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摘 要       
 

 

預測特定位置突變所引起的蛋白質穩定性改變是生物學上的重要議題，將

序列及結構資訊有效的轉換為能量參數，將有助於蛋白質穩定性及功能的

分析。近年來許多團隊將心力投注於單點特定位置突變及整體穩定性之實

驗數據之間關連性。在這篇論文我們利用支持向量機器預測特定位置的單

點突變所引起的蛋白質熱穩定性改變。基於前人的理論基礎，我們以八種

不同的編碼方式將結構或序列資訊轉換為特徵向量，用以測試三個經由特

定條件由線上資料庫 ProTherm 得出之公開資料集 S1615, S2048 以及

S1396，並以預測平均準確率及 Matthews 相關係數評量我們的實驗成果。

實驗數據顯示我們的方法可與目前最好的方法相當，並進一步能單以一級

序列資訊改進在相同條件下預測準確率及相關性，這在醫療科技及蛋白質

工業中缺乏次級以上結構資訊的多數情況下有實用性價值，利用本方法以

電腦計算並預測特定位置突變所引起的蛋白質穩定性改變，我們可大幅減

低傳統實驗的時間及成本。  
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Prediction of thermostability of single point mutation using the support 

vector machine 

Student: Lu Huei      Advisor: Dr. Hwang Jenn-Kang  

Institute of Bioinformatics 

National Chiao Tung University 

ABSTRACT 

 

To predict the effect of site-specific mutation on protein stability and function 

has been an important issue of protein science. Turning Sequence and structure 

information into energetic parameters enables us to predict and analyze protein 

function. In this experiment we predict the thermostability of single point 

mutation using the support vector machine. Based on previous knowledge of 

thermostability prediction of single point mutation, we use eight different 

encodings to transform sequence information and structure information into 

feature vectors to test the three public datasets extracted by certain filters from 

ProTherm. We use average accuracy and Matthews correlation coefficient of 

prediction of thermostability to evaluate our experiment results. The results 

show that our methods are comparable with the best current methods. Further 

more, we can predict the thermostability of single point mutation using the 

support vector machine by sequence information only when further information 

is not available yet. 
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Figure Contents 

 

 

Figure 1. The Structure-Only Method illustration. To calculate the probability of occurrence 

of a specific amino acid within the 9 angstroms sphere centered at the Cα atom of the mutant 

residue. The distances of the Cα atoms to the center are shorter than 9 angstroms.  

Figure 2. Taking the mutant residue as the center, the 30 residues before it and the 30 

residues behind it composed a window of size 61. Fragment the interval of ± 30 residues into 

6 areas, calculate the probabilities of twenty amino acids within these areas. Intervals aligning 

with X represents the mutation center is [ 5—10—15—X—15—10—5 ] . 

Figure 3. The probabilities distribution of residues occur in different sequence intervals and 

in the structural neighborhood. The structural neighborhood is defined as the distance of the  

Cα atom of it between the Cα atom of the mutant residue is shorter than 9 angstroms. (A) 

S1396 (B) S2048 (C) S1615. 
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Introduction 

 

 

To predict the change of protein stability due to site-specific mutations is a long-term goal 

of protein science. Translation of protein sequence and structural information into energetic 

parameters enables us to analyze protein stability and function. For industrial and medical 

enzyme designing, one important requirement is the accurate prediction of protein stability 

changes resulting from single amino acid substitution. Hence, many efforts have been put into 

this field and a significant database ProTherm (Kumar, Bava et al. 2006) of the 

thermodynamic data on protein stability changes upon single point mutation has been 

generated in 1998. There are many existing approaches aimed for predicting protein stability 

change upon the site-specific mutation, showing the critical role of the comprehension of the 

rules that how single point mutation governed protein stability. For instances, using amino 

acid substitutions and empirical energy functions (Guerois, Nielsen et al. 2002); using 

knowledge based stability scale for twenty amino acid residues (Zhou and Zhou 2002); using 

contact potentials (Khatun, Khare et al. 2004); using solvent accessible surface area (SAS) 

and using proper classification of dataset by supporting information such as secondary 

structures and solvent accessibility of wild type residues (Saraboji, Gromiha et al. 2006); 

using torsion and distance potentials (Gilis and Rooman 1997) and using neural networks 

with SAS data (Capriotti, Fariselli et al. 2004). Capriotti’s work with S1615 dataset upon 

neural network method achieved an 81% accuracy with Matthews Correlation Coefficient 

