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Student: Tzong-Y1 Lee Advisor : Dr. Hsien-Da Huang

Institute of Bioinformatics, National Chiao Tung University

Abstract

Protein phosphorylation, catalyzed by, protein kinases, is a ubiquitous reversible
post-translational modification (PTM) and plays a crucial role in signaling pathway.
Manning et al. have identified 518 human kinase genes, the so-called “kinome", that
provides a starting point for -comprehensive analysis of protein phosphorylation
networks. With the high-throughput mass spectrometry (MS) proteomics, the number
of in vivo phosphorylation sites is‘increasing ‘rapidly. However, only 20% of the
experimentally verified phosphorylation sites have the annotation of catalytic kinases.
To understand how protein kinases regulate their substrates in intracellular processes,
it is necessary to link these sites to specific kinases. Therefore, we propose an
approach that incorporates machine learning method with protein associations
(protein-protein interactions, functional associations, and subcellular localization) for
identifying the catalytic kinase for each experimental phosphorylated site. Four
well-annotated kinase families, such as CDK, PKC, PIKK, and INSR, are used to test
the ability to correctly predict which kinases are responsible for catalyzing them. The
presented approach can improve 5 - 10% predictive accuracy more than purely using
machine learning method. The identified kinase-substrate interactions are used to
construct the intracellular phosphorylation network starting from receptor kinases to
transcription factors. Moreover, the experimental expression evidence such as
time-series microarray gene expression profiles is adopted to validate the

syn-expression of kinase and substrate with statistical significance.
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Chapter 1 Introduction

Protein phosphorylation catalyzed by protein kinase is a ubiquitous reversible
post-translational modification (PTM) found in eukaryotes as well as prokaryotes. With the
increasing number of in vivo phosphorylation sites have been identified, the desire of map the
network of protein kinase and substrate has motivated. To understand how protein kinases
regulate their substrates in intracellular processes, it is necessary to link these sites to specific
kinases. In this dissertation, we focus on the integration of heterogeneous phosphorylation site
databases (Chapter 2 ), identification of kinase-specific phosphorylation sites (Chapter 3),
and systematic discovery of kinase-substrate interactions in protein phosphorylation networks
(Chapter 4). The comprehensive kinase-substrate interactions are used to construct the
intracellular phosphorylation network starting from receptor kinases to transcription factors.
Moreover, the experimental expression evidence such as time-series microarray gene
expression profiles is adopted to validate:the syn-expression of kinase and substrate with

statistical significance.

1.1 Biological Background

Protein post-translational modifications (PTMs), involving several chemical groups such as
acetyl, methyl, phosphoryl, hydorxyl, glycans, and lipids covalently attach to individual
amino acid, alter protein’s biochemical natures significantly and play key roles in a wide
variety of cellular processes. Studies suggest that one-third to one-half of all proteins are
modified by phosphorylation [1]. In signal transduction pathways, reversible phosphorylation
is essential for the maintenance of signaling amplitude, duration and specificity. Until recently,
high-throughput mass spectrometry-based method is widely used to identify the
phosphopeptides with specific phosphorylated site. Therefore, the increasing number of
experimentally verified phosphorylation sites can be adopted to investigate the systems

biology of kinase and substrate in detail.

1.1.1 Protein Post-Translational Modifications (PTMs)

Protein Post-Translational Modification (PTM) is an extremely important cellular control

1



mechanism because it may alter proteins’ physical and chemical properties, folding,
conformation distribution, stability, activity, and consequently, their functions [2]. Several
chemical groups such as acetyl, methyl, phosphoryl, hydorxyl, glycans, and lipids covalently
attach to individual amino acids (Figure 1.1), alter protein’s biochemical natures significantly
and play key roles in a wide variety of cellular processes. Examples of the biological effects
of protein modifications include phosphorylation for signal transduction, attachment of fatty
acids for membrane anchoring and association, and glycosylation for changing protein
half-life, targeting substrates, and promoting cell-cell and cell-matrix interactions. Although
the modification of amino acids does occur before, during and after the said amino acids are
incorporated into proteins by ribosomes, they are usually referred to misleadingly as

post-translational modifications.

M-terminal

Aoely | atreg

Armidation -y \
(1] e

i n
! P
1

- \,.. ]
. 'phasphorylation
- "
- My,
Glyocosyiation -

Al copyright t @ PTMX

Figure 1.1 Schematic representation of several common post-translational modifications.

PTMs arise from the cleaving or forming of covalent bonds and can be classified into
three categories based on the following processes: cleavage (including preand propeptide
processing, initiator methionine removal, C-terminal processing), linkage (including
attachment of chemical groups from the simple such as acetyl, methyl, phosphoryl, or
hydroxyl, to more complex entities such as glycans or lipids) and cross-linking (including
disulphide, thioether, and thioester bonds) [3]. By the statistics of RESID [4] modification
database, there are more than 400 types of PTMs been discovered. The list of several common
and important post-translational modifications is shown in Table 1.1 [5] which contains mass

difference, modified residues, occurring position, and description. In this dissertation, we



focus on the investigation of protein phosphorylation.

Table 1.1 Some common and important post-translational modifications (Mann, M. and O.N. Jensen,
2003).

AMass Modified

PTM type (Da) residue Position Description
Glycosylation Reversible, cell-cell interaction and
O-linked >800 S,T anywhere  regulation of proteins
(O-GlcNAc) 203.2
N-linked >800 N
Phosphorylation 79.98 S, T.Y,H,D anywhere Reversible, regulation of protein
activity, signaling
Acetylation 42.04 S N-term Reversible, protein stability,
K anywhere  regulation of protein function
Methylation 14.03 K anywhere Regulation of gene expression,
protein stability
Acylation Reversible, cellular localization to
farnesylation 20436 C anywhere =~ membrane
myristoylation 21036 G N-term
K Anywhere
palmitoylation 238.41 C(S,T,K) anywhere
Hydroxyproline 16.00 P anywhere Protein stability and protein-ligand
interactions
Deamidation 0.98 .N,Q anywhere N to D, Q to E, possible regulator
of protein-ligand and
protein-protein interactions, also a
common chemical artifact
Nitration 450 ' Y Oxidative damage during
S-Nitrosylation 29.0 .C anywhere  inflammation
Ubiquitination >1,000 + K anywhere  Reversible/irreversible, destruction
Sumoylation K [ILFV]K.D signal,
Sulfation 7996 Y anywhere Modulator of protein-protein and
receptor-ligand interactions
Glycosylphosphatidylinositol >1,000 S,N,C C-term Membrane tethering of enzymes
(GP]) anchor, and receptors, mainly to outer

leaflet of plasma membrane

1.1.2 Protein Phosphorylation

Post-translational phosphorylation is one of the most common protein modifications;
one-third to one-half of all proteins in a eukaryotic cell are phosphorylated. Phosphoserine,
threonine and tyrosine residues play critical roles in the regulation of many cellular processes.
As shown in Figure 1.2, the catalytic site of a protein kinase hydrolyzes adenosine
triphosphate (ATP) and transfers a phosphate moiety to the acceptor residue (S, T, Y in
eukaryotes) in the substrate protein (Figure 1.3).
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Figure 1.2 Schematic representation of protein phosphorylation.

In eukaryotes, protein phosphorylation is probably the most important regulatory event.

