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學生：游富傑                         指導教授：何信瑩 

 

國立交通大學生物資訊研究所碩士班 

 

摘     要 

在本研究中，我們針對蛋白質上去氧核醣核酸鍵結位置的預測問題設計一較精確之

分類器，我們分別使用模糊化最近k個鄰居法與向量支持機器法兩種分類器來預測蛋白

質上去氧核醣核酸鍵結位置。最後我們提出一效能較佳之方法，使用向量支持機器法結

合蛋白質多重序列比對中位置加權矩陣提供的氨基酸序列演化資訊來預測蛋白質上去

氧核醣核酸的鍵結位置。由於蛋白質中與去氧核醣核酸鍵結和非鍵結的氨基酸位置的數

目比例顯著不均衡，所以除了向量支持機器原有的參數外額外兩個針對此一不平衡問題

之參數將同時最佳化，希望最後能獲得最高之淨準確率(NP，鍵結類氨基酸準確率與非

鍵結類氨基酸準確率的平均值)。為了評估所建立向量支持機器模型的普遍化能力，我

們額外蒐集另一低序列相似度的蛋白質-去氧核醣核酸複合物結晶資料，PDC-59，總共

包含59條蛋白質鏈作為獨立測試的樣本。向量支持機器採用六等分交叉驗證，在訓練資

料PDNA-62的淨準確率為80.15%而獨立測試資料PDC-59的淨準確率為69.54%，分別比

現有最佳方法類神經網路提高13.45%及16.53%。除了位置加權矩陣特徵外，三種與蛋

白質-去氧核醣核酸交互作用有關的氨基酸物化性質：溶劑可接觸表面積、電子電荷、

和親疏水性也額外作為輸入向量支持機器的特徵值。結果顯示，預測新發現蛋白質上去

氧核醣核酸鍵結位置時向量支持機器結合位置加權矩陣有較佳之表現。 
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ABSTRACT 
In our study, we investigate the design of accurate predictors for DNA-binding sites in 

proteins from amino acid sequences. Two classification methods, support vector machine 

(SVM) and fuzzy k-nearest neighbors (fuzzy k-NN), are used to predict of DNA-binding sites 

in proteins. As a result, we propose a hybrid method that has best performance using SVM in 

conjunction with evolutionary information of amino acid sequences in terms of their position 

specific scoring matrices (PSSMs) for prediction of DNA-binding sites. Considering the 

numbers of binding and non-binding residues in proteins are significantly unequal, two 

additional weights as well as SVM parameters are analyzed and adopted to maximize net 

prediction (NP, an average of Sensitivity and Specificity) accuracy. To evaluate the 

generalization ability of the proposed method SVM-PSSM, a DNA-binding dataset PDC-59 

consisting of 59 protein chains with low sequence identity on each other is additionally 

established. The SVM-based method using the same six-fold cross-validation procedure and 

PSSM features has NP=80.15% for the training dataset PDNA-62 and NP=69.54% for the 

independent test dataset PDC-59, which are much better than the existing neural network 

based method by increasing the NP values for training and test accuracies up to 13.45% and 

16.53%, respectively. Besides the PSSM feature, other amino acids physico-chemical 

properties features which are related to protein-DNA interactions such as solvent accessible 

surface area, electric charge, and hydropathy index are also adopted and analyzed. Simulation 

results reveal that SVM-PSSM performs well in predicting DNA-binding sites of novel 

proteins from amino acid sequences. 

 

 

 ii



Acknowledgements 
 

感謝我的指導教授何信瑩老師於碩士班求學期間在課業與研究上的悉心指導，在遭遇

瓶頸時提供適時的協助與建議，感謝實驗室學長姐與同學們在學業及研究上的相互提攜

與協助，也感謝我家人在求學過程的栽培與支持讓我能無後顧之憂的完成學業。

 iii



 

CONTENTS 

Abstract  (in Chinese) ------------------------------------------------------------------------------------i 

Abstract ---------------------------------------------------------------------------------------------------ii 

Acknowledgements ------------------------------------------------------------------------------------- iii 

Contents -------------------------------------------------------------------------------------------------- iv 

List of Tables ---------------------------------------------------------------------------------------------v 

List of Figures ------------------------------------------------------------------------------------------- vi 

 

Chapter 1. Introduction -------------------------------------------------------------------------------1 

 1.1 Motivations-------------------------------------------------------------------------------------1 

 1.2 Related Works ---------------------------------------------------------------------------------1 

 1.3 Thesis Overview-------------------------------------------------------------------------------2 

Chapter 2. Materials and Methods------------------------------------------------------------------5 

 2.1 Datasets -----------------------------------------------------------------------------------------5 

 2.2 SVM-PSSM ------------------------------------------------------------------------------------7 

   2.2.1 PSSM and feature vector representation in SVM ------------------------------------7 

   2.2.2 SVM ---------------------------------------------------------------------------------------8 

 2.3 Amino acids physico-chemical property features representation --------------------- 10 

 2.4 Evaluation of prediction accuracy--------------------------------------------------------- 11 

 2.5 Determination of parameter values in SVM --------------------------------------------- 12 

Chapter 3. Results and Discussions --------------------------------------------------------------- 16 

 3.1 Comparison model: Fuzzy k-NN ---------------------------------------------------------- 16 

 3.2 Performance comparison of training datasets-------------------------------------------- 19 

 3.3 Performance comparison of independent test-------------------------------------------- 20 

 3.4 Analysis and discussion -------------------------------------------------------------------- 22 

Chapter 4. Conclusions------------------------------------------------------------------------------ 29 

References---------------------------------------------------------------------------------------------- 30 

 iv



 

List of Tables 

Table 1. Protein chain IDs of dataset PDNA-62 --------------------------------------------------6 

Table 2. Protein chain IDs of dataset PDNA-48 --------------------------------------------------6 

Table 3. Protein chain IDs of dataset PDC-59 ----------------------------------------------------7 

Table 4. List of amino acids physico-chemical properties------------------------------------- 11 

Table 5. Performances of the best SVM classifiers with C, γ, wB0B and wB1B for some specified 

values of window size s using 6-CV on PDNA-62 ---------------------------------- 14 

Table 6. Performances of the SVM classifier with s=7, C=0.73 and γ=0.27 for some values 

of wB0B and wB1B on the dataset PDNA-62 ------------------------------------------------ 14 

Table 7. The performance comparison of fuzzy k-NN classifier with different k value using 

6-CV on PDNA-48 ----------------------------------------------------------------------- 18 

Table 8. Performances of the best fuzzy k-NN classifiers with k=30 and fBsB, wBfB for some 

specified values of window size s using 6-CV on PDNA-62 ----------------------- 18 

