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Prediction of DNA-Binding Sites in Proteins

Student: Fu-Chieh Yu Advisor: Shinn-Ying Ho

Institute of Bioinformatics

National Chiao Tung University

ABSTRACT

In our study, we investigate the design of accurate predictors for DNA-binding sites in
proteins from amino acid sequences. Two classification methods, support vector machine
(SVM) and fuzzy k-nearest neighbors (fuzzy k-NN), are used to predict of DNA-binding sites
in proteins. As a result, we propose a hybrid method that has best performance using SVM in
conjunction with evolutionary information of amino acid sequences in terms of their position
specific scoring matrices (PSSMs) for prediction of DNA-binding sites. Considering the
numbers of binding and non-binding residues in proteins are significantly unequal, two
additional weights as well as SVM parameters are analyzed and adopted to maximize net
prediction (NP, an average of Sensitivity and Specificity) accuracy. To evaluate the
generalization ability of the proposed method SVM-PSSM, a DNA-binding dataset PDC-59
consisting of 59 protein chains with low sequence identity on each other is additionally
established. The SVM-based method using the same six-fold cross-validation procedure and
PSSM features has NP=80.15% for the training dataset PDNA-62 and NP=69.54% for the
independent test dataset PDC-59, which are much better than the existing neural network
based method by increasing the NP values for training and test accuracies up to 13.45% and
16.53%, respectively. Besides the PSSM feature, other amino acids physico-chemical
properties features which are related to protein-DNA interactions such as solvent accessible
surface area, electric charge, and hydropathy index are also adopted and analyzed. Simulation
results reveal that SVM-PSSM performs well in predicting DNA-binding sites of novel

proteins from amino acid sequences.
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Chapter 1 Introduction

1.1 Motivations

The regulation of gene expression plays an important role within an organism. It is
mainly controlled via binding of transcription factors to DNA for promoting or repressing
gene expression levels. These transcription factors are mainly DNA-binding proteins coded
by 2~3% of the genome in prokaryotes and 6~7% in eukaryotes (Frishman and Mewes, 1997,
Luscombe et al., 2000; Lejeune et al., 2005). The malfunction of genetic activities may affect
normal physiological functions or lead to disease in organisms. Thus we could not neglect
their decisive role in maintaining cells normal metabolism. Therefore, we hope to develop an

more accurate classifier for predicting DNA-binding sites in proteins.

1.2 Related Works

A variety of atomic contacts involved electrostatic, hydrogen bonds, hydrophobic, and
other van der Waals interactions between nucleic acids and amino acids have been studied for
years (Luscombe et al., 2000; Lejeune et al., 2005; Nadassy et al., 1999; Luscombe and
Thornton, 2002; Stawiski et al., 2003; Cheng et al., 2003). These researches reveal that the
DNA-protein recognition mechanism is complicated and there is no simple rule for this
recognition problem (Pabo and Nekludova, 2000; O’Flanagan et al., 2005; Sarai and Kono,
2005). Previous researches mainly focused on prediction and analysis of protein binding sites
in DNA (Wingender et al., 2000; Kel et al., 2003; Pudimat et al., 2005) or protein based
classification of binding and non-binding proteins (Ahmad and Sarai, 2004; Bhardwaj et al.,
2005). However, the effort devoted on prediction of DNA-binding residues in proteins is
recently beginning (Ahmad et al., 2004; Ahmad and Sarai, 2005). The large diversity of
amino acid and nucleotides complement combinations makes the recognition of

DNA-binding residues obscure to decipher (Sarai and Kono, 2005).



The success in recognition of DNA-binding interaction can assist scientists in realizing
gene expression and biological pathway within organisms, and further aid the design of
artificial transcription factors. Scientists believe that these artificial transcription factors are
potential gene therapies and they may be the next generation prescriptions to treat diseases
(Segal and Barbas, 2001; Blancafort et al., 2004; Ansari and Mapp, 2002; Yaghmai and
Cutting, 2002). Therefore, it is a vital task to recognize potential DNA-binding residues in
proteins.

Ahmad et al. (2004) analyzed and predicted DNA-binding proteins and their binding
residues based on position, sequence and structural information by neural network (NN)
models. The NN-based method has relatively high accuracy on non-binding residues but low
accuracy on binding residues (Ahmad et al, 2004). When the features evolutionary
information of amino acid sequences in terms of their position specific scoring matrices
(PSSMs) are used, the NN-based method can enhance the net prediction (NP, an average of
Sensitivity and Specificity) accuracy from 58.4% to 66.7% on the training dataset PDNA-62
using a six-fold cross-validation (6-CV) procedure (Ahmad and Sarai, 2005). It seems to have
a large probability in enhancing the training accuracy 66.7% of the NN-based method. On the
other hand, the generalization ability of the predictor needs to be further evaluated by
examining the independent test performance rather than only the cross-validation

performance, especially when the size of training dataset is not sufficiently large.

1.3 Thesis Overview

In our study, we investigate the optimal design of predictors for DNA-binding sites in
proteins from amino acid sequences by maximizing classification accuracy of novel proteins.
It is better to consider the following characteristics in designing classifiers: 1) the numbers of

binding and non-binding residues in proteins are significantly unequal that the unbalanced



distribution should be considered in enhancing the NP accuracy, 2) the size of giving training
dataset is relatively small compared to the number of used features that the overfitting
problem should be concerned, and 3) it is essential to design proper datasets for evaluating
generalization ability of the designed classifier in predicting potentially novel DNA-binding
proteins.

