neuraminidase (NA) can cleave the a-ketosidic connections of sialic acid 

and nearby sugar residues. The removal of sialic acid lowers the viscosity of the virus, thus 

permitting the entry of the virus into epithelial cells. Neuraminidase (NA) also destroys 

hemagglutinin (HA) on the virus surface allowing the emergence of progeny virus units from 

infected cells.  

 The crystal coordinates of the known active ligand and target protein atoms were derived 

from PDB. All structures of active compounds were shown on Figure 10. For evaluating the 

accuracy of GEMDOCK for molecular docking, we docked 20 known active compounds into 

the target protein, and based the results on root mean square deviation (RMSD) error in ligand 

heavy atoms between the docked pose and the crystal structure. The average RMSD of all 20 

docked poses was 0.95 Å. The result was shown on Table 8.  

  Figure 15 shows the alignment of ligands from crystal structure and the pharmacological 

consensus of the binding site. The ligand preferences those were identified by overlapping the 

20 crystal structures of NA were listed on Table 6.  
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3.2 Significance of Descriptor on Verifying Dataset 

3.2.1 Significance of Protein-ligand Interaction Descriptor 

Significance of known compounds in five classes: First, we verified the protein-ligand 

interaction descriptor was suitable for identifying compounds with similar binding mode. The 

similar binding mode was defined as the binding modes of active compounds docked into its 

target protein, and the non-similar binding mode was defined as the binding mode of 

non-active compounds docked into the same target protein. To test whether the distance 

between similar binding mode which was represented by protein-ligand interaction are 

significantly lower than that for distance between non-similar binding mode, we calculated 

the P-value for the null hypothesis of no difference between the mean of distance between 

active compounds and the mean of distance between active and non-active compounds. The 

results are listed in Table 9. The T-scores are calculated as the standard two sample T-test 

statistics : 
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The result of T-test shown that the translation of docked pose into protein-ligand interaction 

descriptor could significantly distinguish the distance between similar binding modes from 

distance between non-similar binding modes. We quantified the discrimination of 

protein-ligand interaction descriptor between similar and non-similar binding mode by 

equation 14, the maximum discrimination was determined, and the result was shown on 

Figure 17. The result shown that utilizing this method could correctly distinguish similar and 

non-similar binding mode by 88.89%.  

Significance of similar compounds: Next, for the purpose of post-analysis, we test that 

the similar compounds have similar docked behavior (pose, interaction) on a protein receptor. 

In this test, each class of active compounds was defined as similar compounds. The docked 

behavior was defined as the protein-ligand interaction generated from each docked pose. 

There are five classes of similar compounds on each target protein. We tested whether the 

mean of distance between similar compounds which were represented by protein-ligand 

interaction are significantly lower than that for distance between non-similar compounds. The 

result of T-test was listed in Table 11. Almost all null hypotheses were denied, but there were 

four cases that passed. Two were hDHFR active compounds docked into ER (3ert) and ER 

(1gwr); others were EST antagonist docked into ER (1gwr) and TK (1kim). Because of the 

diverse structures of hDHFR active compounds and ER antagonists (Figure 9, 7).  

3.2.2 Significance of Atom-pair Descriptor 
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We applied similar method to verify the atom-pair descriptor is suitable for identifying 

compounds with similar structure. The similar structure was defined as active compounds and 

the non-similar structure was defined as non-active compounds. The result of T-test shown on 

Table 10, and the translation of compound structure into atom-pair descriptor could 

significantly distinguish the distance between similar structures from distance between 

non-similar structures.  

We also quantified the discrimination of the translation of structure into atom-pair 

descriptor by equation 14, but the active compounds of hDHFR and NA were divided into two 

classes because of the diverse compound structure (Figure 9) (Figure 10). Because the 

definition of atom-pair Table 1. There were two type of carbon on the core ring of the 20 

known active compounds of NA. The type of carbons on the core ring of lig1ina_ST6, 

lig1ing_ST5, lig1ivc_ST2, lig1ivd_ST1, lig1ive_ST3 was aromatic carbon, but the type of 

others was normally Non-aromatic. In the case of hDHFR known active compounds, because 

the old drugs contained two more carboxylic acid groups, it is different from the new drugs. 

The maximum discrimination between similar and non-similar structure was determined, and 

the result shown that utilizing this method could correctly distinguish between similar and 

non-similar structure by 91.45%.  

 3.3 Calculating Reference Threshold by Verifying Dataset 

A reference threshold of protein-ligand interaction should distinguish between similar 
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binding mode and non-similar binding mode. For designing a reference threshold of 

protein-ligand interaction, verifying dataset was used to deciding a reference threshold of 

distance by determining a maximum discrimination between similar and non-similar binding 

mode. By applying the above-mentioned method, we calculated the distance threshold 

(Correlation coefficient: 0.3894) that had the maximum discrimination.  

The reference threshold of atom-pair (Tanimoto coefficient: 0.5548) was calculated by 

the 7 classes of structures which were mentioned above. The reference threshold was shown 

on Figure 17. The property of complement between atom-pair descriptor and protein-ligand 

interaction descriptor was also show on Figure 17. 

3.4 Cluster analysis of Molecular Docking Result on Verifying Dataset 

We applied our protein-ligand interaction and atom-pair descriptor cluster method 

individually on hDHFR and TK sets for analyzing the property of those two descriptors.  

A. Clustering by protein-ligand interaction: 

3.4.1 Cluster analysis of Molecular Docking on hDHFR (human dihydrofolate 

reductase) 

In the case of hDHFR, there were no docked pose which was out of binding site, after 

removing the columns with value of all zero, a total number of 316 atoms involved were 

identified, contained 61 docked poses include 10 of known active compounds. Protein-ligand 
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interactions of all complexes were generated, each of which was composed of 316 real 

numbers. The result of hierarchical clustering was shown on Figure 18 represented as a heat 

map. By the reference threshold of protein-ligand interaction (Correlation coefficient: 0.3894), 

three major clusters can be identified in Figure 18, cluster c, d and e. First, all active 

compounds were group together into the cluster c, Figure 18(c), All hDHFR ligands in cluster 

c had hydrogen-bond (E30-OE1, E30-OE2, V115-O, I7-O), van der Waals force (I60-CAR, 

F31-RING), the binding interactions of each docked poses within the cluster c were similar. 