Table 9. Performance comparison of SVM-PSSM and the NN-based method with window 

size s on the training dataset PDNA-62 using 6-CV --------------------------------- 19 

Table 10. Independent test results of the NN-, Fuzzy k-NN-, and SVM-based method (using 

either PDNA-62 or PDNA-48 as the training dataset) on PDC-59 ---------------- 21 

Table 11. 6-CV test results of SVM and fuzzy k-NN on PDNA-48 --------------------------- 22 

Table 12. Performance comparison of SVM method combines PSSM and some 

physico-chemical features on the training dataset PDNA-48 using 6-CV (s=7) - 23 

Table 13. Independent test result of PDC-59 using PDNA-62 and PDNA-48 as training data 

(s=7)---------------------------------------------------------------------------------------- 23 

Table 14. Results of the best SVM classifier (s=7, C=0.58, γ=0.23, wB0B=1.0, and wB1B=7.2) on 

the dataset PDC-59 for various cut-off values ---------------------------------------- 28 

 

 v



 

List of Figures 

Fig. 1. The distribution plot of the NP accuracy for PDNA-62 with window size 7 and 

various values of C and γ, where gray bar represents the value of NP in percentage 13 

Fig. 2. The procedure to find the best SVM classifier for independent test-------------------- 15 

Fig. 3. The performance comparison between the SVM and NN-based methods using the 

ROC curve on PDNA-62--------------------------------------------------------------------- 20 

Fig. 4. Distance distribution of misclassified non-binding residues. X-axis represents the 

distance between the residues to the nearest atom on DNA. Y-axis represents the 

percentage of misclassified non-binding residues to total non-binding residues in the 

specified distance range ---------------------------------------------------------------------- 24 

Fig. 5. Relationship of discrimination function values and distances between the residues to 

the nearest atom on DNA using all misclassified non-binding residues --------------- 25 

Fig. 6. Number of neighbors with the same class as a query data in 30 nearest neighbors in 

fuzzy k-NN method using PDNA-48 as training data and PDC-59 as test data ------ 26 

Fig. 7. Data distribution of binding and non-binding residues in PDC-59 using the SVM 

classifier ---------------------------------------------------------------------------------------- 27 

 

 vi



 

Chapter 1 Introduction 

1.1 Motivations 

The regulation of gene expression plays an important role within an organism. It is 

mainly controlled via binding of transcription factors to DNA for promoting or repressing 

gene expression levels. These transcription factors are mainly DNA-binding proteins coded 

by 2~3% of the genome in prokaryotes and 6~7% in eukaryotes (Frishman and Mewes, 1997; 

Luscombe et al., 2000; Lejeune et al., 2005). The malfunction of genetic activities may affect 

normal physiological functions or lead to disease in organisms. Thus we could not neglect 

their decisive role in maintaining cells normal metabolism. Therefore, we hope to develop an 

more accurate classifier for predicting DNA-binding sites in proteins. 

 

1.2 Related Works 

A variety of atomic contacts involved electrostatic, hydrogen bonds, hydrophobic, and 

other van der Waals interactions between nucleic acids and amino acids have been studied for 

years (Luscombe et al., 2000; Lejeune et al., 2005; Nadassy et al., 1999; Luscombe and 

Thornton, 2002; Stawiski et al., 2003; Cheng et al., 2003). These researches reveal that the 

DNA-protein recognition mechanism is complicated and there is no simple rule for this 

recognition problem (Pabo and Nekludova, 2000; O’Flanagan et al., 2005; Sarai and Kono, 

2005). Previous researches mainly focused on prediction and analysis of protein binding sites 

in DNA (Wingender et al., 2000; Kel et al., 2003; Pudimat et al., 2005) or protein based 

classification of binding and non-binding proteins (Ahmad and Sarai, 2004; Bhardwaj et al., 

2005). However, the effort devoted on prediction of DNA-binding residues in proteins is 

recently beginning (Ahmad et al., 2004; Ahmad and Sarai, 2005). The large diversity of 

amino acid and nucleotides complement combinations makes the recognition of 

DNA-binding residues obscure to decipher (Sarai and Kono, 2005). 
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The success in recognition of DNA-binding interaction can assist scientists in realizing 

gene expression and biological pathway within organisms, and further aid the design of 

artificial transcription factors. Scientists believe that these artificial transcription factors are 

potential gene therapies and they may be the next generation prescriptions to treat diseases 

(Segal and Barbas, 2001; Blancafort et al., 2004; Ansari and Mapp, 2002; Yaghmai and 

Cutting, 2002). Therefore, it is a vital task to recognize potential DNA-binding residues in 

proteins. 

Ahmad et al. (2004) analyzed and predicted DNA-binding proteins and their binding 

residues based on position, sequence and structural information by neural network (NN) 

models. The NN-based method has relatively high accuracy on non-binding residues but low 

accuracy on binding residues (Ahmad et al., 2004). When the features evolutionary 

information of amino acid sequences in terms of their position specific scoring matrices 

(PSSMs) are used, the NN-based method can enhance the net prediction (NP, an average of 

Sensitivity and Specificity) accuracy from 58.4% to 66.7% on the training dataset PDNA-62 

using a six-fold cross-validation (6-CV) procedure (Ahmad and Sarai, 2005). It seems to have 

a large probability in enhancing the training accuracy 66.7% of the NN-based method. On the 

other hand, the generalization ability of the predictor needs to be further evaluated by 

examining the independent test performance rather than only the cross-validation 

performance, especially when the size of training dataset is not sufficiently large. 

 

1.3 Thesis Overview 

In our study, we investigate the optimal design of predictors for DNA-binding sites in 

proteins from amino acid sequences by maximizing classification accuracy of novel proteins. 

It is better to consider the following characteristics in designing classifiers: 1) the numbers of 

binding and non-binding residues in proteins are significantly unequal that the unbalanced 
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distribution should be considered in enhancing the NP accuracy, 2) the size of giving training 

dataset is relatively small compared to the number of used features that the overfitting 

problem should be concerned, and 3) it is essential to design proper datasets for evaluating 

generalization ability of the designed classifier in predicting potentially novel DNA-binding 

proteins. 

Support vector machines (SVMs) were commonly used to analyze biological problems 

with satisfying results, such as classification of cancers in microarray (Paul and Iba 2006), 

protein relative solvent accessibility prediction (Nguyen and Rajapakse, 2005), protein 

secondary structure prediction (Guo et al., 2004), protein transmembrane region prediction 

(Natt et al., 2004), and protein disulfide connectivity prediction (Chen and Hwang, 2005). 

