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ABSTRACT

The interaction between proteins is one of the most important features to most biological
processes. In the postgenomic era, the ability to identify protein-protein interactions on a
genomic scale is very important to determine networks of protein interactions. To predict
protein interactions large-scalely, Lu et al. presented “interologs mapping”, — predicting
protein-protein interactions from one organism to another by using computational
comparative genomics. However, behind protein interactions there are protein domains
interacting physically with one another to,perform-the specific functions. According to the
increasing number of solved structures involving protein complexes, it is ripe to test putative
interactions on complexes of known 3D structures.

In this study, we proposed a new. concept--3D-domain interologs mapping” to inferred
domain-annotated protein interactions. The 3D-domain interologs mapping is defined as
“Domain a (in chain A) interacts with domain b (in chain B) in a 3D complex, their inferring
protein pair A' (containing domain a) and B' (containing domain b) in the same species would
be likely to interact with each other if both protein pairs (A' and A as well as proteins B and B')
are homologous ” The key novelties of our method are fast genome-scale prediction across
hundreds of organisms and construction of a pair Position Specific Scoring Matrix
(pairPSSM). This matrix is able to provide statistical significance of residue pairs at various
contact positions by evolutionary profiles, leading to a more sensitive scoring system. Our
method successfully distinguishes the true protein complexes and unreasonable protein pairs
with about 90% accuracy. We also evaluate our method in yeast proteome and get about 10%
improvements than previous methods. The mean correlation of the gene expression profiles of
our predictions is significantly higher than that for non-interacting protein pairs in S.
cerevisiae. Finally, our method applies to seven organisms commonly used in molecular
research, including Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans,
Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. In these seven
organisms, our method predicts ~450,000 new interactions in which the interacting domains
and residues are automatically modeled. In conclusion, this study suggests that 3D-domain
interologs mapping and pairPSSM are useful methods for predicting protein-protein
interactions and detailed analyzing networks of protein interactions.
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Chapter 1

INTRODUCTION

1.1 Background

Many biological processes involve different types of interactions among proteins. Listing
the proteins in the cell is not enough to fully understand the cellular machinery and all the
interactions between them need to be delineated as well(1). Recently, systematic identification
of protein-protein interactions had been constructed by high throughput experimental methods
(large scale yeast two-hybrid analysis: 0t proteomics immunoprecipitation e.g.) for diverse
organisms, such as the yeast Saceharomyces-cerevisiae, the fruitfly Drosophila melanogaster
and the nematode worm Caenorhabditis elegans(2-4).-Simultaneously, a lot of computational
methods had also developed to ptedict protein-protein interactions genome-widely, such as
gene fusion events(5), gene expression profiles(6), phylogenetic profiles(7), known 3D
complexes(8,9), interologs mapping(10) (two proteins will interact with each other if their
othologous proteins do as well), domain-pair profiles(11), conservation of gene
neighborhood(12) and co-evolution strategy(13). The interaction data obtained from these

methods were being collected by DIP(14), BIND(15), MIPS(16) and STRING database(17).

In the postgenomic era, the ability to identify protein-protein interactions on a genomic
scale is very important to determine protein interaction networks. Genome sequencing
projects are in progress for more than 644 organisms, and complete sequences are now
available for more than 160 prokaryotic and eukaryotic genomes. The NCBI Reference

Sequence Project(18) collects 2,631,538 proteins for major research organisms. Most protein



sequences are without annotation of interaction. Facing the enormous protein sequences with
unknown function, how to determine the protein interaction networks genome-scalely has

become an important issue.

A research group presented “interologs mapping”(10) — the transfer of interaction

annotation from one organism to another by using comparative genomics. For any given
protein in one organism, all of its homologs in another organism are consider as a homolog
family; both families of two interacting proteins are called interacting families and all possible
protein pairs between two interacting families are considered as protein-protein interaction

candidates.

Behind protein interactions there are protein domains interacting physically with one
another to perform the necessary functions. Intéractive domains can recruit the formation of
multi-protein signaling complexes, and control: the conformation, activity, and substrate
specificity of enzymes(19). However, ‘almost all large scale method to explore interacting
proteins can not respond how a protein interacts with another one in molecular detail (which
domains bind directly), whether experimental or computational methods. There are two major
strategies to study domain-domain interactions. The first strategy was to identify the domain
pairs that are highly correlated with interacting proteins pairs and estimated the
domain-domain interaction probability by using known protein-protein interactions as training
data(20,21). These estimated probabilities of domain-domain interactions may be used to
predict the probabilities of protein-protein interactions. The other strategy was to identify
interacting domain from three-dimensional structural information. They exploited structural
information to provide interacting domains and atomic details for thousands of direct physical
interactions between proteins(8,22). The knowledge about interacting domains of a given
protein interaction is very important for predicting new protein interactions. For example, p97,

a member of AAA+ family (ATPases associated with various cellular activities) are involved
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in different cellular pathways by interacting with various adaptor proteins(23). The membrane
fusion adaptor p47 forms a tight complex with p97 and mediates p97 binding to its t-SNARE
(soluble NSF attachment protein receptor) syntaxin5 for another round of membrane fusion
(24). The interaction between p47 and p97 in Mus musculus could be transferred to other
species by interologs mapping (two proteins will interact with each other if their othologous
proteins do as well). According to the result of PSI-BLAST, we obtain the yeast Shp1p similar
to p47 (E value: 10"'*) and the yeast Rix7p protein similar to p97 (E value: 10"*%). Both the
two homologous proteins in Saccharomyces cerevisiae are very similar to the template (both

E value smaller than 107'%

and sequence identity greater than 30%) and might interact with
each other. Nevertheless, it may be not true in reality. Although both p97 and Rix7p belongs
to type II AAA+ proteins which containing two ATPase domains, the Rix7p lacks the
important binding domain — CDC48. N domain and not involved in the process of membrane
fusion. Rix7p seems to be required for restructuring nucleoplasmic 60S pre-ribosomal
particles to make them competent for nuclear-export(25) (Figure 1). Therefore, the interaction

between Rix7p and Shplp should beanincorrect prediction result from lack of the knowledge

about interactive domains.

According to the increasing number of solved structures involving protein complexes, it
is ripe to test putative interactions on complexes of known 3D structure. In this study, we
address these questions using a new concept, the “3D-domain interologs mapping” which is
similar to “generalized interologs mapping”. The 3D-domain interologs mapping, the core
idea of our method, is defined as “Domain a (in chain A) interacts with domain b (in chain
B) in a known 3D complex, their inferring protein pair A' (containing domain a) and B’
(containing domain b) in the same species would be likely to interact with each other if
both protein pairs (A" and A as well as proteins B and B') are homologous”. Based on the

concept of 3d-domain interologs mapping, we can infer lots of protein interactions across



different species quickly and automatics map interacting domains for our predicted

interactions.

Our method can successfully distinguish the true protein complexes and non reasonable
protein pair up to 90% accuracy. We evaluated our method in yeast proteome and get about
10% improve than previous methods. The mean correlation of the gene expression profiles of
our predictions is significantly higher than that for non-interacting protein pairs in S.
cerevisiae. Although our method uses structure information, it does not require that the
structures of the modeling proteins be solved. For this reason, we can apply our method to
predict protein interactions in the large protein database which contains several hundreds of
complete genome sequences. Finally, the method applies to seven organisms commonly used
in molecular research, including Homo _ sapiens, Mus musculus, Rattus norvegicus,
Caenorhabditis elegans, Drosophila_rmelanogaster, Saccharomyces cerevisiae and
Escherichia coli. In these seven' ‘organisms, our method predicts ~450,000 new protein
interactions in which the interacting domains-and tresidues (binding sites) are automatically
modeled. These visualized interacting ‘residues are useful for the detailed analysis of

protein-protein interactions.

1.2 Related works

1.2.1 Generalized interologs mapping

One concept of interologs, first proposed by Walhout et al.(26), is if interacting proteins
A and B in one organism have interacting orthologs A’ and B’ in another species, the pair of
interactions A-B and A’-B’ are called interologs. Protein-protein interactions can be predicted

by maps known interactions in the source organism onto target organism. Yu et al.(10)



extended this idea to a large scale quantitative assessment on conservation of protein-protein
interactions between proteins and organisms. They proposed “generalized interologs mapping:
for any given protein in one organism, all of its homologs in another organism are consider as
a homolog family; two families of two interacting proteins are called interacting families and
all possible protein pairs between two interacting families are considered as protein-protein
interaction candidates”. By using the interaction information of from Saccharomyces
cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and Helicobacter pylori, they
quantitatively assessed the interactions can be reliably transferred between species as a
function of the sequence similarity of the corresponding interacting proteins and find a joint

sequence identity > 80% or a joint E-value <10~ "° to make a reliable transformation.

1.2.2 Structural-based prediction of protein=protein interactions

Some methods had paid aftentions to-known 3D-complexes in the PDB(27) to infer
protein-protein interactions. Aloy et al.(8)used a 3D complex and alignments of homologues
of the interacting proteins to access the fit of any possible interacting pairs on the complex by
using empirical potentials. The MULTIPROSPECTOR, proposed by Lu et al.(22), attempts to
study more distantly related protein sequences by threading sequences onto a library of
interacting templates and scores based on the threading Z-score and the magnitude of the
interfacial energy which is similar the first approach. The statistical interfacial pair potentials
were developed from a dimer database (selecting the cocrystallized records from the PDB)

with using of the following formula:

P, j) = ‘IOgE,J—E:}U (1)



where P(i , j) is the interfacial pair potential between interacting residue pair i and j; Nops(i , J)
is the observed number of interacting residue pairs of i, j between two chains; Nexps(i , J) is the
expected number of interacting residue pairs of 1 , j between two chains if there are no

preferential interactions among them; The Neys(i , J) is calculated from:
NeXp(iaj)zxi'Xj 'Ntotal (2)

where X is the mole fraction of residue i in total surface residues. Niotal 1S the number of total
interacting residue pairs. Both two methods applied the ratio of the observed frequencies to
expected frequencies of pairings between two residue types to examine the two homologues if

interacting with each other.

1.3 Motivations

The previous methods(8,22) foeusedron giving a pair of query proteins to search the
3D-dimer database library and then found;a best fit template to score how well the pair of
query proteins fit the template structure (Figure 2A). However, the technology of sequencing
makes a might advance in the post-genomic era. There are more than two millions protein
sequences across more than three thousands species in NCBI Reference Sequence database. It
is hard to test all the protein pair (more than 1 billion) to search a dimer of known structure
suitable to model them by homology. Here we combine the concept of generalized interologs
mapping and structure based prediction of protein interactions to propose a new concept
“3D-domain interologs mapping”, defined as “Domain a (in chain A) interacts with domain b
(in chain B) in a known 3D complex, their inferring protein pair A' (containing domain a) and
B' (containing domain b) in the same species would be likely to interact with each other if

both protein pairs (A" and A as well as proteins B and B') are homologous. Using a dimer of



known structure as template, we can predict lots of domain annotated protein-protein

interactions across different species (Figure 2B).

The statistical interfacial pair potentials were used to score how well the query protein
pair fit the template structure by previous methods. This is a general empirical matrix for all
the dimers of known structures to model the pair of query protein. However, although binding
sites are mainly hydrophobic, protruding, and electrostatic complementary, no general
patterns are observed(28). It had been found that the free energy of binding is not evenly
distributed across interfaces; instead, there are hot spots of binding energy made up of a small
subset of residues in the interface of complexes(29). Keskin et al. had found there is a
correspondence between the experimental identified energy hotspot and the structurally
conserved residues(28). Therefore, we _consider the general empirical matrix cannot
characterize all binding site corrgetly. Many researches had been proven that conservative
residues may perform specific functional (e.g. catalysis, recognition, binding) role(30,31). In
our study, we also develop a méthod to estimate the probabilities with witch residue pairs
occur at various contact positions by evolutionary profiles, leading to a more sensitive scoring
system. We consider our pair Position Specific Scoring Matrix (pairPSSM) can automatically
characterized each interface of complexes and achieve a good performance for predicting

protein-protein interactions.

1.4 Thesis overview

In this study, we use “3D-domain interologs mapping” to predict domain annotated
protein interactions. The flowchart shows in Figure 3. We collect dimers of known structure
from Protein Databank. For each 3D-dimer, we estimate the probabilities with witch residue

pairs occur at various contact positions and construct a pairPSSM to assess the fit of any



possible interacting protein pairs. And then we use these dimers as queries to search target
protein database and predict many candidates of protein-protein interaction. We evaluate our
method on three datasets; one is the multiple complex structures with the same interacting
SCOP domains(32); one is protein-protein interactions in yeast proteome; and the other is
yeast gene expression profiles. We finally apply our method to seven organisms commonly
used in molecular research, including Homo sapiens, Mus musculus, Rattus norvegicus,
Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae and
Escherichia coli. In these seven organisms, our method predicts ~450,000 new protein
interactions in which the interacting domains and residues (binding sites) are automatically
modeled. These visualized interacting residues are useful for the detailed analysis of

protein-protein interactions.



Chapter 2

METHODS AND MATERIALS

2.1 Overview

We apply 3D-domain interologs mapping to infer domain annotated protein-protein

interactions from 3D protein complexes. Step by Step of our method is showed as follows:

(i)preparing the database of dimer template: we consider two contact chains in a 3D protein
complex as 3D-complex template. We identify the contact residues of a 3D-complex template
(containing chains A and B) in the PDB and define domain boundary by the SCOP database;
(i))for each dimer template, build 'a protein-protein interaction position-specific matrix
(pairPSSM); (iii)generating candidates: we_use a'dimer template to search two protein
families (A’ and B’) which contain the corresponding domains (a and b) from the target
protein database and consider all the protein pairs between the two family as candidates of
interacting proteins; (iv)scoring: we project the contact residue positions from a dimer
template to its homologous protein pair. Then, summation of energy of all contact residue
pairs in the homologous protein pair based on pairPSSM is considered the interactive energy
of the homologous protein pair. If the interactive energy exceed to a threshold, we predict the

two proteins interact with each other.



2.2 Preparation of data sets

2.2.1 Database of 3D-dimer

The PDB database (Protein Data Bank, http:/www.rcsb.org/pdb/)(27) stores many

three-dimensional structure of macromolecules, some of which are cocrystallized records. We

select the cocrystallized proteins with using the criteria listed below:
1. The resolution of the PDB records should be smaller than 3.0A.

2. Each chain of the cocrystallized proteins should be comprised more than 35 amino acids
to be considered as domains. If the protein is consisted of the cross-chain domain defined

by SCOP, we also regard it.

3. The number of interacting residue pairs is setto be greater than 25 and each chain must
contain more than 5 contact residues to' make sure that the dimer is reasonably
extensive(20). Interacting residuespairs.are_defined as a pair of residues from different

chains that have at least one pair of heavy atoms within 4.5A with each other.

4. Elimination of artificial packing complexes rather than biologically functional multimers
by using PQS server(33), where adopt the reduction of solvent accessibility (ASA) due to

oligomerisation.

From 35343 records in PDB (20060204), 29369 dimers of known structures are selected
including 8018 heterodimers and 21351 homodimers. Then, we remove redundancy by

sequence identity > 50% and leave 1122 heterodimers and 3514 homodimers, respectively.

