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蛋白激酶與受質磷酸化網路之建構 

 

學生:李宗夷                  指導教授:黃憲達 博士 

 

國立交通大學  生物資訊研究所 

 

摘要 

 

透 過 蛋 白 激 酶  (protein kinase) 所 催 化 的 蛋 白 質 磷 酸 化  (protein 

phosphorylation) 機制是一種常見可逆的蛋白質轉譯後修飾作用，扮演著訊息

傳遞路徑上的重要角色。Manning 等作者在 2002 年發現了 518 個人類蛋白激酶

基因，也提供了一個蛋白質磷酸化網路研究的切入點。隨著高通量的質譜儀蛋白

質體學技術，實驗驗證的蛋白質磷酸化資料也快速的增加，但是，只有 20%的磷

酸化位置有註解是被哪個蛋白激酶催化的。為了完整地探討蛋白激脢如何調控細

胞內的機制，需要詳盡且精確的方法來辨識受質 (substrate) 上面的磷酸化位

置是被哪個特定蛋白激酶所催化。因此我們發展了一個叫作 RegPhos 的方法，整

合了電腦模型與蛋白質相關性(包含蛋白質交互作用、功能相關性以及細胞內位

置)來辨識某個磷酸化位置被哪個蛋白激酶催化。為了評估RegPhos方法的效能，

四個已知的蛋白激酶 (CDK、PKC、PIKK 和 INSR) 的磷酸化資料被用來測試是否

能正確的預測作用的蛋白激酶，RegPhos 跟單純用電腦模型的方法比起來，可以

改善 5到 10%的準確度。這些完整且準確被分析預測蛋白激酶與受質的交互作用

可以被用來建構細胞內從細胞膜上的受體蛋白激酶 (receptor kinase) 到細胞

核內的轉錄因子 (transcription factor) 的磷酸化網路，並且用實驗表現證據 

(如:基因微陣列資料) 來檢視蛋白激酶跟受質是否有統計上顯著的相似表現行

為。 
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Discovery of Protein Kinase-Substrate 

Phosphorylation Networks 

 

Student: Tzong-Yi Lee    Advisor : Dr. Hsien-Da Huang 

 

Institute of Bioinformatics, National Chiao Tung University 
 

Abstract 

Protein phosphorylation, catalyzed by protein kinases, is a ubiquitous reversible 

post-translational modification (PTM) and plays a crucial role in signaling pathway. 

Manning et al. have identified 518 human kinase genes, the so-called “kinome", that 

provides a starting point for comprehensive analysis of protein phosphorylation 

networks. With the high-throughput mass spectrometry (MS) proteomics, the number 

of in vivo phosphorylation sites is increasing rapidly. However, only 20% of the 

experimentally verified phosphorylation sites have the annotation of catalytic kinases. 

To understand how protein kinases regulate their substrates in intracellular processes, 

it is necessary to link these sites to specific kinases. Therefore, we propose an 

approach that incorporates machine learning method with protein associations 

(protein-protein interactions, functional associations, and subcellular localization) for 

identifying the catalytic kinase for each experimental phosphorylated site. Four 

well-annotated kinase families, such as CDK, PKC, PIKK, and INSR, are used to test 

the ability to correctly predict which kinases are responsible for catalyzing them. The 

presented approach can improve 5 - 10% predictive accuracy more than purely using 

machine learning method. The identified kinase-substrate interactions are used to 

construct the intracellular phosphorylation network starting from receptor kinases to 

transcription factors. Moreover, the experimental expression evidence such as 

time-series microarray gene expression profiles is adopted to validate the 

syn-expression of kinase and substrate with statistical significance. 
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Chapter 1  Introduction 

Protein phosphorylation catalyzed by protein kinase is a ubiquitous reversible 

post-translational modification (PTM) found in eukaryotes as well as prokaryotes. With the 

increasing number of in vivo phosphorylation sites have been identified, the desire of map the 

network of protein kinase and substrate has motivated. To understand how protein kinases 

regulate their substrates in intracellular processes, it is necessary to link these sites to specific 

kinases. In this dissertation, we focus on the integration of heterogeneous phosphorylation site 

databases (Chapter 2 ), identification of kinase-specific phosphorylation sites (Chapter 3), 

and systematic discovery of kinase-substrate interactions in protein phosphorylation networks 

(Chapter 4). The comprehensive kinase-substrate interactions are used to construct the 

intracellular phosphorylation network starting from receptor kinases to transcription factors. 

Moreover, the experimental expression evidence such as time-series microarray gene 

expression profiles is adopted to validate the syn-expression of kinase and substrate with 

statistical significance.  

 

1.1 Biological Background 

Protein post-translational modifications (PTMs), involving several chemical groups such as 

acetyl, methyl, phosphoryl, hydorxyl, glycans, and lipids covalently attach to individual 

amino acid, alter protein’s biochemical natures significantly and play key roles in a wide 

variety of cellular processes. Studies suggest that one-third to one-half of all proteins are 

modified by phosphorylation [1]. In signal transduction pathways, reversible phosphorylation 

is essential for the maintenance of signaling amplitude, duration and specificity. Until recently, 

high-throughput mass spectrometry-based method is widely used to identify the 

phosphopeptides with specific phosphorylated site. Therefore, the increasing number of 

experimentally verified phosphorylation sites can be adopted to investigate the systems 

biology of kinase and substrate in detail. 

 

1.1.1 Protein Post-Translational Modifications (PTMs) 

Protein Post-Translational Modification (PTM) is an extremely important cellular control 
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 3

focus on the investigation of protein phosphorylation. 

 

Table 1.1 Some common and important post-translational modifications (Mann, M. and O.N. Jensen, 
2003). 

PTM type ΔMass 
(Da) 

Modified 
residue Position Description 

Glycosylation 
O-linked 
(O-GlcNAc) 
N-linked 

>800
203.2
>800

 
S,T 
 
N 

 
anywhere 

Reversible, cell-cell interaction and 
regulation of proteins 

Phosphorylation 79.98 S,T,Y,H,D anywhere Reversible, regulation of protein 
activity, signaling 

Acetylation 42.04 S 
K 

N-term 
anywhere 

Reversible, protein stability, 
regulation of protein function 

Methylation 14.03 K anywhere Regulation of gene expression, 
protein stability 

Acylation 
farnesylation 
myristoylation 
 
palmitoylation 

204.36
210.36

238.41

 
C 
G 
K 
C (S,T,K) 

 
anywhere 
N-term 
Anywhere 
anywhere 

Reversible, cellular localization to 
membrane 

Hydroxyproline 16.00 P anywhere Protein stability and protein-ligand 
interactions 

Deamidation 0.98 N,Q anywhere N to D, Q to E, possible regulator 
of protein-ligand and 
protein-protein interactions, also a 
common chemical artifact 

Nitration 
S-Nitrosylation 

45.0
29.0

Y 
C 

 
anywhere 

Oxidative damage during 
inflammation 

Ubiquitination 
Sumoylation 

>1,000 K 
K 

anywhere 
[ILFV]K.D

Reversible/irreversible, destruction 
signal, 

Sulfation  79.96 Y anywhere Modulator of protein-protein and 
receptor-ligand interactions 

Glycosylphosphatidylinositol 
(GPI) anchor, 

>1,000 S,N,C C-term Membrane tethering of enzymes 
and receptors, mainly to outer 
leaflet of plasma membrane 

 

1.1.2 Protein Phosphorylation 

Post-translational phosphorylation is one of the most common protein modifications; 

one-third to one-half of all proteins in a eukaryotic cell are phosphorylated. Phosphoserine, 

threonine and tyrosine residues play critical roles in the regulation of many cellular processes. 

As shown in Figure 1.2, the catalytic site of a protein kinase hydrolyzes adenosine 

triphosphate (ATP) and transfers a phosphate moiety to the acceptor residue (S, T, Y in 

eukaryotes) in the substrate protein (Figure 1.3).  
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even to the extent that it undergoes apoptosis. However, this activity should be limited to 

situations where the cell is damaged or physiology is disturbed. To this end, the p53 protein is 

extensively regulated. In fact, p53 contains more than 18 different phosphorylation sites. 

In Figure 1.4a, the inactive form of the Tyr kinase domain (PDB ID 1IRK), the activation 

loop (blue) sits in the active site, and none of the critical Tyr residues (black and red 

ball-and-stick structures) are phosphorylated [6]. This conformation is stabilized by hydrogen 

bonding between Tyr-1162 and Asp-1132. When insulin binds to the α chains of insulin 

receptors (Figure 1.4b), the Tyr kinase of each β subunit of the dimer phosphorylates three 

Tyr residues (Tyr-1158, Tyr-1162, and Tyr-1163) on the other β subunit (shown here; PDB 

ID 1IR3). (Phosphoryl groups are depicted here as an orange space-filling phosphorus atom 

and red ball-and-stick oxygen atoms.) The effect of introducing three highly charged P –Tyr 

residues is to force a 30 Å change in the position of the activation loop, away from the 

substrate-binding site, which becomes available to bind to and phosphorylate a target protein, 

shown here as a red arrow. 

 

 
Figure 1.4 Activation of the insulin-receptor Tyr kinase by autophosphorylation (Lehninger et al., 

2005). 
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1.1.3 Signal Transduction Pathway 

In biology, signal transduction refers to any process by which a cell converts one kind of 

signal or stimulus into another. Most processes of signal transduction involve ordered 

sequences of biochemical reactions inside the cell, which are carried out by enzymes, 

activated by second messengers, resulting in a signal transduction pathway. Intracellular 

signal transduction is the process by which chemical signals from outside the cell are passed 

through the cytoplasm to cellular systems, such as the nucleus or cytoskeleton, where 

appropriate responses to those signals are generated [7]. Such processes are usually rapid, 

lasting on the order of milliseconds in the case of ion flux, minutes for the activation of 

protein- and lipid-mediated kinase cascades, or hours and even days for gene expression. The 

number of proteins and other molecules participating in the events involving signal 

transduction increases as the process emanates from the initial stimulus, resulting in a "signal 

cascade," beginning with a relatively small stimulus that elicits a large response.  

 As shown in Figure 1.5, most signal transduction involves the binding of 

extracellular signaling molecules (or ligands) to cell-surface receptors that face outward from 

the plasma membrane and trigger events inside the cell. Also, intracellular signaling cascades 

can be triggered through cell-substratum interactions, as in the case of integrins, which bind 

ligands found within the extracellular matrix. The signaling molecules have been functionally 

classified as: hormones (e.g., melatonin), growth factors (e.g. epidermal growth factor), 

extra-cellular matrix components (e.g., fibronectin), cytokines (e.g., interferon-gamma), 

chemokines (e.g., RANTES), neurotransmitters (e.g., acetylcholine), and neurotrophins (e.g., 

nerve growth factor). A fundamentally different mechanism of signal transduction is carried 

out by the receptor enzymes. These proteins have a ligand-binding domain on the 

extracellular surface of the plasma membrane and an enzyme active site on the cytosolic side, 

with the two domains connected by a single transmembrane segment. Commonly, the receptor 

enzyme is a protein kinase that phosphorylates Tyr residues in specific target proteins; the 

insulin receptor is the prototype for this group. In plants, the protein kinase of receptors is 

specific for Ser or Thr residues. 
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phosphorylation plays crucial regulatory role in signal transduction pathway [8]. 

 

 
Figure 1.6 Insulin-induced signal transduction (Lehninger et al., 2005). 

 

1.1.4 Mass Spectrometry-based Identification of Protein 

Phosphorylation 

Recent successes illustrate the role of mass spectrometry-based proteomics as an 

indispensable tool for molecular and cellular biology and for the emerging field of systems 

biology. So far, protein analysis (primary sequence, post-translational modifications (PTMs) 

or protein–protein interactions) by MS has been most successful when applied to small sets of 

proteins isolated in specific functional contexts [9]. The systematic analysis of the much 
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larger number of proteins expressed in a cell, an explicit goal of proteomics, is now also 

rapidly advancing, due mainly to the development of new experimental approaches. By 

definition, a mass spectrometer consists of an ion source, a mass analyzer that measures the 

mass-to-charge ratio (m/z) of the ionized analytes, and a detector that registers the number of 

ions at each m/z value. Electrospray ionization (ESI) and matrix-assisted laser 

desorption/ionization (MALDI) are the two techniques most commonly used to volatize and 

ionize the proteins or peptides for mass spectrometric analysis [10]. ESI ionizes the analytes 

out of a solution and is therefore readily coupled to liquid-based (for example, 

chromatographic and electrophoretic) separation tools.  

 

 
Figure 1.7 Generic mass spectrometry (MS)-based proteomics experiment (Aebersold et al., 2003). 

 

As shown in Figure 1.7, the typical proteomics experiment consists of five stages [9]. In 

stage 1, the proteins to be analyzed are isolated from cell lysate or tissues by biochemical 

fractionation or affinity selection. This often includes a final step of one-dimensional gel 

electrophoresis, and defines the ‘sub-proteome’ to be analyzed. MS of whole proteins is less 
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sensitive than peptide MS and the mass of the intact protein by itself is insufficient for 

identification. Therefore, proteins are degraded enzymatically to peptides in stage 2, usually 

by trypsin, leading to peptides with C-terminally protonated amino acids, providing an 

advantage in subsequent peptide sequencing. In stage 3, the peptides are separated by one or 

more steps of high-pressure liquid chromatography in very fine capillaries and eluted into an 

electrospray ion source where they are nebulized in small, highly charged droplets. After 

evaporation, multiply protonated peptides enter the mass spectrometer and, in stage 4, a mass 

spectrum of the peptides eluting at this time point is taken (MS1 spectrum, or ‘normal mass 

spectrum’). The computer generates a prioritized list of these peptides for fragmentation and a 

series of tandem mass spectrometric or ‘MS/MS’ experiments ensues (stage 5). These consist 

of isolation of a given peptide ion, fragmentation by energetic collision with gas, and 

recording of the tandem or MS/MS spectrum. The MS and MS/MS spectra are typically 

acquired for about one second each and stored for matching against protein sequence 

databases. Figure 1.8 shows an example of MS/MS spectra which contains a phosphorylated 

serine. 

 
Figure 1.8 Example of phosphopeptide MS/MS spectra. 

 

1.1.5 Phosphoproteomics 

Phosphorylation is a key reversible modification occurring mainly on serine, threonine and 

tyrosine residues that can regulate enzymatic activity, subcellular localization, complex 

formation and degradation of proteins. Analysis of the entire cellular phosphoproteins panel, 
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the so-called phosphoproteome, has been an attractive study subject since the discovery of 

phosphorylation as a key regulatory mechanism of cell life [11]. The understanding of the 

regulatory role played by phosphorylation begins with the discovery and identification of 

phosphoproteins and then by determining how, where and when these phosphorylation events 

take place. Because phosphorylation is a dynamic process difficult to quantify, we must at 

first acquire an inventory of phosphoproteins and characterize their phosphorylation sites. 

Several experimental strategies can be used to explore the phosphorylation status of proteins 

from individual moieties to phosphoproteomes.  

 

 
Figure 1.9 Combined large-scale approaches to unravel phosphorylation driven signaling networks 

(Bentem et al., 2007). 
 

As reviewed previously, mass spectrometry-based techniques have enabled the 

large-scale mapping of in vivo phosphorylation sites. Alternatively, methods based on peptide 

and protein microarrays have revealed protein kinase activities in cell extracts, in addition to 

kinase substrates (Figure 1.9a) [12]. On chips, protein kinase activities are measured by the 

incorporation of radioactive phosphate into the substrate peptide or protein that are spotted in 

small amounts, in duplicate or triplicate (as shown here). Yellow and red spots indicate 

peptides or proteins that are more intensely and less intensely phosphorylated, respectively. 

Using cell extracts, a more intensely phosphorylated (‘induced’) spot means that a kinase 

activity in the treated extract towards the peptide or protein is activated. On the contrary, a 
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less phosphorylated (‘reduced’) spot means that the responsible kinase is inactivated. In case 

of protein phosphatases, a chip pre-phosphorylated by a purified kinase (or, alternatively, a 

cell extract) could be used for target discovery. This is possible by analyzing which 

phosphorylated peptides or proteins are dephosphorylated on the chip, as indicated here by 

red spots. 

A combined phosphoproteomic approach of mass spectrometry and microarray 

technology could enhance the construction of dynamic signaling networks (Figure 1.9b) [12]. 

The experimental data, ultimately, need to be combined by systems biology analysis, which 

translates the separate, large-scale datasets into signaling networks [13]. The predicted 

connections within and between signaling cascades need to be experimentally verified by, for 

instance, analysis of protein complexes and analysis of kinase or substrate knockout and 

over-expression. In the phosphorylation cascade, arrows indicate phosphorylation reactions 

and the circled minus sign indicates negative feedback phosphorylation. Only 

phosphoproteins in the signaling network are indicated. Abbreviations: K stands for protein 

kinase; P stands for protein phosphatase; S stands for substrate. Numbers behind each kinase, 

phosphatase and substrate are given arbitrarily. 

 

1.2 Motivation 

Protein phosphorylation, which is catalyzed by kinase, plays a crucial role in intracellular 

signal transduction that is achieved by networks of proteins and small molecules that 

transmit information from the cell surface to the nucleus, where they ultimately effect 

transcriptional changes. Manning et al. have identified 518 human kinase genes, the 

so-called “kinome", that provides a starting point for comprehensive analysis of protein 

phosphorylation networks. How differential responses are generated by these networks is 

not obvious nor is the reason cells evolved a complicated mechanism for transducing 

signals. Thus, a full understanding of the mechanism of intracellular signal transduction 

remains a major challenge in cellular biology.  

Mass spectrometry-based proteomics have enabled the large-scale mapping of in vivo 

phosphorylation sites. There are several phosphorylation site databases have been 

constructed previously. However, only 20% of the experimentally verified phosphorylation 

sites have the annotation of catalytic kinases. Experimental identification of kinase-specific 
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phosphorylation sites is an inconvenient work and usually limited by the availability of 

detailed data on the kinase-specific substrates. To fully investigate how protein kinases 

regulate the intracellular processes, it is necessary to comprehensively and accurately 

identify the kinase-specific substrates. In silico prediction could be a promising strategy to 

conduct preliminary analyses and could greatly reduce the number of potential targets that 

need further in vivo or in vitro confirmation.  

With the increasing number of in vivo phosphorylation sites have been identified, the 

desire of map the network of protein kinase and substrate has motivated. The experimental 

kinase-specific substrates, ultimately, need to be combined by systems biology analysis, 

which translates the separate, large-scale datasets into signaling networks. Several works 

have been proposed to incorporate protein-protein interaction data with microarray data for 

constructing signaling pathway. However, no researchers incorporated the experimentally 

verified kinase-substrate interactions and the computationally identified kinase-substrate 

interactions to construct the intracellular phosphorylation network starting from receptor 

kinases to transcription factors, associated with the formation of protein subcellular 

localization. Moreover, the experimental expression evidence, such as gene microarray 

data and mass spectra, could be adopted to validate the syn-expression of the constructed 

kinase-substrate phosphorylation network. 

 

1.3  Research Goals 

In this dissertation, we focus on the integration of heterogeneous phosphorylation site 

databases, identification of kinase-specific phosphorylation sites, and systematic discovery of 

kinase-substrate network in human protein phosphorylation. 

 

1.3.1 Management of Heterogeneous Phosphorylation 

Databases and Related Information 

In this study, a variety of biological databases with heterogeneous data format need to be 

integrated, including phosphorylation site databases, protein sequence and knowledge 

databases, gene annotation databases, protein structure databases, protein domain databases, 

protein-protein interaction databases, biochemical pathway databases, and so on. The 
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inconsistent data format of these integrated biological databases increases the difficulty in the 

development of proposed system. Therefore, a data warehousing system should be 

incorporated to efficiently manage, maintain and update all the collected external databases. 

 

1.3.2 Identification of Kinase-Specific Phosphorylation Sites 

Experimental identification of phosphorylation sites is an inconvenient work and usually 

limited by the availability of detailed data on the kinase-specific substrates. In silico 

prediction could be a promising strategy to conduct preliminary analyses and could greatly 

reduce the number of potential targets that need further in vivo or in vitro confirmation. 

Therefore, we propose a method, namely KinasePhos, which incorporates machine learning 

methods to identify the phosphorylation sites with their catalytic kinase. Not only protein 

amino acids, but also the structural information such as secondary structure, solvent 

accessibility and protein disorder region were used to investigate the substrate specificity. 

Moreover, the constructed predictive models were evaluated by the independent test sets.  

 

1.3.3 Discovery of Protein Kinase-Substrate Phosphorylation 

Networks 

To fully investigate how protein kinases regulate the intracellular processes, it is necessary to 

comprehensively and accurately identify the kinase-specific substrates. Therefore, we propose 

a method, named RegPhos, incorporates computational model with protein associations 

(protein-protein interactions, functional associations, and subcellular localization) for 

identifying the catalytic kinase for each phosphoprotein with experimental phosphorylated 

sites. With the highly predictive performance of phosphorylation sites, a better understanding 

of relationships between protein kinases and substrates will be facilitated and engineered to 

analyze the therapeutic usefulness. The identified kinase-substrate interactions are used to 

comprehensively construct the intracellular phosphorylation network starting from receptor 

kinases to transcription factors, with the information of protein-protein interactions and 

subcellular localization. Moreover, the experimental expression evidence such as 

time-coursed gene microarray data is adopted to validate the syn-expression of kinase and 

substrate with statistical significance. 
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1.4 Organization of This Dissertation 

There are three major parts in this dissertation, including the integration of heterogeneous 

phosphorylation site databases (Chapter 2 ), identification of kinase-specific phosphorylation 

sites (Chapter 3), and systematic discovery of protein kinase-substrate phosphorylation 

networks (Chapter 4). A variety of biological databases with heterogeneous data format need 

to be integrated, including phosphorylation site databases, protein sequence and knowledge 

databases, gene annotation databases, protein structure databases, protein domain databases, 

protein-protein interaction databases, biochemical pathway databases, and so on. We propose 

a method, named RegPhos, incorporates computational model with protein associations 

(protein-protein interactions, functional associations, and subcellular localization) for 

identifying the catalytic kinase for each phosphoprotein with experimental phosphorylated 

sites. The protein phosphorylation network of kinase and substrate in human was constructed 

using the experimentally verified and computationaly identified kinase-substrate interactions. 

The gene microarray expression data is adopted to analyze the syn-expression of kinase and 

substrate genes in specific conditions. Moreover, the microarray data with time series can be 

used to recognize the dynamic behavior of kinase and their substrate.  

 

 

Figure 1.10 Schematic representation of dissertation organization 
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Chapter 2  Information Repository of Protein 

Post-Translational Modifications 

2.1 Introduction 

Protein Post-Translational Modification (PTM) is an extremely important cellular control 

mechanism because it may alter proteins’ physical and chemical properties, folding, 

conformation distribution, stability, activity, and consequently, their functions [14]. Examples 

of the biological effects of protein modifications include phosphorylation for signal 

transduction, attachment of fatty acids for membrane anchoring and association, and 

glycosylation for changing protein half-life, targeting substrates, and promoting cell-cell and 

cell-matrix interactions. High-throughput proteomic studies produce a wealth of new 

information regarding post-translational modifications. With the accelerating progress in 

proteomics, biological knowledge bases containing a wealth of information, in particular 

protein modifications, are playing crucial roles in cell regulation research [3]. In this work, we 

not only provide the sequence-based information such as PTM site, functional domain and 

protein variant site, but also annotate the structure-based information including protein 

tertiary structure, protein secondary structure, surface accessibility and protein intrinsic 

disorder region.  

 A side chain of amino acid that undergoes enzymatic modification needs to be accessible 

on the surface of protein [15]. Several works have been proposed the links between the 

post-translational modifications and their solvent accessible surface area. Pang et al. 

investigated the structural environment of 8378 incidences in 44 types of post-translational 

modifications [15]. The information of surface accessibility, disorder region, and 

linker/domain are computationally annotated by several published programs, including ASA 

[16], GOR [17] and RVP-net [18] for surface accessibility, RONN[19] and DISEMBL [20] for 

disorder, PSIPRED [21] for secondary structure, and George et al. [22] for linker/domain. The 

introduction of structural information of protein is described as following. 
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structured state, which represents a kinetically accessible and an energetically favorable 

conformation (usually the global energy minimum for the whole protein) determined by its 

amino acid sequence. This specific conformation has been referred to as the native state of the 

protein. However, recent discoveries of intrinsically disordered proteins (IDPs) [23] (known 

also as natively disordered, natively unfolded, and intrinsically unstructured proteins) have 

significantly broadened the view of the scientific community and increased the number of 

groups systematically studying these intriguing members of the protein world.  

 

 
Figure 2.2 Disorder in Calcineurin.3 

 

Intrinsically unstructured proteins are frequently involved in key biological processes 

such as cell cycle control, transcriptional and translational regulation, membrane fusion and 

transport, and signal transduction [24]. A high percentage of cell-signaling and 

cancer-associated proteins are predicted to have long disordered regions [25]. An 

investigation of the functions performed by intrinsically disordered regions reveals that they 

are often involved in molecular recognition and protein modifications including 

phosphorylation [26]. To provide a concrete example, the calmodulin binding site in 

                                                 
3 The figure was obtained from http://genome.gsc.riken.go.jp/hgmis/publicat/hgn/v12n1/13trinity.html  
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calcineurin (Figure 2.2)4 was shown to be extremely sensitive to protease digestion and thus 

to be a disordered ensemble; this disorderliness was confirmed in Kissingers X-ray diffraction 

structure as indicated by missing coordinates in the same region. As showin in Figure 2.2, 

Calcineurin’s a-subunit contains a globular phosphatase domain, a helical extension that bind 

the b-subunit, a disordered region not observed in the crystal structure, and an autoinhibitory 

peptide that binds in the phosphatase domain’s active site. The a-subunit's intrinsically 

disordered region, containing 95 amino acids, connects the ends of the helical extension 

(residue 374) and the autoinhibitory peptide (residue 470) and includes a calmodulin binding 

site. This region probably is disordered at least in part to allow calmodulin to bind. 

 

 
Figure 2.3 Example of a binding region and its positions relative to the regions of PONDR predicted 

disorder score (Garner, et al., 1999). 

 

Computational methods exploit the sequence signatures of disorder to predict whether a 

                                                 
4 The figure was obtained from http://genome.gsc.riken.go.jp/hgmis/publicat/hgn/v12n1/13trinity.html  
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protein is disordered given its amino acid sequence. The table below (Table 2.1), adapted from 

Ferron et. al. [27], shows the main features of tools for disorder prediction. Note that different 

tools use different definitions of disorder. Various predictors of intrinsic disorder have been 

used to facilitate prediction of functional properties of proteins. The first use of a disorder 

predictor to find protein-binding sites was performed by Garner et al. [28] who noticed that 

sharp dips in disorder prediction could indicate short loosely structured binding regions that 

undergo disorder-to-order transitions upon binding to a partner. Interestingly, these dips in 

disorder prediction were originally noticed for the 4E binding protein (4EBP1, see Figure 2.3) 

[28], which had been shown to be completely disordered by NMR [29]. However, a short 

stretch of 4EBP1 undergoes a disorder-to-order transition upon binding to eukaryotic 

translation initiation factor 4E [30]. 
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Table 2.1 Summary of the web servers offering prediction of intrinsically disordered proteins. 
Tool name What is predicted  Method URL 

PONDR [31] 
All regions that are not rigid including random 
coils, partially unstructured regions, and 
molten globules 

Feed-forward neural network with separate 
N-/C-terminus predictor. Based on amino-acid 
compositions and physicochemical properties. 

http://www.pondr.com 

FoldIndex [32] 
Regions that have a low hydrophobicity and 
high net charge (either loops or unstructured 
regions) 

Charge/hydrophobicity score based on a 
sliding window. http://bip.weizmann.ac.il/fldbin/findex 

NORSp [33, 34] 
Regions with No Ordered Regular Secondary 
Structure (NORS). Most, but not all, are 
highly flexible. 

Rule-based using a set of several 
neural-networks. Amino acid compositions 
and sequence profiles used as features. 

http://rostlab.org/services/NORSp/ 

DISOPRED [35] Regions devoid of ordered regular secondary 
structure 

Feed-forward neural network (DISOPRED) and 
linear support vector machine (DISOPRED2) 
based on sequence profiles. 

http://bioinf.cs.ucl.ac.uk/disopred/ 

Globplot [36] 
Regions with high propensity for globularity 
on the Russell/Linding scale (propensities for 
secondary structures and random coils) 

Autoregressive model based on amino-acid propensities 
for disorder/globularity. http://globplot.embl.de/ 

DisEMBL [20] 

LOOPS (regions devoid of regular secondary 
structure); HOT LOOPS (highly mobile 
loops); REMARK465 (regions lacking 
electron density in crystal structure) 

Ensemble of feed-forward neural networks. http://dis.embl.de/ 

IUPred [37] Regions that lack a well-defined 3D-structure 
under native conditions 

Linear model based on the estimated energy of pairwise 
interactions in a window around a residue. http://iupred.enzim.hu/index.html 

PreLink [38] 
Regions that are expected to be unstructured 
in all conditions, regardless of the presence of 
a binding partner 

Rule-based. Ratio of multinomial probabilities 
(for linker and structured regions) combined 
with the distance to the nearest 
hydrophobic cluster. 

http://genomics.eu.org/spip/PreLink 

RONN [39] Regions that lack a well-defined 3D structure 
under native conditions 

Feed-forward neural network in the space of 
distances to a set of prototype sequences of 
known fold state. 

http://www.strubi.ox.ac.uk/RONN 

DISpro Protein intrinsically disordered regions 
Recursive neural network based on sequence 
profiles, predicted secondary structure and 
relative solvent accessibility. 

http://www.igb.uci.edu/servers/psss.html 

SPRITZ [40] Intrinsically disordered regions in proteins 
from sequence 

Nonlinear support vector machine based on 
multipally aligned sequences. Separate 
predictors for short and long disorder regions. 

http://protein.cribi.unipd.it/spritz/ 
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2.1.3 Subcellular Localization 

The eukaryotic cell is a composite system internally subdivided into membrane-enveloped 

compartments that perform particular functions [41]. Every subcellular compartment contains 

specific proteins, including enzymes, synthesized in the cytoplasm and translocated into the 

locations, wherethey carry out functional patterns. As shown in Figure 2.4, some major 

constituents of eukaryotic cells are: extracellular space, cytoplasm, nucleus, mitochondria, 

Golgi apparatus, endoplasmic reticulum (ER), peroxisome, vacuoles, cytoskeleton, 

nucleoplasm, nucleolus, nuclear matrix and ribosomes. The proteins which are involved in 

similar biological functions are closely located in the same subcellular localization. Therefore, 

knowing the localization of every protein is important for elucidating its interactions with 

other molecules and for understanding its biological function. 

 

 
Figure 2.4 Eukaryotic cellular compartments.5 

 

                                                 
5 The figure was obtained from http://mendel.imp.ac.at/CELL_LOC/  
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2.2 Related Works 

Taking the advantage of the high-throughput mass spectrometry in proteomics, several 

databases involved in protein modifications were established. UniProtKB/Swiss-Prot [42] 

includes as much modification information as available with consistency and structure, 

allowing easy retrieval by biologists. Phospho.ELM [2], PhosphoSite [43] and 

Phosphorylation Site Database [44] were developed for collecting experimentally verified 

phosphorylation sites. PHOSIDA [45] integrates thousands of high-confidence in vivo 

phosphorylation sites identified by mass spectrometry-based proteomics in various species. 

O-GLYCBASE [46] is a database of glycoproteins, most of which include experimentally 

verified O-linked glycosylation sites. Moreover, UbiProt stores experimental ubiquitylated 

proteins and ubiquitylation sites, which are implicated in protein degradation via an 

intracellular ATP-dependent proteolytic system [47]. The RESID protein modification 

database is a comprehensive collection of annotations and structures for protein modifications 

and cross-links including pre-, co-, and post-translational modifications [4]. Each RESID 

entry presents a protein with a chemically unique modification and indicates how the 

modification is currently annotated in the Swiss-Prot. The summary of published PTM 

databases is presented in Table 2.2. The detailed introduction about these PTM resources is 

illustrated as following. 

 



 

 24

Table 2.2 Summary of PTM resource. 

Resource Reference Description URL 

UniProt KB / Swiss-Prot  Farriol-Mathis, Garavelli et 
al. 2004 

Experimental PTMs and putative PTMs 
(annotated as “by similarity”, “potential” or 
“probable” in the ‘MOD_RES’, 
“CARBOHYD”, “LIPID” and “CROSSLNK” 
fields) 

www.expasy.org/sprot/ 

PhosphoELM  Diella, Cameron et al. 2004 Experimental phosphorylation sites phospho.elm.eu.org 
PhosphoSite Hornbeck, Chabra et al. 2004 Experimental phosphorylation sites www.phosphosite.org 
Phosphorylation site 
database 

Wurgler-Murphy, King et al. 
2004 

Experimental phosphorylation sites in 
prokaryotic organisms vigen.biochem.vt.edu/xpd/xpd.htm 

PHOSIDA Gnad, Ren et al. 2007 
In vivo phosphorylation sites which was 
identified by mass spectrometry-based 
Proteomics 

www.phosida.com 

HPRD Peri, S. et al. 2003 Human PTMs with curated literatures www.hprd.org 

PhosPhAt Heazlewood, Durek et al. 
2008 

mass spectrometry-based identified 
phosphorylation sites in Arabidopsis phosphat.mpimp-golm.mpg.de 

O-GLYCBASE Gupta, Birch et al. 1999 Experimental glycosylation sites www.cbs.dtu.dk/databases/OGLYCBASE/ 

UbiProt  Chernorudskiy, Garcia et al. 
2007 Ubiquitylated protein and ubiquitylation sites ubiprot.org.ru 

RESID Garavelli 2004 Protein modification annotations www.ebi.ac.uk/RESID 
Phospho3D Zanzoni et al. 2007 3D structures of protein phosphorylation sites cbm.bio.uniroma2.it/phospho3d/index.py 
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UniProtKB/Swiss-Prot Modifications 

With the accelerating progress in proteomics, UniProt KB/Swiss-Prot knowledge base [48] is 

faced with the challenge of including this information in a consistent and structured way, in 

order to facilitate easy retrieval and promote understanding by biologist expert users as well 

as computer programs. The authors are therefore standardizing the annotation of PTM 

features represented in UniProt KB/Swiss-Prot [3]. Indeed, a controlled vocabulary has been 

associated with every described PTM. There are two types of PTM annotation, the 

experimentally validated PTM sites and the putative PTM sites. The putative PTMs are 

annotated as “by similarity”, “potential” or “probable” in the ‘MOD_RES’, “CARBOHYD”, 

“LIPID” and “CROSSLNK” fields. 

 

Phospho.ELM 

The fast growing number of research reports on protein phosphorylation points to a general 

need for an accurate database dedicated to phosphorylation to provide easily retrievable 

information on phosphoproteins. Phospho.ELM (http://phospho.elm.eu.org) [2], which was 

developed as part of the ELM (Eukaryotic Linear Motif) resource, is a resource containing 

experimentally verified phosphorylation sites that were manually curated from the literature. 

Phospho.ELM constitutes the largest searchable collection of phosphorylation sites available 

to the research community. The Phospho.ELM entries store information about substrate 

proteins with the exact positions of residues known to be phosphorylated by cellular kinases. 