SVM is a machine learning method with complete statistical learning theory basis (Vapnik, 

1995). Furthermore, SVM has several advantages, such as 1) SVM can employ kernel 

functions that operate in extremely high-dimensional feature spaces, and the different class of 

samples are separated by the set of support vectors, 2) SVM can avoid falling into the local 

optimum solution in training phase (Burges, 1998), and 3) SVM has a strong generalization 

ability when the size of given training dataset is relatively small, compared with the number 

of used features. 

The nearest neighbors based methods have been frequently used for the classification of 

biological and medical data, and despite their simplicity, they can give competitive 

performance compared to many other methods. In our study, we apply the fuzzy k-nearest 

neighbors (fuzzy k-NN) method to predict DNA-binding sites in proteins as a comparison to 

previous NN-based method and our SVM-based method. The fuzzy k-NN methods have been 

used to predict and protein solvent accessibility (Sim et al., 2005) and protein subcellular 

locations (Huang and Li, 2004), and give good performance in their studies. The parameters 

of fuzzy k-NN and the weight parameter for unbalanced distribution of samples are tuned to 
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maximize NP accuracy. 

Finally, the results show that prediction of DNA-binding sites in proteins SVM 

outperforms than fuzzy k-NN method and previous neural network method. To advance the 

proposed method SVM-PSSM, the control parameters of SVM and two weight parameters 

for the unbalanced distribution of samples are analyzed and adopted to maximize NP 

accuracy. Furthermore, to enhance the accuracy of predicting novel proteins, an additional 

DNA-binding dataset PDC-59 consisting of 59 protein chains with low sequence identity on 

each other is established for evaluating generalization abilities of predictors. The SVM-based 

method using the same 6-CV procedure and PSSM features has accuracy NP=80.15% for the 

training dataset PDNA-62 and NP=69.54% for the independent test on the dataset PDC-59, 

which are much better than the NN-based method (Ahmad and Sarai, 2005) by increasing the 

NP values for training and test accuracies up to 13.45% and 16.53%, respectively. Besides 

PSI-BLAST profiles, some amino acids physico-chemical features: the proteins solvent 

accessible surface area (ASA), hydropathy index values, and isoelectric point values (pI) are 

also used to try to improve the NP accuracy. Simulation results reveal that SVM-PSSM 

performs well in predicting DNA-binding sites of novel proteins from amino acid sequences, 

and integrating more other features are not significant helpful to promote the NP accuracy. 
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Chapter 2 Materials and Methods 

2.1 Datasets 

We use three datasets (PDNA-62, PDNA-48, PDC-59) to evaluate our SVM-PSSM 

method which aims to have accurate prediction ability when giving a novel protein with low 

sequence identity compared with existing samples. Therefore, a filtering tool PISCES with 

much rigorous definition of sequence identity (Wang and Dunbrack, 2003) is used to filter out 

highly homologues sequences. Sequence identities for PDB (Protein Data Bank) sequences in 

PISCES are determined by the combination of CE structural alignment and PSI-BLAST 

alignment, which is more sophisticated than the traditional local and global alignment method. 

The sequence identity in PDNA-48 and PDC-59 is confirmed by PISCES. 

The missed hydrogen of the obtained PDB structures is added by MolProbity (Davis et 

al., 2004), and it optimizes all hydrogen atoms, both polar and non-polar, on amino acids and 

nucleic acids. We define the amino acid as a binding residue if its side chain or backbone 

atoms fell within a cut-off distance 3.5 Å, which is the same as previous study (Ahmad et al., 

2004; Ahmad and Sarai, 2005) from any atom on DN. Otherwise, the sample is a non-binding 

residue. Our calculation result of DNA-Protein binding positions is highly consistent with 

that of the PDBsum database. 

PDNA-62: For comparisons, the same dataset PDNA-62, listed in Table 1, containing 62 

proteins in previous studies (Ahmad et al., 2004; Ahmad and Sarai, 2005) is used to predict 

DNA-binding sites in proteins. This dataset consisting of 7967 non-binding and 1792 binding 

residues has representative protein-DNA complexes from PDB and the protein structure 

resolution is 2.5 Å or better. 
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Table 1. Protein chain IDs of dataset PDNA-62 

1a02F 1cjgA 1hcqE 1ihfA 1perL 1xbrA 
1a02J 1cjgB 1hcqF 1ihfB 1perR 1yrnA 
1a02N 1cmaA 1hcrA 1j59A 1pnrA 1ysaC 
1a74A 1cmaB 1hddC 1lmb4 1pueE 1ysaD 
1a74B 1d02A 1hddD 1mdyA 1pviB 1yuiA 
1aayA 1d66A 1hloA 1meyC 1pyiA 2bopA 
1azqA 1dp7P 1hloB 1mhdA 1repC 2drpA 
1b3tA 1ecrA 1hryA 1mnmA 1srsA 2gliA 
1b3tB 1fjlA 1hwtC 1mnmB 1srsB 2hdcA 
1bf5A 1gatA 1hwtD 1mnmC 1svcP 3croL 
1bhmA 1gccA 1hwtG 1mnmD 1tc3C  
1bl0A 1gdtA 1hwtH 1mseC 1tf3A  
1c0wB 1gdtB 1if1A 1octC 1troA  
1cdwA 1hcqA 1if1B 1parB 1tsrB  
1cf7A 1hcqB 1ignA 1pdnC 1ubdC  

 

PDNA-48: The decision boundary in SVM is determined before the prediction that is 

similar in NN, but in contrast to NN, the overall error function between the predicted and 

observed class for the training set is minimized, the margin in the boundary is maximized. In 

other words, the class of a query data at prediction phase is determined according to the 

established model at training phase. Therefore, the low sequence identity of each protein 

chain within a dataset would assist the samples in the uniform distribution within the sample 

space and thus can help the design of classifiers with strong generalization ability. Therefore, 

PDNA-62 was further filtered by PISCES using an identity threshold 25%. The obtained 

dataset PDNA-48 contains 48 protein chains (total 6431 residues; 1030 binding residues), 

listed in Table 2. 

 
Table 2. Protein chain IDs of dataset PDNA-48 

1a02F 1bl0A 1gatA 1if1A 1parB 1troA 
1a02N 1cdwA 1gccA 1ignA 1pdnC 1tsrB 
1a74A 1cf7A 1gdtA 1ihfA 1pnrA 1xbrA 
1aayA 1cmaA 1hcqA 1j59A 1pueE 1ysaC 
1azqA 1d02A 1hcrA 1lmb4 1pviB 1yuiA 
1b3tA 1dp7P 1hloA 1mdyA 1repC 2bopA 
1bf5A 1ecrA 1hryA 1mhdA 1svcP 2hdcA 
1bhmA 1fjlA 1hwtC 1mnmA 1tc3C 3croL 
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PDC-59: For further evaluating performance of SVM-PSSM in predicting novel 

proteins, we established a dataset PDC-59 for independent test in this study. These proteins 

are extracted from the PDB database with released dates after year 2000, and searched by 

keywords: transcription factor, repressor, regulator, transposase, endonuclease, and 

DNA-binding. These proteins were also filtered with mutual sequence identity less than 25% 

compared to each other and to PDNA-48 by PISCES. PDC-59 contains 59 protein chains 

(total 13041 residues; 1454 binding residues), listed in Table 3. 

