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Search the Network of Coupling Residues in Proteins

Student: Szu-Pu Chien Advisor : Jenn-Kang Hwang

Institute of Bioinformatics

National Chiao Tung University

Abstract

Multiple sequence alignments (MSA) carry evolutionary records. By
analyzing these records, one may get useful biological information. A common
analysis method is conservation analysis. If there is no record in mutation at one
MSA position, we say that position tends to be conserved. Conserved positions
are always functional important sites since functionality imposes constraints on
these sites from mutation.

Although some positions show little conservation, they are still functionally
important. The coupling residues account this observation. Many investigators
have proposed that analyzing correlated mutation in two positions can
effectively predict the coupling degree between these two residues.

Thus, in this study, we introduce conservation entropy and coupling
entropy to detect coupling between two sites and also compare the effect
between two. Our study generally confirmed the effect of normalized coupling
entropy to be a good indicator in detecting correlated mutation. We also
introduce a network searching strategy to verify the identity of coupling residues

network
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FIGURE CAPTIONS

Figure.1 Examples illustrating the effect of normalized H’(i, j) versus
un-normalized H(i, j) by calculating a pair of small artificial MSA. Completely
dependent columns (A) and (B) show the same maximum value of 1 in H’(i, j),
while the values are different in H(i, j). Also in (C) and (D), H’(i, j) is the better
reporter of correlation than H(i, j) since pairs in (D) are much non-correlated
than in (C). From this comparison, we can summarize that H’(i, j) would be a
better measure than H(i, j).

Figure.2 The flowchart of network searching

Figure.3 Stereo view of the peptide-binding site of PDZ domain cited from
MacKinnon et al.’s work in 1996 demonstrating protein-peptide interactions via
hydrogen bonds (dashed white lines). Oxygen atoms are shown in red and
nitrogen atoms in blue. The green sphere shows a well-ordered water molecule
linking the carboxylate group to Arg-318. This figure show clearly those
residues involved directly in peptide binding and its three-dimensional
orientation. The right table lists the binding site residues.

Figure.4 The global mapping plot of conservation entropy for protein 1BE9
Figure.5 The global mapping plot of coupling entropy H(i, 318) for protein
1BE9

Figure.6 The global mapping plot of coupling entropy H(i, 372) for protein
1BE9

Figure.7 The global mapping plot of coupling entropy H(i, 322) for protein
1BE9

Figure.8 The global mapping plot of coupling entropy H(i, 339) for protein
1BE9
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Figure.9 Surface topology of the PDZ domain. The orange peptide is the
substrate.

Figure.10 Cartoon topology of the PDZ-3 domain. The orange peptide is the
substrate.

Figure.11 Mapping the top 6 values of H(i, 372) 1BE9; The ranking from high
to low is: 329>382->322->339->380->323. (green: top 6 of H(i, 372); red:
residue 372).

Figure.12 Comparison with the top 6 H(i, 372) of 1BE9 with MacKinnon et
al.”s schematic plot. (green: top 6 of H(i, 372); red: residue 372)

Figure.13 Mapping the top 6 values of H(i, 339) of 1BE9; The ranking from
high to low is: 326>372->331->340>370->355. (green: top 6 of H(i, 339); red:
residue 339)

Figure.14 Comparison with the top 6 H(i, 339) of 1BE9 with MacKinnon et
al.”s schematic plot. (green: top 6 of H(i, 339); red: residue 339)

Figure.15 Mapping the top 6 values of H(i, 318) of 1BE9. (green: top 6 of H(i,
318); red: residue 318)

Figure.16 Residue pairs in each end of the network initiated from binding sites
of 1BE9

Figure.17 Cartoon topology of the Staphylococcal Nuclease. The red region is
the hydrophobic core region.