Many enzymes and receptors are switched "on" or "off' by phosphorylation and
dephosphorylation. The attachment of phosphoryl groups to specific amino acid residues of a
protein is catalyzed by protein kinases; removal of phosphoryl groups is catalyzed by
protein phosphatases. Phosphorylation is catalyzed by various specific protein kinases,
whereas phosphatases dephosphorylate. Adding a phosphoryl (POs) to a polar R group of an
amino acid might not seem like it would do much to.a protein, but it can actually turn a
nonpolar hydrophobic protein into a polar: and “extremely hydrophilic molecule.

Phosphoserine, threonine, tyrosine residues in‘observed in eukaryotes, and histidine residue in

observed in prokaryotes.

COO~ COO~ ?OO_
+ | + +
CH,OH H—C—OH CH,
CH,
Serine Threonine
OH
Tyrosine

Figure 1.3 Chemical formula of serine, threonine, and tyrosine (Lehninger et al., 2005).

An example of the important role that phosphorylation plays is the p53 tumor suppressor

gene, which—when active—stimulates transcription of genes that suppress the cell cycle,



even to the extent that it undergoes apoptosis. However, this activity should be limited to
situations where the cell is damaged or physiology is disturbed. To this end, the p53 protein is

extensively regulated. In fact, p53 contains more than 18 different phosphorylation sites.

In Figure 1.4a, the inactive form of the Tyr kinase domain (PDB ID 11RK), the activation
loop (blue) sits in the active site, and none of the critical Tyr residues (black and red
ball-and-stick structures) are phosphorylated [6]. This conformation is stabilized by hydrogen
bonding between Tyr-1162 and Asp-1132. When insulin binds to the « chains of insulin
receptors (Figure 1.4b), the Tyr kinase of each £ subunit of the dimer phosphorylates three
Tyr residues (Tyr-1158, Tyr-1162, and Tyr-1163) on the other £ subunit (shown here; PDB
ID 1IR3). (Phosphoryl groups are depicted here as an orange space-filling phosphorus atom
and red ball-and-stick oxygen atoms.) The effect of introducing three highly charged P —Tyr
residues is to force a 30 A change in the position of the activation loop, away from the
substrate-binding site, which becomes available to bind to and phosphorylate a target protein,

shown here as a red arrow.

L3 Activation loop % 'larget protein
blocks substrate- " in substrate.

binding site hinding site
[nactive (unphosphorylated) Active itriply phosphorvlated)
Tyr kinase domain Tyr kinase domain
(a) (b)

Figure 1.4 Activation of the insulin-receptor Tyr kinase by autophosphorylation (Lehninger et al.,
2005).



1.1.3 Signal Transduction Pathway

In biology, signal transduction refers to any process by which a cell converts one kind of
signal or stimulus into another. Most processes of signal transduction involve ordered
sequences of biochemical reactions inside the cell, which are carried out by enzymes,
activated by second messengers, resulting in a signal transduction pathway. Intracellular
signal transduction is the process by which chemical signals from outside the cell are passed
through the cytoplasm to cellular systems, such as the nucleus or cytoskeleton, where
appropriate responses to those signals are generated [7]. Such processes are usually rapid,
lasting on the order of milliseconds in the case of ion flux, minutes for the activation of
protein- and lipid-mediated kinase cascades, or hours and even days for gene expression. The
number of proteins and other molecules participating in the events involving signal
transduction increases as the process emanates from the initial stimulus, resulting in a "signal

cascade," beginning with a relatively small stimulus that elicits a large response.

As shown in Figure 1.5; mostesignal transduction involves the binding of
extracellular signaling molecules (or ligands) to cell-surface receptors that face outward from
the plasma membrane and trigger events inside the.cell. Also, intracellular signaling cascades
can be triggered through cell-substratum interactions; as in the case of integrins, which bind
ligands found within the extracellular matrix. The'signaling molecules have been functionally
classified as: hormones (e.g., melatonin), growth factors (e.g. epidermal growth factor),
extra-cellular matrix components (e.g., fibronectin), cytokines (e.g., interferon-gamma),
chemokines (e.g., RANTES), neurotransmitters (e.g., acetylcholine), and neurotrophins (e.g.,
nerve growth factor). A fundamentally different mechanism of signal transduction is carried
out by the receptor enzymes. These proteins have a ligand-binding domain on the
extracellular surface of the plasma membrane and an enzyme active site on the cytosolic side,
with the two domains connected by a single transmembrane segment. Commonly, the receptor
enzyme is a protein kinase that phosphorylates Tyr residues in specific target proteins; the
insulin receptor is the prototype for this group. In plants, the protein kinase of receptors is

specific for Ser or Thr residues.
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Figure 1.5 Ovetview of signal transduction pathways.'

Figure 1.6 [6] shows an example of insulin-induced signaling pathway. Insulin regulates
both metabolism and gene expression: the insulin signal passes from the plasma membrane
receptor to insulin-sensitive metabolic enzymes and to the nucleus, where it stimulates the
transcription of specific genes. The insulin receptor consists of two « chains on the outer face
of the plasma membrane and two £ chains that traverse the membrane and protrude from the
cytoplasmic face. Binding of insulin to the « chains triggers a conformational change that
allows the autophosphorylation of Tyr residues in the carboxyl-terminal domain of the /S
subunits. Autophosphorylation further activates the Tyr kinase domain, which then catalyzes
phosphorylation of other target proteins. The signaling pathway by which insulin regulates the
expression of specific genes consists of a cascade of protein kinases, each of which activates
the next. The insulin receptor is a Tyr-specific kinase; the other kinases (all shown in blue)
phosphorylate Ser or Thr residues. MEK is a dual-specificity kinase, which phosphorylates
both a Thr and a Tyr residue in ERK (extracellular regulated kinase); MEK is

mitogen-activated, ERK-activating kinase; SRF is serum response factor. Protein

' The figure was obtained from http://en.wikipedia.org/wiki/Signal_transduction
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phosphorylation plays crucial regulatory role in signal transduction pathway [8].

@ Insulin receptor binds
Insulin insulin and undergoes
\ autophosphorylation on its

18 carboxyl-terminal Tyr residues.

i4

E‘ Insulin receptor
phosphorylates IRS-1
on its Tyr residues.

@ @ SH2 domain of Grb2 binds

to®)-Tyr of IRS-1. Sos binds
to Grb2, then to Ras,
causing GDP release and
GTP binding to Ras.

(@) Activated Ras binds and
activates Raf-1.

() Raf-1 phosphorylates
MEK on two Ser residues,
activating it. MEK
phosphorylates ERK
ona Thrand a Tyr residue,
activating it.

ERK moves into
the nucleus and

DNA phosphorylates

1 1 nuclear transcription
New proteins factors such as Elk1,
(@) Phosphorylated Elk1 acdvating them.

joins SRF to stimulate
the transcription and
translation of a set of
genes needed for

cell division.

Figure 1.6 Insulin-induced signal transduction (Lehninger ef al., 2005).