Note that the numbers of binding and non-binding residues in proteins are significantly 

unequal that the unbalanced distribution should be taken into account in designing accurate 

predictors. 

 
Table 3. Protein chain IDs of dataset PDC-59 

1c9bA 1h9dA 1k3xA 1pt3A 1s6mA 1xjvA 
1dc1A 1hlvA 1kdhA 1r7mA 1sa3A 1xpxA 
1dewA 1i3jA 1lq1A 1rffA 1sfuA 1zs4D 
1dfmA 1iawA 1m5xA 1rh6A 1sx5A 1ztwA 
1ebmA 1je8A 1nvpC 1rioH 1u1qA 2alzA 
1emhA 1jeyA 1odgA 1rxwA 1w0uA 2aorA 
1ewnA 1jeyB 1ornA 1s32A 1w7aA 2aq4A 
1fiuA 1jfiA 1oupA 1s32B 1wteA 2axyA 
1fzpB 1jfiB 1p8kZ 1s32C 1x9nA 2bgwA 
1h0mA 1jt0A 1pp7U 1s32D 1xhvA  

 

2.2 SVM-PSSM 

2.2.1 PSSM and feature vector representation in SVM 

We use multiple sequence alignment profiles generated from PSI-BLAST (Altschul et 

al., 1997) for each protein chain. We obtain the non-redundant protein sequence database 

from NCBI (National Center for Biotechnology Information). We set parameters of 

PSI-BLAST using BLOSUM62 substitution matrix, three iteration runs, and exception value 

0.001. The other parameters are set using default values. The PSI-BLAST program by 
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querying each protein chain against the NCBI NR (Non-Redundant) database is used to 

generate PSSM profiles which are in the form of 20×N matrix, where N is the length of 

queried protein chain. Let the residue i be represented by ,1 ,20( ,..., )i i ia a=a  where 1 i≤ ≤N. 

Each query residue is represented by a vector of 20 attributes. These profiles are normalized 

into the range [0, 1] for speeding up the SVM training phase. 

In the previous study, PSSMs were generated from reference databases with different 

sizes. Although it was observed that computational time can be saved by replacing the 

reference database with a much smaller size without loss of much prediction ability (about 

2% of NP), we still take the NR database from NCBI as our reference database to make sure 

that PSI-BLAST can have better multiple sequence alignment results and generate 

representative PSSMs. 

The input pattern to SVM using the PSSM features for the residue i is 

 where k is the number of neighborhood residues on either side. We 

construct a matrix with window size s=2k+1 centered on the target residue i. The used profile 

xBiB is the form of a 20×s matrix. 

( ,..., ,..., )i i k i i k−=x a a a +

 

2.2.2 SVM 

SVM is a very popular and powerful method to deal with classification, prediction, and 

regression problems (Cortes and Vapnik, 1995). The original idea of SVM is to use a linear 

separating hyperplane which maximizes the distance between two classes to create a classifier. 

It relies on preprocessing the data to represent patterns in a high dimensional space with an 

appropriate mapping function φ. For the binary SVM, the training data consist of N pairs (xB1B, 

yB1B), …, (xBNB, yBNB) where instance vectors xBiB∈ℜP

m
P and class labels yBiB∈{0, 1}, i = 1, …, N. If yBiB 

= 1, xBiB belongs to the first class; otherwise, xBiB belongs to the second class. The main task in 
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the training phase is to solve the following optimization problem that seeks a classifier with a 

maximal margin. The standard formulation of SVM is as follows (Cortes and Vapnik, 1995): 

T

, , 1

1min( )
2i

N

ib i
C

ε
ε

=

+ ∑w
w w                                 (1)

subject to T( ( ) ) 1 ,  i i i iy bϕ ε 0ε+ ≥ − ≥w x , i = 1,…, N, 

where w∈ℜP

m
P is a weight vector of training instances and b is a constant. SVM allows sample 

i locates at the wrong side of the separating hyperplane wP

T
Px + b = 0 with a penalty term εBiB, 

and C is a real-value cost parameter for sums of total error. If φ(xBiB) = xBiB, the SVM of (1) finds 

a linear separating hyperplane with a maximal margin. The SVM of (1) is called a nonlinear 

SVM when φ maps xBiB into a higher dimensional space. 

K(xBiB, xBjB) ≡ φ(xBiB)P

T 
Pφ(xBjB) is called a kernel function. That is, the dot product in that high 

dimensional space is equivalent to a kernel function of the input space. So we need not be 

explicit about the transformation φ as long as we know that the kernel function K(xBiB, xBjB) is 

equivalent to the dot product of some other high dimensional space (Vapnik, 1995; Chang 

and Lin, 2003; Burges, 1998). Some commonly-used kernel functions are exp(-γ|| xBiB - xBjB ||P

2
P) 

(Radial basis function), (xBiPB

T
P xBjB/γ+δ)P

d
P (Polynomial), and tanh (γxBiPB

T
P xBjB+δ) (sigmoid), where γ, 

d, and δ are kernel parameters. Chang and Lin (2003) developed a software tool LibSVM 

(Library for SVM) for support vector classification, including various variants of SVM. The 

used LibSVM can be found at the website of (Chang and Lin, 2003). In this work, we used 

K(xBiB, xBjB) = exp(-γ|| xBiB - xBjB ||P

2
P) where the proper values of cost parameter C and kernel 

parameter γ are to be specified. 

Considering the unbalanced distribution of samples, two additional weight parameters 

wB0B and wB1B are used to enhance NP performance. The best values of wB0B and wB1B can be 

adaptively specified according to the preference on the penalty level for wrong predictions of 
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non-binding and binding residues, respectively. Therefore, the penalty term 
1

N

i
i

C ε
=
∑ in (1) is 

replaced with 0 1
0 1i i

i
y y

C C iε ε
= =

+∑ ∑ , where 0 0C w C= ×  and 1 1C w C= ×  (Chang and Lin, 

2003). 