Additional annotation includes literature references, subcellular compartment, tissue 

distribution, and information about the signaling pathways involved as well as links to the 

molecular interaction database MINT.  

The current release of Phospho.ELM (version 7.0, July 2007) contains 4078 

phospho-protein sequences covering 12 025 phospho-serine, 2362 phospho-threonine and 

2083 phospho-tyrosine sites [49]. The entries provide information about the phosphorylated 

proteins and the exact position of known phosphorylated instances, the kinases responsible for 

the modification (where known) and links to bibliographic references. The database entries 

have hyperlinks to easily access further information from UniProt [50], PubMed, SMART, 

ELM, MSD as well as links to the protein interaction databases MINT and STRING. A new 

BLAST search tool, complementary to retrieval by keyword and UniProt accession number, 

allows users to submit a protein query (by sequence or UniProt accession) to search against 
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the curated data set of phosphorylated peptides. 

 

PhosphoSite 

PhosphoSite is a curated, web-based bioinformatics resource dedicated to physiologic sites of 

protein phosphorylation in human and mouse. PhosphoSite is populated with information 

derived from published literature as well as high-throughput discovery programs. PhosphoSite 

provides information about the phosphorylated residue and its surrounding sequence, 

orthologous sites in other species, location of the site within known domains and motifs, and 

relevant literature references. Links are also provided to a number of external resources for 

protein sequences, structure, post-translational modifications and signaling pathways, as well 

as sources of phospho-specific antibodies and probes. As the amount of information in the 

underlying knowledgebase expands, users will be able to systematically search for the kinases, 

phosphatases, ligands, treatments, and receptors that have been shown to regulate the 

phosphorylation status of the sites, and pathways in which the phosphorylation sites function. 

As it develops into a comprehensive resource of known in vivo phosphorylation sites, 

PhosphoSite will be a valuable tool for researchers seeking to understand the role of 

intracellular signaling pathways in a wide variety of biological processes.  
 

Phosphorylation Site Database 

Phosphorylation Site Database (http://vigen.biochem.vt.edu/xpd/xpd.htm) [44] provides ready 

access to information from the primary scientific literature concerning those proteins from 

prokaryotic organisms, i.e., the members of the domains Archaea and Bacteria, that have been 

reported to undergo covalent phosphorylation on the hydroxyl side chains of serine, threonine, 

and/or tyrosine residues. Where known, the sequence of the site(s) of phosphorylation and the 

functional consequences of phosphorylation also are included. Active links enable users to 

quickly access further information concerning the phosphoprotein of interest from PubMed, 

GenBank, SWISS-PROT, and PIR.  

 

PHOSIDA 

PHOSIDA (http://www.phosida.com), a phosphorylation site database, integrates thousands 

of high-confidence in vivo phosphorylation sites identified by mass spectrometry-based 
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proteomics in various species. For each phosphorylation site, PHOSIDA lists matching kinase 

motifs, predicted secondary structures, conservation patterns, and its dynamic regulation upon 

stimulus. Using support vector machines, PHOSIDA also predicts phosphorylation sites.  
 

HPRD 

Human Protein Reference Database (HPRD, http://www.hprd.org) [51] is an object database 

that integrates a wealth of information relevant to the function of human proteins in health and 

disease. Data pertaining to thousands of protein-protein interactions, posttranslational 

modifications, enzyme/substrate relationships, disease associations, tissue expression, and 

subcellular localization were extracted from the literature for a nonredundant set of 2750 

human proteins. Almost all the information was obtained manually by biologists who read 

and interpreted >300,000 published articles during the annotation process. This unified 

bioinformatics platform will be useful in cataloging and mining the large number of 

proteomic interactions and alterations that will be discovered in the postgenomic era. 

 

PhosPhAt 

The PhosPhAt (http://phosphat.mpimp-golm.mpg.de) [52] database provides a resource 

consolidating our current knowledge of mass spectrometry-based identified phosphorylation 

sites in Arabidopsis and combines it with phosphorylation site prediction specifically trained 

on experimentally identified Arabidopsis phosphorylation motifs. The database currently 

contains 1187 unique tryptic peptide sequences encompassing 1053 Arabidopsis proteins. 

Among the characterized phosphorylation sites, there are over 1000 with unambiguous site 

assignments, and nearly 500 for which the precise phosphorylation site could not be 

determined. The database is searchable by protein accession number, physical peptide 

characteristics, as well as by experimental conditions (tissue sampled, phosphopeptide 

enrichment method). For each protein, a phosphorylation site overview is presented in tabular 

form with detailed information on each identified phosphopeptide. An analysis of the current 

annotated Arabidopsis proteome yielded in 27,782 predicted phosphoserine sites distributed 

across 17,035 proteins. These prediction results are summarized graphically in the database 

together with the experimental phosphorylation sites in a whole sequence context. 
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O-GLYCBASE 

O-GLYCBASE (http://www.cbs.dtu.dk/databases/OGLYCBASE/) is a database of 

glycoproteins with O-linked glycosylation sites. Entries with at least one experimentally 

verified O-glycosylation site have been compiled from protein sequence databases and 

literature. Each entry contains information about the glycan involved, the species, sequence, a 

literature reference and http-linked cross-references to other databases. Version 4.0 contains 

179 protein entries, an approximate 15% increase over the last version. Sequence logos 

representing the acceptor specificity patterns for GalNAc, GlcNAc, mannosyl and xylosyl 

transferases are shown.  

 

UbiProt 

UbiProt (http://ubiprot.org.ru) [47] Database is a public resource offering comprehensive 

information on ubiquitylated proteins. Post-translational protein modification with ubiquitin, 

or ubiquitylation, is one of the hottest topics in a modern biology due to a dramatic impact on 

diverse metabolic pathways and involvement in pathogenesis of severe human diseases. As 

shown in Figure 2.5 [47], Ubiquitylation may result in addition of a single ubiquitin moiety or 

a branched multi-ubiquitin chain to the target protein lysine(s). Note that a ubiquitin molecule 

possesses 7 inner lysine residues that can serve as attachment sites of the next ubiquitin 

moiety, resulting in the formation of the chains that have a different structure and topology. 

Functionally significant amino acids are marked as follows: Kn and Kn' – lysine residue(s) 

that can serve as attachment sites of the ubiquitin moiety; G76 – ubiquitin C-terminal glycine 

residue participating in the isopeptide bond formation.  

A great number of eukaryotic proteins were found to be ubiquitylated. However, data 

about particular ubiquitylated proteins are rather disembodied. To fill a general need for 

collecting and systematizing experimental data concerning ubiquitylation, a knowledge base 

of ubiquitylated proteins, UbiProt Database, have been developed. The database contains 

retrievable information about overall characteristics of a particular protein, ubiquitylation 

features, related ubiquitylation and de-ubiquitylation machinery and literature references 

reflecting experimental evidence of ubiquitylation. The resource can serve as a general 

reference source both for researchers in ubiquitin field and those who deal with particular 

ubiquitylated proteins which are of their interest. Further development of the UbiProt 

Database is expected to be of common interest for research groups involved in studies of the 
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ubiquitin system. 

 

 

Figure 2.5 Different forms of ubiquitin and ubiquitin-modified proteins (Chernorudskiy, et al., 2007). 
 

RESID 

The RESID [4] Database of Protein Modifications is a comprehensive collection of 

annotations and structures for protein modifications and cross-links including pre-, co-, and 

post-translational modifications. The database provides: systematic and alternate names, 

atomic formulas and masses, enzymatic activities that generate the modifications, keywords, 

literature citations, Gene Ontology (GO) cross-references, protein sequence database feature 

table annotations, structure diagrams, and molecular models. This database is freely 

accessible on the Internet through resources provided by the European Bioinformatics 

Institute (http://www.ebi.ac.uk/RESID), and by the National Cancer Institute--Frederick 

Advanced Biomedical Computing Center (http://www.ncifcrf.gov/RESID). Each RESID 

Database entry presents a chemically unique modification and shows how that modification is 

currently annotated in the protein sequence databases, Swiss-Prot and the Protein Information 

Resource (PIR). The RESID Database provides a table of corresponding equivalent feature 

annotations that is used in the UniProt project, an international effort to combine the resources 
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of the Swiss-Prot, TrEMBL and PIR. As an annotation tool, the RESID Database is used in 

standardizing and enhancing modification descriptions in the feature tables of Swiss-Prot 

entries. As an Internet resource, the RESID Database assists researchers in high-throughput 

proteomics to search monoisotopic masses and mass differences and identifies known and 

predicted protein modifications. 

 

 
Figure 2.6 A list of instances for the PDB file 1A52 (Zanzoni, A., et al., 2007). 

 

Phospho3D 

Since the amount of data produced by screening assays is growing continuously, the 

development of computational tools for collecting and analyzing experimental data has 

become a pivotal task for unraveling the complex network of interactions regulating 

eukaryotic cell life. The authors presented Phospho3D [53] 

(http://cbm.bio.uniroma2.it/phospho3d), a database of 3D structures of phosphorylation sites, 

which stores information retrieved from the phospho.ELM database and is enriched with 
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structural information and annotations at the residue level. The database also collects the 

results of a large-scale structural comparison procedure providing clues for the identification 

of new putative phosphorylation sites. As shown in Figure 2.6, in the central panel a list of 

instances for the PDB file 1A52 is shown. For each of them, users can visualize the 

corresponding zone via the Jmol viewer, the annotation at the residue level and the results of 

the large-scale local structural comparison. For each structural match the score, the Z-score, 

and the root-mean-square deviation (RMSD) are reported along with the SCOP fold [54] of 

the matching PDB files. 
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2.3 Motivation and the Specific Aim 

With the high-throughput mass spectrometry in proteomics, biological knowledge bases 

containing a wealth of protein modifications are established. The annotating format of protein 

modifications from various resources is different. Therefore, we are inspired to integrate all 

the data of protein modifications and store them in consistent and structured way, in order to 

facilitate easy retrieval and promote understanding by biologist expert users as well as 

computer programs. 

In this study, we develop a knowledge base, namely dbPTM, which collects the known 

protein post-translational modification information from external biological data sources. 

Since only a small fraction of UniProtKB/Swiss-Prot proteins are annotated with 

experimentally verified post-translational modifications, we also developed computational 

tools [55, 56] to comprehensively identify phosphorylation sites, glycosylation sites and 

sulfation sites against the UniProtKB/Swiss-Prot proteins. Protein structural properties and 

functional information, such as the solvent accessibility of residues, protein disorder regions, 

protein variations, non-synonymous single nucleotide polymorphism (SNP), protein tertiary 

structures, and protein functional domains, are provided for researchers who investigating the 

protein post-translational modification mechanisms. Besides, the PTM related literature, 

protein conservations and substrate specificity are also provided in the resource. Web query 

interface and graphical visualization were designed and implemented to facilitate access to the 

database content. 

Currently, computational identification of protein modifications becomes a promising 

strategy to conduct preliminary analyses for protein functions and its roles in biological 

systems. A variety of computational tools have been developed for more than ten PTM types 

including phosphorylation, glycosylation, acetylation, methylation, sulfation, sumoylation and 

so on. In order to evaluate these computational tools, we compiled a PTM benchmark 

containing all available sites for each type of PTM. The PTM benchmark can provide a 

standard for evaluating performance of the computational prediction tools developed for 

identification of protein post-translation modification sites.  
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2.4 Materials and Methods 

The data generation flow of the dbPTM is briefly depicted in Figure 2.7. The data generation 

flow comprises the three major components: integration of external Post-Translational 

Modification (PTM) databases, computational annotation of PTM sites, and structural or 

functional annotations. The experimentally validated PTM data sources were extracted from 

UniProt KB/Swiss-Prot [3], Phospho.ELM [2], PHOSIDA [45], O-GLYCBASE [46], and 

UbiProt [47]. The experimentally verified PTM sites were used to generate computer models 

to further identify putative PTM sites against the Swiss-Prot proteins. Additional structural 

properties and functional information, such as protein tertiary structures, protein secondary 

structures, solvent accessibility of residues, protein disorder region, protein functional 

domains, protein variations and non-synonymous SNP are also annotated to the Swiss-Prot 

proteins. The detailed data generation flow is described below. 

 

 
Figure 2.7 System flow for constructing dbPTM. 
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2.4.1 Integration of External PTM Databases 

Five external biological databases related to protein post-translational modification 

information, UniProt KB/Swiss-Prot [3], Phospho.ELM [2], PHOSIDA [45], O-GLYCBASE 

[46], and UbiProt [47], are integrated into the proposed resource. Both the experimentally 

validated PTM sites and the putative PTM sites, which are annotated as “by similarity”, 

“potential” or “probable” in the ‘MOD_RES’, “CARBOHYD”, “LIPID” and “CROSSLNK” 

fields, have been extracted from the UniProt KB/Swiss-Prot database. As shown in Table 2.3, 

release 55.0 of UniProt KB/Swiss-Prot contributes 17957 experimental validated PTM sites 

within 8086 proteins, and 124933 putative PTM sites within 29356 proteins. The 

Phospho.ELM entries store information about substrate proteins with the exact positions of 

residues are known to be phosphorylated by cellular kinases. 16428 experimentally verified 

phosphorylation sites within 4026 proteins were obtained from Phospho.ELM version 2 [2]. 

PHOSIDA stores more than 6600 in vivo phosphorylation sites which were identified by mass 

spectrometry-based proteomics on 2244 proteins in response to EGF stimulation. 

O-GLYCBASE [46] Version 6.00 provides 242 glycoproteins containing 2,765 

experimentally verified O-linked, N-linked, and C-linked glycosylation sites. Moreover, 185 

glycoproteins in O-GLYCBASE are corresponded to Swiss-Prot proteins, which have 2,353 

experimentally verified glycosylation sites. UbiProt, which contains 417 ubiquitylated 

proteins and 165 ubiquitylation sites, was also integrated into dbPTM. 

 

Table 2.3 Data statistics of the integrated PTM resource. 

Resource Version Description Statistics 

Swiss-Prot 55.0 

Experimental Post-Translational 
Modifications (PTMs) 

17,957 PTM sites within 8,086 
proteins 

Putative PTMs (annotated as “by 
similarity”, “potential” or 
“probable” in the ‘MOD_RES’, 
“CARBOHYD”, “LIPID” and 
“CROSSLNK” fields) 

124,933 PTM sites within 
29,356 proteins 

PhosphoELM 7.0 Experimental phosphorylation sites 16,428 phosphorylation sites 
within 4,026 proteins 

PHOSIDA 1.0 
In vivo phosphorylation sites 
which was identified by mass 
spectrometry-based Proteomics 

More than 6600 
phosphorylation sites on 2244 
proteins in response to EGF 
stimulation  

O-GLYCBASE 6.0 Experimental glycosylation sites 2,353 PTM sites within 185 
glycoproteins 

UbiProt 1.0 Ubiquitylated protein and 
ubiquitylation sites 

417 Ubiquitylated proteins and 
165 ubiquitylated sites 
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2.4.2 Computational Annotation of PTM Sites 

To provide the post-translational modification information of the PTM un-annotated proteins 

available from Swiss-Prot, we adopted computational tools for identifying the 

post-translational modifications of the Swiss-Prot proteins. Our previous work, namely 

KinasePhos [56], incorporated the profile Hidden Markov Model (HMM) to identify 

kinase-specific phosphorylation sites with about 87% prediction accuracy [55], which was 

compared with several phosphorylation prediction tools such as NetPhos [57], DISPHOS [58], 

and rBPNN [59] (Table 2.4).  

 

Table 2.4 Comparisons between KinasePhos, NetPhos, DISPHOS and rBPNN. 
Residue types NetPhos  DISPHOS  rBPNN KinasePhos 

Serine 0.69 0.75 No data 0.86 
Threonine 0.72 0.80 No data 0.91 
Tyrosine 0.61 0.82 No data 0.84 
Total or average No data No data 0.87 0.87 
 

First of all, the PTMs should be categorized by their modification types and be 

investigated each type of PTM with enough samples in advance. Based on the 

KinasePhos-like method, removing the redundancy of PTM sites from various PTM databases 

is important. Before the model training, the positive and negative set should be constructed. 

Here we define the PTM residues as positive set, while those non-PTM residues in the same 

protein from which positive sites were taken are regarded as negative set, instead of using 

proteins randomly picked from the Swiss-Prot/tremble databases. In general, we make the 

equal sizes of positive set and negative set. After that, we employed a traditional sliding 

window strategy to represent the PTM or non-PTM peptides. Given the window length n, a 

fragment of 2n+1 residues centering on PTM site was adopted to represent a PTM peptide.  

 
Figure 2.8 An example of 9-mer (window length n is set to 4) phosphorylated peptides and 

sequence logo. 
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As shown in Figure 2.8, for example, the phosphorylated residue was define as the 

position 0 and the positions (-4 ~ -1) and (+1 ~ +4) designated the residues surrounding the 

phosphorylation residue, such as serine. However, the serines, threonines and tyrosines, which 

are not annotated as phosphorylation residues, within the experimentally validated 

phosphorylated proteins are selected as negative sets, i.e., the non-phosphorylated sites. 

Different values of n varying from 4 to 10 were used to determine the optimized window 

length. For the sake of the observation of the amino acid distribution surrounding the PTM 

residues, we make up the (2n+1)-mer sequence logos[60, 61] of the phosphorylation sites 

which is shown in Figure 2.8. The sequence logos are a graphical representation of an amino 

acid or nucleotide multiple sequence alignment. Each logo consists of stacks of symbols, one 

stack presents each position in the sequence. The overall height of the stack indicates the 

sequence conservation at that position, while the height of the symbols within the stack 

indicates the relative frequency of each amino or nucleotide at that position. Figure 2.9 shows 

the system flow of KinasePhos-like method. 

 

 
Figure 2.9 System flow of KinasePhos-like method. 

 
 

The positive set for training might contain several homologous sites from homologous 

proteins. If the training data are highly similar with too many homologous sites, the prediction 
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accuracy will be overestimated. To avoid the overestimation, we filtered the identical training 

sequences from homologous proteins in positive set. Thus, we obtained a high quality training 

set with non-redundant positive set for model training. 

The PTM site sequences in the positive sets with a larger size could be alternatively 

clustered by MDD method in order to increase the predictive sensitivity and specificity of the 

models. The Maximal Dependence Decomposition (MDD) [62] employs statistical 2χ -test to 

group an set of aligned signal sequences to moderate a large group into subgroups that capture 

the most significant dependencies between positions. In previous work, MDD was proposed 

to group the splice sites during the identification process of splice site prediction [62]. 

However, in our study, we group protein sequences instead of nucleotides. In order to reduce 

the data complexity of the phosphorylated sites when applying MDD, we categorize the 

twenty types of amino acids into five groups such as neutral, acidic, basic, aromatic and imino 

groups, as the mapping given in Table 2.5. Then, we implement the MDD algorithm in JAVA 

programming language for amino acids and apply it to cluster PTM site sequences with large 

data sets. 

 

Table 2.5 The amino acids group used in MDD. 
Group name Amino acids 
Neutral threonine (T), valine (V), leucine (L), isoleucine (I), methionine (M), glycine 

(G), alanine (A), serine (S), cysteine (C) 
Acid aspartic acid (D), asparagine (N), glutamic acid (E), glutamine (Q) 
Basic lysine (K), arginine (R), histidine (H) 
Aromatic phenylalanine (F), tyrosine (Y), tryptophan (W) 
Imino proline (P) 

 

To perform the null hypothesis test of independence on a pair of i-th and j-th positions of 

a PTM site, we formed a 5 x 5 contingency table, as shown in Figure 2.10, by counting the 

observed number Xmn of PTM site sequence where the i-th amino acid Ai was m and j-th 

amino acid Aj was n (for simplicity, we have encoded neutral, acid, basic, aromatic, imino as 1, 

2, 3, 4, 5, respectively) from a sample of X PTM site sequences. The numbers mRX and CnX in 

Figure are row sums and column sums, respectively. It is clear that XXX CnnmRm ==∑∑ ==
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X
XXE CnmR

mn =  

is the expected number of amino acids in which the i-th position Aj is m and the j-th position 

Aj is n from a sample of X PTM site sequences when the null hypothesis of independence was 

true. To determine the rejection region for the null hypothesis, we have specified a numerical 

value α for the Type I error of the test, according to a 2χ –distribution with degrees of 

freedom 16)15()15( =−×− , and then the critical point, K, was computed as follows: 

P ( null hypothesis is rejected when it is true ) = KAAP ji ≥),(( 2χ | null hypothesis) = α . 

 

 
Figure 2.10 A 5x5 contingency table between two positions in PTM site. 

 

The MDD is a recursive process to divide the positive sets into tree-like subgroups. 

When applying MDD to cluster the sequences of a positive set, a parameter, i.e., the 

minimum-cluster-size, should be set. If the size of a subgroup is less than the 

minimum-cluster-size, the subgroup will not be divided any more. The MDD process 

terminates when all the subgroup sizes are less than the minimum-cluster-size. When 

considering a MDD-clustered data set, for instance, MDD-clustered PKA catalytic serine 

(S_PKA), the model are trained separately from the subgroups of the phosphorylated sites 
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resulted by MDD. Each model is used to search in the given protein sequences for the 

phosphorylated sites. A positive prediction of the model group is defined by at least one of the 

model makes a positive prediction, whereas a negative prediction is defined as all the models 

make negative predictions. 

Profile Hidden Markov Models (HMMs) are trained from the PTM site sequences 

aligned without gaps of the positive sets. An HMM describes a probability distribution over a 

potentially infinite numbers of sequences [63]. It can be used to detect distant relationships 

between amino acids sequences. Here, we use the software package HMMER[63] (version 

2.3.2) to build the models, to calibrate the models and to search the putative PTM sites against 

the protein sequence. The emission and transition probabilities are generated from each of the 

training set to capture the characteristics of the training sequences. All residue types of the 

PTM sites with enough data set were taken to train the HMM; moreover, as well as the sets of 

the kinase-specific or MDD-clustered sets of PTM sites.  

After the models are trained, it is necessary to evaluate whether the models are fitted or 

not. The following measures of the predictive performance of the models are then calculated: 

Precision (Pr) = TP / (TP+FP), Sensitivity (Sn) = TP / (TP+FN), Specificity (Sp) = TN / 

(TN+FP) and Accuracy (Ac) = (TP + TN) / (TP+FP+TN+FN), where TP, TN, FP and FN 

represent true positive, true negative, false positive and false negative predictions, 

respectively. In general, we make the equal sizes of the positive samples and the negative 

samples during the cross-validation processes. 

To evaluate the trained models, two cross-validation methods, k-fold cross-validation 

and leave-one-out cross-validation, are applied in this study. For a large positive set, i.e., the 

number of a positive set of PTM sites is equal or greater than thirty sites, the k-fold 

cross-validation is used to evaluate the model trained from the data set. The size of the 

negative set, which is constructed by randomly selected from the corresponding non-PTM 

sites, is equal to the size of positive set. The experiments are repeated for 20 times and the 

average precision, sensitivity, specificity and accuracy are calculated. Furthermore, in order to 

avoid a skewed sampling during the cross-validation process, for a small positive set (less 

than 30), the leave-one-out cross-validation is alternatively applied. Similarly, the negative set 

in this cross-validation is constructed by the same strategy as the k-fold cross-validation. 

For each training set of PTM sites, the best performed model is selected and used to 

identify the PTM sites within the input protein sequences by HMMsearch [63]. To search the 
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hits of a model, HMMER returns both a HMMER bit score and an expectation value 

(E-value). The score is the base two logarithm of the ratio between the probability that the 

query sequence is a significant match and the probability that it is generated by a random 

model. The E-value represents the expected number of sequences with a score greater than or 

equal to the returned HMMER bit scores. While decreasing the E-value threshold favors 

finding true positives, increasing the E-value threshold favors finding true negatives. We 

select the HMMER score as the criteria to define a HMM match. A search of a model with the 

HMMER score greater than the threshold t of bit score is defined as a positive prediction, i.e., 

a HMM recognizes a PTM site. The threshold t of each model is decided by maximizing the 

accuracy measure during a variety of cross-validations with the HMM bit score value range 

from 0 to -10. For instance, Figure 2.11 depicts the optimization of the threshold of the HMM 

bit scores in the model of phosphorylated serine which is catalyzed by PKA (S_PKA). The 

threshold of the S_PKA model is set to -4.5 to maximize the accuracy measure of the model. 

 

 
Figure 2.11 The optimization of the threshold of the HMM bit score in the model of phosphorylated 

serine which is catalyzed by PKA. 
 

KinasePhos-like method was applied to 20 types of PTM with over 30 experimentally 

verified PTM sites, which were learned the computational models and then adopted to 

identify potential PTM sites against all Swiss-Prot proteins. The learned models were 

evaluated using k-fold cross validation. To reduce the number of false positive predictions 
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when the potential PTM sites were fully detected against the Swiss-Prot protein sequences, 

the predictive parameters were set to ensure a predictive specificity of 100%. 

 

2.4.3 Structural and Functional Annotations 

In order to provide more effective information about protein structural and functional 

annotations relevant to protein post-translational modification, a variety of biological 

databases, such as Swiss-Prot [64], Ensembl [65], InterPro [66], Protein Data Bank [67], and 

RESID [4], are integrated.  

Protein variation is the change of amino acids in polypeptides. As shown in Table 2.6, 

Swiss-Prot contributes 32,101 protein variants corresponding to 6,115 proteins, where 47 

variant residues are located at the PTM sites and 267 variant residues are located surrounding 

236 PTM sites (-4 ~ +4 AA). Furthermore, Single Amino acid Polymorphism (SAP) is the 

amino acid variation corresponding to the genetic variation as the definition of 

non-synonymous Single Nucleotide Polymorphism (SNP) in genomic sequence. The amino 

acid variants may have an impact on protein folding, active sites, or the overall solubility and 

stability of a protein. SAP is the type of variation most frequently related to human diseases 

[64]. Therefore, when the amino acid variations occur in the post-translational modification 

sites or the surrounding residues, they may affect the recognition of PTM sites by catalytic 

kinases. 23,378 human non-synonymous single nucleotide polymorphisms (SNP) located at 

7,230 Swiss-Prot human proteins were obtained from the variation part of Ensembl database 

[65]. 

InterPro provides 1113928 entries corresponding to 247238 Swiss-Prot proteins. We 

found that about 65% of Swiss-Prot annotated PTM sites are located at InterPro annotated 

protein functional domains. The RESID [4] protein modifications database is integrated into 

dbPTM to provide PTM related information such as mass difference, chemical formula, 

enzymatic activities, literature citations, Gene Ontology (GO) cross-references, structure 

diagrams, and molecular models.  

The latest version of Protein Data Bank (PDB) contains 31,721 tertiary structures 

corresponding to 6,806 Swiss-Prot protein entries (Table 2.6). For the proteins with known 

tertiary structures, the DSSP [68] program was used to extract the true secondary structure 

and solvent accessibility for those 6,808 Swiss-Prot proteins. Solvent accessibility of amino 

acids residues is important for both the structure and function of proteins, especially the 
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post-translational modifications studied in this investigation. Protein secondary structure is 

the regular arrangement of amino acid residues in a segment of a polypeptide chain, where 

each amino acid is assigned a structure state, helix (H), strand (E) or coil (C). There are 1,124 

experimentally verified PTMs have the true secondary structure and solvent accessibility. 

 

Table 2.6 List of the integrated external databases and programs for structural and functional 
annotations. 

Database 
Name Description Statistics 

Swiss-Prot [42, 64] Protein variants 32,101 variants corresponding to 
6,115 proteins 

RESID [4] Annotations of Post-Translational 
Modification (PTM) 431 PTM annotations 

InterPro [66] Protein domain 
1,113,928 entries can be 
corresponded to 247,238 Swiss-Prot 
entries 

Protein Data Bank [67] Protein structures 30,937 entries can be corresponded 
to 10,274 Swiss-Prot proteins 

COG [69] Clusters of orthologous groups of 
proteins 

138,458 proteins form 4873 COGs in 
66 genomes of unicellular organisms. 
The eukaryotic orthologous groups 
(KOGs) include proteins from 7 
eukaryotic genomes consisting of 
4852 clusters of orthologs, which 
include 59,838 proteins. 

Program 
Name Description Version  

KinasePhos [56] Identifying Kinase-specific 
phosphorylation sites Release 1.0 

DSSP [68] Calculating the secondary structure 
and solvent accessibility of residues April 1,2000 

RVP-net [70] Predicting the solvent accessibility 
of residues Release 1.0 

PSIPRED [21] Predicting the protein secondary 
structures Release 2.45 

DISOPRED2 [35] Predicting the protein disorder 
region Version 2.1 

Jmol6 An open-source Java viewer for 
chemical structures in 3D Release 11.2.4 

Weblogo [60] Generating sequence logo for PTM 
substrates Release 2.8.2 

Blast [71] 
The programs BLASTCLUST and 
BL2SEQ were used to remove the 
redundant PTM sites 

Release 2.2.12 

ClustalW [72] Multiple sequences alignment in 
orthologous protein clusters Release 1.83 

 

However, only ~ 4% of Swiss-Prot proteins have the known tertiary structures. For 

proteins without known tertiary structures, two previously published tools, RVP-net [70], 
                                                 
6 Jmol: http://www.jmol.org/ 
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PSIPRED [21] and DISOPRED [35], were applied to predict the solvent accessibility, 

secondary structure and protein disorder region, respectively. RVP-net [70] presents a 

feed-forward type neural network which can predict a real value ranging from 0% to 100% of 

Accessible Surface Areas (ASA) for amino acid residues, based on their neighborhood 

information. We applied the RVP-net program [70] to fully predict the real-valued ASA for 

the amino acid residues of all Swiss-Prot proteins. By selecting a suggested threshold [70] (i.e. 

25%), the residues with larger ASA values are viewed as surface residues. Moreover, 

dynamically disordered regions appear to be relatively abundant in eukaryotic proteomes. The 

DISOPRED server allows users to submit a protein sequence, and returns a probability 

estimate of each residue in the sequence being disordered.  

 

2.4.4  Benchmark of PTM Prediction 

 
Figure 2.12 Flowchart of constructing PTM benchmark dataset. 

 

With the recent exponential increase in some PTM sites identified by mass spectrometry, the 

opportunity has arisen to analyze the motifs surrounding each PTM site and use these motifs 



 

 44

to identify potential PTM sites in proteins. Up to now, about 40 PTM site prediction servers 

have been developed and made publicly available through the internet. Several representative 

prediction servers of PTMs are show in Table 2.7 which displays the method and predictive 

performance of each PTM prediction server. 

 

Table 2.7 Several representative PTM prediction servers.  

PTM type Prediction 
server Method Predictive 

performance 

Glycosylation 

NetOGlyc 3.1 
[73] NN Sn = 76%, Sp = 93% 

NetNGlyc 1.0 NN N/A 
DictyOGlyc [74] NN  

Phosphorylation 

KinasePhos [56] MDD+HMM Ac = 87% 

GPS [75] Group-based 
scoring Sn = 91.8%, Sp = 85% 

PPSP [76] Bayesian theory Ac ~= 88% 
NetPhosK [77] NN  
PredPhospho [78] SVM Ac = 83%~95% 

N-terminal acetylation NetAcet [79] NN Sn = 75%, Sp = 92% 

Methylation MeMo [80] SVM Ac of lysine = 67.1% 
Ac of argine = 86.7% 

N-acetylation on internal lysines PAIL [81] 
Bayesian 
Discriminant 
Method 

Ac = 89% 

Sulfation Sulfinator [82] HMM Ac = 98% 

Palmitoylation 
NBA-Palm [83] Naïve Bayes 

Algorithm  Ac = 86% 

CSS-Palm [84] Clustering and 
Scoring Strategy Sn=82%, Sp=83% 

N-terminal myristoylation 

NMT [85]  Sn = 95% 
Myrist [86] HMM Ac ~= 97% 
Myristoylator 
[87] NN Sn= 93.8%, Sp= 97.9%

Sumoylation SUMOsp [88] GPS+MotifX Ac = 92.71% 
Glycosylphosphatidylinositol 
(GPI) anchoring 

GPI-SOM [89] NN  
big-Π [90] N/A Ac = 83% 

Abbreviations: Sn, sensitivity; Sp, specificity; Ac, accuracy; NN, neural network; MDD, maximal 
dependence decomposition; HMM, hidden markov model; SVM, support vector machine. 
 

A PTM benchmark comprising the experimental sites for each PTM type was built to 

provide a standard for evaluating the predictive performance of various prediction tools. 

Figure 2.12 shows the process for compiling the PTM benchmark, which is based on the 

previous work of Chen et al. [80]. To eliminate the redundancy, the protein sequences 

containing the same type of PTM sites were grouped by a threshold of 30% identity using 

BLASTCLUST [71]. If the identify of two protein sequences is greater than 30%, then the 
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fragment sequences of the substrates were re-aligned with BL2SEQ. If the fragment 

sequences of two substrates with the same location are identical, then only one of the 

substrate sequences was included in the benchmark. After the reduction of homologous 

dataset, the non-homologous dataset could be further categorized into training set and test set. 

Usually, one-tenth of the non-homologous dataset is extracted as the independent test set. The 

remainder (nine-tenth) is defined as the training set. To avoid the biased sampling of test set, 

we adopted the k-mean clustering method to cluster the non-homologous dataset into N/10 

clusters, given non-homologous dataset with data size N. k-mean clustering method can let 

the PTM peptide sequences that are similar to each other are clustered together. Then, select 

one point from each cluster and join them into the test set. These selected points that from 

each cluster are uniformly distributed. Therefore, the constructed test set could be not biased. 

 

K-means Clustering Algorithm 

The k-means algorithm (J.A. Hartigan and M.A. Wong, 1979) is an algorithm to cluster n 

objects based on attributes into k partitions, k < n. It is similar to the 

expectation-maximization algorithm for mixtures of Gaussians in that they both attempt to 

find the centers of natural clusters in the data. It assumes that the object attributes form a 

vector space. The objective it tries to achieve is to minimize total intra-cluster variance, or, the 

squared error function  

∑ ∑
= ∈

−=
k

i Sx
ij

ij

xV
1

2)( μ  

where there are k clusters Si, i = 1, 2, …, k and μi is the centroid or mean point of all the 

points . 

The most common form of the algorithm uses an iterative refinement heuristic known as 

Lloyd's algorithm. Lloyd's algorithm starts by partitioning the input points into k initial sets, 

either at random or using some heuristic data. It then calculates the mean point, or centroid, of 

each set. It constructs a new partition by associating each point with the closest centroid. Then 

the centroids are recalculated for the new clusters, and algorithm repeated by alternate 

application of these two steps until convergence, which is obtained when the points no longer 

switch clusters (or alternatively centroids are no longer changed). 
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2.5 Results 

dbPTM integrates several databases to accumulate known protein modifications, as well as 

the putative protein modifications predicted by a series of accurately computational tools. 

KinasePhos [55, 56], which incorporates the profile hidden Markov model (HMM) to identify 

kinase-specific phosphorylation sites, is integrated into dbPTM. Moreover, dbPTM is a 

knowledge base for protein post-translational modification, which comprises the modified 

sites, solvent accessibility of substrate, protein secondary and tertiary structures, protein 

domains and protein variations. Literature related to PTM, protein conservations and substrate 

specificity are also provided in the resource. 