Figure.18 Schematic plot of the core region of the Staphylococcal Nuclease
Figure.19 Mapping the top 6 values of H(i, 92) of 1EYO0; The ranking from high
to low is: 16>6—>23>7->72->56. (green: top 6 of H(i, 92); red: residue 92).
Figure.20 Mapping the top 6 values of H(i, 23) of 1EYO0; The ranking from high
to low is: 60>52>10>49->67->46. (green: top 6 of H(i, 92); red: residue 92).
Figure.21 Mapping the top 6 values of H(i, 72) of 1EYO; The ranking from high
to low is: 69->50>12->56->128->11. (green: top 6 of H(i, 72); red: residue
72).
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1. Introduction

Multiple sequence alignment (MSA) of homologous proteins demonstrates
evolutionary records. Changes in these records are made by the mutation of amino acids.
Each position of MSA shows different degree of conservation. Conserved positions are
often functional important positions, since functionality would impose constraints on
mutation. The degree of conservation at each amino acid site is similar to the inverse of
the site’s rate of evolution; slowly evolving sites are evolutionarily conserved, while
rapidly evolving sites are variable.

However, mutation studies have shown that many non-conserved positions may also
be functionally important. How, then, do these non-conserved positions change during
evolution without eliminating the activity of the protein? In the laboratory experiment, the
detrimental effects of one mutation may be suppressed by a compensating mutation at
another position, that is, a second-site suppressor mutation, and it is expected that during
evolution the effects of mutations are often counterbalanced in a similar way. Thus, this
concept forms the basis that non-conserved positions in functional important sites may
have some coupling relationships between each other.

But what is the actual meaning of “coupling”? Many investigators proposed that
these coupling residues, while not necessarily nearby in the primary sequence, form
three —dimensional contacts at an above-random frequency?. Some investigators reasoned
that, as previously mentioned, coupling residues may comprise functional sites and play
an important role in functional interactions®*. There are others suggested another
explanation of this coupling relationship that since some coupling residues do not interact
in close distance but in long-range interactions, they could be responsible for the energetic
process such as allosteric communication in signal transduction proteins>®. For example,
ligand binding at an externally accessible site in G protein—coupled receptors (GPCRs)
reliably triggers structural changes at distant cytoplasmic domains that mediate interaction
with heterotrimeric G proteins’®. It is also been proposed that coupling residues in distal
functional sites are connected by a small subset of coupling residues which forms a sparse

1
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physically connected networks that serves like a bridge in the protein tertiary structure®.

To verify the true meaning of coupling residues, an important step is to globally map
coupling relationships between amino acid residues in protein structure. A common
technique for understanding coupling residues is the double mutant cycle analysis, in
which the energetic independence of two residue positions is established if the sum of the
free energy changes of two independent mutations is equal to the free energy change of
the double mutant®*3. Even a modestly sized protein, however, has millions of possible
double mutations that render experimental laboratory study of double mutant cycles
impractical. Thus, an alternative approach is suggested by relating evolutionary
information in MSA to coupling residues in protein by detection of correlated mutations.
If every time a given residue in a position of MSA changes, there is a corresponding
change in another position of the MSA, then the two corresponding residue positions may
be coupled and under selective pressure.

Many researchers have reasoned that coupling positions in sequence alignments must
be correlated mutate and thus identifiable. In 1994, Valencia et al.** proposed that
analyzing correlated mutation can be used to convert sequence correlation patterns into
three-dimensional structure information. Others proposed that this analysis can be used to
determine functionally important residues™. Ranganathan and colleagues®® proposed a
statistical coupling analysis (SCA) algorithm and claimed it could find “pathways of
energetic connectivity” that “have emerged early in the evolution of the protein folds and,

much like the atomic structure, are fundamentally conserved features of the domain

515 | 16

families®”. Oliviera et al.” (2002) developed a qualitative method, Correlated Mutation
Analysis (CMA), to identify coupling residues based on the variability, entropy and
correlation of the residues. Singer et al.? (2002), in a variation of CMA using empirically
derived likelihood scores, predicted residues to be in contact with a 16% accuracy for a
variety of protein families. Tiller and Liu*’ (2003) and Dunn et al.>* (2005) used mutual
interdependence and mutual information to identify positions that coupled with each other,
but were not coupled significantly with other positions in the alignment.