 

2.3 Amino acids physico-chemical property features representation 

As mentioned in earlier researches, nucleotides and amino acids interaction propensity 

are related to some physico-chemical properties. Therefore, besides of using PSSM profiles 

as features for classification, we further investigate the performance affected by adding some 

other amino acids physico-chemical property features in classification. We use SVM which 

has higher classification performance in this study combines PSSM and each 

physico-chemical property feature. Ahmad and Sarai (2005) proposed that the probability of 

binding systematically increased as the proteins solvent accessible surface area (ASA) 

increased, i.e., the DNA-protein interaction are frequently founded in protein surface than 

buried fragments (Ahmad and Sarai, 2005). Several researches also analyzed the relation 

between proteins surface electric charge distribution and DNA-binding propensity, and 

proposed that some proteins interfaces with DNA are highly enriched in positive charges 

from lysine and arginine side chains and almost entirely devoid of negative charges from 

carboxylates (Nadassy et al., 1999). It was also found that the magnitudes of the moments of 

electric charge distribution in DNA-binding protein chains differ significantly from those of a 

non-binding control ones (Ahmad and Sarai, 2004). 

In our study, we use the solvent accessible surface area of amino acids in tripeptide 

information (Chothia, 1976) and hydropathy index (Kyte and Doolittle, 1982) as the 

information of tendency that appear in protein surface. The hydropathy index is the scale 

combining hydrophobicity and hydrophilicity of side chain groups; it can be used to measure 
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the tendency of an amino acid to seek an aqueous environment or a hydrophobic environment. 

The amino acids isoelectric point (pI) value is adopted for the residues electric charge 

information (Zimmerman et al., 1968). The used amino acids physico-chemical properties are 

listed in Table 4, and their value are also normalized to 0~1 before input to SVM classifier. 

These physico-chemical properties are tested separately and each of them is integrated to the 

end of PSSM features; the size of physico-chemical property feature is equal to the used 

window size: s. 

 
Table 4. List of amino acids physico-chemical properties 

 ASA value pI value Hydropathy index 
A 115 6.01 1.8 
R 225 10.76 -4.5 
N 160 5.41 -3.5 
D 150 3.20 -3.5 
C 135 5.07 2.5 
Q 180 5.65 -3.5 
E 190 4.80 -3.5 
G 75 5.97 -0.4 
H 195 7.59 -3.2 
I 175 6.02 4.5 
L 170 5.98 3.8 
K 200 9.74 -3.9 
M 185 9.74 1.9 
F 210 5.48 2.8 
P 145 6.48 1.6 
S 115 5.68 -0.8 
T 140 5.87 -0.7 
W 255 5.89 -0.9 
Y 230 5.66 -1.3 
V 155 5.97 4.2 

 

2.4 Evaluation of prediction accuracy 

In this work, we consider four criteria (Sensitivity, Specificity, net prediction, and 
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Accuracy) to evaluate the prediction performance. Sensitivity is the percentage of correctly 

predicted binding residues to total binding residues. Specificity is the percentage of correctly 

predicted non-binding residues to total non-binding residues. Accuracy is the percentage of 

correctly predicted residues to total residues. In this study, net prediction (NP, mean of 

Sensitivity and Specificity) is the first evaluation criterion considering the unbalanced 

distribution of binding and non-binding residues. 

 

2.5 Determination of parameter values in SVM 

In order to advance performance of the SVM classifier for fitting the training datasets 

with the unbalanced distribution, it is essential to determine the best values of the 

combination of window size s, cost parameter C, kernel parameter γ, and weight parameters 

wB0B and wB1B. Since the proper values of s are discrete and limited, we evaluate all candidate 

values of s. A stepwise approach is used to determine the default values of system parameters. 

At first, the value of wB1B/wB0B is initially set to the ratio of the total number of non-binding 

residues to that of binding residues in the training dataset. For the dataset PDNA-62, wB0B=1.0 

and wB1B=4.446. The best values of parameters C and γ are obtained by maximizing the value 

of NP for a prespecified value of s. Here, we use PDNA-62 and perform 6-CV to decide the 

best values of all system parameters. For example, Fig. 1 is an accuracy distribution plot in 

terms of NP for various combinations of SVM parameters C and γ with s=7, wB0B=1.0 and 

wB1B=4.446, where the best values of parameters are C=0.73 and γ=0.27. 
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Fig. 1. The distribution plot of the NP accuracy for PDNA-62 with window 
size 7 and various values of C and γ, where gray bar represents the value of 
NP in percentage. 

Once the best values of parameters C and γ are obtained in terms of NP, the weights wB0B 

and wB1B are then finely tuned using the obtained values of s, C and γ. To enhance the 

generalization ability in predicting novel proteins, the values of wB0B and wB1B are determined by 

maximizing the ratio of mean to variance of Sensitivity, Specificity, NP, and Accuracy. 

Therefore, the SVM classifier is expected to have equivalent performance on classifying 

binding and non-binding residues. Numerous candidate values of the pair (wB0B, wB1B) are 

evaluated where wB0B∈{0.5, 1.0} and wB1B∈{1.0, 50}. Performances of the best SVM classifiers 

with C, γ, wB0B and wB1B for some specified values of window size s using 6-CV on PDNA-62 

are listed in Table 5.  
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Table 5. Performances of the best SVM classifiers with C, γ, wB0B and wB1B for some specified 
values of window size s using 6-CV on PDNA-62. 

s C γ wB0B wB1B Sensitivity (%) Specificity (%) NP (%) Accuracy (%)
1 1.70 4.44 1.0 6.0 73.55 73.73 73.64 73.70 
3 0.50 1.52 1.0 9.0 78.35 78.44 78.39 78.42 
5 0.74 0.60 0.5 3.0 79.30 79.33 79.31 79.32 
7 0.73  0.27 1.0 7.0 80.08  80.23  80.15  80.20  
9 0.60 0.30 0.5 3.2 80.08 80.11 80.09 80.10 
13 1.30 0.10 0.5 3.1 80.02 79.97 79.99 79.98 

 

Finally, we choose the classifier with parameters s=7, C=0.73, γ=0.27, wB0B=1.0 and 

wB1B=7.0 which has the best performance in terms of NP (=80.15%) for the following 

independent test. Because there are six classifiers can be obtained using 6-CV, we choose the 

best one of six classifiers in terms of NP to predict novel proteins. Performances of the best 

SVM classifier with s=7, C=0.73 and γ=0.27 for some values of wB0B and wB1B on PDNA-62 are 

given in Table 6. The procedure to find best SVM classifier for independent test dataset 

PDC-59 is listed in Fig. 2. 