Support vector machines (SVMs) were commonly used to analyze biological problems
with satisfying results, such as classification of cancers in microarray (Paul and Iba 2006),
protein relative solvent accessibility prediction (Nguyen and Rajapakse, 2005), protein
secondary structure prediction (Guo ef al., 2004), protein transmembrane region prediction
(Natt et al., 2004), and protein disulfide connectivity prediction (Chen and Hwang, 2005).
SVM is a machine learning method with complete statistical learning theory basis (Vapnik,
1995). Furthermore, SVM has several advantages, such as 1) SVM can employ kernel
functions that operate in extremely high-dimensional feature spaces, and the different class of
samples are separated by the set of support vectors; 2) SVM can avoid falling into the local
optimum solution in training phase (Burges, 1998), and 3) SVM has a strong generalization
ability when the size of given training dataset is relatively small, compared with the number
of used features.

The nearest neighbors based methods have been frequently used for the classification of
biological and medical data, and despite their simplicity, they can give competitive
performance compared to many other methods. In our study, we apply the fuzzy k-nearest
neighbors (fuzzy k-NN) method to predict DNA-binding sites in proteins as a comparison to
previous NN-based method and our SVM-based method. The fuzzy k~-NN methods have been
used to predict and protein solvent accessibility (Sim et al., 2005) and protein subcellular
locations (Huang and Li, 2004), and give good performance in their studies. The parameters

of fuzzy k-NN and the weight parameter for unbalanced distribution of samples are tuned to



maximize NP accuracy.

Finally, the results show that prediction of DNA-binding sites in proteins SVM
outperforms than fuzzy k-NN method and previous neural network method. To advance the
proposed method SVM-PSSM, the control parameters of SVM and two weight parameters
for the unbalanced distribution of samples are analyzed and adopted to maximize NP
accuracy. Furthermore, to enhance the accuracy of predicting novel proteins, an additional
DNA-binding dataset PDC-59 consisting of 59 protein chains with low sequence identity on
each other is established for evaluating generalization abilities of predictors. The SVM-based
method using the same 6-CV procedure and PSSM features has accuracy NP=80.15% for the
training dataset PDNA-62 and NP=69.54% for the independent test on the dataset PDC-59,
which are much better than the NN-based method (Ahmad and Sarai, 2005) by increasing the
NP values for training and test accuracies up to 13.45% and 16.53%, respectively. Besides
PSI-BLAST profiles, some amino acids physico-chemical features: the proteins solvent
accessible surface area (ASA), hydropathy index values, and isoelectric point values (pl) are
also used to try to improve the NP accuracy. Simulation results reveal that SVM-PSSM
performs well in predicting DNA-binding sites of novel proteins from amino acid sequences,

and integrating more other features are not significant helpful to promote the NP accuracy.



Chapter 2 Materials and Methods

2.1 Datasets

We use three datasets (PDNA-62, PDNA-48, PDC-59) to evaluate our SVM-PSSM
method which aims to have accurate prediction ability when giving a novel protein with low
sequence identity compared with existing samples. Therefore, a filtering tool PISCES with
much rigorous definition of sequence identity (Wang and Dunbrack, 2003) is used to filter out
highly homologues sequences. Sequence identities for PDB (Protein Data Bank) sequences in
PISCES are determined by the combination of CE structural alignment and PSI-BLAST
alignment, which is more sophisticated than the traditional local and global alignment method.
The sequence identity in PDNA-48 and PDC-59 is confirmed by PISCES.

The missed hydrogen of the obtained PDB structures is added by MolProbity (Davis et
al., 2004), and it optimizes all hydrogen atoms, both polar and non-polar, on amino acids and
nucleic acids. We define the amino acid as a binding residue if its side chain or backbone
atoms fell within a cut-off distance 3.5 A, which is the same as previous study (Ahmad et al.,
2004; Ahmad and Sarai, 2005) from any atom on DN. Otherwise, the sample is a non-binding
residue. Our calculation result of DNA-Protein binding positions is highly consistent with
that of the PDBsum database.

PDNA-62: For comparisons, the same dataset PDNA-62, listed in Table 1, containing 62
proteins in previous studies (Ahmad et al., 2004; Ahmad and Sarai, 2005) is used to predict
DNA-binding sites in proteins. This dataset consisting of 7967 non-binding and 1792 binding
residues has representative protein-DNA complexes from PDB and the protein structure

resolution is 2.5 A or better.



Table 1. Protein chain IDs of dataset PDNA-62

1a02F IcjgA lhcqE 1ihfA IperL I1xbrA
1a02J lIcjgB lhcqF 1ihfB IperR lyrnA
1a02N IcmaA lhcrA 1j59A IpnrA lysaC
la74A IcmaB 1hddC 1Imb4 IpueE lysaD
1a74B 1d02A 1hddD ImdyA 1pviB lyuiA
laayA 1d66A lhloA ImeyC IpyiA 2bopA
lazqA 1dp7P 1hloB ImhdA IrepC 2drpA
1b3tA lecrA lhryA ImnmA IsrsA 2gliA
1b3tB IfjlA lhwtC ImnmB IsrsB 2hdcA
1bf5A 1gatA ThwtD ImnmC IsvcP 3croL
1bhmA lgecA lhwtG ImnmD 1tc3C