2.2.2 Definition of protein domain

The protein domain definition is referenced by SCOP (Structure Classification of
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Proteins, http://scop.berkeley.edu/)(32). In 1.69 releases, there are 70859 domains from 25973
PDB entries. The SCOP database is based on evolutionary relationships and on the principles
that govern their three-dimensional structure. Strong sequence similarity alone is considered
to be sufficient evidence for common ancestry. Close structural and functional similarity
together is also accepted as sufficient evidence for distant homology between proteins that
lack significant sequence similarity. But neither structural nor functional similarity alone is
considered to be strong evidence. Therefore, the SCOP database is organized on a number of
hierarchical levels, with the principle ones being family, superfamily, fold and class. Families
contain protein domains that share a clear common evolutionary origin, as evidenced by
sequence identity or extremely similar structure and function. Superfamilies consist of
families whose proteins share very common structure and function, and therefore there is
reason to believe that the different families are evelutionarily related. Folds consist of one or
more Superfamilies that share a common structure core structures. Depending on the type and

organization of secondary structural elements,-folds are grouped into four main classes (all a,

all B, o+, o/P).

2.2.3 Data set of related 3D-dimers

We want to explore whether the two similar dimers possess the similar protein
interaction type. Modeling protein interactions by homology is reasonable only when this
hypothesis is valid. Here we defined the two 3D-dimers contain the same interacting SCOP
domain (more than three contact residues within the domain boundary) are related-dimer pairs.
From our database of 3D-dimer, we first remove the dimers with no definition of SCOP
domain then leave 5553 heterodimers and 15026 homodimers. Second, the dimers are

clustered by BlastCluster(34) according sequence identity more than 80% and both sequence
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coverage more than 0.8. We choose one representative dimer from each cluster if the number
of interacting residue pairs more than the mean of the cluster and the resolution of
crystallization is smallest. In this way, a representative set of 3D-dimers is selected, which
contains 999 heterodimers and 2837 homodimers. Third, the representative set of 3D-dimers
is grouped based on the domain definition in SCOP. We group the dimers which possess the
same interacting domain pair in family level. Totally, there are 540 types of interacting
domain pair in the 999 heterodimers and 1425 types of domain-pair in the 2837 homodimers,
respectively. 189 groups of heterodimer and 488 groups of homodimer contain more than 1
member. We choose one representative member for each group and pair the representative one
for the all other members in the group. These pairs of dimer are considered as related dimer
pairs. In this way, we select 459 related dimer pairs from the 189 groups of heterodimer and

1412 related dimer pairs from 489 groups of homodimer, respectively.

On the other hand, we define a subset from database of 3D-dimer which include the
dimers should be in two-chain PDB records-(there are only two proteins in the PDB entry).
The rationale is interaction between two'proteins may be bothered by other proteins if there
are more than three proteins cocrystallized at the same time. There are 897 two-chain
heterodimers and 3665 two-chain homodimers selected from the database of dimer template.
Finally, we can get 114 pairs of two-chain heterodimer and 616 pairs of two-chain

homodimers.

2.2.4 Data set of true protein complexes and unreasonable protein pairs

Our method is based on a 3D-dimer to model all potential protein interactions and used a
specific pairPSSM to determine whether the two proteins interact in nature. Here we construct

a data set include the protein pairs which really form complexes in living thing and the protein
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pairs don’t interact with each other (the unreasonable protein pairs). From 189 representative
3D-dimers (exclude the antibody-antigen complex), we used the PSI-BLAST to search our
database of 3D-dimer which remove dimers with > 80% sequence identity and get
homologous protein pair with E value threshold 0.1. If the protein pair is cocrystallized in
PDB and it contains the same interactive SCOP domains for the query dimer, we consider the
protein pair as positive that means this protein pair should be predicted by the 3D-dimer. In
the other word, if the protein pair is not cocrystallized in PDB and it does not contain the
same interactive SCOP domains for the query dimer, we consider the protein pair as negative.

In this way, we can select 224 positive protein pairs and 282 negative protein pairs.

2.2.5 Data set of yeast proteome

We test our method to predictyinteractions in-baker’s yeast (Saccharomyces cerevisiae).
Being a model system relevant to-human biology, yeast has attracted special interest from the
scientific community. There are 6000 proteins but the estimated number of actual interactions
is smaller than 100,000 in Saccharomyces cerevisiae(1). Recently, high-throughput interaction
screens of protein interactions in S. cerevisiae had been conductive by yeast two-hybrid(2,35)
and affinity purification followed by mass spectroscopy(36,37). At the same time, many
large-scale experiment of gene expression for S. cerevisiae proteome are also carried
out(38,39). The public available data of functional genomics in Saccharomyces cerevisiae are

most comprehensive.

The yeast proteome is obtained from the web site of the SGD (Saccharomyces Genome
Database, http://www.yeastgenome.org)(40). The corresponding amino acid sequences of
total 5877 open reading frames (ORFs) are subsequently downloaded. The comprehensive

protein-protein interactions are downloaded from the DIP database (Database of Interacting
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Protein, http://dip.doe-mbi.ucla.edu/)(14). The DIP database catalogs experimentally
determined interactions between proteins. It combines information from a variety of sources
to create a single, consistent set of protein-protein interactions. The data stored within the DIP
database were curated, both, manually by expert curators and also automatically using
computational approaches that utilize the knowledge about the networks of protein-protein
interaction extracted from the most reliable, core subset of the DIP data. There are total 5882

reliable interactions downloaded from DIP and considered as positive set.

Because no directly information about which proteins do not interact, Jansen et al.(6)
assumed that proteins in different compartments do not interact with each other and generate
2,708,746 non-interacting protein pairs from lists of proteins in separate subcellular

compartments(41). We used these protein pairs as gold negative set.

2.2.6 Data set of yeast gene expression

The gene expression profiles of two interacting proteins were also used to access the
accuracy of our method according to the basic assumption: “the gene pair with similar
expression profiles is likely to encode an interacting protein pair’(42). The Rosetta
compendium set consisting of the expression profiles of 300 deletion mutants and under
chemical treatments(39) was used to measure the similarity of gene expression profiles of two

genes

2.2.7 Performance criteria

We used two common metrics to assess the quality of our method, including mean
average precision (MAP) and mean false positive rate (MFP). The mean average precision is
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defined as:
Ao
AP :( zizll/Th) /A (3a)
M
MAP =( 3" AR ) /M (3b)
where Ty’ is the number of compounds in a hit list containing i correct interactions; A is total

number of true hits in the databases; M is the total number of template.

The mean false positive rate is defined as:
FP =3 (T, - A )T -A)) /A (4a)
M
MFP —( S FR) /M (4b)

where Ap is the number of active ligands among the T, highest ranking compounds; T is the
total number of candidates from PSI-BLAST; A-is total number of true hits in the T; M is the

total number of template.

In this study, the similarity of two gene-expression is defined by the Pearson correlation
coefficient between the two gene-expression profiles (see 2.2.6). To test whether the mean of
correlation coefficient for candidates of protein-protein interactions higher than that of
non-interacting protein pairs, we calculate the T-score and the P-value for the null hypothesis
of the sample mean (our prediction) smaller than the mean of gold negative set. We apply

standard two sample T-test statistics:

T= u —u
11| =DS+(n, - DS;
n, n, n+n,-2

(%)
where U is mean of samples, and S is the standard deviations of the samples:
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2.3 Construction of pairPSSM

Here we want to develop a method to estimate the probabilities with witch residue pairs
occur at various contact positions by evolutionary profiles, leading to a more sensitive scoring
system. The probabilities with witch residue pairs occur at various contact positions are
transformed to energy of contact residue pair (pair Position Specific Scoring Matrix called
pairPSSM). The energy calculated from pairPSSM is the specific interfacial energy. On the

other hand, the energy calculated from empirical matrix is the general interfacial energy.

2.3.1 Building comprehensive andnon=redundant protein database

To obtain the evolutionary profiles from multiple sequence alignment, our alignment
result should be come from a comprehensive and non-redundant protein database. The protein
database is obtained from the web site of the NCBI Reference Sequences database (Release

16, http://www.ncbi.nlm.nih.gov/RefSeq/). The Reference Sequence (RefSeq) collection aims

to provide a comprehensive, integrated, non-redundant set of sequences, including genomic
DNA, transcript (RNA), and protein products, for major research organisms. In Release 16,
Refseq includes 2,273,764 protein sequences across 3244 organisms. Table 1 shows the
protein sequence composition in Refseq database. Although RefSeq aims to provide a
non-redundant set of sequences for users, two major source of redundancy occur in RefSeq.
One is alternative splicing; the other is duplication of genes (paralog). Therefore, we used

BlastCluster to remove redundancy with both the sequence identity and coverage as high as
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90% in the same species. In this way, 2,109,945 protein sequences are selected into our

non-redundant protein database.

2.3.2 Scoring matrix architecture

For a 3D-dimer with the number of contact residue pairs M, the empirical energy matrix
of dimension 20 x 20 is replaced by a protein-protein interaction position-specific matrix (pair
PSSM) of dimension M x 20. The residue pair in a contact position is considered as a single
symbol. The advantage of this matrix is estimation of the probabilities with witch residue

pairs occur at various contact positions, leading to a more sensitive scoring system.

2.3.3 Construction of multiple sequence alignment

To produce a multiple sequence alignment from the PSI-BLAST output, we simply
collect all RefSeq sequence segments that have been aligned to the two proteins of 3D-dimer
with E value below a threshold, by set to 10 to assure the members are similar enough to the
3D-dimer. The two proteins of 3D-dimer are used as a master for constructing two multiple
sequence alignments, respectively. Any row that is > 95% identical to 3D-dimer is purged. To
ensure that all the sequences found by PSI-BLAST are likely to be structurally related to the
dimer template, we set a similarity threshold described by Batalov & Abagyan(43,44) was

used, defined as follows:
t(L) <31.8L7"'” + mx17.4L7"% (7)

where t(L) is the percentage sequence identity threshold dependent on alignment length L, and

m is the level confidence of this threshold (in standard deviations). In this work, we use m =3
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(the identity threshold at least above 25%) to make sure all the sequences found by

PSI-BLAST with similar interactive type to their dimer template (see section 3.1).

Because most the interacting proteins belong to the same species, the proteins in the two
multiple sequence alignments must be arranged in order by species. For example, the 1%
protein in a multiple sequence alignment is a human protein, and the 1% protein in the other
must be a human protein. The 2™ protein in a multiple sequence alignment is a mouse protein,

and the 2" protein in the other must be a mouse protein.

2.3.4 Target frequency estimation

Given two multiple sequence alignment from a 3D-dimer, we generate score matrices
with the theoretical foundation is that; the scores for a specific contact position be of the form
log (Qj/Pjj), where Qjj is the estimated probability for;contact residue pair i&j to be found in
the column and Pjj is the expect ptobability of 1&j.to be found in the column. The estimate of
Qjj for a specific contact position should converse simply to the observed frequency of residue
pair i&] in that column. However, it is complicate estimating the Qj; include small sample size
and prior knowledge of relationships among the residues should be considered. We
implemented the data-dependent pseudocount method introduced by Tatusov et al.(45). It is
relative simplicity and often performs nearly as well comparing the Dirichlet mixtures(46).
We slightly modify the data-dependent pseudocount method by using the prior knowledge of
amino acid relationships embodied in the substitution matrix to generate residue pair
pseudocount frequencies gjj. For a given position pair of contact residues C, we construct

pseudocount frequencies gjj using the formula:

9; =R PieSIJ ®)
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where Sjj is the interactive energy of residue i&] contact in empirical energy matrix. P; is the
background probability of residue 1. The rationale is that we use the prior knowledge of
interactive energy between residue i&j to estimate pseudo frequency. We then estimate Qj;
followed as:

o afij + /0
! a+pf

©)

where the o and P are the relative weights given to observed and pseudocount residue
frequency. In our study, we let a = the number of different residue-pair types in column -1 and

B =S5. If the B is larger, the greater the emphasis is given to prior knowledge.
Pij is the expect probability of i&] to be found in the column and is calculated from:

P. =P P, (10)

where P; is the expect probability of residue 1 occurring in protein surface. The residue

composition of the protein interface is obtained from'Lu et al.(47)(Table 2).

2.3.5 Amino acid classification

The sequence variability at each contact position could be estimated from the two
multiple sequence alignment of dimer template. However, by not making concessions for
conservative mutations the scheme becomes too rigid. Unlike unconservative mutations,
conservative ones preserve the essential nature of the side chain. Therefore, we make some
tolerances for such mutations. Saha et al.(48) made a classification based on the similarity of

the environment of each amino acid residue in protein structures to the nine groups:

(i) Ala and Val; (ii) Met, Leu and Ile; (iii) Gly, Ser and Thr; (iv) Pro, Phe, Tyr and Trp; (V) Cys;
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(vi) His; (vii) Arg and Lys; (viii) Asp and Glu; (ix) Asn and GIn. We test this classification of
amino acid whether suitable for access the contact residue potential by calculating the
standard deviation of contact residue potential in the cluster of amino acid. Figure 4A shows
that the three groups {A, V}, {P, F, Y, W} and {R, K} have high standard deviations of intra

contact residue potential. Therefore, we slightly modify the group as follows:

(i) Ala and Gly; (ii) Val, Met, Leu and Ile; (iii) Pro, Ser and Thr; (iv) Phe, Tyr and Trp; (V) Cys;
(vi) His and Arg; (vii) Lys; (viii) Asp and Glu; (iX) Asn and Gln. In this way, all the standard
deviations of intra contact residue potential are smaller than 0.4 (Figure 4B). We consider this

amino acid classification is more reasonable for measuring the contact residue potential.

2.3.6 pairPSSM evaluation

The pairPSSM is evaluated:by two data sets. First, we test whether the energy calculated
from pairPSSM could distinguish'.the true protein.complexes and unreasonable protein pairs
(data set described in section 2.2.4). Second, we apply our method to predict protein-protein
interactions in yeast proteome (data set described in section 2.2.5) and used two common
metrics (MAP and MFP described in 2.2.6) to assess the performance of pairPSSM and
compare the empirical matrix used by previous method. Then, we test the similarity of gene
expression profiles for the candidates of protein-protein interactions. Finally, we give two true

biological examples to illustrate the operation and power of our method.
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Chapter 3

RESULTS and DISCUSSIONS

In this study, we first explore the relationship between sequence similarity and
interactive similarity in protein-protein interactions. Modeling protein interactions by
homology is reasonable only when the correlation is high enough. Second, because the
structures of proteins are unsolved, we are only able to use the method of sequence alignment
to align the template and target proteins. The consistence ratio between sequence alignment
and structure alignment must also be studied. Third, our method is verified in two data sets:
one is true protein complexes and unreasonable protein pairs. The other is protein-protein
interactions in yeast proteome. Finally, we applied 3D-domain interologs mapping to predict

protein interactions for seven organisms.commonly used in molecular research.