 

Table 6. Performances of the SVM classifier with s=7, C=0.73 and γ=0.27 for some values of 
wB0B and wB1B on the dataset PDNA-62. 

wB0B wB1B 

Sensitivity 
(%) 

Specificity 
(%) 

NP 
(%) 

Accuracy 
(%) 

Mean 
(%) Variance 

1.0 2.0 55.86 93.79 74.82 86.82 77.82 827.27 
1.0 5.0 76.95 83.24 80.10 82.09 80.60 22.76 
1.0 6.0 78.79 81.51 80.15 81.01 80.37 4.25 
1.0 6.5 79.41 80.81 80.11 80.55 80.22 1.13 
1.0 6.7 79.52 80.62 80.07 80.42 80.16 0.70 
1.0 7.0 80.08 80.23 80.15 80.20 80.17 0.01 
1.0 8.0 81.31 79.20 80.25 79.59 80.09 2.54 
1.0 50 83.98 74.97 79.48 76.63 78.76 46.69 
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Fig. 2. The procedure to find the best SVM classifier for independent test. 
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Chapter 3 Results and Discussion 

 
3.1 Comparison model: Fuzzy k-NN 

PSI-BLAST is also used to generate the PSSM profiles as input features for fuzzy k-NN 

in the form of a 20×L matrix, where L is the length of the sequence. In our study, PSI-BLAST 

profiles of all protein chains are consistent in fuzzy k-NN and SVM method. 

We construct a window of size s centered on a target residue, and use the profile that 

falls within this window, a 20×s matrix, as a feature vector. Then, the distance between two 

feature vectors A and B is defined as: 

( ) ( )

,
i ij ij

i j

D d P P= −∑ A
AB

B                                      (2)

where  (i = 1, 2, …, s; j = 1, 2, …, 20) is a component of the feature vector A, and 

dBiB is a neighbor weight parameter. Since we expect the profile elements for residues nearer to 

the target residue to be more important in determining the local environment of the target 

residue, the neighbor weight is defined as: 

( )
ijP A

21 1( )
2 2i

s sd i+ +
= − − . 

The nearest neighbor algorithm is a friendly to access and widely used classification 

algorithm. The class of a query data in nearest neighbor algorithm is given according to the 

classification of those nearest neighbors from a training dataset of known classifications. The 

general used nearest neighbor algorithm is the so-called k-nearest neighbor algorithm (k-NN), 

where the query data is assigned the class most frequently represented among the k-nearest 

samples. The further extension type of k-NN is to give distance weights to the k-nearest 

samples with a certain power. Furthermore, instead of assigning a definite class to the query 

data, one can calculate the fuzzy membership, which can be used to estimate the confidence 

level of the prediction. The algorithm incorporating these generalizations is called the fuzzy 

k-nearest neighbor algorithm (Fuzzy k-NN) (Keller et al., 1985).  
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In the fuzzy k-NN method, the fuzzy class membership uBiB(z) to the class i is assigned to 

the query data z according to the following equation: 

s

s

( )
1

1

( )
( ) , 1,...,

k fj
i jj

i k f
jj

u z D
u z i c

D
=

=

=
∑
∑

=        where s 2 /( 1)f m= − −      (3) 

where m is a fuzzy strength parameter, which determines how heavily the distance is 

weighted when calculating each neighbor’s contribution to the membership value, k is the 

number of nearest neighbors, and c is the number of classes. Also, DBjB which is equivalent to 

 in function (2) is the distance between the feature vector of the query data z and the 

feature vector of its jP

th
P nearest reference data zP

(j
PP

)
P. uBiB(zP

(j
PP

)
P) is the membership value of zP

(j
PP

)
P to the 

iP

th
P class, which is 1 if zP

(j
PP

)
P belongs to the iP

th
P class, and 0 otherwise. Because of the unbalance 

distribution of samples, one more weight wBfB is used to enhance NP accuracy, if the reference 

sample is belong to binding class,  is replaced withB B  which is defined as: 

DAB

DAB
'DAB

'

f

DD
w

= AB
AB                                                  (4)

The advantage of the fuzzy k-NN algorithm over the standard k-NN method is clear. The 

fuzzy class membership uBiB(z) can be considered as the estimate of the probability that the 

query data belongs to class i, and provides us with more information than a definite 

prediction of the class for the query data. Moreover, the reference samples which are closer to 

the query data are given more weights, and the optimal value of fBsB and wBfB can be chosen 

along with that for k, in contrast to the standard k-NN method with a fixed value of fBsB = 0. 

The optimal value of k, fBsB, and wBfB are found from the 6-CV stepwise procedure, and the 

resulting value for fBsB is indeed nonzero. 

Similar to SVM approach, it is important to determine the optimal parameter values of 

fuzzy k-NN classifier, and there are four parameters in fuzzy k-NN, window size s, number of 

nearest neighbors k, fuzzy parameter fBsB, and distance weight wBfB. The number of nearest 

neighbors k, and window size s, is first prespecified to a fixed value, and the best values of 
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parameters fBsB and wBfB are obtained by maximizing the value of NP. When using 6-CV and 

window size: s=13, on PDNA-48, the performance affected by the number of nearest 

neighbors, k, that increases from 10 to 50 seems less significant. From Table 7, it shows that 

the NP accuracy only rises slightly from 69.35% to 71.37%. We also investigated the 

performance affected by window size s from 3 to 15 using 6-CV on PDNA-62. From Table 8, 

the NP of each model is all around 75% that is not significant improved simultaneously with 

using larger window size. 

 

Table 7. The performance comparison of fuzzy k-NN classifier with different k value 
using 6-CV on PDNA-48. 

Sensitivity (%) Specificity (%) NP (%) Accuracy (%)k fBsB wBfB 

10 -4.90 1.26 62.14 76.76 69.45 74.42 
30 -2.46 1.72  72.14  69.89  71.02  70.25  
50 -5.06 1.30 71.84 70.89 71.37 71.05 
 

Table 8. Performances of the best fuzzy k-NN classifiers with k=30 and fBsB, wBfB for some 
specified values of window size s using 6-CV on PDNA-62. 

s fBsB wBfB Sensitivity (%) Specificity (%) NP (%) Accuracy (%)
3 -1.86 1.94 71.76 78.54 75.15 77.29 

5 -1.72 2.00 71.60 78.70 75.15 77.40 

7 -1.64 2.06 72.04 78.90 75.47 77.64 

9 -2.05 1.79 72.10 78.71 75.41 77.50 

11 -2.05 1.8 72.60 77.70 75.15 76.76 

13 -2.40 1.76 77.34 73.96 75.65 74.58 

15 -2.04 1.79 71.82 79.31 75.57 77.94 

 

From above experiments, it shows that the classification performance of fuzzy k-NN is 

not affected greatly by window size s and number of nearest neighbors k. Finally, we chose 

parameter values, s=13 and k=30, that have better classification performance for next 

independent test on PDC-59. 
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3.2 Performance comparison of training datasets 

To evaluate performance of the proposed method SVM-PSSM and fuzzy k-NN PSSM, 

the existing NN-based method is conveniently compared using the same 6-CV on PDNA-62. 