(MCC) = 0.6 in prediction of whether a mutant is thermostable or not. Cheng utilized the 

support vector machine to a modified dataset of S1615, namely SR1496, obtained an accuracy 
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of 84.7% with MCC = 0.6 (Cheng, Randall et al. 2006). They are the significant milestones 

for predicting protein stability change due to site-specific mutation. The support vector 

machine (SVM) is a robust and convenient machine learning tool which can be used to 

classify extra large quantity of data. The basic idea of SVM is to use a hyperplane to separate 

data into two classes and get the maximum margin. With appropriate kernel functions, it can 

be used to solve datasets with many attributes. Based on previous knowledge of 

thermostability prediction of single point mutation, we use eight new encodings to transform 

sequence information and structure information into feature vectors to test the three public 

datasets extracted by Capriotti and Gromiha from ProTherm. The three datasets are denoted 

as S1615 (Capriotti, Fariselli et al. 2004), S2048 (Capriotti, Fariselli et al. 2005) and S1396 

(Saraboji, Gromiha et al. 2006). We use average accuracy and Matthews correlation 

coefficient to evaluate our experiment results of prediction of thermostability. The results 

show that our methods are comparable with the best current methods. Furthermore, we can 

predict the thermostability of single point mutation using the support vector machine by 

sequence information only when further information is not available yet.  

.  

 

Materials and Method 

 

 

Datasets 

 

In order to compare the performance with previous works with identical inputs, we use 

published datasets. The three datasets were extracted from ProTherm. ProTherm is an online 

database of collection of numerical data of thermodynamic parameters of wild type and 
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mutant proteins such as Gibbs free energy change, enthalpy change, heat capacity change, and 

transition temperature. Dataset S1615 includes 1615 single mutations obtained from 42 

different proteins. The three filters of retrieving data from ProTherm of S1615 are : 1. The 

 value of the mutant protein has been experimentally detected and is reported in the 

databases. 2. The data are relative to single mutations (no multiple mutations have been taken 

into account). 3. The protein structure is known with atomic resolution and deposited in the 

Protein Data Bank (Berman, Westbrook et al. 2000). We extract the FASTA files and 

structural files from Protein Data Bank (PDB) of all mutants in S1615. Some of the PDB 

codes need to be corrected manually for some entries were replaced by new PDB codes. The 

original dataset is available at 

GΔΔ

http://www.biocomp.unibo.it/piero/ddgp. Dataset 2048 includes 

2048 single mutations obtained from 64 different proteins. The two filters of retrieving data 

from ProTherm of S2048 are : 1. The GΔΔ  value has been experimentally detected and is 

reported in the databases. 2. The data are relative to single mutations (no multiple mutations 

have been taken into account. We extract the FASTA files and structural files from PDB of all 

mutants in S2048. Some of the PDB codes need to be corrected manually for some entries 

were replaced by new PDB code. The original dataset is available at 

http://gpcr2.biocomp.unibo.it/~emidio/I-mutant2.0/dbMutSeq.html. S1396 includes 1396 

single mutations obtained from 48 different proteins. The three filters of retrieving dataset 

from ProTherm of S1396 are : 1. The data are relative to single mutations (no multiple 

mutations have been taken into account). 2. Containing secondary structure and SAS (Ooi, 

Oobatake et al. 1987) information. 3. Containing experimental free energy change. We extract 

the FASTA files and structural files from PDB according to the PDB codes of all mutants in 

S1396. Some of the PDB codes need to be corrected for entries were replaced by new PDB 

codes. The original dataset is available at http://www.interscience.wiley.com/jpages/ 

0006-3525/suppmat. 
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Identifying thermostable and non-thermostable mutant 

 

The protein unfolding free energy GΔΔ (kJ/mol)is the difference of free energy ΔG 

between wild type and mutant type protein. The free energy is negative when a chemical 

reaction occurs spontaneously. The more negative GΔ  is, the more likely the chemical 

reaction will occur for every system seeks to achieve a minimum of free energy. When 

assigning the attribute values, we follow the rule built by Capriotti (Capriotti, Fariselli et al. 