1.1.4 Mass Spectrometry-based Identification of Protein

Phosphorylation

Recent successes illustrate the role of mass spectrometry-based proteomics as an

indispensable tool for molecular and cellular biology and for the emerging field of systems

biology. So far, protein analysis (primary sequence, post-translational modifications (PTMs)

or protein—protein interactions) by MS has been most successful when applied to small sets of

proteins isolated in specific functional contexts [9]. The systematic analysis of the much
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larger number of proteins expressed in a cell, an explicit goal of proteomics, is now also
rapidly advancing, due mainly to the development of new experimental approaches. By
definition, a mass spectrometer consists of an ion source, a mass analyzer that measures the
mass-to-charge ratio (m/z) of the ionized analytes, and a detector that registers the number of
ions at each m/z value. Electrospray ionization (ESI) and matrix-assisted laser
desorption/ionization (MALDI) are the two techniques most commonly used to volatize and
ionize the proteins or peptides for mass spectrometric analysis [10]. ESI ionizes the analytes
out of a solution and is therefore readily coupled to liquid-based (for example,

chromatographic and electrophoretic) separation tools.
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Figure 1.7 Generic mass spectrometry (MS)-based proteomics experiment (Aebersold et al., 2003).

As shown in Figure 1.7, the typical proteomics experiment consists of five stages [9]. In
stage 1, the proteins to be analyzed are isolated from cell lysate or tissues by biochemical
fractionation or affinity selection. This often includes a final step of one-dimensional gel

electrophoresis, and defines the ‘sub-proteome’ to be analyzed. MS of whole proteins is less



sensitive than peptide MS and the mass of the intact protein by itself is insufficient for
identification. Therefore, proteins are degraded enzymatically to peptides in stage 2, usually
by trypsin, leading to peptides with C-terminally protonated amino acids, providing an
advantage in subsequent peptide sequencing. In stage 3, the peptides are separated by one or
more steps of high-pressure liquid chromatography in very fine capillaries and eluted into an
electrospray ion source where they are nebulized in small, highly charged droplets. After
evaporation, multiply protonated peptides enter the mass spectrometer and, in stage 4, a mass
spectrum of the peptides eluting at this time point is taken (MS1 spectrum, or ‘normal mass
spectrum’). The computer generates a prioritized list of these peptides for fragmentation and a
series of tandem mass spectrometric or ‘MS/MS’ experiments ensues (stage 5). These consist
of isolation of a given peptide ion, fragmentation by energetic collision with gas, and
recording of the tandem or MS/MS spectrum. The MS and MS/MS spectra are typically
acquired for about one second each and stored for matching against protein sequence
databases. Figure 1.8 shows an example of MS/MS spectra which contains a phosphorylated

serine.

MS/MS Sequencing Patten

Val Trp pSer Phe Pro Lys Leu Gly

Intensity

Daughter lon
Parent lon

Val Ser+P*| Phe lle Gly

87+79 147 97 128 113

M/Z

Figure 1.8 Example of phosphopeptide MS/MS spectra.

1.1.5 Phosphoproteomics

Phosphorylation is a key reversible modification occurring mainly on serine, threonine and
tyrosine residues that can regulate enzymatic activity, subcellular localization, complex

formation and degradation of proteins. Analysis of the entire cellular phosphoproteins panel,
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the so-called phosphoproteome, has been an attractive study subject since the discovery of
phosphorylation as a key regulatory mechanism of cell life [11]. The understanding of the
regulatory role played by phosphorylation begins with the discovery and identification of
phosphoproteins and then by determining how, where and when these phosphorylation events
take place. Because phosphorylation is a dynamic process difficult to quantify, we must at
first acquire an inventory of phosphoproteins and characterize their phosphorylation sites.
Several experimental strategies can be used to explore the phosphorylation status of proteins

from individual moieties to phosphoproteomes.
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Figure 1.9 Combined large-scale approaches to unravel phosphorylation driven signaling networks
(Bentem et al., 2007).

As reviewed previously, mass spectrometry-based techniques have enabled the
large-scale mapping of in vivo phosphorylation sites. Alternatively, methods based on peptide
and protein microarrays have revealed protein kinase activities in cell extracts, in addition to
kinase substrates (Figure 1.9a) [12]. On chips, protein kinase activities are measured by the
incorporation of radioactive phosphate into the substrate peptide or protein that are spotted in
small amounts, in duplicate or triplicate (as shown here). Yellow and red spots indicate
peptides or proteins that are more intensely and less intensely phosphorylated, respectively.
Using cell extracts, a more intensely phosphorylated (‘induced’) spot means that a kinase

activity in the treated extract towards the peptide or protein is activated. On the contrary, a
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less phosphorylated (‘reduced’) spot means that the responsible kinase is inactivated. In case
of protein phosphatases, a chip pre-phosphorylated by a purified kinase (or, alternatively, a
cell extract) could be used for target discovery. This is possible by analyzing which
phosphorylated peptides or proteins are dephosphorylated on the chip, as indicated here by

red spots.

A combined phosphoproteomic approach of mass spectrometry and microarray
technology could enhance the construction of dynamic signaling networks (Figure 1.9b) [12].
The experimental data, ultimately, need to be combined by systems biology analysis, which
translates the separate, large-scale datasets into signaling networks [13]. The predicted
connections within and between signaling cascades need to be experimentally verified by, for
instance, analysis of protein complexes and analysis of kinase or substrate knockout and
over-expression. In the phosphorylation cascade, arrows indicate phosphorylation reactions
and the circled minus sign indicates negative feedback phosphorylation. Only
phosphoproteins in the signaling network are indicated. Abbreviations: K stands for protein
kinase; P stands for protein phosphatase; S stands for substrate. Numbers behind each kinase,

phosphatase and substrate are given arbitrarily.

1.2 Motivation

Protein phosphorylation, which is catalyzed by kinase, plays a crucial role in intracellular
signal transduction that is achieved by networks of proteins and small molecules that
transmit information from the cell surface to the nucleus, where they ultimately effect
transcriptional changes. Manning et al. have identified 518 human kinase genes, the
so-called “kinome", that provides a starting point for comprehensive analysis of protein
phosphorylation networks. How differential responses are generated by these networks is
not obvious nor is the reason cells evolved a complicated mechanism for transducing
signals. Thus, a full understanding of the mechanism of intracellular signal transduction

remains a major challenge in cellular biology.

Mass spectrometry-based proteomics have enabled the large-scale mapping of in vivo
phosphorylation sites. There are several phosphorylation site databases have been
constructed previously. However, only 20% of the experimentally verified phosphorylation

sites have the annotation of catalytic kinases. Experimental identification of kinase-specific
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phosphorylation sites is an inconvenient work and usually limited by the availability of
detailed data on the kinase-specific substrates. To fully investigate how protein kinases
regulate the intracellular processes, it is necessary to comprehensively and accurately
identify the kinase-specific substrates. In silico prediction could be a promising strategy to
conduct preliminary analyses and could greatly reduce the number of potential targets that

need further in vivo or in vitro confirmation.

With the increasing number of in vivo phosphorylation sites have been identified, the
desire of map the network of protein kinase and substrate has motivated. The experimental
kinase-specific substrates, ultimately, need to be combined by systems biology analysis,
which translates the separate, large-scale datasets into signaling networks. Several works
have been proposed to incorporate protein-protein interaction data with microarray data for
constructing signaling pathway. However, no researchers incorporated the experimentally
verified kinase-substrate interactions and the computationally identified kinase-substrate
interactions to construct the intracellular phosphorylation network starting from receptor
kinases to transcription factors, associated with ‘the formation of protein subcellular
localization. Moreover, the experimental expression evidence, such as gene microarray
data and mass spectra, could be adopted to validate the syn-expression of the constructed

kinase-substrate phosphorylation network:

1.3 Research Goals

In this dissertation, we focus on the integration of heterogeneous phosphorylation site
databases, identification of kinase-specific phosphorylation sites, and systematic discovery of

kinase-substrate network in human protein phosphorylation.