In our work, we adopted entropy calculations to measure the couplings between

2
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positions. We applied both conservation entropy and coupling entropy to map global
sequence of target proteins to verify what the coupled residues stand for, and see if the
information in MSA can be used to predict the residue contact in three-dimensional
structure, functional important sites, or energetic connectivity in proteins, as previously
researchers proposed. Toward that end, we examined a few published double mutant cycle
data sets and compared our results to previous works. In addition, we proposed a novel
“space-searching” method which includes structural information that has yet been used in
previous study. By using this method, we wanted to verify the identity of the network of

coupling residues.

2. Methods

2.1 Amino acid composition frequency

To calculate the measure of correlated mutation, we first have to extract useful
evolutionary information from MSA. This is obtained by using the observed amino acid
composition frequencies, f, , which stands for the composition frequency of amino acid x at
position i, and x is the amino acid types on position i. x denotes 20 kinds of amino acids.

The frequency can simply be obtained by
gl (1)

Where n, means the number of sequences with amino acid x at position i; N means the total
number of aligned sequences.
2.2 Conservation entropy

With the amino acid composition frequency, the conservation entropy H(i) can be
obtained by

H@) ==Y f,Inf,
x )

Conservation entropy is a well known measure of uncertainty for a random variable. It
follows that when f can only take on one value, i.e., with f =1, then H(i) = 0, i.e. there is

3
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no uncertainty. When the frequency is equally distributed over all members of the amino acids,
i.e., f, =1/20 for all kinds of x, then H(i) is maximized.
2.3 Coupling entropy

As for dealing with two positions in MSA, coupling entropy can be applied:

f ff
HG, )= f, In——+>"f f, In——
e W T f e T (3)

Xi Yj Xi¥j

Here, fxi,yj denotes the frequency of amino acids x and y observed simultaneously in position
i and j, respectively. The magnitude of H(i, j) can be accounted by the consistency of two
functions, that is, f, and fyj in our case. To justify the ability of H(i, j), we calculate a small
set of artificial testing alignment in Fig. 1.

We can see that with H(i, j) itself can only report little about the correlation between two
columns of the alignment. By the conclusion made by Wahl and Dunn et al.**, the
performance of entropy calculation would become better after normalization. Thus, we tried
to normalize H(i, j) as well. We normalized H(i, j) by divide each term with its own

numerator:

f BiTS St T, Hty
XY n = X i n : :
AN ETT s Y f

H'(i, j) = 2( T AL
fo Infy Z f, f, Inf,f, 4)
X,y

Xy

The constant “2” is simply put for the purpose of making the completely correlated
positions to be normalized to 1(See Fig.1. (A) and (B) ). The comparison between before and
after normalization is shown in Fig.1. We use H’(i, ) instead of H(i, j) throughout this work
unless otherwise noted.

The higher the H(i, j), the more the degree of correlated mutation between position i and
J-

2.4 Network searching strategy
The searching strategy is started from an initial residue, with an input of PDB file is

necessary. The overview of the searching strategy is shown in Fig.2. After the target residue
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been selected, a cutoff sphere is defined around the target residue by any atom of the residues
with distance with any atom of the target residue below 4A. The 4A criterion is chosen by
empirically trials. The next step is to calculate the H(i, j) of all residues inside the cutoff
sphere. With a given threshold, we then choose the residue with largest H(i, j) exceed
threshold as the next target residue. The termination of this network searching is executed
when the next target residue is already in the network.