2004) : If the change of free energy, GΔΔ , is negative, then the mutation decreased the 

protein stability and is classified as a “unstablizing” mutation, desired output set to 0. If the 

change of free energy, , is positive, then the mutation increased the protein stability and 

is classified as a “stabilizing” mutation, desired output set to 1. 

GΔΔ

 

The encoding features 

 

To build the SVM encode plausibly, we have to consider the plausible window size. 

Window size (Capriotti, Fariselli et al. 2005) is a fragment of protein sequence that centered 

at the residue that undergoes the mutation and that symmetrically spans the sequence to the 

left (N-terminus) and to the right (C-terminus) with variable lengths. We have to consider the 

proper structural distance. A structural distance is defined by the distance between αC  

atoms of residues. We use the Position-Specific Scoring Matrix information for encoding. 

Position-Specific Scoring Matrix (PSSM) gives the log-odds score for finding a particular 

matching amino acid in a target sequence.  
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Method 1: Sequence-only Method 

 

Sequence-only Method (SO Method) takes the single mutant residue as the center, and 

takes the three residues before it and the three residues behind it to compose a window of 

size seven. Therefore the window size (WS) = 2n + 1, n = 3. Hence, the possibilities of 

the combination of seven specific residues showing in a specific sequence form a 207 ×  

matrix. Calculate the probability of the occurrences of a specific residue over all the 

amino acids occurred in the dataset itself; we have twenty values of probability ranged 

from 0 to 1. For example, the probability of occurrence of Alanine over all the amino 

acids in S1396 is 0.79. If Alanine shows within the window, it will be assigned a value of 

0.79. After encoding the total 140 vectors in the form of probability value into attributes 

(Illustrated in Table 1A), we use LIBSVM build-in module to select the best SVM 

parameters.  

 

Method 2: Structure-only Method 

 

Structure-only Method (TO Method) takes the αC  atom of the single mutant residue as 

the center of a radius of nine angstroms and calculate the probability of encountering 

C-alpha atoms of other residues in the sphere. The probability is calculated by the 

following equation: 

 

)        (
)    X     ()(

spherethewithinshowingCofnumbertotal
spherethewithinshowingofCofnumbertheXFrequency

α
α

=  

 

where the X denotes a certain amino acid. 

 

 5



Occurrences of a specific residue over all the residues encountered in the sphere were 

used to calculate the attribute value. For example, if there is one Alanine over other 

twelve residues encountered in a sphere, the attribute value is set to one twelfths. If one of 

the twenty amino acids is not encountered in the sphere, the attribute value is set to zero. 

The mutant center was encoded in twenty vectors in presentation of twenty amino acids. 

The initial values were set to 0 and using a -1 in presentation of a silent residue and a +1 

as a mutated residue. Hence we encode a total forty vectors in this method (Figure 1). We 

use LIBSVM module to get the best SVM parameters. 

 

Method 3: Sequence and Structure Method 

 

Sequence and Structure Method (SOTO Method) is the combination of Method 1 and 

Method 2, simply add vectors together to get a total 140 + 40 = 180 vectors. After 

encoding, we use LIBSVM module to get the best SVM parameters. 

  

Method 4: 6-area Method 

 

Taking the single mutant residue as the center, together with the 30 residues before it and 

the 30 residues behind it, to compose a window of size 61 ( WS = 2n + 1, n=30 ). 

