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Prediction of Enzyme Class

student : Shih-Yu Chang Advisor : Dr. Jenn-Kang Hwang

Institute of Bioinformatics
National Chiao Tung University

ABSTRACT

Enzymes, as a subclass of catalysts, can be separated into six parts since they
have different chemical reactions and protein functions. Methods for predicting protein
function from structure are becoming more important than experimental knowledge. In
this study, we describe some coding schemes which include both sequence-based
and structure-based protein information. We_predict the enzyme class for different
coding schemes with 2 methods; one.is the 2-level SVM model method, one is the
Huffman tree model method which is described in this study. This Huffman tree model
using support vector machine (SVM) is provided to predict the enzyme classification
from the unknown- function enzymes. By comparing with these methods, Huffman
tree model is demonstrated useful on enzyme class predicting since we can obtain

unbiased and the best prediction accuracy of 36% using the Huffman tree model.
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INTRODUCTION

Catalysts, generally speaking, are specific in nature as to the type of reaction
they can catalyze. Enzymes, as a subclass of catalysts, are very specific in
nature. Each enzyme can act to catalyze only very select chemical reactions and
only with very select substances. An enzyme has been described as a "key" which
can "unlock" complex compounds. An enzyme, as the key, must have a certain
structure or multi-dimensional shape that matches a specific section of the "substrate"
(a substrate is the compound or substance which undergoes the change). Once these
two components come together, certain chemical bonds within the substrate molecule
change much as a lock is released, and just like the key in this illustration, the

enzyme is free to execute its duty once again.

The Enzyme Commission.number(EC number) is a numerical classification
scheme for enzymes, based on the chemical reactions they catalyze. As a system of
enzyme nomenclature, every EC numberis associated with a recommended name for

the respective enzyme.

Every enzyme code consists of the letters "EC" followed by four numbers
separated by periods. Those numbers represent a progressively finer classification of
the enzyme. For example, the enzyme tripeptide aminopeptidase has the code "EC
3.4.11.4", whose components indicate the following groups of enzymes: EC 3
enzymes are hydrolases (enzymes that use water to break up some other molecule),
EC 3.4 are hydrolases that act on peptide bonds, EC 3.4.11 enzymes are only those
hydrolases that cleave off the amino-terminal amino acid from a polypeptide, and EC

3.4.11.4 are those that cleave off the amino-terminal end from a tripeptide.

Strictly speaking, EC numbers do not specify enzymes, but enzyme-catalyzed

reactions. If different enzymes (for instance from different organisms) catalyze the
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same reaction, then they receive the same EC number. UniProt identifiers uniquely
specify a protein by its amino acid sequence. Here are some brief introduction of six

classes of enzymes in Appendix.

The enzyme nomenclature scheme was developed starting in 1955, when the
International Congress of Biochemistry in Brussels set up an Enzyme Commission.
The first version was published in 1961. The current sixth edition, published by the
International Union of Biochemistry and Molecular Biology in 1992, contains 3196
different enzymes.

Here are some related numbers such as the number of each enzyme class or the
number of subclass in each enzyme class listed in Table 1. There are more and more
unknown function proteins found in recent years (see Figure 1). To know the
classification of these enzymes.is important; we.can know what reactions they will do,
what kinds of catalytic sites theyiare, etc. However, enzymes are classified into six
classes by experimental supports so farrandiit takes a lot of time. If an enzyme can be
classified in computational way, it'is/faster, cheaper, and simpler to recognize the
enzyme class in the future.

Simulating the molecular and atomic mechanisms that define the function of a
protein is beyond the current knowledge of biochemistry and the capacity of available
computational power. Similarity search among proteins with known function is
consequently the basis of current function prediction (Whisstock and Lesk 2003). A
newly discovered protein is predicted to exert the same function as the most similar
proteins in a database of known proteins. This similarity among proteins can be
defined in a multitude of ways: two proteins can be regarded to be similar, if their
sequences align well [e.g. PSI-BLAST (Altschul, Madden et al. 1997)], if their

structures match well [e.g. DALI (Holm and Sander 1996)], if both have common
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surface clefts or bindings sites [e.g. CASTp (Binkowski, Naghibzadeh et al. 2003)],
similar chemical features or common interaction partners [e.g. DIP (Xenarios,
Salwinski et al. 2002)], or if both contain certain motifs of amino acids (AAs) [e.g.
Evolutionary Trace (Yao, Kristensen et al. 2003)]. An armada of protein function
prediction systems that measure protein similarity by one of the conditions above has
been developed. Each of these conditions is based on a biological hypothesis; e.g.
structural similarity implies that two proteins could share a common ancestor and that
they both could perform the same function as this common ancestor (Bartlett et al.,
2003).

We can take oxidoreductases for example. Here are six structures of some
enzymes known as oxidoreductases (EC No. 1) in Figure 2. All these enzymes are
classified as oxidoreductases, but they have low structure and sequence similarities
with each other which are shown in Table 2, and three of these proteins are even in
the same subclass. Since there are no_same, characteristics found in structures and
sequences, we want to check if itis possible to have characteristics in mechanisms.
We take three proteins for examples which are classified to the same subclass in
Figure 2 to see their mechanisms in the reactions. Here are the reactions of these
proteins in Table 3. We can also see the differences in other enzyme class such as in
Figure 3 and Figure 4. Methods mentioned above are not useful enough for predicting
enzyme class. Because of the diversity of protein structures and mechanisms, we can
not use DALI or CASTp to predict enzyme functions. Because of the low sequence
similarity between 2 proteins, using PSI-BLAST may not be reliable.

There are some methods to predict enzyme class. Dobson and Doig provided a
2-level SVMs model and the features they used include protein composition, surface
protein composition, secondary structures, general protein information, and some
metal atoms. They use not only sequence but also structure-based information as
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SVM features. In their paper, they can get a 35% accuracy of prediction, but that is not

good enough. Here we provide a Huffman tree model in order to get higher accuracy.

DATASET

498 enzymes (Dobson and Doig 2005) have been chosen using function
definitions obtained from DBGet (Fujibuchi, Goto et al. 1997) PDB Enzyme (Bairoch
2000) cross-links and structural relations from the Astral SCOP 1.63 superfamily level
dataset. The Astral lists were culled so that only whole protein structures with a SPACI
score (Brenner, Koehl et al. 2000) of 0.3 or greater could be selected for each
functional class. The distribution of each enzyme classification is listed in Table 4. All
proteins used in this work are listed in Appendix.