2.5 Datasets

We began our calculation with two examples: (1) the third PDZ domain from the
mammalian synaptic protein PSD-95 (PDB_ID: 1BE9); (2) the Staphylococcal Nuclease
(PDB_ID: 1EYO0). The reason why pick these proteins as our examples is that they all have
been studied by previous work and thus suitable to be compared™*®. Also, both the PDZ
domain and the Staphylococcal Nuclease have published double mutant cycle data>*®. The
MSA file of 1BE9 and 1EYO are downloaded from the HSSP database®. The number of
aligned sequence is 432 in 1BE9, while 67 in 1EYO.

PDZ domains are found in many cell junction-associated proteins, mediating the
clustering of membrane ion channels by binding to their C-terminus. An important function of
PDZ domains was implicated when the two N-terminal PDZ domains (PDZ-1 and PDZ-2) of
PSD-95 and its close relatives were shown to act as specific binding modules for the peptide
motif (Thr/Ser-X-Val) found at the very C-terminus of Shaker-type K+ channels and of NR2
subunits of N-methyl-D-aspartic acid (NMDA) receptor ion channels. The interaction
between the PDZ domains of PSD-95 and the C-terminus of K+ channel subunits results in
the co-clustering of both proteins when they are co-expressed in heterologous cells.
Furthermore, Shaker-type K+ channels and NMDA receptor ion channels co-localize with
PSD-95 in the mammalian brain. In further support of a membrane protein localization
function, mutations in Discs-large, the Drosophila homolog of PSD-95, cause abnormal
morphology at synapses where the protein is known to occur?.

PDZ domains are suitable dataset to do coupling analysis because they are small protein
with only 115 residues. And they are also evolutionarily well represented protein family

(many positions in alignment show distribution near to natural occurrence). In addition, PDZ
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domains play key roles as organizing centers for multi-protein signaling complexes>.

Fig.3. is a citation figure of MacKinnon et al.’s work in 1996 about the crystal
structure of PDZ domain. The residues that directly participate in peptide-binding can be
shown.

As for Staphylococcal Nuclease, we compared our results to a previous work of double
mutant cycle analysis'®, which studied the stability effects of multiple packing mutations in
the hydrophobic core. This study verified that there are 6 residues in the core region show

interactions: 23, 25, 66, 72, 92, and, 99.

3. Results

1BE9 contains 115 residues. The numbering begins from 301 to 415. The plot of global
mapping of conservation entropy is shown in Fig.4. The ranking of this global mapping of top
conserved residues is listed in Table.1, which we can see that there is not much residues
located on binding site in those highly conserved region. We then generate global mapping
plot of coupling entropy H(i, j) with certain positions in binding site. Fig.5~8 shows some
results with j position in 318, 372, 322, and 339. Table 2~5 shows the ranking of these H(i, j).
The results of network searching are listed in Table 6~8, with different thresholds. We
selected initial targets as those residues in binding-sites. The comparison between different
thresholds is shown in Table 9. Fig. 11~15 demonstrate the mapping with those high H(i, j) to
three-dimensional structure.

1EYO0 contains 136 residues. The numbering begins from 6 to 141. Fig. 19~21
demonstrate the mapping with those high H(i, j) to three-dimensional structure, with j

positions on hydrophobic core.

4. Discussion

4.1 PDZ domain

From Fig.4 and Table.1, we can find that many positions in 1BE9 show low degree of
conservation. This is consistent with the previous statement that PDZ domains are
evolutionarily well represented protein family>. Although global mapping of some H(i) can
verify many binding site residues, it’s still difficult to verify the coupling degree between

6
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them.

As for the global mapping of H(i, j) of 1BE9, we pick 4 binding-site residues, 318, 372,
322, 339, to be our examples. From the results we could make a roughly suggestion that H(i, j)
may be good in three-dimension prediction. From Table 3, we can find that the highest residue
except the 372 itself is residue 329. We thus compare this result to MacKinnon’s schematic
plot of binding site in Fig.12. It is interesting to find that position 372 and 329 are in direct
contact in three-dimension structure. Furthermore, they even bind to the same residue of the
substrate with hydrogen bind. This result of coupling can be accounted by either direct contact
or functional interaction between residues. In other example, such as residue 339, also shows
a highest H(i, j) partner residue 326, which is also directly contact in space. For even more,
residue 339 and 326 also binds to the same residue of peptide substrate (Fig. 13). Fig.15
shows the results of residue 318. In this result, the top H(i, j) value residues are few in binding
site, but show spatial arrangement, instead. This result may suggest that in some positions H(i,
j) may only identify those residues in proximal but without functional correlation.