The comparison results are given in Table 9. The NP values of the NN-based methods using 

sequence information only (Ahmad et al., 2004) and the PSSM feature with window size s=3 

(Ahmad and Sarai, 2005) are 58.4% and 66.7%, respectively. The fuzzy k-NN PSSM 

classifiers with s=3 and 13 have NP=75.15% and 75.65%, respectively. The SVM-PSSM 

classifiers with s=3 and 7 have NP=78.39% and 80.15%, respectively. The SVM-PSSM 

classifier is better than the fuzzy k-NN PSSM classifier by increasing the value of NP 4.5% 

for the training dataset PDNA-62, and much better than the NN-PSSM classifier by 

increasing the value of NP up to 13.45% for the training dataset PDNA-62.  

 

Table 9. Performance comparison of SVM-PSSM and the NN-based method with window 
size s on the training dataset PDNA-62 using 6-CV. 

Sensitivity Specificity NP Accuracy Method (%) (%) (%) (%) 

SVM-PSSM (s=7) 80.08  80.23  80.15  80.20  

SVM-PSSM (s=3) 78.35 78.44 78.39 78.42 

Fuzzy k-NN PSSM (s=13) 77.34 73.96 75.65 74.58 

Fuzzy k-NN PSSM (s=3) 71.76 78.54 75.15 77.29 

NN/PSSM (s=3) 
(Ahmad and Sarai, 2005) 69.5 63.9 66.7 66.7 

NN/Sequence only 
(Ahmad et al., 2004) 40.6 76.2 58.4 73.6 

 

Besides the NP performance, the Receiver Operating Characteristic (ROC) curve is 

commonly used to evaluate the discrimination ability of a classifier. The larger area under the 

ROC curve, the better discrimination ability a classifier has. Fig. 3 gives the performance 

comparison using the ROC curves on PDNA-62. The ROC curve of the SVM classifier is 
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obtained from Table 6. The ROC curve of the NN-based classifier is obtained from the 

DBS-PSSM website as mentioned in (Ahmad and Sarai, 2005). It shows that the area under 

the ROC curve of SVM is much larger than that of the NN-based method obviously. It also 

shows that the SVM-based method has better classification ability than the NN-based method 

in classifying binding and non-binding residues in proteins. 
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Fig. 3. The performance comparison between the SVM and NN-based 
methods using the ROC curve on PDNA-62. 

 

3.3 Performance comparison of independent test 

In order to evaluate the generalization abilities of the SVM, fuzzy k-NN and NN-based 
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approaches in predicting novel proteins, PDC-59 is used for independent tests. The SVM and 

fuzzy k-NN classifier are obtained from the best one of 6-CV which has the best NP 

performance on the training dataset PDNA-62 mentioned above. The results of the NN-based 

method are obtained through the DBS-PSSM website (Ahmad and Sarai, 2005). Table 10 

gives independent test results of three compared methods. The results of SVM, fuzzy k-NN, 

and NN-based methods are NP=69.54%, 66.13%, and 53.01%, respectively. The SVM 

classifier is better than the fuzzy k-NN-based method by increasing the NP values for test 

accuracy up to 3.41%, and much better than the NN-based method by increasing the NP 

values for test accuracy up to 16.53%. It also reveals that the SVM classifier has better 

generalization ability to predict novel proteins. 

 

Table 10. Independent test results of the NN-, Fuzzy k-NN-, and SVM-based method (using 
either PDNA-62 or PDNA-48 as the training dataset) on PDC-59. 

Sensitivity Specificity NP Accuracy Method (%) (%) (%) (%) 
SVM-PSSM 
(PDNA-48) 65.41 75.48 70.44 74.36 

SVM-PSSM 
(PDNA-62) 59.35 79.72 69.54 77.45 

Fuzzy k-NN 
(PDNA-48) 58.46  74.68  66.57  72.87  

Fuzzy k-NN 
(PDNA-62) 58.12  74.13  66.13  72.35  

DBS-PSSM 
(Ahmad and Sarai, 2005) 46.36 59.65 53.01 58.19 

 

To further improve the generalization ability of the SVM classifier, we filter out the 

proteins with identity greater than 25% in the dataset PDNA-62 by PISCES tool. The 

obtained dataset PDNA-48 is used as the training dataset. Consequently, we construct the 

SVM and fuzzy k-NN classifier using the same procedure as that on PDNA-62. The 

parameters of the obtained SVM classifier from the best one of six classifiers using 6-CV are 

s=7, C=0.58, γ=0.23, wB0B=1.0, and wB1B=7.2. The parameters of the obtained fuzzy k-NN 
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classifier are s=13, k=30, fBsB=-2.46, and wBfB=1.72. The 6-CV test results of two methods on 

PDNA-48 are listed in Table 11.  

 

Table 11. 6-CV test results of SVM and fuzzy k-NN on PDNA-48. 
Method Sensitivity (%) Specificity (%) NP (%) Accuracy (%) 
SVM 75.35 75.30 75.32 75.31 

Fuzzy k-NN 72.14  69.89  71.02  70.25  
 

Table 10 shows that the Sensitivity performance of SVM method is improved from 

59.35% to 65.41% and NP performance is slightly improved from 69.54% to 70.44%. The 

NP performance of fuzzy k-NN method is slightly improved from 66.13% to 66.57%. 

Therefore, when we used low identity proteins as training data, it is helpful to obtain a 

classifier with high generalization ability for correctly predicting binding residues of novel 

proteins. 

 

3.4 Analysis and discussion 

We further investigate the performance affected by adding some other amino acids 

physico-chemical property features to classification. We use SVM which has higher 

classification performance in this study combines PSSM with each physico-chemical 

property feature. The same procedure as above section is used to find each best SVM model. 

The 6-CV result of PDNA-48 and parameters of SVM is listed in Table 12, and the 

independent test on PDC-59 is listed in Table 13.  
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Table 12. Performance comparison of SVM method combines PSSM and some 
physico-chemical features on the training dataset PDNA-48 using 6-CV (s=7). 

Sensitivity SpecificitywB0B wB1B C γ Features (%) (%) 
NP 
(%) 

Accuracy
(%) 

PSSM 0.58 0.23 1.0 7.2 75.35 75.30 75.33 75.31 

PSSM + ASA 0.69 0.16 1.0 6.5 75.25 75.43 75.34 75.40 

PSSM + pI 0.27 0.27 1.0 6.5 75.54 74.00 74.77 74.25 

PSSM + 
hydropaty index 1.2 0.12 1.0 7.5 74.57 73.87 74.22 73.99 

 

Table 13. Independent test result of PDC-59 using PDNA-48 as training data (s=7). 
Independent test (PDC-59) 

Features Sensitivity Specificity NP 
(%) 

Accuracy 
(%) (%) (%) 

PSSM 65.41 75.48 70.44 74.36 
PSSM + ASA 65.96 76.14 71.05 75.00 

PSSM + pI 65.27 75.56 70.41 74.41 
PSSM + 

hydropaty index 66.71 74.32 70.58 73.48 

 

It shows that PSSM combines with amino acids physico-chemical properties dose not 

further improve the NP accuracy, only at the condition that PSSM combines ASA feature 

slightly promote the NP accuracy of independent test from 70.44% to 71.05%. Although 

previous researches proposed that these amino acids physico-chemical properties are related 

to DNA-proteins interactions, the further well design of combining PSSM and 

physico-chemical property features seems needed to enhance the classification accuracy. 