Fragment the window into six intervals of different lengths. The method is illustrated in 

Figure 2. We calculate the proportion of one amino acid within it’s own interval. For 

example, if there is one Alanine over fifteen other residues encountered in the interval, 

the attribute value represent the residue will be set to one fifteenths. We have six intervals 

coded with the twenty amino acids probability within each of them. To represent the 

mutant center, we add another twenty vectors. The twenty initial values were set to zero, 
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take value -1 in presentation of a wild residue and value +1 in presentation of a mutated 

residue. We encode total 120 + 20 = 140 vectors in this method. 

 

Method 5: The 11win Method 

 

We calculated the probability of a residue showing in a nine angstroms sphere centered in 

the mutant residue. For example, in dataset S1615, in the sequence interval of  

29~20 ++ of one single mutant protein, the probability of Alanine shows both in the 

sequence interval and the structural sphere is 5.42%. We can view the relationship 

between sequence neighbors and structure neighbors as the relationship between sequence 

fragments and probability distribution. The probability of a residue shows in structural 

distance less than nine angstroms and a particular sequence interval at the same time is 

more than 95% in sequence interval ± 1 ~ ± 2, 45~65% in sequence interval ± 3 ~ ± 5, less 

than 20% in sequence interval ± 6 ~ ± 30, others are randomly distributed (Table 3). The 

11win Method is illustrated in Table 1B. The SO method uses only the residues within the 

± 3 range. We extend it into ± 5 to acquire more information. Take the mutant residue as 

the center, in a window of size eleven ( WS = 2n + 1, n = 5 ), we can get a 20 × 11 matrix. 

The probability of a specific residue showing in the dataset itself is generated to be the 

attribute value. We encode 220 vectors in this method. The probabilities distribution of the 

three datasets are shown in Figure 3. 

 

Method 6: The di-peptide method 

 

The Di-peptide Method (The DipepX Method) replaces the single residues by di-peptide 

unit. A 20 × 20 “di-peptide” matrix is generated for assigning the attribute values. 
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Calculate the proportion of one specific “di-peptide” in the ± 30 interval of a single 

mutation over all the “di-peptides” in the dataset itself, and keep the information of single 

Wild/Mutant site into the twenty vectors as we previously introduced in SO method, there 

are 420 vectors in total in The DipepX method.   

 

Method 7: Sequence-only with PSSM, WS =7 Method 

 

Sequence-only with PSSM, WS =7 Method (The PSSM 7win Method) takes the single 

mutant residue as the center, the three residues before it and the three residues behind to 

compose a window of size seven ( WS = 2n + 1, n = 3 ). To show the composition of 

specific residues in a specific position, there are 20 × 7 possible combinations. Using 

PSSM profiles constructed by psi-blast, we encode 140 vectors in the form of PSSM 

probability in this method. Adding another twenty vectors in presentation of single 

Wild/Mutant site by value -1 and 1 as previously introduced, we encode a total of 140 + 

20= 160 vectors in this method.  

 

Method 8: Sequence-only with PSSM, WS = 11 Method 

 

Sequence-only with PSSM, WS = 11 Method ( The PSSM 11win Method ) takes the 

single mutant residue as the center, in a window of size eleven ( WS =2n + 1, n = 5 ). 

There are 20 × 11 possible ways of showing a specific residue in a specific position. 

Adding another twenty vectors in presentation of single Wild/Mutant site by value -1 and 

1 as previously introduced, we encode a total of 220 + 20 vectors in this method. 
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The support vector machine 

 

The support vector machine (SVM) is a binary classifier used especially when 

encountering a large dataset. The basic idea of SVM is to use a hyperplane to separate data 

points into two classes to achieve the maximum margin. If we have data points of the form:  

{( X1,C1 ), ( X2,C2 ) , ( X3,C3 ) , … ,( Xn,Cn )} 

where the Ci is either 1 or −1. 