1bl0A 1gdtA lhwtH ImseC 1tf3A

1cOWB 1gdtB Lifl1A loctC ItroA

lecdwA lhcqA lif1B IparB 1tsrB

Icf7A lhcgB lignA I1pdnC lubdC

PDNA-48: The decision boundary in SVM is determined before the prediction that is
similar in NN, but in contrast to NN, the overall error function between the predicted and
observed class for the training set is minimized, the margin in the boundary is maximized. In
other words, the class of a query data at prediction phase is determined according to the
established model at training phase. Therefore, the low sequence identity of each protein
chain within a dataset would assist the samples in the uniform distribution within the sample
space and thus can help the design of classifiers with strong generalization ability. Therefore,
PDNA-62 was further filtered by PISCES using an identity threshold 25%. The obtained

dataset PDNA-48 contains 48 protein chains (total 6431 residues; 1030 binding residues),

listed in Table 2.
Table 2. Protein chain IDs of dataset PDNA-48

1a02F 1bl0A lgatA LifTA IparB 1troA
1a02N lcdwA lgecA lignA IpdnC 1tsrB
la74A Icf7A lgdtA 1ihfA IpnrA I1xbrA
laayA IcmaA lhcqA 1j59A IpueE lysaC
lazqA 1d02A lhcrA 1Imb4 1pviB lyuiA
1b3tA 1dp7P lhloA ImdyA IrepC 2bopA
1bf5A lecrA lhryA ImhdA IsvcP 2hdcA
1bhmA 1fj1A ThwtC ImnmA 1tc3C 3croL




PDC-59: For further evaluating performance of SVM-PSSM in predicting novel
proteins, we established a dataset PDC-59 for independent test in this study. These proteins
are extracted from the PDB database with released dates after year 2000, and searched by
keywords: transcription factor, repressor, regulator, transposase, endonuclease, and
DNA-binding. These proteins were also filtered with mutual sequence identity less than 25%
compared to each other and to PDNA-48 by PISCES. PDC-59 contains 59 protein chains
(total 13041 residues; 1454 binding residues), listed in Table 3.

Note that the numbers of binding and non-binding residues in proteins are significantly

unequal that the unbalanced distribution should be taken into account in designing accurate

predictors.
Table 3. Protein chain IDs of dataset PDC-59

1c9bA 1h9dA 1k3xA Ipt3A 1s6bmA IxjvA
ldclA lhlvA lkdhA Ir7mA Isa3A IxpxA
ldewA 1i3jA ligl A LrffA IsfuA 1zs4D
l1dfmA liawA Im5xA 1rh6A Isx5A 1ztwA
lebmA 1je8A InvpC IrioH lulgA 2alzA
lemhA ljeyA lodgA IrxwA IwOuA 2aorA
lewnA ljeyB lornA 1s32A Iw7aA 2aq4A
1fiuA IjfiA loupA 1s32B IwteA 2axyA
1fzpB 1;fiB 1p8kZ 1s32C 1x9nA 2bgwA
1hOmA 1jt0A 1pp7U 1s32D I1xhvA

2.2 SVM-PSSM

2.2.1 PSSM and feature vector representation in SVM

We use multiple sequence alignment profiles generated from PSI-BLAST (Altschul et
al., 1997) for each protein chain. We obtain the non-redundant protein sequence database
from NCBI (National Center for Biotechnology Information). We set parameters of
PSI-BLAST using BLOSUMG62 substitution matrix, three iteration runs, and exception value
0.001. The other parameters are set using default values. The PSI-BLAST program by

7



querying each protein chain against the NCBI NR (Non-Redundant) database is used to

generate PSSM profiles which are in the form of 20xN matrix, where N is the length of
queried protein chain. Let the residue i be represented by a, =(qa,,,...,a,,,) Where 1 <i<N.

Each query residue is represented by a vector of 20 attributes. These profiles are normalized
into the range [0, 1] for speeding up the SVM training phase.

In the previous study, PSSMs were generated from reference databases with different
sizes. Although it was observed that computational time can be saved by replacing the
reference database with a much smaller size without loss of much prediction ability (about
2% of NP), we still take the NR database from NCBI as our reference database to make sure
that PSI-BLAST can have better multiple sequence alignment results and generate
representative PSSMs.

The input pattern to SVM. using the PSSM features for the residue i is

X, =(@,;,....4;,...,a,,, ) where k is the number of neighborhood residues on either side. We

construct a matrix with window size s=2k+1 centered on the target residue i. The used profile

X; 1s the form of a 20xs matrix.

2.2.2 SVM

SVM is a very popular and powerful method to deal with classification, prediction, and
regression problems (Cortes and Vapnik, 1995). The original idea of SVM is to use a linear
separating hyperplane which maximizes the distance between two classes to create a classifier.
It relies on preprocessing the data to represent patterns in a high dimensional space with an
appropriate mapping function ¢. For the binary SVM, the training data consist of N pairs (X,

Y1), ..., (Xy, yn) where instance vectors X;€ #" and class labels y; € {0, 1},i=1, ..., N. If y;

= 1, X; belongs to the first class; otherwise, X; belongs to the second class. The main task in



the training phase is to solve the following optimization problem that seeks a classifier with a

maximal margin. The standard formulation of SVM is as follows (Cortes and Vapnik, 1995):

min(%wTw+CZN:g[) (1)

Wb,z =
subjectto y,(W'ep(X,)+b)>1-¢, &>0,i=1,..., N,

where we " is a weight vector of training instances and b is a constant. SVM allows sample

i locates at the wrong side of the separating hyperplane w'x + b = 0 with a penalty term &;,

and C is a real-value cost parameter for sums of total error. If #X;) = X;, the SVM of (1) finds

a linear separating hyperplane with a maximal margin. The SVM of (1) is called a nonlinear

SVM when ¢ maps X; into a higher dimensional space.