3.1 Two issues in modeling interactions by homology

3.1.1 Similar 3D-dimers imply similar interactive types

The data set (459 pairs of related heterodimers and 1412 pairs related homodimers)
described above provide all instances of a particular interaction type occurring within
different complex structures, that we then wish to compare to each other and correlate with
sequence similarity. To compare the binding of different instances of the two dimers with the
same interacting domains, we devise an index, pair coverage, to calculate binding site overlap

from the number of shared interacting residue pairs. Given a pair of related dimers A-B and
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A’-B’, where A-A’ and B-B’ contain same SCOP domains. we use a structural alignment tool,

CE(49), to align the A-A’ and B-B’, respectively. The pair coverage is defined as:

2
Pair coverage = NCPM (11)
NCP,; - NCP,.

where the NCPM is the matching number of contact residue pairs between the structural
alignment of A-A’ and B-B’; NCPag is the number contact residues pairs of dimer A-B;

NCPa-g- is the number contact residues pairs of dimer A’-B’.

The value of pair coverage is range from 0 ~ 1. The interactive types of two dimers are
very alike in the pair coverage of a pair of related dimers is greater than 0.4. This threshold is
chosen after visual inspection of many pairs of related dimers. On the other hand, the
percentage sequence identity is calculated by the number of identical residues divided by the
number of structurally equivalent residues. In following discussion, the sequence identity
between two dimers is defined a$ the pminimum of sequence identity in A&A’ and B&B’. The
rationale is that the interacting partners.with the lower sequence identity would tend to be the

better indicator for the diversity of the interaction.

Figure 5 shows the relationship between sequence identity and pair coverage of 459 pairs
of related hetero dimers. It is clear that the interactions tend to be similar when sequence
identity is above 30%. The pairs of related dimers in the gray box are the exceptions of the
related dimer pair with > 30% sequence identity but pair coverage < 0.4. In the 280 out of 459
pairs of related heterodimers with > 30% sequence identity, there are only 24 pairs with pair

coverage < 0.4. The rate of exception is 8%.

On the other hand, Figure 6 shows the relationship between sequence identity and pair
coverage of 1412 pairs of related homodimers. The trend which gives a guide to the degree of

sequence similarity needed to be confident in a similar interaction is also observed. However,
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there are much more exceptions in the pairs of homodimers than heterodimers. In the 640 out
of 1412 pairs of related homodimers with > 30% sequence identity, there are 189 pairs with
pair coverage < 0.4. The rate of exception is about 30%. Figure 7 shows the average pair
coverage in different sequence identity. It is clear that the pair coverage of heterodimers
higher than that of homodimers in difference sequence identity. It means the specificity of
interaction in heterodimer is more conserved than homodimers. For this reason, we think
heterodimers are more suitable used to template to model protein interactions than

homodimers.

There are many PDB record with more than two proteins cocrystallized. Here we want to
study whether the interactions bothered by other proteins. 114 pairs of related two-chain
heterodimers and 616 pairs of related two-chain homodimers are selected (see 2.2.3). Figure 8
shows that the relationship between sequencesidentity and pair coverage is not much different
from heterodimers or homodimets. ‘4 out of 90 of related two-chain heterodimers and 78 out
of 255 related two-chain homodimerswith->30% sequence identity but with pair coverage <
0.4. The rates of exception are 4.5% and 30.5%, respectively. From the above result, we think

the conservative of interactive specificity is bothered slightly by other proteins.

There are 24 exceptions out of 280 pairs of related heterodimers with sequence identity >
30% but pair coverage < 0.4. Table 3 shows the type of interacting domains in these 24 cases.
Surprisingly, 11 out of 24 cases contain the b.1.1.1 domain (V set antibody variable domain).
That means the interactive types of antigen-antibody complex need not conserve. Figure 9
shows an example of two much similar antigen-antibody complex but their interactive types
are completely different. 1op9 (PDB id) is a hydrolase-antibody complex in human and 1jtt
(PDB id) also is a hydrolase-antibody in chicken. The A chain of 10p9 and A chain of 1jtt both
contain the V set antibody variable domain (SCOP id, b.1.1.1) and the sequence identity
between the two proteins is as high as 77%. The B chain of 1op9 and B chain of 1jtt both
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contain the C-type lysozyme domain (SCOP id, d.2.1.2) and the sequence identity between
the two proteins is as high as 61%. By study the interactive site of the two complexes, we
discover both the binding area of 1op9A and 1jttA at the variable region of V set antibody
variable domain. However, the binding sites of 1op9B and 1jttL are very different. We
superimpose the 1op9B and 1jttL and discover the binding site of the two proteins at two
different sides (Figure 9). Therefore, the pair coverage between the two complexes is very

low.

In summary, we find the related dimers indeed keep similar interactive type. Sequence
similarity needed to be confident in a similar interaction. We suggest one must be careful with
identity below than 30% to model interactions by homology. Because the specificity of
interaction in heterodimer is more conserved than homodimers, we consider the heterodimers
are more suitable used to templates to modeltinteractions. Finally, we find the interactive
types of antigen-antibody complexes often differ completely, they may be not suitable for

used to as templates.

3.1.2 Sequence identity threshold of aligning contact residues

To model interactions for the proteins with unknown 3D structures, we need use the
method of sequence alignment to align protein sequences between the template (3D-dimer)
and target proteins (unknown 3D structure). Here we would likely to study if the performance
of PSI-BLAST (a method of sequence alignment)(34) is as better as the performance of CE (a
method of structure alignment)(49) in matching of contact residues. We devise an index,
consistence ratio, to calculate the accuracy of PSI-BLAST in match of contact reside by using

alignment result of CE as reference. The consistence ratio is defined as:
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where the NCMce is the number of contact residue matching in CE alignment; NCMg ast 18

the number of contact residue matching occur both in PSI-BLAST and CE alignment.

286 pairs of related heterodimers whose pair coverage greater than 0.5 are used for our
study to ensure the contact residue equivalent with biological meaningful. Figure 10A shows
the relationship between the consistence ratio and sequence identity. The higher sequence
identity, the higher consistence between PSI-BLAST and CE alignment. Figure 10B shows
the mean of consistence ratios in different sequence identity. When the sequence identity is
greater than 25%, the consistence is very high. Furthermore, there is a twilight zone between
sequence identity between 20%~25%. The result conforms to the traditional twilight zone that
already known for sequence andstructure;relationships(50). If the sequence identity below

than 20%, it is much different in:sequence and structure alignment result.

3.2 Verification in true protein complexes and unreasonable protein pairs

To verify our method, the two dataset should be collected. The one is positive dataset
which contains the protein pairs indeed interact with each other and the other one is negative
dataset which contains the protein pairs which do not interact. Here we would likely to study
whether the specific interfacial energy calculated from pairPSSM could distinguish the two
datasets. From above sections, 224 pairs of homologous, non-identical 3D-heterodimers are
collected into positive dataset and 282 pairs of homologous protein pair are collected into
negative dataset. We can use one dimer to score the other one by our specific empirical matrix

(pairPSSM) and general empirical matrix.

Figure 11A shows the frequency of positive set and negative set occurred in different
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specific interfacial energy intervals. The threshold is determined by result in minimum false
positives and minimum false negatives. We calculate the error rate by averaging the number
of false positive divided by number of positive set and the number of false negative divided
by number of negative set. Figure 11B shows that when the specific interfacial energy is set to
50, we can obtain the minimum error rate 18%. We also apply the general interfacial energy to
the positive set and negative set. The result is in Figure 12B. When the general interfacial

energy is set to 10, we can obtain the minimum error rate 17%.

We are interested in the distribution of positive and negative dataset is not high
concentrated in the two sides (positives in high energy and negatives in low energy) when
using the specific interfacial energy (Figure 11A). That is why the error rate higher in using
specific interfacial energy than in using general interfacial energy. We find there it is a high
correlation between the specific jinterfacial-energy’.and the number of contact residues in
3D-dimers (Figure 13). The correlation coefficient 1s 0.9321. The correlation between general
interfacial energy and the number. of contact-residues (Figure 14) is not as high as the
correlation between the specific interfacial energy and the number of contact residues. The

correlation coefficient is only 0.6753.

Because specific interfacial energy is highly dependent on the characteristic of dimer
template, we design a method to normalize the specific interfacial energy. When a
homologous protein pair is modeled by a 3D-dimer and gets a specific interfacial energy

scored by pairPSSM, we normalize the energy defined as follow:

E
E _ predict (1 3)

normalized E

template

where the Epredict 1S the specific interfacial energy of the homologous protein pair and the

Epredgict 1s the specific interfacial energy of the dimer template. By using the normalized
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interfacial energy, we can find the distribution of positive and negative dataset is much more
concentrated in the two sides (Figure 15A) than the unnormalized (Figure 11A) and the error
rate reduce from 18% to 13% (Figure 15B). For this reason, we consider the normalized
specific interfacial energy equal set to 0.4 is a good threshold for predicting protein

interactions.

3.3 Verification in yeast proteome

The yeast (Saccharomyces cerevisiae) is a simple, unicellular eukaryote developed to a
unique powerful model system for biological research. Its prominent useful features are the
cheap and easy cultivation, short generation times, the detailed genetic and biochemical
knowledge accumulated in many years of research. Therefore, this organism provides a highly
suitable system to study basic biological processes that are relevant for many other higher
eukaryotes including human. There are about 6000, proteins in this organism. Up to present,
5882 reliable protein-protein interactions in;yeast are collected in DIP database (see 2.2.5).
Here we predict protein interactions in this organism and used two indices, average precisions
and false positive rate, to verify our method. The two indices are common used to evaluate the
quality of database searching. From the dataset of 8018 heterodimers, we remove the
redundancy with sequence identity > 50% and then select 1122 representative heterodimers as
queries to search database of yeast proteome by PSI-BLAST. We defined the proteins
searched out with E value smaller than 10~ is homologous to the query protein. Given a query
of heterodimer A-B, A’ is the homologous protein for A and B’ is the homologous protein for
B. All the homologous protein pairs A’-B’ are considered as candidates of protein-protein
interactions. The known interactive protein pairs among the candidates are considered as

positives and the others are considered as negatives.
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182 out of 1122 queries have both positive candidates and negative candidates, and then
these queries could calculate the average precisions and false positive rate. All the detail result
of the 182 queries is listed in Table 4. Figure 16 shows the mean average precisions (MAP)
and mean false positive rate (MFP) of the 182 queries. The MAP is 0.42 and the MFP is 0.31
by using specific interfacial energy. On the other hand, the MAP is 0.35 and the MFP is 0.37
by using the general interfacial energy. In order to avoid our method merely predict protein
interactions with high sequence identity, we set the sequence identity limit to remove the
candidates if one protein of candidates with sequence identity > sequence identity limit.
Figure 16 shows our method using pairPSSM is much better than the general empirical matrix

even though in predicting remote protein interactions.

In the above section, the candidates which are not included in the known interactive
protein pairs are considered as negatives. However, it may be somewhat unreasonable because
many candidates are indeed interacting proteins in nattre but have not proven by experimental
methods in the past. Therefore, we only consider the candidates overlapping with 2708,746
(see 2.2.5) non-interacting protein paits defined by Jasen et al. as negatives. The candidates
without any annotations are removed for calculate average precisions and false positive rates.
In this way, our method using pairPSSM is about 10 % improvement than the general

empirical matrix (Figure 17).

3.4 A search example: 1a2kAD

We give an example using the 3D-dimer, 1a2kAD, to search database of yeast proteome
and illustrate the accuracy and operation of our method. The A chain of 1a2k is a rat nuclear
transport factor 2 (NTF2) and the D chain of 1a2k is a dog GTP binding protein ran(51). The

transportation between nucleus requires to the nuclear pore complexes (NPC) in the nuclear
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envelope and several key factors including importin o and B, which recognize proteins with a
nuclear localization sequences (NLS), the small GTP binding protein ran and nuclear
transport factor (NTF)(52,53). Both RNA export and nuclear protein import depend on ran.
The molecular details of the export of transport factors had been speculated by Koepp and
Silver(52) in Figure 18. Once inside the nucleus, importin o must dissociate from the
NLS-bearing substrate, which may be accomplished by competition with RNA-binding
proteins. Ran may move out of the nucleus as a complex of Ran-GTP-importin f.
Dissociation of these two proteins could be a result of the GAP activity of Rnalp, either
inside the NPC or on the cytoplasmic face of the NPC. There is evidence that Rnalp can
interact with importin B(53). The precise signal for an irreversible step of export is unclear,
but it is possible that free importin B could dissociate importin o from RNA-binding proteins.
Thus, the key players in nuclear protein import would be regenerated for another round of

transport.

Here we use the 3D-dimer “of la2kAD"to query database of yeast proteome and then
obtain 14 pairs of homologous proteins‘(Table 6). The two protein pair, NTF2&GSP1 and
NTF2&GSP2, has been proven to bind with each other by yeast two hybrid test(54,55) and
the other twelve protein pairs are non-interacting proteins due to locate in different
compartments The specific interfacial energies calculated from pairPSSM (Table 7) of the two
positive protein pairs are both above the threshold 0.4 and the twelve negative protein pairs
are below the threshold (Table 6). It shows that our score is good for predicting protein
interactions. However, the general interfacial energies of the two positive protein pairs are
both above the threshold -15 (the more negative are more favor to bind)(47). And ten out of
twelve negative protein pairs are above the threshold. In summary, 12 out of 14 protein pairs
are predicted incorrectly with general interfacial energy an all the 14 interactions are predicted

correctly by our specific interfacial energy.
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Figure 19 shows the multiple sequence alignment result of the 14 candidates to their
corresponding template, A chain of 1a2k or D chain of 1a2k. The interface involves primarily
the putative switch II loop of ran (residue 65 to 78, Figure 19B orange box) and the
hydrophobic cavity surrounding surface of NTF2(51). The interaction made by the switch 11
loops accounts for the ability of NTF2 to discriminate between GDP and GTP bounds forms
of Ran. A striking feature of the interactive interface was the aromatic ring of Phe72 of ran
(Figure 19B, orange star site and Figure 20B, orange residue). It inserts into the hydrophobic
cavity of NTF2 where it was surrounded by the hydrophobic side chains of Trp41, Leu59,
Phe61, Ile64, Leu89, Ala91, Met97, Phel19 and Leul21. The GSP1 and GSP2 of two positive
protein pairs are conservative in this important site (Figure 19). On the other hand, the
interactive interface on NTF2 involved this molecule’s characteristic hydrophobic cavity.
Hydrophobic residues in the upper portion of the NTF2 cavity, together with negatively
charged residues, Glu42, Asp92-and. Asp94, are surrounding the cavity (Figure 19A, yellow
boxes and Figure 18A, yellow residues)-made-significant contributions to the interface with
GDP-Ran. The three important negatives residues are conservative from A chain of 1a2k (rat
NTF2) to the yeast NTF2. However, the three important sites are mutated to Threonine in
BRES5 (Figure 19A). The BRES5 is an ubiquitin protease cofactor which forms
deubiquitination complex with ubp3p that coregulates anterograde and retrograde transport
between the Endoplasmic Reticulum and Golgi compartments. The three important residue
mutated may be resulted in BRES does not interact with GSP1 and GSP2. Encouragingly, we
give poor score to the 2 candidates (0.08) and successfully identify the true interactions

GSP1&NTF2 and GSP2&NTEF2.
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3.5 Verification in yeast expression profiles

Recently, many scientists consider that genes with similar expression profiles are likely
to encode interacting proteins(56). Therefore, we compare the distribution of gene expression
profiles for the two gold standard sets and our predicted protein-pairs by 3D-domain interolog
mapping with the score exceeding 0.4 and 0.6 (Figure 20). The protein pairs composed of the
same protein are not used to calculate the gene expression profiles because their expression
profiles must be identical and should not be taken account of. Figure 21 shows that the
distribution of the correlation coefficients of our predicted protein pairs is similar to the core

set of DIP (Positives) and right shift to non-interacting protein pairs (Negatives).