The constant Ci denotes the class of a point Xi belongs to. Each Xi is a real vector, usually of 

values scaled to [ 0 , 1 ] or [ -1 , 1 ]. In the hyperplane 0=− bwX , the vector w is 

perpendicular to the plane, and the parameter b allows us to adjust the maximum margin. The 

hyperplane is forced to pass through the origin if parameter b is set to zero. The training data 

creates a hyperplane, which denotes the correct classification we would like the SVM 

classifier to distinguish eventually. In order to get the maximum margin of a classification of 

a dataset, we evaluated the plausible support vectors. The support vectors support the machine 

to judge their distance to the hyperplane. The parallel hyperplanes to the optimal hyperplane 

can be described by equations: 

1=− bwX  

1−=− bwX  

If the training data are linearly separable, we can select these hyperplanes so that there are no 

points between them and then try to maximize their distance. The distance between the 

hyperplanes is 2/|w|, so we want to minimize |w|. We adapt LIBSVM 2.82 built by Chih-Jen 

Lin ( http://www.csie.ntu.edu.tw/~cjlin/LIBSVM/ ) to perform all the experiments. The kernel 

function is the radial basis function (RBF). Before executing SVM, the dataset was divided 

into twenty folds according to its Protein Data Bank ID order for the 20 x cross-validation. 

Before the optimal parameters were generated, the dataset were pre-classified by the build-in 
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cross-validation function to ensure the parameters are in the plausible range for providing a 

standard of advanced optimization. The data points were scaled into the range of [-1 , +1], for 

larger variances sometimes dominate the classification and cause bias. 

 

Performance measures 

 

The performance is measured by the average accuracy and the average Matthews 

correlation coefficient (Baldi, Brunak et al. 2000). Matthews Correlation Coefficient (MCC) 

is defined by the following equation:  

))()()((
))(())((

FNTNFPTNFNTPFPTP
FNFPTNTPMCC

++++
−

=  

TP is the number of true positives, TN is the number of true negatives, FP is the number of 

false positives, and FN is the number of false negatives. The Matthews correlation coefficient 

has the advantage that it is independent of the choice of threshold. Accuracy (ACC) is defined 

by the following equation: 

TNFNFPTP
TNTPAccuracy

+++
+

= × 100% 

 

 

Results 

 

 

We measured the prediction performance by average accuracy and Matthews correlation 

coefficient of eight different methods. The results are shown in Table 2. Prediction of 

thermostability ( GΔΔ  ) using The 11win method performs better (average accuracy of 

86.6%) than Cheng’s methods in original dataset S1615 (average accuracy of 86.6%). In 
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dataset S2048, The 11win method performs better (average accuracy of 85.3%, the average 

accuracy of Cheng’s result is 85.1%). Moreover, we use sequence information only, while 

previous works use both sequence and structural information. We find that the prediction 

accuracy obtained using sequence alone is comparable to the accuracy obtained using both 

sequence and structural information.  

 

The Performance of the prediction 

 

A. Performance of methods using sequence information 

 

The average prediction accuracy achieves as high as 86.50% with MCC=0.6487 with The 

11win Method in S1615. The overall prediction accuracy achieves as high as 85.15% with 

MCC=0.6378 with The 11win Method in S2048. The overall prediction accuracy achieves as 

high as 86.83% with MCC=0.7780 with SO Method in S1396. 

 

B. Performance of methods using sequence and structure information  

 

The overall prediction achieves 86.6% accuracy with MCC=0.643 by SOTO Method in 

S1615. The reported highest prediction rate is currently 81% (Capriotti, Fariselli et al. 2004). 

The overall prediction achieves 85.8% accuracy with MCC=0.652 by SOTO Method in 

S2048. The reported highest prediction rate currently is 77%(Capriotti, Fariselli et al. 2005). 