K(X;, X;) = ()" @(X;) is called a kernel function. That is, the dot product in that high
dimensional space is equivalent to a kernel function of the input space. So we need not be
explicit about the transformation ¢ as long as we know that the kernel function K(X;, X;) is
equivalent to the dot product of some other high dimensional space (Vapnik, 1995; Chang
and Lin, 2003; Burges, 1998). Some commonly-used kernel functions are exp(-y|| X; - X; 1)
(Radial basis function), (x;" X;/y+6)? (Polynomial), and tanh (yx;" X;+0) (sigmoid), where 7,
d, and ¢ are kernel parameters. Chang and Lin (2003) developed a software tool LibSVM
(Library for SVM) for support vector classification, including various variants of SVM. The
used LibSVM can be found at the website of (Chang and Lin, 2003). In this work, we used
K(xi, X;) = exp(-y|| Xi - X; ) where the proper values of cost parameter C and kernel
parameter yare to be specified.

Considering the unbalanced distribution of samples, two additional weight parameters
wo and w, are used to enhance NP performance. The best values of wy and w; can be

adaptively specified according to the preference on the penalty level for wrong predictions of



N
non-binding and binding residues, respectively. Therefore, the penalty term CZ gin (1) is
i=l1

replaced with Cozgl.ntClZei, where C,=w,xC and C,=wxC (Chang and Lin,

=0 yi=1

2003).

2.3 Amino acids physico-chemical property features representation

As mentioned in earlier researches, nucleotides and amino acids interaction propensity
are related to some physico-chemical properties. Therefore, besides of using PSSM profiles
as features for classification, we further investigate the performance affected by adding some
other amino acids physico-chemical property features in classification. We use SVM which
has higher classification performance in this. study combines PSSM and each
physico-chemical property feature. Ahmad and Sarai (2005) proposed that the probability of
binding systematically increased as the proteins solvent accessible surface area (ASA)
increased, i.e., the DNA-protein interaction are frequently founded in protein surface than
buried fragments (Ahmad and Sarai, 2005). Several researches also analyzed the relation
between proteins surface electric charge distribution and DNA-binding propensity, and
proposed that some proteins interfaces with DNA are highly enriched in positive charges
from lysine and arginine side chains and almost entirely devoid of negative charges from
carboxylates (Nadassy et al., 1999). It was also found that the magnitudes of the moments of
electric charge distribution in DNA-binding protein chains differ significantly from those of a
non-binding control ones (Ahmad and Sarai, 2004).

In our study, we use the solvent accessible surface area of amino acids in tripeptide
information (Chothia, 1976) and hydropathy index (Kyte and Doolittle, 1982) as the
information of tendency that appear in protein surface. The hydropathy index is the scale
combining hydrophobicity and hydrophilicity of side chain groups; it can be used to measure

10



the tendency of an amino acid to seek an aqueous environment or a hydrophobic environment.
The amino acids isoelectric point (pl) value is adopted for the residues electric charge
information (Zimmerman et al., 1968). The used amino acids physico-chemical properties are
listed in Table 4, and their value are also normalized to 0~1 before input to SVM classifier.
These physico-chemical properties are tested separately and each of them is integrated to the
end of PSSM features; the size of physico-chemical property feature is equal to the used

window size: s.

Table 4. List of amino acids physico-chemical properties

ASA value pl value Hydropathy index
A 115 6.01 1.8
R 225 10.76 -4.5
N 160 5.41 -3.5
D 150 3.20 -3.5
C 135 5.07 2.5
Q 180 5.65 -3.5
E 190 4.80 -3.5
G 75 5.97 -0.4
H 195 7.59 -3.2
1 175 6.02 4.5
L 170 5.98 3.8
K 200 9.74 -3.9
M 185 9.74 1.9
F 210 5.48 2.8
P 145 6.48 1.6
S 115 5.68 -0.8
T 140 5.87 -0.7
W 255 5.89 -0.9
Y 230 5.66 -1.3
A% 155 5.97 4.2

2.4 Evaluation of prediction accuracy

In this work, we consider four criteria (Sensitivity, Specificity, net prediction, and

11



Accuracy) to evaluate the prediction performance. Sensitivity is the percentage of correctly
predicted binding residues to total binding residues. Specificity is the percentage of correctly
predicted non-binding residues to total non-binding residues. Accuracy is the percentage of
correctly predicted residues to total residues. In this study, net prediction (NP, mean of
Sensitivity and Specificity) is the first evaluation criterion considering the unbalanced

distribution of binding and non-binding residues.

2.5 Determination of parameter values in SVM

In order to advance performance of the SVM classifier for fitting the training datasets
with the unbalanced distribution, it is essential to determine the best values of the
combination of window size s, cost parameter C, kernel parameter y, and weight parameters
wo and w;. Since the proper values of s are discrete and limited, we evaluate all candidate
values of 5. A stepwise approach is used to determine the default values of system parameters.
At first, the value of w;/wy is initially set to the ratio of the total number of non-binding
residues to that of binding residues in the training dataset. For the dataset PDNA-62, wy=1.0
and w;=4.446. The best values of parameters C and y are obtained by maximizing the value
of NP for a prespecified value of s. Here, we use PDNA-62 and perform 6-CV to decide the
best values of all system parameters. For example, Fig. 1 is an accuracy distribution plot in
terms of NP for various combinations of SVM parameters C and y with s=7, wo=1.0 and

w1=4.446, where the best values of parameters are C=0.73 and y=0.27.