 

2.5.1 Performance of PTM Computational Models 

KinasePhos-like method was applied to 20 types of PTM with over 30 experimentally verified 

PTM sites, which were learned the profile hidden Markov models and then adopted to 

identify potential PTM sites against all Swiss-Prot proteins. The profile hidden Markov 

models of each PTM are constructed by HMMER package [63] (version 2.3.2); for example, a 

HMM of N-linked (GlcNAc) asparagine is shown in Figure 2.13b, which is difficult for 

biologist to understand what the profile HMM parameters say. Therefore, Figure 2.13a shows 

the graphical representation of profile hidden Markov model which let users understand the 

framework of HMM concretely. The HMM is mainly composed of three kinds of state, such 

as match state, insertion state, and deletion state. The HMM in Figure 2.13a contains nine 

match states (squares labeled m1, m2, …, m9), each of which has 20 residue emission 

probabilities, shown with sequence logos. The first column of Figure 2.13b is the node 

number (1 …9) corresponding to the match state (m1 …m9) of Figure 2.13a. Insertion states 

(circles labeled i0 – i9) also have 20 emission probabilities each. Deletion states (circles 

labeled d1-d9) are ‘mute’ states that have no emission probabilities. A begin and end state are 

included (b,e). State transition (m->m, m->i, m->d, i->m, i->i, d->m, d->d, b->m, m->e) 

probabilities are shown as arrows. 
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Figure 2.13 The profile hidden Markov model of N-linked (glcNAc) asparagine. 

 

After the evaluation of the learned models using k-fold cross validation, the parameters 

of the predictive models that achieved the best predictive accuracy are listed in 
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Table 2.8, which contains the number of known PTM sites, method, cross-validation method, 

precision (Pr), sensitivity (Sn), specificity (Sp), accuracy (Ac). Twenty PTMs were trained 

with the computational models. The parameters, including window length and HMMER bit 

score, were optimized iteratively during cross-validation. The models with good predictive 

accuracy will be selected to implement the PTM prediction. In contrast, those PTM models 

with poor predictive performance will be improved in two ways which include changing the 

machine learning method and considering other features such as secondary structure and 

solvent accessibility. 
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Table 2.8 Parameters and predictive performance of the PTM computational models.  

PTM Types Substrates 
No. of  
PTM 
sites 

Window 
length 

HMM 
bit 

score
Pr. Sn. Sp. Ac.

N-linked 
glycosylation Asparagines (GlcNAc) 3019 -6 ~ +6 -4.5 0.85 0.98 0.83 0.91

O-linked 
glycosylation 

Serine (GalNAc) 212 -6 ~ +6 -5 0.80 0.85 0.79 0.82
Serine (GlcNAc) 35 -6 ~ +6 -6 0.81 0.71 0.83 0.77
Serine (Man) 79 -6 ~ +6 -5 0.88 0.74 0.90 0.82
Threonine (GalNAc) 386 -6 ~ +6 -4.5 0.81 0.75 0.82 0.79
Threonine (GlcNAc) 42 -6 ~ +6 -4 0.77 0.82 0.76 0.79
Threonine (Man) 83 -6 ~ +6 -7 0.83 0.88 0.81 0.85
Lysine (Gal) 46 -6 ~ +6 -5 1.00 1.00 1.00 1.00

C-linked glycosylation Tryptophan (Man) 49 -6 ~ +6 -0.5 1.00 0.98 1.00 0.99

Phosphorylation 

Serine (kinase-specific) 4382 -6 ~ +6 -5.5 0.88 0.84 0.88 0.86
Threonine 
(kinase-specific) 1030 -6 ~ +6 -4 0.91 0.92 0.91 0.91

Tyrosine 
(kinase-specific) 901 -6 ~ +6 -5 0.86 0.81 0.87 0.84

Histidine 41 -6 ~ +6 -3 0.90 0.80 0.91 0.86

Acetylation 

Alanine 403 0 ~ +6 -6 0.64 0.72 0.60 0.66
Lysine 292 0 ~ +6 -6 0.77 0.73 0.79 0.76
Methionine 199 0 ~ +6 -4 0.83 0.75 0.85 0.80
Serine 402 0 ~ +6 -4 0.59 0.84 0.42 0.63
Threonine 58 0 ~ +6 -6 0.85 0.53 0.90 0.71

Methylation  Arginine 180 -6 ~ +6 -1 0.97 0.78 0.98 0.88
Lysine 407 -6 ~ +6 0 0.83 0.60 0.88 0.74

N-myristoyl glycine Glycine 100 -6 ~ +6 -10 0.99 0.91 0.99 0.95
N-palmitoyl csteine Cysteine 58 -6 ~ +6 -5 0.88 0.93 0.88 0.91
S-palmitoyl csteine Cysteine 169 -6 ~ +6 -4 0.94 0.70 0.95 0.83
S-farnesyl cysteine Cysteine 63 -6 ~ +6 -4 0.78 0.89 0.75 0.82
S-geranylgeranyl 
cysteine Cysteine 52 -6 ~ 0 -6 0.69 0.88 0.61 0.74

Hydroxylation Proline 635 -6 ~ +6 -4 0.82 0.88 0.81 0.84
Lysine 83 -6 ~ +6 -3 0.97 0.84 0.98 0.91

Amidation  

Asparagine 77 -6 ~ +6 -5 1.00 1.00 1.00 1.00
Glycine 143 -6 ~ +6 -5 1.00 0.96 1.00 0.98
Isoleucine 72 -6 ~ +6 -4 0.92 0.85 0.92 0.88
Leucine 263 -6 ~ +6 -4 0.92 0.92 0.92 0.92
Methionine 88 -6 ~ +6 -8 1.00 1.00 1.00 1.00
Phenylalanine 433 -6 ~ +6 -1 0.97 0.99 0.97 0.98
Proline 95 -6 ~ +6 -7 0.96 1.00 0.96 0.98
Tyrosine 88 -6 ~ +6 -7 1.00 1.00 1.00 1.00

Sulfation Tyrosine 162 -6 ~ +6 -4.5 0.96 0.91 0.96 0.94
Sumoylation Lysine 77 -6 ~ +6 -5 0.86 0.75 0.88 0.81
Ubiquitination Lysine  284 -6 ~ +6 -5 0.82 0.67 0.85 0.76
Pyrrolidone 
Carboxylic Acid Glutamate acid 598 0 ~ +6 -4 0.76 0.69 0.79 0.74

4-carboxyglutamate Glutamate 371 -6 ~ +6 -4 0.92 0.90 0.93 0.91
Nitration Tyrosine 47 -6 ~ +6 -3 0.85 0.65 0.81 0.73
S-diacylglycerol 
cysteine Cysteine 36 -6 ~ +6 -5 1.00 0.94 1.00 0.97

Average   0.87 0.82 0.86 0.84
Abbreviations: Pr., precision; Sn., sensitivity; Sp., specificity; Ac., accuracy. 
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2.5.2 Data Statistics 

Table 2.9 Data statistics of dbPTM. 

PTM types Substrates 
Number of 
experiment

al sites 

Number of 
putative 

sites from 
Swiss-Prot 

Number of 
putative 
sites in 
dbPTM  

N-linked 
Glycosylation Asparagine and lysine 3,036 72,125 479,955

O-linked 
Glycosylation 

Lysine, proline, serine, threonine, and 
tyrosine 1,896 2,558 386,545

C-linked 
Glycosylation Tryptophan 49 31 4,015

Phosphorylation Serine, threonine, tyrosine, aspartate, 
histidine or cysteine 22,363 27,200 1,815,472

Acetylation N-terminal of some residues and side chain 
of lysine or cysteine  2,071 5,143 1,206

Amidation  
Generally at the C-terminal of a mature 
active peptide after oxidative cleavage of 
last glycine  

2,150 1,117 24,352

Hydroxylation  Generally of asparagine, aspartate, proline or 
lysine  1,033 1,074 9,743

Methylation  

Generally of N-terminal phenylalanine, side 
chain of lysine, arginine, histidine, 
asparagine or glutamate, and C-terminal 
cysteine  

746 2,846 18,716

Pyrrolidone 
Carboxylic Acid  

N-terminal glutamine which has formed an 
internal cyclic lactam.  598 584 12,322

Gamma-Carboxygl
utamic Acid  Glutamate 371 361 1,924

Farnesylation Cysteine 61 216 5,349
Myristoylation Glycine 108 765 10,998
Palmitoylation Cysteine 210 3,582 27,841
Geranylgeranylatio
n Cysteine 47 819 14,317

S-diacylglycerol 
cysteine Cysteine 36 1,529 8,977

GPI anchoring C-terminal asparagine, asparate, and serine 27 681 -

Deamidation Asparagine and glutamine (needs to be 
followed by a G) 38 26 2,022

Sulfation Serine, threonine, and tyrosine  165 570 15,654

Sumoylation Glycyl lysine isopeptide 
(Lys-Gly)(interchain with G-Cter in SUMO) 77 259 10,342

Ubiquitylation 
Glycyl lysine isopeptide 
(Lys-Gly)(interchain with G-Cter in 
ubiquitin) 

286 516 8,865

Nitration Tyrosine 47 5 1,432
ADP-ribosylation Arginine 3 203 -
Formylation Of the N-terminal methionine  28 35 -
Citrullination Arginine 27 91 -
Bromination Tryptophan 18 3 -
FAD Tyrosine, histidine, and cysteine 12 116 -
S-nitrosylation Cysteine 9 93 -
Others  889 2,358 -

Total   36,466 124,933 2,860,047
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Table 2.9 summarizes the statistics of the experimental PTM sites and the predicted PTM sites 

in the updated dbPTM. This updated dbPTM had a total of 36466 experimental PTM sites. 

The experimental PTM sites obtained from Swiss-Prot, Phospho.ELM, O-GLYCBASE and 

UbiProt were categorized by PTM type, and the number of non-redundant PTM sites was 

calculated. For instance, the database contains 22363 experimental phosphorylation sites and 

2071 experimental acetylation sites. Besides the experimental PTM sites, a machine learning 

method was adopted to build predictive models for twenty types of PTM. The computational 

predictions are described in detail in our previous works [19, 55, 56, 91]. These models were 

used to search the potential PTM sites against Swiss-Prot protein sequences. As listed in Table 

2.9, 2860047 sites for all PTM types were detected. 

 

Table 2.10 The statistics of the putative phosphorylation sites, sulfation sites, and glycosylation 
sites with different thresholds of the Accessible Surface Area (ASA) of residues. 

Accessible Surface 
Area (ASA) 

No. of phosphorylated 
serine, threonine and 
tyrosine 

No. of sulfated 
tyrosine 

No. of N-linked 
glycosylated 
asparagine 

No. of C-linked 
glycosylated 
tryptophane 

≥ 0% 1,346,067 189,457 38,416 5,478 
≥ 25% 652,756 13,315 33,836 51 
≥ 50% 32,816 2 4,973 0 
≥ 75% 7 0 7 0 

 

Statistics of PTM Sites and Solvent Accessibility 

The numbers of putative phosphorylation and sulfation sites, where the ASA of the 

substrates are greater than 25% (defined as the residue locating at the protein surface), are 

652,756 and 13,315, respectively. There are a total of 33, 887 predicted N-linked 

glycosylations of asparagine and C-linked glycosylations of tryptophan. 

 

Statistics of PTM Sites and Referable Literatures 

PTM profile, which annotates the PTM sites and related literatures, can help biologist to 

understand the relationship between the protein function and PTMs. With the comprehensive 

annotation of PTMs from dbPTM, the experimentally verified and computational detected 

PTMs of a protein can be provided to users. However, the relationship between protein 

function and PTMs is not understood while only provide the PTM sites. Thus, the related 

literatures about the protein and PTMs are extracted from literature databases and integrated 

in PTM profiles. In release 51.2 of Swiss-Prot knowledgebase, there are totally 490,996 

literatures against 243,975 proteins. Based on searching keyword in literature titles, the 
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number of literatures about several common PTMs is listed in Table 2.11. Users not only get 

the PTM information, but also look into the relationship between PTM sites and protein 

functions. There are totally 490,996 literatures against 243,975 proteins. 

 

Table 2.11 The statistics of literatures extracted from release 55.0 of Swiss-Prot knowledgebase in 
several common PTMs.  

PTM type Keyword No. of 
literatures 

No. of 
proteins

Glycosylation 
Glyco, glycosylation, glycosylated, 
O-linked, N-linked, C-linked, 
carbohyd, carbohydrate 

1,793 1,422

Phosphorylation Phospho, phosphorylated , 
phosphorylation 5,944 4,177

Acetylation Acetyl, acetylated, acetylation 992 842
Methylation Methyl, methylated, methylation 310 222

Palmitoylation Palmitoyl, palmitoylated, 
palmitoylation 171 146

Myristoylation Myristoyl, myristoylated, 
myristoylation 109 103

Hydroxylation Hydroxyl, hydroxylated, 
hydroxylation 121 105

Amidation Amid, amided, amidation 380 358
Deamidation Deamidation 32 24
Nitration Nitrated, S-Nitrosylation, nitration 40 40

Ubiquitination Ubiqutin, ubiquitinated, 
ubiquitination 450 316

Sumoylation SUMO, sumoylated, Sumoylation 132 102
Sulfation  Sulfo, sulfated, sulfation 72 62
Glycosylphosphatidylinositol 
(GPI) anchor GPI, GPI-anchor, GPI-anchoring  219 141

 

2.5.3 Data Access 

To facilitate the use of the dbPTM resource, we developed a website for users to browse and 

search for content. As depicted in Figure 2.14, the database can be queried using the protein 

name, gene name, Swiss-Prot ID or accession, the input of protein sequences for homology 

search against Swiss-Prot protein sequence database. Both tabular and graphical visualizations 

of the experimental and predicted PTM sites are displayed, revealing an overview of the 

post-translational modification sites, solvent accessibility, protein variations, protein 

secondary structures and protein functional domains in a protein sequence. A summary table 

shows the details of all PTM types, and the number of PTM sites categorized by substrate 

amino acid. 
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Figure 2.14 Search interface of dbPTM. 

 

Substrate Specificity Investigation 

Substrate specificity is the preference of amino acids surrounding the modification sites, 

which is usually investigated for the identification of particular modification type. To provide 

the substrate specificity in each type of PTM in detail, the experimentally validated sites in 

each type of PTM were initially categorized by amino acid types of the substrates. For 

instance, protein phosphorylation sites can be categorized into subgroups of serine, threonine, 

tyrosine and histidine. Given a window length n, the fragment of 2n+1 residues centering on 

PTM site (position 0) is extracted, and the positional frequencies of amino acids are calculated 

and presented as sequence logos [60], allowing the sequence entropy to be computed by 

summing over the height of the letter stacks along the sequence positions. The structural 

information, such as solvent accessibility and secondary structure surrounding the modified 

sites, are adopted to calculate the positional solvent accessibility and the matrix of positional 

secondary structure. 

As indicated in Figure 2.15, users can choose the acetylation of lysine (K), for instance, 
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to obtain more detailed information, including the position of the modified amino acid, the 

location of the modification in protein sequence, the modified chemical formula and the mass 

difference. The Jmol program generates the visualization of the formula structure. In 

particular, the subcellular localization distribution of proteins with acetyllysine was provided 

to investigate the relationship between them. Furthermore, the sequence logo presents the 

substrate site specificity, including the composition of amino acid surrounding the 

modification site [60]. All the experimental PTM sites and putative PTM sites are available 

and downloadable in the web interface. The PTM benchmark for computational studies is also 

downloadable. 

 

 
Figure 2.15 Browse interface of dbPTM. 

 

Orthologous Conserved PTM Sites 

Moreover, the Clusters of Orthologous Groups of proteins (COGs) [69] was integrated to 

observe whether a PTM sites located in the conserved regions of protein orthologous 

sequences. The alignment of the protein sequences in each cluster is provided in the resource. 
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In Figure 2.16, an experimentally verified acetyllysine located in a protein-conserved region 

indicates an evolutionary influence in which orthologous sites in other species could be 

involved in the same type of PTM. 

 

 
Figure 2.16 Example of PTM site located in orthologous conserved region. 

 

2.5.4 Characteristics 

The proposed server enables both wet-lab biologists and bioinformatics researchers to easily 

explore the information about protein post-translational modifications. dbPTM not only 

accumulates the experimentally verified PTM sites with relevant literature references, but also 

computationally annotates twenty types of PTM sites on Swiss-Prot proteins without any 

previously annotated PTM sites.  As indicated in Table 2.12, the proposed knowledge base 

provides effective information relating to each type of PTM, including orthologous conserved 

regions, relationship between PTMs and subcellular localization, and the substrate specificity 

such as the frequency of amino acids, the average solvent accessibility and the frequency of 

secondary structure surrounding the modified site. Moreover, the proposed PTM benchmark 
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can be adopted to compare the predictive performance of various tools involved in the same 

type of PTM prediction, based on the same testing set. 

 

Table 2.12 Advances and improvements in current dbPTM.  

Features dbPTM [19] dbPTM update 
Protein entry Swiss-Prot (release 46) Swiss-Prot (release 55) 

Experimental PTM 
resource 

Swiss-Prot, Phospho.ELM, and 
O-GLYCBASE 

Swiss-Prot, Phospho.ELM, 
O-GLYCBASE, and UbiProt 

Computationally 
predicted PTMs 

Phosphorylation, glycosylation, 
and sulfation 

About 25 types of PTM 
(phosphorylation, glycosylation, 
sulfation, acetylation, 
methylation, sumoylation, 
hydroxylation, etc.) 

Experimental structural 
properties Protein Data Bank (PDB) Protein Data Bank (PDB) 

Computational 
structural properties RVP-net and PSIPRED RVP-net and PSIPRED 

PTM annotation RESID (373 PTM annotations) RESID (431 PTM annotations) 

Protein domain  InterPro InterPro 

Protein variation  Swiss-Prot and Ensembl Swiss-Prot and Ensembl 

PTM literature none Swiss-Prot, Phospho.ELM, 
O-GLYCBASE, and UbiProt 

Substrate specificity none 

Amino acid frequency, solvent 
accessibility, and secondary 
structure surrounding modified 
sites 

Protein clusters none COG and ClustalW 

PTM Benchmark none 

Providing the benchmark of PTM 
test set to comparing the 
predictive performance base on 
the same dataset 

Relationship between 
PTM and subcellular 
localization 

none 
Analyzing the relationship 
between PTM and subcellular 
localization 

Graphical visualization 

PTM, solvent accessibility, 
secondary structure, protein 
variation, protein domain, and 
tertiary structure 

PTM, solvent accessibility, 
secondary structure, protein 
variation, protein domain, tertiary 
structure, orthologous conserved 
regions and substrate site 
specificity 
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2.6 Summary 

The proposed resource, dbPTM, not only integrates the experimentally validated 

post-translational modification information, but it also computationally annotates the 

Swiss-Prot proteins for putative phosphorylation, glycosylation and sulfation sites. 

Furthermore, the PTM related protein structural properties and functional information, such as 

solvent accessibility of amino acid residues, protein variations, protein secondary structures, 

protein tertiary structures and protein domains, are provided to facilitate the research of 

protein post-translational modifications. dbPTM also provides comprehensive and effective 

PTM information about substrate specificity and their roles in biological systems. The PTM 

benchmark has much potential to become a performance evaluation standard for 

computational studies of protein post-translational modification. Previous investigations have 

indicated that many protein modifications create binding sites for specific protein-protein 

interaction domains to regulate cellular behavior [92]. As shown in Figure 2.17 [92], 

interaction domains often recognize short peptide motifs that are embedded in target proteins, 

but do not bind stably until the peptide has acquired an appropriate PTM. Such domains 

usually have a conserved binding pocket for the modified residue and a more variable surface 

that selectively engages the flanking amino acids, and thereby distinguishes between different 

peptide motifs with the same PTM6–9. Both the domains and the peptide motifs that they 

recognize are modular in design and can therefore, in principle, be incorporated into many 

different proteins. Future work of dbPTM will combine information about protein-protein 

interaction domains, such as InterDom [93]. 
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Figure 2.17 Example post-translational modification reactions and structures of 

protein-interaction-domain–ligand complexes (Seet, B.T., et al., 2006). 
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Chapter 3  Identification of Kinase-Specific 

Phosphorylation Sites 

3.1  Introduction 

Protein phosphorylation, which is an important reversible mechanism in post-translational 

modifications, is involved in many essential cellular processes including cellular regulation, 

cellular signal pathways, metabolism, growth, differentiation, and membrane transport [59]. 

Phosphorylation of substrate sites at serine, threonine, and tyrosine residues of eukaryotic 

proteins is performed by members of the protein kinase family. Additionally, phosphorylation 

on histidine plays an important role in signal transduction in prokaryotes known as 

two-component histidine kinase [94]. It is estimated that one-third of proteins are 

phosphorylated and around half of kinome are disease- or cancer-related by chromosomal 

mapping [95].  

 

 
Figure 3.1 Consensus sequences for protein kinases (Lehninger et al., 2005).  

 

The Ser, Thr, or Tyr residues that are phosphorylated in regulated proteins occur within 

common structural motifs, called consensus sequences, that are recognized by specific protein 

kinases (Figure 3.1) [6]. Some kinases are basophilic, preferring to phosphorylate a residue 

having basic neighbors; others have different substrate preferences, such as for a residue near 
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a Pro residue. Primary sequence is not the only important factor in determining whether a 

given residue will be phosphorylated, however. Protein folding brings together residues that 

are distant in the primary sequence; the resulting three-dimensional structure can determine 

whether a protein kinase has access to a given residue and can recognize it as a substrate. 

Another factor influencing the substrate specificity of certain protein kinases is the proximity 

of other phosphorylated residues. 

With the recent exponential increase in protein phosphorylation sites identified by mass 

spectrometry (MS), many researches are undertaken to identify the kinase-specific 

phosphorylation sites using consensus sequences. Our previous work, KinasePhos 1.0, 

incorporated profile hidden Markov model (HMM) for identifying kinase-specific 

phosphorylation sites prediction, whose overall predictive accuracy is about 87% [55, 56]. 

Recently, version 2.0 of KinasePhos incorporated the protein coupling pattern as a feature for 

training computer models for identifying phosphorylation sites [91]. In this work, we propose 

a new method that incorporates support vector machine (SVM) with protein structural 

information such as surface accessibility, secondary structure and protein disorder region for 

identifying phosphorylation sites.  

 

 
Figure 3.2 Structural environment of reversible modifications (Pang et al., 2007). 
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Structural Properties of Phosphorylated Sites 

A side chain of amino acid that undergoes enzymatic modification needs to be accessible on 

the surface of protein [15]. Several works have been proposed the links between the 

post-translational modifications and their solvent accessible surface area. Pang et al. 

investigated the structural environment of 8378 incidences in 44 types of post-translational 

modifications [15]. As shown in Figure 3.2 [15], the structural environment of reversible 

modifications indicated that protein phosphorylation prefers to occur in regions that are 

intrinsically disorder and easily accessible. The information of surface accessibility, disorder 

region, and linker/domain are computationally annotated by several published programs, 

including ASA [16], GOR [17] and RVP-net [18] for surface accessibility, RONN[19] and 

DISEMBL [20] for disorder, PSIPRED [21] for secondary structure, and George et al. [22] for 

linker/domain. 

 
Figure 3.3 Phosphorylated insulin-receptor Tyr kinase (PDB: 1IR3) (Lehninger et al., 2006). 

 

It has been observed that protein phosphorylation prefers to occur in regions that are 

intrinsically disorder and easily accessible, as an example of phosphorylated insulin-receptor 

Tyr kinase (PDB: 1IR3) in Figure 3.3. In other study, the solvent accessibility has been used to 

aid the detection of phosphorylation, glycosylation, and tyrosine sulfation sites, whose 

residues with solvent accessibility above a threshold are identified as surfaced modification 

sites [19]. Arthur et al. incorporated homology modeling of protein tertiary structure and 
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solvent accessibility calculation of predicted structure for identifying phosphorylation sites 

[96]. As a result, the preference of surface accessibility could provide the useful indication for 

the prediction of protein methylation. 

In order to investigate the preference of solvent accessible surface area (ASA) 

surrounding phosphorylation sites in tertiary structures, the collected experimental 

phosphorylation sites should be mapped to the correct position of protein entries in Protein 

Data Bank (PDB) [67]. The preference of secondary structure surrounding phosphorylation 

sites is also taken into account. DSSP [68] is a database of secondary structure assignments 

(and much more) for all protein entries in the Protein Data Bank (PDB). DSSP also provides 

the program for calculating the solvent accessibility and standardizing secondary structure of 

PDB entries. Table 3.1 lists the mapping hits of phosphorylated residues between Swiss-Prot 

and PDB in detail, which composed of 1078 serines, 404 threonines, and 432 tyrosines. In the 

case of phopshoserine, there are 77.3% of phosphorylated sites located in coil region, 17.5% 

sites were observed in helical region, and 5.2% located in sheet. As given in Table 3.1, the 

average percentage of solvent accessible surface area for phosphoserine is 34.9%. Moreover, 

the flanking positions -4, -3, +1, +2, and +3 have higher surface accessibility. 

In the case of phosphothreonine, out of 404 phosphorylated sites covered by the PDB 

hits, of the 68.6% sites are observed in coil regions, 12.8% sites are observed in helical 

regions, and 18.6% are in sheet regions. The average percentage of accessible surface area for 

phosphorylated threonine is 33.0%, which is higher exposed to surface than flanking regions. 

In phosphotyrosine, out of 432 phosphorylated sites covered by the PDB hits, of the 42.5% 

sites are observed in coil regions, 27.3% sites are observed in helical regions, and 30.2% are 

in sheet regions. The average percentage of accessible surface area for phosphorylated 

threonine is 28.3%, which is slightly exposed to surface. 

Although the number of experimental phosphorylated sites which locate in the protein 

regions with tertiary structure is not enough to be investigated the preferences of solvent 

accessibility and secondary structure in each kinase group, it seems that protein 

phosphorylation site prefers to occur on the exposed and coil regions. Even though 

phosphorylated sites may not always be in surface-accessible regions, surface-accessible 

amino acids would have a higher likelihood been modified. 
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3.2  Related Works 

In this section, several common machine learning methods which have been frequently used 

to phosphorylation site prediction are described over here. Following, some representative 

prediction servers of protein post-translational modifications are listed and briefly introduced. 

3.2.1  Machine Learning Methods 

Machine learning is programming computers to optimize a performance criterion using 

example data or past experience. In bioinformatics, machine learning is usually referred to 

classification which learns predictive model from training data sets for distinguishing between 

different exemplars based on their differentiating patterns. Several common machine learning 

algorithms such as k-Nearest Neighbor (KNN), decision three, Bayesian decision theory 

(BDT), neural network (NN), hidden Markov model (HMM), and support vector machine 

(SVM) are described as follows. 

 

k-Nearest Neighbor (KNN) 

Arguably the simplest method is the k-Nearest Neighbor classifier (Cover and Hart, 1967). 

Here the k points of the training data closest to the test point are found, and a label is given to 

the test point by a majority vote between the k points. This method is highly intuitive and 

attains – given its simplicity – remarkably low classification errors, but it is computationally 

expensive and requires a large memory to store the training data. 

 

Decision Tree  

Another intuitive class of classification algorithms are decision trees. As shown in Figure 3.4, 

these algorithms solve the classification problem by repeatedly partitioning the input space, so 

as to build a tree whose nodes are as pure as possible (that is, they contain points of a single 

class). Classification of a new test point is achieved by moving from top to bottom along the 

branches of the tree, starting from the root node, until a terminal node is reached. Decision 

trees are simple yet effective classification schemes for small datasets. The computational 

complexity scales unfavorably with the number of dimensions of the data. Large datasets tend 

to result in complicated trees, which in turn require a large memory for storage. The C4.5 



 

 65

implementation by Quinlan (1992) is frequently used and can be downloaded at 

http://www.rulequest.com/Personal. 

 
Figure 3.4 An example of decision tree. 

 

Bayesian Decision Theory (BDT) 

Bayesian decision theory is a fundamental statistical approach to the problem of pattern 

classification. This approach is based on quantifying the tradeoffs between various 

classification decisions using probability and the costs that accompany such decisions. It 

makes the assumption that the decision problem is posed in probabilistic terms, and that all of 

the relevant probability values are known. Suppose that we have an unclassified data x that 

belongs to one of two certain categories: C1 (defined as phosphorylation sites) and C2 

(defined as non-phosphorylation sites). Suppose that we know both the prior probabilities 

P(Cj) and the conditional densities p(x|Cj ). In addition, the posterior probability of x for these 

two categories can be denoted as: p(C1|x) and p(C2|x), which are called Bayes’ formula: 

)(
)()|(

)|(
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CPCxp
xCP jj
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where in this case of two categories 
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It is obvious that one should choose the more probable category as the prediction result, 

which can be formulated by the Bayesian Decision Rule: 
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Furthermore, by definition the loss function )|( ji Cαλ , where αi, i = 1,2 is the finite set of 

possible solution. Thus, the expected loss (risk) of taking action αi is: 
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In this condition, the goal of optimization becomes to minimize the overall risk for every x. 

Similar to the rationale of Bayesian Decision Rule, we can obtain the best performance by 

computing R(αi |x) for each solution αi and choose that for which has the minimal overall risk 

[97]. 

 

Neural Network (NN) 

Neural network (NN) is one of the most commonly used approaches to classification. 

Artificial neural network (ANN) is a computational model inspired by the connectivity of 

neurons in animate nervous systems [98]. A simple scheme for ANN is shown in Figure 3.5 

[98]. Each circle denotes a computational element referred to as a neuron, which computes a 

weighted sum of its inputs, and possibly performs a nonlinear function on this sum. If certain 

classes of nonlinear functions are used, the function computed by the network can 

approximate any function (specifically a mapping from the training patterns to the training 

targets), provided enough neurons exist in the network and enough training examples are 
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provided. 

 
Figure 3.5 A schematic diagram of artificial neural network. Each circle in the hidden and output layer 

is a computation element known as a neuron (Haykin et al., 1999). 
 

ANN is capable of classifying highly complex and nonlinear biological sequence 

patterns, where correlations between positions are important. Not only does the network 

recognize the patterns seen during training, but it also retains the ability to generalize and 

recognize similar, though not identical patterns. Artificial neural network algorithms have 

been extensively used in biological sequence analysis. An artificial neural network library 

ANNLIB [99], which were implemented in C program language, is available. 

 

Hidden Markov Model (HMM) 

A hidden Markov model (HMM) is a statistical model in which the system being modeled is 

assumed to be a Markov process with unknown parameters, and the challenge is to determine 

the hidden parameters from the observable parameters. The extracted model parameters can 

then be used to perform further analysis, for example for pattern recognition applications. A 

HMM can be considered as the simplest dynamic Bayesian network. The key idea is that an 

HMM is a finite model that describes a probability distribution over an infinite number of 

possible sequences. The HMM is composed of some number of states, which might 

correspond to positions in a three-dimensional structure or columns of a multiple alignment. 

Each state “emits” symbols (residues) according to symbol emission probabilities, and the 

states are interconnected by state transition probabilities. Starting from initial state and a 

sequence of states is generated by moving from state to state according to the state transition 
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probabilities until an end state is reached. Each state then emits symbols according to that 

state’s emission probability distribution, creating an observable sequence of symbols.  

The state path is a Markov chain, meaning that what stat we go to next depends only on 

what state we’re in. Since we’re only given the observed sequence, this underlying state path 

is hidden - these are residue labels that we’d like to infer. The state path is a hidden Markov 

chain, whose probability ),,( θπ HMMSP  that an HMM with parameters θ  generates a 

state path π  and an observed sequence S is the product of all the emission probabilities and 

transition probabilities that were used. Why are they called hidden Markov models? The 

sequence of states is a Markov chain, because the choice of the next state to occupy is 

dependent on the identity of the current state. However, this state sequence is not observed; it 

is hidden. Only the symbol sequence that these hidden states generate is observed. The most 

likely state sequence must be inferred from an alignment of the HMM to the observed 

sequence. 

 

 
Figure 3.6 An example of small profile HMM representing a short multiple alignment of five 

sequences with three consensus columns (Eddy et al., 1998). 
 

Hidden Markov models now provide a coherent theory for profile methods, namely 

Profile hidden Markov models (profile HMMs) [63], which are statistical models (maximum 

likelihood) of multiple sequence alignments. They capture position-specific information about 

how conserved each column of the alignment is, and which residues are likely. An example of 

small profile HMM is shown in Figure 3.6 [63]. The three columns are modeled by three 

match states (squares labeled m1, m2, and m3), each of which has 20 residue emission 

probabilities, shown with black bars. Insert states (diamonds labeled i0 - i3) also have 20 

emission probabilities each. Delete states (circles labeled d1-d3) are ‘mute’ states that have no 
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emission probabilities. A begin and end state are included (b,e). State transition probabilities 

are shown as arrows. 

 

Support Vector Machine (SVM) 

Support vector machine (SVM) [100] is a useful technique for data classification. A 

classification task usually involves with training and testing data which consist of some data 

instances. Each instance in the training set contains one “target value” (class label) and 

several “attributes” (features). The goal of SVM is to produce a model which predicts target 

value of data instances in the testing set which are given only the attributes. The basic concept 

of SVM is to transform the samples into a high dimensional space and find a separating 

hyperplane with the maximal margin between two classes in the space (Figure 3.7).  

 

 

Figure 3.7 Basic concept of support vector machine.7 
 

Basically, SVM is a binary classifier. Given training vectors xi, i = 1, …, l and a vector y 

defined as: yi = 1 if xi is in class I, and yi = -1 if xi is in the class II. The support vector 

technique tries to find the separating hyperplane 0=+ bxw i
T  with the largest distance 

between two classes, measured along a line perpendicular to this hyperplane, which require 

the solution of following optimization problems (Figure 3.8): 

                                                 
7 The figure was obtained from http://www.imtech.res.in/raghava/rbpred/svm.jpg   
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Here training vectors xi are mapped into a higher dimensional space b the function φ. 

Constraints ii
T

i bxwy ξφ −≥+ 1))((  allow that training data may not be on the correct side of 

the separating hyperplane 0=+ bxw i
T . Then SVM finds a linear separating hyperplane with 

the maximal margin in this higher dimensional space. C is the penalty parameter of the error 

term to be optimized. Furthermore, )()(),( j
T

iji xxxxK φφ≡  is called the kernel function. 

Four basic kernel functions are listed as follows: 

 Linear: j
T

iji xxxxK =),(  

 Polynomial: 0,)(),( >+= γγ d
j

T
iji rxxxxK  

 Radial basis function (RBF): 0),exp(),(
2

>−−= γγ jiji xxxxK  

 Sigmoid: )tanh(),( rxxxxK j
T

iji += γ  

Here,γ , r, and d are kernel parameters. Most commonly used kernel functions are RBF 

kernel. 

 

 
Figure 3.8 Principle of hyperplane in support vector machine. 8 

 

Recently, SVM has been successfully applied in solving many biological problems, such 

as predicting protein subcellular localization [101], protein secondary structures [102], tumor 
                                                 
8 The figure was obtained from http://www.imtech.res.in/raghava/rbpred/   
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classification [103] and phosphorylation sites [78], which shown to be an effective machine 

learning method. A public SVM library, namely LIBSVM [104], was available at 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/. 

 

Boosting  

The basic idea of boosting and ensemble learning algorithms in general is to iteratively 

combine relatively simple base hypotheses – sometimes called rules of thumb – for the final 

prediction. One uses a so-called base learner that generates the base hypotheses. In boosting 

the base hypotheses are linearly combined. In the case of two-class classification, the final 

prediction is the weighted majority of the votes. The combination of these simple rules can 

boost the performance drastically. It has been shown that Boosting has strong ties to support 

vector machines and large margin classification (R¨atsch, 2001, Meir and R¨atsch, 2003). 