The overall average prediction accuracy achieves as high as 86.83%, MCC=0.7780 with SO 

Method in S1396. The reported highest prediction rate currently is 85.5%(Saraboji, Gromiha 

et al. 2006).  
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C. Performance of methods using PSSM information 

 

We use PSSM information on the three datasets and the result of prediction power was not 

as high as other methods (85.6% of average accuracy with MCC=0.630 by The PSSM 7win 

Method in S1615). However, the results are consistent with three important observations: 

First, S1615 is the most distinguishing dataset among the three datasets. Second, with 

sequence information only, WS = 7 is better than WS = 11 in the three datasets, in both 

accuracy and MCC value, which is also consistent with previous study of Capriotti. Third, 

with PSSM information, the average standard deviation of prediction accuracy (0.006) and 

average standard deviation of MCC (0.012) were highly reduced in WS = 7 than in WS = 11. 

(Table. 2E, 2F) 

 

Comparison to previous work 

 

The reported highest prediction rate currently is 85~86%, MCC= 0.6 on S1615 (Cheng, 

Randall et al. 2006), our overall prediction achieves 86.6% accuracy with MCC=0.643 by 

SOTO Method. The reported highest prediction rate on S2048 is 77% (Capriotti, Fariselli et al. 

2005). Our overall prediction achieves an 85.8% accuracy, with MCC=0.652 in S2048. The 

reported highest prediction rate currently is 85.5% on S1396 (Saraboji, Gromiha et al. 2006). 

Our overall prediction achieves 84.6626% accuracy, with MCC=0.6728 in S1396. 
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Discussion 

 

 

In this section we are going to discuss the difference between datasets, the classification 

strategy, the effect of eliminating redundancy data, trade-offs and efficiency of information 

included in SVM coding, the parameters choosing and cross-validation strategy.  

 

Comparing between different datasets  

    

By comparing the experiment results (Table 2), we can find that combination of structural 

and sequence information can improve the performance of prediction accuracy. PSSM 

information was useful under sequence-only encoding feature. Using SVM, this work is 

robust and comparable with recent work using different approaches, under the same 

experimental condition. S1615 has the best distinguishing power and the least deviation from 

method to method. Seven out of the eight best prediction accuracy rate come from S1615 

dataset. S1615 has the least standard deviations of the prediction accuracy of the three 

datasets. 

  

We achieved the highest MCC value of 0.649 in S1615 by The 11win Method among all 

current works. The best performance within one dataset was boxed in Table 2. With our 

modifications, SO Method, TO Method and SOTO Method have better performances on the 

three datasets, better than Cheng did with their published dataset SR1496 (Table 2D). 

Compare the sequence information only methodz (all methods but TO Method and SOTO 

Method), the best yielding is the 11 Win Method in S1615, S2048, and the SO Method in 
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S1396.  

 

By calculating the probability of occurrence of a specific residue both in the structural and 

sequence neighborhood, we find that over 95% of the nearest neighbors of the mutant center 

also shown in the nine-angstroms-sphere. The probability of a residue showing in structural 

radius less than nine angstroms in sequence position 1±  and 2±  is 99.7% in average. 

 

Classification strategy 

 

The classification of stable mutants and non-stable mutants is intuitive; due to the uneven 

distribution of data, the dataset can not be equally classified in any other way. We believe that 

the rate of 86% is so far the most possible achievement in those datasets. Since the correct 

prediction of the direction of the stability change is more relevant than its magnitude.  

 

Effect of eliminating redundancy data 

 

In order to reduce the effect of repeated experiments on the same position of same protein, 

we manually removed the same mutation in the same position and left the first one as the 

representing data. Hence we got a dataset of 846 mutants from S1396 (Table 4). Compared to 

Table 2C, the effect of eliminating redundancy data is to reduce the prediction accuracy and 

MCC value.  

 

Trade-offs and efficiency 

 

We define efficiency as the prediction power divided by the quantity of vectors. 
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 vectorsof numbers
Accuracyefficiency =  

 

Hence TO methods are highly efficient since they can reach 97% average accuracy of the best 

of the other methods while using only 20% the number of vectors. This fact also implies the 

difficulty in the task of prediction without structural information available yet. 