Then we used standard two sample T-test to test the mean of correlation coefficient for
our predicted protein-pairs to non-intéracting protein pairs. The E values of the two sets are
10%° and 107, respectively. The result indicates that the prediction based 3D-domain
interolog yields many reliable interacting ‘protein pairs indicates whose mean is significant

higher than that for non-interacting protein pairs.

3.6 Application: Prediction of protein interactions in seven common

organisms

In the above section, we have verified our method in two data sets and obtained a
reasonable threshold for normalized specific interfacial energy about 0.4~0.5. Here we apply
3D-domain interologs mapping to prediction protein interactions in seven organisms
commonly used in molecular research, including Mus musculus (house mouse), Homo sapiens
(Human), Rattus norvegicus (Norway rat), Caenorhabditis elegans (nematode), Drosophila

melanogaster (fruit fly), Saccharomyces cerevisiae (baker's yeast) and Escherichia coli. By
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set the threshold to 0.5, we obtain about 450,000 protein interactions from the seven common
organisms (Table 8). Comparing our predictions and the interactions deposited in DIP
database, there is a large difference for number of interactions in the same organism. For
example, we predict 1850 interactions in Saccharomyces cerevisiae but DIP collects 18225
interactions. On the other hand, we predict 112114 interactions in Homo sapiens but DIP
collects only 292 interactions. There are two reason for large drop, one is the large-scale
experimental method (such as large scale yeast two-hybrid analysis or
proteomics-immunoprecipitation) is hard to apply in mammalian organisms and results in the
interactions deposited in DIP are few in human, mouse or rat. The other reason is gene
duplication and alternative splicing often occurred in the mammalian organisms and result in
some redundancy protein in protein database. In these organisms, we may over estimate the

number of prediction of protein-protein interactions.

Structural genomics projects are generating new structures at an unprecedented rate—a
benefit of recent developments ifv high-throughput technologies(57). As a result, the number
of protein structures in the Protein DataiBank (PDB) is increasing rapidly. For each new
determined 3D-dimer, we can apply our method to predict all the candidates in thousands of
organisms quickly. It helps the biologists to further detail analysis the network of protein

interactions.

3.7 Model human protein interactions by 1evtBD

Another example for illustrate the power of our method can apply not only to yeast
proteome but also to any other organisms. Interactions between the fibroblast growth factors
(FGFs) and their receptors had been intensive studied(58,59). FGFs play key roles in
morphogenesis, development, angiogenesis, and wound healing. These FGF-simulated
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processes are mediated by for FGF receptor tyrosine kinase. There are more than 20 human
protein FGFs that bind to one or more of 7 FGF receptors (FGFR1b, -1c, -2b, -2c¢, -3b, -3¢, -4),
where the ¢ and b denote isoforms Illc & IIIb formed by alternative splicing. The complex of
FGF1/FGFRI1 (Figure 22A) had been dissolved by Plotnikov et al. in PDB (accession number:
levt)(60). Ornitz et al. perform a study of FGFR specificity by measuring mitogenic activity
of FGFR-inducible BaF3 cell-line(61). Table 9 shows the binding affinity of the seven
FGF/receptor complexes (from FGF4 to 7 receptors, FGFR1b, -1c, -2b, -2¢, -3b, -3¢, -4). The
experimental determined binding affinity relative to the FGF-1 is < 10% defined as low

affinity and > 10% defined as high affinity.

In our study, we used the levtBD to model interactions for the seven FGF/receptor
complexes. 6 out 7 FGF/receptor complexes are high affinity and our method give high
interfacial energy for the six complexes. However, the other one, FGF4/FGFR3b complexes,
with very low binding affinity (1.0%) but Our method give a high normalized interfacial
energy (0.84). For a detail sequerice analysis«(Figure 22B), we find that most contact positions
in FGFR3b are much conservative except 'some residues in D3 immunoglobulin (Ig)-like
domains (Figure 21B, orange box). This result may mean some other factors involved in
determining the strength of the FGFR interactions. In conclusion, we successfully predict 6
out of 7 FGF/receptor complexes. There is a good agreement between the specific interfacial

energy and binding affinity even though still with an incorrect case.
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Chapter 4

CONCLUSION

4.1 Summary

We develop a new method “3D-domain interologs mapping” to infer domain annotated
protein-protein interactions across several commonly organisms. We also develop a method to
estimate the probabilities with witch residue pairs occur at various contact positions by
evolutionary profiles, leading to a more sensitive scoring system. In this study, we get some

critical conclusions as follows:

1. Similar dimers indeed keep similar interactive type. We suggest one must be careful with

identity below than 30% to model interactions by homology.

2. The method of sequence alignment 1s reliable in alignment of contact positions when the

identity > 20 ~ 25%.

3. The specific interfacial energy calculated from pairPSSM can successfully distinguish the

true protein complexes and non reasonable protein pair with about 90% accuracy.

4. The pairPSSM outperforms general empirical matrix about 10% improvements even

though for the distantly related protein sequences.

5. The mean correlation of the gene expression profiles of our predictions is significantly

higher than that for non-interacting protein pairs in S. cerevisiae.

Although our method uses structure information, it does not require that the structures of

the modeling proteins be solved. For this reason, our method can predict protein-protein
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interactions in the large protein sequence database which contains several hundreds of
complete genome sequence. We applied to seven organisms commonly used in molecular
research, including Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans,
Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. In these seven
organisms, our method predicts ~450,000 new protein interactions in which the interacting
domains and residues (binding sites) are automatically modeled. These visualized interacting

residues are useful for the detailed analysis of protein-protein interactions.

4.2 Major contributions and future perspectives

We have developed a new method to predict protein interactions genome-scalely across a
lot of organisms and constructedspairPSSM for each dimer, leading to a more sensitive
scoring system. In post genomiicyera, Structural genomics projects are generating new
structures at an unprecedented rate—a-benefit of recent developments in high-throughput
technologies. As a result, the numbet of protein structures in the Protein Data Bank (PDB) is
increasing rapidly. We can use the more and more protein complexes of known 3D-structures
to predict enormous protein interactions across several hundreds of genome sequence.
Combining our predictions and several large protein-protein interaction databases, such DIP,
BIND, MIPS or STRING etc., we can construct more completed networks of protein
interactions for several organisms commonly used in molecular research. It is useful to makes

biologists to realized biological system in details.

Some important issues will be discussed in the future. The protein-protein interactions
are associated with processes such as cell signaling, enzymatic activity, immunological
recognition, DNA repair and replication, vesicular traffic etc. Although binding sites are

mainly hydrophobic, protruding, and electrostatic complementary, no general patterns are
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observed. For this reason, we want to explore whether the characteristics of different

interfaces between proteins could be identified by pairPSSM.

A method, alanine scanning mutagenesis, experimentally probes the energetic
contributions of individual side chains to protein bindings. By using this technique, Wells and
his colleagues had discovered that single residues can contribute a large fraction of the
binding free energy(62). The completed dataset for energetics of sidechain interactions
determined by alanine-scanning mutagenesis are collected in ASEdb, including 91
protein-protein complexes and 2915 mutations(63). Keskin et al. had discovered that there is a
correspondence between the experimental identified energy hotspot and the structurally
conserved residues(28). In the future, we will want to explore the relationship between the
conservation in contact residue pairs and experimental identified energy hotspots. On the
other hand, we will modify the nr*proteinzdatabase;’amino acid classification or the usage of

pseudo count to improve the acctiracy of our predictiofs.
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Tablel. The compositions of protein sequence in NCBI RefSeq database (Release 16).

Taxonomy Class Number of species Number of proteins
Fungi 62 121,142
Invertebrate 182 87,244
Microbial 743 1,572,058
Mitochondrion 794 11,595
Vertebrate other 374 58,273
Plasmid 47 71,511
Plastid 51 5,274
Protozoa 65 114,427
Viral 1,578 45,001
Vertebrate mammalian 157 203,320
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Table2. The frequency of amino acid occurs in protein surface and whole protein. The data of whole

protein is downloaded from SWISSPROT database (http://tw.expasy.org/sprot/relnotes/relstat.html).

Amino acid Surface (%) Whole protein (%)

ILE 2.0 5.9
VAL 2.8 6.7
LEU 33 9.6
PHE 1.7 4.0
CYS 0.3 1.5
MET 1.3 24
ALA 6.2 7.8
GLA 7.5 6.9
THR 6.1 5.4
SER 7.0 6.8
TRP 0.5 1.1
TYR 2.1 3.1
PRO 6.0 4.8
HIS el 23
ASN 6.7 4.2
GLN 3.9 4.0
ASP 9.6 53
GLU Ty 6.7
LYS 10.7 59

ARG 6.2 54
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Table 3. 24 pairs of related heterodimers with > 30% sequence identity but with pair coverage < 0.4.

Related

Pair

Template ' coverage IdeA? IdeB® DomainA® DomainB*
1kxgBG  1kxtEF 0.00 100.0 69.4 c.1.8.1 b.1.1.1
1kxgBG  1kxvAC 0.00 100.0 62.1 c.1.8.1 b.1.1.1
10p9AB  1jtpAL 0.00 76.7 589 b.1.1.1 d.2.1.2
lewyAC  1gagAB  0.00 52.4 02 22342 4154
10p9AB  1p2cBC 0.00 49.1 60.5 b.1.1.1 d.2.1.2
10p9AB  1jloHY 0.00 47.3 60.5 b.1.1.1 d.2.1.2
1jbOAD  1jbOBD 0.00 47.3 1000 F.29.1.1 d.187.1.1
1jbOAC  1jbOBC 0.00 473 1000 F.29.1.1 d.58.1.2
1jbOAF  1jbOBF 0.00 473 1000 F.29.1.1 £.23.16.1
10p9AB  1bvkBC 0.00 46.4 605 b.1.1.1 d.2.1.2
111
1cl7HL 1deeAD 0.00 42.2 60.2 b.1.1.1 8_1_1_2’
1k3zAD 11knCD 0.00 54.0 38.3 b.1.18.1 d.211.1.1
lop3HK luwelLV 0.00 35.7 54:9 b.1.1.2 b.1.1.2
1bzgAL 1h0dBC 0.00 34.6 66.4 d.5.1.1 b.1.1.1
1mdaHM 2bbkJM 0.00 314 T7.7 b.69.2.1 g-21.1.1
1dxrCL  leysCM 0.02 482 32.0 a.138.1.2 f.26.1.1
1bghAG  1bghDK 0.03 100.0 1000 b.1.1.2 b.1.1.1
1lhezAE 1hezCE 0.03 100.0 1000 b.1.1.1 d.15.7.1
1s6bAB  logsAB 0.05 45.6 435 a.133.1.2 a.133.1.2
1op9AB 1fbiHX 0.12 479 56.6 b.1.1.1 d.2.1.2
1bd2AD Imi5AD 0.14 84.3 56.0 d.19.1.1 b.1.1.1
1r8sAE  1reOAB 0.30 81.5 37.7 c.37.1.8 a.118.3.1
labrAB  1m2tAB 038 403 527 d.165.1.1 3:23:3:1’
1hcfAX TwwwWX 0.39 514 44 4 g-17.1.3 b.1.1.4

 The sequence identity between the first chain of template and the first chain of protein of the

related dimer.

® The sequence identity between the second chain of template and the second chain of protein of the

related dimer.

¢ The interacting domains in the first chain of template.

 The interacting domains in the second chain of template.
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Table 4. Average precisions and false positive rates of specific interfacial energy and general

interfacial energy on 182 queries. The unannotated candidates are considered as negative.

Query PDB ID No. of Nc_)._of No. pf AP FP AP FP
# Candidates Positives Negatives (specific) (specific) (general) (general)
1 1a0rBP 515 2 513 0.83 0.00 0.20 0.01
2 1a2kAD 74 2 72 0.25 0.06 0.03 0.66
3 1a6dAB 66 1 65 0.07 0.20 0.07 0.20
4 1a9nAB 264 2 262 0.53 0.05 0.51 0.23
5 lagrDH 18 1 17 0.50 0.06 0.08 0.71
6 laisAB 4 2 2 0.58 0.50 0.50 0.75
7 lauiAB 117 5 112 0.81 0.19 0.58 0.22
8 1b34AB 10 5 5 0.51 0.52 0.61 0.52
9 1b7tAZ 30 8 22 0.73 0.16 0.30 0.47
10 1bi8AB 2200 6 2194 0.00 0.44 0.00 0.66
11 1buhAB 110 1 109 1.00 0.00 0.05 0.17
12 1c9bMN 6 2 4 0.83 0.13 0.75 0.25
13 1d3bEF 36 11 25 0.57 0.26 0.36 0.38
14 1dceAB 9 3 6 0.57 0.50 0.63 0.33
15 1dkgAD 15 1 14 0.50 0.07 0.50 0.07
16 1dn1AB 28 4 24 0.25 0.43 0.42 0.38
17 1doaAB 37 3 34 1.00 0.00 0.30 0.13
18 1e79AG 4 2 2 0:83 0.25 1.00 0.00
19 leesAB 105 3 102 0.28 0.05 0.53 0.11
20 1eqzAB 6 1 5 0.25 0.60 0.25 0.60
21 1F3mAC 318 1 317 0.01 0.24 0.01 0.59
22 1F5qCD 1100 13 1087 0.03 0.21 0.04 0.33
23 1fbvAC 60 1 59 0.03 0.51 0.04 0.46
24 1FinAB 1430 17 1413 0.14 0.35 0.03 0.40
25 1foeAB 185 3 182 0.16 0.14 0.06 0.18
26 1fq1AB 550 4 546 0.01 0.36 0.01 0.73
27 1fqvoP 14 8 6 0.88 0.27 0.88 0.27
28 1FXtAB 70 1 69 0.14 0.09 0.50 0.01
29 1g0uBJ 103 34 69 0.34 0.54 0.51 0.43
30 1gOuHl 103 34 69 0.28 0.59 0.37 0.45
31 1gOulLM 103 34 69 0.32 0.50 0.51 0.40
32 1g3nAB 2310 6 2304 0.01 0.33 0.00 0.45
33 193nEG 1210 14 1196 0.09 0.17 0.01 0.59
34 1g65DE 103 34 69 0.36 0.46 0.35 0.50
35 1g651J 103 34 69 0.32 0.53 0.36 0.47
36 196512 103 34 69 0.41 0.47 0.43 0.40
37 1g65KW 103 34 69 0.41 0.44 0.32 0.51