Boosting techniques have been used on very high dimensional data sets and can quite easily 

deal with than hundred thousands of examples. Research papers and implementations can be 

downloaded from http://www.boosting.org. 

 

3.2.2  Phosphorylation Site Prediction 

With the recent exponential increase in protein phosphorylation sites identified by mass 

spectrometry (MS), many researches are undertaken to identify the kinase-specific 

phosphorylation sites. The summary of tool name, reference, material, method, number of 

kinase group, and predictive performance of the previously developed phosphorylation site 

prediction tools is shown in Table 3.2. Our previous work, KinasePhos 1.0, incorporated 

profile hidden Markov model (HMM) for identifying kinase-specific phosphorylation sites 

prediction, whose overall predictive accuracy is about 87% [55, 56]. Version 2.0 of 

KinasePhos incorporated support vector machine (SVM with )the protein coupling pattern for 

identifying phosphorylation sites [91]. NetPhos [57] developed neural networks to predict 

phosphorylation sites on serine, threonine and tyrosine residues; however, it cannot provide 

information on the kinases involved and NetPhosK [77] applied an artificial neural network 

algorithm to predict 17 PK groups-specific phosphorylation sites. DISPHOS [58] took 

advantage of the position-specific amino acid frequencies and disorder information to 

improve the discrimination between phosphorylation sites and non-phosphorylation sites. 

Scansite 2.0 [105] identified short protein sequence motifs that are recognized by modular 
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signaling domains, phosphorylated by protein serine/threonine, tyrosine kinases or mediate 

specific interactions with protein or phospholipid ligands. PredPhospho [78] predicts 

phosphorylation sites limited to four protein major kinase families, such as CDK, CK2, PKA 

and PKC, and four protein kinase groups (AGC, CAMK, CMGC and TK) with predictive 

accuracy 83-95% and 76-91%, respective. GPS [75, 106], is a group-based phosphorylation 

site predicting and scoring platform which clustered the 216 unique protein kinases in 71 

groups. PPSP [76] developed an approach based on Bayesian decision theory for predicting 

the potential phosphorylation sites accurately for around 70 protein kinase groups. PHOSIDA 

[45], incorporated support vector machine with surface accessibility and evolutionary 

conservation, made 91.75%, 81.06%, and 76.19% accuracies in serine, threonine, and tyrosine, 

respectively. Recently, a proficient meta-predictor [107] adopted weighted voting strategy to 

organize and process the predictions produced by several other predictors, including GPS, 

KinasePhos, NetPhosK, PPSP, PredPhospho and Scansite. 
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Table 3.2 List of the previously developed phosphorylation site prediction tools. 

Tool Reference Material Feature Method Kinase group
Proposed predictive performance 

Overall PKA PKC CK2 
NetPhos Blom et al., 1999 PhosphoBase sequence ANN - Sn=69%~96% - - - 

Scansite Obenauer et al., 
2003 

Swiss-Prot+TrEM
BL+ 

Genpept+Ensembl
sequence 

PSSM 
(motif-based 

service) 
-     

DISPHOS Lakoucheva et al., 
2004 

Swiss-Prot+Phosp
hoBase 

predicted protein 
disordered region 

and secondary 
structure 

Logistic 
regression 

models 
- 

Serine Ac=76% 
Threonine Ac=81% 
Tyrosine Ac=83% 

- - - 

rBPNN Berry et al., 2004 PhosphoBase sequence BPNN, decision 
tree , rBBFNN - 

BPNN: Ac=89.65±1.64, 
rBBFNN:Ac=87.77±1.05
C4.5: Ac=90.43±2.03 

- - - 

AutoMotif  Plewczynski et al., 
2005 

Swiss-Prot (12 
types of PTM) sequence SVM - Precision > 70% (12 

types of PTM) 
Sn=41% 
Pre=75% 

Sn=17% 
Pre=83% 

Sn=11% 
Pre=53% 

PredPhospho Jong Hun Kim et 
al., 2004 

Swiss-Prot+Phosp
hoBase sequence SVM 4 Ac = 76 - 91% 

Ac=89.98% 
Sn=88.32% 
Sp=91.11% 

Ac=82.9% 
Sn=78.71% 
Sp=85.79% 

Ac=91.47% 
Sn=83.9% 
Sp=96.43% 

NetPhosK Blom et al., 2004 
Swiss-Prot, 

PhosphoBase, 
PhosphoSite 

sequence ANN 17 Sn = 84% 
Sp = 76% - - - 

GPS Feng-Feng Zhou et 
al., 2004 

PhosphoBase, 
Phospho.ELM sequence Clustering or 

Segmentation 71 Sn = 94.44%  
Sp = 97.14% - - - 

KinasePhos Huang et al., 2005 PhosphoBase, 
Swiss-Prot sequence MDD + HMM 18 

Serine Ac = 86% 
Threonine Ac = 91% 
Tyrosine Ac = 84% 

Sn = 0.91 
Sp = 0.86 

Sn = 0.80 
Sp = 0.87 

Sn = 0.87 
Sp = 0.85 

Li et al. Li et al., 2005 PhosphoBase sequence 
kNN measured 
by Manhattan 

distance 
- - Sn=~87.36% 

Sp=~99.07% - Sn=~67.88% 
Sp=~99.16% 
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PPSP Yu Xue et al., 2006 
March Phospho.ELM sequence BDT 68 Na Sn=88.88% 

Sp=90.57% Na Sn=82.99% 
Sp=87.59% 

pkaPS Neuberger et 
al.,2007 January 

UniProt+Phospho.
ELM sequence 

simplified 
kinase-substrate 
binding model

 Na Sn=~96% 
Sp=~94% Na Na 

KinasePhos 
2.0 

Wong, Lee et al., 
2007 

Swiss-Prot+Phosp
ho.ELM 

Sequence + 
coupling pattern SVM 58 

Serine Ac = 90% 
Threonine Ac = 93% 
Tyrosine Ac = 88% 

Sn = 0.92 
Sp = 0.89 

Sn = 0.84 
Sp = 0.86 

Sn = 0.87 
Sp = 0.86 

GANNPhos Tang et al., 2007 Phospho.ELM sequence GA+NN  

S: Ac=81.3~81.8%, 
Sn=80.5~80.9%, 
Sp=82.7~83.5% T: 
Ac=77.5~81.2% , 
Sn=74.3~77.6%, 
Sp=83.1~86.4% Y: 
Ac=74~80.2% , 
Sn=72.5~76.6%, 
Sp=77.3~85.6%  

Na Na Na 

AutoMotif 2.0 Plewczynski et al., 
2007 

UniProt(06.2007)+
Swiss-Prot sequence SVM - Precision > 90% 

Sn=14% 
Precision=86
% 

Sn=5% 
Precision=100%

Sn=6% 
Precision=80
% 

PHOSIDA Gnad, Ren et al. 
2007 PHOSIDA 

Sequence+ASA+
evolutionary 
conservation 

SVM - 
Serine Ac = 91.75% 
Threonine Ac = 81% 
Tyrosine Ac = 76.2% 

- - - 

MetaPredPS Ji wan et al.,2008 
Swiss-Prot+Phosp

hoSite+ 
Phospho.ELM 

- 

voting from 
GPS, 

KinasePho, 
NetPhosK, 

PPSP, 
PredPhospho, 

Scansite 

- - 
Sn=88.3% 
Sp=82.8% 
Ac=85% 

Sn=77.3% 
Sp=79.1% 
Ac=78.4% 

Sn=87.8% 
Sp=90.4% 
Ac=89.3% 

Abbreviation: ANN, artificial neural networks; BPNN, back propagation neural network; PSSM, position-specific scoring matrix; SVM, support vector machine; MDD, 
maximal dependency decomposition; HMM, hidden Markov model; KNN, k-Nearest Neighbor; BDT, Bayesian decision theory; GA, genetic algorithm; ASA, accessible 
surface area; Ac, accuracy; Sn, sensitivity; Sp, specificity; Pre, precision. 
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KinasePhos 1.0 

The known phosphorylation sites from public domain data sources are categorized by their 

annotated protein kinases. Based on the concepts of profile Hidden Markov Model (HMM), 

computational models are learned from the kinase-specific groups of the phosphorylation sites. 

The Maximal Dependence Decomposition (MDD) [62], employs statistical 2χ -test to group 

an set of aligned signal sequences to moderate a large group into subgroups that capture the 

most significant dependencies between positions, was adopted to group the phosphorylation 

site sequences of each kinase group with data size more than 50. Based on k-fold 

cross-validation and Jackknife cross-validation, the average predictive accuracy of 

phosphorylated serine, threonine, and tyrosine are 86%, 91%, and 84%, respectively. After 

evaluating the learned models, we select the model with highest accuracy in each 

kinase-specific group and provide a web-based prediction tool for identifying protein 

phosphorylation sites. The main contribution here is that we develop a kinase-specific 

phosphorylation site prediction tool with both high sensitivity and specificity. The proposed 

web server is freely available at http://KinasePhos.mbc.nctu.edu.tw/. 

 

 
Figure 3.9 The system flow of KinasePhos 1.0. 
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KinasePhos 2.0 

This work proposed a kinase-specific phosphorylation site prediction server which 

incorporates support vector machines (SVM) with two features, i.e., protein sequence profiles 

surrounding the modified sites and coupling patterns surrounding the modified sites [91]. The 

coupling pattern of proteins, which is firstly used for analyzing the protein thermostability 

[108]. Protein coupling pattern is a novel feature used for identifying phosphorylation sites. 

The coupling pattern [XdZ] denotes the amino acid coupling-pattern of amino acid types X 

and Z that are separated by d amino acids. The differences or quotients of coupling strength 

CXdZ between the positive set of phosphorylation sites and the background set of whole 

protein sequences from Swiss-Prot are computed to determine the number of coupling 

patterns for training SVM models. After the evaluation based on k-fold cross-validation and 

Jackknife cross-validation, the average predictive accuracy of phosphorylated serine, 

threonine, tyrosine and histidine are 90%, 93%, 88% and 93%, respectively. KinasePhos 2.0 

performs better than other tools previously developed. The proposed web server is freely 

available at http://KinasePhos2.mbc.nctu.edu.tw/. 

 

 
Figure 3.10 The system flow of KinasePhos 2.0. 
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3.3 Motivation and The Specific Aim 

Protein phosphorylation is a ubiquitous and important post-translational modification, 

responsible for modulating protein function, stability, localization, and cellular signaling 

network. Experimental identifications of kinase-specific phosphorylation sites on substrates in 

vivo and in vitro are the foundation of understanding the mechanisms of phosphorylation 

dynamics and important for the biomedical drug design. However, these experiments are often 

time-consuming, labor-intensive, and expensive. Thus, in silico prediction of phosphorylation 

sites with high predictive performance could be a promising strategy to conduct preliminary 

analyses and could heavily reduce the number of potential targets that need further in vivo or 

in vitro confirmation.  

We propose a method, namely KinasePhos, which incorporates support vector machine 

(SVM) to construct the computational models for identifying the kinase-specific 

phosphorylation sites. It has been observed that protein phosphorylation prefers to occur in 

regions that are intrinsically disorder and easily accessible. Not only protein amino acids, but 

also the structural information such as secondary structure, solvent accessibility and protein 

disorder region were used for analysis. The constructed models were evaluated based on 

k-fold cross-validation. Moreover, the independent test set, which was constructed based on 

the proposed benchmark, was used to evaluate whether the constructed model over-fitted the 

training set. With the highly predictive performance of kinase-specific phosphorylation sites, a 

better understanding of relationships between protein kinases and substrates will be facilitated 

and engineered to analyze the therapeutic usefulness. 
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3.4 Materials and Methods 

Figure 3.11 depicts the system flow of the proposed method, which consists of four major 

analyzing processes such as data preprocessing, feature extraction and coding, model training 

and evaluation, and independent test. The detailed descriptions are illustrated in following 

subsection. 

 

 
Figure 3.11 The system flow of kinase-specific phosphorylation site prediction. 

 

3.4.1  Data Preprocessing 

The experimentally validated phosphorylation sites are extracted from version 7.0 of 

Phospho.ELM [49] and release 55.0 of UniProtKB/Swiss-Prot [48], containing totally 16525 

experimental phosphorylation sites within 5484 proteins and 24328 experimental 
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phosphorylation sites within 8606 proteins, respectively. After removing the redundant data 

between Phospho.ELM and Swiss-Prot, the number of serine (S), threonine (T), and tyrosine 

(Y) phosphorylated sites are 22640, 4982, and 3175, respectively, as given in Table 3.3. It 

notices that the sum of serine, threonine, and tyrosine is not equal to total number of 

phosphorylation sites because there are several phosphorylation sites located on other kinds of 

residue. 

 

Table 3.3 The statistics of phosphorylation sites obtained from Phospho.ELM and Swiss-Prot.  

Data source Version 
Number of 

phosphorylated 
proteins 

Number of phosphorylation sites 

Serine (S) Threonine 
(T) 

Tyrosine 
(Y) Total 

Phospho.ELM 7.0 5,484 12,082 2,361 2,081 16,525
Swiss-Prot * 55.0 8,606 18,320 3,982 2,003 24,328
Combined 
(non-redundant)   9,966 22,640 4,982 3,175 30,818

*The entries which contain residues annotated as “phosphoserine,” “phosphothreonine,” and 
“phosphotyrosine” in the “MOD_RES” field are extracted and the entries annotated as “by 
similarity,” “potential,” and “probable” are excluded. 
 

The collected experimental phosphorylation sites are further categorized according to the 

annotations of catalytic kinases. 
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Table 3.4 shows the number of phosphorylated serine, threonine, and tyrosine in each 

kinase-specific group. The kinase-specific groups whose data size is more than ten are 

selected to construct the computational models. Otherwise, the kinase groups whose data size 

is smaller than ten are used to construct the positional weighted matrix for scan the 

phosphorylation sites. 
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Table 3.4 Statistics of non-redundant kinase-specific phosphorylation sites in Swiss-Prot and 
Phospho.ELM. 

Kinase family Number of 
phosphoprotein

Number of substrate site 
Total Serine Threonine Tyrosine

Protein kinase A(PKA) 286 458 401 56 1
Protein kinase C(PKC) 274 485 403 80 2
Casein kinase 2(CK2) 192 368 305 61 2
Mitogen-activated protein 
kinases(MAPK) 192 333 230 103 0

Cell Division Control 2 (CDC2) 138 328 167 161 0
Cyclin dependent kinase (CDK) 82 153 91 62 0
CaM kinase 2 (CAMK2) 77 119 91 28 0
protein Kinase B(PKB) 79 114 91 23 0
Ataxia telangiectasia mutated(ATM) 63 102 94 8 0
Casein Kinase 1(CK1) 52 101 73 27 1
Glycogen synthase 3 kinase (GSK) 50 87 62 35 0
G protein-coupled receptor kinase(GRK) 27 85 59 26 0
p21-activated kinase (PAK) 37 59 51 8 0
Aurora kinase (Aurora) 28 57 46 11 0
Phosphoinositide-dependent protein 
kinase(PDK) 28 54 23 31 0

Ribosomal S6 Kinase(RSK) 38 51 49 2 0
Polo-like kinase (PLK) 21 50 36 14 0
I kappa B kinase(IKK) 16 49 48 1 0
cGMP-dependent protein kinas (PKG) 26 47 37 10 0
Rho-associated protein kinase (ROCK) 25 41 14 26 1
AMP-activated protein kinase(AMPK) 28 38 35 3 0
MAP kinase-activated protein kinase 
(MAPKAPK) 20 36 32 4 0

Beta Adrenergic Receptor Kinase 
(BARK) 17 35 19 16 0

DNA dependent protein 
kinase(DNA-PK) 19 35 19 16 0

Mammalian STE20-like kinase  (MST) 32 34 15 19 0
Checkpoint kinase 2 (CHK2) 11 33 24 9 0
Checkpoint kinase 1 (CHK1) 7 16 13 3 0
MAP kinase kinase (MAP2K) 14 30 7 14 9
CaM kinase 1 (CAMK1) 22 26 22 4 0
Death-associated protein kinase (DAPK) 15 24 11 13 0
Serum and Glucocorticoid Resposive 
Kinase (SGK) 13 24 18 6 0

MAP kinase kinase kinase (MAP3K) 14 22 6 16 0
Phosphorylase kinase(PHK) 11 20 18 2 0
LKB1 kinase (LKB) 18 20 1 19 0
Serine/threonine-protein kinase IPL1 
(IPL1) 14 19 16 3 0

Interferon-induced, double-stranded 
RNA-activated protein kinase (PKR) 6 17 7 10 0

FKBP12-rapamycin-associated protein 
(FRAP) 5 15 6 9 0

p21-activated kinase 2 (PAK2) 9 15 13 2 0
Mitogen- and stress-activated protein 
kinase (MSK) 5 12 12 0 0

Protein Kinase D 9 13 10 3 0
NimA-Related Kinase (NEK) 7 13 8 5 0
Microtubule Affinity Regulating Kinase 4 10 10 0 0
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(MARK) 
Myosin Light Chain Kinase (MLCK) 7 10 5 5 0
Dual-specificity Tyrosine Regulated 
Kinase (DYRK) 11 13 7 0 6

Proto-oncogene tyrosine-protein kinase 
Src (Src) 101 171 0 0  171

Epidermal growth factor receptor 
(EGFR) 29 67 0 0 67

Lymphocyte specific protein tyrosine 
kinase(LCK) 36 64 6 5 53

Abl Protein Tyrosine Kinase (Abl) 39 56 0 0 56
Proto-oncogene tyrosine-protein kinase 
FYN (Fyn) 31 56 0 0 56

Spleen tyrosine kinase (SYK) 22 51 0 0 51
Tyrosine-protein kinase LYN (Lyn) 28 50 0 0 50
Janus kinase (Jak) 22 46 0 0 46
Insulin Receptor kinase (InsR) 14 46 0 0 46
platelet derived growth factor receptor 
(PDGFR) 12 32 0 0 32

Insulin-like growth factor I receptor 
(IGF1R) 7 31 0 0 31

Met proto-oncogene tyrosine kinase 
(MET) 6 31 0 0 31

Tec protein tyrosine kinase family (Tec) 14 30 0 0 30
Fibroblast growth factor receptor 
(FGFR) 8 30 0 0 30

Anaplastic lymphoma kinase (ALK) 22 0 0 22
Ephrin receptor (EPH) 13 22 0 0 22
C-SRC kinase (CSK) 11 22 0 0 22
Vascular Endothelial Growth Factor 
Receptors (VEGFR) 6 23 0 0 23

Tyrosine-protein kinase ZAP-70 
(ZAP70) 9 20 0 0 20

Insulin receptor (IR) 12 18 2 2 14
Bruton's tyrosine kinase (BTK) 8 18 0 0 18
Hemopoietic cell kinase (Hck) 12 17 2 3 12
Focal adhesion kinase (FAK) 12 15 0 0 15
Proto-oncogene tyrosine-protein kinase 
receptor ret (Ret) 3 14 0 0 14

TRK transforming tyrosine kinase 
protein (TRK) 4 13 0 0 13

Discoidin Domain Receptor kinase 
(DDR) 11 13 0 0 13

Integrin Linked Kinase (ILK) 9 11 0 0 11
Proto-oncogene tyrosine-protein kinase 
Fes/Fps (Fes) 3 9 0 0 9

Proto-oncogene tyrosine-protein kinase 
FGR (Fgr) 4 8 0 0 8

Platelet-derived growth factor, FMS 
(Fms) 2 8 0 0 8

Non-receptor tyrosine-protein kinase 
TYK2 (TYK2) 5 8 0 0 8

Proto-oncogene tyrosine-protein kinase 
YES (YES) 4 6 0 0 6
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The combined experimental verified phosphorylation sites (non-redundant) are defined 

as the positive data set. On the other hand, the serine, threonine and tyrosine, which are not 

annotated as phosphorylated sites within the experimental validated phosphorylated proteins, 

are defined as the negative data set. However, the positive data set may contain several 

homologous sites among orthologous proteins. To avoid the overestimation of predictive 

performance, the positive data set was further removed the homologous sequences with a 

given window size 2n+1 (from upstream n to downstream n residues centering the 

phosphorylated site) among orthologous proteins, where n varies from 4 to 10. Referred to the 

homology reduction of MeMo [83], two phosphorylated protein sequences with more than 

30% identity were specified to re-aligne the fragment sequences with residues of window 

length 2n+1 centered on modified sites using BL2SEQ. If two fragment sequences were 

similar with 100% identity, and the phosphorylated sites from the two proteins were at the 

same position corresponding whole protein, then only one site was kept, while the other one 

was discarded. The homology reducing process was also carried out on negative data set.  

After the homology reduction, randomly sampled nine-tenth of the non-homologous 

positive datasets is defined as the positive training set. To avoid the skew classifying ability 

for positive or negative set, the balanced negative training set is extracted from the 

non-homologous negative datasets. However, the negative training set, if is randomly selected 

in one time, may be not random sampling enough. Therefore, thirty negative training sets are 

constructed by randomly extracting from the non-homologous negative datasets. The average 

predictive performance of the thirty sets of training data is calculated after cross-validation. 

On the other hand, randomly sampled one-tenth of the non-homologous positive datasets is 

defined as the positive independent test set. The negative independent test set is also randomly 

sampled from the non-homologous negative datasets, which is balanced to positive 

independent test set. Sometimes, the trained model can classify the training data very well, but 

not effective for the independent test set. It might indicate that the trained model is over fitting 

for the training data. Thus, the constructed independent test set not only can be used to 

evaluate the predictive performance of the trained model, also can be used to measure whether 

the trained model is over fitting for the training data. To avoid the skew sampling of 

independent test set in one time, the independent test is executed in ten rounds. 
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3.4.2 Feature Extraction and Coding 

Since the flanking sequences (position -5 ~ +5) of the phosphorylation sites (position 0) are 

graphically visualized as sequence logos [61], the conservation of amino acids in the 

phosphorylation sites can be observed. 11-mer sequences (-5 ~ +5) of kinase-specific 

phosphorylation sites are extracted and constructed as training sets. 

This study not only takes the flanking amino acids (AA) as the training feature, but also 

takes the solvent accessible surface area (ASA) and secondary structure (SS) surrounding the 

phosphorylated sites into account. The fragment of amino acids with window length 2n+1 

centered on phosphorylated site are extracted from positive and negative training sets. An 

orthogonal binary coding scheme is used to transform amino acids into numeric vectors, 

which is the so called 20-dimensional vector coding. For example, glycine is encoded as 

“10000000000000000000,” alanine is encoded as “01000000000000000000,” and so on. The 

number of feature vector representing the flanking amino acids surrounding phosphorylated 

site is (2n+1) × 20. Different values of n varying from 4 to 10 are used to determine the 

optimized window length. Furthermore, the positional weighted matrix (PWM) of amino 

acids surrounding the phosphorylated sites is calculated for four phosphorylated residues by 

using non-homologous training data. The positional weighted matrix (PWM) is the relative 

frequency of amino acids in a position surrounding the phosphorylated sites, which is also 

used to encode the fragment sequences.  

Because most of the experimental phosphorylated proteins don’t have the corresponded 

protein tertiary structures in PDB, an effective tool, named RVP-Net[18, 70], is used to 

compute the ASA value based on protein sequence. The computed ASA value is the 

percentage of accessible surface area for each amino acid on protein sequence. RVP-net 

incorporated the neural network to predict real value of ASAs for residues based on 

neighborhood information, which could reach 18.0 – 19.5% mean absolute error, defined as 

per residue absolute difference between the predicted and experimental values of relative 

ASA.[18] The full-length protein sequences with experimental phosphorylated sites are 

inputted to RVP-Net to compute the ASA value for all residues. The ASA values of amino 

acids surrounding the phosphorylated site are extracted and scaled in 0 to 1. 

In the investigation of secondary structure surrounding the phosphorylated sites, 

PSIPRED[21] is used to compute secondary structure based on protein sequence. PSIPRED is 

a simple and reliable secondary structure prediction method, incorporating two feed-forward 
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neural networks which perform an analysis on output obtained from PSI-BLAST (Position 

Specific Iterated - BLAST) [71]. PSIPRED 2.0 achieved an average Q3 score of 80.6% across 

all 40 submitted target domains with no obvious sequence similarity to structures present in 

PDB, which ranked PSIPRED top out of 20 evaluated methods[109]. The output of PSIPRED 

includes three symbols “H,” “E” and “C” which stand for helix, sheet and coil, respectively. 

The full-length protein sequences with phosphorylated sites are inputted to PSIPRED to 

determine the secondary structure for all residues, respectively. The orthogonal binary coding 

scheme is used to transform three symbols of secondary structure into numeric vectors. For 

example, helix is encoded as “100,” sheet is encoded as “010,” and coil is encoded as “001.” 

 

3.4.3 Model Learning and Evaluation 

There are mainly four types of features such as amino acid (AA), secondary structure (SS), 

accessible surface area (ASA) and disorder region (DIS) been evaluated the discriminatory 

power between phosphorylated and non-phosphorylated sites. The support vector machine 

(SVM) is applied to create the computational models with the encoded amino acids and 

structural features, secondary structure and accessible surface area. With the binary 

classification, the concept of SVM is mapping the input samples onto a higher dimensional 

space through a kernel function, and then seeking a hyper-plane that discriminates the two 

classes with maximal margin and minimal error. A public SVM library, namely LibSVM [110], 

is adopted to train the predictive model with the positive and negative training sets which are 

encoded according to different types of training features. Radial basis function (RBF) 

)exp(),(
2

jiji SSSSK −−= γ  is selected as the kernel function of SVM.  

Referred to previous work, KinasePhos [55], incorporated profile hidden Markov models 

(HMMs) for identifying kinase-specific phosphorylation sites. It shows that the HMM can 

perform accurate prediction for phosphorylation sites. Therefore, HMMER [63] is used to 

train the HMMs from the fragments of amino acids surrounding the phosphorylated sites. An 

HMM describes a probability distribution over a potentially infinite numbers of sequences, 

which can be used to detect distant relationships between amino acid sequences. The emission 

and transition probabilities of HMM are generated from the positive training set to capture the 

characteristics of the phosphorylated sites. 

To evaluate the predictive performance of the trained models, k-fold cross-validation is 



 

 86

performed on phosphorylated lysine and arginine, and Jackknife cross-validation is adapted to 

phosphorylated glutamate and asparagine whose data size is smaller than 30. The following 

measures of predictive performance of the trained models are defined:  

Precision (Pre) = 
FPTP

TP
+

, 

Sensitivity (Sn) = 
FNTP

TP
+

, 

Specificity (Sp) = 
FPTN

TN
+

, 

Accuracy (Ac) = 
FNTNFPTP

TNTP
+++

+ , 

where TP, TN, FP and FN are true positive, true negative, false positive and false negative, 

respectively. Matthews Correlation Coefficient (MCC) is defined as  

MCC=
)()()()(

)()(
FNTNFPTPFPTNFNTP

FPFNTNTP
+×+×+×+

×−× . 

Because there are thirty negative training sets, the average precision, sensitivity, specificity, 

accuracy, and MCC are computed for each model trained with different window lengths and 

features. Moreover, the parameters of the predictive models, including window length, the 

cost value and gamma value of the SVM models, and bit score of HMM models, are 

optimized for achieving the best predictive accuracy. Finally, the window size and features 

that achieve the highest accuracy are adopted to construct the prediction models for 

independent test. 

 

3.4.4 Independent Test 

The prediction performance of the trained models might be overestimated because of the 

over-fitting for training set. To estimate the real prediction performance, about one-tenth part 

of the non-homologous data set are randomly selected as the independent test set, which will 

be used to evaluate the predictive performance of the trained models which reach the best 

accuracy based on the cross-validation. Because the number of training set in several 

kinase-specific groups is not efficient, the independent test set is constructed only for the 

groups that contain more than 10 phosphorylated sites. However, the performance of 
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independent test may be good by chance. To avoid the skew sampling of independent test set, 

the process of independent test is executed in ten rounds. Therefore, the construction of 

positive and negative training set, feature extraction, model training and evaluation, and 

independent test are implemented in ten rounds. The average performance of independent test 

will be computed. The independent test sets of lysine and arginine are not only adopted to test 

our method but also used to test other previously proposed protein phosphorylation prediction 

tools. Moreover, the experimentally verified phosphorylation sites with catalytic kinase from 

Human Protein Reference Database (HPRD) [51] are used to evaluate the predictive 

performance of the constructed models. 

 

3.5 Results 

In this section, the structural preferences of each kinase-specific group are investigated in 

detail. The predictive performances of cross-validation and independent test are discussed for 

each kinase-specific group. Finally, the selected models with highest predictive accuracy are 

used to implement a predictive system for protein kinase-specific phosphorylation sites. 

 

3.5.1 Structural Investigation of Phosphorylation Sites  

Previous studies have already shown that phosphorylation sites are mainly located in parts of 

proteins without regular structure [26, 58]. To verify this observation on the basis of 

large-scale studies and to enable users to investigate the structural properties of each 

kinase-specific group of interest, we employed several tools to large-scale analysis. The 

structural propensity of phosphorylated site was compared to non-phosphorylated site. The 

flanking amino acids of the non-redundant combined phosphorylated sites are graphically 

visualized as sequence logo, which can be easily investigated the conservation of amino acids 

surrounding the phosphorylated sites. WebLogo [60, 61] is used for creating the graphical 

sequence logo for the relative frequency of the corresponding amino acid at each position 

surrounding the phosphorylated sites, with a given window -n ~ +n (position 0 is the 

phosphorylated site). Figure 3.12 shows that the amino acids surrounding phosphorylated 

sites have higher conservation than non-phosphorylated sites. Moreover, the amino acids 

surrounding the phosphorylation sites in each kinase group are listed to investigate the 

kinase-specific substrate specificity. 



 

 88

 
Figure 3.12 Comparison of flanking amino acids between phosphorylated and non-phosphorylated 

sites. 
 

 

Structural Investigation of Kinase-specific Phosphorylation Site 

Due to various types of the annotated catalytic kinase, the investigation of structure features, 

such as surface accessibility, secondary structure and intrinsic disorder regions, are presented 

for each kinase-specific group. Table 3.5 lists several common kinase-specific groups, 

including PKA, PKC, PKB, ATM, CaMK2, CDK, CDC2, CK1, CK2, MAPK, Aurora, Abl, 

EGFR, InsR, and Src, due to the abundance of enough experimental verified data. The 

flanking amino acids of the non-redundant combined phosphorylated sites categorized by 

their catalytic kinase are graphically visualized as sequence logo, which can be easily 

investigated the conservation of amino acids surrounding the phosphorylated sites. WebLogo 

[60, 61] is used for creating the graphical sequence logo for the relative frequency of the 

corresponding amino acid at each position surrounding the phosphorylated sites, with a given 

window -5 ~ +5 (position 0 is the phosphorylated site).  

As the representation of sequence logo, there are obvious conserved amino acids 

surrounding the modified sites in most kinase-specific groups. In the case of serine/threonine 

kinase groups, for example, PKA group have enriched arginine (R) in position -2 and -3, 

which get the same consensus motif in Figure 3.1 [6]. Group PKB, CaMK2, and Aurora also 

have the enriched arginine surrounding the phosphorylated sites. PKC group have slightly 

enriched arginine surrounding the phosphorylated sites. Several kinase groups are 
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proline-directed phosphorylated sites, such as CDK, CDC2, and MAPK. Moreover, ATM 

kinase is involved in glutamine (Q) in position +1. Although Figure 3.1 shows that the InsR 

and EGFR have consensus motifs, in the case of tyrosine kinase groups. However, most of 

them have no obvious conserved amino acids surrounding the phosphorylated sites. 

Due to the number of experimental phosphorylated sites which are located in the protein 

regions with tertiary structure of PDB [67] is not sufficient, RVP-Net [18, 70], PSIPRED [21], 

and DISOPRED2 [35] are used to compute the ASA value, secondary structure, and intrinsic 

disorder region based on protein sequence, respectively. The average percentage of ASA, 

sequence logo of secondary structure, and average percentage of disorder region within 

11-mer window (-5 ~ +5) are also shown in Table 3.5. In the investigation of solvent 

accessibility, most of the methylated sites are located in the highly accessible surface area, 

besides the methylated asparagines. The average solvent accessible surface area surrounding 

the methylated lysine is highly similar to the observation in protein tertiary structure. In the 

observation of secondary structure surrounding the phosphorylated sites, most of the 

phosphorylated sites are likely occurred on coil (loop).  
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Table 3.5 Structural features of kinase-specific groups. 

Kinase 
group Description 

Number of 
phosphorylated 

sites* 

Amino acids of 
surrounding residue 

Average surface 
accessibility of 

flanking residues 

Secondary structure 
of flanking residues 

Average disorder rate 
of flanking residues 

PKA Protein kinase A 458 

PKC Protein kinase C 485 

PKB Protein kinase B 114 

ATM 
Ataxia 

telangiectasia 
mutated kinase 

102 

CaMK2 
Calcium/calmodul

in-dependent 
protein kinase II 

119 

CDK Cyclin dependent 
kinase  123 
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CDC2 Cell division 
control 2 328 

CK1 Casein kinase I 101 

CK2 Casein kinase II  368 

MAPK Mitogen activated 
protein kinase  333 

Aurora Aurora kinase  57 

Abl 
Abelson murine 

leukemia 
homolog kinase 

56 

EGFR 
Epidermal growth 

factor 
receptor kinase 

67 
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InsR Insulin receptor 
kinase 46 

Src 
Proto-oncogene 
tyrosine-protein 

kinase Src 
171 

*The statistics of phosphorylated sites is the non-redundant experimentally verified phosphorylation sites extracted from Phospho.ELM and 
UniProtKB/Swiss-Prot. 
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3.5.2 Predictive Performance 

 
Figure 3.13 Predictive accuracy of PKA, PKC, CK2, CDK, Src and EGFR models trained with 

different training features, based on various window sizes. 
 

To investigate what kinds of window length and feature can be adopted to construct the model 

which achieves the best prediction performance in each kinase-specific group, the models 

trained with different window lengths and various features are evaluated based on k-fold 

cross-validation. There are four major types of features which are including amino acid (AA), 

accessible surface area (ASA), secondary structure (SS), and intrinsic disorder (DIS). The 

feature of amino acids surrounding the phosphorylated sites is encoded with 20-dimensional 

vector and positional weighted matrix, which are named “AA(20D)” and “AA(PWM),” 

respectively. The features of accessible surface area and secondary structure are encoded with 

the ASA values and 3-dimensional vector, respectively. Figure 3.13 illustrates the predictive 

accuracy of the models trained with different training features, based on various window sizes 
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2n+1, where n varies from 4 to 10. Especially, the feature of amino acids surrounding the 

phosphorylated sites is also trained with profile hidden Markov model. Investigating into the 

models trained with individual features, the model trained with ASA values performs slightly 

better than the models trained with SS or DIS in overall kinase groups, whose amino acids 

surrounding the phosphorylated site are not conserved. In general, the kinase-specific model 

trained with AA performs strongly better than the model trained with ASA, and the model 

trained with SS performs worst. In PKA, PKC, CK2 and CDK groups, the performance of the 

model trained with AA is usually better than the model trained with ASA, SS and DIS, 

because their flanking amino acids are conserved. However, the performance of the model 

trained with AA in Src and EGFR groups is not absolutely better than ASA, SS, or DIS, 

because the amino acids surrounding the phosphorylated site are not highly conserved. As you 

can see, the performance of the model trained with SS is generally worst. As far as various 

window sizes are concerned in each kinase group, the predictive accuracy is increased with 

window size increasing from 4 to 10.  