1.3.1 Management of Heterogeneous Phosphorylation

Databases and Related Information
In this study, a variety of biological databases with heterogeneous data format need to be
integrated, including phosphorylation site databases, protein sequence and knowledge

databases, gene annotation databases, protein structure databases, protein domain databases,

protein-protein interaction databases, biochemical pathway databases, and so on. The
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inconsistent data format of these integrated biological databases increases the difficulty in the
development of proposed system. Therefore, a data warehousing system should be

incorporated to efficiently manage, maintain and update all the collected external databases.

1.3.2 Identification of Kinase-Specific Phosphorylation Sites

Experimental identification of phosphorylation sites is an inconvenient work and usually
limited by the availability of detailed data on the kinase-specific substrates. In silico
prediction could be a promising strategy to conduct preliminary analyses and could greatly
reduce the number of potential targets that need further in vivo or in vitro confirmation.
Therefore, we propose a method, namely KinasePhos, which incorporates machine learning
methods to identify the phosphorylation sites with their catalytic kinase. Not only protein
amino acids, but also the structural information such as secondary structure, solvent
accessibility and protein disorder region were used to investigate the substrate specificity.

Moreover, the constructed predictive models were eyvaluated by the independent test sets.

1.3.3 Discovery of Protein Kinase-Substrate Phosphorylation

Networks

To fully investigate how protein kinases regulate the intracellular processes, it is necessary to
comprehensively and accurately identify the kinase-specific substrates. Therefore, we propose
a method, named RegPhos, incorporates computational model with protein associations
(protein-protein interactions, functional associations, and subcellular localization) for
identifying the catalytic kinase for each phosphoprotein with experimental phosphorylated
sites. With the highly predictive performance of phosphorylation sites, a better understanding
of relationships between protein kinases and substrates will be facilitated and engineered to
analyze the therapeutic usefulness. The identified kinase-substrate interactions are used to
comprehensively construct the intracellular phosphorylation network starting from receptor
kinases to transcription factors, with the information of protein-protein interactions and
subcellular localization. Moreover, the experimental expression evidence such as
time-coursed gene microarray data is adopted to validate the syn-expression of kinase and

substrate with statistical significance.

14



1.4 Organization of This Dissertation

There are three major parts in this dissertation, including the integration of heterogeneous
phosphorylation site databases (Chapter 2 ), identification of kinase-specific phosphorylation
sites (Chapter 3), and systematic discovery of protein kinase-substrate phosphorylation
networks (Chapter 4). A variety of biological databases with heterogeneous data format need
to be integrated, including phosphorylation site databases, protein sequence and knowledge
databases, gene annotation databases, protein structure databases, protein domain databases,
protein-protein interaction databases, biochemical pathway databases, and so on. We propose
a method, named RegPhos, incorporates computational model with protein associations
(protein-protein interactions, functional associations, and subcellular localization) for
identifying the catalytic kinase for each phosphoprotein with experimental phosphorylated
sites. The protein phosphorylation network of kinase and substrate in human was constructed
using the experimentally verified and computationaly identified kinase-substrate interactions.
The gene microarray expression data is'adopted to analyze the syn-expression of kinase and
substrate genes in specific conditiods. Moreover, the microarray data with time series can be

used to recognize the dynamic behavior of kinase and their substrate.
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Figure 1.10 Schematic representation of dissertation organization
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Chapter 2 Information Repository of Protein

Post-Translational Modifications

2.1 Introduction

Protein Post-Translational Modification (PTM) is an extremely important cellular control
mechanism because it may alter proteins’ physical and chemical properties, folding,
conformation distribution, stability, activity, and consequently, their functions [14]. Examples
of the biological effects of protein modifications include phosphorylation for signal
transduction, attachment of fatty acids for membrane anchoring and association, and
glycosylation for changing protein half-life, targeting substrates, and promoting cell-cell and
cell-matrix interactions. High-throughput proteomic studies produce a wealth of new
information regarding post-translational modifications. With the accelerating progress in
proteomics, biological knowledge bases containing a wealth of information, in particular
protein modifications, are playing crucial roles in cell regulation research [3]. In this work, we
not only provide the sequence-based information such as PTM site, functional domain and
protein variant site, but also annotate"the structure-based information including protein
tertiary structure, protein secondary structurej surface accessibility and protein intrinsic

disorder region.

A side chain of amino acid that undergoes enzymatic modification needs to be accessible
on the surface of protein [15]. Several works have been proposed the links between the
post-translational modifications and their solvent accessible surface area. Pang et al
investigated the structural environment of 8378 incidences in 44 types of post-translational
modifications [15]. The information of surface accessibility, disorder region, and
linker/domain are computationally annotated by several published programs, including ASA
[16], GOR [17] and RVP-net [18] for surface accessibility, RONN[19] and DISEMBL [20] for
disorder, PSIPRED [21] for secondary structure, and George et al. [22] for linker/domain. The

introduction of structural information of protein is described as following.
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2.1.1 Protein Solvent Accessibility

Residue solvent accessibility is usually measured by rolling a spherical water molecule over a
protein surface and summing the area that can be accessed by this molecule on each residue
(typical values range from 0-300 A2). To allow comparisons between the accessibility of long
extended and spherical amino acids, typically relative values are compiled (actual area as
percentage of maximally accessible area). A simplified description distinguishes two states:
exposed (here residues numbered 1-3 and 10-12) and buried (here residues 4-9) residues.
Since the packing density of native proteins resembles that of crystals, values for solvent

accessibility provide upper and lower limits to the number of possible inter-residue contacts.

Outside

Inside

Figure 2.1 Measurement of protein solvent accessibility.”

2.1.2 Protein Intrinsic Disorder

Until the early 1990s, a widely, almost exclusively accepted concept of protein function was

the well-known protein sequence — structure — function paradigm. According to this

concept, a protein can achieve its biological function only upon folding into a unique,

2 The figure was obtained from http://www.rostlab.org/papers/2003_rev_1d/paper.html
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structured state, which represents a kinetically accessible and an energetically favorable
conformation (usually the global energy minimum for the whole protein) determined by its
amino acid sequence. This specific conformation has been referred to as the native state of the
protein. However, recent discoveries of intrinsically disordered proteins (IDPs) [23] (known
also as natively disordered, natively unfolded, and intrinsically unstructured proteins) have
significantly broadened the view of the scientific community and increased the number of

groups systematically studying these intriguing members of the protein world.
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Figure 2.2 Disorder in Calcineurin.’