Network searching methods can verify “strong coupling pairs”, which responsible for
terminating the network. With our searching strategy, the network would always been
terminated in the coupling pairs with in average high H(i, j). Fig.16 shows these “Strong
coupling pairs” mapping on three-dimensional structure. The meaning of these coupling pairs
needs more study to realize.

Threshold in searching network may serve as a “filter” that screens out “strong coupling
pairs.” From Table 9, we can easily discover that when threshold set to as much high as 0.5 in
1BE9, the searched network would only those linked with binding site residues. This suggests
that coupling residues in binding site are in average with high H(i, j) relative to other
positions. The strong coupling of these binding site residues may give a hint that these
residues are not only with three-dimensional contact, but also with “functionality attractions”.

4.2 Staphylococcal Nuclease

Fig. 19~21 show the H(i, j) mapping results with j position at 92,23, and 72, respectively.
From the results of Stites and Chen in 2001*, six residues in the hydrophobic core are highly
coupled, which are 23, 25, 66, 72, 92, and, 99. Our result can only identify very few of them
(Fig. 19, 92 to 23). This suggests that analysis in correlated mutation may have little power to
identify energetic connections, at least in the Staphylococcal Nuclease dataset. This result
agrees with the conclusion made by Aldrich and Fodor in 2004 that analysis in correlated

mutations can hardly find energetically connect residues™.
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5. Conclusions

Globally mapping of some coupling entropy can verify some residues that contact in
3D structure. Some can even identify functional correlated residues. Network searching
methods can verify “Strong coupling pairs”, which responsible for terminating the networks.
Threshold in searching network may serve as an useful ~ “filter” that screens out “Strong
coupling pairs.” The coupling residues verified by correlated mutation can be accounted by
directly contact. And some coupling residues in functional sites can be explained by

functional correlation. Our results do not support the hypothesis that analysis in correlated

mutations can identify those with energetic connections.
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7. Tables
Table.1. The ranking of H(i) on protein 1BE9 for top most conserved positions

(Residues on binding site are in boldface)

Position i H(i)
347 0.10
324 0.11
357 0.11
356 0.40
363 0.41
415 0.50
351 0.50
301 0.50
353 0.57
414 0.65
362 0.69
375 0.70
360 0.79
412 0.80
413 0.81
329 0.83
338 0.84
341 0.88
327 0.92
379 0.93
359 0.94
364 0.96
322 0.96

330 0.99
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Table.2. The ranking of H(i,318) on protein 1BE9 for top most conserved positions

(Residues on binding site are in boldface)

Position i H(i, 318)
311 0.52
312 0.41
314 0.40
319 0.38
316 0.34
310 0.30
317 0.30
315 0.30
320 0.29
387 0.28
309 0.26
313 0.24
391 0.23
412 0.22
308 0:22
342 0.22
388 0.21
303 0.21
334 0.21
413 0.20
355 0.20
405 0.19

394 0.19

12


Szu-Pu
nctu


Table.3. The ranking of H(i,372) on protein 1BE9 for top most conserved positions

(Residues on binding site are in boldface)

Position i H(i, 372)
329 0.72
382 0.64
322 0.63
339 0.56
380 0.54
323 0.52
326 0.51
327 051
340 0.46
325 0.45
331 0.43
348 0.41
355 0.40
330 0.39
376 0.38
367 0.36
362 0.36
378 0.36
346 0.36
350 0.35
345 0.33
334 0.32
361 0.32