40



Query No. of No. of No. of AP FP AP FP

# PDB 1D Candidates Positives Negatives (specific) (specific) (general) (general)
38 1g65KX 103 34 69 0.48 0.36 0.37 0.46
39 1g650P 103 34 69 0.38 0.50 0.36 0.54
40 1g65UV 103 34 69 0.29 0.56 0.55 0.34
41 1g12AB 30 5 25 0.46 0.33 0.52 0.20
42 1gl12BC 6 4 2 1.00 0.00 0.82 0.50
43 1gotAB 1030 2 1028 0.25 0.47 0.00 0.40
44 1grnAB 374 6 368 0.17 0.10 0.03 0.36
45 1gw5AM 198 10 188 0.07 0.41 0.08 0.46
46 1gw5AS 110 5 105 0.08 0.42 0.12 0.31
47 1gw5BM 198 10 188 0.24 0.33 0.21 0.24
48 1gw5BS 110 5 105 0.21 0.31 0.16 0.40
49 1gw5MS 35 4 31 0.44 0.31 0.29 0.22
50 1h2tCZ 40 4 36 0.35 0.42 0.17 0.39
51 1h8eDG 4 2 2 0.75 0.50 0.75 0.50
52 1hg3AG 1 8 0.25 0.38 0.11 1.00
53 1hqg3FH 4 1 3 0.25 1.00 0.25 1.00
54 1hr6EF 34 2 32 0.61 0.11 0.39 0.09
55 1i2mAB 148 1 147 0.50 0.01 0.14 0.04
56 1i50AB 154 2 152 0.42 0.02 0.29 0.02
57 1i50AK 77 2 75 0.58 0.01 0.58 0.01
58 1i508Bl 6 2 4 050 0.38 0.75 0.25
59 1i79AB 18 1 17 0.50 0.06 0.14 0.35
60 1ibrCD 666 7 639 0.40 0.06 0.13 0.16
61 1iruAG 105 34 71 0.44 0.42 0.39 0.48
62 1iruBC 105 34 71 0.38 0.48 0.38 0.50
63 1irucD 105 34 71 0.38 0.46 0.33 0.52
64 1iruDE 105 34 71 0.40 0.43 0.36 0.48
65 1iruFG 104 34 70 0.36 0.49 0.35 0.50
66 1irufFN 104 34 70 0.39 0.42 0.48 0.36
67 1iruH2 105 34 71 0.36 0.49 0.31 0.55
68 lirull 105 34 71 0.27 0.61 0.29 0.56
69 1iruJK 105 34 71 0.58 0.27 0.33 0.48
70 liruJl 105 34 71 0.34 0.51 0.39 0.41
71 1irukL 105 34 71 0.42 0.45 0.39 0.44
72 lirulM 105 34 71 0.32 0.54 0.40 0.44
73 1iruNw 105 34 71 0.37 0.46 0.39 0.44
74 1iruoP 105 34 71 0.37 0.51 0.35 0.52
75 liruSl 105 34 71 0.30 0.53 0.40 0.49
76 lirul2 105 34 71 0.27 0.60 0.33 0.48
77 1iw7CD 9 3 6 0.67 0.39 0.61 0.44
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Query PDB ID No: of Nc_)._of No. pf AI?' FP_ ' AP FP
# Candidates Positives Negatives (specific) (specific) (general) (general)
78 1j2qDL 105 34 71 0.42 0.39 0.40 0.44
79 1j7dAB 119 4 115 0.28 0.54 0.27 0.59
80 1jatAB 116 4 112 0.04 0.55 0.03 0.72
81 1jFiAB 12 2 10 0.70 0.15 0.42 0.20
82 1jm7AB 11 2 9 0.63 0.33 0.37 0.28
83 1jr3BE 456 23 433 0.08 0.47 0.25 0.28
84 1jr3cb 31 5 26 0.41 0.32 0.48 0.18
85 1k5dDF 555 4 551 0.57 0.16 0.24 0.17
86 1k5dJIK 111 3 108 0.32 0.06 0.56 0.02
87 1k83Al 231 3 228 0.51 0.01 0.47 0.01
88 1k8kAB 65 3 62 0.49 0.13 0.11 0.37
89 1k8KAD 11 2 9 0.58 0.11 0.25 0.50
90 1k8KAE 10 2 8 0.58 0.13 0.64 0.31
91 1k8KBF 10 2 8 0.83 0.06 0.58 0.13
92 1k8KBG 10 2 8 0.83 0.06 1.00 0.00
93 1k8KCF 81 1 80 1.00 0.00 1.00 0.00
94 1keeGH 80 1 79 0.25 0.04 0.33 0.03
95 1kfuLs 24 1 23 1.00 0.00 1.00 0.00
96 1ki1lAB 180 3 177 024 0.05 0.09 0.16
97 1kx5EF 6 | 5 0.25 0.60 0.25 0.60
98 1kyoAB 34 2 32 0:45 0.06 0.24 0.14
99 114aBD 6 1 5 0.33 0.40 0.17 1.00
100  11bl1CD 148 3 145 0.18 0.08 0.08 0.16
101 11djAB 44 5 39 0.94 0.01 0.86 0.03
102 1ItxAR 6 1 5 1.00 0.00 0.50 0.20
103 Am1jEF 49 3 46 0.07 0.55 0.05 0.85
104  1m2vAB 13 3 10 0.25 0.60 0.37 0.33
105 1nljAB 20 2 18 0.63 0.17 0.38 0.19
106  1n4pCD 6 3 3 0.64 0.33 0.81 0.22
107 1ni4AD 13 1 12 0.13 0.58 0.10 0.75
108  1nt2AB 3 2 1 0.83 0.50 0.83 0.50
109  1nvwRS 148 2 146 0.38 0.02 0.04 0.24
110  1oe9AB 35 8 27 0.83 0.13 0.53 0.19
111 1ofhCl 50 5 45 0.22 0.33 0.10 0.68
112 1p22AB 2 1 1 1.00 0.00 1.00 0.00
113 1pp9AB 36 2 34 0.38 0.10 0.18 0.19
114  1g5qAl 69 19 50 0.48 0.26 0.34 0.43
115  1gbkBC 1110 9 1101 0.20 0.08 0.02 0.23
116  1qdIAB 16 1 15 1.00 0.00 0.33 0.13
117 1qgkAB 23 2 21 0.58 0.26 0.70 0.07
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Query No. of No. of No. of AP FP AP FP

# PDB 1D Candidates Positives Negatives (specific) (specific) (general) (general)
118  1gsOAB 13 1 12 0.09 0.83 0.14 0.50
119  1qviAY 35 8 27 0.49 0.19 0.32 0.37
120 1r4mHL 56 1 55 0.14 0.11 0.14 0.11
121 1rypBI 103 34 69 0.33 0.51 0.33 0.63
122 1rypCD 103 34 69 0.39 0.46 0.41 0.52
123 1lrypFN 103 34 69 0.45 0.41 0.40 0.42
124 lrypHI 103 34 69 0.35 0.59 0.38 0.45
125 1rypH2 103 34 69 0.40 0.42 0.37 0.50
126  1lrypll 103 34 69 0.32 0.52 0.38 0.49
127 1lrypl2 103 34 69 0.57 0.33 0.38 0.39
128 1lrypLM 103 34 69 0.33 0.50 0.36 0.44
129  1rypSi 103 34 69 0.59 0.32 0.55 0.35
130  1s3sFG 4 1 3 1.00 0.00 1.00 0.00
131 1S63AB 6 3 3 0.81 0.22 0.83 0.33
132 1sfcAD 10 3 7 0.57 0.43 0.39 0.52
133 1sfcBC 6 2 4 0.83 0.13 1.00 0.00
134 1sfcEF 30 5 25 0.19 0.58 0.24 0.41
135  1sxjAB 850 38 812 0.31 0.36 0.28 0.30
136 1sxjAE 31 1 30 0:33 0.07 0.50 0.03
137 1sxjBC 813 38 775 0.36 0.34 0.26 0.34
138 1sxjCD 811 40 771 0:30 0.34 0.32 0.35
139  1sxjDE 688 31 657 0.28 0.31 0.30 0.26
140  1t2kCD 9 1 8 0.25 0.38 0.20 0.50
141 1tafAB 2 1 1 1.00 0.00 1.00 0.00
142 1tcoAC 52 2 50 0.06 0.45 0.05 0.59
143 1tt5AB 44 4 40 0.42 0.49 0.36 0.50
144  1tvkAB 15 1 14 0.20 0.29 0.50 0.07
145 1lu7eAB 216 5 211 0.32 0.15 0.19 0.11
146 1ukvGY 34 3 31 0.59 0.09 0.83 0.03
147 lumcCD 13 1 12 0.09 0.83 0.08 1.00
148  1ur6AB 30 1 29 0.10 0.31 0.09 0.34
1499  1v11AB 13 1 12 0.09 0.83 0.11 0.67
150  1vgOAB 70 13 57 0.87 0.04 0.55 0.13
151 1vrgAB 64 1 63 0.02 0.98 0.02 1.00
152 1wOjCD 10 3 7 0.58 0.43 0.67 0.33
153 1w85CD 13 1 12 0.08 0.92 0.09 0.83
154  1w98AB 1199 17 1182 0.21 0.17 0.05 0.35
155  1wabAC 370 7 363 0.03 0.39 0.02 0.50
156  1wa5BC 184 1 183 0.02 0.33 0.05 0.11
157 1wqlRG 148 2 146 0.01 0.82 0.01 0.82
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Query No. of No. of No. of AP FP AP FP

# PDB 1D Candidates Positives Negatives (specific) (specific) (general) (general)
158  1xcgAB 180 3 177 0.17 0.06 0.04 0.30
159 1xewXY 133 6 127 0.59 0.02 0.64 0.02
160  1x02AB 1320 17 1303 0.26 0.22 0.02 0.45
161 1y56AB 90 1 89 0.04 0.28 0.01 1.00
162 1ly8qCD 45 4 41 0.33 0.54 0.14 0.70
163 1ly8rBC 18 2 16 0.64 0.16 0.36 0.25
164  lya7CJ 105 34 71 0.42 0.41 0.34 0.52
165  1z2cAB 76 3 73 0.72 0.02 0.15 0.42
166  1z5sAB 30 1 29 0.11 0.28 0.25 0.10
167  2b4sAB 452 5 447 0.05 0.15 0.03 0.19
168 2baOAD 10 2 8 0.35 0.56 0.23 0.69
169  2baOFI 19 4 15 0.60 0.22 0.52 0.22
170  2balAD 15 3 12 0.64 0.28 0.74 0.31
171  2balBG 15 4 11 0.36 0.45 0.26 0.70
172 2bcjAQ 1080 5 1075 0.01 0.54 0.00 1.00
173 2bkiAB 45 8 37 0.52 0.22 0.38 0.38
174  2bkuAB 888 6 882 0.08 0.15 0.13 0.20
175 2bl0AB 8 2 6 0.42 0.42 0.29 0.58
176 ~ 2bl0AC 9 2 7 0.33 0.43 0.27 0.57
177 2br2EF 19 4 15 0.51 0.32 0.29 0.40
178  2btfAP 11 1 10 1.00 0.00 0.50 0.10
179  2bykCD 16 2 14 0.63 0.21 0.39 0.21
180  2c35EF 2 1 1 1.00 0.00 1.00 0.00
181  2ey4AE 1 1 1.00 0.00 1.00 0.00
182 3gtuAB 9 1 8 0.14 0.75 0.13 0.88
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Table 5. Average precisions and false positive rate of specific interfacial energy and general

interfacial energy on 101 queries. The unannotated candidates are removed.

Query Template No. of Nc_)._of No. pf AP FP AP FP
# Candidates Positives Negatives (specific) (specific) (general) (general)
1 1a0rBP 130 2 128 1.00 0.00 0.58 0.01
2 1a2kAD 14 2 12 0.75 0.04 0.11 1.04
3 1a6dAB 18 1 17 1.00 0.00 1.00 0.00
4 1a9nAB 43 2 41 0.60 0.10 0.53 0.33
5 lauiAB 51 5 46 0.82 0.20 0.65 0.22
6 1b7tAZ 13 8 5 0.97 0.08 0.69 0.45
7 1bi8AB 181 6 175 0.22 0.35 0.03 0.63
8 1buhAB 46 1 45 1.00 0.00 0.11 0.18
9 1dkgAD 12 1 11 1.00 0.00 1.00 0.00
10 1dn1AB 8 4 4 0.75 0.44 0.68 0.44
11 1doaAB 15 3 12 1.00 0.00 0.64 0.08
12 leesAB 28 3 25 0.70 0.05 0.83 0.04
13 1F3mAC 76 1 75 0.10 0.12 0.05 0.24
14 1¥5qCD 224 13 211 0.10 0.28 0.22 0.38
15 1FinAB 363 17 346 0.24 0.32 0.10 0.37
16 1foeAB 16 3 13 0.40 0.38 0.23 0.51
17 1fq1AB 112 4 108 0.04 0.52 0.03 0.75
18 1FxtAB 19 1 18 1.00 0.00 1.00 0.00
19 1g3nAB 203 6 197 0.12 0.28 0.04 0.43
20 1g3nEG 226 14 212 0.18 0.23 0.05 0.66
21 1g12AB 12 5 7 0.68 0.31 0.87 0.14
22 1gl12BC 5 4 1 1.00 0.00 0.89 0.50
23 1gotAB 164 2 162 0.51 0.47 0.04 0.40
24 1grnAB 69 6 63 0.61 0.10 0.16 0.33
25 1gw5AM 46 10 36 0.32 0.37 0.32 0.44
26 1gw5AS 29 5 24 0.28 0.38 0.37 0.23
27 1gw5BM 52 10 42 0.44 0.39 0.44 0.32
28 1gw5BS 33 5 28 0.45 0.29 0.33 0.51
29 1h2tCz 11 4 7 0.50 0.61 0.44 0.46
30 1i2mAB 48 1 47 1.00 0.00 0.25 0.06
31 1i50AB 28 2 26 1.00 0.00 1.00 0.00
32 1i50AK 15 2 13 1.00 0.00 1.00 0.00
33 1i7gAB 6 1 5 0.50 0.20 0.25 0.60
34 1ibrCD 134 7 127 0.62 0.04 0.24 0.18
35 1j7dAB 41 4 37 0.32 0.58 0.31 0.70
36 1jatAB 41 4 37 0.13 0.47 0.08 0.76
37 1jFiAB 5 2 3 1.00 0.00 1.00 0.00
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Query Template No: of Nc_)._of No. pf AI?' FP” AP FP
# Candidates Positives Negatives (specific) (specific) (general) (general)
38 1jm7AB 3 2 1 1.00 0.00 1.00 0.00
39 1jr3BE 80 23 57 0.39 0.52 0.64 0.39
40 1jr3cb 14 5 9 0.65 0.27 0.85 0.16
41 1k5dDF 117 4 113 0.64 0.19 0.68 0.21
42 1k5dJIK 46 3 43 0.40 0.08 0.64 0.02
43 1k83Al 29 3 26 1.00 0.00 1.00 0.00
44 1k8KAB 6 3 3 0.76 0.33 0.56 0.56
45 1k8KAD 5 2 3 0.58 0.33 0.37 0.83
46 1k8KBF 3 2 1 1.00 0.00 1.00 0.00
47 1k8KBG 3 2 1 1.00 0.00 1.00 0.00
48 1k8KCF 31 1 30 1.00 0.00 1.00 0.00
49 1keeGH 8 1 7 1.00 0.00 1.00 0.00
50 1kfuLs 7 1 6 1.00 0.00 1.00 0.00
51 1ki1lAB 15 3 12 0.67 0.14 0.25 0.50
52 114aBD 2 1 1 1.00 0.00 0.50 1.00
53 11b1CD 15 3 12 0.36 0.39 0.25 0.50
54 11djAB 7 5 2 0.94 0.20 0.88 0.40
55 Am1jEF 18 3 15 0.23 0.44 0.13 0.82
56 1n1jAB 7 2 5 0.83 0.10 0.83 0.10
57 1ni4AD 7 | 6 0.20 0.67 0.14 1.00
58 1nvwRS 14 2 12 0.75 0.04 1.00 0.00
59 10e9AB 15 8 7 0.92 0.11 0.80 0.18
60 1gbkBC 186 9 177 0.36 0.08 0.16 0.18
61 1qd1AB 6 1 5 1.00 0.00 0.50 0.20
62 1qs0AB 7 1 6 0.17 0.83 0.25 0.50
63 1qVviAY 15 8 7 0.60 0.36 0.53 0.52
64 1r4mHL 11 1 10 1.00 0.00 1.00 0.00
65 1s3sFG 4 1 1.00 0.00 1.00 0.00
66 1sfcAD 3 4 0.67 0.42 0.42 0.75
67 1sfcEF 12 5 0.66 0.46 0.73 0.23
68 1sxjAB 137 38 99 0.56 0.39 0.63 0.33
69 1sxjBC 137 38 99 0.64 0.37 0.60 0.38
70 1sxjCD 138 40 98 0.60 0.35 0.62 0.37
71 1sxjDE 115 31 84 0.59 0.32 0.67 0.31
72 1tCcoAC 23 2 21 0.20 0.29 0.11 0.57
73 1tt5AB 7 4 0.77 0.50 0.77 0.50
74 1tvkAB 5 1 4 0.50 0.25 0.50 0.25
75 1u7eAB 25 5 20 0.50 0.31 0.55 0.23
76 1ukvGY 14 3 11 0.67 0.15 0.87 0.06
77 1umcCD 7 1 6 0.20 0.67 0.14 1.00