Intrinsically unstructured proteins are frequently involved in key biological processes
such as cell cycle control, transcriptional and translational regulation, membrane fusion and
transport, and signal transduction [24]. A high percentage of cell-signaling and
cancer-associated proteins are predicted to have long disordered regions [25]. An
investigation of the functions performed by intrinsically disordered regions reveals that they
are often involved in molecular recognition and protein modifications including

phosphorylation [26]. To provide a concrete example, the calmodulin binding site in

* The figure was obtained from http://genome.gsc.riken.go.jp/hgmis/publicat/hgn/v12n1/13trinity.html
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calcineurin (Figure 2.2)* was shown to be extremely sensitive to protease digestion and thus
to be a disordered ensemble; this disorderliness was confirmed in Kissingers X-ray diffraction
structure as indicated by missing coordinates in the same region. As showin in Figure 2.2,
Calcineurin’s a-subunit contains a globular phosphatase domain, a helical extension that bind
the b-subunit, a disordered region not observed in the crystal structure, and an autoinhibitory
peptide that binds in the phosphatase domain’s active site. The a-subunit's intrinsically
disordered region, containing 95 amino acids, connects the ends of the helical extension
(residue 374) and the autoinhibitory peptide (residue 470) and includes a calmodulin binding

site. This region probably is disordered at least in part to allow calmodulin to bind.

Disorder

PONDR scora

Order
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Figure 2.3 Example of a binding region and its positions relative to the regions of PONDR predicted

disorder score (Garner, et al., 1999).

Computational methods exploit the sequence signatures of disorder to predict whether a

* The figure was obtained from http:/genome.gsc.riken.go.jp/hgmis/publicat/hgn/v12n1/13trinity.html
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protein is disordered given its amino acid sequence. The table below (Table 2.1), adapted from
Ferron et. al. [27], shows the main features of tools for disorder prediction. Note that different
tools use different definitions of disorder. Various predictors of intrinsic disorder have been
used to facilitate prediction of functional properties of proteins. The first use of a disorder
predictor to find protein-binding sites was performed by Garner et al. [28] who noticed that
sharp dips in disorder prediction could indicate short loosely structured binding regions that
undergo disorder-to-order transitions upon binding to a partner. Interestingly, these dips in
disorder prediction were originally noticed for the 4E binding protein (4EBP1, see Figure 2.3)
[28], which had been shown to be completely disordered by NMR [29]. However, a short
stretch of 4EBP1 undergoes a disorder-to-order transition upon binding to eukaryotic

translation initiation factor 4E [30].
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Table 2.1 Summary of the web servers offering prediction of intrinsically disordered proteins.

Tool name What is predicted Method URL
All regions that are not rigid including random Feed-forward  neural  network  with  separate
PONDR [31] coils, partially unstructured regions, and N-/C-terminus predictor. Based on amino-acid http://www.pondr.com

molten globules

compositions and physicochemical properties.

FoldIndex [32]

Regions that have a low hydrophobicity and
high net charge (either loops or unstructured
regions)

Charge/hydrophobicity score based on a
sliding window.

http://bip.weizmann.ac.il/fldbin/findex

NORSp [33, 34]

Regions with No Ordered Regular Secondary
Structure (NORS). Most, but not all, are
highly flexible.

Rule-based using a set of several
neural-networks. Amino acid compositions
and sequence profiles used as features.

http://rostlab.org/services/NORSp/

DISOPRED [35]

Regions devoid of ordered regular secondary
structure

Feed-forward neural network (DISOPRED) and
linear support vector machine (DISOPRED2)
based on sequence profiles.

http://bioinf.cs.ucl.ac.uk/disopred/

Globplot [36]

Regions with high propensity for globularity
on the Russell/Linding scale (propensities for
secondary structures and random coils)

Autoregressive model based on amino-acid propensities
for disorder/globularity.

http://globplot.embl.de/

DisEMBL [20]

LOOPS (regions devoid of regular secondary
structure); HOT LOOPS (highly mobile
loops); REMARK465 (regions lacking
electron density in crystal structure)

EnSemble of feed-forward neural networks.

http://dis.embl.de/

IUPred [37]

Regions that lack a well-defined 3D-structure
under native conditions

Linear. model based on the‘estimated energy of pairwise
interactionssin a window around a residue.

http://iupred.enzim.hu/index.html

PreLink [38]

Regions that are expected to be unstructured
in all conditions, regardless of the presence of
a binding partner

Rule-based. Ratio of multinomial probabilities
(for linker and structured regions) combined
with the distance to the nearest

hydrophobic cluster.

http://genomics.eu.org/spip/PreLink

Regions that lack a well-defined 3D structure

Feed-forward neural network in the space of

RONN [39] . .. distances to a set of prototype sequences of http://www.strubi.ox.ac.uk/RONN
under native conditions
known fold state.
Recursive neural network based on sequence
DISpro Protein intrinsically disordered regions profiles, predicted secondary structure and http://www.igb.uci.edu/servers/psss.html

relative solvent accessibility.

SPRITZ [40]

Intrinsically disordered regions in proteins
from sequence

Nonlinear support vector machine based on
multipally aligned sequences. Separate
predictors for short and long disorder regions.

http://protein.cribi.unipd.it/spritz/
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2.1.3 Subcellular Localization

The eukaryotic cell is a composite system internally subdivided into membrane-enveloped
compartments that perform particular functions [41]. Every subcellular compartment contains
specific proteins, including enzymes, synthesized in the cytoplasm and translocated into the
locations, wherethey carry out functional patterns. As shown in Figure 2.4, some major
constituents of eukaryotic cells are: extracellular space, cytoplasm, nucleus, mitochondria,
Golgi apparatus, endoplasmic reticulum (ER), peroxisome, vacuoles, cytoskeleton,
nucleoplasm, nucleolus, nuclear matrix and ribosomes. The proteins which are involved in
similar biological functions are closely located in the same subcellular localization. Therefore,
knowing the localization of every protein is important for elucidating its interactions with

other molecules and for understanding its biological function.

Centricles

Muclear membrane

Nucleus

Golgi
apparatus

Vacuocle
Free < oo o [ e’ e ; B ™ Mitochondrion

Endoplasmic

reficulum

Cell membrane
Lysosomes

Figure 2.4 Eukaryotic cellular compartments.’

> The figure was obtained from http://mendel.imp.ac.at/CELL_LOC/
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2.2 Related Works

Taking the advantage of the high-throughput mass spectrometry in proteomics, several
databases involved in protein modifications were established. UniProtKB/Swiss-Prot [42]
includes as much modification information as available with consistency and structure,
allowing easy retrieval by biologists. Phospho.ELM [2], PhosphoSite [43] and
Phosphorylation Site Database [44] were developed for collecting experimentally verified
phosphorylation sites. PHOSIDA [45] integrates thousands of high-confidence in vivo
phosphorylation sites identified by mass spectrometry-based proteomics in various species.
O-GLYCBASE [46] is a database of glycoproteins, most of which include experimentally
verified O-linked glycosylation sites. Moreover, UbiProt stores experimental ubiquitylated
proteins and ubiquitylation sites, which are implicated in protein degradation via an
intracellular ATP-dependent proteolytic system [47]. The RESID protein modification
database is a comprehensive collection of annotations and structures for protein modifications
and cross-links including pre-, co-, and pest-translational modifications [4]. Each RESID
entry presents a protein with a chemically,unique smodification and indicates how the
modification is currently annotated in the Swiss-Prot: The summary of published PTM
databases is presented in Table 2.2. The detailed introduction about these PTM resources is

illustrated as following.
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Table 2.2 Summary of PTM resource.