The predictive performance of the model trained with the combination of AA, ASA, SS 

and DIS features is also evaluated. As previous illustration, the feature of ASA can perform 

higher than 70% accuracy on most kinase groups. Therefore, the models trained with the 

combination of AA and ASA can perform better than the model trained individually with AA 

or ASA. However, the predictive accuracy of the model trained with the combination of 

AA(20D) and ASA is not better than the model trained individually with ASA. Because 

AA(20D) encoding method is 20 times the number of dimensions in ASA, the weight of AA 

feature is higher than ASA features in phosphorylation prediction. Thus, the predictive 

performance is mainly dominated by the AA feature. On the other hand, the number of 

dimensions in AA(PWM) is equal to ASA, which makes the weight of ASA and AA balanced 

in the classification between phosphorylated and un-phosphorylated sites. The average 

cross-validation performance of the models trained with different window sizes and features 

which achieve the highest accuracy are listed in Table 3.6. The training features which achieve 

the highest accuracy is the combination of AA(PWM) and ASA. To consider the overall 

performance of the models trained with different window sizes, -6 ~ +6 is selected as the 

feasible window size for the four phosphorylated residues. The average precision, sensitivity, 

specificity, accuracy and Matthews Correlation Coefficient of the models trained with the 

selected features and window sizes are given in Table 3.6. The overall predictive accuracy of 

the kinase-specific groups is 89.6%. 
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Table 3.6 Average cross-validation performance of several common kinase-specific groups with training features which reach highest accuracy. 

Kinase 
type 

Kinase 
group 

Number of 
non-homologous 

training set 
Training features Window length Pre (%) Sn (%) Sp (%) Acc (%) MCC 

Serine/ 
threonine 

kinase 

PKA 373 AA+ASA+SS+DIS -5 ~ +5 91.2 89.4 91.0 90.2 0.82 
PKC 386 AA+ASA -6 ~ +6 87.1 80.8 86.2 83.5 0.67 
CK2 299 AA+SS -6 ~ +6 87.9 87.1 88.1 87.6 0.75 

MAPK 286 AA+ASA -4 ~ +4 93.9 90.2 93.2 91.7 0.83 
CDC2 172 AA+ASA+DIS -5 ~ +5 93.1 88.2 92.6 90.4 0.71 
CDK 105 AA+ASA -5 ~ +5 97.1 92.7 96.3 94.5 0.89 
PKB 98 AA+ASA -5 ~ +5 91.4 91.9 91.5 91.7 0.83 

CaMK2 94 AA+DIS -6 ~ +6 82.7 77.9 84.3 81.1 0.62 
ATM 90 AA -4 ~ +4 98.9 96.1 98.1 97.1 0.94 
CK1 87 AA+DIS -8 ~ +8 74.2 77.2 75.6 76.4 0.53 

Aurora 49 AA+ASA -5 ~ +5 80.2 78.1 81.1 79.6 0.59 

Tyrosine 
kinase 

Src 142 AA+ASA -9 ~ +9 77.0 77.1 76.7 76.9 0.54 
Abl 48 AA+ASA -8 ~ +8 73.8 72.8 74.0 73.4 0.47 

EGFR 55 AA+ASA+DIS -10 ~ +10 74.8 78.7 75.5 77.1 0.54 
InsR 41 AA+SS+DIS -9 ~ +9 75.0 77.4 75.2 76.3 0.53 

Abbreviation: AA, amino acid; ASA, accessible surface area; SS, secondary structure; DIS, disorder; Pre, precision; Sn, sensitivity; Sp, specificity; Acc, 
accuracy; MCC, Matthews Correlation Coefficient. 
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3.5.3 Predictive Performance of Independent Test 

Based on the proposed benchmark of constructing the training data and test data, nine-tenth 

part and one-tenth part of experimental data of several kinase groups which contain more than 

50 experimental phosphorylation sites are defined as the training set and independent test set, 

respectively. After the evaluation of cross-validation, the independent test sets are used to 

evaluate whether the constructed models are over-fitting for their training data. As given in 

Table 3.7, the number of test set, precision, sensitivity, specificity, and accuracy in each 

kinase group are listed. In general, kinase groups with enough training data, such as PKA, 

PKC, CK2, and MAPK, will perform robustly for classifying phosphorylation sites from 

non-phosphorylation sites. However, CaMK2, CK1, and EGFR perform worse than the 

cross-validation accuracy in 10%. 

 

Table 3.7 Performance of independent test in several common kinase-specific groups. 
Kinase Number of 

positive test set 
Number of 

negative test set Pr Sn Sp Acc 

PKA 41 41 86.4 92.7 85.4 89.0 
PKC 44 44 89.7 79.5 90.9 85.2 
PKB 11 11 100 90.9 100 95.4 
ATM 9 9 100 100 100 100 

CaMK2 10 10 75.0 60.0 80.0 70.0 
CDK 11 11 100 90.9 100 95.4 
CDC2 19 19 88.9 84.2 89.5 86.8 
CK1 9 9 63.6 77.8 55.6 66.7 
CK2 34 34 82.9 85.3 82.4 83.8 

MAPK 32 32 90.3 87.5 90.6 89.1 
Aurora 5 5 66.7 80.0 60.0 70.0 

Abl 5 5 80.0 80.0 80.0 80.0 
EGFR 6 6 66.7 66.7 66.7 66.7 

Src 16 16 73.3 68.7 75.0 71.9 
Abbreviation: Pre, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy. 
 

The average performance of the independent test is slightly worse than the performance 

of cross-validation. If the performance of independent test is strongly worse than 

cross-validation, it indicates that the constructed model may be over fitting for the training 

data. This independent test shows that the constructed models may be not over fitting to the 

training data. The independent test sets of several representative kinase groups are also used 

to test other phosphorylation site predictors. 
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3.5.4 Web-based Prediction Tool 

After evaluating the trained models for identifying kinase-specific phosphorylation sites, the 

model with the highest predictive accuracy for each data set was selected. To facilitate the 

investigation of protein kinase and their substrate, the proposed method was implemented as a 

web-based system for users to search their interested proteins. Sometimes, biologist only 

understands that a protein was phosphorylated, due to the time-consuming and lab-intensive 

experimental identification, the precise phosphorylated sites on the substrate still remain to be 

verified. Therefore, an effective prediction server can help them to focus on several potential 

sites efficiently. 101 kinase groups containing at least 10 experimental phosphorylation sites 

were selected to implement the web-based prediction tool. Moreover, the catalytic kinase of 

each identified phosphorylation site is provided to users. Users can submit their 

uncharacterized protein sequences and select the kinase-specific models for predicting 

phosphorylated serine, threonine, and tyrosine. As depicted in Figure 3.14, the web server 

locates the predictive phosphorylation sites and the involved catalytic protein kinases. The 

system efficiently returns you the predicted results including phosphorylated position, 

flanking amino acids, and ASA values which are predicted by RVP-Net. Furthermore, users 

can choose different threshold for phosphorylation prediction based on predictive sensitivity. 

Moreover, users can download the predicted results with tab-delimited format for further 

analyses. The web server can accurately and efficiently predict the kinase-specific 

phosphorylation sites in the input protein sequences. 

 
Figure 3.14 Web interface of KinasePhos. 
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3.6 Discussions 

3.6.1 Kinase-specific Groups with Similar Consensus Motif 

In order to assess the cross predictive specificity of the kinase-specific models containing the 

similar substrate site motifs, we take a particular group as the positive set and the other groups 

as the negative sets one by one. The higher specificity the cross-validation, the less incorrect 

prediction of the phosphorylation sites in other groups. As given in Table 3.8, the number in 

the parenthesis besides the kinase name indicates the size of the positive set. For example, the 

first row gives that there are 414 phosphorylated sites in kinase PKA group. The sensitivity 

(Sn) of the PKA model is 89.4%. The specificity are given in the table, for instance, in the 

first column the specificity (Sp) of PKC, PKB, CaMK2 and Aurora sets corresponding to the 

PKA model are 51.4%, 27.5%, 39.2% and 38.6%, respectively. The Sp values marked in red 

color indicate they are relatively lower between the kinases PKA, PKC, PKB, CaMK2 and 

Aurora in basophilic group. Similarly, the Sp values in green color indicate they are relatively 

lower between the kinases CKI and CKII in acidophilic group. The Sp values in blue color 

indicate they are relatively lower between the kinases CDC2 and MAPK in proline-directed 

group. We observe that the specificity corresponding to the kinase-specific data sets in the 

same kinase group, such as basophilic, acidophilic and proline-directed groups, are relatively 

lower than the specificity corresponding to the kinase-specific data sets in other groups. 
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Table 3.8 The cross predictive specificity of the kinase-specific models with similar substrate motif.  
Negative set 

Positive set 
PKA 
(414) PKC (430) PKB (109) CaMK2 (104) Aurora (54) CK1 (96) CK2 (333) CDC2 (191) MAPK (318) 

PKA (414) 

 

Sn = 89.4 51.4 27.5 39.2 38.6 84.7 97.3 97.6 98.1 

PKC (430) 
 

34.3 Sn = 80.8 36.2 43.7 62.1 85.6 96.8 87.4 93.4 

PKB (109) 

 

47.8 83.2 Sn = 91.9 52.2 81.2 97.9 98.1 100 100 

CaMK2 
(104) 

 

56.2 69.6 49.2 Sn = 77.9 58.3 93.2 95.4 98.0 93.5 

Aurora (54) 

 

41.8 71.3 70.2 68.9 Sn = 78.1 86.7 91.2 98.4 94.2 

CK1 (96) 

 
84.3 85.5 92.4 88.8 82.4 Sn = 77.2 75.8 94.0 96.2 

CK2 (333) 
 

95.2 95.4 98.1 89.5 90.7 72.4 Sn = 87.1 100 97.6 

CDC2 (191) 
 

98.1 96.2 100 95.7 100 100 99.3 Sn = 88.2 67.6 

MAPK 
(318) 

 
97.6 98.6 98.9 99.1 96.4 96.2 98.9 46.2 Sn = 90.2 

Abbreviation: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy. 
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3.6.2 Comparison with Other Phosphorylation Prediction 

Tools 

The proposed method is compared with several previously developed phosphorylation 

prediction tools, such as PredPhospho [78], GPS [75, 106], PPSP [76], MetaPredictor [107], 

KinasePhos 1.0 [55, 56], and KinasePhos 2.0 [91]. As given in Table 3.9, the number of 

kinases, sensitivity and specificity of prediction and the overall predictive performance of 

these tools are compared. GPS, PPSP, PredPhospho, KinasePhos 1.0 and 2.0, and the 

proposed methods all support the identification of kinase-specific phosphorylation sites. 

Although only the kinase groups containing at least 10 experimental phosphorylation sites 

were selected to evaluate the average predictive performance, this proposed version of 

KinasePhos provided about 100 kinase-specific models. The predictive performance of three 

representative kinases such as PKA, PKC and CK2 are compared. As given in Table 3.9, the 

cross-validation performances of three representative kinases in KinasePhos 3.0 are similar to 

PredPhospho, GPS, PPSP, and KinasePhos 1.0 and 2.0. In particular, KinasePhos 2.0 provides 

the predictive model for phosphohistidine, whose predictive accuracy is 93%. In this version, 

the kinase-specific group was not further categorized into serine, threonine, and tyrosine, 

while the predictive performance was not decreased. The overall predictive accuracy of the 

kinase-specific groups with at least 10 phosphorylation sites of the proposed method is 89%. 
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Table 3.9 Comparison of KinasePhos 3.0 with PredPhospho, GPS, PPSP, MetaPredictor, KinasePhos 1.0, and KinasePhos 2.0. 
Tools PredPhospho GPS PPSP MetaPredictor KinasePhos 1.0 KinasePhos 2.0 KinasePhos 3.0 

Reference Kim et al., 2004 Zhou et al., 2004 Xue et al., 2006 Ji Wan et al., 2008 Huang and Lee et al., 
2005 

Wong and Lee et al. 
2007 - 

Method SVM MCL+GPS BDT 

Voting from GPS, 
KinasePho, 

NetPhosK, PPSP, 
PredPhospho, 

Scansite 

MDD+HMM SVM SVM 

Material  PhosphoBase + 
UniProtKB/SwissProt Phospho.ELM Phospho.ELM 

Phospho.ELM (5.0) + 
PhosphoSite (July 

2006) + 
UniProtKB/SwissProt 

(51.1) 

PhosphoBase + 
UniProtKB/SwissProt

Phospho.ELM + 
UniProtKB/SwissProt

Phospho.ELM (7.0) + 
UniProtKB/SwissProt 

(55.0) 

Training 
features AA AA AA - AA AA+CP AA+ASA+SS+DIS 

No. of kinases 4 groups 71 groups 68 groups - 18 58 101 groups 

Kinase PKA Sn = 0.88 
Sp = 0.91 

Sn = 0.89 
Sp = 0.91 

Sn = 0.90 
Sp = 0.92 

Sn = 0.88 
Sp = 0.83 

Sn = 0.91 
Sp = 0.86 

Sn = 0.92 
Sp = 0.89 

Sn = 0.89 
Sp = 0.91 

Kinase PKC Sn = 0.79 
Sp = 0.86 

Sn = 0.82 
Sp = 0.83 

Sn = 0.82 
Sp = 0.86 

Sn = 0.77 
Sp = 0.79 

Sn = 0.80 
Sp = 0.87 

Sn = 0.84 
Sp = 0.86 

Sn = 0.81 
Sp = 0.86 

Kinase CK2 Sn = 0.84 
Sp = 0.96 

Sn = 0.83 
Sp = 0.88 

Sn = 0.83 
Sp = 0.90 

Sn = 0.88 
Sp = 0.90 

Sn = 0.87 
Sp = 0.85 

Sn = 0.87 
Sp = 0.86 

Sn = 0.87 
Sp = 0.88 

Serine Acc = 0.81 - - - Acc = 0.86 Acc = 0.90 - 
Threonine Acc = 0.77 - - - Acc = 0.91 Acc = 0.93 - 
Tyrosine - - - - Acc = 0.84 Acc = 0.88 - 
Histidine - - - - - Acc = 0.93 - 
Overall 
performance Acc = 0.76~0.91 - - - Acc = 0.87 Acc = 0.91 Acc = 0.89 

Abbreviation: SVM, support vector machine; MCL, Markov cluster algorithm; GPS, group-based phosphorylation scoring method; BDT, Bayesian decision 
theory; MDD, maximal dependence decomposition; HMM, hidden Markov model; CP, coupling pattern; AA, amino acid; ASA, accessible surface area; SS, 
secondary structure; DIS, disorder region; Sn, sensitivity; Sp, specificity; Acc, accuracy.
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3.7 Summary 

In general, the previous works of phosphorylation site prediction focused on flanking residues 

of phosphorylation sites; like our previous work (KinasePhos 1.0 and 2.0). Herein, 

KinasePhos 3.0 comprehensively investigates structural properties in each kinase-specific 

phosphorylated site. The protein structural properties, such as accessible surface area (ASA), 

secondary structure, and intrinsic disorder, were considered in the model training of each 

kinase groups. Because most of the experimentally verified kinase-specific phosphorylation 

sites do not located in the protein regions with known structure from PDB [67], the effective 

prediction tools RVP-net [70], PSIPRED [21], and DISOPRED2 [35] are adopted to compute 

the accessible surface area of residues, secondary structures, and protein disorder regions, 

respectively. The cross-validation demonstrates that the structural properties can improve the 

predictive accuracy ranging from 1% to 10%. The models trained with various features, 

including sequence profiles and structural features, were evaluated by 5-fold and Jackknife 

cross-validation, the predictive performance of the models trained with the combination of 

sequence and structural features are better than the models trained only with sequence. The 

overall accuracy of 101 kinase groups is 89.4%. Moreover, the independent test shows that 

the constructed model of kinase-specific groups were not over-fitting to training data. Finally, 

the constructed SVM models with best predictive accuracy were used to implement the 

web-based prediction tool. 
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Chapter 4  Discovery of Protein Kinase-Substrate 

Phosphorylation Networks 

4.1 Introduction 

Protein phosphorylation catalyzed by protein kinases is the most widespread and well-studied 

signaling mechanism in eukaryotic cells. It was estimated that one-third to one-half of all 

proteins in a eukaryotic cell are phosphorylated [1]. Phosphorylation can regulate almost 

every property of a protein and is involved in all fundamental cellular processes. Cataloging 

and understanding protein phosphorylation is not easy task: many kinases may be expressed 

in a cell, and one-third of all intracellular proteins may be phosphorylated, representing as 

many as 20,000 distinct phosphoprotein states [111]. Manning et al. [95] have identified 518 

human kinases, and every active protein kinase phosphorylates a distinct set of substrates in a 

regulated manner. Defining the kinase complement of the human genome, the kinome, has 

provided an excellent starting point for understanding the scale of the problem.  

With the high-throughput mass spectrometry (MS) proteomics, the number of in vivo 

phosphorylation sites is increasing rapidly. However, about 20% of the experimentally 

verified phosphorylation sites have the annotation of catalytic kinases. To fully investigate 

how protein kinases regulate the intracellular processes, it is necessary to comprehensively 

and accurately identify the kinase-specific substrates. Therefore, we were inspired to integrate 

experimentally verified phosphorylation data and computational techniques for identifying 

physiological substrates of the protein kinases and studying phosphorylation network in cell. 

Due to the fact that signaling proteins are modular in the sense that they contain domains 

(catalytic or interaction) and linear motifs (phosphorylation or binding sites), which mediate 

interactions between proteins [92], the protein-protein interaction and protein association are 

incorporated. It also exploits both the inherent propensity of kinase catalytic domains to 

phosphorylated particular sequence motifs and contextual information regarding the physical 

interaction, functional association, cellular co-localization and coexpression of kinases and 

substrates. 

Intracellular signal transduction is the process by which chemical signals from outside 

the cell are passed through cytoplasm to nucleus or cytoskeleton, where appropriate responses 
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to those signals are generated [7]. Deciphering the complex network of protein kinase and 

substrate is necessary for a thorough and therapeutically applicable understanding of the 

functioning of a cell in physiological and pathological states. Therefore, the comprehensive 

kinase-substrate interactions are used to construct the intracellular phosphorylation network 

starting from receptor kinases to transcription factors. Moreover, the gene expression data is 

adopted to validate the syn-expression of kinase and substrate with statistical significance. 

 

Human Kinome 

Manning et al. [95] have catalogued the protein kinase complement of the human genome, the 

so-called “kinome", using public and proprietary genomic, complementary DNA, and 

expressed sequence tag (EST) sequences. This provides a starting point for comprehensive 

analysis of protein phosphorylation in normal and disease states, as well as a detailed view of 

the current state of human genome analysis through a focus on one large gene family. There 

are 518 putative protein kinase genes been identified, of which 71 have not previously been 

reported or described as kinases, and we extend or correct the protein sequences of 56 more 

kinases. New genes include members of well-studied families as well as previously 

unidentified families, some of which are conserved in model organisms. Classification and 

comparison with model organism kinomes identified orthologous groups and highlighted 

expansions specific to human and other lineages. The authors also identified 106 protein 

kinase pseudogenes. 

 

 
Figure 4.1 Kinase distribution by major groups in human and model systems (Manning et al., 2002). 

 

Most protein kinases contain a conserved catalytic domain belonging to the eukaryotic 
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protein kinase (ePK) superfamily (all other protein kinases are classified as atypical protein 

kinases, or aPKs). As shown in Figure 4.1, ePKs are classified into 9 major groups, and are 

subdivided into families, and sometimes subfamilies, based on the sequence of their ePK 

domains, including AGC, CAMK, CK1, CMGC, Other, STE, TK, TKL, and RGC. Manning 

et al. also identified 13 atypical protein kinase (aPK) families, which contain proteins reported 

to have biochemical kinase activity, but which lack sequence similarity to the ePK domain, 

and their close homologs. To compare related kinases in human and model organisms and to 

gain insights into kinase function and evolution, we classified all kinases into a hierarchy of 

groups, families, and subfamilies. Kinases were classified primarily by sequence comparison 

of their catalytic domains, aided by knowledge of sequence similarity and domain structure 

outside of the catalytic domains, known biological functions, and a similar classification of 

the yeast, worm, and fly kinomes. Phylogenetic comparison of the human kinome with those 

of yeast, worm, and fly confirms that most kinase families are shared among metazoans and 

defines classes that are expanded in each lineage. Of 189 subfamilies present in human, 51 are 

found in all four eukaryotic kinomes, and these presumably serve functions essential for the 

existence of a eukaryotic cell. Comparison with the draft mouse genome indicates that more 

than 95% of human kinases have direct orthologs in mouse; additional orthologs may emerge 

as that genome sequence is completed. 

Figure 4.2 [95] shows a phylogenetic tree that depicts the relationships between members 

of the complete superfamily of human protein kinases. The 518 human protein kinases control 

protein activity by catalyzing the addition of a negatively charged phosphate group to other 

proteins. Most protein kinases belong to a single superfamily of enzymes whose catalytic 

domains are related in sequence and structure. The main diagram illustrates the similarity 

between the protein sequences of these catalytic domains. Each kinase is at the tip of a branch, 

and the similarity between various kinases is inversely related to the distance between their 

positions on the tree diagram. Most kinases fall into small families of highly related 

sequences, and most families are part of larger groups. The seven major groups are labeled 

and colored distinctly. Other kinases are shown in the center of the tree, colored gray. The 

relationships shown on the tree can be used to predict protein substrates and biological 

function for many of the over 100 uncharacterized kinases presented here. The inset diagram 

shows trees for seven atypical protein kinase families. These proteins have verified or 

strongly predicted kinase activity, but have little or no sequence similarity to members of the 

protein kinase superfamily. A further eight atypical protein kinases in small families of one or 
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two genes are not shown. 

 

 
Figure 4.2 Phylogenetic tree of human kinome (Manning et al, 2002). 

 

4.2 Related Works 

Due to the high-throughput of mass spectrometry-based proteomics, there are several 

databases storing experimentally verified phosphorylation sites with catalytic kinase, such as 
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Phospho.ELM [2], PhosphoSite [43], UniProtKB/Swiss-Prot [42], Phosphorylation Site 

Database [44], and PHOSIDA [45]. The resource can be utilized for constructing the 

phosphorylation network between kinase and substrate proteins. The experimental data, 

ultimately, need to be combined by systems biology analysis, which translates the separate, 

large-scale datasets into signaling networks [13]. 

 

4.2.1 Discovery of Human Phosphorylation Networks 

Protein kinases control cellular decision processes by phosphorylating specific substrates. 

Thousands of in vivo phosphorylation sites have been identified, mostly by proteome-wide 

mapping. However, systematically matching these sites to specific kinases is presently 

infeasible, due to limited specificity of consensus motifs, and the influence of contextual 

factors, such as protein scaffolds, localization, and expression, on cellular substrate specificity. 

Linding et al. [112] proposed a method, namely NetworKIN9, that augments motif-based 

predictions with the network context of kinases and phosphoproteins. In the first step, the 

authors use neural networks (NetPhosK [113]) and position-specific scoring matrices 

(ScanSite [105]) to assign each phosphorylation site to one or more kinase families, based on 

the intrinsic preference of kinases for consensus substrate motifs. In the second stage, the 

context for each substrate is represented by a probabilistic protein network extracted from the 

STRING database [114], which integrates information from curated pathway databases, 

cooccurrence in abstracts, physical protein interaction assays, mRNA expression studies, and 

genomic context. This approach captures both direct and indirect interactions; for example, 

phosphorylation events mediated by scaffolds are predicted, as the scaffolding protein 

provides a path in the probabilistic network between the substrate and kinase. 

NetworKIN pinpoints kinase responsible for specific phosphorylation and yields a 

2.5-fold improvement in the accuracy with which phosphorylation networks can be 

constructed. As shown in Figure 4.3, manually curated data sets of CDK, PKC, PIKK, and 

INSR in vivo phosphorylation sites were used to assess the prediction accuracy (the fraction 

of predictions that are known to be correct) and sensitivity (the fraction of known sites that 

are correctly predicted) of NetworKIN and solely motif-based methods (NetPhosK and 

Scansite). This shows that including the cellular context (in the form of a protein association 

network) leads to a significant improvement in accuracy. Notably, the accuracy of 

                                                 
9 NetworKIN URL: http://networkin.info/index.php  
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NetworKIN predictions is likely to be an underestimate since not all the kinases that target 

each phosphorylation site in the set of test proteins may currently be known from 

experiments. 

 

 
Figure 4.3 Effects of including network context (Linding et al., 2007). 

 

4.2.2 Human Kinase Interactome Resource 

PhosphoPOINT [115] is comprehensive human kinase interactome and phosphor-protein 

database, which collects 4,195 phospho-proteins with a total of 15,738 phosphorylation sites. 

PhosphoPOINT annotates the interactions among kinases, with their downstream substrates 

and with interacting (phospho)-proteins to modulate the kinase-substrate pairs. 

PhosphoPOINT integrates various gene expression profiles and Gene Ontology (GO) cellular 

component information to evaluate each kinase and their interacting 

(phospho)-proteins/substrates. Integration of cSNPs that cause amino acids change with the 

proteins with the phospho-protein dataset reveals that 64 phosphorylation sites result in a 

disease phenotypes when changed; the linked phenotypes include schizophrenia and 

hypertension. PhosphoPOINT also provides a search function for all phospho-peptides using 

about 300 known kinase/phosphatase substrate/binding motifs. Altogether, PhosphoPOINT 

provides robust annotation for kinases, their down-stream substrates and their interaction 

(phospho)-proteins and this should accelerate the functional characterization of 

kinome-mediated signaling. Figure 4.4 [115] shows Auroa kinase as an example to illustrate 

the search result. 
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Figure 4.4 Annotation and visualization of PhosphoPOINT (Yang et al., 2008). 

 

4.2.3 Modeling of Signal Transduction Networks 

Signaling pathways have been an active research area in recent history. There are many 

studies in which signaling pathways were modeled using various approaches. Previously, 

signaling pathways were modeled through modular kinetic simulations of biochemical 

networks [116] and detailed integration of biochemical properties of the pathways [117]. In 

another study, Bayesian Networks were applied to multi-variable cell data to infer signaling 

pathways [118]. Correlating cancer based mRNA expression levels, autocrine receptor 

signaling loops were also discovered [14]. Another approach to model cellular pathways was 

developed based on perturbations of critical pathway components [15]. These were analyzed 

using DNA microarrays, quantitative proteomics, and databases of known physical 

interactions. 

Steffen et al. [119] have developed a computational approach for generating static 
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models of signal transduction networks which utilizes protein-interaction maps generated 

from large-scale two-hybrid screens and expression profiles from DNA microarrays. 

Networks are determined entirely by integrating protein-protein interaction data with 

microarray expression data, without prior knowledge of any pathway intermediates. In effect, 

this is equivalent to extracting subnetworks of the protein interaction dataset whose members 

have the most correlated expression profiles. The authors show that their technique accurately 

reconstructs MAP Kinase signaling networks in Saccharomyces cerevisiae. This approach 

should enhance the ability to model signaling networks and to discover new components of 

known networks. More generally, it provides a method for synthesizing molecular data, either 

individual transcript abundance measurements or pairwise protein interactions, into higher 

level structures, such as pathways and networks. 

 

 
Figure 4.5 MAPK signal transduction pathways in yeast (Roberts et al., 2000). 

 

The proposed approach is calibrated using the yeast MAPK (mitogen-activated protein 

kinases) pathways involved in pheromone response, filamentous growth, and maintenance of 

cell wall integrity (Figure 4.5). These pathways are activated by G protein-coupled receptors 

and characterized by a core cascade of MAP kinases that activate each other through 

sequential binding and phosphorylation reactions; they are among the most thoroughly 

studied net works in yeast and are therefore excellent benchmarks against which to test our 
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approach. As shown in Figure 4.5, membrane proteins are depicted in blue, transcription 

factors in red, and intermediate proteins in green. Figure is adapted from [120]. 

Signaling pathways have been an active research area in recent history. There are many 

studies in which signaling pathways were modeled using various approaches. Previously, 

signaling pathways were modeled through modular kinetic simulations of biochemical 

networks and detailed integration of biochemical properties of the pathways [12]. In another 

study, Bayesian Networks were applied to multi-variable cell data to infer signaling pathways 

[13]. Correlating cancer based mRNA expression levels, autocrine receptor signaling loops 

were also discovered [14]. Another approach to model cellular pathways was developed based 

on perturbations of critical pathway components [15]. These were analyzed using DNA 

microarrays, quantitative proteomics, and databases of known physical interactions. 

 

4.3 Motivation and Specific Aim 

Protein phosphorylation catalyzed by kinase plays crucial regulatory role in intracellular 

signal transduction that is achieved by networks of proteins and small molecules that 

transmit information from the cell surface to the nucleus, where they ultimately effect 

transcriptional changes. How differential responses are generated by these networks is not 

obvious nor is the reason cells evolved a complicated mechanism for transducing signals. 

Thus, a full understanding of the mechanism of intracellular signal transduction remains a 

major challenge in cellular biology. Manning et al. have identified 518 human kinase 

genes, the so-called “kinome", that provides a starting point for comprehensive analysis of 

protein phosphorylation networks.  

Mass spectrometry-based proteomics have enabled the large-scale mapping of in vivo 

phosphorylation sites. However, only 20% of the experimentally verified phosphorylation 

sites have the annotation of catalytic kinases. To fully investigate how protein kinases 

regulate the intracellular processes, it is necessary to comprehensively and accurately 

identify the kinase-specific substrates. Therefore, we propose a method, RegPhos, 

incorporates computational model with protein associations (protein-protein interactions, 

functional associations, and subcellular localization) for identifying the catalytic kinase for 

each phosphoprotein with experimental phosphorylated sites. To observe the expressed 

relationship between kinase and substrate, the gene expression microarray data is adopted 

to observe the expression of kinase and substrate genes in specific conditions, for instance, 
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the normal tissue and cancerous tissue.  

With the increasing number of in vivo phosphorylation sites have been identified, the 

desire to map the phosphorylation network of protein kinase and substrate has motivated. 

The experimental kinase-specific substrates, ultimately, need to be combined by systems 

biology analysis, which translates the separate, large-scale datasets into signaling networks. 

Therefore, we incorporated the experimentally verified kinase-substrate interactions with 

computationally identified kinase-substrate interactions to construct the intracellular 

phosphorylation network starting from receptor kinases to transcription factors, associated 

with the formation of protein subcellular localization. Moreover, the experimental 

expression evidence, such as gene microarray data and mass spectra, are adopted to 

validate the syn-expression of the constructed kinase-substrate phosphorylation network 

with statistical significance. 

 

4.4 Materials  

To construct the intracellular phosphorylation network between protein kinase and substrate, 

we propose a method, namely RegPhos, which incorporates computational models with 

protein associations (protein-protein interaction, functional associations, and protein 

subcellular localizations) for assigning the potential kinase for the experimental 

phosphorylation sites without annotated catalytic kinase. Moreover, the gene expression 

microarray data is adopted to validate the syn-expression of kinase and substrate.  

 

4.4.1 Protein Kinase and Phosphorylation Site Resource 

The experimental verified phosphorylation sites are extracted from dbPTM which has 

integrated version 7.0 of Phospho.ELM [2], release 55.0 of UniProtKB/Swiss-Prot [3], and 

version 1.0 of PHOSIDA [45]. As shown in Table 4.1, Phospho.ELM contains 16428 

experimental phosphorylation sites within 4026 phosphoproteins, Swiss-Prot contains 24328 

experimental phosphorylation sites within 8606 phosphoproteins, and PHOSIDA consists of 

6600 in vivo phosphorylation sites within 2244 phosphoproteins. Especially, Human Protein 

Reference Database (HPRD), which integrates a wealth of information relevant to the 

function of human proteins in health and disease, is integrated in this work. Data pertaining to 

thousands of protein-protein interactions, posttranslational modifications, enzyme/substrate 
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relationships, disease associations, tissue expression, and subcellular localization were 

extracted from the literature for a non-redundant set of 25661 human proteins. In release 7.0 

of HPRD, there are totally 16972 PTMs within 2830 protein entries, of 7438 PTMs are 

phosphorylation sites within 1774 proteins. 

Because this work focuses on constructing human phosphorylation network, the 

phosphorylation sites in human proteins are represented in Table 4.1. After removing the 

redundant dada among these databases, the number of human phosphorylation sites and 

phosphoprotein are 19817 and 5083, respectively.  

 

Table 4.1 Statistics of integrated experimental protein phosphorylation site databases. 

Database Version 
All species Human 

Number of 
phosphoprotein

Number of 
phosphosite

Number of 
phosphoprotein 

Number of 
phosphosite

Phospho.ELM 7.0 4,026 16,428 3,354 11,278
UniProtKB/Swiss-Prot 55.0 8,606 24,328 3,746 11,862
PHOSIDA 1.0 N/A N/A 2,212 8,969
HPRD 7.0 - - 1,774 7,438
Combined (NR) - - - 5,083 19,817
Abbreviation: NR, non-redundant. 

 

Manning et al. [95] have identified 518 known protein kinase genes been identified, of 

which 71 have not previously been reported or described as kinases, and we extend or correct 

the protein sequences of 56 more kinases. These human kinase annotations extracted from 

KinBase [95] are used to unify the kinase names among the external phosphorylation site 

databases which contain various names for a kinase. The 518 kinases are major nodes in the 

construction of human phosphorylation networks. Due to the classification of kinase 

identified by Manning et al., 518 kinases are categorized by their annotated family or 

subfamily, including totally 221 kinase families10. Several representative kinase families are 

listed in Table 4.2. Because the collection of experimentally verified phosphorylated sites 

from PhosphoELM, UniProtKB/Swiss-Prot, and PHOSIDA involved in various species, the 

number of phosphorylated sites in each kinase family is calculated in human and other species, 

as well as the number of phosphorylated proteins. 

                                                 
10 221 kinase families: http://140.113.239.26/RegPhos/statistics.php  
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Table 4.2 List of representative kinase families containing more than 10 substrates. 