 

Parameters and cross-validation  

 

We choose SVM as the classifier for it is robust especially on large datasets. With careful 

optimization of parameters, the prediction accuracy can be raised significantly. We did the 

pre-experiment using build-in SVM cross-validation function in order to increase the fidelity 

of the parameter value. We then divide the data into 20 folds and fix the partition fold in each 

experiment. The 20 folds were divided according to the PDB ID order. Hence the partition is 

repeatable and the experiment results are reproducible under the same conditions. 

 

 

Conclusion 

 

 

The prediction accuracy obtained by us using sequence alone is comparable to the 

accuracy obtained using both sequence and structural information by previous works. The 

advantage of our methods is the capability of predicting the stability of proteins using 

sequence information only while other information is not available yet due to the limited 

resource of discovering the protein structure. From the experiments we know that the two 
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most important variables of sequence-only encoding are the mutation residue itself and the 

residue composition of vicinity. The conclusion corresponds to the previous research and if 

we can use structural information in the future, the performance might still be improvable. 
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Tables 

 

 

Table 1A. Sequence-only Method with window size = 7.   

 A C D E F G H I K L M N P Q R S T V W Y

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .3 0 0 0 0

A .4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L 0 0 0 0 0 0 0 0 0 .2 0 0 0 0 0 0 0 0 0 0

A->V -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +1 0 0

L 0 0 0 0 0 0 0 0 0 .2 0 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .5 0 0 0

V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .1 0 0

 

For example. 3SSI, AGSALALTVAG AGSALVLTVAG  
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Table 1B. Sequence-only Method with window size = 11.  

 A C D E F G H I K L M N P Q R S T V W Y

A .4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G 0 0 0 0 0 .2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .3 0 0 0 0 

A .4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L 0 0 0 0 0 0 0 0 0 .2 0 0 0 0 0 0 0 0 0 0 

A>V -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +1 0 0 

L 0 0 0 0 0 0 0 0 0 .2 0 0 0 0 0 0 0 0 0 0 

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .5 0 0 0 

V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .1 0 0 

A .4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G 0 0 0 0 0 .2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

For example 3SSI, AGSALALTVAG AGSALVLTVAG 
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Table 2. The performance of different methods 

A.S1615 

Method SO TO ST 6-area 11win diPepX 

Accuracy 0.864 0.840 0.866 0.853 0.865 0.862 

MCC 0.646 0.571 0.643 0.632 0.649 0.652 

(C, γ) (1,0.5) (32,64) (1,0.25) (8,1) (1,0.5) (4,0.25) 

Average standard deviation of prediction accuracy =0.0078 

Average standard deviation of MCC =0.0204 

 

B.S2048 

Method SO TO ST 6-area 11win diPepX 

Accuracy 0.851 0.825 0.858 0.843 0.853 0.847 

MCC 0.639 0.564 0.652 0.616 0.639 0.635 

(C, γ) (4,0.25) (1,64) (1,0.25)  (4,0.25) (1,0.5) (64, )3105625.1 −×

Average standard deviation of prediction accuracy =0.0081 

Average standard deviation of MCC =0.0228  

 

C.S1396 

Method SO TO ST 6-area 11win diPepX 

Accuracy 0.868 0.826 0.861 0.819 0.841 0.847 

MCC 0.778 0.721 0.725 0.651 0.662 0.673 

(C, γ) (16,0) (1,64) (4,0.25) (2,1) (2,0.5) (1,0.5) 

Average standard deviation of prediction accuracy =0.015 

Average standard deviation of MCC =0.0397 
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D.SR1496 (Cheng, Randall et al. 2006) 

Method SO TO ST 

Accuracy 0.841 0.845 0.847 

MCC 0.59 0.6 0.6 

(C, γ) N/A N/A N/A 

Average standard deviation of prediction accuracy =0.0022  

Average standard deviation of MCC =0.0044  

 

E. PSSM 11win Method  

Dataset S1615 S2048 S1396 

Accuracy 0.854 0.850 0.822 

MCC 0.627 0.629 0.563 

(C, γ) (2,0.5) (1,0.5) (1,0.5) 

Average standard deviation of prediction accuracy =0.013 

Average standard deviation of MCC =0.029 

 

F. PSSM 7win Method 

Dataset S1615 S2048 S1396 

Accuracy 0.856 0.851 0.839 

MCC 0.630 0.634 0.660 

(C, γ) (2,0.5) (1,0.5) (2,0.25) 

Average standard deviation of prediction accuracy =0.006  

Average standard deviation of MCC =0.012.  