These 498 enzymes are taken to dopair wise multiple sequence alignments
(MSA) and almost 100% of alignments have less than 20% sequence identity. In each
functional class no structure contains a.domain from the same superfamily as any

other structure.

METHODS

In Figure 5, here is the flow chart which we need to individually introduce every
state in order.
Coding schemes

We use both structure-based and sequence-based protein information as our
SVM features.

At structure-based protein information part, there is a website

http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/CSS/makeEbiHtml.cqi?file=form.

html which is used to provide us some information as structural protein information.
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This catalytic site search (CSS) web server allows us to submit protein structures and
search them using the related bank of structural templates(Torrance, Bartlett et al.
2005), in order to identify residue patterns resembling known catalytic sites. Structural
templates describe small groups of residues within protein structures, such as the
Ser-His-Asp catalytic triad in the serine proteases (see Figure 6). Structural templates
can be used with a template searching program to search a protein of unknown
function for residue patterns whose function is known. This server uses a library of
templates describing catalytic sites, derived from the Catalytic Site Atlas (CSA).

The catalytic site atlas is a database describing catalytic sites in enzymes of
known structure. The annotations in the CSA are taken manually from the scientific
literature. This annotation is extended to related enzymes in the following manner: the
sequence similarity searching program PSI-BLAST is used to search for relatives of
the enzymes which have been manually annotated; relatives which have conserved
catalytic residues are selected; the.catalytic residue annotation is transferred from the

manually annotated entries to their selected relatives.

Each literature entry together with its annotated relatives constitutes a CSA family.
For each member of a given family, a structural template is constructed representing
its catalytic residues. An all-against-all superposition is carried out on templates within
the family, in order to determine structural distances between all templates, quantified
by RMSD/E-value. The template with the lowest RMSD/E-value from all other family
members is the representative template for that family. The representative templates
for a non-overlapping set of 147 families are used for searching by this server (shown

in Appendix).

All templates are capable of matching similar residue types: Glu can match Asp,

GIn can match Asn and Ser can match Thr. Additionally, certain equivalent atom types
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can match one another. For example, the two oxygens in the carboxyl group of Glu
are chemically equivalent to one another, but have different names in PDB files. They

are permitted to match either way around.

This server uses the template matching program Jess(Barker and Thornton 2003)
to search for matches to structural templates. Jess does not detect every possible
combination of residues within a protein that match to a given template. That would
take too much time. Instead, Jess only detects those hits where all inter-atom
distances are within 6 A of the equivalent inter-atom distances in the template. Only
the best hit that Jess obtains between a given template and a given protein is reported.
A summary of all hits obtained by Jess is provided, in order of E-value. An example of
the output is shown as Figure 7. Hererarerthe expansions of each column: hit rank
column (hits are ranked by their E+values); template column (each template is based
upon an entry in the CSA, which corresponds to a;single PDB code); description in
PDBsum column (a brief descriptionof the protein structure upon which the template
is based); RMSD column (root mean square deviation between the template atoms
and the matching atoms in the target); E-value column (the E-value is the number of
hits of this quality or better that you would expect to obtain at random. E-values are
useful because the statistical significance of RMSD values is not equivalent from one
template to another); assessment column (an assessment of how likely the hit is to be
meaningful. It is based solely on the E-value. E-value < 1e-8: Highly probable; 1e-8 <
E-value < 1e-5: Probable; 1e-5 < E-value < 0.1: Possible; E-value > 0.1: Unlikely);
details column (which provides a link to further details of the match, given further
down the page); residues in template (which describes the residues in the template
structure which matched your query); matching residues in query structure (which

shows which residues in your query matched which residues in the template); raw



Jess output (At the bottom of the output page there is a link to the raw output
produced by Jess(Barker and Thornton 2003)).

Catalytic site atlas (CSA), a resource of catalytic sites and residues identified in
enzymes using structural data, provides catalytic residue annotation for enzymes in
the Protein Data Bank. In CSA, many 3-D templates are created as specific 3-D
conformations of small numbers of residues. The enzyme active-site templates are
used in this work. Each of them consists of one, two or three residues that are known
from the literature to be catalytic, plus one or more additional residues whose 3-D
positions are highly conserved relative to the catalytic residues. It is available online at

http://www.ebi.ac.uk/thornton-srv/databases/CSA.

Several different protein compositions is used to generate sequence- based
information for getting better results on SVM.

A general global sequence descriptor based on the protein composition coding
has been used to discriminate protein properties in a number of applications. The C

coding means the usual amino acid composition. The D coding gives the dipeptide

composition. We use YX, to denote the partitioned amino acid composition in which

the sequence is partitioned into n subsequences of equal length, and each fragment

encoded by the particular amino acid composition Y. For example, the notation CX;
denotes that the sequence is divided into 5 subsequences, each of which is encoded
by C (note that CX, is equivalentto C and we use only X, to substitute CX,).
The coding YX, provides information about the local properties of sequences.

Another generalized sequence composition is the n-gap dipeptide compositions,

denoted by Dj,, in which we compute the composition of the sequence of the form,


http://www.ebi.ac.uk/thornton-srv/databases/CSA

a(x),b where a and b denote two specific amino acid types, and (x), denotes n

intervening amino acids of arbitrary type X. Note that in the special case of n=0,

Dj, is equivalentto D.
In addition, we use N,C to denote the amino acid composition of a sliding

window of length | centered on a given amino acid type. The N,C provides

information of the flanking sequences of a given amino acid type. Note that when |

is the length L of the whole sequence, N, Creducesto C. This coding schemes are

list in Table 5.