Group Kinase 
family

Kinase 
subfamily Description Kinase member 

Human All species 

Phosphosite Phosphoprotein Phosphosite Phosphoprotein 

AGC PKB  Protein kinase B AKT1,AKT2,AKT3 89 63 114  79 

AGC GRK GRK G-protein coupled Receptor 
Kinase 

GPRK7,RHOK,GPRK6,GPRK5,GPRK
4 64 19 85  27 

AGC GRK BARK Beta Adrenergic Receptor 
Kinase BARK1,BARK2 32 14 35  17 

AGC PKA  Protein kinase A PKACa, PKACb, PKACg 232 151 458 286 

AGC PKC  Protein kinase C PKCh, PKCa, PKCb, PKCd, PKCe, 
PKCg, PKCi, PKCt, PKCz 280 168 485 274 

Atypical PIKK ATM Ataxia telangiectasia mutated ATM,ATR 67 34 102 63 

CAMK CAMK2  CAMK family 2 CaMK2a,CaMK2b,CaMK2g,CaMK2d 56 36 119 77 

CK1 CK1  Cell Kinase 1 CK1a,CK1d,CK1e,CK1g2,CK1g3,CK1
a2,CK1g1 63 33 101 52 

CMGC CDK CDK Cyclin Dependent Kinase CDK4,CDK5,CDK6,CDK8,CDK9,CD
K10,CDK11 64 34 123 66 

CMGC CDK CDK7 Cyclin Dependent Kinase 
subfamily 7 CDK7 17 11 30 22 

CMGC CDK CDC2 Cell Division Control 2 CDC2,CDK2,CDK3 226 95 328 138 

CMGC CK2  Casein kinase II CK2a1,CK2a2,CK2al-rs 241 123 368 192 

CMGC MAPK  Mitogen Activated Protein 
Kinase 

Erk1(MAPK3),Erk2(MAPK1),Erk3(M
APK6),Erk4(MAPK4),Erk5(MAPK7),
Erk7(MAPK15),JNK1(MAPK8),JNK2
(MAPK9),JNK3(MAPK10),NLK,p38a
(MAPK14),p38b(MAPK11),p38g(MA
PK12),p38d(MAPK13) 

248 140 333 192 

CMGC MAPK JNK JNK subfamily of MAPK JNK1(MAPK8),JNK2(MAPK9),JNK3(
MAPK10) 47 27 66 40 

CMGC MAPK p38 p38 subfamily of MAPK p38a(MAPK14),p38b(MAPK11),p38g(
MAPK12),p38d(MAPK13) 62 35 66 38 

CMGC MAPK ERK Extracellular signal-Regulated 
protein Kinase 

Erk1(MAPK3),Erk2(MAPK1),Erk3(M
APK6),Erk4(MAPK4),Erk5(MAPK7),
Erk7(MAPK15) 

138 88 178 112 
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Other AUR Aur Aurora Kinase AurA, AurB, AurC 42 19 57 28 

Other IKK  I kappa Kinase IKKa,IKKb,IKKe,TBK1 43 12 49 16 

TK Abl  Abelson murine leukemia 
homolog ABL1(Abl),ABL2(ARG) 36 26 56 39 

TK EGFR  Epidermal Growth Factor 
Receptor EGFR,ErbB2,ErbB3,ErbB4 48 22 67 29 

TK InsR  Insulin Receptor and associated 
Kinases INSR,IRR 30 9 46 14 

TK Src Lck Proto-oncogene 
tyrosine-protein kinase Lck LCK 48 25 64 36 

TK Src LYN Tyrosine-protein kinase LYN LYN 33 20 50 28 

TK Src Src Proto-oncogene 
tyrosine-protein kinase Src SRC 108 68 171 101 

TK Syk SYK Spleen tyrosine kinase SYK 38 17 51 22 

TK Syk ZAP70 70 kDa zeta-associated protein, 
Syk-related tyrosine kinase ZAP70 16 8 20 9 

TK Tec  Tec protein tyrosine kinase 
family TXK,TEC,ITK,BMX,BTK 26 13 30 14 
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4.4.2 Protein-Protein Interaction Databases 

To enhance the identification of kinase substrates, the physical protein-protein interaction data 

is used to explore the predictive accuracy in the proposed method. This work extract human 

protein-protein interactions from DIP [121, 122], MINT [123], IntAct [124], and HPRD [51], 

as shown in Table 4.3. The Database of Interacting Proteins11 (DIP) is a database that 

documents experimentally determined protein-protein interactions. It provides the scientific 

community with an integrated set of tools for browsing and extracting information about 

protein interaction networks. As of April 2008, the DIP catalogs approximately 56000 unique 

interactions among 19000 proteins from > 180 organisms; the vast majority from yeast, 

Helicobacter pylori and human. Tools have been developed that allow users to analyze, 

visualize and integrate their own experimental data with the information about protein-protein 

interactions available in the DIP database. Because the reliability of experimental evidence 

varies widely, methods of quality assessment have been developed and utilized to identify the 

most reliable subset of the interactions. This CORE set of DIP can be used as a reference 

when evaluating the reliability of high-throughput protein-protein interaction data sets, for 

development of prediction methods, as well as in the studies of the properties of protein 

interaction networks. 

 

Table 4.3 Statistics of integrated protein-protein interaction databases. 

Database Data source Version 
All species Human 

Number 
of protein

Number of 
interaction

Number 
of protein 

Number of 
interaction

DIP Physical 
interaction 2008-04-30 19,765 56,493 1,224 1,794 

MINT Physical 
interaction 2008-04-30 28,817 105,899 6,106 20,832 

IntAct Physical 
interaction 2008-04-11 63,121 163,909 ~15,000 ~28,500 

HPRD Physical 
interaction Release 7.0 - - 38,167 25,661 

 

The Molecular INTeraction database12 (MINT) aims at storing, in a structured format, 

information about molecular interactions (MIs) by extracting experimental details from work 

published in peer-reviewed journals. At present the MINT team focuses the curation work on 

physical interactions between proteins. Genetic or computationally inferred interactions are 

                                                 
11 DIP URL: http://dip.doe-mbi.ucla.edu  
12 MINT URL: http://mint.bio.uniroma2.it/mint/  
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not included in the database. Up to April 30th 2008, there are totally 105899 interactions 

between 28,817 proteins. The new version of MINT is based on a completely remodeled 

database structure, which offers more efficient data exploration and analysis, and is 

characterized by entries with a richer annotation. The whole dataset can be freely accessed 

online in both interactive and batch modes through web-based interfaces and an FTP server. 

MINT now includes, as an integrated addition, HomoMINT, a database of interactions 

between human proteins inferred from experiments with ortholog proteins in model 

organisms. 

IntAct13 is an open source database and software suite for modeling, storing and 

analyzing molecular interaction data. The data available in the database originates entirely 

from published literature and is manually annotated by expert biologists to a high level of 

detail, including experimental methods, conditions and interacting domains. At present, the 

database features over 163000 binary interactions extracted from over 2200 scientific 

publications and makes extensive use of controlled vocabularies. The web site provides tools 

allowing users to search, visualize, and download data from the repository. 

 

4.4.3 Functional Association Databases 

To capture the biological context of a substrate, we use a network of functional associations 

extracted from the STRING14 database [114]. This network is based on four fundamentally 

different types of evidence: genomic context (gene fusion, gene neighborhood, and 

phylogentic profiles), primary experimental evidence (physical protein interactions and gene 

coexpression), manually curated pathway databases, and automatic literature mining. 

Information on protein-protein interactions is still mostly limited to a small number of model 

organisms, and originates from a wide variety of experimental and computational techniques. 

The underlying infrastructure includes a consistent body of completely sequenced genomes 

and exhaustive orthology classifications, based on which interaction evidence is transferred 

between organisms. Although primarily developed for protein interaction analysis, the 

resource has also been successfully applied to comparative genomics, phylogenetics and 

network studies, which are all facilitated by programmatic access to the database backend and 

the availability of compact download files. As of release 7.1, STRING has almost doubled to 

                                                 
13 IntAct URL: http://www.ebi.ac.uk/intact  
14 STRING URL: http://string.embl.de  
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373 distinct organisms, and contains more than 1.5 million proteins for which associations 

have been pre-computed.  

 

Table 4.4 Statistics of integrated functional association databases. 

Database Data source Version 
All species Human 

Number of 
protein 

Number of 
interaction 

Number 
of protein 

Number of 
interaction

STRING 
Physical interaction 
and functional 
association 

7.1 ~1,500,000 77,147,159 16,050 1,397,066 

GOA 

Cellular component, 
molecular function, 
and biological 
process 

2008-04-30 3,977,963 29,269,200 35,423 183,316 

 

The Gene Ontology Annotation (GOA) database15 [125] aims to provide high-quality 

electronic and manual annotations to the UniProt Knowledgebase (Swiss-Prot, TrEMBL and 

PIR-PSD) using the standardized vocabulary of the Gene Ontology (GO) [126]. As a 

supplementary archive of GO annotation, GOA promotes a high level of integration of the 

knowledge represented in UniProt with other databases. GOA provides annotated entries for 

nearly 60,000 species and is the largest and most comprehensive open-source contributor of 

annotations to the GO Consortium annotation effort. By integrating GO annotations from 

other model organism groups, GOA consolidates specialized knowledge and expertise to 

ensure the data remain a key reference for up-to-date biological information. Furthermore, the 

GOA database fully endorses the Human Proteomics Initiative by prioritizing the annotation 

of proteins likely to benefit human health and disease. The GOA data set can be used to 

enhance the annotation of particular model organism or gene expression data sets, although 

increasingly it has been used to evaluate GO predictions generated from text mining or 

protein interaction experiments. Up to April 30th 2008, GOA totally stores 29,269,200 

functional associations between 3,977,963. 

 

4.4.4 Protein Subcellular Localization Databases 

The eukaryotic cell is a composite system internally subdivided into membrane-enveloped 

compartments that perform particular functions [41]. Every subcellular compartment contains 

specific proteins, including enzymes, synthesized in the cytoplasm and translocated into the 

                                                 
15 GOA URL: http://www.ebi.ac.uk/GOA 
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locations, where they carry out functional patterns. Therefore, knowing the localization of 

every protein is important for elucidating its interactions with other molecules and for 

understanding its biological function. Some major constituents of eukaryotic cells are: 

extracellular space, cytoplasm, nucleus, mitochondria, Golgi apparatus, endoplasmic 

reticulum (ER), peroxisome, vacuoles, cytoskeleton, nucleoplasm, nucleolus, nuclear matrix 

and ribosomes. The proteins which are involved in similar biological functions are closely 

located in the same subcellular localization. Protein phosphorylation plays crucial regulatory 

role in intracellular signal transduction networks from the receptors of cell surface to the 

transcription factors of nucleus, where they ultimately effect transcriptional changes. In order 

to identify phosphorylation cascade, the information of protein subcellular localization is used 

in the construction of phosphorylation network. Table 4.5 shows the list of public databases of 

protein subcellular localization, including LOCATE [127], DBSubLoc [128], Organelle DB 

[129], and PSORTdb [130]. 

 

Table 4.5 List of public databases of protein subcellular localization. 
Database  Species Statistics  Statistics of human 

LOCATE Human and mouse 122,765 protein isoforms 64,637 protein isoforms 
DBSubLoc All  64,051 proteins 30,633 proteins 
Organelle DB 138 organisms 30,188 genes 4,233 genes 
PSORTdb  Bacterial  ~2000 proteins - 
UniProtKB All 487,934 proteins 16,052 proteins 
 

LOCATE16 [127] is a curated, web-accessible database that houses data describing the 

membrane organization and subcellular localization of mouse and human proteins. The 

membrane organization is predicted by the high-throughput, computational pipeline MemO 

[131]. The subcellular locations were determined by a high-throughput, 

immunofluorescence-based assay and by manually reviewing peer-reviewed publications. The 

database now contains high-quality localization data for 20% of the mouse proteome and 

general localization annotation for nearly 36% of the mouse proteome. The proteome 

annotated in LOCATE is from the RIKEN FANTOM Consortium Isoform Protein Sequence 

[132] sets which contains 58128 mouse within 29682 transcript units and 64637 human 

protein isoforms within 26583 transcript units.  

DBSubLoc17 [128] is a database of protein subcellular localization which contains 

                                                 
16 LOCATE URL: http://locate.imb.uq.edu.au/  
17 DBSubLoc URL: http://www.bioinfo.tsinghua.edu.cn/dbsubloc.html  
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proteins from primary protein database SWISS-PROT and PIR. By collecting the subcellular 

localization annotation, the information are classified and categorized by cross references to 

taxonomies and Gene Ontology database. Based on sequence alignment, non-redundant 

subsets of the database have been built, which may provide useful information for subcellular 

localization prediction. The database now contains >60,000 protein sequences including 

approximately 30,000 protein sequences in the non-redundant data sets.  

 Organelle DB18 [129] is a web-accessible relational database presenting a supplemented 

catalog of organelle-localized proteins and major protein complexes. Since its release in 2004, 

Organelle DB has grown by 20% to encompass over 30,000 proteins from 138 eukaryotic 

organisms. Each protein in Organelle DB is presented with its subcellular localization, 

primary sequence and a detailed description of its function, as available. All records in 

Organelle DB have been annotated using controlled vocabulary from the Gene Ontology 

consortium. Protein localization data are inherently visual, and Organelle DB is a significant 

repository of biological images, housing 1500 micrographs of yeast cells carrying stained 

proteins. Organelle View offers a dimensional representation of a yeast cell; users can search 

Organelle View for proteins of interest, and the organelles housing these proteins will be 

highlighted in the cell image.  

 PSORTdb19 [130] is a web-accessible database of SubCellular Localization (SCL) for 

bacteria that contains both information determined through laboratory experimentation and 

computational predictions. The dataset of experimentally verified information (approximately 

2000 proteins) was manually curated by us and represents the largest dataset of its kind. 

Earlier versions have been used for training SCL predictors, and its incorporation now into 

this new PSORTdb resource, with its associated additional annotation information and dataset 

version control, should aid researchers in future development of improved SCL predictors. 

The second component of this database contains computational analyses of proteins deduced 

from the most recent NCBI dataset of completely sequenced genomes. Analyses are currently 

calculated using PSORTb, the most precise automated SCL predictor for bacterial proteins. 

Both datasets can be accessed through the web using a very flexible text search engine, a data 

browser, or using BLAST, and the entire database or search results may be downloaded in 

various formats.  

Moreover, UniProtKB [48] also have the annotation of subcellular localization for 

                                                 
18 Organelle DB URL: http://organelledb.lsi.umich.edu  
19 PSORTdb URL: http://db.psort.org/  
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protein entries in Swiss-Prot and TrEMBL. Based on manually curated literatures, there are 

487934 proteins contain the annotation of subcellular localization, 16052 of them are human 

proteins. 

 

4.4.5 Gene Expression Database 

The Gene Expression Omnibus20 (GEO) [133] at the National Center for Biotechnology 

Information (NCBI) is the largest fully public repository for high-throughput molecular 

abundance data, primarily gene expression data. The database has a flexible and open design 

that allows the submission, storage and retrieval of many data types. These data include 

microarray-based experiments measuring the abundance of mRNA, genomic DNA and 

protein molecules, as well as non-array-based technologies such as serial analysis of gene 

expression (SAGE) and mass spectrometry proteomic technology. GEO currently holds over 

235,000 submissions for over 100 organisms. In this work, the human gene expression 

samples of Affymetrix GeneChip Human Genome U133 Array Set HG-U133A platform 

(GPL96) and Affymetrix GeneChip Human Genome U133 Plus 2.0 Array (GPL570), 

consisting of 22283 probe set for 12678 genes and 54681 probe sets for 18433 genes, 

respectively, are used to explore the coexpression of kinase and substrate genes. 

 

Table 4.6 List of human gene microarray platform of GEO used in this work. 

Platform Title Type Probe 
sets Genes Date Samples

GPL96  

Affymetrix 
GeneChip Human 
Genome U133 
Array Set 
HG-U133A  

in situ 
oligonucleotide 22283 12678  Feb. 19, 

2002  16033 

GPL570  

Affymetrix 
GeneChip Human 
Genome U133 
Plus 2.0 Array  

in situ 
oligonucleotide 54681 18433  Nov 07, 

2003  14046 

 

 The U133 set includes 2 arrays with a total of 44928 entries and was indexed 

29-Jan-2002. The set includes over 1,000,000 unique oligonucleotide features covering more 

than 39,000 transcript variants, which in turn represent greater than 33,000 of the best 

                                                 
20 GEO URL: http://www.ncbi.nlm.nih.gov/geo  
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characterized human genes. Sequences were selected from GenBank, dbEST, and RefSeq. 

Sequence clusters were created from Build 133 of UniGene (April 20, 2001) and refined by 

analysis and comparison with a number of other publicly available databases including the 

Washington University EST trace repository and the University of California, Santa Cruz 

golden-path human genome database (April 2001 release). In addition, ESTs were analyzed 

for untrimmed low-quality sequence information, correct orientation, false priming, false 

clustering, alternative splicing and alternative polyadenylation. 

 Complete coverage of the Human Genome U133 Set plus 6,500 additional genes for 

analysis of over 47,000 transcripts. All probe sets represented on the GeneChip Human 

Genome U133 Set are identically replicated on the GeneChip Human Genome U133 Plus 2.0 

Array. The sequences from which these probe sets were derived were selected from 

GenBank®, dbEST, and RefSeq. The sequence clusters were created from the UniGene 

database (Build 133, April 20, 2001) and then refined by analysis and comparison with a 

number of other publicly available databases, including the Washington University EST trace 

repository and the University of California, Santa Cruz Golden-Path human genome database 

(April 2001 release). In addition, there are 9,921 new probe sets representing approximately 

6,500 new genes. These gene sequences were selected from GenBank, dbEST, and RefSeq. 

Sequence clusters were created from the UniGene database (Build 159, January 25, 2003) and 

refined by analysis and comparison with a number of other publicly available databases, 

including the Washington University EST trace repository and the NCBI human genome 

assembly (Build 31). 

 

4.5 Method 

How can one bridge the gap from transcript abundances and protein-protein interaction data to 

pathway models? To construct the complete phosphorylation network, the comprehensive and 

reliable information of protein kinase-substrate interactions is needed. This work proposes a 

method, RegPhos, not only integrates the experimentally verified phosphorylation sites which 

have the annotation of catalytic kinase, but also incorporates the computational models with 

protein associations to identify the catalytic kinase for the experimental phosphorylation sites 

which have not the annotation of kinase. The system architecture of RegPhos is shown in 

Figure 4.6, including the collection of experimental kinase-substrate resource, identification of 

kinase-substrate interactions, integration of gene expression data, and construction of 
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intracellular phosphorylation networks. Microarray expression data is then used to rank all 

paths according to the degree of similarity in the expression profiles of pathway members. 

 

 

Figure 4.6 System architecture of RegPhos. 

 

4.5.1 Identification of Kinase-Substrate Interactions 

With the integration of experimental phosphorylation sites, there are totally 18,823 

experimental verified phosphorylation sites within 4983 human proteins, of 3535 

phosphorylation sites (~20%) have the annotation of catalytic kinases. Most of the 

experimental phosphorylation sites (~80%) do not have the annotation of catalytic kinases. 

Although most of human phosphorylation sites in PHOSIDA have the annotation of kinases 

based on the consensus motif of kinases, the annotations are still needed to be verified by 

more information, such as protein-protein interactions, subcellular localization, and functional 

associations. Therefore, the enriched kinase-substrate interactions could be used to construct 

the complete intracellular phosphorylation networks.  
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To identify the catalytic kinase for each experimentally verified phosphorylation site 

without annotated kinase, we propose a method which incorporates computational models 

with protein-protein interaction, protein subcellular localization, and gene expression data for 

assigning the potential kinase. The system flow is shown in Figure 4.7, including two types of 

measurement. First is the model-based measurement for kinase-specific phosphorylation site 

prediction (as described previously in Chapter 3 ). Second is using the functional association 

such as protein-protein interaction, functional association, and subcellular co-localization to 

identify the catalytic kinase for a substrate protein. Finally, the experimentally validated 

phosphorylation sites with annotated catalytic kinase are used to evaluate the performance and 

decide the cutoff. 

 

 
Figure 4.7 System flow of identification of kinase-substrate interactions. 
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4.5.1.1 Computational Annotation of Kinase-Specific Phosphorylation 

Sites 

The proposed kinase-specific phosphorylation site prediction method, namely KinasePhos, is 

used to identify the candidate kinase families for the phosphorylation sites without annotated 

catalytic kinases. As illustrated in Chapter 3, the support vector machine (SVM) is applied to 

create the computational models with the encoded amino acids and structural features, 

secondary structure and accessible surface area. With the binary classification, the concept of 

SVM is mapping the input samples onto a higher dimensional space through a kernel function, 

and then seeking a hyper-plane that discriminates the two classes with maximal margin and 

minimal error. A public SVM library, namely LibSVM [110], is adopted to train the predictive 

model with the positive and negative training sets which are encoded according to different 

types of training features. Radial basis function (RBF) )exp(),(
2

jiji SSSSK −−= γ  is 

selected as the kernel function of SVM.  

There are more than 100 kinase families been constructed the predictive models, whose 

average predictive accuracy is approaching 90%. In general, each kinase-specific 

phosphorylation site prediction model has a cut-off value of score and use the value to decide 

whether a phosphorylation site is catalyzed by the kinase family. However, a phosphorylation 

may be predicted as the substrate site that was catalyzed by more than one kinase family 

because several kinase families have the similar substrate specificity. For instance, as shown 

in Figure 4.7, the amino acid motifs of PKA, PKG and Aurora, which have conserved arginine 

(R) in upstream position -2 or -3 of phosphorylated site, are similar. There may be a lot of 

false positives in the kinase assignment of phosphorylation site. Therefore, it needs the 

experimental evidence of functional association, such as protein-protein interaction or 

signaling pathway, to be used to reduce the false positive predictions. 

 

4.5.1.2 Exploration of Protein Associations 

To explore the possibility of using functional association to enhance the identification of 

kinase-specific substrates, we developed an integrative computational approach, RegPhos, 

which combines computational kinase-specific phosphorylation site prediction models and 

protein association networks to predict which protein kinases target experimentally identified 

phosphorylation sites in vivo (Figure 4.7). The association context for each substrate is 
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investigated by the information of manually curated protein-protein interaction databases 

(physical protein interaction assays, curated pathway, cooccurrence in literature abstracts), 

cellular colocalization, and mRNA coexpression signature. This approach captures both direct 

and indirect interactions; for example, phosphorylation events mediated by scaffolds are 

predicted, as the scaffolding protein provides a path in the indirect connection between the 

substrate and kinase. The use of indirect links between kinases and their substrates enables 

unobvious predictions that would be very difficult to spot by manually inspecting the 

available evidence. 

 

Exploring the Protein-Protein Interactions 

To identify the direct and indirect connection between kinase and substrate, a graph searching 

algorithm, Breadth-first search (BFS), is adopted. BFS is one of the simplest algorithms for 

searching a graph and the archetype for many important graph algorithms. Given a graph G = 

(V, E) where V represents the set of proteins and E is the set of physical interactions between 

proteins, and a distinguished source vertex s, BFS systematically explores the edges of G to 

discover every vertex that is reachable from s. The brief procedure of BFS, contain four major 

stpes, is listed as bellow: 

1. Put the source node on the queue. 

2. Pull a node from the beginning of the queue and examine it. 

• If the searched element is found in this node, quit the search and return a result. 

• Otherwise push all the (so-far-unexamined) successors (the direct child nodes) of this 

node into the end of the queue, if there are any. 

3. If the queue is empty, every node on the graph has been examined -- quit the search and 

return "not found". 

4. Repeat from Step 2. 

 

The breadth-first search (BFS) procedure assumes that the input graph G = (V, E) is 

represented using adjacency lists. It maintains several additional data structures with each 

vertex in the graph. The pseudocode of BFS is shown in Figure 4.8, which is implemented in 

C programming language. The depth of interacting neighbor is decided by the investigation of 

experimentally verified kinase-substrate interactions. 
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Figure 4.8 Pseudocode of breadth-first search (BFS) algorithm. 

 

Evaluating the Functional Association between Kinase and Substrate 

To capture the biological context of a substrate, we use a network of functional associations 

extracted from the STRING21 database [114]. This network is based on four fundamentally 

different types of evidence: genomic context (gene fusion, gene neighborhood, and 

phylogentic profiles), primary experimental evidence (physical protein interactions and gene 

coexpression), manually curated pathway databases, and automatic literature mining. Referred 

to NetworKIN [112], it was found that physical protein interactions play the dominant role 

among the primary experimental data, whereas gene coexpression contributes only very little. 

As the curated pathway databases generally contain few errors, a confidence score of 0.9 is 

assigned to this type of evidence, Physical protein interactions were imported and merged 

from numerous repositories, and the reliability of each individual interaction was assessed 

based on the promiscuity of the interaction partners using a scoring schemes described 

elsewhere (Von Mering et al., 2005).  

 Moreover, the Gene Ontology Annotation (GOA) database [125], which aims to provide 

high-quality electronic and manual annotations to the UniProt Knowledgebase using the 

standardized vocabulary of the Gene Ontology (GO) [126], is used to investigate the 

functional association between substrate and candidate kinase. By integrating GO annotations 

from other model organism groups, GOA consolidates specialized knowledge and expertise to 

ensure the data remain a key reference for up-to-date biological information. There are three 

                                                 
21 STRING URL: http://string.embl.de  
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major types of annotation in GO, including cellular component, molecular function, and 

biological process. Each GO term specifies a specific cellular component, molecular function, 

or biological process. To evaluate the similarity of functional association between substrate 

and candidate kinase proteins, the Cosine similarity, which is usually adopted in text mining, 

is used. With the task of text clustering, Cosine similarity is a simple measure endows 

documents with the same composition but different sizes to be treated identically which 

makes this the most popular measure for clustering text documents [134]. Due to this property, 

term vectors can be normalized to the unit sphere. Given a kinase k with GO term vector 

),...,,( 21 mk GGGV =
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, where m is the number of GO term related to kinase k. If there are n 
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 A schematic representation of Cosine similarity is illustrated in Figure 4.9, the Cosine 

similarity between two GO term vectors is identical to calculate the cosine angle between two 

vectors. As the angle between the vectors shorten, the cosine angle approaches 1, meaning 

that the two vectors are getting closer, meaning that the similarity of whatever is represented 

by the vectors increases. Therefore, the cosine similarity between vectors A and B is 

calculated as follows: 
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Figure 4.9 Schematic representation of Cosine similarity between two vectors. 
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Checking the Subcellular Co-localization of Kinase and Substrate 

The eukaryotic cell is a composite system internally subdivided into membrane-enveloped 

compartments that perform particular functions [41]. Some major constituents of eukaryotic 

cells are: extracellular space, cytoplasm, nucleus, mitochondria, Golgi apparatus, endoplasmic 

reticulum (ER), peroxisome, vacuoles, cytoskeleton, nucleoplasm, nucleolus, nuclear matrix 

and ribosomes. The proteins which are involved in similar biological functions are closely 

located in the same subcellular localization. Knowing the localization of every protein is 

important for elucidating its interactions with other molecules and for understanding its 

biological function. Protein phosphorylation plays crucial regulatory role in intracellular 

signal transduction networks from the receptors of cell surface to the transcription factors of 

nucleus, where they ultimately effect transcriptional changes. In order to identify 

phosphorylation cascade, the information of protein subcellular localization is used in the 

construction of phosphorylation network.  

 

4.5.1.3 Logistic Regression 

Logistic regression was adopted to evaluate the confidence value of protein-protein 

interaction [135]. In this study we utilized a modified version of the Sharan et al. [136] 

method for evaluating the confidence values of the discovered kinase-substrate interactions. 

Since the framework is based on the functional enrichment of proteins, we have based the 

confidence evaluation on this methodology. In the logistic regression model, we incorporate 

four sets of variables for a given interaction set, including (1) the prediction score of the 

kinase-specific SVM model, (2) the depth of interaction between kinase and substrate was 

observed, (3) the confidence score of the STRING functional association, and (4) the binary 

(0/1) protein subcellular localization data of interacting pairs. Here in addition to the 

previously presented first three random variables [136], we also incorporate the protein 

subcellular localization data into the logistic model. This is very straightforward since in most 

of the signaling cascades the proteins would transmit the signal from the membrane, where 

the signal is initiated, towards to the nucleus, where the final product is transcribed. Although 

proteins travel in a cell and can coexist in multiple compartments, this classification may 

eliminate the false negatives. 

 Given the four variables, X = (X1, X2, X3, X4), represented the four types of variables, and 

the positive and negative training data sets, a linear model 443322110 XXXX βββββ ++++  
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could be optimized the parameters 40 ,...,ββ  to maximize the likelihood of training data. β0 

is called the "intercept" and β1, β2, β3, and β4, are called the "regression coefficients" of X1, X2, 

X3, and X4, respectively. the probability of a kinase-substrate interaction Pr(Iuv) under the 

logistic distribution is given by  

∑=
−−+

= 4

10 )exp(1
1)|Pr(

i ii

uv
X

XI
ββ

, 

where 40 ,...,ββ , are parameters of the distribution. The positive and negative can be used to 

define the cutoff value of confidence score which can reach the best classifying accuracy. 

 

4.5.1.4 Performance Evaluation 

To evaluate the predictive performance of the proposed method, the experimentally verified 

kinase-specific phosphorylation sites are used to cutoff value and test the prediction accuracy. 

The following measures of predictive performance of the trained models are defined: 

Precision (Pre) = 
FPTP

TP
+

, Sensitivity (Sn) = 
FNTP

TP
+

, Specificity (Sp) = 
FPTN

TN
+

, 

Accuracy (Ac) = 
FNTNFPTP

TNTP
+++

+ , where TP, TN, FP and FN are true positive, true 

negative, false positive and false negative, respectively. The proposed method is test by the 

experimentally verified phosphorylation sites of PKC, CDK, PIKK, and INSR kinase families 

from HPRD database. Moreover, the kinase groups with similar motif of substrate sites are 

used to test the predictive performance, including arginine-directed kinase families PKA, 

PKB, PKC, and Aurora from HPRD database.  
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4.5.2 Construction of Phosphorylation Network 

After the identification of catalytic kinase of experimental phosphorylation sites, the enriched 

kinase-substrate interactions are used to construct the complete phosphorylation network. 

Graph-based method is adopted to formalize the construction of intracellular phosphorylation 

network to a shortest path problem in graph theory. Moreover, the cellular localization of 

proteins is used to constrain the search of phosphorylation network. 

 
Graph-based Definition of Phosphorylation Network 

Due to the graph-based method, the intracellular protein phosphorylation network are 

visualized as an directed graph G = ( V , E ) , where x , y ∈ V and ( x , y ) ∈ E. Let x and y 

represent kinase and substrate proteins, respectively, and (x, y) ∈ E represent a 

phosphorylation interaction when kinase x phosphorylates substrate y. In this work, V refers to 

all human proteins in UniProtKB [48], and E refers to all kinase-substrate interactions in 

knowledgebase including experimentally verified kinase-specific phosphorylations and 

RegPhos-identified kinase-substrate interactions. Each edge has the weighted score from 0 to 

1, 1 for the experimentally verified kinase-substrate phosphorylation and logistic regression 

probability value for the RegPhos-identified kinase-substrate interaction. 

 

 
Figure 4.10 Schematic representation of phosphorylation network. 
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Identification of Signaling Pathway from Receptor Kinase to Transcription Factor 

Due to the annotation of cellular localization databases, there are 84 cell membrane-associated 

kinases being the start points of the phosphorylation networks. With the annotation of 

TRANSFAC version 11.0 [137], there are 1364 transcription factors in human. To identify the 

phosphorylation networks starting from membrane receptor to transcription factor in nucleus, 

the graph-based definition can be refined as follows: given a directed weighted graph G=(V, 

E) with n nodes, m edges, a set S of start nodes (receptor), and a set T of end nodes (TF). As 

shown in Figure 4.10, we want to find, for each node s in S, a acyclic path p = (s,c1, …, ck, t) 

with length k that starts from S and ends at t within T , passed through cytoplasmic proteins 

c1, …, ck. We restrict attention to simple paths that was constrained the order of occurrence of 

proteins in a defined path length 8. 
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4.5.3 Expression Profile of Kinase and Substrate Genes 

How can one bridge the gap from transcript abundances and protein-protein interaction data to 

pathway models? Clustering expression data into groups of genes that share profiles is a 

proven method for grouping functionally related genes, but does not order pathway 

components according to physical or regulatory relationships. Here we present an automated 

approach for modeling signal transduction networks in human by integrating protein-protein 

interaction, protein subcellular localization, and gene expression data. Our program draws all 

possible linear paths of a specified length through the interaction map starting at any 

membrane protein and ending on any transcription factor. Microarray expression data is then 

used to rank all paths according to the degree of similarity in the expression profiles of 

pathway members. Linear pathways that have common starting points and endpoints and the 

highest ranks are then combined into the final model of the branched networks. 

 

4.5.3.1 Normalization of Gene Expression Samples 

All statistical analyses were accomplished using R program language. Gene expression data 

were processed and normalized using Bioconductor Affy package22, based on the Robust 

Multichip Average (RMA) method [138] for single-channel Affymetrix chips. All 22,283 

probe sets based on RMA summary measure were used in class comparison analyses. 

 

4.5.3.2 Distance Function 

Two major distance function were used to measure how closely related are kinase and 

substrate genes: 

 

Euclidean Distance 

This kind of distance strategy calculates the length of two separate points in n-directional 

space by their absolute differences. For example, Euclidean distance is measure by following 

definition: 

Given two points A= (a1, a2, …, an) and B= (b1, b2, …, bn), Euclidean distance is 

                                                 
22 Bioconductor package: http://www.bioconductor.org/  
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Pearson Correlation Coefficient 

Contrasting to Euclidean distance, Pearson correlation coefficient accounts for the trends of 

two expression profile. For instance, Pearson correlation measures the similarity in shape 

between two profiles by the following formula:  

Given two points A= (a1, a2, …, an) and B= (b1, b2, …, bn), Pearson correlation coefficient 

similarity is ∑
=
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, where a  and b  are the mean of A and B, and aσ  and 

bσ are the standard deviation of A and B. Pearson correlation distance is 
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 These two kinds of distance strategies will lead to different clustering results. As shown 

in Figure 4.11, different distances will render different classifications because we are asking 

for grouping based on different features: trends in the case of correlation and absolute 

differences in the case of Euclidean distance. 

 

Figure 4.11 Comparison of clustering results between Euclidean distance and Pearson 
correlation distance strategies. 23 

 

                                                 
23 The figure was obtained from http://gepas.bioinfo.cipf.es/cgibin/tutoX?c=clustering/clustering.config   
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4.5.3.3 Clustering of Syn-expressed Genes  

Clustering aims to group data with similar characteristics together.  Some clustering 

algorithms are usually used in gene expression analysis, including hierarchical clustering and 

k-means clustering. Gene coexpression was measured by calculating the Pearson correlation 

coefficient between two genes across all data sets in the Gene Expression Omnibus repository 

for the organism in question. 

 

K-means Clustering Algorithm 

The k-means algorithm (J.A. Hartigan and M.A. Wong, 1979) is an algorithm to cluster n 

objects based on attributes into k partitions, k < n. It is similar to the 

expectation-maximization algorithm for mixtures of Gaussians in that they both attempt to 

find the centers of natural clusters in the data. It assumes that the object attributes form a 

vector space. The objective it tries to achieve is to minimize total intra-cluster variance, or, the 

squared error function  

∑ ∑
= ∈

−=
k

i Sx
ij

ij

xV
1

2)( μ  

where there are k clusters Si, i = 1, 2, …, k and μi is the centroid or mean point of all the 

points . 

The most common form of the algorithm uses an iterative refinement heuristic known as 

Lloyd's algorithm. Lloyd's algorithm starts by partitioning the input points into k initial sets, 

either at random or using some heuristic data. It then calculates the mean point, or centroid, of 

each set. It constructs a new partition by associating each point with the closest centroid. Then 

the centroids are recalculated for the new clusters, and algorithm repeated by alternate 

application of these two steps until convergence, which is obtained when the points no longer 

switch clusters (or alternatively centroids are no longer changed). 

 

Hierarchical Clustering 

In hierarchical clustering, a series of partitions takes place, which may run a single cluster 

containing all objects to n clusters, each contains a single object. Hierarchical clustering is 

subdivided into agglomerative methods, which proceed by series of fusions of the n objects 

into group, and divisive method, which separate n objects successively into finer groupings. 
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One of the simplest agglomerative hierarchical clustering methods is single linkage, also 

known as the nearest neighbor technique. The feature of the method is that distance between 

groups is defined as the distance between the closest pair of objects, where only pairs 

consisting of one object from each group are considered. The minimum value of these 

distances is said to be the distance between two clusters. At each stage of hierarchical 

clustering, the clusters whose distance is minimal are merged. 
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4.6 Results 

The investigation of subcellular localization, protein interacting neighbor, and expression 

profiles of protein kinases and their substrate are illustrated as follows. The predictive 

performance of the proposed method is also discussed in this section. Finally, the statistics of 

the identified kinase-substrate interactions are listed. 