SO: Sequence-only Method, TO: Structure Only Method, ST: SO Method combine TO Method, 6-area: 6-area 

Method, 11win: 11win Method, diPepX: Dipeptide Method, PSSM 11win: SO Method, but uses PSSM 

information and WS = 11, PSSM 7 win: SO Method, but use PSSM information and WS = 7 
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Table 3. The probability of residues occur both in a radius of 0.9 nm and in different sequential fragments. 

 S1396 S1615 S2048 
-99~-90 0.00244 0.00202 0.00269 

-89~-80 0.00429 0.00480 0.00767 

-79~-70 0.00630 0.00539 0.00994 

-69~-60 0.02969 0.02700 0.01259 

-59~-50 0.01979 0.02072 0.01963 

-49~-40 0.03061 0.02780 0.02756 

-39~-30 0.01848 0.02961 0.02428 

-29~-20 0.05502 0.04385 0.04291 

-19~-10 0.07705 0.04835 0.07095 

-9 0.07286 0.05644 0.08148 

-8 0.09516 0.06613 0.09947 

-7 0.11147 0.07750 0.09735 

-6 0.11636 0.08045 0.11322 

-5 0.40130 0.49915 0.42962 

-4 0.58238 0.62552 0.53756 

-3 0.69439 0.74389 0.64656 

-2 0.99510 0.99620 0.98994 

-1 0.99619 0.99772 0.99947 

1 0.99673 0.99747 0.99682 

2 0.98749 0.99326 0.98624 

3 0.53779 0.78517 0.67883 

4 0.45894 0.68913 0.54708 

5 0.35345 0.59098 0.45449 

6 0.12452 0.16343 0.12962 

7 0.10386 0.12931 0.09735 

8 0.13866 0.09604 0.10476 

9 0.13594 0.07245 0.08941 

10~19 0.04828 0.05602 0.06862 

20~29 0.04045 0.05421 0.04396 

30~39 0.03539 0.06516 0.03169 

40~49 0.01163 0.01604 0.01740 

50~59 0.01386 0.01200 0.01714 

60~69 0.02327 0.03112 0.01164 

70~79 0.00364 0.01486 0.00899 

80~89 0.00483 0.00417 0.00576 

90~99 0.01288 0.00202 0.01280 
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Table 4. The performance of S1396 after reducing redundancy data. 

Method ACC MCC (c,γ) 

Sequence-Only 77.06 0.4341 (1,0.5) 

Structure-Only 72.91 0.3263 (32,0.3125) 

Sequence and Structure 77.66 0.4578 (1,0.125) 

DipepX 77.65 0.3445 (256, ) 4101 −×

ACC= accuracy 

MCC=Matthews correlation coefficient 

(c,γ) = the support vector machine parameters 
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Figure 1. The Structure-Only Method illustration. To calculate the probability of occurrence 

of a specific amino acid within the 9 angstroms sphere centered at the Cα atom of the mutant 

residue.  
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Figure 2. Taking the mutant residue as the center, the 30 residues before it and the 30 

residues behind it composed a window of size 61. Fragment the interval of ± 30 residues into 

6 areas, calculate the probabilities of twenty amino acids within these areas. Intervals aligning 

with X represents the mutation center is [ 5—10—15—X—15—10—5 ] . 
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(B) 

Figure 3. The probabilities distribution of residues occur in different sequence intervals and 

in the structural neighborhood. The structural neighborhood is defined as the distance of the  

Cα atom of it between the Cα atom of the mutant residue is shorter than 9 angstroms. (A) 

S1396 (B) S2048 (C) S1615 
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