Besides, we regroup the amino acids into smaller number of classes according to their
physico-chemical properties. In thisiwork, we use the following classification schemes
of the amino acids based on their physico-chemical properties - we use H, for polar
(RKEDQN), neutral (GASTPHY) and hydrophobic'(CVLIMFW) (Dubchak, Muchnik et
al. 1999); Vi for small (GASCTPD), medium (NVEQIL) and large (MHKFRYW)
(Dubchak, Muchnik et al. 1999); Z, for of low polarizability (GASDT)(Dubchak,
Muchnik et al. 1999), medium (CPNVEQI) and high (KMHFRYW) (Dubchak, Muchnik
et al. 1999); P for low polarity (LIFWCMVY), neutral (PATGS) and high polarity
(HQRKNED) (Dubchak, Muchnik et al. 1999); Fo for acidic (DE), basic (HKR), polar
(CGNQSTY) and nonpolar (AFILMPVW); Sv for acidic (DE), basic (HKR), aromatic
(FWY), small hydroxyl (ST), sulfur-containing (CM) and aliphatic (AGPILV); E. for
acidic (DE), basic (HKR), aromatic (FWY), small hydroxyl (ST), sulfur-containing (CM),
aliphatic 1 (AGP) and aliphatic 2 (ILV). For clarity, these coding schemes are

summarized in Table 6.

Support vector machines



Support vector machines (SVMs) are a set of related supervised learning
methods used for classification and regression. Their common factor is the use of a
technique known as the "kernel trick" to apply linear classification techniques to

non-linear classification problems.

Suppose there are some data points which need to be classified into two classes.
Often we are interested in classifying data as part of a machine-learning process.
These data points can be multidimensional points. We are interested in whether we
can separate them by a hyperplane (a generalization of a plane in three dimensional
space to more than three dimensions). As we examine a hyperplane, this form of
classification is known as linear classification. We also want to choose a hyperplane
that separates the data points "neatly",; with,maximum distance to the closest data
point from both classes -- this distance is.called the margin. We desire this property
since if we add another data pointto the points we already have; we can more
accurately classify the new point since the separation between the two classes is
greater. Now, if such a hyperplane exists, 'the hyperplane is clearly of interest and is
known as the maximum-margin hyperplane or the optimal hyperplane, as are the

vectors that are closest to this hyperplane, which are called the support vectors.

We consider data points of the form: {(x1,01), (X2,€2), -5 (Xny &)} where
the ¢ is either 1 or =1 -- this constant denotes the class to which the point x; belongs.
We can view this as training data, which denotes the correct classification which we
would like the SVM to eventually distinguish, by means of the dividing hyperplane,

which takes the form

w-X—b=0.



As we are interested in the maximum margin, we are interested in the support vectors
and the parallel hyperplanes (to the optimal hyperplane) closest to these support
vectors in either class. It can be shown that these parallel hyperplanes can be

described by equations

w-x—b=1, (1)
w-x—b=—-1. (2)

We would like these hyperplanes to maximize the distance from the dividing
hyperplane and to have no data points between them. By using geometry, we find the
distance between the hyperplanes being 2/|w|, so we want to minimize |w|. To exclude

data points, we need to ensure that for all i either

w-x;—b>1 or

w-x; —b< -1
This can be rewritten as:
glw-x;—b)=1 1<i<n. (3)

The problem now is to minimize |w| subject to the constraint (3). This is a quadratic

programming (QP) optimization problem.

After the SVM has been trained, it can be used to classify unseen 'test' data. This is

achieved using the following decision rule;

1, ifw-x+6=0
-1, ifw-x+b<0
Writing the classification rule in its dual form reveals that classification is only a

function of the Support vectors, i.e. the training data that lie on the margin. Here is the
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picture in Figure 8 to describe the operation of support vector machines.

2-level support vector machine (SVM) model

The first level SVM classifiers comprise a number of separate SVM classifiers,
each based on a specific sequence coding as described in the previous section. For
the sake of notation simplicity, we will use the coding symbol to represent the SVM
classifier based on that coding. For example, we will denote the SVM system

comprising 3 classifiers, say, A, B and C by the shorthand symbol A+B+C |n

this work, the first level classifiers consist of the following SVMs:

9 6
PRGEDIEDH PN
ke k=0

ros s where S={HsPyF:.S,E} ang S'={7....15} Each

SVM will generate a probability distribution(Yu;.Wang et al. 2003; Yu, Lin et al. 2004)
of the subcellular localization based on its particular sequence coding. A second SVM
(i.e. the jury SVM) is used to process these probability distributions to generate the

final probability distribution and the location-with the largest probability is used as the

prediction. The two-level SVM system is shown schematically in Figure 9.

Huffman tree model

Because of the unbalanced dataset which would lead to high accuracy but all the
predictions focusing on just one classification, a Huffman tree model is constructed.
Huffman coding is a method of lossless data compression, and a form of entropy
encoding. The basic idea is to map an alphabet to a representation for that alphabet,
composed of strings of variable size, so that symbols that have a higher probability of
occurring have a smaller representation than those that occur less often. The
Huffman's algorithm, key to Huffman coding, constructs an extended binary tree
(Huffman tree) of minimum weighted path length from a list of weights.

11



A Huffman tree is a binary tree which minimizes the sum of f(i)D(i) over all leaves i,
where 1(i) is the frequency or weight of leaf i and D(i) is the length of the path from the
root to leaf i. In each of the applications, f(i) has a different physical meaning. Here is
an example of Huffman tree in Figure 10. It has the following properties: every internal
node has 2 children; smaller frequencies are further away from the root; the 2 smallest
frequencies are siblings.

In this work, every leaf on the Huffman tree means the classification of enzymes;
the frequencies of each leaf mean the number of its enzyme class. According to
previous statement, we have six nodes (leaves) at beginning and each of them has its
own frequency.

The Huffman tree structure contains nodes, each of which contains a character,
its frequency, a pointer to a parent node, and pointers to the left and right child
nodes.The tree can contain entries for all 6:possible leaf nodes and all 5 possible
parent nodes. At first there aré no parent-nodes. The tree grows by making
successive passes through the existing nodes. Each pass searches for two nodes that
have not grown a parent node and that have the two lowest weights. When the
algorithm finds those two nodes, it allocates a new node, assigns it as the parent of
the two nodes, and gives the new node a frequency count that is the sum of the two
child nodes. The next iteration ignores those two child nodes but includes the new
parent node. The passes continue until only one node with no parent remains. That
node will be the root node of the tree. We can see the contribution of the Huffman tree
step by step in Figure 11.