46



Query Template No: of Nc_)._of No. pf AI?' FP” AP FP
# Candidates Positives Negatives (specific) (specific) (general) (general)
78 1ur6AB 8 1 7 1.00 0.00 0.33 0.29
79 1v11AB 7 1 6 0.17 0.83 0.20 0.67
80 1vgOAB 32 13 19 0.92 0.06 0.66 0.17
81 1vrgAB 21 1 20 0.05 0.95 0.05 1.00
82 1w85CD 7 1 6 0.14 1.00 0.17 0.83
83 1w98AB 273 17 256 0.42 0.18 0.13 0.39
84 1wa5AC 50 7 43 0.15 0.49 0.12 0.64
85 1wa5BC 19 1 18 0.10 0.50 0.14 0.33
86 1wqg1RG 13 2 11 0.33 0.27 0.27 0.36
87 1XCQAB 15 3 12 0.50 0.17 0.22 0.56
88 1xewXY 10 6 4 1.00 0.00 1.00 0.00
89 1x02AB 317 17 300 0.48 0.17 0.16 0.42
90 1y56AB 27 1 26 0.14 0.23 0.04 1.00
91 1y8qCD 4 3 0.71 0.50 0.62 0.75
92 1y8rBC 2 2 0.75 0.50 0.83 0.25
93 1z5sAB 1 7 0.25 0.43 0.50 0.14
94 2b4sAB 95 5 90 0.26 0.13 0.17 0.16
95 2bcjAQ 124 5 119 0.06 0.46 0.02 1.02
96 2bkiAB 15 8 7 0.82 0.21 0.80 0.32
97 2bkuAB 187 6 181 0.35 0.13 0.48 0.19
98 2b10AB 6 2 4 050 0.38 0.42 0.50
99 2b10AC 6 2 4 0.42 0.50 0.42 0.50
100  2bykCD 6 2 4 0.83 0.13 1.00 0.00
101 3gtuAB 3 1 2 0.33 1.00 0.33 1.00
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Table 6. The result of 1a2kAD to search yeast proteome.

SP
Homologs Homologs a SP GE d e . . g
of 1a2kA  of 1a2kD Exp energyb energy energy” IDE1 IDE Functionl Function 2
(normal)
NTE2 GSP1 = 68.4 05 20.7 43 30 Nuclear envelope 'protein n GTP binding proteip inyolve n
nucleocytoplasmmic transport nuclear organization
NTE2 GSP2 P 68.4 05 20.7 43 79 Nuclear envelope .protein in‘ GTP binding proteip igvolve n
nucleocytoplasmmic transport nuclear organization
BRE5S YPT6 N 15.6 011 31.2 71 26 Ubiquitin protfase cofactor, GTPase, involved in the secretory
coregulate vesicle transport pathway
BRES GSP1 N 11 0.08 929 71 30 Ubiquitin protejase cofactor, GTP binding protelp myolve n
coregulate vesicle transport nuclear organization
BRES GSP2 N 11 0.08 929 1 79 Ubiquitin prot?ase cofactor, GTP binding proteip iqvolve in
coregulate vesicle transport nuclear organization
BRE5  YPT7 N 10.6 0.08 24 21 24 Ubiquitin protease cofactor, GTPase, required for homotypic
coregulate vesicle transport fusion event
S Non-essential small GTPase
BRE5 RHO3 N 7.7 006  -186 21 24 Sbiauiin proteise cofactor, ! ved in the establishment of
coregulate vesicle transport cell polarity.
BRE5S RHO2 N 6.7 0.05 172 71 25 Ubiquitin protease cofactor, Non-essential small GTPase of
coregulate vesicle transport involved in microtubule assembly
BRE5S YPT31 N 57 0.04 _18.8 71 25 Ubiquitin protegse cofactor, GTPase, involved 1n.the exocytic
coregulate vesicle transport pathway;
C Rab-type small GTPase mediate
BRES YPT1l1 N 4.4 0.03 234 21 15 Ubiquitin protease cofactor, distribution of mitochondria to
coregulate vesicle transport
daughter cells
BRES TEM1 N 49 0.03 97 71 21 Ubiquitin prot?ase cofactor, GTP-bmc}mg protein involved in
coregulate vesicle transport termination of M-phase
Ubiquitin protease cofactor, GTPase required for transport
BRES vps21 N 2.7 0.02 -20.7 21 27 coregulate vesicle transport during endocytosis
BRE5S SAR1 N 932 0.17 7 71 20 Ubiquitin protegse cofactor, GTPase, component of COPII coat
coregulate vesicle transport of vesicles
BRES MSS1 N 359 025 39 1 15 Ubiquitin protease cofactor, Mitochondrial protein, modify the

coregulate vesicle transport

wobble uridine
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* Exp means the functional annotations for the candidates, P represent known interacting proteins interaction and N represent the non interacting
proteins defined by Jasen et al.

® SP energy is the abbreviation of the “specific interfacial energy” which is calculated from pairPSSM of 1a2kAD.

¢ GE energy is the abbreviation of the “general interfacial energy” which is calculated from general empirical matrix.

4 IDE1 means the sequence identity percentage between the candidate protein and 1a2k A chain.

¢ IDE2 means the sequence identity percentage between the candidate protein and 1a2k D chain.

" The functional annotation for the protein of candidate homologous to 1a2k A chain.

£ The functional annotation for the protein of candidate homologous to 1a2k D chain.
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Table 7. The pairPSSM of protein complex 1a2kAD. There are 47 pairs of contact residues. Each row represents 45 types of energy in a specific

contact position (9 clusters in 20 amino acids result in 45 types cluster pair). The abbreviation A represent residue {Ala and Gly}; B: {Val, Met,

Leu and Ile}; C: {Pro, Ser and Thr}; D:

{Phe, Tyr and Trp}; E: {Cys}; F: {His and Arg}; G:

{Lys}; H: {Asp and Glu}; I: {Asn and Gln}.