The cluster d contained 6 TK ligands and one NA ligand, and all docked poses of cluster e 

were NA ligands, by the Figure 18 (d), (e), all docked poses with in cluster d had 

hydrogen-bond (Y121-O, I7-O), and all docked poses with in cluster e had hydrogen-bond 

(E30-OE1, V8-N). The binding interactions of docked poses within those clusters were 

similar, and the binding interactions between those clusters were different, indicated that the 

clustering by protein-ligand interaction has separated the poses into different groups with 

distinct binding interactions.  

There were two types of hDHFR active compounds (Figure 9) [11], the DHFR03, 04, 05, 

09, 10, were old drugs and had two more carboxylic acid group. The old drugs had different 

binding affinity comparing with new drugs. Those two types of compounds can be split 

correctly by the dendrogram, and the detail binding interaction of these two types of drugs 

was shown on Figure 19. The old drugs contain additional hydrogen bonds (R70-NH1, 
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R70-NH2, and N64-ND2) comparing to new drugs, these were shown on the residue numbers 

in red of Figure 19(a). We could also identify important van der Waals force by the pointers in 

red on the heat map (I60-ven der Waals force, F31-stacking force, F34-stacking force, 

NAP-stacking force), those were the residues in yellow shown on (b), (c). Visual inspection 

confirms that our method could easily identify the difference of these two binding interactions 

by the blue frames on the heat map, Figure 19(a). 

By comparing the binding interaction between cluster c, d, e, f, and g, our cluster method 

could separate docked poses into distinct clusters that reveal distinct binding interactions, and 

mining important interaction of protein ligand binding.  

3.4.2 Cluster analysis of Molecular Docking on TK (Thymidine kinase) 

We also applied our cluster method to analysis the result of molecular docking on TK 

(1kim). After filtering out the compounds which the docked pose was out of binding site, 

there were 53 docked poses include 10 docked poses of active compounds. A total number of 

305 atoms involved were identified. Protein-ligand interactions were generated for all 

complexes, each of which was composed of 305 real numbers. The hierarchical clustering 

result of these fingerprints was shown in Figure 20 represented as a heat map. By the 

reference threshold (Correlation coefficient: 0.3894), two major clusters can be identified in 

Figure 20, cluster c and d. All docked poses of active compounds were grouped into cluster c. 

the major different of interaction between cluster c and d was shown in Figure 20 (b), (c), (d), 
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the cluster c contained the hydrogen bond with Q125-NE1 and NE2, the cluster d only 

interact with Q125-NE2. And the cluster d contained two positive ven der Waals force on 

A167-C, but cluster c did not have the interaction. That was because the structures of cluster d 

were slightly larger than the volume of the cavity. Those observations could easily inspected 

by the visualized heat map, and it is useful for mining conserved interaction within a cluster.  

3.4.3 Cluster analysis of Molecular Docking on NA, ERα(3ert), and 

ERα(1gwr) 

The process of cluster analysis was the same as descript above, in the section of NA, the 

result was shown on Figure 21, all the known active compounds were grouped within a 

cluster (frame in red) and had hydrogen-bond with target protein (R152, E277, R292, and 

R371). In the section of ERα (3ert), the result was shown on Figure 22, the active compounds 

were divided into four clusters by the red frames on the heat map, two were singleton, one 

contains 4 inhibitors, and last cluster contained 5 inhibitors and 8 ERα agonists. We could 

inspect that the positive ven der Waals force on (I424, M388, and L349) made EST11 and 

EST10 different from other inhibitors. In the section of ERα (1gwr), the result was shown on 

Figure 23, all active compounds except ESA08 were group into one cluster, and the ESA08 

had additional interaction with target protein (T347 and L525). 

B. Clustering by atom-pair descriptor: 
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3.4.4 Cluster analysis of Compound Structures on Verifying Dataset 

The second stage cluster method was based on 2D topology: atom-pair descriptor. The 

descriptor was calculated by atom-pair representation, using tanimoto coefficient for 

measuring distance between two molecules. The dendrogram of hierarchical clustering of 61 

known compound structures was shown on Figure 24(d). Under the reference threshold 

(tanimoto coefficient = 0.55), There were three major clusters, a, b, and c. In the cluster a, 

Figure 24(a), all 10 ERα agonists were grouped within the cluster. In the cluster b, Figure 

24(b), all 11 ERα antagonists were also grouped within the cluster. In the cluster c, Figure 

24(c), all 10 TK inhibitors and 14 NA were grouped together because the structures between 

TK and NA inhibitors were similar. By the observation on these three clusters, we could 

inspect that the atom-pair descriptor could group compounds with similar structures and 

divided compounds with different structures.  

3.5 Cluster analysis of Virtual Screening Results on Testing Dataset 

3.5.1 First Stage Cluster analysis on hDHFR Dataset 

We performed a virtual screen for a set of 10 hDHFR inhibitors spiked into 990 

randomly selected compounds from ACD. After virtual screening, we analysis the result of 

virtual screening by protein-ligand interaction. The top 100 rankers predicted by GEMDOCK 

were selected for cluster analysis. After removing the columns with value of all zero, a total 
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number of 476 atoms involved were identified, contained 100 docked poses include 10 of 

known active compounds. Protein-ligand interactions of all complexes were generated, each 

of which was composed of 316 real numbers. The correlation coefficient was applied in 

hierarchical clustering for measuring the distance between two docked poses. The result of 

hierarchical clustering was shown on Figure 25 represented as a heat map. The dendrogram 

was on the left side of the heat map. All hDHFR inhibitors were grouped together into one 

cluster in the red frame. This cluster contain 45 compounds included 10 active compounds 

and 35 unknown compounds, the detail binding interactions of active and unknown 

compounds were shown on Figure 26(b), (c). In the Figure 26(b) and (c), all 10 active 

compounds had hydrogen-bond with target protein (I7-O, V115-O, E30-OE1, E30-OE2, 

N64-ND2) and ven der Waals force (F31-stacking force, F31-stacking force, I60-ven der 