The Huffman tree model (see Figure 12) in this work is based on the Huffman tree
previously constructed. Every node in this Huffman tree has a corresponding file. At a
terminal node, the file is made including all data of the enzyme classifications; on the
other hand, at an internal node, the file is made merging 2 files from the children of

12



this node. Besides, each internal node has an additional module. These
corresponding modules include a SVM training set to help predict the enzyme
classification.

Every input data should be put into the Huffman tree model from the tree root. By
using 2-classification support vector machines, a decision must be made to predict
which child the input data belongs to. Then this child node would be taken as a new
tree root, and the steps above would be repeated until the new root has no child
anymore. In the end the enzyme classification of the node the input data finally

belongs to means the enzyme classification we predict.

RESULTS

Since there are many coding schemes in the protein structure, which coding
schemes can be chosen to predict enzyme:classification is important.

First, we calculate the accuracies of different coding schemes using multi-class
SVMs and get the highest performance of 37.55% (shown in Table 7). Although the
accuracy is higher than the one from Dobson and Doig, we can see the difference
between these two: all predictions using multi-class SVMs are biased to EC 1, 2, 3,
which class size are largest 3 in six enzyme classes (shown in Figure 13).

Second, we compare with the accuracies of the same method with recent
research (Dobson and Doig 2005) but different coding schemes in order to make sure
if such coding scheme can be used to predict enzyme class. The results are shown in
Table 8. They all have similar accuracies with the range from 33% to 39%. Here is
also accuracies comparison with different coding schemes in each enzyme class
shown in Figure 14.

Then, we have to decide which coding schemes are used at each set in the
Huffman tree model. Results for the best set accuracies in Huffman tree model with

13



each of these coding schemes are listed in Table 9. Since pursuing high accuracies in
the model is not good enough for this predicting work, we take the best set MCC to
generate this model. Results for the best set MCC in Huffman tree model with each of
these coding schemes are listed in Table 10.

We generate Huffman tree model with different coding schemes at different set,
such as C coding in set 7, D in set 8, X2 in set 9, H3X5 in set A, and finally N15C in
set B. We pick up coding schemes in every set, some according to set MCC and some
according to set accuracy in order to make a set of combinations to get the better
accuracies in final model. All of combinations and the results for these combinations
are listed at Table 11. Here is a comparison between the 2-level SVM method

(Dobson and Doig 2005) and the Huffman tree method in this work in Figure 15.

DISCUSSION

Here are accuracies of different: methods listed in Table 12 and Figure 16. We can
use only multi-class SVMs to get'best prediction of almost 40% accuracy, but the fact
is that using multi-class SVMs to predict enzyme class cause the biased prediction.
That is why we have to find the other way to do the un-biased prediction. We then use
2-level SVM model in order to get high accuracy and un-biased prediction at the same
time. Using this model can have a 35% accuracy and a un-biased prediction (Dobson
and Doig 2005) but it seems not enough.

There are some advantages for using Huffman tree model of predicting enzyme
classification. Support vector machines are used for 2-classification distinguishing
problem at first; all of other SVMs (such as multi-class SVMs) were created based on
2-class SVMs which are the simplest and effective classifiers. Predictions by using
2-classification SVMs seem reasonable in this work. Since the Huffman tree can
decide which child the data belong to from two children at a time, the Huffman tree

14



model is most suitable using 2- classification SVMs.

The dataset in this work is unbalanced with the size of each EC number.
Hydrolases, the largest size in this dataset, have 160 out of 498 enzymes (almost
one-third) and ligases, the smallest size in this dataset, have only 20 which in size is
one-eighth time than hydrolases. The prediction by using multi-class support vector
machine would cause the extremely biased prediction, which means all of predicting
data may lead to the same enzyme classification, hydrolases, and still get the
prediction accuracy of 33%. Here are the results using multi-class SVMs in Table 7. It
can get a 37% above accuracy by guessing only hydrolases and other enzymes which
have more members in the dataset like oxidoreductases.

To avoid this biased prediction, Huffman tree model is used to solve the problem
with unbalanced size of each classification. Every time we pick two nodes with
smallest frequencies and create a new node gathered by these two nodes, we can
have the assumption following: these two nodes have similarly small frequencies. The
Huffman tree model can balance‘the size of two children of an internal node.

Two methods are described. One is 2-level SVM (Dobson and Doig 2005)
method, which would at beginning separate one multi-classification problem into 15
one-class versus one-class sub-problems, then generate the prediction of the 15
sub-problems by using a one-versus-rest support vector classification approach.
Another method is Huffman tree model. We successfully reduce 15 sub-problems to a
five-set model. In other words, we can get similar accuracies during only five
sub-problems in this work and it is important because the reduction of the number of
sub-problems may cause the reduction of the computational time and space.

There are still some advices to get the improvement about the Huffman tree
model. In Table 9 and Table 10, we can get neither high set accuracy nor set MCC.
Although we can not have better prediction in oxidoreductases (EC 1) and
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transferases (EC 2), here are the better predictions in hydrolases (EC 3), lyases (EC
4), and isomerases (EC 5). It tells us as long as we improve the accuracies of first
layer in Huffman tree model we get higher total accuracy.

In addition, we can contribute other tree models in order to get better
performance.

However, there are still something interesting discovering. In my coding schemes,
both sequence-based and structure-based protein information are used. From Table 9
to Table 10, we can find out that using CSA templates (based on structural information)
can not get better performance in our Huffman tree model. In common sense,
structural information is considered more powerful since the same catalytic sites in
proteins have more probabilities to be classified to the same enzyme class.

This discovery can due to this reason: templates some of which may be useless are

used, and it is necessary to select useful templates to get higher performance.
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TABLES

Table 1. The numbers of members and subclass in each enzyme

No. Class Subclass number  Current membesr
1  Oxidoreductase 22 1286
2 Transferase 9 1245
3 Hydrolase 13 1385
4 Lyase 7 422
5 Isomerase 6 167
6 Ligase 6 140
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Table 2. Matrix of sequence identity (colored black) and Z-score (colored red)

calculated between each other

1btl  2nac lapx 1ldm 1mbb 1gal
bt 7.9 4.2 8.3 3.8 6.9 7.5
2nac 1.6 8.1 6.2 7.3 5.6 4.2
lapx 3.3 1.6 7.6 153 5.6 6.9
lldm 2.0 4.4 1.6 8.0 8.8 2.8
1mbb 2.0 1.2 2.6 3.1 8.0 2.5
lgal 26 2.3 2.0 2.0 2.3 8.5
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Table 3. Reactions of each protein, where the reaction occurs drown in red cycle

PDB ID Reaction mechanisms
(EC No.)