 

Table 4.7 Statistics of integrated experimental protein phosphorylation sites. 

Database Version 
All species Human 

Number of 
phosphoprotein

Number of 
phosphosite

Number of 
phosphoprotein 

Number of 
phosphosite

Phospho.ELM 7.0 4,026 16,428 3,354 11,278
UniProtKB/Swiss-Prot 55.0 8,606 24,328 3,746 11,862
HPRD 7.0 - - 1,774 7,438
Combined (NR) - - - 4,825 18,031
Abbreviation: NR, non-redundant. 

 

4.6.1 Protein Kinases, Phosphoproteins, and Interacting 

Proteins 

 
Figure 4.12 The schematic representation of kinase, interacting proteins, and phosphoproteins. 
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There are totally 518 known kinase genes identified by Manning et al. [95]. With the 

collected experimentally verified phosphorylation sites from version 7.0 of Phospho.ELM, 

release 55.0 of UniProtKB/Swiss-Prot, and release 7.0 of HPRD, there are totally 18031 

experimental phosphorylation sites within 4825 human phosphoproteins (Table 4.7). With the 

annotation of catalytic kinases, there are 3550 kinase-specific phosphorylation sites within 

1200 human phosphopproteins, catalyzed by 356 protein kinases. With the collected 

protein-protein interactions from DIP, MINT, IntAct, and HPRD, most of the 518 kinases (~ 

80%) have interacting proteins. As shown in Figure 4.12, there are four types of interactions 

between kinases, interacting proteins and substrates, including kinase-protein interactions, 

kinase-phosphoprotein interactions, kinase-substrate phosphorylations, and kinase-substrate 

interactions.  

 

Table 4.8 Statistics of kinases and their interacting proteins. 

Interaction Type Number of 
interactions 

Number of 
kinase 

Number of 
interacting proteins

Kinase-protein interactions 10,056 451 3,357
Kinase-phosphoprotein 
interactions 7,155 430 1,801

Kinase-substrate 
phosphorylations 6,015 356 1,200

Kinase-substrate interactions 5,443 342 1,039
 

The number of kinases and interacting proteins in the four types of interactions is listed 

in Table 4.8. There are totally 3357 proteins interacting with 451 human protein kinases, of 

1801 interacting proteins contain experimental phosphorylation sites (interacting 

phosphoproteins). The 7155 kinase-phosphoprotein interactions could be used to indicate the 

potential kinase-specific substrates.  

 

Table 4.9 Statistics of kinases and their interacting proteins and functionally associated proteins. 

Interaction Type Number of 
interactions 

Number of 
kinase 

Number of 
interacting proteins 

Kinase-protein interactions 11,235 453 3,569
Kinase-phosphoprotein 
interactions 7,838 434 1,872

Kinase-substrate 
phosphorylations 6,015 356 1,200

Kinase-substrate interactions 5,922 352 1,056
 

To fully investigate the interacting proteins of human proteins kinases, the functional 
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association database, STRING, is integrated for enhance the protein interaction resource. This 

association is based on four fundamentally different types of evidence: genomic context (gene 

fusion, gene neighborhood, and phylogentic profiles), primary experimental evidence 

(physical protein interactions and gene coexpression), manually curated pathway databases, 

and automatic literature mining. The protein associations, whose confidence score are more 

than 0.9, are adopted. The number of kinases and interacting proteins in the four types of 

interactions is listed in Table 4.9. 

 

Table 4.10 The protein interacting neighbor of several representative human kinase families. 

Kinase 
family 

Kinase 
members 

Number of 
substrates 

Number of interacting proteins 

Depth=1 Depth=2 Depth=3 Depth> 4 

PKA  PKACa, PKACb, 
PKACg 194 123 39 25 7

PKC  

PKCh, PKCa, 
PKCb, PKCd, 
PKCe, PKCg, 
PKCi, PKCt, 
PKCz 

231 175 41 6 9

CK2  CK2a1, CK2a2, 
CK2b, CK2al-rs 158 120 28 9 1

CDK  

CDC2, CDK2, 
CDK3, CDK4, 
CDK5, CDK6, 
CDK7, CDK8, 
CDK9, CDK10, 
CDK11,  

157 135 15 2 5

Src Src 92 68 19 3 2

EGFR EGFR 27 25 0 1 1

InsR InsR 14 12 0 1 1

 

This approach captures both direct and indirect interactions. The use of indirect links 

between kinases and their substrates enables unobvious predictions that would be very 

difficult to spot by manually inspecting the available evidence. To investigate the interacting 

depth of indirect connection between kinase and substrate, the number of interacting 

substrates in each kinase group is observed in different interacting depth. As shown in Table 

4.10, the number of interacting substrates in PKA, PKC, CK2, CDK, Src, EGFR, and InsR 

families are listed with various interacting depth. For instance, PKA family, consisting of 



 

 140

PKACa, PKACb and PKACg kinases, has 123 (63%) directly interacting substrates. About 

37% of PKA-specific substrates are indirect connection to PKA kinases. Base on the statistics 

of interacting depth between kinase and substrate, most of the substrates (~95%) are 

connecting to kinases within interacting depth 3. 

 

4.6.2 Subcellular Localization of Protein Kinases and 

Substrates 

Protein phosphorylation can control intracellular translocation and trafficking of proteins. Due 

to the annotation of cellular component from the collected protein subcellular localization 

databases, the cellular distribution of human proteins including kinase and substrate proteins 

can be investigated in detail. There are 18609 human proteins in UniProt KB/Swiss-Prot, 

13146 of which contain the localization information. Table 4.11 shows the statistics of human 

protein cellular localization categorized mainly into nucleus, cytoplasm, Golgi apparatus, 

mitochondrion, endoplasmic reticulum (ER), and cell membrane. With the annotation from 

UniProtKB, there are 339 kinases have the information of subcellular localization, which are 

mainly located in nucleus (34.5%), cytoplasm (52.8%), and cell membrane (31%). Most of 

the kinases located in cell membrane are receptor tyrosine kinase (RTK). However, many 

kinases not only locate in a specific cellular localization, like PKA, PKC, MAPK kinase 

groups, which translocate between cytoplasm and nucleus. Moreover, the substrate proteins 

are mainly located in nucleus (44.6%) and cytoplasm (36.7%).  
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Table 4.11 Subcellular localization of human proteins, kinases and substrates. 

Localization all Nucleus Cytoplasm Golgi Mitochondrion ER Cell 
membrane Other 

Human 
proteins  13146  3953

(30%) 
3082 

(23.4%) 
482 

(3.7%) 
733 

(5.6%) 
576

(4.4%) 
1932

(14.7%) 
4103 

(31.2%)  

Kinase  339  117
(34.5%) 

179
(52.8%) 

10
(2.9%) 

9
(2.7%) 

6
(1.8%) 

105
(31%) 

84 
(24.8%)  

P-value   0.0415 0.0 0.801 0.997 0.997 0.0 0.996  

Substrate  3863  1724
(44.6%) 

1419
(36.7%) 

154
(4%) 

131
(3.4%) 

136
(3.5%) 

439
(11.4%) 

723 
(18.7%)  

P-value  
 0.0 0.0 0.446 0.984 0.803 0.976 0.999  
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To easily categorize the subcellular localization for kinase and substrate, the localization 

of substrates is classified into nuclear and cytoplasmic substrates. The subcellular 

localizations of each human kinase-specific substrate proteins extracted from Phospho.ELM 

and UniProtKB/Swiss-Prot are schematically represented in Figure 4.13. We mapped 

localizations from Swiss-Prot to the kinase-specific substrates, which resulted in 3863 

phosphoproteins that are described as localizing to either the cytoplasm or the nucleus. Based 

on these statistics, we found 33 kinase groups that show a statistically significant preference 

for either cytoplasmic or nuclear substrates. For membrane-associated kinases (such as EGFR, 

INSR, and the Src family kinases), it almost exclusively was cytoplasmic substrates. 

Although receptor tyrosine kinases (RTKs) can occasionally translocate to the nucleus, there 

are very few nuclear substrates. However, we cannot exclude the possibility that the available 

phosphorylation data sets do not currently cover the cellular states where RTKs are active in 

the nucleus.  

 
Figure 4.13 Subcellular localization preference of kinase family and their substrates. 

 

In contrast, we find no kinases that are predicted to exclusively phosphorylated nuclear 

proteins. For the kinase groups that are primarily localized to the nucleus (DNAPK, ATM, 

CDK, CDC2, CK2, RSK, GSK and Aurora), were about 2-fold more nuclear than cytoplasmic 

targets. There are at least three possible explanations for this: (1) all nuclear kinases are 

synthesized in the cytosol and may phosphorylated cytosolic proteins prior to entering the 
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nucleus, (2) nuclear kinases may have access to cytosolic substrates during mitosis when the 

nuclear membrane is absent, and (3) many kinases may shuttle between the nucleus and the 

cytosol. This is exemplified by PKA and MAPK family, which, upon activation, translocate 

from the cytosol to the nucleus or the perinuclear region. However, PKB, PKC, Abl, IKK, and 

MAP2K families are both fairly pleiotropic kinases, which in the phosphorylation network 

show a weak preference for cytoplasmic substrates. The statistics of substrate localization 

preference of kinase families is listed in Table 4.12. The statistically significant (P-value < 

0.05) localization preference of kinase family is marked in bold. 

 

Table 4.12 Subcellular localization of human kinase-specific substrates. 
Kinase 
group 

Kinase localization All 
substrates

Cytoplasmic 
substrates 

Nuclear 
substrates 

Cytoplasmic and 
Nuclear substrates

PKA Cytoplasm, Nucleus 151 96 74 21
PKC Cytoplasm, Nucleus 168 105 81 26

PKB Cell membrane, 
Cytoplasm, Nucleus 63 49 32 19

GRK Cytoplasm 19 18 2 2
ROCK Cytoplasm 15 15 1 1
BARK Cytoplasm 14 14 1 1
CaMK2 Cytoplasm 36 29 11 6
CaMK1 Cytoplasm, Nucleus 14 5 8 2
CK1 Cytoplasm 33 29 14 10
ATM Nucleus 34 11 32 9
DNAPK Nucleus 13 3 12 2
RSK Nucleus 31 15 25 9
CK2 Nucleus 123 46 91 17
CDK Nucleus 121 34 79 30
CDC2 Nucleus 95 37 66 17
GSK Nucleus 34 15 23 9
MAPK Cytoplasm, Nucleus 140 59 91 29
JNK Cytoplasm, Nucleus 27 13 22 9
P38 Cytoplasm, Nucleus 35 15 22 4
ERK Nucleus 88 41 63 18
Aurora Nucleus 19 8 14 4
IKK Cytoplasm, Nucleus 12 10 8 6
PAK Cytoplasm 25 19 6 1
MAP2K Cytoplasm, Nucleus 13 9 6 2
Abl Cytoplasm, Nucleus 26 18 13 5

EGFR Cell membrane 
Nucleus 22 18 0 4

InsR Cell membrane 9 9 0 0
JAK Membrane associated 17 17 6 6
Src Membrane associated 68 61 22 16
FYN Membrane associated 21 16 9 5
LCK Membrane associated 25 22 1 1
LYN Membrane associated 20 17 3 3
SYK Membrane associated 17 15 1 1
Total  3863 1661 2195 612
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Despite the caveats of possible biases in the various data sets, the putative 

kinase-substrate interactions are consistent with localization data for the substrates and 

kinases. The cell membrane-linked kinases show clear preference for cytoplasmic substrates, 

the predominantly nuclear kinases are biased toward nuclear substrates, and the kinases that 

shuttle between the cytosol and the nucleus exhibit a more even distribution of substrates.  

 

4.6.3 Expression Analysis of Kinase and Substrate 

In this work, the human gene expression samples of Affymetrix GeneChip Human Genome 

U133 Array Set HG-U133A platform (GPL96), consisting of 22283 probe set for 12678 genes, 

are used to explore the co-coexpression analysis of kinase and substrate genes. However, the 

first problem we faced is what kind of microarray experiment should be selected for 

investigating the co-expression of kinase and substrate genes. Without any specific interest 

and limitation, we decide to focus on the experimental series of microarray with the raw data. 

Totally 2714 samples within 98 experiment series (GSE), including Large-scale analysis of 

the 79 human normal tissue transcriptome (GSE1133), Colon cancer progression (GSE1323), 

Lung tissue from smokers with severe emphysema (GSE1650), Lung cancer cell line response 

to motexafin gadolinium: time course (GSE2189), Epidermal growth factor effect on cervical 

carcinoma cell line: time course (GSE6783), etc., were were processed and normalized using 

Bioconductor Affy package, based on the Robust Multichip Average (RMA) method [138]. 

 

 
Figure 4.14 Comparison of Pearson correlation coefficient distribution between background gene 

pairs and kinase-substrate pairs. 
 

Pearson correlation coefficient is used to analyze the expression pattern of two genes. To 
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investigate the statistically significant syn-expressed pair of kinase and substrate genes, all the 

pairs of genes are calculated for background correlation. However, it is time-expensive for 

calculating all pairs of genes. Therefore, the random sampling is adopted to extract 100,000 

gene pairs as the background set for estimating the distribution of Pearson correlation 

coefficients of background gene pairs. All the 6015 experimentally verified kinase-substrate 

pairs are calculated the Pearson correlation coefficients. As shown in Figure 4.14, the 

distribution of correlation coefficients of background gene pairs is similar to normal 

distribution, based on central limit theorem. In the case of kinase-substrate pairs, the 

correlation distribution is slightly skew to right-side. It indicated that the kinases do not have 

high similarity of expression pattern to their substrates. The average correlation coefficients of 

background gene pairs and kinase-substrate pairs are 0.019 and 0.031. 

 

 
Figure 4.15 Distribution of Pearson correlation coefficients of PKA-substrate pairs, CDC2-substrate 

pairs, and EGFR-substrate pairs based on 98 microarray series. 
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The distribution of Pearson correlation coefficient of specific kinase-substrate pairs is 

also investigated. Figure 4.15 shows the distribution of correlation coefficient of 

PKA-substrate pairs, CDC2-substrate pairs, and EGFR-substrate pairs, based on 98 

microarray series. Most of the PKA-substrate pairs (40%) belong to the low positive 

correlation (0 < r < 0.4), with the average correlation coefficient 0.08. In particular, about 

65% of CDC2-substrate pairs have the positive correlation, with ~ 20% high positive 

correlation (r>0.7). The average correlation coefficient of CDC2-substrate pairs is 0.14. In the 

case of EGFR-substrate pairs, the distribution of correlation coefficient is similar to the 

distribution of all kinase-substrate pairs. The average correlation coefficient of 

EGFR-substrate pairs is 0.028. 

 

 
Figure 4.16 Distribution of Pearson correlation coefficients of PKA-substrate pairs, CDC2-substrate 

pairs, and EGFR-substrate pairs based on time-coursed microarray data. 
 

Moreover, the distribution of Pearson correlation coefficient of specific kinase-substrate 
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pairs is investigated based on time-coursed microarray data. Figure 4.16 shows the distribution 

of correlation coefficient of PKA-substrate pairs, CDC2-substrate pairs, and EGFR-substrate 

pairs based on 9 time-coursed microarray series, including Esophageal cell response to low 

pH (GSE2144), Lung cancer cell line response to motexafin gadolinium (GSE2189), 

Cyanobacterial metabolite apratoxin A cytotoxic effect on colon adenocarcinoma cells 

(GSE2742), Interleukin 13 effect on bronchial cell line (GSE3183), Endotoxin effect on 

leukocytes (GSE3284), Blood response to various beverages (GSE3846), Androgen receptor 

modulator effect (GSE4636), Glucocorticoid receptor activation effect on breast cancer cells 

(GSE4917), and Epidermal growth factor effect on cervical carcinoma cell line (GSE6783). 

The average correlation coefficient of PKA-substrate pairs is up to 0.12. The proportion of 

PKA-substrate pairs belonged to the low positive correlation (0 < r < 0.4) is increased from 

40% to 45%. In the case of EGFR-substrate pairs, the average correlation coefficient of 

EGFR-substrate pairs is raised from 0.028 to 0.08. The proportion of EGFR-substrate pairs 

belonged to high positive correlation (r>0.6) is approaching 16%. However, based on 

time-coursed microarray data, the average correlation coefficient of CDC2-substrate pairs is 

decreased to 0.10.  

 

Table 4.13 Predictive performance of purely SVM-based prediction (KinasePhos). 
Kinase 
family Sequence logo Number of 

positive data
Number of 

negative data Pr Sn Sp Acc

PKC 160 149 84.8 84.2 83.8 84.0

CDK 100 209 79.3 92.0 88.5 89.6

PIKK 37 272 60.0 89.1 91.9 91.5

INSR 12 297 14.5 75.0 82.2 81.9

Abbreviation: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy. 



 

 148

4.6.4 Predictive Performance 

To compare the predictive performance of RegPhos with NetworKIN [112], we also adopted 

the same data set to test the ability of RegPhos to correctly predict which kinases are 

responsible for catalyzing each of 667 known phosphorylation sites from four well-annotated 

kinase families, including CDK, PKC, PIKK, and INSR from HPRD database. The 

classifying specificity of each pair of PKC, CDK, PIKK, and INSR families are listed in Table 

4.14. As given in table, the number in the parenthesis besides the kinase name indicates the 

size of the positive set. For example, the first row gives that there are 160 phosphorylated 

sites in kinase PKA set. The sensitivity (Sn) of the PKA model is 84.2%. The specificity are 

given in the table, for instance, in the first row the specificity (Sp) of CDK, PIKK and INSR 

sets corresponding to the PKA model are 81.9%, 89.1% and 83.3%, respectively. Similarly, 

the cross specificity values among PKC, CDK, PIKK, and INSR are generally higher than 

80%. However, the specificity of INSR model is slightly weak when differentiating PKC 

substrates from INSR substrates. The higher specificity the cross-validation, the less incorrect 

prediction of the phosphorylation sites in other groups.  

 

Table 4.14 Cross classifying specificity among PKC, CDK, PIKK, and INSR families based on 
KinasePhos method. 

 PKC (160) CDK (100) PIKK (37) INSR (12) 
PKC model Sn=84.2% 81.9% 89.1% 83.3%
CDK model 86.9% Sn=92.8 94.6% 91.7%
PIKK model 89.4% 96.0% Sn=89.1% 91.7%
INSR model 77.5% 88.0% 86.5% Sn=75.0%
 

Using only computational model (KinasePhos), we obtained the predictive accuracies 

84%, 89.6%, 91.5% and 81.9% in PKC, CDK, PIKK, and INSR, respectively. Although the 

kinase families used for benchmarking have by necessity been studied more than most kinases, 

the predictive power of the consensus sequence motifs for CDK, PKC, PIKK, and INSR are 

representative for many other kinase families. By incorporating contextual information of 

protein association, the prediction accuracy improves to 84.1%, 91.6%, 91.9% and 91.9% in 

PKC, CDK, PIKK and INSR, respectively, because of the improvement of specificity (see 

Figure 4.17). However, there are slight drops in predictive sensitivity. These results highlight 

the importance of including contextual information in identifying kinase-substrate 

relationships for experimentally verified phosphorylation sites without annotated catalytic 

kinases. 
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Figure 4.17 Effects of including protein associations. 

 

4.6.5 Statistics of Discovered Kinase-specific Substrate 

Interactions 

With the experimental verified kinase-specific phosphorylation sites extracted from version 

7.0 of Phospho.ELM [2], release 55.0 of UniProtKB/Swiss-Prot [3], and release 7.0 of HPRD 

[51], there are 18031 experimentally verified human phosphorylation sites within 4825 

phosphoproteins. Out of 3550 experimental sites have the annotation of catalytic kinases, 

which cover 356 kinases. In order to fully construct the intracellular phosphorylation 

networks, the 14481 experimental phosphorylation sites without annotated kinases are 

systematically discovered the catalytic kinases by the proposed method (RegPhos). In first 

step, 101 kinase group models (by support vector machine) with 89% overall predictive 

accuracy are used to scan the putative kinase-specific phosphorylation site. Secondly, the 

protein association including protein-protein interaction, functional association and cellular 

localization is adopted to help the discovery of catalytic kinase. The number of 

RegPhos-identified kinase-specific phosphorylation sites is 12,037.  
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4.7 Case Study 

 
Figure 4.18 Example of the discovered phosphorylation networks. 

 

To demonstrate the effectiveness of the proposed method, the discovered phosphorylation 

networks associated with the insulin signaling pathway are represented in Figure 4.18. Insulin 

regulates both metabolism and gene expression: the insulin signal passes from the plasma 

membrane receptor to insulin-sensitive metabolic enzymes and to the nucleus, where it 

stimulates the transcription of specific genes. The well-known insulin signaling pathway, 

INSR → IRS1 ⎯ Grb2 ⎯ SOS1 ⎯ RAS ⎯ Raf1 → MEK → ERK1 → Elk1, can be 

successfully identified by the presented graph-based phosphorylation network searching 

method (“→” stands for phosphorylation and “⎯” stands for protein-protein interaction). Due 

to the protein-protein interactions can be allowed in the network searching, so many insulin 

receptor (INSR) related signaling pathways have been discovered, which contain about 
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100000 pathways in depth 8. After the validation of time-coursed microarray data, the 

discovered INSR-related phosphorylation networks can be decreased to about 2000 networks.  

 

 
Figure 4.19 Example of RegPhos-identified kinase-specific phosphorylation sites. 

 

Insulin receptor substrate 1 (IRS1), which may mediate the control of various cellular 

processes by insulin [139], were used to present the RegPhos-identified kinase-specific 

phosphorylation sites. With the annotation of Phospho.ELM [49] and UniProtKB/SwissProt 

[48], IRS1 has totally 32 experimentally verified phosphorylation sites. Some of the 

experimental phosphorylation sites don’t have the annotation of catalytic kinases. Based on 

the trained threshold of logistic regression probability score in each kinase group, these 

phosphorylation sites were annotated the potential catalytic kinases. As illustrated in Figure 

4.19, seven kinase-specific phosphorylation sites with their protein associations are identified. 

For instance, the tyrosine phosphorylation sites “Y612” and “Y632” were potentially 

catalyzed by Janus kinase 1 (JAK1), with the indirect protein-protein interaction which was 

linked by v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ErbB2). The tyrosine 

phosphorylation sites “Y46” and “Y896” were catalyzed by Insulin-like Growth Factor I 

Receptor (IGF1R), with the directly functional association annotated by STRING [114]. 

Phosphoserine “S636” was catalyzed by MAPK group, and a functional association shows 
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that Mitogen-Activated Protein Kinase 1 (MAPK1 or Erk2) was directly link to IRS1. 

Phosphotyrosine “Y1229” was catalyzed by insulin receptor (InsR) with the direct 

protein-protein interaction (DIP:429E) of DIP [122]. Some phosphorylation sites were 

identified by more than two kinases, for example, phosphoserine “S1145” was potentially 

catalyzed by v-akt murine thymoma viral oncogene homolog 1 (Akt1) with directly functional 

association or was potentially catalyzed by protein kinase C epsilon (PKCe) with indirect 

protein-protein interaction in depth 3, passing through Stratifin (SFN) and B-Raf 

proto-oncogene serine/threonine-protein kinase (BRAF). 

 

 
Figure 4.20 Validation of the RegPhos-identified kinase-specific phosphorylation sites using HPRD 

annotation. 
 

The annotation of kinase-specific phosphorylation sites in HPRD [51] was used to 

validate the correction of the RegPhos-identified phosphorylation sites. As shown in Figure 

4.20, the RegPhos-identified results can be verified by HPRD. IRS1 plays an important role in 

insulin signaling or insulin-like growth factor signaling [140], phosphotyrosine “Y896” were 

indeed catalyzed by Insulin-like Growth Factor I Receptor (IGF1R), by the annotation of 

HPRD.  
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Phosphorylation events often occur in a cascade, in which activity of one kinase is 

dependent on the upstream activity of another. One of the best-studied examples of this is the 

regulation of the mitogen activated protein kinase (MAPK)-signaling cascade, as the suffix 

pathway MEK → ERK1 in insulin signaling pathway. MAPK signaling has no fewer than 

five levels of kinase regulation [141], MAP4K, MAP3K, MAP2K, MAPK, and MAPKAPK 

[142]. Furthermore, there is considerable cross talk between signaling cascades involving 

other phosphoregulators , as the INSR → IRS1 ⎯ Grb2 and IGF1R → IRS1 ⎯ Grb2, 

resulting in a network of phosphoregulators rather than a linear cascade. 
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4.8 Web-based System of RegPhos 

To facilitate the investigation of protein kinase and their substrate, a web-based system was 

implemented for users to efficiently browse the protein kinase and their substrate proteins in a 

user-friendly manner. Three major functions, including browsing kinase or substrate, 

constructing phosphorylation network, and microarray expression analysis, are provided in 

the proposed system. The box of “quick search” can let users input their interested kinase 

name or substrate name, as shown in Figure 4.21, users can investigate into the protein 

description, subcellular localization, functional domain, tertiary structure, and 

phosphorylation sites with catalytic kinase of CEBPB. All the experimentally verified 

kinase-specific phosphorylation sites and RegPhos-identified kinase-specific phosphorylation 

sites are provided to users. The JMol viewer is adapted for the visualization of PDB structure. 

 

 
Figure 4.21 Graphical visualization of substrate protein with catalytic kinases. 

 

To investigate the expression correlation of kinase and substrate, the human gene 

expression samples of Affymetrix GeneChip Human Genome U133 Array Set HG-U133A 
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platform (GPL96), consisting of 22283 probe set for 12678 genes, are used to explore the 

co-coexpression analysis of kinase and substrate genes. However, the first problem we faced 

is what kind of microarray experiment should be selected for investigating the co-expression 

of kinase and substrate genes. Without any specific interest and limitation, we decide to focus 

on the experimental series of microarray with the raw data. Totally 2714 samples within 98 

experiment series (GSE) are provided in the web-based system. The Pearson correlation 

coefficient of gene expression pattern between kinase and substrate are calculated in all 98 

experiment series. As shown in Figure 4.22, the expression correlation of kinase CDC2 and 

substrate p53 in 98 experiment series are provided, and users can investigate into the 

expression pattern of CDC2 and p53 genes in detail. 

 

 
Figure 4.22 The expression profile of kinase and substrate genes. 

 

 The proposed system can let users input a group of protein names to be constructed the 

phosphorylation network associated with the information protein subcellular localization. To 

fully investigate how protein kinase control the intracellular processes, the experimentally 

verified kinase-specific phosphorylation sites and the discovered kinase-substrate interactions 

identified by RegPhos are incorporated to construct the phosphorylation networks starting 
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from receptor kinases associated with membrane to transcription factors located in nucleus. 

However, the phosphorylation-driven signal transduction pathway is not always the 

phosphorylation cascade. Some protein-protein interactions are involved in the signal 

transduction pathway, such as IRS1-GRB2 interaction, GRB2-SOS1 interaction, SOS1-HRAS 

interaction, and HRAS-RAF1 interaction in insulin signaling pathway. Figure 4.23 shows an 

example of insulin signaling network in the construction of phosphorylation network. A group 

of proteins associated with insulin signaling pathway are inputted to construct the network 

from membrane-associated proteins to nuclear proteins. 

 

 
Figure 4.23 Example of insulin signaling network in the construction of phosphorylation network. 
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4.9 Summary 

The desire of mapping phosphorylation networks has motivated the development of 

computational methods to investigate the substrate specificity of kinase-specific 

phosphorylation sites, based on experimental identification of the consensus sequence motifs 

recognized by the active site of kinase catalytic domains. However, only 20% experimental 

phosphorylation sites have the annotation of catalytic kinases, covering 350 kinases (67%). 

The presented method is designed to link experimentally validated phosphorylation sites to 

protein kinases. Due to the fact that signaling proteins are modular in the sense that they 

contain domains (catalytic or interaction) and linear motifs (phosphorylation or binding sites), 

which mediate interactions between proteins [92], the protein-protein interaction and protein 

association are incorporated. It also exploits both the inherent propensity of kinase catalytic 

domains to phosphorylated particular sequence motifs and contextual information regarding 

the physical interaction, functional association, cellular co-localization and coexpression of 

kinases and substrates.  

Investigating into the predictive power of the context of protein associations, physical 

protein interactions play the dominant role among the primary experimental data, whereas 

gene coexpression contributes only very little. Physical protein interactions were imported 

and merged from numerous repositories, and the reliability of each individual interaction was 

assessed based on the promiscuity of the interaction partners. Gene coexpression was 

measured by calculating the Pearson correlation coefficient between two genes across 98 

human gene expression experiment series of Affymetrix GeneChip Human Genome U133 

Array Set HG-U133A platform (GPL96) collected from Gene Expression Omnibus repository. 

After the evaluation, the improved predictive power gained from using context of protein 

association underlines the importance of kinase-substrate interactions in the specificity of 

protein phosphorylation within cells. The predictive specificity of kinase groups with similar 

consensus motifs can be improved by the consideration of protein association. We would also 

suggest that this underlines the utility of protein association data in modeling cellular 

processes. The identified kinase-substrate interactions were adopted to fully construct the 

intracellular phosphorylation networks. Furthermore, GEO microarray expression data were 

used to validate whether the kinase and substrate genes in the constructed phosphorylation 

networks have syn-expression pattern.  
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Chapter 5   Discussions 

5.1 Characteristics 

To fully investigate how protein kinases regulate the intracellular processes, the 

comprehensive and accurate identification of the kinase-specific substrates is necessary. 

Therefore, we propose a method, RegPhos, incorporates computational model with protein 

associations (protein-protein interactions, functional associations, and subcellular 

localization) for identifying the catalytic kinase for each phosphoprotein with experimental 

phosphorylated sites. To observe the expressed relationship between kinase and substrate, 

the gene expression microarray data is adopted to observe the expression of kinase and 

substrate genes in specific conditions, for instance, the normal tissue and cancerous tissue.  

With the increasing number of in vivo phosphorylation sites have been identified, the 

desire of map the network of protein kinase and substrate has motivated. The experimental 

kinase-specific substrates, ultimately, need to be combined by systems biology analysis, 

which translates the separate, large-scale datasets into signaling networks. Therefore, we 

incorporated the experimentally verified kinase-substrate interactions with computationally 

identified kinase-substrate interactions to construct the intracellular phosphorylation 

network starting from receptor kinases to transcription factors, associated with the 

formation of protein subcellular localization. Moreover, the experimental expression 

evidence, such as gene microarray data, was adopted to validate the syn-expression of the 

constructed kinase-substrate phosphorylation network with statistical significance. 

 

Comparison between RegPhos and NetworKIN 

Rune Linding and the authors have developed an approach, NetworKIN [112], that augments 

motif-based predictions with the network context of kinases and phosphoproteins. As given in 

Table 5.1, the comparison between RegPhos and NetworKIN are listed. NetworKIN collected 

the experimental phosphorylation data from Phospho.ELM and adopted NetPhosK and 

Scansite to the phosphorylation site prediction on 20 kinase families encompassing 112 

individual kinases. The protein association database STRING, which integrates information 

from curated pathway databases, co-occurrence in abstracts, physical protein interaction 

assays, mRNA expression studies, and genomic context, is used to investigate the direct and 
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indirect interactions between kinase and substrate. NetworKIN pinpoints kinases responsible 

for specific phosphorylation and yields a 2.5-fold improvement in the accuracy with which 

phosphorylation networks can be constructed. T 

 

Table 5.1 Comparison between RegPhos and NetworKIN. 
Method  NetworKIN RegPhos 

Species   Human  Human  

Phosphorylation resource  Phospho.ELM  
Phospho.ELM (7.0), 
UniProtKB/SwissProt (55.0),  
HPRD (7.0) and PHOSIDA (1.0)  

Number of kinase 
families 

20 kinase families encompassing 
112 individual kinases 101 kinase families covering 300 kinases 

Kinase-specific 
phosphorylation site 
prediction 

1.NetPhosK (neural network)  
2.Scansite (position-specific 
matrix) 

KinasePhos ( SVM model trained with 
sequence and structural features) 
Blast (for individual kinase whose 
substrate site are less than 10) 

Protein association 
context 

Protein functional association 
database STRING 

1.Protein-protein interaction (DIP, MINT, 
IntAct, and HPRD) 
2.Functional association (STRING) 
3.Cellular localization (LOCATE, 
PSORTdb, OrganelleDB, UniProtKB, and 
GOA) 

Method 

Two-staged prediction: 
1. Kinase-specific phosphorylation 
site prediction  
2.Protein association context  

Logistic regression of  
1.Kinase-specific phosphorylation site 
prediction score 
2.Interacting depth of Protein-protein 
interaction  
3.Confidence score of functional 
association  
4.Cellular localization 

Gene expression analysis  -  98 experiment series of Affymetrix 
HG-U133A platform (GPL96)  

Predictive performance 

52% sensitivity and 64% accuracy 
for classifying 282 
phosphorylation sites of PKC, 
CDK, PIKK, and INSR 

89% sensitivity and 91% accuracy for 
classifying 309 phosphorylation sites of 
PKC, CDK, PIKK and INSR from HPRD 
(independent test) 

Phosphorylation network Only kinase-substrate pairs 

1.Using graph-based method to construct 
phosphorylation networks starting from 
membrane receptor to transcription factor 
2.Using time-coursed microarray data to 
validate the discovered phosphorylation 
networks 

 

To compare the predictive power between RegPhos and NetworKIN, the similar dataset 

of four well-known types of kinase group, such as PKC, CDK, PIKK and INSR, were used to 

evaluate the classifying power of RegPhos. There are totally 309 phosphorylation sites, which 
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were independent to training data, extracted from HPRD. By using logistic regression model 

to integrate the phosphorylation site prediction with protein associations (protein-protein 

interactions, functional associations, and subcellular localization), the predictive accuracy of 

RegPhos is higher than the NetworKIN, especially in INSR group. Finally, the constructed 

kinase-substrate phosphorylation network with statistically significant co-expression of 

time-coursed microarray data were provided to users. 

 

5.2 Limitations 

The proposed method, RegPhos, was used to link the protein kinase to experimentally validated 

phosphorylation sites. Although the predictive power of RegPhos is effective based on the independent 

test, there are several limitations about this study. 

 

5.2.1 How Reliable are Protein-Protein Interaction? 

Data of protein–protein interactions provide valuable insight into the molecular networks 

underlying a living cell. However, their accuracy is often questioned, calling for a rigorous 

assessment of their reliability. The high-throughput methods are believed to contain many 

false positives, i.e. interactions that are identified in the experiment but never take place in the 

cell [143]. It is therefore essential to obtain an estimate of the reliability of the interactions 

documented by the various methods [144].  Elinat Sprinzak et al. [145] have developed an 

intelligible mean to assess directly the rate of true positives in a data set of experimentally 

determined interacting protein pairs. They show that the reliability of high-throughput yeast 

two-hybrid assays is about 50%, and that the size of the yeast interactome is estimated to be 

10,000–16,600 interactions. To assess the quality of the data we can use two measures in 

future analysis: the fraction of interacting proteins that were documented as localized in the 

same cellular compartment, and the fraction of interacting proteins that were annotated as 

having a common cellular-role. 