Waals force, NAP-stacking force). All the 35 unknown compounds had similar 

hydrogen-bond with target protein (I7-O, V115-O, E30-OE1, E30-OE2, N64-ND2) and ven 

der Waals force (F31-stacking force, F31-stacking force, I60-ven der Waals force, 

NAP-stacking force). The binding interactions within the cluster were similar. By inspecting 

the compound structures in Figure 26 (b) and (c), the compounds within the cluster contained 

similar binding interaction but diverse compounds structures. By this observation, we utilized 

the 2D topology of compounds for selected the representative compounds within the cluster 

after clustering by protein-ligand interaction.  
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3.5.2 Second Stage Cluster analysis on hDHFR Dataset 

Each cluster generated by first stage clustering was clustered by second stage clustering 

for selecting representative compounds within each sub-cluster. We performed the second 

cluster method to analysis the result of first stage clustering. In the case of hDHFR, we give 

the largest cluster from first stage clustering for example. The process and result was shown 

on Figure 27. Figure 27(a) was the binding interactions of the largest cluster generated from 

first stage clustering, the cluster contained 45 compounds include 10 active compounds and 

35 unknown compounds. Each compound was represented by one dimension atom-pair binary 

string from 2D topology. We applied the tanimoto coefficient for measuring the distance 

between two compounds. After performing the hierarchical clustering, the result was shown 

on Figure 27(b), there were four major clusters identified by the dendrogram, Figure 27(c), (d), 

(e), (f). It was expected that the active compounds were spliced into two clusters, the old 

drugs Figure 27(d) and the new drugs Figure 27(e) because of the difference of the carboxylic 

acid group. The sub-structures within each cluster selected by the red circle in Figure 27(c) 

and (f) were similar, but the sub-structures were different between each cluster. After the 

second stage clustering, we selected the lowest energy compound within each cluster for 

representing all compounds within the cluster. Each representative compounds structures were 

shown on Figure 27(g), (h), (i), and (j).  

Our method was able to identify and classify those sharing the same or similar binding 
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mode, and selecting the representative compounds within each cluster of similar binding 

mode for use in bioassay. 
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Chapter 4 

 

Applications: Using two stages Cluster method for post-analysis on the 

results of virtual screening of Shikimate kinase of helicobacter pylori. 

 

4.1 Preparations of the Target Protein and Compound set 

The shikimate pathway is a seven-step biosynthetic route that involves aromatic 

amino acid biosynthesis and many aromatic secondary metabolites, including tetrahydrofolate 

and ubiquinone. The shikimate pathway was shown on Figure 28. The shikimate pathway is 

an attractive target for the discovery of new antimicrobial agents, herbicides and antiparasitic 

agents because it is essential in bacteria, fungi, and plants, but not mammals[46, 47, 51, 52].  

Until now, we know several successful drugs in shikimate pathway for the 

pathogenesis of a number of microorganisms. Shikimic acid 

analogs—(6R)-6-Fluoro-shikimate and (6S)-6-fluoro-shikimate exhibited different inhibitory 

effects on Plasmodium falciparum growth in vitro (4). 5-Enolpyruvylshikimate 3-phosphate 

(EPSP) synthase, which catalyzes the sixth step in the pathway, has been successfully targeted, 

with the development of glyphosate, one of the world’s best-selling herbicides[53]. 

The shikimate kinase (SK; EC 2.7.1.71), the fifth enzyme of the pathway, Figure 
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28(c), catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using 

ATP as a co-substrate. Cheng et al. have determined the crystallographic structure of 

shikimate kinase from Helicobacter pylori (HpSK; PDB code, 1ZHU), showing a three-layer 

α/β fold consisting of a central sheet of five parallel β-strands flanked by eight α-helices. They 

also determined a complex structure—HpSK-shikimate-PO4 (PDB code, 1ZHI) and revealed 

induced-fit movement from an open to a closed form on substrate (shikimate) binding[45].  

  We used the closed form of HpSK (PDB code, 1ZHI) to be the target protein because the 

protein structure with substrate had the induced-fit movement would be more suitable for 

generating correct interaction between protein and ligand. We defined that the binding site of 

the HpSK was the collection of amino acids enclosed within a 8 Å radius sphere centered on 

the bound ligand, shikimate (SKM). The coordinates of atoms were derived from Dr. Cheng, 

W. C. and stored in the PDB format for inputting into GEMDOCK. After comparing the 

induced-fit movement of the lid structure from an open to a closed form by Figure 29 (b)(c), 

we removed the lid structure (residue number: 108~124) for capable docking larger potential 

compounds. 

  We prepared the compound set from the CMC drug database. It was first filtered with 

molecular weights between 200 and 800, then removed small fragment in record. Finally we 

had 6,443 molecules in the compound set. 

4.2 Molecular Recognition and Setting of Pharmacophore Consensus on the Shikimate 
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Kinase 

  To evaluate the docking accuracy of GEMDOCK for the shikimate kinase of dengue virus, 

we docked the substrate shikimate (SKM) into its binding site of the complex. GEMDOCK 

executed 10 independent runs for each docking. The solution with the lowest scoring function 

was then compared with the ligand crystal structure. We based the results on root mean square 

deviation (RMSD) error in ligand heavy atoms between the docked conformation and the 

crystal structure. The result was shown on Figure 30. The RMSD value of the docked pose 

was 0.023 Å, indicated that after removing of the lid structure, the GEMDOCK still could 

dock the substrate back into the target protein correctly. According to the protein-ligand 

complex, the shikimate forms hydrogen bonds with D33-OD1, D33-OD2, R57-NH1, G80-N, 

R132-NH1, and R132-NH2. Because there is no other known ligand, we set the 

pharmacophore consensus by the hydrogen-bond of subtract listed in Table 7. According to 

the property of shikimate and the cavity was a hydrophilic pocket, the interaction preference 

was set the UBelec was 2 and Urhb was 0.42 when we screened the CMC 6,443 compounds, 

listed in Table 6. 