1ldm
(1.1.1.27)

- @)

(S)-lactate + NAD* = pyruvate + NADH + H*

1mbb
(1.1.1.158) .
UDP-N-acetylmuramate + NADP* = NADPH + Ht+
UDP-N=acetyl-3-O-(1-carboxyvinyl)-D-glucosamine
1qgal
" W
(1.1.3.4) g i M _ i 8 .
-D-glucose + Oy = D-glucono-1,5-lactone + HyO»
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Table 4. The size of each enzyme group in the dataset

Enzyme Group (EC No.) Group size
Oxidoreductases (1) 79
Transferases (2) 128
Hydrolases (3) 160
Lyases (4) 60
Isomerases (5) 51
Ligases (6) 20
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Table 5.

Symbol  Properties Dim
C Protein composition of 20 amino acids 20
D Protein composition of 20 amino acids by 2 400
continuous amino acids
Djn Protein composition of 20 amino acids by 2 amino 400
acids between which there are n other amino acids
N,C the amino acid composition of a sliding window of 400
length centered on a given amino acid type. This
provides information of the flanking sequences of
a given amino acid type
Xn Protein composition of 20 amino acids of n n* 20

divisions
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Table 6.

Symbol Properties Regrouping Dim
(UnXs) member
HsXs Hydrophobicity 135
polar RKEDQN
neutral GASTPHY
hydrophobic CVLIMFW
V3Xs Normalized van der Waals volume 135
0.00-2.78 GASCTPD
2.95-4.00 NVEQIL
4.43-8.08 MHKFRYW
Z3Xs Polarizability 135
0.000-0.018 GASDT
0.128-0.186 CPNVEQIL
0.219-0.409 KMHFRYW
P3Xs Polarity 135
4.9-6.2 LIFWCMVY
8.0-9.0 PATGS
10.4-13.0 HQRKNED
FsXs 4 groups : 320
acid DE
base HKR
polar CGNQSTY
nonpolar AFILMPVW
SoXs 7 groups : 245
acid DE
base HKR
amide NQ
aromatic FWY
Small hydroxyl ST
sulfur CM
aliphatic AILVGP
ExXs 8 groups : 320
acid DE
base HKR
amide NQ
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aromatic

FWY

small hydroxyl ST
sulfur CM
aliphatic 1 AGP
aliphatic 2 ILV
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Table 7. accuracy comparison with different coding using multi-class SVMs.

Protein info. Accuracy (%)
C 34.94
D 34.94
Dj1 34.94
Dj, 34.94
Djs 33.33
Dijs 34.54
Dijs 34.74
Dje 35.94
N3C 34.94
NsC 35.94
N,C 32.73
NoC 35.94
NuC 36.55
N13C 35.74
N;5C 35.74
E2Xs 33.94
F3Xs 34.14
H3Xs 34.94
P3Xs 33.94
SoXs 33.53
V3Xs 33.94
Z3Xs 33.33
Xs 36.14
X3 37.55
X4 36.95
Xs 34.14
X 33.33
X7 33.13
Xg 35.74
Xo 32.73

CSA 33.60
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Table 8. Rank accuracy comparison with the same method but different protein

information
Cumulative accuracy (%) by rank

Protein info. 1 2 3 4 5 6
Doig 34.94 60.00 77.00 86.00 96.00 100.00
C 39.56 49.84 76.10 89.16 95.98 100.00
D 34.14 60.04 74.50 86.95 95.98 100.00
Dj1 34.34 59.04 74.30 86.95 95.78 100.00
Dj, 33.33 59.44 74.70 87.15 95.98 100.00
Djs 32.93 58.63 73.29 85.94 95.98 100.00
Dj4 35.54 61.65 75.70 86.35 95.98 100.00
Djs 32.73 58.23 73.49 83.73 95.78 100.00
Dje 34.34 59.04 75.70 86.35 95.98 100.00
N3C 31.53 59.44 73.90 85.34 95.98 100.00
NsC 33.73 61.45 75.30 88.15 95.98 100.00
N,C 38.35 64.86 79.32 88.15 96.59 100.0
NoC 34.14 59.44 74.90 85.94 95.78 100.00
Ny, C 34.14 59.24 76.91 86.55 95.98 100.00
N;3C 33.94 59.44 74.94 85.34 95.98 100.00
N;sC 35.34 61.24 76.91 85.94 95.58 100.00
EoXs 32.73 57.63 73.69 83.94 95.78 100.00
F3Xs 33.53 58.03 74.30 87.15 95.98 100.00
H3Xs 38.35 61.85 76.10 85.94 95.78 100.00
P3Xs 32.53 58.63 74.30 85.14 95.98 100.00
S2Xs 34.14 59.04 74.30 85.34 95.98 100.00
V3Xs 36.35 61.24 73.69 84.94 95.98 100.00
Z3Xs 34.94 62.65 77.31 87.55 95.98 100.00
X3 36.95 61.04 74.10 84.94 95.98 100.00
X3 33.53 62.05 79.12 86.75 96.18 100.00
X4 36.75 61.04 76.31 88.76 95.78 100.00
Xs 36.35 60.44 75.90 84.94 95.78 100.00
Xs 35.54 60.04 76.10 88.15 95.98 100.00
X7 36.14 63.45 77.71 89.36 95.58 100.00
Xs 35.34 61.65 77.31 87.75 95.98 100.00
Xo 31.12 60.24 75.10 85.34 95.98 100.00

CSA 30.32 43.17 61.85 71.89 84.54 100.00
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Table 9. Set accuracy (%) of each protein information