Resource Reference Description URL
Experimental PTMs and putative PTMs
. . . (annotated as “by similarity”, “potential” or
UniProt KB / Swiss-Prot Farriol-Mathis, Garavelli et “probable” in the ‘MOD_RES’, WWW.expasy.org/sprot/

al. 2004

“CARBOHYD”, “LIPID” and “CROSSLNK”
fields)

PhosphoELM Diella, Cameron et al. 2004 Experimental phosphorylation sites phospho.elm.eu.org
PhosphoSite Hornbeck, Chabra et al. 2004 Experimental phosphorylation sites www.phosphosite.org
Phosphorylation site Wurgler-Murphy, King ef al. Experlmeptal phogphorylatlon sites in vigen biochem.vt.edu/xpd/xpd.htm
database 2004 prokaryotic organisms
In vive phosphorylationssites which was
PHOSIDA Gnad, Ren et al. 2007 identified by mass spectrometry-based www.phosida.com
Proteomics
HPRD Peri, S. et al. 2003 Human PTMs with curated literatures www.hprd.org
Heazlewood, Durek et al. mass spectrometry-based identified .
PhosPhAt 2008 phosphorylation sites in Arabidopsis phosphat.mpimp-golm.mpg.de
O-GLYCBASE Gupta, Birch ef al. 1999 Experimental glycosylation sites www.cbs.dtu.dk/databases/OGLY CBASE/
UbiProt g(l)lg;n orudskiy, Garcia et al. Ubiquitylated protein and ubiquitylation sites ubiprot.org.ru
RESID Garavelli 2004 Protein modification annotations www.ebi.ac.uk/RESID
Phospho3D Zanzoni et al. 2007 3D structures of protein phosphorylation sites ~ cbm.bio.uniroma2.it/phospho3d/index.py
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UniProtKB/Swiss-Prot Modifications

With the accelerating progress in proteomics, UniProt KB/Swiss-Prot knowledge base [48] is
faced with the challenge of including this information in a consistent and structured way, in
order to facilitate easy retrieval and promote understanding by biologist expert users as well
as computer programs. The authors are therefore standardizing the annotation of PTM
features represented in UniProt KB/Swiss-Prot [3]. Indeed, a controlled vocabulary has been
associated with every described PTM. There are two types of PTM annotation, the
experimentally validated PTM sites and the putative PTM sites. The putative PTMs are
annotated as “by similarity”, “potential” or “probable” in the ‘MOD_RES’, “CARBOHYD”,
“LIPID” and “CROSSLNK?” fields.

Phospho.ELM

The fast growing number of research reports on protein phosphorylation points to a general
need for an accurate database dedicated to phosphorylation to provide easily retrievable
information on phosphoproteins. Phospho.ELM (http://phospho.elm.eu.org) [2], which was
developed as part of the ELM (Eukatyotic Linear Motif) resource, is a resource containing
experimentally verified phosphorylation sites that were manually curated from the literature.
Phospho.ELM constitutes the largest searchable collection of phosphorylation sites available
to the research community. The Phospho.ELM entries store information about substrate
proteins with the exact positions of residues known to be phosphorylated by cellular kinases.
Additional annotation includes literature references, subcellular compartment, tissue
distribution, and information about the signaling pathways involved as well as links to the

molecular interaction database MINT.

The current release of Phospho.ELM (version 7.0, July 2007) contains 4078
phospho-protein sequences covering 12 025 phospho-serine, 2362 phospho-threonine and
2083 phospho-tyrosine sites [49]. The entries provide information about the phosphorylated
proteins and the exact position of known phosphorylated instances, the kinases responsible for
the modification (where known) and links to bibliographic references. The database entries
have hyperlinks to easily access further information from UniProt [50], PubMed, SMART,
ELM, MSD as well as links to the protein interaction databases MINT and STRING. A new
BLAST search tool, complementary to retrieval by keyword and UniProt accession number,

allows users to submit a protein query (by sequence or UniProt accession) to search against
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the curated data set of phosphorylated peptides.

PhosphoSite

PhosphoSite is a curated, web-based bioinformatics resource dedicated to physiologic sites of
protein phosphorylation in human and mouse. PhosphoSite is populated with information
derived from published literature as well as high-throughput discovery programs. PhosphoSite
provides information about the phosphorylated residue and its surrounding sequence,
orthologous sites in other species, location of the site within known domains and motifs, and
relevant literature references. Links are also provided to a number of external resources for
protein sequences, structure, post-translational modifications and signaling pathways, as well
as sources of phospho-specific antibodies and probes. As the amount of information in the
underlying knowledgebase expands, users will be able to systematically search for the kinases,
phosphatases, ligands, treatments, and receptors that have been shown to regulate the
phosphorylation status of the sites, and pathways in which the phosphorylation sites function.
As it develops into a comprehensive resource .of known in vivo phosphorylation sites,
PhosphoSite will be a valuable tool for researchers seeking to understand the role of

intracellular signaling pathways in a wide variety of biological processes.

Phosphorylation Site Database

Phosphorylation Site Database (http://vigen.biochem.vt.edu/xpd/xpd.htm) [44] provides ready
access to information from the primary scientific literature concerning those proteins from
prokaryotic organisms, i.e., the members of the domains Archaea and Bacteria, that have been
reported to undergo covalent phosphorylation on the hydroxyl side chains of serine, threonine,
and/or tyrosine residues. Where known, the sequence of the site(s) of phosphorylation and the
functional consequences of phosphorylation also are included. Active links enable users to
quickly access further information concerning the phosphoprotein of interest from PubMed,

GenBank, SWISS-PROT, and PIR.

PHOSIDA

PHOSIDA (http://www.phosida.com), a phosphorylation site database, integrates thousands

of high-confidence in vivo phosphorylation sites identified by mass spectrometry-based
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proteomics in various species. For each phosphorylation site, PHOSIDA lists matching kinase
motifs, predicted secondary structures, conservation patterns, and its dynamic regulation upon

stimulus. Using support vector machines, PHOSIDA also predicts phosphorylation sites.

HPRD

Human Protein Reference Database (HPRD, http://www.hprd.org) [51] is an object database
that integrates a wealth of information relevant to the function of human proteins in health and
disease. Data pertaining to thousands of protein-protein interactions, posttranslational
modifications, enzyme/substrate relationships, disease associations, tissue expression, and
subcellular localization were extracted from the literature for a nonredundant set of 2750
human proteins. Almost all the information was obtained manually by biologists who read
and interpreted >300,000 published articles during the annotation process. This unified
bioinformatics platform will be useful in cataloging and mining the large number of

proteomic interactions and alterations that will.be discovered in the postgenomic era.