[C):(?sri]:izi)cr: AA|AB|AC|AD|AE|AF|AG|AH| Al |BB|BC [BD|BE|BF |BG[BH| BI [CC|CD|CE[(CF|CG|CH| CI |DD|DE(DF|DG|DH| DI (EE|EF|EG|EH| EI |FF |FG[FH| FI |GG|GH| GI [HH[HI | 1l
0 DD |-1.0{0.1{-1.0{0.5[1.0{-0.5(-1.7(-1.7|-1.1|1.7{ 0.0 [1.9{2.0] 0.5 |-0.6|-0.6| 0.0 [-0.9{ 0.6 [ 1.0(-0.5|-1.5]-1.4]-1.0]| 5.3{2.3{0.9]-0.1]-0.1] 0.3 |4.2|1.5] 0.3 ]-0.2] 0.6 |-0.1|-1.3]-0.3[-0.5[-2.2(-1.1{-1.6|-2.2|-1.5]-0.9]
1 HD |-1.2]-0.1|-1.2{0.3]0.8|-0.8|-1.9(-1.9|-1.4[1.5(-0.2|1.6{1.7] 0.3 |-0.8(-0.4]|-0.3(-1.2| 0.5 [0.8]-0.7(-1.7|-1.4(-1.2] 1.9]2.1{0.7{ 1.0| 3.3 | 0.1 |4.0|1.3[ 0.0|-0.4( 0.4 |-0.3|-1.5]-0.6(-0.8]-2.5-1.3|-1.8|-2.4|-1.7|-1.2
2 HA  |-1.5]-0.4|-1.1{-0.1]0.5|-1.1|-2.3[ 1.3 |-1.7[1.1{-0.5| 1.2|1.4|-0.1|-1.1|-1.2]-0.6(-1.5] 0.0 [0.4|-1.0{-2.1]-0.5(-1.5]| 1.6 | 1.7{0.3]-0.7|-0.7(-0.2|3.7|1.0{-0.3]-0.8{ 0.1 |-0.7{-0.2]| 2.3 |-1.1]-0.5|-0.8-1.1|-1.6|-2.1|-1.5
3 HF  ]-1.5]-0.4|-1.6{-0.1]0.5|-1.1|-1.2{ 0.6 |-1.7[1.1{-0.5| 1.2|1.4|-0.1|-1.1{-0.8|-0.6(-1.5] 0.0 [0.4]-0.6(-0.9]| 1.3 |-1.5]| 1.6 | 1.7{0.3|-0.7|-0.7(-0.2|3.7|1.0{-0.3]-0.8( 0.1 |-0.7(-0.7| 1.8 [-1.1]-2.8(-0.8|-2.1|-2.7|-2.1|-1.5
4 BG |-1.4(-0.3]-1.4/0.1]0.6(-0.9]-2.1|-2.1|-1.6/1.3|-0.4|1.4|1.6(3.2]|2.2|-0.7]-0.5|-1.3( 0.1 |0.6|-0.9|-1.9(-1.8|-1.4[1.7{1.9|1.4{ 0.2 |-0.5|-0.1|3.8]1.1|-0.1]-0.6 0.2 |-0.5|-1.7(-0.7|-0.4(-2.6|-1.5|-1.1]-2.6-1.9|-1.3
5 CG |-1.4]-0.4|-1.5(0.0]0.5|-0.1|-1.2|-2.2|-1.6{1.2(-0.4]1.3]1.5| 0.8 |-0.5(-1.1|-0.5(-1.4] 0.0 [0.5]| 2.5 [ 1.5 |-1.5[-1.5]| 1.6 | 1.8{0.4|-0.6|-0.6|-0.2]|3.8| 1.0|-0.2|-0.7( 0.1 |-0.6|-1.7|-0.8-1.0]-2.7|-1.6|-1.1|-2.7|-2.0|-1.4
6 DG |-1.2]-0.1|-1.2{0.3]0.8|-0.8|-1.9(-1.9|-1.4[1.5(-0.2|1.6{1.7] 0.3 |-0.8(-0.8]|-0.3(-1.2| 0.3 [0.8] 0.1 [-0.9|-1.6(-1.2] 1.9]2.1{3.8{ 2.9/ 0.0 [ 0.1 |4.0|1.3[ 0.0 |-0.4( 0.4 |-0.3|-1.5]-0.6(-0.8]-2.5-1.3|-1.8|-2.4|-1.7|-1.2
7 DD |-1.0]0.1|-1.0{0.5]1.0|-0.5|-1.7|-1.7|-1.1{1.7{ 0.0 ] 1.9]2.0| 0.5 |-0.6{-0.6| 0.0 [-0.9| 1.2 [1.0]-0.5[-1.5|-1.4(-1.0]| 5.3]|2.3{0.9]-0.1|-0.1] 0.3 |4.2|1.5] 0.3 |-0.2{ 0.6 |-0.1|-1.3]-0.3[-0.5]-2.2-1.1|-1.6(-2.2|-1.5]-0.9
8 BD |-1.1{0.0]-1.1/0.4]0.9(-0.6]-1.8-1.8|-1.3|1.8]0.0|3.9(1.9( 0.4 |-0.7|-0.7|-0.2|-1.1|:04 |0.9]-0.6]-1.6|-1.5|-1.1{2.0(5.9/0.8|-0.3]-0.2| 0.2 [4.1|1.4| 0.2 |-0.3| 0.5 |-0.2|-1.4(-0.5]-0.6|-2.4|-1.2|-1.7|-2.3|-1.6|-1.0}
9 BD |-1.0{0.1]-1.0{0.5]1.0(-0.5]-1.7(-1.7|-1.1|1.8( 0.1 |3.9(2.0{ 0.5 |-0.6[-0.6] 0.0 |-0.9] 0.5 | 1.04-0.5}-1:5|-1.4}-1.0{2.1{2.3(0.9(-0.1]-0.1{ 0.3 |4.2|1.5[ 0.3 |-0.2| 0.6 |-0.1|-1.3|-0.3]-0.5[-2.2|-1.1|-1.6|-2.2-1.5]-0.9
10 AD |-1.3[-0.2]-1.3[3.3]0.7-0.8]-2.0(-2.0|-1.5|1.5[ 0.0 |2.7[1.7{ 0.2 |-0.9|-0.9]-0.4{=1.3| 1.4 0.7 |-0.8|-1.8{-1.7]-1-3[ 1.8 [5.8[0.6[-0.5]-0.5/ 0.0 {3.9]1.2| 0.0 |-0.5| 0.3 |-0.4|-1.6|-0.7|-0.9(-2.6|-1.4|-1.9]-2.5|-1.8|-1.2
11 HG |-1.2{-0.1]-1.2{0.3]0.8(1.3]0.0-1.9|-1.4|1.5[-0.2|1.6(1.7(0.3 |-0.8-0.8]-0.3]-12{0.3 |0.8|-0.7|-1.7|-1:6|-1"2( 1.9{2.1[0.7(-0.4]-0.4| 0.1 |4.0|1.3| 0.0 |-0.4| 0.4 |-0.3|-1.5[ 2.1 |-0.8(-2.5]| 1.2 |-1.8]-1.7|-1.7|-1.2
12 HA |-0.6[-0.1]-1.2/0.3]0.8(-0.8]-1.9(/2.0{0.5|1.5[-0.2|1.6(1.7{0.3 |-0.8-0.8]-0.3|-1.2] 0.3 | 0.8 }-0.7|-1.7|-1.4|-1.2 1.9]2.1[0.7(-0.4]-0.4| 0.1 |4.0]1.3/ 0.0 | 1.4 | 0.4 |-0.3|-1.5|-0.6]-0.8(-2.5|-1.3|-1.8]-2.4|-1.7|-1.2
13 HA ]-0.6[0.0]-1.1{0.4]0.9(-0.6]-1.8/1.9{0.4|1.6[-0.1]|1.7(1.9] 0.4 |-0.7|-0.7|-0.2{-1.1| 0:4.40.91-0.6}-1.6{-1.3|-1=1(2.0(2.20.8 |-0.3]-0.2| 0.2 [4.1|1.4| 0.2 |-0.3| 0.5 [-0.2|-1.4[-0.5]-0.6|-2.4|-1.2|-1.7|-2.3|-1.6|-1.0}
14 HG |-1.3[-0.2]-1.3]/0.2]0.7(-0.8]-1.2|-2.0|-1.5|1.4-0.3]| 1.5[1.7{ 0.2 |-0.9|-0.9]-0.4|=1.3] 0.2 }0.7{-0-8|-1-8]-1.7|-1.3( 1.8 [ 2.0[0.6[-0.5]|-0.5| 0.0 | 3.9]1.2| 0.0 |-0.5| 0.3 |-0.4|-1.6{ 2.3 | 0.7 [-2.6] 1.3 |-0.1]-1.7|-1.8]-1.2
15 CD |-1.9(-0.8]-1.3/0.2]0.1-1.4]-2.6(-2.6|-0.6/0.8(-0.5]0.9[1.1(-0.4|-1.5|-1.5]-1.0| 0.4 2:4.|2.0| 1.5 |-1.4|-2.3| 1.4 [1.2|1.4[1.6[/0.1 |-1.0{2.3 |3.3]0.6[-0.6|-1.1|-0.3]-1.0[-2.2|-1.3]-0.1|-3.2|-2.0{-2.5|-3.1|-2.4] 0.4
16 CH ]-0.6[-0.5|0.6(-0.1]0.4(-0.2]-2.3|-0.9{-0.7|1.1-0.6| 1.1 {1.3[-0.1]-1.2|-1.2]-0.7|-1.0{-0.1}0.4|-1.1}-2.2{ 1.3 |-1.6[ 1.5[1.7[0.3|-0.8|-0.8|-0.3|3.6|0.9(-0.4]-0.8| 0.0 |-0.7|-1.9( 1.3 |-1.2(-2.9]-0.8-2.2|-2.8| 0.8 |-1.6
17 CA ]03(-03]1.9(0.1]|0.6(1.7]-0.7|-2.1| 1.2|1.3|-0.4|1.4|1.6[0.1 |-1.0|-1.0{-0.5|-1.3( 0.1 | 1.8|-0.9|-1.9|-1.8|-1.0{ 1.7[1.90.5|-0.5|-0.5|-0.1{3.8]1.1-0.1]-0.6] 0.2 -0.5|-1.7(-0.7]-0.9(-2.6|-1.5|-2.0]-2.6|-1.9|-1.3
18 BD |-1.8(-0.7]0.5(1.1]0.2(-1.4]-2.6|-2.6|-0.6/1.1|0.8|2.5(2.7{0.1 |-1.4|-1.5]2.0|0.1|2.5]0.1|-0.4|-2.4|-2.3] 0.1 [1.2{1.4[0.0(-1.0|-1.0( 0.2 |3.4]0.7|-0.6|-1.1|-0.2|-1.0|-2.1|-1.2|-1.4(-3.1|-2.0|-2.4|-3.0(-2.4|-1.8
19 BD |-1.8(-0.7]-1.8(-0.3|0.2-1.3]-2.5|-2.5|-2.0|1.2| 1.7|2.9(1.2|-0.3|-1.4|-1.4| 1.8 |-1.7(-0.3|0.2]-0.7|-1.4|-2.2|-1.8[ 1.3[ 1.5[2.7[ 0.1 |-0.9| 1.8 |3.4]0.7| 2.4 |-1.0|-0.2{ 0.8 |-2.1|-1.2] 0.8 [-3.0|-1.9| 0.4 |-3.0-2.3|-1.7
20 BA |-1.3(2.6]|-1.3]0.2]0.7|/1.8]0.5|-2.0{0.4|1.4]|-0.1|1.5[1.7[0.2 |-0.9|-0.9|-0.4|-1.3( 0.2|0.7|-0.8|-1.8(-1.7|-1.3[ 1.8 2.0 0.6 [-0.5]-0.5| 0.0 {3.9]1.2| 0.0 |-0.5]| 2.0 |-0.4|-1.6(-0.7]|-0.9(-2.6|-1.4(-1.9]-2.5|-1.8|-1.2,
21 BA |-1.2(2.5]|-1.2/0.3]0.8/1.7]0.3|-1.9/0.4|1.5|-0.21.6(1.7(0.3 |-0.8|-0.8|-0.3|-1.2{ 0.3 | 0.8 |-0.7|-1.3(-1.6|-1.2 1.9(2.10.7(-0.4|-0.4| 0.1 {4.0{1.3| 0.0 |-0.4]| 0.4 |-0.3]-1.5(-0.6]-0.8(-2.5|-1.3|-1.8|-2.4|-1.7|-1.2,
22 Bl |-1.3|-0.2|-1.3]0.2|0.7|-0.8]-2.0|-2.0(-1.5|1.4]-0.3[1.5|1.7| 0.2 |-0.4|-0.9{ 2.7 |-1.3[ 0.2 | 0.7|-0.8|-1.8(-1.7|-1.3| 1.8 [ 2.0] 0.6|-0.5(-0.5] 0.0 {3.9{1.2] 0.0 [-0.5] 0.3 [-0.4]-0.7(-0.7| 1.8 [-2.6|-1.4| 0.5 |-2.5|-1.8[ 1.2
23 DD |-1.0{0.1|-1.0]0.5|1.0(-0.5|-1.7|-1.7(-1.1|1.7) 0.0 [ 1.9]2.0] 0.5 |-0.6]-0.6( 0.0 |-0.9( 0.6 | 1.0(-0.5|-1.5(-1.4|-1.0[ 5.3 {2.3]0.9]-0.1{-0.1] 0.3 [4.2[1.5] 0.3 [-0.2] 0.6 [-0.1]-1.3[-0.3]-0.5(-2.2|-1.1|-1.6|-2.2|-1.5[-0.9]
24 FF |-1.2-0.1]-1.2/0.3]0.81.5|-1.9|-1.9(-1.4|1.5|-0.21.6|1.7[ 0.5 |-0.8|-0.8|-0.3|-1.2{ 0.3|0.8| 2.0 |-1.7|-1.6|-1.2{ 1.9{2.1|0.7(-0.4|-0.4| 0.1 [4.0{1.3| 0.0 |-0.4| 0.4 | 3.1 0.4 -0.6]-0.8(-2.5|-1.3|-1.8]-2.4|-1.7|-1.2,
25 Bl |-1.1]0.0]-1.1{0.4 [0.9]-0.6|-1.8|-1.8|-1.3]1.6]-0.1|1.7{1.9] 0.4 |-0.4]-0.7( 2.9 |-1.1{ 0.4 | 0.9(-0.6|-1.6]-1.5|-1.1|2.0|2.2]1.0|-0.3]-0.2| 1.4 [4.1{1.4] 0.2 |-0.3[ 0.5 |-0.2|-1.4]|-0.5|-0.6|-2.4|-1.2|-1.7|-2.3|-1.6|-1.0}
26 BD [-1.1f0.0]-1.1]0.4]0.9]-0.6]-1.8]-1.8]-1.3[1.8{0.0[4.0[1.9]0.4]-0.7]-0.7]-0.2]-1.1] 0.4 |0.9]-0.6]-1.6]-1.5]-1.1]3.3[2.2|0.8]-0.3]-0.2[ 0.2 [4.1[1.4] 0.2 [-0.3] 0.5 [-0.2|-1.4]-0.5]-0.6|-2.4|-1.2|-1.7]-2.3]-1.6]-1.0]
27 BF |-14(15]-1.5/0.9(0.5|-1.0|-2.2|-2.2(-1.6|1.4]| 2.1 [1.3]|1.5|2.6 |-0.1|-1.1{-0.5]-1.4[ 1.0 |0.5(-0.9]-2.0(-1.9]-1.5| 1.6 [ 1.8]0.8|-0.6(-0.6]-0.2 3.8 [1.0]-0.2(-0.7] 0.1 [-0.6|-1.7|-0.8|-1.0(-2.7|-1.6|-2.1|-2.7|-2.0(-1.4
28 AC |-1.2(-0.1{1.6|0.3]0.8(-0.8]-1.9|-1.9(-1.4|1.5| 0.5 |1.6(1.7[0.3 |-0.8|-0.8|-0.3|-1.2{ 0.3 | 1.9]-0.7|-1.7(-1.0| 1.5 [ 1.9]2.1]0.7(-0.4]-0.4| 0.1 [4.0{1.3| 0.0 |-0.4]| 0.4 |-0.3|-1.5(-0.6]-0.8(-2.5|-1.3|-1.8|-2.4|-1.7|-1.2,
29 BA |-1.2(2.3]-1.2/0.6|0.8(-0.8|-1.9|-1.9(-1.4|1.5| 1.9|1.6|1.7| 1.4 |-0.8|-0.8| 0.3 |-1.2{ 0.30.8|-0.7|-1.7(-1.6|-1.2[ 1.9(2.1|0.7(-0.4]-0.4| 0.1 [4.0{1.3| 0.0 |-0.4| 0.4 |-0.3]-1.5(-0.6]-0.8(-2.5|-1.3|-1.8|-2.4-1.7|-1.2
30 BC ]-0.8/0.3(-0.9]0.6(1.2]|-0.4(-1.6]-1.6|-1.0|1.8]|2.2(1.9]|2.1]| 0.6 [-0.5]|-0.5[ 0.1 |-0.8] 0.8 | 1.1|-0.3|-1.4|-1.3|-0.8|2.2|2.4]|1.0| 0.0 [ 0.0 0.5 [4.4[1.7] 0.4 [-0.1] 0.7 | 0.0 |-1.1|-0.2{-0.4|-2.1|-1.0|-1.4[-2.0]-1.4[-0.8
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Contact