Protein info.  set7 set8 set9 setA setB
C 71.8 61.8 72.5 64.3 59.4
D 73.2 59.5 66.2 65.3 58.6
Dj1 73.2 55.7 69.6 65.6 58.8
Dj, 73.2 61.8 69.1 63.2 59.8
Djs 73.2 58.0 66.7 63.9 59.4
Dja 73.2 59.5 65.7 67.4 58.6
Djs 71.8 55.0 71.0 67.4 59.2
Dje 73.2 57.3 65.7 64.6 60.4
N3C 73.2 54.2 65.7 65.3 59.0
NsC 71.8 58.0 68.1 66.7 59.0
N,C 71.8 59.5 70.0 65.3 58.6
NoC 71.8 57.3 71.0 66.3 59.2
N;C 71.8 61.1 68.1 68.7 60.0
N13C 71.8 67.2 69.1 67.4 60.8
N5C 71.8 618 69.1 69.4 60.8
EoXs 73.2 557 68.6 64.9 59.0
F3Xs 71.8 55.0 63.3 67.4 58.8
HsXs 74.6 59.5 68.1 63.6 58.8
P3Xs 73.2 60.3 62.3 64.3 59.0
S, X5 74.6 56.5 66.2 65.6 59.4
V3Xs 73.2 55.7 69.6 62.9 59.6
Z3Xs 73.2 55.0 67.1 64.6 60.0
X, 71.8 63.4 72.0 66.7 58.4
X3 73.2 58.8 73.4 63.6 59.2
X4 73.2 56.5 74 .4 66.3 58.6
Xs 73.2 58.0 72.9 66.0 59.0
Xs 73.2 58.8 72.0 65.3 58.8
X7 73.2 57.3 69.6 65.3 58.6
Xg 71.8 55.7 72.0 64.9 58.8
Xo 73.2 60.0 72.5 65.3 59.6
CSA 73.2 62.3 67.1 59.8 59.4
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Table 10. Set MCC (%) of each protein information

Protein info.  set7 set8 set9 setA setB
C 27.2 19.1 35.8 22.0 13.3
D 19.1 18.8 31.6 27.9 10.8
Dj1 27.2 19.0 33.4 29.7 10.1
Dj 27.2 18.7 28.2 23.6 11.5
Djs 19.1 15.2 214 23.1 11.0
Dja 27.2 23.5 24.8 23.6 14.1
Djs 27.2 18.1 28.3 28.0 12.1
Dijs 19.1 15,7 30.0 30.8 14.4
N3C 14.7 14.8 28.2 25.6 11.3
NsC 18.0 12.1 34.6 27.1 10.8
N,C 14.4 19.3 39.3 24.1 8.8
NoC 15.3 28.0 37.2 25.4 13.3
N;C 13.2 24.1 37.0 25.3 14.9
N13C 19.1 34.7 35.9 24.0 11.8
N15C 21.4 30.4 37.0 25.1 17.9
EoXs 19.1 26.2 38.2 25.3 9.6
F3Xs 19.0 18.0 15.8 24.5 10.7
HsXs 13.2 23.4 33.6 27.2 11.3
P3Xs 20.7 174 16.5 23.1 10.8
S, X5 28.7 22.3 33.3 29.3 12.1
V3Xs 19.1 21.9 30.6 28.8 11.2
Z3Xs 30.5 24.1 27.7 22.1 10.7
Xa 19.1 23.0 43.6 28.0 11.9
X3 25.4 17.7 37.9 27.6 13.8
X4 13.2 24.3 45.2 23.1 15.0
Xs 13.2 17.2 36.5 23.9 11.9
Xs 19.1 15.1 34.6 21.2 12.1
X7 13.2 18.0 31.9 27.4 14.3
Xg 19.1 27.3 47.2 25.6 11.9
Xo 21.4 16.7 34.9 27.6 11.0
CSA 10.7 25.7 34.6 19.5 12.4
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Table 11. Accuracies using Huffman tree model

Coding scheme in different set

Set 7

Z3X5
Z3X5
Z3X5
Z3X5
Z3X5
Z3X5
Z3X5

Set 8

N13C
N15C
N15C
N13C
N13C
N13C
N15C

Set9

X4
N9C
X4
X4
X4
X8
X2

Set A

S2X5
N11C
N11C
Dj6
Dj1
Dj1
N11C

SetB
Dj6
Dj6
Dj6
Dj6
Dj6
Dj6

N15C

Accuracy(%)

34.94
36.14
36.14
34.34
34.34
33.94
35.54
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Table 12. Accuracy comparison with different methods and different protein

information
Method Coding schemes Accuracy(%)
2-level SVM from Dobson & Doig 35.00
2-level SVM C 39.56
SVM only X3 37.55
Huffman tree model Z3X5+ N15C+N9C+N11C+Dj6 36.14
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FIGURES

Figure 1. The number of proteins with unknown function in PDB

The number of proteins with unknown function in PDB
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Figure 2.Examples of oxidoreductases

1apx (EC 1.11.1.11)

1ldm (EC 1.1.1.27) 1mbb(EG1.1.1.158) 1gal (EC 1.1.3.4)
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Figure 3. Examples of transferases

2tps (EC 2.5.1.3)

1at1 (EC 2.1.3.2) 1pfk (EC 2.7.1.11) 10g1 (EC 2.4.2.31)
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Figure 4. Example of hydrolases

1apy (EC 3.5.1.26) 1chd (EC 3.1.1.61)

1ber (EC 3.4.16.6) 1sca (EC3.4.21.6) 5cpa (EC 3.4.17.1)
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Figure 5. Flow chart

PDB file

A 4

Input coding schemes

A 4

SVM

2-level SVM model/

Huffman tree model

A 4

Result
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Figure 6. Example: CSA template of trypsin
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Figure 7. CSS example of the output

oETCl(Hl site search results

Layout of these results

These results begin with a summary of all template matches to your query structure. This
summary lists the CS5A entry that the template was based on, and the guality of the match.
Further down the page, the details of the residues invalved in each template match are described.
Clicking an the Details link for & match in the summary section will take you straight to the
details far that match. Be aware that this server returns all matches, regardless of their quality.
The Assessment column only gives a very rough guide to the accuracy of & match. You should
laok at bath the E-value and RMSD of a match before investigating it further.