4.3 Virtual Screening for the Shikimate Kinase 

   Based on the screening utility of GEMDOCK described above, we applied 

GEMDOCK on virtual screening for the shikimate kinase with a compound set including 

6,443 compounds from the CMC. The pharmacophore consensus and ligand preference was 

used while screening. 

4.4 Two Stage Cluster analysis of Result of Virtual Screening for Selecting 

Representative Compounds. 
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 The overall process was shown on Figure 33. First, we applied virtual screening on CMC 

6443 compounds by GEMDOCK. Second, upon the rank of shikimate (rank: 268) in Figure 

31, we selected top 300 compounds for two-stage cluster analysis. Third, compounds were 

clustered by protein-ligand interaction. The threshold was set manually for giving an 

appropriated number of clusters. The result of cluster analysis was shown on Figure 32. There 

were 8 major clusters and others compounds, totally 9 clusters. Forth, we applied the 

atom-pair descriptor for clustering compounds within each cluster and 23 representative 

compounds were selected for use in bioassay. We give more concern on the cluster that has 

shikimate and choice 5 compounds for use in bioassay. Figure 34 shown the structures of the 

23 representative compounds. Fifth, 5 compounds were tested in vivo (compound structures 

with blue frames) and one had 36% inhibition on shikimate kinase (compound structure with 

red frame) at the concentration of 625 µm. 

Our research was cooperated with Dr. W. C. Wang, we have identified a potential 

inhibitor (MCMC00000106) for shikimate kinase from Helicobacter pylori by GEMDOCK.  
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Chapter 5 

Conclusions 

 

 

5.1 Major Contributions and Future Works 

We developed a two stages cluster method for analysis the results of virtual screening by 

protein-ligand interaction and compound structure. We validated this method on data sets 

having five classes: thymidine kinase inhibitors, dihydrofolate reductase inhibitors, estrogen 

receptor agonist, estrogen receptor antagonists and neuraminidase inhibitors. Our method on 

these pharmaceutical interest targets provided a suggestion of cluster threshold and helped to 

mining diversely representative structures from large number of virtual screening data. Our 

method also has been applied on the practical inhibitor screening analysis for Helicobacter 

pylori shikimate kinase (HpSK). After virtual screening in CMC database, we selected 

compounds from top 300 and selected 23 representative candidates. Five of 23 representative 

candidates were tested in vivo, and one of the five candidates, furosemide, was identified 

being able to inhibit HpSK by cooperated laboratory of Dr. Wen-Ching Wang.  

An overall index for evaluating the accuracy of our two staged cluster method is useful 

for comparing with other methods.  
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Tables 

Table 1. Ten atom types used in atom-pair descriptors 
 

 Description Atom type Mol2 format atom type 
1 Aromatic carbons C.ar C.ar 
2 Nonaromatic carbons C.na C.3 C.2 C.1 C.cat 
3 Aromatic nitrogen N.ar N.ar 
4 Nonaromatic nitrogen N.na N.3 N.2 N.1 N.am N.4 N.pl3
5 Oxygen atoms in the sp3 hybridization state O.3 O.3 
6 Oxygen atoms in the sp2 hybridization state O.2 O.2 
7 All sulfur atoms S S.3 S.2 S.O S.o2 
8 Phosphorus atoms P.3 P.3 
9 Halogen atoms X F Cl Br I 

10  Other atoms Other atom types 
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Table 2. Atom types of GEMDOCK 
 

Atom type Heavy atom name 
Donor Primary and secondary amines, sulfur, and metal 

atoms 
Acceptor Oxygen and nitrogen with no bound hydrogen 

Both Structural water and hydroxyl groups 
Nonpolar Other atoms (such as carbon and phosphorus) 

 
 
 
Table 3. Atom formal charge of GEMDOCK. 
 

Formal charge Atom name 
Receptor:  

0.5 N atom in His (ND1 & NE2) and Arg (NH1 & NH2) 
-0.5 O atom in Asp (OD1 & OD2) and Glu (OE1 & OE2) 
1.0 N atom in Lys (NZ) 
2.0 Metal ions (MG, MN, CA, ZN, FE, and CU) 
0 Other atoms 

Ligand:  
0.5 N atom in –C(NH2)2+ 
-0.5 O atom in -COO-, -PO2-, -PO3-, -SO3-, and -SO4- 
1.0 N atom in -NH3+ and -N+(CH3)3 
0 Other atoms 

 
 
 
Table 4. Parameters used for docking on verify dataset 
 

Parameter Value of parameters 
Population size 600 

No. of the maximum generation 80 
No. of runs 10 
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Table 5. Parameters used for docking on testing dataset 
 

Parameter Value of parameters 
Population size 300 

No. of the maximum generation 60 
No. of runs 3 
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Table 6. The ligand preferences calculated from known active compounds used for virtual 
screening on TK, ER, hDHFR, NA, and HpSK 
 

 
Electrostatic preferences

(Equation 9) 

Hydrophilic preferences 

(Equation 10) 

Ligand name θelec σelec UBelec θhb σhb Urhb 

TK-substrate 0 0 0 0.50 0.05 0.55 

ER-antagonist 2.00 0.56 2.56 0.15 0.03 0.18 

ER-agonist 0 0 0 0.25 0.06 0.31 

hDHFR-ligand 4.00 2.11 6.11 0.40 0.05 0.45 

NA-ligand 4.00 0.75 4.75 0.50 0.05 0.55 

SK-substrate 2.00 0 2.00 0.42 0 0.42 
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Table 7. The pharmacophore consensus calculated by superimposing known active 

compounds used for molecular docking on TK, ER, hDHFR, NA, and HpSK 

 

  
Pharmacophore consensus 

weight (CW(Bij)) 
 

Residue 

Id a 

Atom 

Id b 
hDHFR-ligand Interaction type 

I7 O 3.50 H-bond (NH↔O) (NH group) 

E30 OE1 4.00 H-bond (NH↔O) (NH group) 

E30 OE2 4.00 H-bond (NH↔O) (NH group) 

R70 NH1 1.50 H-bond (O↔NH) (carbonyl group) 

R70 NH2 1.50 H-bond (O↔NH) (carbonyl group) 