The process of DNA-protein recognition is flexible and continuous (Gunther et al., 2006; 

Sarai and Kono, 2005), and the crystals of protein-DNA complex just catch a moment of this 

whole process. Therefore, the amino acid defined as a non-binding residue with a distance 

slightly larger than the cut-off distance 3.5 Å may assist or take part in protein-DNA 

recognition. We analyze the distance distribution of non-binding residues in PDC-59 which 
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are incorrectly classified as binding ones by the SVM classifier using the training dataset 

PDNA-48. The result given in Fig. 4 reveals that there are 39% of non-binding residues with 

the distance in the range 3.5~8.5 Å close to the nearest DNA nucleotide. The percentage of 

misclassified non-binding residues decreases gradually when their distance increases. The 

logical result reveals that SVM-PSSM is a good predictor for biologist to analyze the 

protein-DNA-binding mechanism. 
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Fig. 4. Distance distribution of misclassified non-binding residues. X-axis 
represents the distance between the residues to the nearest atom on DNA. 
Y-axis represents the percentage of misclassified non-binding residues to total 
non-binding residues in the specified distance range. 

 

The class of a query residue is determined by the discrimination function of SVM. When 

the function value of a residue is greater than zero, it would be classified into the non-binding 

class. Otherwise, it would be classified into the binding class. Fig. 5 shows the relationship of 

discrimination function values and distances between the residues to the nearest atom on 
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DNA using all misclassified non-binding residues. It reveals that these misclassified 

non-binding residues which are closer to DNA would get smaller values of the SVM 

discrimination function. This scenario indicates that the SVM classifier has good screening 

abilities to select potential binding residues. These amino acids with distances in the vague 

region may potentially take part in or assist protein-DNA recognition and can be further 

verified by biologist. 
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Fig. 5. Relationship of discrimination function values and distances between 
the residues to the nearest atom on DNA using all misclassified non-binding 
residues. 

 

In our study, the SVM method has higher performance than fuzzy k-NN method. Fuzzy 

k-NN method assigns the query data to a class according to the k nearest neighbors classes 

and distances to the query data, and SVM method assigns the query data to a class according 

to established model from training data. When two classes of data spread in sample space 
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with higher overlapping, fuzzy k-NN method should own more advantage than SVM method. 

But the obvious unbalance data distribution in this study shows that much of the binding class 

data is surrounded by non-binding class. Fig. 6 is the statistic plot of numbers of neighbors 

with the same class in 30 nearest neighbors that reveals the situation mentioned above, the 

non-binding class data always have much neighbors with the same class, but it is a different 

situation in binding class data. SVM maps the original features to higher dimensional space 

by a kernel function seems more efficiently separate two class of data than fuzzy k-NN. 
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neighbors in fuzzy k-NN method using PDNA-48 as training data and PDC-59 
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Fig. 7. Data distribution of binding and non-binding residues in PDC-59 using 
the SVM classifier. 

 

Generally, the cut-off value of SVM discrimination function is set to zero for normal 

classification. Fig. 7 shows the distribution of binding and non-binding residues in PDC-59 

using the SVM classifier with a cut-off value equal to zero. Once the SVM classifier with the 

best setting of parameters (s, C, γ, wB0B, wB1B) is developed, we may adjust the cut-off value in 

using the SVM classifier according to the preference such as higher NP, higher Sensitivity, 

higher Specificity, etc. Table 14 gives the result of the SVM classifier (s=7, C=0.58, γ=0.23, 

wB0B=1.0, and wB1B=7.2) on the dataset PDC-59 for various cut-off values. For example, if the 

cut-off value is set to 0.29, the highest value of NP equals to 71.15%. If the higher Sensitivity 

performance is desirable, the cut-off value of the SVM classifier can be properly increased. 
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Table 14. Results of the best SVM classifier (s=7, C=0.58, γ=0.23, wB0B=1.0, and wB1B=7.2) on 
the dataset PDC-59 for various cut-off values. 

Sensitivity (%) Specificity (%) NP (%) Accuracy (%) Cut-off value 

-3.00 0.00 100.00 50.00 88.84 
-2.00 1.93 99.84 50.88 88.91 
-1.00 24.28 96.05 60.16 88.04 
-0.50 44.02 88.17 66.09 83.24 
-0.30 53.09 83.85 68.47 80.42 
-0.10 61.97 78.69 70.33 76.82 
0.00 65.41 75.48 70.44 74.36 
0.10 69.33 72.00 70.66 71.70 
0.13 70.70 70.92 70.81 70.89 
0.29 77.10 65.19 71.15 66.52 
0.30 77.44 64.75 71.10 66.16 
0.50 83.77 56.80 70.28 59.80 
1.00 94.09 35.20 64.64 41.77 
2.00 99.31 6.32 52.81 16.68 
3.00 100.00 0.20 50.10 11.32 
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Chapter 4 Conclusions 

In our study, we have proposed a hybrid method using SVM in conjunction with the 

PSSM features for prediction of DNA-binding sites in proteins from amino acid sequences by 

achieving high accuracy for novel proteins. Using the same PSSM features, simulation results 

show that our method SVM-PSSM is better than fuzzy k-NN method and much better than 

the existing neural network based method in terms of net prediction (NP) accuracy by 

increasing the NP values for training and test accuracies up to 13.45% and 16.53%, 

respectively. Although previous researches proposed that amino acids physico-chemical 

properties such as ASA, electric charge, and hydropathy are related to DNA-proteins 

interactions, when using PSSM combines these physico-chemical properties as features, they 

only keep the original performance. It seems that the further well design of combining PSSM 

and physico-chemical properties features are needed to enhance the performance. 

To best of our knowledge, up to now, the proposed method is the most effective method 

for recognizing mechanism of binding residues in proteins based on protein sequence without 

using 3D structural information, such as hydrogen bond, hydrophobic, hydrophilic, ion 

interaction, etc. By adjusting the cut-off value of the SVM classifier, the proposed prediction 

method would be helpful to biologist for filtering novel proteins without significant 

homology with known protein to find out the potential binding regions in proteins. 
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