Summary
Hit rank Template Description in POBsUm EMSD E-value Assessment
1 lapy Aspartylalucosaminidase 1.18 |0.012 Possible Dietails
2 Aciw Serctonin n-acetyltransfe... 1.44 |0.02 Possible Dietails
3 2npx Naih peroxidase {e.c.1.11... 125 |0.04 Possible Dietails
4 3nse Nitric oxide synthase 1.37 |0.085 Possible Cietails
o 1zrm L-Z-haloacid dehalogenase 1.03 0099 Possible Details
5] 152i Purine trans deoxyribosylase 1.13 |0.27 Unlikely Cietails
Full details
Hit rank 1
CSA entry for termplate Template EMSD  E-value |[Assessment
lapy Aspartylglucosaminidase 1.18 0.012 Possible

Residues in template 1apy

Matching residues in query structure 1fph

Residue name  |Residue number  |Chain | |[Residue name Residue number Chain
SER 45 A SER 36 A
THR 183 B SER s} A
THR 201 B THR 39 A
THR 234 B ALA 40 A
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Figure 8. Support vector machine
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Figure 9. 2-level SVM

A 4

Feature selection

SVM; SVM; | | SVMs
V1 V2 V15
SVM

Result
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Figure 10. example of Huffman tree
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Figure 11. The construction of the Huffman tree step by step

©)20 || (5)51 @60 || (179 || @128 || (3)160
(6)20 (5)51
@ (4)60 (1)79 2128 | | (3)160
(6)20 (5)51
o [
(1)79 (2)128 (3)160
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(6)20

(5)51

(4)60

(1)79

(2)128

(6)20

(3)160

(6)20

(4)60

(3)160

(1)79

(2)128
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Figure 12. Huffman tree model in this work

{) ]
{ ] B {] ]
{] l ] A
g 0 | 1
7
Lyase ([somerasel| Ligase|Hydrolase|| Tranferase| |Oxidoreductass
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Figure 13. Class accuracies comparison with 2 different methods (multi-class SVM

and 2-level SVM model)

100 Oonly SVM ( X3)
B 2-level SVM model ( Doig )
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Figure 14. Class accuracies comparison with different coding schemes using 2-level

SVM method

00 | M 2-level SVM model (C)
[J2-level SVM model ( N7C)
[J2-level SVM model ( H3X5)

80 M 2-level SVM model ( Doig )

60 |

40

20 |

0 | =1
7 5 6
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Figure 15. Class accuracies comparison with different methods (2-level SVM model

and Huffman tree model)

100 |- B 2-level SVM model ( Doig )
O Huffnab tree model ( set 1)
B Huffnab tree model (set 2)

80
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Figure 16. Class accuracies comparison with all methods

Oonly SVM ( X3)

M 2-level SVM model (C)

B 2-level SVM model ( Doig )
80 1 O Huffnab tree model ( set 1)
B Huffnab tree model ( set 2)

100 |

60 |

20
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APPENDIX

Description of each enzyme classification

Group Reaction catalyzed Typical Enzyme
reaction example(s) with
trivial name
EC 1 To catalyze oxidation/reduction reactions; AH+B — A+ Dehydrogenase,

Oxidoreductases

EC2

Transferases

EC3

Hydrolases

EC4

Lyases

EC5

Isomerases

EC6

Ligases

transfer of H and O atoms or electrons

from one substance to another

Transfer of a functional group from one
substance to another. The group may be
methyl-, acyl-, amino- or phospate group
Formation of two products from a
substrate by hydrolysis

Non-hydrolytic addition‘or-removal of
groups from substrates: C-C, C=N, C-O or
C-S bonds may be cleaved
Intramolecule rearrangement, i.e.
isomerization changes within a single
molecule

Join together two molecules by synthesis
of new C-O, C-S, C-N or C-C bonds with

simultaneous breakdown of ATP

BH (reduced)
A+0 —AO
(oxidized)
AB+C A+

BC

AB + H20 —
AOH + BH
RCOCOOH —

RCOH + CO2

AB — BA

X+ Y+ATP —

XY +ADP + Pi

oxidase

Transaminase,

kinase

Lipase, amylase,

peptidase

Isomerase, mutase

Synthetase
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http://en.wikipedia.org/wiki/Oxidoreductase
http://en.wikipedia.org/wiki/Oxidation
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Dehydrogenase
http://en.wikipedia.org/wiki/Oxidase
http://en.wikipedia.org/wiki/Transferase
http://en.wikipedia.org/wiki/Functional_group
http://en.wikipedia.org/wiki/Transaminase
http://en.wikipedia.org/wiki/Kinase
http://en.wikipedia.org/wiki/Hydrolase
http://en.wikipedia.org/wiki/Hydrolysis
http://en.wikipedia.org/wiki/Lipase
http://en.wikipedia.org/wiki/Amylase
http://en.wikipedia.org/wiki/Peptidase
http://en.wikipedia.org/wiki/Lyase
http://en.wikipedia.org/wiki/Isomerase
http://en.wikipedia.org/wiki/Isomer
http://en.wikipedia.org/wiki/Isomerase
http://en.wikipedia.org/wiki/Mutase
http://en.wikipedia.org/wiki/Ligase
http://en.wikipedia.org/wiki/Covalent_bond
http://en.wikipedia.org/wiki/Adenosine_triphosphate
http://en.wikipedia.org/wiki/Synthetase

Dataset (Oxidoreductases / EC No. 1)

1a8q 1aor 1arx 1b4u 1b5t 1ba3 1bug 1ci0
1cp2 1cpo 1cpt 1cq1 1d4o 1d6u 1d7c 1do6
1dtw 1e1d 1eb7 1en6 1evi 1f0y 1ff3 1fp4
1geu 1goh 1ggh 1h2a 1h4i 1hb1 1hfe 1hlr

1hqt 1htp 1hwj 1i9d 1ik3 1ika 1ikt 1ivj
1j13 1jpu 1knd 111d 115t 116p 1m41 1me8
1mhc 1mj4 1mro 1ndo 1ndt 1niw 1nox 1oya
1phm 1qav 1gbg 1qdb 1qg0 1qi1 1rx8 1sur
1sxz Tuox 1vao 1vif 1vnf 1xik 2aop 2bbk

2dmr 3mde 3pcm 4nos 5r1r 6pah 8cat
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Dataset (Transferases / EC No. 2)