V115 O 2.50 H-bond (NH↔O) (NH group) 

  ER-antagonist  

E353 OE2 3.0 H-bond (OH↔O) (phenolic hydroxyl) 

R394 NH2 2.9 H-bond (OH↔N) (phenolic hydroxyl) 

H524 ND1 2.4 H-bond (OH↔N) 

D351 OD1 2.2 
H-bond (N↔O) (dimethylamino group 

and piperidine nitrogen) 

  ER-agonist  

E353 OE2 3.1 H-bond (OH↔O) (phenolic hydroxyl) 

R394 NH2 3.1 H-bond (OH↔N) (phenolic hydroxyl) 

H524 ND1 3.4 H-bond (OH↔N) 
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Pharmacophore consensus 

weight (CW(Bij)) 
 

Residue 

Id a 

Atom 

Id b 
TK-ligand Interaction type 

Q125 OE1 4.00 H-bond (NH↔O) (NH group) 

Q125 NE2 3.50 H-bond (O↔NH) (carbonyl group) 

Y101 OH 2.00 H-bond (OH↔OH) (hydroxyl group) 

R163 NH1 1.50 H-bond (OH↔N) (hydroxyl group) 

Y172 

CG 

CD1 

CD2 

CE1 

CE2 

CZ 

2.50 van der Waals force (C↔C) 

  NA-ligand  

R371 NH1 2.0 H-bond (NH↔O) (NH group) 

R371 NH2 2.0 H-bond (NH↔O) (NH group) 

R292 NH1 1.5 H-bond (NH↔O) (NH group) 

R292 NH2 1.5 H-bond (NH↔O) (NH group) 

E276 OE2 1.5 H-bond (OH↔OH) (hydroxyl group) 

R152 NH1 2.0 H-bond (O↔NH) (carbonyl group) 
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Pharmacophore consensus 

weight (CW(Bij)) 
 

  SK-subtrate  

D33 OD1 1.5 H-bond (OH↔OH) (hydroxyl group) 

D33 OD2 1.5 H-bond (OH↔OH) (hydroxyl group) 

R57 NH1 1.5 H-bond (O↔NH) (carbonyl group) 

G80 N 1.5 H-bond (NH↔O) (NH group) 

R132 NH1 1.5 H-bond (NH↔O) (NH group) 

R132 NH2 1.5 H-bond (NH↔O) (NH group) 

 
a One-code amino acid with the residue sequence number in PDB. 

b The atom name with the atom serial number in PDB. 
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Table 8. The RMSD between docked poses and crystal ligands 
 
TK (1kim) ER (3ert, 1gwr) DHFR (1hfr) NA (1mwe) 
Complex 
name 

RMSD Complex 
name 

RMSD Complex 
name 

RMSD Complex 
name 

RMSD

1e2k.TMC 0.69 1err.RALa 1.27 1boz.PRD 1.13 lig1l7f_BCZ 0.88 
1e2m.HPT 0.51 3ert.OHTa 0.71 1dlr.MXA 0.62 lig1nnc_GNA 0.75 
1e2n.RCA 1.34 1hj1.AOEa 3.13 1dls.MTX 1.53 lig2qwf_G20 0.60 
1e2p.CCV 0.67 1uom.PTIa 0.81 1drf.FOL 1.24 lig1bji_G21 0.81 
1ki2.GA2 3.04 1gwr.ESTb 0.71 1hfr.MOT 0.51 lig1f8b_DAN 0.64 
1ki3.PE2 3.21 1l2i.ETCb 0.52 1kms.LIH 1.36 lig1f8c_4AM 0.46 
1ki6.AHU 0.37 1qkm.GENb 2.92 1kmv.LII 0.83 lig1f8d_9AM 0.59 
1ki7.ID2 0.49 3erd.DESb 1.32 1mvs.DTM 0.75 lig1f8e_49A 0.60 
1kim.THM 0.41   1ohj.COP 1.27 lig1ina_ST6 0.79 
2ki5.AC2 3.14   2dhf.DZF 1.12 lig1ing_ST5 1.03 
      lig1inw_AXP 0.93 
      lig1inx_EQP 0.92 
      lig1ivc_ST2 2.09 
      lig1ivd_ST1 1.02 
      lig1ive_ST3 1.03 
      lig1mwe_SIA 0.52 
      lig1xoe_ABX 1.33 
      lig1xog_ABW 2.42 
      lig2qwg_G28 0.80 
      lig2qwh_G39 0.74 
Average 
RMSD 

1.58 Average 
RMSD 

1.42 Average 
RMSD 

1.03 Average 
RMSD 

0.95 

 
a Four antagonists dock into target protein (3ert) 
b Four agonists dock into target protein (1gwr) 
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Table 9. T-test of distance between similar and non-similar binding mode generated by 
converting the docked pose into protein-ligand interaction profile (α=0.01). 
 

Target 
protein 

H0 
Similar :
Average 
Distance

Non-similar :
Average 
Distance 

P-value 
Similar : 
Stda of 

Distance 

Non-similar : 
Stda of 

Distance 
DHFR Reject 0.21 0.50 1.71E-58 0.09 0.13 
ESA Reject 0.25 0.42 7.04E-20 0.13 0.12 
EST Reject 0.31 0.48 7.94E-39 0.09 0.12 
NA Reject 0.17 0.73 0.00E+00 0.07 0.20 
TK Reject 0.19 0.47 3.89E-64 0.08 0.15 

 
a Standard Deviation 
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Table 10. T-test of distance between similar and non-similar structure generated by atom-pair 
representation (α=0.01). 
 

Target 
protein 

H0 
Similar :
Average 
Distance

Non-similar :
Average 
Distance 

P-value 
Similar : 
Stda of 

Distance 

Non-similar : 
Stda of 

Distance 
DHFR Reject 0.42 0.63 5.84E-23 0.15 0.12 

ESA Reject 0.24 0.66 4.60E-65 0.11 0.14 

EST Reject 0.27 0.63 2.85E-56 0.14 0.14 

NA Reject 0.32 0.65 1.75E-131 0.18 0.17 

TK Reject 0.22 0.63 2.11E-93 0.09 0.19 

 
a Standard Deviation 
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Table 11. T-test of distance between similar and non-similar compounds on each target 
protein. Descriptor was generated by converting the docked pose into protein-ligand 
interaction profile (α=0.01). 
 