PhosPhAt

The PhosPhAt (http://phosphat.mpimp-+golm.mpg.de) -[52] database provides a resource
consolidating our current knowledge of ‘mass spectrometry-based identified phosphorylation
sites in Arabidopsis and combines it with phosphorylation site prediction specifically trained
on experimentally identified Arabidopsis phosphorylation motifs. The database currently
contains 1187 unique tryptic peptide sequences encompassing 1053 Arabidopsis proteins.
Among the characterized phosphorylation sites, there are over 1000 with unambiguous site
assignments, and nearly 500 for which the precise phosphorylation site could not be
determined. The database is searchable by protein accession number, physical peptide
characteristics, as well as by experimental conditions (tissue sampled, phosphopeptide
enrichment method). For each protein, a phosphorylation site overview is presented in tabular
form with detailed information on each identified phosphopeptide. An analysis of the current
annotated Arabidopsis proteome yielded in 27,782 predicted phosphoserine sites distributed
across 17,035 proteins. These prediction results are summarized graphically in the database

together with the experimental phosphorylation sites in a whole sequence context.
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O-GLYCBASE

O-GLYCBASE  (http://www.cbs.dtu.dk/databases/fOGLYCBASE/) is a database of
glycoproteins with O-linked glycosylation sites. Entries with at least one experimentally
verified O-glycosylation site have been compiled from protein sequence databases and
literature. Each entry contains information about the glycan involved, the species, sequence, a
literature reference and http-linked cross-references to other databases. Version 4.0 contains
179 protein entries, an approximate 15% increase over the last version. Sequence logos
representing the acceptor specificity patterns for GalNAc, GlcNAc, mannosyl and xylosyl

transferases are shown.

UbiProt

UbiProt (http://ubiprot.org.ru) [47] Database is a public resource offering comprehensive
information on ubiquitylated proteins. Post-translational protein modification with ubiquitin,
or ubiquitylation, is one of the hottest topics in @modern biology due to a dramatic impact on
diverse metabolic pathways and invelvement,in pathogenesis of severe human diseases. As
shown in Figure 2.5 [47], Ubiquitylation may result in.addition of a single ubiquitin moiety or
a branched multi-ubiquitin chain to.the target'protein lysine(s). Note that a ubiquitin molecule
possesses 7 inner lysine residues that can serve as:attachment sites of the next ubiquitin
moiety, resulting in the formation of the chains that have a different structure and topology.
Functionally significant amino acids are marked as follows: Kn and Kn' — lysine residue(s)
that can serve as attachment sites of the ubiquitin moiety; G76 — ubiquitin C-terminal glycine

residue participating in the isopeptide bond formation.

A great number of eukaryotic proteins were found to be ubiquitylated. However, data
about particular ubiquitylated proteins are rather disembodied. To fill a general need for
collecting and systematizing experimental data concerning ubiquitylation, a knowledge base
of ubiquitylated proteins, UbiProt Database, have been developed. The database contains
retrievable information about overall characteristics of a particular protein, ubiquitylation
features, related ubiquitylation and de-ubiquitylation machinery and literature references
reflecting experimental evidence of ubiquitylation. The resource can serve as a general
reference source both for researchers in ubiquitin field and those who deal with particular
ubiquitylated proteins which are of their interest. Further development of the UbiProt

Database is expected to be of common interest for research groups involved in studies of the
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ubiquitin system.

Free mono-ubiquitin Free branched multi-
o ubiquitin chain
I‘(n G?G

Poly-ubiquitin (precursor form)

O -0 -0

Mono-ubiquitylation Multi-ubiquitylation Pluri-ubiquitylation

Figure 2.5 Different forms of ubiquitin and ubiquitin-modified proteins (Chernorudskiy, et al., 2007).

RESID

The RESID [4] Database of Protein Modifications is a comprehensive collection of
annotations and structures for protein modifications and cross-links including pre-, co-, and
post-translational modifications. The database provides: systematic and alternate names,
atomic formulas and masses, enzymatic activities that generate the modifications, keywords,
literature citations, Gene Ontology (GO) cross-references, protein sequence database feature
table annotations, structure diagrams, and molecular models. This database is freely
accessible on the Internet through resources provided by the European Bioinformatics
Institute (http://www.ebi.ac.uk/RESID), and by the National Cancer Institute--Frederick
Advanced Biomedical Computing Center (http://www.nciferf.gov/RESID). Each RESID
Database entry presents a chemically unique modification and shows how that modification is
currently annotated in the protein sequence databases, Swiss-Prot and the Protein Information
Resource (PIR). The RESID Database provides a table of corresponding equivalent feature

annotations that is used in the UniProt project, an international effort to combine the resources
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of the Swiss-Prot, TTEMBL and PIR. As an annotation tool, the RESID Database is used in
standardizing and enhancing modification descriptions in the feature tables of Swiss-Prot
entries. As an Internet resource, the RESID Database assists researchers in high-throughput
proteomics to search monoisotopic masses and mass differences and identifies known and

predicted protein modifications.
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Figure 2.6 A list of instances for the PDB file 1A52 (Zanzoni, A., et al., 2007).

Phospho3D

Since the amount of data produced by screening assays is growing continuously, the
development of computational tools for collecting and analyzing experimental data has
become a pivotal task for unraveling the complex network of interactions regulating
eukaryotic cell life. The authors presented Phospho3D [53]
(http://cbm.bio.uniroma?2.it/phospho3d), a database of 3D structures of phosphorylation sites,

which stores information retrieved from the phospho.ELM database and is enriched with

30



structural information and annotations at the residue level. The database also collects the
results of a large-scale structural comparison procedure providing clues for the identification
of new putative phosphorylation sites. As shown in Figure 2.6, in the central panel a list of
instances for the PDB file 1A52 is shown. For each of them, users can visualize the
corresponding zone via the Jmol viewer, the annotation at the residue level and the results of
the large-scale local structural comparison. For each structural match the score, the Z-score,
and the root-mean-square deviation (RMSD) are reported along with the SCOP fold [54] of
the matching PDB files.
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2.3 Motivation and the Specific Aim

With the high-throughput mass spectrometry in proteomics, biological knowledge bases
containing a wealth of protein modifications are established. The annotating format of protein
modifications from various resources is different. Therefore, we are inspired to integrate all
the data of protein modifications and store them in consistent and structured way, in order to
facilitate easy retrieval and promote understanding by biologist expert users as well as

computer programs.

In this study, we develop a knowledge base, namely dbPTM, which collects the known
protein post-translational modification information from external biological data sources.
Since only a small fraction of UniProtKB/Swiss-Prot proteins are annotated with
experimentally verified post-translational modifications, we also developed computational
tools [55, 56] to comprehensively identify phosphorylation sites, glycosylation sites and
sulfation sites against the UniProtKB/Swiss-Prot proteins. Protein structural properties and
functional information, such as the solvent aceessibility of residues, protein disorder regions,
protein variations, non-synonymous‘singlemucleotide polymorphism (SNP), protein tertiary
structures, and protein functional demains, are provided for researchers who investigating the
protein post-translational modification imechanisms. Besides, the PTM related literature,
protein conservations and substrate speeificity are also provided in the resource. Web query
interface and graphical visualization were designed and implemented to facilitate access to the

database content.