1a59
1btk
1dy3
1ejc
175
1g5h
1gpb
1hml
1iu4
1k47
1kzh
1lgp
1moq
1poi
1shf
2a0b

1a6j
1c2p
1dzf
1ep9
117t
1g6¢c
1gpu
1hxq
1ixm
1k9s
1kzl
11t8
1msk
1ptq
1vpe
2bef

1b4f
1c41
1e0c
1ew0
1f8y
1g6g
1995
1hzw
1jg9
1k9v
1129
1m3k
1n06
1qap
1vsf
2can

1b7b
1c4g
1e2a
leye
1ffs
1971
1920
1i2n
1jho
1kgy
11d8
1m4j
1nh7
1qd1
1xat
2cbf

1bdf
1ckn
1e20
1ez1

1f9g
1gjv
1h17
1ig3
1jkx
1kgz
1lii
1m6b
1nm2
1qf8
1xrc
2daa

1ble
1cm1
1ebv
1ezf
1ftr
1gmi
1h54
1iib
1k04
1khc
1liu
1m9z
1nom
1qgjc
1xtc
2f3g

1bmt
1d0q
1efz
10l
1g0w
1gms
1hav
1ik7
1k1f
1ki8
11kl
1mby
1nun
1gsm
1zym
2jdx

1bo1
1dd9
1eh8
1fOn

192p
1gno
1hkc
1im8
1k30
1kg4
11p4

1mI9
1pdo
1rgs

22gs
2pol
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Dataset (Hydrolases / EC No. 3)

1a17
1amp
1b6m
1c8u
1cug
1ela
1f0j
1g0s
1h70
1i3]
lief
1j9l
1k5¢c
1ky4
1In0
1n80
1prx
19k2
1x01
2reb

1a20
1aqt
1b79
1ceb
1cvm
1e44
1fce
1g2i
1h8g
1i30
1ifs
1jh7
1k82
112p
1m9n
1nb3
1ptt
1qlm
2acy
3bc2

1a2t
1aug
1b9v
1cel
1cwt
1e7d
1fcm
199z
1hja
1i40
1ihj
1jhc
1kg7
117n
1mcO0
1nba
1pvc
1qum
2bgk
3eng

1a6f
1auo
1bgo
1cfr
1d8i
1em9
1fo2
1gny
1ho3
1i74
1iod
1jke
1khl
1lau
1mc9
1ngh
1qaz
1rbd
2dyn
3pva

1a6q
1avg
1bir
1cfz
1dix
1eni
1fo6
1gpp
1hrt
1i78
1igb
1jt9
1kie
1lba
1mml
Tnzy
1qbj
1scn
2kai

3ygs

1a79
1ayd
1bpl
1cjy
1dnk
1e0j
1fpb
1gtp
1hv5
1i8a
1is;
1jys
1kIx
1lbu
1mt5
100w
1qcn
1svb
2mjp
5pnt

1ak0
1az9
1bwr
1cqy
1dup
1ewn
1fw3
1gye
1hxk
1icf
1iw8
1k3b
1ko7
11kt
1mu7
1pex
1qdn
1ush
2phi
5rla

1alw
1b65
1¢c77
1ctt

1dx5
1ex1

1gym
1hzf
1ici
1j98
1k46
1kvec
1imh
1n64
1png
1gfx
1wgi
2pth
ofit
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Dataset (Lyases / EC No. 4)

1ahj 1ayl 1b66 1b6r 1ca2 1csh 1csm 1d7a
1dch 1dci 1dnp 1doz 1dp4 1dgs 1dwk 1dxe
1e51 1e9n 1ebm 1egh 1et0 1f3t 1fgh 1fi4
1fro 1fuo 1fx4 1gqo 1gxo 1i60 1i70 1iv1

1j58 1jbq 1jd3 1jl0 1jr2 1ju2 1juk 1kOe
1k8t 1k8w 1kep 1kiz 1kko 11k9 1mka 1n7n
1n8w  1nbw 108f 1pda 1ppp 1qpb 1qgrl 1rus

1uro 2fua 2yas 3std
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Dataset (Isomerases / EC No. 5)

1a41

1bwz
1ek6

1958
1kOw
1pym
4csm

1am2
1com
1epz
1hnu
1lvh
10jg
4otc

1amu
1cy9
1eqj
1i8t
11zo
1sqc
5cyh

1b73
1d3y
1leyq
1i9a
1mx0
1vce

1b9l
1dea
1f2v
1iv8
1nsu
1vkl

1bgw
1did
1f6d
1j5s
1nuh
2req

1bkf
1e59
1fp3
1jc4
1ois
2sfp

1bkh
1eegj
1fui
1jof
1pii
3gsb
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Dataset (Ligases / EC No. 6)

1a48 1a8h layz 1004 1047 1bdo 1cg1 1cli
1ct9 1d5f 1ede 1eeh 1h4s 1htq 1i2t 1ik9
1mdb 1mkh 1gmh 1ycr
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Representative CSA templates for a non-overlapping set of 147 families

12as
1fmt
1agy
1k9z
losj
1gpi
1foh
1zrm
1ndz
1chd
Inf5
1bvw
1k7x
1cns
199r
1agpq
1gyc
Inlp
1fdj

1km1l
loya
1xid
lucc
1jf9
4pfk
scsm
lnwc
6enl
1pfq
3nse
1dj9
1qtq
1pj5
1hdq
lnyy
1bg4
1say
1s2i

1clh
1ql0
la2f
1d8h
1lhbz
2lip
lapy
1kta
1dd8
lnaw
1ghs
1dah
le2h
3uag
losl
1dcp
1fwc
1a9s
1p7t

1hzl
1kkt
ldnw
2nac
1cjw
2dnj
1knf
2npx
ledd
lowp
1ah3
1b0p
1b73
1pj4
1um9
1h17
10b8f
lecj

1gal
lavw
lafr
1l1n
1cgO
1kf4
Imilt
1gpf
1ftw
1lhly
13j0
lewy
1gpr
lyjb
lcsc
Inhe
1h7p
Isry

3fit
1wab
1nux
1pnt
1f3t
lhmp
ljep
1pow
oyas
lvgv
1pyd
In7n
1jp3
1gpk
1gon
1161
lggn
1hor

1b8a
1d8w
llam
1llta
lraf
1hI2
1pzh
2ayh
laur
legm
1brl
liov
2ay6
1diz
1mas
1dty
luou
1djl

1kdn
1pgn
3er3
1cy8
1gxz
1ryb
1bcr
1ei9
lonr
1djq
1bd4
1gnt
lopm
2tps
1jz7
1mbb
1f17
1gfm
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