12
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Fig. 1. The distribution plot of the NP accuracy for PDNA-62 with window
size 7 and various values of C and y, where gray bar represents the value of
NP in percentage.

Once the best values of parameters C and y are obtained in terms of NP, the weights wq
and w, are then finely tuned using the obtained values of s, C and y. To enhance the
generalization ability in predicting novel proteins, the values of wy and w; are determined by
maximizing the ratio of mean to variance of Senmsitivity, Specificity, NP, and Accuracy.
Therefore, the SVM classifier is expected to have equivalent performance on classifying
binding and non-binding residues. Numerous candidate values of the pair (wo, w;) are
evaluated where wo e {0.5, 1.0} and w; € {1.0, 50}. Performances of the best SVM classifiers
with C, y, wo and w, for some specified values of window size s using 6-CV on PDNA-62

are listed in Table 5.
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Table 5. Performances of the best SVM classifiers with C, y, wg and w, for some specified

values of window size s using 6-CV on PDNA-62.

s C y wo  wy Sensitivity (%) Specificity (%) NP (%) Accuracy (%)
1 1.70 444 10 6.0 73.55 73.73 73.64 73.70
3 0.50 152 1.0 9.0 78.35 78.44 78.39 78.42
5 0.74 0.60 05 3.0 79.30 79.33 79.31 79.32
7 073 027 10 7.0 80.08 80.23 80.15 80.20
9 0.60 030 05 32 80.08 80.11 80.09 80.10
13 130 0.10 0.5 3.1 80.02 79.97 79.99 79.98

Finally, we choose the classifier with parameters s=7, C=0.73, y=0.27, wo=1.0 and

w;1=7.0 which has the best performance in terms of NP (=80.15%) for the following

independent test. Because there are six classifiers can be obtained using 6-CV, we choose the

best one of six classifiers in terms of NP to predict novel proteins. Performances of the best

SVM classifier with s=7, C=0.73 and y=0.27 for some values of wy and w; on PDNA-62 are

given in Table 6. The procedure to find best SVM classifier for independent test dataset

PDC-59 is listed in Fig. 2.

Table 6. Performances of the SVM classifier with s=7, C=0.73 and y=0.27 for some values of

wo and w;. on the dataset PDNA-62.

Sensitivi Specifici NP Accurac Mean .
Wo Wi (%) by P ((y{) by (%) (%) Y (%) Variance
1.0 2.0 55.86 93.79 74.82 86.82 77.82 827.27
1.0 5.0 76.95 83.24 80.10 82.09 80.60 22.76
1.0 6.0 78.79 81.51 80.15 81.01 80.37 4.25
1.0 6.5 79.41 80.81 80.11 80.55 80.22 1.13
1.0 6.7 79.52 80.62 80.07 80.42 80.16 0.70
10 7.0 80.08 80.23 80.15 80.20 80.17 0.01
1.0 8.0 81.31 79.20 80.25 79.59 80.09 2.54
1.0 50 83.98 74.97 79.48 76.63 78.76 46.69
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Fig. 2. The procedure to find the best SVM classifier for independent test.
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Chapter 3 Results and Discussion

3.1 Comparison model: Fuzzy k-NN
PSI-BLAST is also used to generate the PSSM profiles as input features for fuzzy &~-NN

in the form of a 20xL matrix, where L is the length of the sequence. In our study, PSI-BLAST

profiles of all protein chains are consistent in fuzzy k~-NN and SVM method.
We construct a window of size s centered on a target residue, and use the profile that

falls within this window, a 20xs matrix, as a feature vector. Then, the distance between two
feature vectors A and B is defined as:
Do =Y. d,|P™ —P® )
ij
where P (i=1,2,...,sj=1,2,..,20)is a component of the feature vector A, and
d; 1s a neighbor weight parameter. Since we expect the profile elements for residues nearer to

the target residue to be more important in determining the local environment of the target

s+1

2

s+1

residue, the neighbor weight is defined as: d, = (T — il)’.

The nearest neighbor algorithm is a friendly to access and widely used classification
algorithm. The class of a query data in nearest neighbor algorithm is given according to the
classification of those nearest neighbors from a training dataset of known classifications. The
general used nearest neighbor algorithm is the so-called k-nearest neighbor algorithm (k-NN),
where the query data is assigned the class most frequently represented among the k-nearest
samples. The further extension type of A-NN is to give distance weights to the k-nearest
samples with a certain power. Furthermore, instead of assigning a definite class to the query
data, one can calculate the fuzzy membership, which can be used to estimate the confidence
level of the prediction. The algorithm incorporating these generalizations is called the fuzzy

k-nearest neighbor algorithm (Fuzzy £-NN) (Keller ef al., 1985).
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In the fuzzy k-NN method, the fuzzy class membership u;(z) to the class i is assigned to

the query data z according to the following equation:

k O YA
Zj:l ui(Z ! )D/
.0
j=1d

where m is a fuzzy strength parameter, which determines how heavily the distance is

u(z)= ,i=1..,c where f, =-2/(m-1) 3)

weighted when calculating each neighbor’s contribution to the membership value, & is the
number of nearest neighbors, and c is the number of classes. Also, D; which is equivalent to
D, 1in function (2) is the distance between the feature vector of the query data z and the
feature vector of its /™ nearest reference data z¥”. u,(z"’) is the membership value of z’ to the

in class, which is 1 if PA belongs to the it class, and 0 otherwise. Because of the unbalance

distribution of samples, one more weight wy is used to enhance NP accuracy, if the reference

sample is belong to binding class, D, is replaced with D,, which is defined as:

4)

The advantage of the fuzzy &-NN algorithm over the standard A-NN method is clear. The
fuzzy class membership u;(z) can be considered as the estimate of the probability that the
query data belongs to class i, and provides us with more information than a definite
prediction of the class for the query data. Moreover, the reference samples which are closer to
the query data are given more weights, and the optimal value of f; and w; can be chosen
along with that for £, in contrast to the standard &~-NN method with a fixed value of f; = 0.
The optimal value of %, f, and w¢ are found from the 6-CV stepwise procedure, and the
resulting value for f is indeed nonzero.

Similar to SVM approach, it is important to determine the optimal parameter values of
fuzzy k-NN classifier, and there are four parameters in fuzzy k-NN, window size s, number of
nearest neighbors k, fuzzy parameter f;, and distance weight ws. The number of nearest

neighbors &, and window size s, is first prespecified to a fixed value, and the best values of
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parameters f; and wy are obtained by maximizing the value of NP. When using 6-CV and
window size: s=13, on PDNA-48, the performance affected by the number of nearest
neighbors, £, that increases from 10 to 50 seems less significant. From Table 7, it shows that
the NP accuracy only rises slightly from 69.35% to 71.37%. We also investigated the
performance affected by window size s from 3 to 15 using 6-CV on PDNA-62. From Table 8§,
the NP of each model is all around 75% that is not significant improved simultaneously with

using larger window size.

Table 7. The performance comparison of fuzzy A-NN classifier with different £ value
using 6-CV on PDNA-48.

k fs we  Sensitivity (%) Specificity (%) NP (%) Accuracy (%)

10 -490 1.26 62.14 76.76 69.45 74.42
30 -246 1.72 72.14 69.89 71.02 70.25
50 -5.06 1.30 71.84 70.89 71.37 71.05

Table 8. Performances of the best fuzzy A-NN classifiers with =30 and f;, w¢ for some
specified values of window size s using 6-CV on PDNA-62.

s fs we  Sensitivity (%) Specificity (%) NP (%) Accuracy (%)

3 -1.86 1.94 71.76 78.54 75.15 77.29
5 -1.72 2.00 71.60 78.70 75.15 77.40
7 -1.64 2.06 72.04 78.90 75.47 77.64
9 -205 1.79 72.10 78.71 75.41 77.50
11 -2.05 1.8 72.60 77.70 75.15 76.76
13 -240 1.76 77.34 73.96 75.65 74.58
15 -2.04 1.79 71.82 79.31 75.57 77.94

From above experiments, it shows that the classification performance of fuzzy k-NN is
not affected greatly by window size s and number of nearest neighbors . Finally, we chose
parameter values, s=13 and k=30, that have better classification performance for next

independent test on PDC-59.
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3.2 Performance comparison of training datasets

To evaluate performance of the proposed method SVM-PSSM and fuzzy &-NN PSSM,
the existing NN-based method is conveniently compared using the same 6-CV on PDNA-62.
The comparison results are given in Table 9. The NP values of the NN-based methods using
sequence information only (Ahmad et al., 2004) and the PSSM feature with window size s=3
(Ahmad and Sarai, 2005) are 58.4% and 66.7%, respectively. The fuzzy k-NN PSSM
classifiers with s=3 and 13 have NP=75.15% and 75.65%, respectively. The SVM-PSSM
classifiers with s=3 and 7 have NP=78.39% and 80.15%, respectively. The SVM-PSSM
classifier is better than the fuzzy k~-NN PSSM classifier by increasing the value of NP 4.5%
for the training dataset PDNA-62, and much better than the NN-PSSM classifier by

increasing the value of NP up to 13.45% for the training dataset PDNA-62.

Table 9. Performance comparison of SVM-PSSM and the NN-based method with window
size s on the training dataset PDNA-62 using 6-CV.

Sensitivity Specificity NP Accuracy
Method %) (%) %) %)
SVM-PSSM (s=7) 80.08 80.23 80.15 80.20
SVM-PSSM (5=3) 78.35 78.44 78.39 78.42
Fuzzy k-NN PSSM (s=13) 77.34 73.96 75.65 74.58
Fuzzy k-NN PSSM (s=3) 71.76 78.54 75.15 77.29
NN/PSSM (s=3)
(Ahmad and Sarai, 2005) 69.5 63.9 66.7 66.7
NN/Sequence only 40.6 76.2 58.4 73.6

(Ahmad et al., 2004)

Besides the NP performance, the Receiver Operating Characteristic (ROC) curve is
commonly used to evaluate the discrimination ability of a classifier. The larger area under the
ROC curve, the better discrimination ability a classifier has. Fig. 3 gives the performance

comparison using the ROC curves on PDNA-62. The ROC curve of the SVM classifier is
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obtained from Table 6. The ROC curve of the NN-based classifier is obtained from the
DBS-PSSM website as mentioned in (Ahmad and Sarai, 2005). It shows that the area under
the ROC curve of SVM is much larger than that of the NN-based method obviously. It also
shows that the SVM-based method has better classification ability than the NN-based method

in classifying binding and non-binding residues in proteins.
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Fig. 3. The performance comparison between the SVM and NN-based
methods using the ROC curve on PDNA-62.