Target 
protein 

Compound 
class 

H0 
Similar :
Average 
Distance

Non-similar :
Average 
Distance 

P-value 
Similar : 
Stda of 

Distance 

Non-similar : 
Stda of 

Distance 
DHFR Reject 0.21 0.50 1.71E-58 0.09 0.13 

ESA Reject 0.52 0.58 2.73E-03 0.18 0.12 

EST Reject 0.52 0.63 7.51E-07 0.21 0.13 

NA Reject 0.46 0.55 5.34E-23 0.13 0.14 

DHFR 

TK Reject 0.38 0.51 8.03E-11 0.16 0.13 

DHFR Pass 0.55 0.62 0.10111 0.28 0.16 

ESA Reject 0.23 0.48 2.29E-31 0.14 0.14 

EST Pass 0.67 0.76 0.23105 0.25 0.14 

NA Reject 0.33 0.59 1.51E-58 0.24 0.20 

ESA 

TK Reject 0.46 0.57 0.000121 0.25 0.20 

DHFR Pass 0.55 0.57 4.01E-01 0.21 0.14 

ESA Reject 0.25 0.42 7.04E-20 0.13 0.12 

EST Reject 0.31 0.48 7.94E-39 0.09 0.12 

NA Reject 0.40 0.46 1.46E-09 0.15 0.15 

EST 

TK Reject 0.28 0.43 2.17E-29 0.09 0.15 

DHFR Reject 0.35 0.68 3.46E-25 0.22 0.25 

ESA Reject 0.59 0.71 2.91E-04 0.28 0.24 

EST Reject 0.56 0.66 2.46E-04 0.25 0.24 

NA Reject 0.17 0.73 0.00E+00 0.07 0.20 

NA 

TK Reject 0.48 0.60 3.46E-07 0.18 0.23 

DHFR Reject 0.42 0.62 9.80E-12 0.13 0.10 

ESA Reject 0.16 0.52 9.99E-62 0.07 0.13 

EST Pass 0.58 0.65 6.28E-02 0.18 0.14 

NA Reject 0.40 0.53 2.92E-53 0.11 0.15 

TK 

TK Reject 0.19 0.47 3.89E-64 0.08 0.15 

 
a Standard Deviation 
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Figure 1. Main steps of our two-stage cluster method for analyzing the result of virtual 

screening. First we evaluate pharmacophore consensus from known active compounds and 

apply on virtual screening. Second, the GEMDOCK program was used to predict the docked 

conformation and rank a series of candidates by using flexible docking. Third, we translate 

the docked poses and structures of top rankers into one dimension real number string and 

binary string, respectively. Fourth, we utilize the protein-ligand interaction to cluster docked 

poses with similar binding mode, within each cluster, we use the atom-pair for cluster 

compounds with similar structure. Fifth, select representative compounds on each cluster 

manually for use in bioassay. 
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Figure 2. Overall process of the two stages hierarchical clustering analysis.  
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Figure 3. The linear energy functions of the pair-wise atoms for the steric interactions and 

hydrogen bonds in GEMDOCK (bold line) with a standard Lennard-Jones potential (light 

line). 
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Figure 4. Definition of atom-pair representation. 
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Figure 5. Definition of protein-ligand interaction. 
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Figure 6. Ten TK (thymidine kinase) active compound structures. 
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Figure 7. Eleven ERα (estrogen receptor) antagonist structures. 
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Figure 8. Ten ERα (estrogen receptor) agonist structures. 
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Figure 9. Ten hDHFR (human dihydrofolate reductase) active compound structures.  
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Figure 10. Twenty NA (neuraminidase) active compound structures. 
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Figure 11. Overlapping 10 X-ray ligand structures on TK (1kim). Four important residues of 

the pharmacological consensus were identified and marked. The dash lines indicated the 

hydrogen binding. The phenolic ring of Y172 formed π-π stacking with the ligands. 
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Figure 12. Overlapping 11 docked poses of ERα antagonists on ERα (3ert). Five important 

residues of the pharmacological consensus were identified and marked. The dash lines 

indicated the hydrogen binding. 
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Figure 13. Overlapping 10 docked poses of ERα agonists on ERα (1gwr). Three important 

residues of the pharmacological consensus were identified and marked. The dash lines 

indicated the hydrogen binding. 
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Figure 14. Overlapping 10 X-ray structures of ligands of hDHFR (1hfr). Four important 

residues of the pharmacological consensus were identified and marked. The dash lines 

indicate the hydrogen binding. 
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Figure 15. Overlapping 20 crystal structures of ligands of NA (1mwe). Four important 

residues of the pharmacological consensus were identified and marked. The dash lines 

indicated the hydrogen binding. 
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Figure 16. The result of molecular recognition on (a)hDHFR, (b)TK, (c)NA, (d)ERα(1gwr), 

(e) ERα(3ert) 
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Figure 17. The result of designing a reference threshold of protein-ligand interaction and 
atom-pair descriptors. The property of complement between atom-pair descriptor and 
protein-ligand interaction descriptor was also show on this figure. The threshold of distance of 
atom-pair descriptor was 0.55 (tanimoto coefficients). The threshold of distance of 
protein-ligand interaction descriptor was 0.39 (correlation coefficients).  
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Figure 18. (a) Overlay of all 61 docked poses of known active compounds in the vicinity of 

the target protein hDHFR (PDB id: 1hfr). (b) Hierarchical clustering of protein-ligand 

interaction of 61 docked poses on hDHFR (PDB id: 1hfr). Each docked pose is represented as 

one line in the heat map in the middle of the figure, and the green being the lowest 

protein-ligand interaction energy and the red being the highest energy. The left side of the heat 
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map shows the hierarchical clustering results on the hDHFR, including the dendrogram. 