354 0.30
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Table.4. The ranking of H(i,322) on protein 1BE9 for top most conserved positions

(Residues on binding site are in boldface)

Position i H(i, 322)
372 0.63
380 0.57
326 0.45
382 0.44
346 0.36
386 0.35
348 0.34
350 0.34
361 0.34
339 0.33
366 0.32
323 0.32
331 0.32
367 0.30
321 0.30
377 0.30
378 0.29
345 0.29
332 0.29
340 0.28
376 0.27
337 0.27
333 0.27

362 0.27
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Table.5. The ranking of H(i,339) on protein 1BE9 for top most conserved positions

(Residues on binding site are in boldface)

Position i H(i, 339)
326 0.65
372 0.56
331 0.56
340 0.55
370 0.53
355 0.52
382 051
368 0.48
328 0.47
352 0.47
380 0.46
330 0.45
321 0.42
323 0.42
334 0.41
350 0.40
361 0.39
378 0.38
383 0.37
327 0.36
377 0.36
365 0.36
358 0.36
349 0.36

348 0.35
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Table.6. Network initiated from binding site residues of 1BE9 with no threshold.

(Residues on binding site are in boldface)

Initial
o Network Number of Network elements
position i
318 318 > 319 - 317 - 319 4
321 321 - 322 - 346 > 349 > 346 5
322 322 = 346 - 349 > 346 4
323 323> 386 > 323 3
324 324 = 325 - 340 - 342 - 340 5
325 325 > 340 - 342 - 340 4
326 326 > 327 > 326 3
327 327 > 326 > 327 3
329 329 - 372 > 329 3
339 339 > 326 > 327 > 326 4
372 372 > 329 > 372 3
379 379 > 323 > 386 - 323 4
3

383

383 - 384 - 383
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Table.7. Network initiated from binding site residues with threshold = 0.3.

(Residues on binding site are in boldface)

Initial
o Network Number of Network elements
position i
318 318 > 319 - 317 - 319 4
321 321 - 322 - 346 > 349 > 346 5
322 322 = 346 - 349 > 346 4
323 323> 386 > 323 3
324 324 1
325 325 > 340 - 342 - 340 4
326 326 > 327 > 326 3
327 327 > 326 > 327 3
329 329 - 372 > 329 3
339 339 > 326 > 327 > 326 4
372 372 > 329 > 372 3
379 379 > 323 > 386 - 323 4
383 383 >384 -> 383 3
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Table.8. Network initiated from binding site residues with threshold = 0.5.

(Residues on binding site are in boldface)

Initial
o Network Number of Network elements
position i
318 318 1
321 321 1
322 322 1
323 323 1
324 324 1
325 325 1
326 326 > 327 > 326 3
327 327 > 326 > 327 3
329 329> 372> 329 3
339 339 2 326 - 327 > 326 4
372 372 > 329 > 372 3

379 379 1
383 383 1
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Table.9. Comparison between networks with different threshold

Initial
position No threshold Threshold = 0.3 Threshold = 0.5
i

318 318 > 319 > 317 > 319 318 = 319 > 317 > 319 318

321 321>322>346>349->346 321> 322->346-> 349> 346 321

322 322> 346 > 349 > 346 322 > 346 > 349 > 346 322

323 323> 386 > 323 323 > 386 > 323 323

324 324>325->340->342>340 324 324

325 325> 340 > 342 > 340 325 340 > 342 > 340 325

326 326 > 327 > 326 326 > 327 > 326 326 > 327 > 326

327 327> 326 > 327 327 > 326 > 327 327 > 326 > 327

329 329> 372> 329 329 > 372 > 329 329 > 372 > 329

339 339 > 326 > 327 > 326 339 > 326 > 327 > 326 339 > 326 > 327 > 326
372 372> 329->372 372 329> 372 372 > 329 > 372

379 379 > 323 > 386 > 323 379 - 323 > 386 -> 323 379

383 383> 384 -> 383 383 >384 > 383 383
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