 

5.2.2 Time Complexity and Path Length of Signaling Pathway 

Construction 

Given a graph G=(V, E) with n nodes, m edges, a set S of start nodes (receptor), and a set T of 

end nodes (TF). When searching acyclic path p = (s, c1, …, ck, t) with length k that starts from 
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S and ends at t within T in human protein-protein interaction network, the time complexity is 

approaching to ( )knO . To accomplish the path searching in a reasonable time, in general, the 

length of path is defined no more than eight [119]. To address the NP-hard graph search 

problem, Alon et al. (1995) devised a novel randomized algorithm, called color coding, for 

finding simple paths and simple cycles of a specified length k, within a given graph. Scott et 

al. [146] have adopted and extended the efficient techniques, color coding algorithm, for 

finding paths in a graph to the problem of identifying pathways in protein interaction 

networks. The authors presented linear-time algorithms for finding path in a given network 

under several biologically motivated constraints, and demonstrated that the algorithm was 

very efficient, computing optimal paths of length 8 within minutes and paths of length 10 in 

about three hours. 

 

5.2.3 Visualization of Complex Phosphorylation Network 

In computer science, the graphical visualization of a graph without any overlap of nodes or 

edges is close to NP-hard problem. Therefore, in this work, we applied an excellent and 

popular package namely Graphviz24 to graphically visualize the constructed networks. To 

present a signaling pathway starting from membrane protein to transcription factor in nucleus, 

the order of protein occurrence was constrained by the cellular localization of proteins. 

Figure 5.1 shows the comparison of Graphviz visualization between pure network and 

complex, using insulin signaling pathway as an example. If the constructed signaling pathway 

contains pure interactions across the proteins, the graphical visualization could be illustrated 

in a reasonable layout. However, the network which contains complex interactions across 

proteins is visualized in an uneasily interpretable representation. Therefore, it is needed to 

improvement the visualization of complex network in an easily interpretable representation. 

                                                 
24 Graphviz URL: http://www.graphviz.org/   
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Figure 5.1 Comparison of network visualization between pure interactions and complex 

interactions. 
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5.3 Perspectives 

Despite those limitations in the proposed method, combining multiple data types (i.e., 

experimentally validated kinase-specific phosphorylation sites, computationally identified 

kinase-substrate interactions, and protein association context) is essential for constructing 

phosphorylation networks and is, as we show in case study, also sufficiently accurate to allow 

meaningful, theoretical and experimental investigations. 

 

5.3.1 Phosphorylation Sites on Various Protein Isoforms 

 
Figure 5.2 Schematic representation of phosphorylation site located in alternatively spliced 

exon. 
 

With the alternative slicing in mRNA processing, one gene has more than one protein 

isoforms. Alternative splicing may make the essential phosphorylation sites un-occurred 

specifically in a protein isoform. Then, the protein function, may be involved in an 

intracellular signaling pathway, is affected by the missed phosphorylation sites. Therefore, a 

repository of protein isoforms with experimental phosphorylation sites should be constructed. 

Moreover, the newly developed exon array, Affymetrix Human Exon 1.0 ST Array (HG16), 

can be used to investigate the different isoforms in mRNA level in specific experimental 

condition. Up to May 15th 2008, there are 220 and 352 samples in two exon array platforms 

GPL5155 and GPL5160 in GEO, respectively. Figure 5.2 shows the schematic representation 
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of phosphorylation site located in alternatively spliced exon with the experimental exon 

expression evidence. 

 

5.3.2 Downstream Genes of Transcription Factors 

Intracellular signal transduction is the process by which chemical signals from outside the cell 

are passed through the cytoplasm to nucleus, and affect the activity of transcription factors to 

regulate their target gene expression. This work focuses on the protein kinase-substrate 

phosphorylation network starting from membrane-associated proteins to transcription factors 

in nucleus. However, the constructed network just ends at transcription factor. The target 

genes of transcription factor may be more important to biologist. With the annotation of 

TRANSFAC [137], there are about 1300 transcription factors in human. Due to the statistics 

from the collected human experimental phosphorylation sites, ~ 40% of transcription factors 

contain phosphorylation sites. Therefore, the experimentally verified downstream genes of 

transcription factors can be incorporated to extend and complete the signal transduction 

network in cellular system. 

 

5.3.1 Dephosphorylation and Phosphatase 

Protein phosphorylation is a reversible post-translational modification implicated in many 

areas of biology. A phosphatase, act in opposition to protein kinases, is an enzyme that 

removes a phosphate group from its substrate by hydrolysing phosphoric acid monoesters into 

a phosphate ion and a molecule with a free hydroxyl group [142]. Protein kinases and 

phosphatases can regulate the phosphorylation status of the protein complement of a cell, and 

in turn, regulate the activity of their target phosphoproteins in cellular processes. The presence 

or absence of a phosphate group can change the conformation of the target protein, thereby 

modifying its activity. Defining the entire complement of these proteins gives us an 

opportunity to view the system as a whole. Forrest et al. [142] have identified 162 candidate 

protein phosphatases for the investigation of phosphoregulation. Phosphorylation events often 

occur in a cascade, in which activity of one kinase or phosphatase is dependent on the 

upstream activity of another. One of the best-studied examples of this is the regulation of the 

mitogen activated protein kinase (MAPK)-signaling cascade. MAPK signaling has no fewer 

than five levels of kinase regulation, MAP4K, MAP3K, MAP2K, MAPK, and MAPKAPK 
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[147] and one level of phosphatase regulation (MKP) [148]. Therefore, phosphatase is 

necessary in the signaling pathway and is needed to be considered in the investigation of 

protein phosphorylation networks.  

 



 

 166

Chapter 6   Conclusion 

Protein phosphorylation catalyzed by kinase plays crucial regulatory role in intracellular 

signal transduction that transmits information from the cell surface to the nucleus, where they 

ultimately effect transcriptional changes. With the full annotation of human kinome identified 

by Manning et al., there is a starting point for comprehensive analysis of intracellular protein 

phosphorylation networks. Mass spectrometry-based proteomics have enabled the large-scale 

mapping of in vivo phosphorylation sites. In order to fully and accurately investigate the 

phosphorylation networks, the experimentally validated phosphorylation site databases have 

been integrated. However, only 20% experimental phosphorylation sites have the annotation 

of catalytic kinases, covering 350 kinases (67%). Experimental identification of 

kinase-specific phosphorylation sites is an inconvenient work and usually limited by the 

availability of detailed data on the kinase-specific substrates. In silico prediction could be a 

promising strategy to conduct preliminary analyses and could greatly reduce the number of 

potential targets that need further in vivo or in vitro confirmation.  

The presented method, namely RegPhos, was designed to link experimentally validated 

phosphorylation sites to protein kinases. Due to the fact that signaling proteins are modular in 

the sense that they contain domains (catalytic or interaction) and linear motifs 

(phosphorylation or binding sites), which mediate interactions between proteins, the 

protein-protein interaction, protein functional association, and cellular localization are 

incorporated. Investigating into the predictive power of the context of protein associations, 

physical protein interactions play the dominant role among the primary experimental data, 

whereas gene coexpression contributes un-robust correlation between kinase and substrate 

genes. Physical protein interactions were imported and merged from numerous repositories, 

and the reliability of each individual interaction was assessed based on the promiscuity of the 

interaction partners. After the evaluation, the improved predictive power gained from using 

context of protein association underlines the importance of kinase-substrate interactions in the 

specificity of protein phosphorylation within cells. The predictive specificity of kinase groups 

with similar consensus motifs can be improved by the consideration of protein association. 

We would also suggest that this underlines the utility of protein association data in modeling 

cellular processes.  

To complete the intracellular processes about protein kinases and phosphorylation, the 
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identified kinase-substrate interactions were adopted to fully construct the intracellular 

phosphorylation networks starting from membrane receptor to transcription factors. The 

discovered phosphorylation networks were validated by calculating the Pearson correlation 

coefficient of gene expression patterns between kinase and substrate genes across 9 

time-coursed experiment series of Affymetrix GeneChip Human Genome U133 Array Set 

HG-U133A platform (GPL96) collected from Gene Expression Omnibus repository. As 

illustrated in case study, the discovered phosphorylation networks with highly correlated 

expression pattern demonstrated that they may be involved in insulin signaling pathway or 

EGF signaling pathway. 
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Appendix I – Human Kinase Families 

Table A1 221 human kinase families with sequence logos of amino acid surrounding substrate sites.  

No. Group Family Sub 
family Description Kinase 

member 

Number of 
phosphosites 

in human
Sequence logo 

1 AGC PKB   Protein kinase B 
AKT1  
AKT2 
AKT3  

89(63)  

2 AGC DMPK ROCK  Rho Kinase  ROCK1 ROCK2 25(15)  

3 AGC DMPK GEK  Genghis Khan  DMPK1 DMPK2 
MRCKa MRCKb 3(3)  

4 AGC DMPK CRIK  
Citron 
Rho-interacting 
kinase  

CRIK  0(0)   

5 AGC GRK GRK  G-protein coupled 
Receptor Kinase 

GPRK7 
RHOK 
GPRK6 GPRK5 
GPRK4 

64(19)  

6 AGC GRK BARK  Beta Adrenergic 
Receptor Kinase 

BARK1 
BARK2  32(14)  

7 AGC MAST MAST  

Microtubule 
Associated 
Serine/Threonine 
Kinase  

MAST1 
MAST2 
MAST3 
MAST4  

0(0)   

8 AGC MAST MASTL  MAST like  MASTL  0(0)   

9 AGC NDR   
Nuclear 
Dbf2-related 
kinases  

NDR1 
NDR2 
LATS1 
LATS2  

2(2)  

10 AGC PKA   Protein kinase A 
PKACa 
PKACb 
PKACg 

232(151)  
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11 AGC PDK1   
Phosphoinositide-
dependent protein 
kinase  

PDK1 45(20)  

12 AGC PKC   Protein kinase C 

PKCh 
PKCa 
PKCb 
PKCd 
PKCe  
PKCg 
PKCi 
PKCt 
PKCz 

280(168)  

13 AGC PKC Alpha  Protein kinase C, 
alpha  

PKCa 
PKCb 
PKCg  

121(74)  

14 AGC PKC Delta  Protein kinase C, 
delta  

PKCd 
PKCt  30(22)  

15 AGC PKC Eta  Protein kinase C, 
eta  

PKCe 
PKCh  14(12)  

16 AGC PKC Iota  Protein kinase C, 
iota  

PKCi 
PKCz  13(11)  

17 AGC PKG   Protein kinase G PKG1 
PKG2  25(15)  

18 AGC PKN   Protein kinase N 
PKN1 
PKN2 
PKN3  

0(0)   

19 AGC RSK RSK  Ribosomal S6 
Kinase  

RSK1 
RSK2 
RSK3 
RSK4 

40(31)  

20 AGC RSK p70  
p70 subfamily of 
Ribosomal 
Specific Kinase  

p70S6K 
p70S6Kb  9(7)  



 

 177

21 AGC RSK MSK  
Mitogen- and 
Stress-activated 
protein Kinase  

MSK1 
MSK2  9(4)  

22 AGC RSKL   RSK-like  RSKL1 
RSKL2  0(0)   

23 AGC RSKR   RSK-related  SgK494  0(0)   

24 AGC SGK   
Serum and 
Glucocorticoid 
Resposive Kinase 

SGK 
SGK2 
SGK3  

19(10)  

25 AGC YANK   Yet Another 
Novel Kinase  

YANK1 
YANK2 
YANK3  

0(0)   

26 Atypical ABC1   ABC1 atypical 
kinases  

ADCK1 
ADCK2 
ADCK3 
ADCK4 
ADCK5 

0(0)   

27 Atypical Alpha Alpha  Ancient family of 
atypical kinases  

AlphaK1 
AlphaK2 
AlphaK3  

0(0)   

28 Atypical Alpha eEF2K  
Eukaryotic 
Elongation Factor 
2 Kinase  

eEF2K  1(1)  

29 Atypical Alpha ChaK  Channel Kinase  ChaK1 
ChaK2  1(1)  

30 Atypical BCR   
Breakpoint 
Cluster Region 
kinase  

BCR  0(0)   

31 Atypical BRD   
Bromodomain 
containing 
kinases  

BRDT 
BRD2 
BRD3 
BRD4 

0(0)   

32 Atypical FAST     FASTK  0(0)   

33 Atypical G11     G11(STK19)  0(0)   

34 Atypical H11     H11  0(0)   

35 Atypical PDHK PDHK  
Pyruvate 
Dehydrogenase 
Kinase  

PDHK1 
PDHK2 
PDHK3 
PDHK4 
BCKDK  

2(1)  

36 Atypical PDHK BCKDK  

Branched Chain 
Ketoacid 
Dehydrogenase 
Kinase  

BCKDK  0(0)   

37 Atypical PIKK TRRAP  TRansactivation/t
Ransformation-do TRRAP  0(0)   



 

 178

main Associated 
Protein  

38 Atypical PIKK SMG1    SMG1  0(0)   

39 Atypical PIKK ATM  
Ataxia 
telangiectasia 
mutated  

ATM 
ATR  67(34)  

40 Atypical PIKK DNAPK  DNA Protein 
Kinase  DNAPK  25(13)  

41 Atypical PIKK FRAP  
FKBP12-rapamyc
in-associated 
protein  

FRAP  14(4)  

42 Atypical RIO     
RIOK1 
RIOK2 
RIOK3  

0(0)   

43 Atypical TAF1     TAF1 
TAF1L  5(2)  

44 Atypical TIF1   
Transcriptional 
Intermediary 
Factor  

TIF1a 
TIF1b  0(0)   

45 CAMK CAMK-U
nique     VACAMKL 

STK33  0(0)   

46 CAMK CAMK1   CAMK family 1 

CaMK1a 
CaMK1b 
CaMK1g 
CaMK1d 
CaMK4  

18(14)  

47 CAMK CAMK2   CAMK family 2 

CaMK2a 
CaMK2b 
CaMK2g 
CaMK2d  

56(36)  

48 CAMK CAMKL NIM1    NIM1  0(0)   

49 CAMK CAMKL NuaK  Novel (Nua) 
Kinase family  

NuaK1 
NuaK2  4(4)  

50 CAMK CAMKL PASK  PAS domain 
Kinase  PASK  2(1)  
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51 CAMK CAMKL QIK  Qin Induced 
Kinase  

QIK 
QSK 
SIK  

1(1)  

52 CAMK CAMKL SNRK    SNRK  0(0)   

53 CAMK CAMKL MELK  

Maternal 
Embryonic 
Leucine zipper 
Kinase  

MELK  2(1)  

54 CAMK CAMKL AMPK  AMP-activated 
protein kinase  

AMPKa1 
AMPKa2  18(14)  

55 CAMK CAMKL CHK1  Checkpoint 
Kinase 1  CHK1  11(6)  

56 CAMK CAMKL CHK2  Checkpoint 
Kinase 2  CHK2  12(6)  

57 CAMK CAMKL HUNK  

Hormonally 
Upregulated 
Neu-associated 
Kinase  

HUNK  0(0)   

58 CAMK CAMKL LKB    LKB1  17(16)  

59 CAMK CAMKL MARK  

Microtubule 
Affinity 
Regulating 
Kinase  

MARK1 
MARK2 
MARK3 
MARK4  

7(2)  

60 CAMK CAMKL BRSK  BRain Specific 
Kinase  BRSK1  3(3)  

61 CAMK CASK   

calcium/calmodul
in-dependent 
serine protein 
kinase  

CASK  0(0)   

62 CAMK DAPK   Death Associated 
Protein Kinase  

DAPK1 
DAPK2 
DAPK3 
DRAK1 
DRAK2  

17(10)  
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63 CAMK DCAMK
L   Doublecortin and 

CaMK-Like  

DCLK1 
DCLK2 
DCLK3 

0(0)   

64 CAMK MAPKAP
K 

MAPKA
PK  

MAP Kinase 
Associated 
Protein Kinase  

MAPKAPK2 
MAPKAPK3 
MAPKAPK5  

25(16)  

65 CAMK MAPKAP
K MNK  

MAPK 
iNtegrating or 
iNteracting 
Kinase  

MNK1 
MNK2 1(1)  

66 CAMK MLCK   Myosin Light 
Chain Kinases  

smMLCK 
TTN 
caMLCK 
skMLCK 
Sgk085  

3(2)  

67 CAMK PHK   Phosphorylase 
Kinase  

PHKg1 
PHKg2  9(5)  

68 CAMK PIM     
PIM1 
PIM2 
PIM3  

1(1)  

69 CAMK PKD   Protein Kinase D 
PKD1 
PKD2 
PKD3  

7(6)  

70 CAMK PSK   Protein Serine 
Kinase  

PSKH1 
PSKH2  0(0)   

71 CAMK SgK495     SgK495  0(0)   

72 CAMK Trbl   tribbles  
Trb1 
Trb2 
Trb3  

0(0)   

73 CAMK Trio     

Trad 
Trio 
SPEG 
Obscn  

0(0)   

74 CAMK TSSK   Testis Specific 
Serine Kinase   

TSSK1 
TSSK2 
TSSK3 
TSSK4 
SSTK  

0(0)   

75 CK1 CK1   Cell Kinase 1  

CK1a 
CK1d 
CK1e 
CK1g2 
CK1g3 
CK1a2 
CK1g1  

63(33)  
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76 CK1 TTBK   Tau Tubulin 
Kinase  

TTBK1 
TTBK2  7(1)  

77 CK1 VRK   Vaccinia Related 
Kinase  

VRK1 
VRK2 
VRK3  

5(3)  

78 CMGC CDK CDK  Cyclin Dependent 
Kinase  

CDK4 
CDK5 
CDK6 
CDK8 
CDK9 
CDK10 
CDK11  

64(34)  

79 CMGC CDK CDK7  
Cyclin Dependent 
Kinase subfamily 
7  

CDK7  17(11)  

80 CMGC CDK CDC2  Cell Division 
Control 2  

CDC2 
CDK2 
CDK3  

226(95)  

81 CMGC CDK CRK7    CHED 
CRK7  0(0)   

82 CMGC CDK PCTAIRE
    

PCTAIRE1 
PCTAIRE2 
PCTAIRE3  

0(0)   

83 CMGC CDK PFTAIRE
    PFTAIRE1 

PFTAIRE2  0(0)   

84 CMGC CDK PITSLRE
    PITSLRE  0(0)   

85 CMGC CDKL   Cyclin Dependent 
Kinase Like  

CDKL1  
CDKL2 
CDKL3 
CDKL4 
CDKL5  

0(0)   

86 CMGC CK2   Casein kinase II 
CK2a1 
CK2a2 
CK2al-rs  

241(123)  

87 CMGC CLK   
CDC-Like 
Kinase, involved 
in splicing  

CLK1 
CLK2 
CLK3 
CLK4  

1(1)  
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88 CMGC DYRK PRP4    PRP4  1(1)  

89 CMGC DYRK HIPK  
Homeodomain 
Interacting 
Protein Kinases  

HIPK1 
HIPK2 
HIPK3 
HIPK4  

3(3)  

90 CMGC DYRK DYRK  
Dual-specificity 
Tyrosine 
Regulated Kinase 

DYRK1A 
DYRK1B 
DYRK2 
DYRK3 
DYRK4  

9(7)  

91 CMGC GSK   
Gycogen 
Synthase 3 
Kinase  

GSK3A 
GSK3B  56(34)  

92 CMGC MAPK MAPK  
Mitogen 
Activated Protein 
Kinase  

Erk1(MAPK3) 
Erk2(MAPK1) 
Erk3(MAPK6) 
Erk4(MAPK4) 
Erk5(MAPK7) 
Erk7(MAPK15) 
JNK1(MAPK8) 
JNK2(MAPK9) 
JNK3(MAPK10)
NLK 
p38a(MAPK14) 
p38b(MAPK11) 
p38g(MAPK12)
p38d(MAPK13)

248(140)  

93 CMGC MAPK JNK  JNK subfamily of 
MAPK  

JNK1(MAPK8) 
JNK2(MAPK9) 
JNK3(MAPK10) 

47(27)  

94 CMGC MAPK p38  p38 subfamily of 
MAPK  

p38a(MAPK14) 
p38b(MAPK11) 
p38g(MAPK12)
p38d(MAPK13)

62(35)  

95 CMGC MAPK ERK  
Extracellular 
signal-Regulated 
protein Kinase  

Erk1(MAPK3) 
Erk2(MAPK1) 
Erk3(MAPK6) 
Erk4(MAPK4) 
Erk5(MAPK7) 
Erk7(MAPK15) 

138(88)  

96 CMGC MAPK nmo  nemo  NLK  2(1)  



 

 183

97 CMGC RCK     
MAK 
MOK 
ICK  

1(1)  

98 CMGC SRPK   

SR Protein 
Kinase; 
phosphorylates 
SR splicing 
factors  

MSSK1 
SRPK1 
SRPK2  

0(0)   

99 Other AUR Aur  Aurora Kinase  
AurA 
AurB 
AurC  

42(19)  

100 Other AUR AurB  Aurora Kinase B AurB  21(12)  

101 Other AUR AurA  Aurora Kinase B AurA  23(9)  

102 Other BUB     BUB1 
BUBR1  0(0)   

103 Other Bud32     PRPK  1(1)  

104 Other CAMKK Meta  

Metazoan-specific 
family of CAMK 
(Calcium/Calmod
ulin Regulated 
Kinase) Kinase  

CaMKK1 
CaMKK2  3(3)  

105 Other CDC7   Cell Division 
Control 7  CDC7  2(1)  

106 Other Haspin     Haspin  0(0)   

107 Other IKK   I kappa Kinase  

IKKa 
IKKb 
IKKe 
TBK1  

43(12)  

108 Other IRE   Inositol 
REquiring   

IRE1 
IRE2 0(0)   

109 Other MOS     MOS 0(0)   
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110 Other KIS   Kinase interacting 
with stathmin  KIS  3(3)  

111 Other NAK   Numb-Associated 
Kinase  

MPSK1 
GAK 
BIKE 
AAK1  

0(0)   

112 Other NEK   

Mitotic Kinase 
family, also 
known as NRK 
(NimA-Related 
Kinase, based on 
Aspergillus 
NimA)  

NEK1 
NEK2 
NEK3 
NEK4 
NEK5 
NEK6 
NEK7 
NEK8 
NEK9 
NEK10 
NEK11  

8(6)  

113 Other NKF1   New Kinase 
Family 1  

SgK110 
SgK069 
SBK  

0(0)   

114 Other NKF2   New Kinase 
Family 2  PINK1  0(0)   

115 Other NKF3   New Kinase 
Family 3  

SgK269 
SgK223  0(0)   

116 Other NKF4   New Kinase 
Family 4  

CLIK1 
CLIK1L  0(0)   

117 Other NKF5   New Kinase 
Family 5  

SgK307 
SgK424  0(0)   

118 Other NRBP   Nuclear Receptor 
Binding Protein  

NRBP1 
NRBP2 0(0)   

119 Other Other-Uni
que     

RNAseL 
SgK396 
SgK196  

0(0)   

120 Other PEK GCN2  
General Control 
Non-derepressible
  

GCN2  0(0)   

121 Other PEK PKR  

Interferon-induce
d, 
double-stranded 
RNA-activated 
protein kinase  

PKR  13(4)  

122 Other PEK PEK  
Pancreatic 
eIF-2alpha 
Kinase   

PEK  0(0)   

123 Other PEK HRI  Heme-Regulated 
Inhibitor kinase  HRI  2(1)  

124 Other PLK   Polo Like 
Kinases  

PLK1 
PLK2 
PLK3 
PLK4  

46(18)  
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125 Other SCY1     
SCYL1 
SCYL2 
SCYL3  

0(0)   

126 Other SgK071     SgK071  0(0)   

127 Other SgK493     SgK493  0(0)   

128 Other SgK496     SgK496  0(0)   

129 Other Slob   

Named after the 
first member, 
Drosophila SLOw 
Borders  

Slob  0(0)   

130 Other TBCK   
TBC 
domain-containin
g Kinase  

TBCK  0(0)   

131 Other TLK   Tousled-Like 
Kinase  

TLK1 
TLK2  0(0)   

132 Other TOPK   

T-cell Originated 
Kinase, also 
known as PBK 
(PDZ 
domain-binding 
kinase)  

PBK  0(0)   

133 Other TTK     TTK  0(0)   

134 Other ULK ULK  Unc-51 Like 
Kinase  

ULK1 
ULK2 
ULK3 
ULK4  

0(0)   

135 Other ULK Fused    Fused  0(0)   

136 Other VPS15     PIK3R4  1(1)  

137 Other WEE   
Homologs of 
yeast Wee1; cell 
cycle kinase  

Wee1 
Wee1B 
MYT1  

2(2)  

138 Other WNK   

With No Lysine 
kinases. Missing 
the canonical 
catalytic lysine, 
instead using a 
nearby lysine for 
catalysis  

Wnk1 
Wnk2 
Wnk3 
Wnk4  

4(2)  

139 Other CDPK     CDPK  3(3)  

140 RGC RGC   
Receptor 
Guanylate 
Cyclases  

ANPa 
ANPb 
CYGD 
CYGF 
HSER  

0(0)   
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141 STE STE-Uniq
ue     COT 

NIK  3(2)  

142 STE STE11 MAP3K  

MAP3K (MAP 
kinase kinase 
kinase) genes, 
homologous to 
yeast Ste 11  

MAP3K1 
MAP3K2 
MAP3K3 
MAP3K4 
MAP3K5 
MAP3K6 
MAP3K7 
MAP3K8  

17(10)  

143 STE STE20 PAK  p21-Activated 
protein Kinase  

PAK1 
PAK2 
PAK3 
PAK4 
PAK5 
PAK6  

34(25)  

144 STE STE20 PAKB  
Class B 
p21-Activated 
protein Kinase  

PAK4 
PAK5 
PAK6  

1(1)  

145 STE STE20 PAKA  
Class A 
p21-Activated 
protein Kinase  

PAK1 
PAK2 
PAK3  

29(23)  

146 STE STE20 SLK  Ste20-Like 
Kinase   

LOK 
SLK 1(1)  

147 STE STE20 STLK  Serine Threonine 
Like Kinase  

STLK5 
STLK6 
STLK6-rs  

0(0)   

148 STE STE20 TAO  

Thousand and 
One Kinase, 
whose sequence 
was 1001 AA 
long. Also known 
as the SULU 
family  

TAO1 
TAO2 
TAO3  

0(0)   

149 STE STE20 YSK  
Yeast 
SPS1/STE20-like 
kinase  

YSK1 
MST3 
MST4  

1(1)  

150 STE STE20 KHS  
Kinase 
Homologous to 
STE20  

KHS1 
KHS2 
GCK 
HPK1  

3(3)  

151 STE STE20 FRAY    STLK3 
OSR1 0(0)   
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152 STE STE20 MSN  misshapen  

HGK 
TNIK 
NRK 
MINK  

1(1)  

153 STE STE20 MST  
Mammalian 
STE20-like 
kinase  

MST1 
MST2  21(20)  

154 STE STE20 NinaC    MYO3A 
MYO3B  0(0)   

155 STE STE7 MAP2K  

MAP2K (MAP 
kinase kinase) 
genes, 
homologous to 
yeast Ste 7  

MAP2K1 
MAP2K2 
MAP2K3 
MAP2K4 
MAP2K5 
MAP2K6 
MAP2K7  

29(13)  

156 TK Abl   
Abelson murine 
leukemia 
homolog  

ABL1(Abl) 
ABL2(ARG)  36(26)  

157 TK Ack   
Activated 
Cdc42-associated 
tyrosine kinase  

ACK 
TNK1  1(1)  

158 TK ALK   
Anaplastic 
Lymphoma 
Kinase  

ALK 
LTK  6(3)  

159 TK Axl     
AXL 
MER 
TYRO3  

6(2)  

160 TK CCK4   Colon Carcinoma 
Kinase 4  CCK4  0(0)   

161 TK Csk   C-SRC kinase  CSK 
CTK  19(8)  

162 TK DDR   Discoidin Domain 
Receptor kinase  

DDR1 
DDR2  1(1)  



 

 188

163 TK EGFR   
Epidermal 
Growth Factor 
Receptor  

EGFR 
ErbB2 
ErbB3 
ErbB4 

48(22)  

164 TK Eph   Ephrin receptors 

EphA1 
EphA2 
EphA3 
EphA4 
EphA5 
EphA6 
EphA7 
EphA8 
EphA10 
EphB1 
EphB2 
EphB3 
EphB4 
EphB5 
EphB6 

11(7)  

165 TK FAK   Focal Adhesion 
Kinase  

FAK 
PYK2  9(6)  

166 TK Fer Fer  
Proto-oncogene 
tyrosine-protein 
kinase FER  

FER  0(0)   

167 TK Fer Fes  
Proto-oncogene 
tyrosine-protein 
kinase Fes/Fps  

FES  7(2)  

168 TK FGFR   Fibroblast Growth 
Factor Receptor  

FGFR1 
FGFR2 
FGFR3 
FGFR4  

30(8)  

169 TK InsR   
Insulin Receptor 
and associated 
Kinases  

INSR 
IRR  30(9)  

170 TK InsR IGF1R  
Insulin-like 
growth factor I 
receptor  

IGF1R  11(3)  

171 TK JAK JakA  

First (active) 
kinase domain of 
the dual-domain 
Janus Kinases  

JAK1 
JAK2 
JAK3  

29(17)  
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172 TK TYK TYK2  
Non-receptor 
tyrosine-protein 
kinase  

TYK2  7(4)  

173 TK Lmr   Lemur Kinase  
LMR1 
LMR2 
LMR3  

0(0)   

174 TK Met Met  
Met 
proto-oncogene 
tyrosine kinase  

MET 
RON  19(4)  

175 TK Musk   Muscle-Specific 
Kinase  MUSK  0(0)   

176 TK PDGFR PDGFR  Platelet-derived 
growth factor  

PDGFRa 
PDGFRb  30(10)  

177 TK PDGFR Fms  
Platelet-derived 
growth factor, 
FMS  

FMS  2(1)  

178 TK PDGFR FLT3  Fms-Like 
Tyrosine kinase  FLT3  4(1)  

179 TK PDGFR Kit  Platelet-derived 
growth factor  KIT  4(1)  

180 TK Ret   

Proto-oncogene 
tyrosine-protein 
kinase receptor 
ret  

RET  14(3)  

181 TK Ror   
Regeneron 
Orphan 
Receptors  

ROR1 
ROR2  0(0)   

182 TK Ryk   Receptor Tyrosine 
Kinase  RYK  0(0)   

183 TK Sev   

Named after 
Drosophila 
sevenless, a 
receptor tyrosine 
kinase involved in 
eye cell fate 
determination  

ROS 0(0)   

184 TK Src SRM  
Proto-oncogene 
tyrosine-protein 
kinase SRM  

SRM  0(0)   
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185 TK Src BLK  
Proto-oncogene 
tyrosine-protein 
kinase BLK  

BLK  4(2)  

186 TK Src Brk  
Proto-oncogene 
tyrosine-protein 
kinase BRK  

BRK  4(2)  

187 TK Src Fgr  
Proto-oncogene 
tyrosine-protein 
kinase FGR  

FGR  4(3)  

188 TK Src Fyn  
Proto-oncogene 
tyrosine-protein 
kinase FYN  

FYN  37(21)  

189 TK Src HCK  
Proto-oncogene 
tyrosine-protein 
kinase HCK  

HCK  9(7)  

190 TK Src Lck  
Proto-oncogene 
tyrosine-protein 
kinase Lck  

LCK  48(25)  

191 TK Src LYN  Tyrosine-protein 
kinase LYN  LYN  33(20)  

192 TK Src Src  
Proto-oncogene 
tyrosine-protein 
kinase Src  

SRC  108(68)  

193 TK Src YES  
Proto-oncogene 
tyrosine-protein 
kinase YES  

YES  3(2)  

194 TK Src Frk  Fyn-related 
kinase  FRK  0(0)   

195 TK Syk SYK  Spleen tyrosine 
kinase  SYK  38(17)  
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196 TK Syk ZAP70  

70 kDa 
zeta-associated 
protein, 
Syk-related 
tyrosine kinase  

ZAP70  16(8)  

197 TK Tec   
Tec protein 
tyrosine kinase 
family  

TXK 
TEC 
ITK 
BMX 
BTK 

26(13)  

198 TK Tec BTK  Bruton tyrosine 
kinase  BTK  14(7)  

199 TK Tec ITK  IL2-inducible 
T-cell kinase  ITK  7(4)  

200 TK Tec TXK  Tyrosine-protein 
kinase TXK  TXK TEC  7(5)  

201 TK Tie   
Tunica interna 
endothelial cell 
kinase  

TIE1 TIE2  5(1)  

202 TK TK-Uniqu
e     SuRTK106  0(0)   

203 TK Trk   
Neurotrophin 
receptor tyrosine 
kinases  

TRKA TRKB 
TRKC  5(1)  

204 TK VEGFR   

Vascular 
Endothelial 
Growth Factor 
Receptors  

FLT1 FLT4 FLT3 
KDR  22(5)  

205 TKL IRAK   
IL1 Receptor 
Associated 
Kinase  

IRAK1 IRAK2 
IRAK3 IRAK4 4(2)  

206 TKL LISK TESK  TEstis Specific 
Kinase  TESK1 TESK2 1(1)  
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207 TKL LISK LIMK  LIM domain 
containing kinase LIMK1 LIMK2 2(2)  

208 TKL LRRK   Leucine Rich 
Repeat Kinase  LRRK1 LRRK2 0(0)   

209 TKL MLK MLK  Mixed Lineage 
Kinase  

MLK1 MLK2 
MLK3 MLK4  3(2)  

210 TKL MLK LZK  
Leucine 
zipper-bearing 
kinase   

LZK DLK  0(0)   

211 TKL MLK ZAK  

Sterile alpha 
motif and leucine 
zipper containing 
kinase AZK  

ZAK  1(1)  

212 TKL MLK TAK1  

Transforming 
growth 
factor-β-activated 
kinase 1  

TAK1  0(0)   

213 TKL MLK HH498    HH498  0(0)   

214 TKL MLK ILK  Integrin Linked 
Kinase  ILK  6(6)  

215 TKL RAF RAF  

RAF 
proto-oncogene 
serine/threonine-p
rotein kinase  

RAF1 ARAF 
BRAF  3(2)  

216 TKL RAF KSR  
Kinase 
Suppressor of 
Ras  

KSR1 KSR2  1(1)  

217 TKL RIPK   
Receptor 
Interacting 
Protein Kinases  

RIPK1 RIPK2 
RIPK3 SgK288 
ANKRD3  

0(0)   

218 TKL STKR Type1  

Serine/Threonine 
Kinase Receptors; 
receptors for 
activin and TGFb 
ligands. Type 1  

TGFbR1 ALK7 
ALK1 ALK2 
ALK4 BMPR1A 
BMPR1B  

6(2)  

219 TKL STKR Type2  

Serine/Threonine 
Kinase Receptors; 
receptors for 
activin and TGFb 
ligands. Type 2  

TGFbR2 BMPR2 
MISR2 ACTR2 
ACTR2B  

6(1)  
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220 TKL STKR TGFbR  

Serine/Threonine 
Kinase Receptors; 
receptors for 
TGFb ligands  

TGFbR1 
TGFbR2  12(3)  

221 TKL TKL-Uni
que     MLKL  0(0)   

 

 