Docked poses in the heat map are rearranged according to the order given by hierarchical 

clustering marked by the black bar ‘c’ in the right side of the heat map. The amino acids 

identified for description were also shown in the top side of the heat map. (c) Overlay of 

docked poses of the cluster with most number of known active compounds, and shown the 

important interaction between protein and ligand. (d)(e) Overlay of docked poses of the 

cluster with most number of unknown compounds, and shown the important interaction 

between protein and ligand. (f)(g) Overlay of docked poses of the sub-cluster within hDHFR 

active compounds, and shown the important interaction between protein and ligand. The blue 

frames in the heat map were the major interaction that different between cluster f and g. 
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Figure 19. The detail of difference of binding interactions between new drugs and old drugs 

of hDHFR on verifying dataset. The cluster contained 12 compounds include 5 new drugs 

(DHFR01, 02, 06, 07, 08) and 5 old drugs (DHFR03, 04, 05, 09, 10). The binding interactions 

of new drugs were shown on (b), and of old drugs were shown on (c). In (a) The residue 

numbers in red were the major differences of interactions (Q35, N64, and R70). We could also 

identify important van der Waals force by the pointers in red on the heat map (I60-ven der 

Waals force, F31-stacking force, F34-stacking force, NAP-stacking force), those were the 

residues in yellow shown on (b), (c). (c) The old drugs contained additional hydrogen-bound 

with target protein (Q35, N64, and R70).  

 

 

 



 77

c d

Q125-NE2

Q125-OE1

A167-O

Q125-NE2

A167-O

Y101-OH

R222-NH2

R220-O

E225-OE1

a

R220-O

E225-OE1

A167-C

 

Q125Y101 R163 Y172

c

d

b
R222E225

A167

 



 78

Figure 20. (a) Overlay of all 53 docked poses of known active compounds in the vicinity of 
the target protein TK (PDB id: 1kim). (b) Hierarchical clustering of protein-ligand interaction 
of 53 docked poses on TK (PDB id: 1kim). Each docked pose is represented as one line in the 
heat map in the middle of the figure, and the red being the lowest protein-ligand interaction 
energy and the green being the highest energy. The left side of the heat map shows the 
hierarchical clustering results on the TK, including the dendrogram. Docked poses in the heat 
map are rearranged according to the order given by hierarchical clustering marked by the 
black bar ‘c’ in the right side of the heat map .The hot spots identified from overlapping 
known active compounds were also shown in the top side of the heat map. (c) Overlay of 
docked poses of the cluster with most number of known active compounds, and shown the 
important hydrogen bonds between protein and ligand. (d) Overlay of docked poses of the 
cluster with most number of unknown compounds, and shown the important hydrogen bonds 
between protein and ligand. The blue frames in the heat map were the major interaction that 
different between cluster c and d.  
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R152 E276 R292
R371

Y406
E277

Figure 21. Hierarchical clustering of protein-ligand interaction of 61 docked poses on NA 

(PDB id: 1mwe). Each docked pose is represented as one line in the heat map in the middle of 

the figure, and the red being the lowest protein-ligand interaction energy and the green being 

the highest energy. The left side of the heat map shows the hierarchical clustering results on 

the NA, including the dendrogram. Docked poses in the heat map are rearranged according to 

the order given by hierarchical clustering. The hot spots identified from overlapping known 

active compounds were also shown in the top side of the heat map. All the known active 

compounds were grouped within a cluster (frame in red) and had hydrogen-bond with target 

protein (R152, E277, R292, and R371).  
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Figure 22. Hierarchical clustering of protein-ligand interaction of 61 docked poses on ERα 

(PDB id: 3ert). Each docked pose is represented as one line in the heat map in the middle of 

the figure, and the red being the lowest protein-ligand interaction energy and the green being 

the highest energy. The left side of the heat map shows the hierarchical clustering results on 

the ERα, including the dendrogram. Docked poses in the heat map are rearranged according 

to the order given by hierarchical clustering. The hot spots identified from overlapping known 

active compounds were also shown in the top side of the heat map. The active compounds 

were divided into four clusters by the red frames on the heat map, two were singleton, one 

contains 4 inhibitors, and last cluster contained 5 inhibitors and 8 ERα agonists. We could 

inspect that the positive ven der Waals force on (I424, M388, and L349) made EST11 and 
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EST10 different from other inhibitors.  
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E353 R394 H524T347 L525

 

Figure 23. Hierarchical clustering of protein-ligand interaction of 61 docked poses on ERα 

(PDB id: 1gwr). Each docked pose is represented as one line in the heat map in the middle of 

the figure, and the red being the lowest protein-ligand interaction energy and the green being 

the highest energy. The left side of the heat map shows the hierarchical clustering results on 

the ERα, including the dendrogram. Docked poses in the heat map are rearranged according 

to the order given by hierarchical clustering. The hot spots identified from overlapping known 

active compounds were also shown in the top side of the heat map. All active compounds 

except ESA08 were grouped into one cluster, the ESA08 had additional interaction with target 

protein (T347 and L525). 
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Figure 24. (d) The dendrogram of Hierarchical clustering of 61 known compound structures. 

The descriptor was calculated by atom-pair representation, using tanimoto coefficient for 

measuring distance between two molecules. Under the reference threshold (tanimoto 

coefficient = 0.55), There were three major clusters, a, b, and c. (a) In the cluster a, all 10 

ERα agonists were grouped within the cluster. (b) In the cluster b, all 11 ERα antagonists 

were also grouped within the cluster. (c) In the cluster c, all 10 TK inhibitors and 14 NA were 

grouped together because the structures between TK and NA inhibitors were similar. By the 

observation on these three clusters, we could inspect that the atom-pair descriptor could group 

compounds with similar structures and divided compounds with different structures. 
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Figure 25. The first stage cluster analysis of hDHFR dataset. The compound set was 
combined 990 random selected compounds from ACD and 10 hDHFR inhibitors. The top 100 
rankers of GEMDOCK were selected for clustering analysis. After the correlation coefficients 
was applied for measuring distance between docked poses, we performed hierarchical 
clustering of protein-ligand interaction on top 100 docked poses of hDHFR (PDB id: 1hfr). 
Each docked pose is represented as one line in the heat map in the middle of the figure, and 
the red being the lowest protein-ligand interaction energy and the green being the highest 
energy. The left side of the heat map shows the hierarchical clustering results on the hDHFR, 
including the dendrogram. Docked poses in the heat map are rearranged according to the 
order given by hierarchical clustering. Each active compounds of hDHFR was sires marked 
by the number ‘=01’ in the right side of the heat map. The amino acids identified for 
description were also shown in the top side of the heat map. The pointers in red were ven der 
Waals forces. All active compounds were grouped into one cluster. 