3.3 Performance comparison of independent test

In order to evaluate the generalization abilities of the SVM, fuzzy A-NN and NN-based
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approaches in predicting novel proteins, PDC-59 is used for independent tests. The SVM and
fuzzy k-NN classifier are obtained from the best one of 6-CV which has the best NP
performance on the training dataset PDNA-62 mentioned above. The results of the NN-based
method are obtained through the DBS-PSSM website (Ahmad and Sarai, 2005). Table 10
gives independent test results of three compared methods. The results of SVM, fuzzy k-NN,
and NN-based methods are NP=69.54%, 66.13%, and 53.01%, respectively. The SVM
classifier is better than the fuzzy k-NN-based method by increasing the NP values for test
accuracy up to 3.41%, and much better than the NN-based method by increasing the NP
values for test accuracy up to 16.53%. It also reveals that the SVM classifier has better

generalization ability to predict novel proteins.

Table 10. Independent test results of the NN-, Fuzzy £-NN-, and SVM-based method (using
either PDNA-62 or PDNA-48 as the training dataset) on PDC-59.

Method Sen(soi(t)gvity Spe(c:;)ﬁ;cily (](\)Z)D) Aci‘%)acy
T e, owel e
?;’g’;i Sg’é\;[ 59.35 79.72 69.54 77.45
1(:1‘)1]2)213? ::16‘];‘)1 58.12 74.13 66.13 72.35
DBS-PSSM 4636 59 65 53.01 58.19

(Ahmad and Sarai, 2005)

To further improve the generalization ability of the SVM classifier, we filter out the
proteins with identity greater than 25% in the dataset PDNA-62 by PISCES tool. The
obtained dataset PDNA-48 is used as the training dataset. Consequently, we construct the
SVM and fuzzy k-NN classifier using the same procedure as that on PDNA-62. The
parameters of the obtained SVM classifier from the best one of six classifiers using 6-CV are

s=7, C=0.58, y=0.23, wy=1.0, and w,;=7.2. The parameters of the obtained fuzzy A-NN
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classifier are s=13, k=30, f;=-2.46, and w=1.72. The 6-CV test results of two methods on

PDNA-48 are listed in Table 11.

Table 11. 6-CV test results of SVM and fuzzy £-NN on PDNA-48.

Method Sensitivity (%)  Specificity (%) NP (%) Accuracy (%)
SVM 75.35 75.30 75.32 75.31
Fuzzy k-NN 72.14 69.89 71.02 70.25

Table 10 shows that the Sensitivity performance of SVM method is improved from
59.35% to 65.41% and NP performance is slightly improved from 69.54% to 70.44%. The
NP performance of fuzzy A-NN method is slightly improved from 66.13% to 66.57%.
Therefore, when we used low identity proteins as training data, it is helpful to obtain a
classifier with high generalization ability for correctly predicting binding residues of novel

proteins.

3.4 Analysis and discussion

We further investigate the performance affected by adding some other amino acids
physico-chemical property features to classification. We use SVM which has higher
classification performance in this study combines PSSM with each physico-chemical
property feature. The same procedure as above section is used to find each best SVM model.
The 6-CV result of PDNA-48 and parameters of SVM is listed in Table 12, and the

independent test on PDC-59 is listed in Table 13.
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Table 12. Performance comparison of SVM method combines PSSM and some
physico-chemical features on the training dataset PDNA-48 using 6-CV (s=7).
Sensitivity Specificity NP Accuracy

Features C Yy Wo Wi (%) (%) (%) (%)
PSSM 0.58 0.23 1.0 7.2 75.35 75.30 75.33 75.31
PSSM + ASA 0.69 0.16 1.0 6.5 75.25 75.43 75.34 75.40

PSSM + pl 0.27 0.27 1.0 6.5 75.54 74.00 74.77 74.25

PSSM +

. 1.2 0.12 1.0 7.5 74.57 73.87 74.22 73.99
hydropaty index

Table 13. Independent test result of PDC-59 using PDNA-48 as training data (s=7).
Independent test (PDC-59)

Features Sensitivity Specificity NP Accuracy
(%) (%) (%) (%)
PSSM 65.41 75.48 70.44 74.36
PSSM + ASA 65.96 76.14 71.05 75.00
PSSM + pl 65.27 75.56 70.41 74.41
L SSMEE 66.71 7432 70.58 73.48
ydropaty index

It shows that PSSM combines with amino acids physico-chemical properties dose not
further improve the NP accuracy, only at the condition that PSSM combines ASA feature
slightly promote the NP accuracy of independent test from 70.44% to 71.05%. Although
previous researches proposed that these amino acids physico-chemical properties are related
to DNA-proteins interactions, the further well design of combining PSSM and
physico-chemical property features seems needed to enhance the classification accuracy.