position AA|AB|AC|AD|AE|AF|AG|AH| Al |BB|BC [BD|BE|BF |BG[BH| BI [CC|CD|CE[(CF|CG|CH| CI |DD|DE(DF|DG|DH| DI (EE|EF|EG|EH| EI |FF |FG[FH| FI |GG|GH| GI [HH[HI | 1l
31 BB ]-0.8{0.3(-0.9[0.6(1.2(-0.4|-1.6/-1.6|-1.0|3.6({0.2 [2.0(2.1] 0.6 |-0.5(-0.5{ 0.1 {-0.8| 0.7 | 1.1]-0.3|-1.4|-1.3]-0.8]2.2(2.4[1.0] 0.0 0.0 | 0.5 [4.4]|1.7] 0.4 |-0.1{ 0.7 [ 0.0 [-1.1{-0.2|-0.4|-2.1|-1.0]-1.4]-2.0|-1.4|-0.8
32 BA ]-0.8|2.5(-0.9]0.8(1.2]-0.4(-1.6]-1.6(-1.0/1.8] 0.2 [1.9]2.1]| 0.6 [-0.5]-0.5( 0.1 |-0.8] 0.7 | 1.1 |-0.3|-1.4-1.3]-0.8| 2.2|2.4]|1.0| 0.0 [ 0.0 | 0.5 [4.4(1.7| 0.4 [-0.1] 0.7 | 0.0 |-1.1-0.2{-0.4|-2.1|-1.0|-1.4[-2.0]-1.4(-0.8
33 Bl }-1.0/0.1(-1.0]0.5(1.0]-0.5(-1.7]-1.7|-1.1]1.7] 0.0 [ 1.8]2.0] 0.7 [-0.6]-0.6| 2.8 |-0.9] 0.5 | 1.0(-0.5|-1.5-1.4|-1.0| 2.1 |2.3]0.9]-0.1{-0.1] 0.6 [4.2[1.5] 0.3 [-0.2] 0.6 [-0.1]-1.3|-0.3|-0.5(-2.2|-1.1|-1.6|-2.2|-1.5[-0.9]
34 BF |-1.2|1.6(-1.2]0.3(0.8/-0.8(-1.9]-1.9|-1.4|1.6]/2.0 [1.6]|1.7| 2.4 [-0.8]-0.8(-0.3|-1.2] 0.3 | 0.8 |-0.7|-1.7|-1.6|-1.2| 1.9(2.1|1.0|-0.4(-0.4] 0.1 (4.0(1.3] 0.0 -0.4] 0.4 |-0.3]-1.5|-0.6|-0.8|-2.5(-1.3|-1.8(-2.4|-1.7-1.2
35 FC ]-0.8/0.3(-0.9]0.6(1.2]|-0.4(-1.6]-1.6(-1.0/1.8] 0.2 [1.9]2.1] 0.6 [-0.5]-0.5(0.1 |-0.8] 0.7 | 1.1|2.2 |-1.4|-1.3]-0.3|2.2|2.4|1.0/ 0.0 [ 0.0 | 0.5 [4.4(1.7] 0.4 -0.1] 0.7 [ 0.0 |-1.1-0.2{-0.4|-2.1|-1.0|-1.4[-2.0]-1.4(-0.8
36 FB ]-1.0/0.1(-1.0|0.5(1.0]-0.5(-1.7]-1.7|-1.1]1.7] 0.0 [ 1.8]2.0]| 3.2 [-0.6]-0.6| 0.6 |-0.9] 0.5 | 1.0(-0.5|-1.5-1.4|-1.0| 2.1 |2.3]1.2]-0.1{-0.1] 0.3 [4.2[1.5] 0.3 [-0.2] 0.6 [-0.1]-1.3|-0.3|-0.5(-2.2|-1.1|-1.6|-2.2|-1.5[-0.9]
37 FF |-1.4]-0.3(-1.4]0.1(0.6]| 1.7 -2.1]-2.1{-0.8]1.3]-0.4[1.4]|1.6] 0.5 [-1.0]-1.0{-0.5]-1.3] 0.1 | 0.6 | 2.2 |-1.9|-1.8]-0.5| 1.7 1.9]0.5|-0.5(-0.5]-0.1(3.8[1.1]-0.1{-0.6] 0.2 | 3.1 |-1.7|-0.7|-0.3|-2.6(-1.5|-2.0[-2.6]-1.9(-1.3
33 1B |-1.1]0.0(-1.1]0.4 (0.9]-0.6(-1.8]-1.8(-1.3]|1.6]-0.1{1.7|1.9] 0.9 [-0.7] 0.1 [ 2.9 |-1.1| 0.4 | 0.9(-0.6|-1.6|-1.5|-1.1|2.0(2.2]0.8]-0.3(-0.2| 0.6 [4.1[1.4]| 0.2 [-0.3] 0.5 [-0.2|-1.4-0.5|-0.6(-2.4|-1.2|-1.7(-2.3]-1.6-1.0]
39  IF |-1.5|-0.4(-1.6/-0.1{0.5]|-0.4(-2.3]-2.3| 1.3 |1.1]-0.5[1.2|1.4]-0.1-1.1]-1.2{-0.1]-1.5] 0.0 | 0.4 (-0.5|-2.1|-1.1]| 1.9 1.6 | 1.7]0.3|-0.7(-0.7]-0.2(3.7(1.0|-0.3(-0.8] 0.1 | 1.4 |-1.8|-0.1| 1.9 |-2.8-1.7|-2.1[-2.7]-2.1|-1.5
40 IH |-1.6/-0.5|-1.7|-0.10.4|-1.2|-2.3]|-2.3(-0.4|1.1]-0.6[1.1|1.3]-0.1|-1.2|-1.2{-0.7|-1.6(-0.1]0.4| 0.1 |-2.2(-1.4]| 1.6 [ 1.5[1.7]0.3|-0.8(-0.8]-0.3[3.6{0.9]-0.4(-0.8| 0.0 [ 0.5 |-1.9{ 0.1 | 1.3 [-2.9]-1.7|-2.2|-1.4] 1.0 [ 2.2
41 1A |-1.4(-0.4|-1.5/0.0(0.5|-0.4|-2.2|-1.0{ 1.9|1.2]-0.4[1.3]|1.5| 0.7 |-1.1|-0.3[ 1.6 |-1.4[ 0.0 | 0.5[-0.1]-2.0(-1.9| 1.6 [ 1.6 1.8]0.4|-0.6(-0.6]|-0.2(3.8(1.0]-0.2(-0.7] 0.1 [-0.6]-1.7(-0.8|-1.0-2.7|-1.6|-2.1|-2.7|-2.0(-1.4
42 ID |-1.1/0.0|-1.1]0.4|0.9]-0.6|-1.8|-1.8(-1.3|1.6]-0.1[1.7]|1.9] 0.4 |-0.7|-0.7(-0.2|-1.1{ 0.4 | 0.9(-0.6]-1.6(-1.2|-1.1{2.0(2.2]1.8]-0.3{ 0.5 | 3.6 [4.1[1.4] 0.2 [-0.3] 0.5 [-0.2]-1.4(-0.5|-0.6[-2.4|-1.2|-1.7(-2.3]-1.6-1.0]
43 DB |-0.8(/0.3]-0.9/0.6|1.2|-0.4|-1.6|-1.6(-1.0|1.8| 0.2 |3.72.1| 0.6 |-0.5|-0.5| 0.1 |-0.8{ 0.7 | 1.1|-0.3|-1.4(-1.3]|-0.8(2.5(2.4|1.0({ 0.0 0.0 | 0.5 [4.4]1.7| 0.4 |-0.1| 0.7 | 0.0 |-1.1{-0.2]|-0.4(-2.1|-1.0(-1.4|-2.0|-1.4|-0.8
44 DA |-1.0/0.1|-1.0]2.6|1.0(-0.5|-1.7|-1.7(-1.1|1.7] 0.0 [2.8]2.0] 0.5 |-0.6]-0.6( 0.0 |-0.9{ 2.4 | 1,0{-0.5]-1.5(-1.4|-1.0{ 2.1 {2.3]0.9]-0.1{-0.1] 0.3 [4.2[1.5] 0.3 [-0.2] 0.6 [-0.1]-1.3(-0.3]-0.5(-2.2|-1.1|-1.6-2.2|-1.5[-0.9]
45 DB |-0.8(/0.3]-0.9/0.6|1.2|-0.4|-1.6|-1.6(-1.0|1.8| 0.2 2.62.1|0.6 |-0.5|-0.5| 0.1 |-0.8}:0:7 | 1.1{-0.3|-1.4|-1.3]|-0.8(2.2(2.4|3.6(/ 0.0 0.0 | 0.5 [4.4]1.7| 0.4 |-0.1| 0.7 | 0.0 |-1.1{-0.2]|-0.4(-2.1|-1.0(-1.4|-2.0|-1.4|-0.8
46 AC ]-0.7/0.4|1.3]0.8|1.3|-0.2|-1.4|-1.4(-0.9|2.0| 0.3 |2.1|2.3[0.8]-0.3|-0.3| 0.2 |-0.6| 0.8 | 1.34-0:2|-1:2|-1.1}-0.7(2.4(2.6| 1.2/ 0.1 | 0.2 | 0.6 [4.5]1.8/ 0.6 | 0.1 | 0.9| 0.2]-1.0{-0.1]-0.2(-1.9]-0.8-1.3|-1.9|-1.2|-0.6,
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Table 8. Statistic

projects.

of our predictions for seven organisms commonly used in molecular research

Species Number of  Number of interactions Number of interactions
i

P proteins (our prediction) (DIP)

Mus musculus 56924 223151 292

(house mouse)

Homo sapiens 29571 112114 1407

(Human)

Rattus norvegicus 24115 71407 109

(Norway rat)

Caenorhabditis elegans 29729 17242 4030

(nematode)

Dro§ophlla melanogaster 19620 41665 20988

(fruit fly)

Sacchrflromyces cerevisiae 5877 1350 18225

(baker's yeast)

Escherichia coli 4850 477 7408
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Table 9. The result of 1evtBD to model seven FGF/receptor complexes.

Homologs Homologs Binding SP energy b

of levtB of levtD  affinity SPenergy” (normal) GE energy IDEL” IDEZ*
FGF4 FGFR2c 94.3 105.7 0.92 -1.6 35.8 76.3
FGF4 FGFR3c 69.1 104.8 0.91 -1 35.8 73
FGF4 FGFR4 108 103.4 0.9 0.5 35.8 66
FGF4 FGFR1c 102.3 102.5 0.89 0.5 35.8 99.1
FGF4 FGFR2b 14.9 101.2 0.88 -1.9 35.8 69.3
FGF4 FGFR1b 15.6 98 0.85 -0.4 35.8 86
FGF4 FGFR3b 1 97.3 0.84 1.3 35.8 61.9

* SP energy is the abbreviation of the “specific, interfacial energy” which is calculated from
pairPSSM of 1evtBD.

® GE energy is the abbreviation of the “gencral interfacial energy” which is calculated from general
empirical matrix.

¢ IDE1 means the sequence identity percentage between the candidate protein and levt B chain.

4 IDE2 means the sequence identity percentage between the candidate protein and levt D chain.
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(A)

(B)

Mouse P47 (1s3s H chain) Mouse P97 (1s3s B chain)
[ 370 residues ] [ 806 residues ]

Sequence identity > 30 %
Psi-BLAST E value < 10-1%

Yeast Shpl Yeast Rix7

Bt —(Caa H{w

[ 423 residues ] [ 837 residues ]

Figure 1. The 3D structure and domain architecture of protein complex P47/P97. (A)The 3D
structure of protein complex P47/P97. (B)The domain architecture of two mouse proteins P47&P97
two yeast proteins Shpl&Rix1. Both homologous protein pairs (P47 to Shpl and P97 to Rix7) are
with sequence identity > 30% and PSI-BLAST E value < 10", The color boxes are represented as
functional domains.

54



(A)

Query Query
Re fse —» Sequence 1 Sequence 2
genpmesstranscripts:protelns 2,000,000 X 2,000,000
family
assignment

3D-Dimer
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!

Test interaction

(B)

A protein dimer
database

Searching protein
database

gencmwlrunscrfp(s'pmtefnsq

M Homologs l N Homologs
of chain A of chain B

Test M x N interactions

Figure 2. The comparison of our and previous methods. (A) The previous method takes family assignment for 2 query proteins and fits the two

proteins on the complex of known structure. (B) Our method modified by the concept of interologs. We use a complex of known structure to

search protein database and test any possible homologous interacting protein pairs on the complex.



Protein

Data Bank

Data preparation

Selecting identifying interactin
cocrystallized record domain by atomic
with some criteria coordinates

\4

A dimer
template

Construction of pairPSSM

Searching nr Selecting sequences
protein database to build MSA

\ 4
)

Searching target

! Prgdlctlon

(Scoring homologous . Tis (e e S

protein database

"\ protein pairs ' threshold ?

J

YES

Ve

Prediction of
interacting protein

)

Figure 3. The flow chart of our method. In this study, we first collect dimers of known structure
from Protein Databank and identity interacting domains. For each 3D-dimer, we estimate the
probabilities with witch residue pairs occur at various contact positions and construct a pairPSSM

to assess the fit of any possible interacting protein pairs. And then we use these dimers as queries to

search target protein database and predict many candidates of protein-protein interaction.

56




(A)

(B)

AG | LIMV | STP | FYW C HR K DE NQ
AG 035 | 030 | 011 | 014 | 010 | 007 | 010 | 0.08 | 0.08
LIMV | 030 | 035 | 021 | 022 | 043 | 020 | 013 | 017 | 0.17
STP | 011 | 021 | 026 | 013 | 016 | 021 | 014 | 019 | 0.12
FYW | 014 | 022 | 013 | 033 | 012 | 023 | 0.00 | 019 | 0.24
C 010 | 013 | 016 | 012 | 000 | 015 | 0.00 | 010 | 0.25
HR 007 | 020 | 021 | 023 | 045 | 037 | 005 | 019 | 0.11
K 010 | 013 | 014 | 000 | 000 | 005 | 0.00 | 005 | 0.00
DE 008 | 017 | 019 | 019 | 010 | 019 | 0.05 | 038 | 0.08
NQ 0.08 0.17 0.12 0.24 0.25 0.11 0.00 0.08 0.33

Figure 4. The standard deviations of contact residue potentials in the clusters of amino acid. The
deviation > 0.5 is colored by dark gray and the deviation between 0.3 and 0.5 is colored by gray. (A)
The amino acid classification is defined by Saha et al. (B) The classification is slightly modified by

us.
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Figure 5. The relationship between sequence identity and pair coverage of 459 pairs of related hetero dimers. The dots in gray box are the

exceptions of the pairs of dimer with > 30% sequence identity but pair coverage < 0.4.

58



[

e i e
Ul o N © ©

Pair coverage

o o
w b

© O
= N

o

0 20 40 60 80 100
Sequence identity

Figure 6. The relationship between sequence identity and pair coverage of 1412 pairs of related homo dimers. The dots in gray box are the

exceptions of the pairs of dimer with >30% sequence identity but pair coverage < 0.4.
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Figure 7. The average pair coverage in‘different sequence identity interval. The black bar is for

heterodimers and the gray bar is for homodimers.
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(A) Two-chain heterodimers
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Figure 8. The relationship between sequence identity and pair coverage of the two-chain dimers. (A)
114 pairs of related two-chain heterodimers. (B) 616 pairs of related two-chain homodimers. The
dots in gray box are the exceptions of the pairs of dimer with >30% sequence identity but pair

coverage < 0.4.
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Figure 9. The interactive types of two hydrolase-antibody complexes 10p9AB and 1jttAL. We
superimpose the 1op9B and 1jttL and discover the binding site of the two proteins at two different

sites (bottom).
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Figure 10. Sequence identity threshold of aligning contact residues. (A) The relationship between
the consistence ratio and sequence identity. (B) The mean of consistence ratios in different sequence
identity.
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Figure 11. Determining the threshold of specific interfacial energy on distinguishing the true protein
complex and unreasonable protein pairs. The specific interfacial energy is calculated from pair
PSSM. (A) The frequency of positives and negatives in different interfacial energy intervals. (B)
The error rate of prediction at different thresholds. A threshold of 50 is consequently set from this

histogram.
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Figure 12. Determining the threshold of general interfacial energy on distinguishing the true protein
complex and unreasonable protein pairs. The general interfacial energy is calculated from general
empirical matrix. (A) The frequency of positives and negatives in different interfacial energy
intervals. (B) The error rate of prediction at different thresholds. A threshold of 10 is consequently

set from this histogram.
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Figure 13. The relationship between number of contact residues in 3D-dimers and its specific

interfacial energies which are calculated from pairPSSM. The correlation coefficient is 0.9321.
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Figure 14. The relationship between namber of contact residues in 3D-dimer and its general

interfacial energies with are calculated from general-empirical matrix. The correlation coefficient is
0.6753.
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Figure 15. Determining the threshold of normalized specific interfacial energy on distinguishing the
true protein complex and unreasonable protein pairs. The method to calculate normalized specific
interfacial energy describes in text. (A) The frequency of positives and negatives in different
interfacial energy intervals. (B) The error rate of prediction at different thresholds. A threshold of

0.4 is consequently set from this histogram.
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Figure 16. The mean average positions and mean false positive rate of 182 queries. The unannotated
candidates are considered as negatives. Sequence identity limit means that if one protein of
candidate with sequence identity > sequence identity limit, the candidate is removed. (A) Result of
MAP in sequence identity limit with 95%, 50%, 40% and 30%, respectively. (B) Result of MFP in
sequence identity limit with 95%, 50%, 40% and 30%, respectively.
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Figure 17. The mean average positions and mean false positive rate of 101 queries. The unannotated
candidates are removed. Sequence identity limit means that if one protein of candidate one with
sequence identity > sequence identity limit, the candidate is removed. (A) Result of MAP in
sequence identity limit with 95%, 50%, 40% and 30%, respectively. (B) Result of MFP in sequence
identity limit with 95%, 50%, 40% and 30%, respectively.
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Figure 18. Model for cycling transport factofs proposed by Koepp and Silver (51). The mechanism

of nuclear transport factors cycle sees text for detail.
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Figure 19. The multiple sequence alignment result of the 14 candidates to their corresponding template proteins of 1a2kAD. (A) Alignment
result of 1a2k A chain. Three important negatives residues mark in the yellow box. The C terminal hydrophobic peptide is also an important
interactive site (orange box). The red bars in the bottom are the contact positions in 1a2k A chain. (B) Alignment result of 1a2k D chain. The
switch II loops mark in orange box. The important aromatic residue Phe72 is mark by orange star. The red bars in the bottom are the contact

positions in 1a2k D chain.
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Figure 20. 3D-structure of 1a2kAD. (A) A chain of 1a2k. The three important negatively charged residues, Glu42, Asp92 and Asp94, are colored
by yellow. The C terminal peptide is colored by orange. (B) D chain of 1a2k. The switch II loops is colored by orange.
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Figure 21. Distributions of the correlation coefficients of gene expression profiles for four interacting protein sets: our predicted protein pairs
with thresholds 0.4 (band) and 0.6 (gray), the DIP core set (white), and the non-interacting protein pairs (black). The correlations of our

predicted protein pairs are much higher than the one of non-interacting protein pairs.
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Figure 22. The 3D-structure of 1evtBD and multiple sequence alignment of seven homologous FGF receptors. (A) The 3D-structure of 1evtBD.
(B) The multiple sequence alignment of seven homologous FGF receptors to chain D of 1evt. The red bars in the bottom are the contact positions

in levt D chain.
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