 



 85

 

R70N64I60Q35E30 F31 V115I7 F34 I60 NAP

V115-O

I7-O

E30-OE2
E30-OE1

R70-NH1

N64-ND2

F31-RING

I60-Car

35 Unknown compounds

V115-O

I7-O

E30-OE2
E30-OE1

R70-NH1

N64-ND2

F31-RING

I60-Car

10 Active compounds

a

b c

 

Figure 26. The detail of binding interactions within the largest cluster on hDHFR testing 

dataset. (a) The cluster contained 45 compounds include 10 active compounds and 35 

unknown compounds. The pointers in red were the major ven der Waals force interactions. 

Each active compounds of hDHFR was sires marked by the number ‘=01’ in the right side of 

the heat map. The amino acids identified for description were also shown in the top side of the 

heat map. (b)(c)The detail binding interactions of active and unknown compounds within the 

cluster. The residues in yellow were major contribution of ven der Waals force. The binding 

interactions between active compounds and unknown compounds were similar, but the 

compound structures within the clusters were diverse.  
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Figure 27. The process and result of second stage cluster analysis on hDHFR testing dataset. 

The largest cluster generated by first stage clustering was clustered by second stage clustering 

to selecting representative compounds within each cluster. (a) The binding interactions of the 

largest cluster generated from first stage clustering, the cluster contained 45 compounds 

include 10 active compounds and 35 unknown compounds. (b) The result of hierarchical 

clustering, there were four major clusters identified by the dendrogram, (c), (d), (e), (f). The 

active compounds were spliced into two clusters, the old drugs (d) and the new drugs (e) 

because of the difference of the carboxylic acid group. The sub-structures within each cluster 

selected by the red circle in (c) and (f) were similar, but the sub-structures were different 

between each cluster. (g), (h), (i), (j), the lowest energy compound within each cluster for 

representing all compounds within the cluster.  
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Figure 28. (a) The shikimate pathway. Our target protein was shikimate kinase. (b) The 

structure of 3-dehydro-shikimate. (c) The structure of shikimate, substrate of shikimate kinase. 

(d) The shikimate-3-phosphate, product of shikimate kinase. 
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Figure 29. Comparing open and close form of shikimate kinase (open form PDB id: 1ZHU, 

close form PDB id: 1ZHI). (a) The induced-fit movement of the lid structure from an open to 

a closed form. (b)(c) The electrostatic surface of open and close form of shikimate kinase. 

 

 

 

 

 

 

 



 89

RMSD : 0.02

Red: crystal shikimate

Green: docked shikimate

Red: crystal shikimate

Green: docked shikimate

 

 

Figure 30. The result of molecular recognition of shikimate on HpSK (PDB id: 1zui). The lid 

structure (residue id: 108~124) was removed. The RMSD between crystal shikimate and 

docked shikimate was 0.02, indicated that after removing of the lid structure, the GEMDOCK 

still could dock the substrate back into the target protein correctly.  
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Figure 31. The distribution of fitness of compounds while screening on shikimate kinase. we 

selected top 300 rankers for performing cluster analysis, because the rank of substrate 

shikimate was 268.  
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Figure 32. Result of clustering top 300 rankers by first stage clustering on shikimate kinase. 

(a) There are clusters C1-C8 and others, totally 9 clusters. (b) The binding interactions of 

compounds within the cluster, which were similar to the substrate. All compounds within the 

cluster had the hydrogen-bonds with target protein (R132-NH1, R132-NH2, R57-NH1, 

R57-NH2, G81-N, and D33-OD1). (c) The alignment of docked poses of each cluster. Each 

cluster had different distribution of conformation.  
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Two-stage hierarchical clustering for HpSK
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Figure 33. Overall process and result of two-stage clustering on shikimate kinase. First, 

virtual screening on CMC 6443 compounds by GEMDOCK. Second, we selected top 300 

compounds for two-stage cluster analysis. Third, after clustering by protein-ligand interaction, 

there were 8 major clusters and others. Forth, we applied the atom-pair descriptor for 

clustering compounds within each cluster and 23 representative compounds were selected for 

use in bioassay. Fifth, 5 compounds were tested in vivo (compound structures with blue 

frames) and one had inhibition on shikimate kinase (compound structure with red frame). 
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CMC number Rank Fitness Structures 

Shikimate 268 -85.6673 

 

MCMC00000215 220 -87.8138 

 

MCMC00004411 24 -106.441 

 

MCMC00005807 103 -95.6473 

 

MCMC00010190 139 -92.5776 

 

MCMC00001504 288 -85.0355 

 

MCMC00001523 30 -105.279 

 

MCMC00001512 2 -126.82 
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MCMC00003958 115 -94.7342 

 

MCMC00005287 10 -113.875 

 

MCMC00005814 50 -101.49 

 

MCMC00001378 55 -100.448 

 

MCMC00006402 159 -91.1382 

 

MCMC00000106 58 -99.8947 

 

mMCMC00001499 176 -90.3963 

 

mMCMC00001476 54 -100.682 

 

mMCMC00000188 1 -130.827 
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mMCMC00002991 15 -111.331 

 

mMCMC00005346 42 -103.464 

 

mMCMC00003948 28 -105.808 

 

mMCMC00003970 78 -97.586 
 

mMCMC00001470 83 -97.4571 
 

mMCMC00001916 8 -114.836 
 

Figure 34. The structures of the 23 representative candidates on the HpSK. Five of 23 

representative candidates were tested in vivo, and one of the five candidates, furosemide 

(MCMC00000106), was identified being able to inhibit shikimate kinase. 
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