The process of DNA-protein recognition is flexible and continuous (Gunther et al., 2006;
Sarai and Kono, 2005), and the crystals of protein-DNA complex just catch a moment of this
whole process. Therefore, the amino acid defined as a non-binding residue with a distance
slightly larger than the cut-off distance 3.5 A may assist or take part in protein-DNA

recognition. We analyze the distance distribution of non-binding residues in PDC-59 which
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are incorrectly classified as binding ones by the SVM classifier using the training dataset
PDNA-48. The result given in Fig. 4 reveals that there are 39% of non-binding residues with
the distance in the range 3.5~8.5 A close to the nearest DNA nucleotide. The percentage of
misclassified non-binding residues decreases gradually when their distance increases. The
logical result reveals that SVM-PSSM is a good predictor for biologist to analyze the

protein-DNA-binding mechanism.
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Fig. 4. Distance distribution of misclassified non-binding residues. X-axis
represents the distance between the residues to the nearest atom on DNA.
Y-axis represents the percentage of misclassified non-binding residues to total
non-binding residues in the specified distance range.

The class of a query residue is determined by the discrimination function of SVM. When
the function value of a residue is greater than zero, it would be classified into the non-binding
class. Otherwise, it would be classified into the binding class. Fig. 5 shows the relationship of

discrimination function values and distances between the residues to the nearest atom on
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DNA using all misclassified non-binding residues. It reveals that these misclassified
non-binding residues which are closer to DNA would get smaller values of the SVM
discrimination function. This scenario indicates that the SVM classifier has good screening
abilities to select potential binding residues. These amino acids with distances in the vague
region may potentially take part in or assist protein-DNA recognition and can be further

verified by biologist.
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Fig. 5. Relationship of discrimination function values and distances between
the residues to the nearest atom on DNA using all misclassified non-binding
residues.

In our study, the SVM method has higher performance than fuzzy &-NN method. Fuzzy
k-NN method assigns the query data to a class according to the k nearest neighbors classes
and distances to the query data, and SVM method assigns the query data to a class according

to established model from training data. When two classes of data spread in sample space
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with higher overlapping, fuzzy &~-NN method should own more advantage than SVM method.
But the obvious unbalance data distribution in this study shows that much of the binding class
data is surrounded by non-binding class. Fig. 6 is the statistic plot of numbers of neighbors
with the same class in 30 nearest neighbors that reveals the situation mentioned above, the
non-binding class data always have much neighbors with the same class, but it is a different
situation in binding class data. SVM maps the original features to higher dimensional space

by a kernel function seems more efficiently separate two class of data than fuzzy A-NN.
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Fig. 6. Number of neighbors with the same class as a query data in 30 nearest
neighbors in fuzzy &~-NN method using PDNA-48 as training data and PDC-59
as test data.
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Fig. 7. Data distribution of binding and non-binding residues in PDC-59 using
the SVM classifier.

Generally, the cut-off value of SVM discrimination function is set to zero for normal
classification. Fig. 7 shows the distribution of binding and non-binding residues in PDC-59
using the SVM classifier with a cut-off value equal to zero. Once the SVM classifier with the
best setting of parameters (s, C, y, wo, w;) is developed, we may adjust the cut-off value in
using the SVM classifier according to the preference such as higher NP, higher Sensitivity,
higher Specificity, etc. Table 14 gives the result of the SVM classifier (s=7, C=0.58, y=0.23,
wo=1.0, and w;=7.2) on the dataset PDC-59 for various cut-off values. For example, if the
cut-off value is set to 0.29, the highest value of NP equals to 71.15%. If the higher Sensitivity

performance is desirable, the cut-off value of the SVM classifier can be properly increased.
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Table 14. Results of the best SVM classifier (s=7, C=0.58, y=0.23, w=1.0, and w;=7.2) on
the dataset PDC-59 for various cut-off values.

Cut-off value Sensitivity (%)  Specificity (%) NP (%) Accuracy (%)
-3.00 0.00 100.00 50.00 88.84
-2.00 1.93 99.84 50.88 88.91
-1.00 24.28 96.05 60.16 88.04
-0.50 44.02 88.17 66.09 83.24
-0.30 53.09 83.85 68.47 80.42
-0.10 61.97 78.69 70.33 76.82
0.00 65.41 75.48 70.44 74.36
0.10 69.33 72.00 70.66 71.70
0.13 70.70 70.92 70.81 70.89
0.29 77.10 65.19 71.15 66.52
0.30 77.44 64.75 71.10 66.16
0.50 83.77 56.80 70.28 59.80
1.00 94.09 35.20 64.64 41.77
2.00 99.31 6.32 52.81 16.68
3.00 100.00 0.20 50.10 11.32
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Chapter 4 Conclusions

In our study, we have proposed a hybrid method using SVM in conjunction with the
PSSM features for prediction of DNA-binding sites in proteins from amino acid sequences by
achieving high accuracy for novel proteins. Using the same PSSM features, simulation results
show that our method SVM-PSSM is better than fuzzy A-NN method and much better than
the existing neural network based method in terms of net prediction (NP) accuracy by
increasing the NP values for training and test accuracies up to 13.45% and 16.53%,
respectively. Although previous researches proposed that amino acids physico-chemical
properties such as ASA, electric charge, and hydropathy are related to DNA-proteins
interactions, when using PSSM combines these physico-chemical properties as features, they
only keep the original performance. It seems that the further well design of combining PSSM
and physico-chemical properties features are needed to enhance the performance.

To best of our knowledge, up to now, the proposed method is the most effective method
for recognizing mechanism of binding residues in proteins based on protein sequence without
using 3D structural information, such as hydrogen bond, hydrophobic, hydrophilic, ion
interaction, etc. By adjusting the cut-off value of the SVM classifier, the proposed prediction
method would be helpful to biologist for filtering novel proteins without significant

homology with known protein to find out the potential binding regions in proteins.
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