Currently, computational identification of protein modifications becomes a promising
strategy to conduct preliminary analyses for protein functions and its roles in biological
systems. A variety of computational tools have been developed for more than ten PTM types
including phosphorylation, glycosylation, acetylation, methylation, sulfation, sumoylation and
so on. In order to evaluate these computational tools, we compiled a PTM benchmark
containing all available sites for each type of PTM. The PTM benchmark can provide a
standard for evaluating performance of the computational prediction tools developed for

identification of protein post-translation modification sites.
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2.4 Materials and Methods

The data generation flow of the dbPTM is briefly depicted in Figure 2.7. The data generation
flow comprises the three major components: integration of external Post-Translational
Modification (PTM) databases, computational annotation of PTM sites, and structural or
functional annotations. The experimentally validated PTM data sources were extracted from
UniProt KB/Swiss-Prot [3], Phospho.ELM [2], PHOSIDA [45], O-GLYCBASE [46], and
UbiProt [47]. The experimentally verified PTM sites were used to generate computer models
to further identify putative PTM sites against the Swiss-Prot proteins. Additional structural
properties and functional information, such as protein tertiary structures, protein secondary
structures, solvent accessibility of residues, protein disorder region, protein functional
domains, protein variations and non-synonymous SNP are also annotated to the Swiss-Prot

proteins. The detailed data generation flow is described below.
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Figure 2.7 System flow for constructing dbPTM.
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2.4.1 Integration of External PTM Databases

Five external biological databases related to protein post-translational modification
information, UniProt KB/Swiss-Prot [3], Phospho.ELM [2], PHOSIDA [45], O-GLYCBASE
[46], and UbiProt [47], are integrated into the proposed resource. Both the experimentally
validated PTM sites and the putative PTM sites, which are annotated as “by similarity”,
“potential” or “probable” in the ‘MOD RES’, “CARBOHYD”, “LIPID” and “CROSSLNK”
fields, have been extracted from the UniProt KB/Swiss-Prot database. As shown in Table 2.3,
release 55.0 of UniProt KB/Swiss-Prot contributes 17957 experimental validated PTM sites
within 8086 proteins, and 124933 putative PTM sites within 29356 proteins. The
Phospho.ELM entries store information about substrate proteins with the exact positions of
residues are known to be phosphorylated by cellular kinases. 16428 experimentally verified
phosphorylation sites within 4026 proteins were obtained from Phospho.ELM version 2 [2].
PHOSIDA stores more than 6600 in vivo phosphorylation sites which were identified by mass
stimulation.

spectrometry-based proteomics on 2244 proteins in response to EGF

O-GLYCBASE [46] Version 6.00 provides 242 glycoproteins containing 2,765
experimentally verified O-linked, N=linked, and' C-linked glycosylation sites. Moreover, 185
glycoproteins in O-GLYCBASE are corresponded to Swiss-Prot proteins, which have 2,353
experimentally verified glycosylation sites.UbiProt,, which contains 417 ubiquitylated

proteins and 165 ubiquitylation sites, was also-inteégrated into dbPTM.

Table 2.3 Data statistics of the integrated PTM resource.

Resource Version Description Statistics
Experimental Post-Translational 17,957 PTM sites within 8,086
Modifications (PTMs) proteins
) Putative PTMs (annotated as “by
Swiss-Prot 55.0 C ‘1
similarity”, “potential” or 124,933 PTM sites within
probable” in the ‘MOD_RES’, 29356 proteins
“CARBOHYD”, “LIPID” and 0P
“CROSSLNK?” fields)
. L 16,428 phosphorylation sites
PhosphoELM 7.0 Experimental phosphorylation sites within 4,026 proteins
. L More than 6600
In vivo phosphorylation sites hosphorylation sites on 2244
PHOSIDA 1.0 which was identified by mass phosphory
. proteins in response to EGF
spectrometry-based Proteomics . .
stimulation
O-GLYCBASE 6.0 Experimental glycosylation sites 2,353 PTM sites within 185
glycoproteins
UbiProt 10 Ubiquitylated protein and 417 Ubiquitylated proteins and

ubiquitylation sites

165 ubiquitylated sites
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2.4.2 Computational Annotation of PTM Sites

To provide the post-translational modification information of the PTM un-annotated proteins
available from Swiss-Prot, we adopted computational tools for identifying the
post-translational modifications of the Swiss-Prot proteins. Our previous work, namely
KinasePhos [56], incorporated the profile Hidden Markov Model (HMM) to identify
kinase-specific phosphorylation sites with about 87% prediction accuracy [55], which was
compared with several phosphorylation prediction tools such as NetPhos [57], DISPHOS [58],
and rBPNN [59] (Table 2.4).

Table 2.4 Comparisons between KinasePhos, NetPhos, DISPHOS and rBPNN.

Residue types NetPhos DISPHOS rBPNN KinasePhos
Serine 0.69 0.75 No data 0.86
Threonine 0.72 0.80 No data 0.91
Tyrosine 0.61 0.82 No data 0.84
Total or average No data No data 0.87 0.87

First of all, the PTMs should be categorized by their modification types and be
investigated each type of PTM with enough ‘'samples in advance. Based on the
KinasePhos-like method, removing the redundancy of PTM sites from various PTM databases
is important. Before the model training, the positive and negative set should be constructed.
Here we define the PTM residues as positive set, while those non-PTM residues in the same
protein from which positive sites were taken are regarded as negative set, instead of using
proteins randomly picked from the Swiss-Prot/tremble databases. In general, we make the
equal sizes of positive set and negative set. After that, we employed a traditional sliding
window strategy to represent the PTM or non-PTM peptides. Given the window length n, a

fragment of 2n+1 residues centering on PTM site was adopted to represent a PTM peptide.
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Figure 2.8 An example of 9-mer (window length  is set to 4) phosphorylated peptides and
sequence logo.
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As shown in Figure 2.8, for example, the phosphorylated residue was define as the
position 0 and the positions (-4 ~ -1) and (+1 ~ +4) designated the residues surrounding the
phosphorylation residue, such as serine. However, the serines, threonines and tyrosines, which
are not annotated as phosphorylation residues, within the experimentally validated
phosphorylated proteins are selected as negative sets, i.e., the non-phosphorylated sites.
Different values of n varying from 4 to 10 were used to determine the optimized window
length. For the sake of the observation of the amino acid distribution surrounding the PTM
residues, we make up the (2n+1)-mer sequence logos[60, 61] of the phosphorylation sites
which is shown in Figure 2.8. The sequence logos are a graphical representation of an amino
acid or nucleotide multiple sequence alignment. Each logo consists of stacks of symbols, one
stack presents each position in the sequence. The overall height of the stack indicates the
sequence conservation at that position, while the height of the symbols within the stack
indicates the relative frequency of each amino or nucleotide at that position. Figure 2.9 shows

the system flow of KinasePhos-like method.

PTM Data Collection Model Training and Evaluation
S Prok . { Dt Prapiiiceatig, |-=== Constructing training set for each PTM
(version 55.0) :
1
B —— 1 | Removing Constructin
Phospho.ELM i redundant — g training
(version 7.0) _‘ ! PTM sites sets
— b
O-GLYCBASE ﬁ _
(version 6.0) : |
_____ - s Maximal dependence o
e ey ; ‘ Daja Clustering | : decomposition (MDD) -
Ub"—P":tO ' Training data is clustered by ! Max cluster
(version 1.0) | catalytic residue, kinase, and L Size = 15
: Maximal Dependence !
! Decomposition (MDD) !
L s o R T H : F
Identifying potential PTM site @ %@Y&é Q‘IDY%,E
.- _‘ Model Selection k- - ! ﬂMﬂﬂf‘l Learning and E"ﬂlﬂﬂtmur : Evaluation and parameter optimization
1 1 )
i The models with 100% : i Learning ' | Prec. = TP/ (TP+FP) 10 _\H\_
1 predictive specificity were | ! models Evaluation |! | Sn.=TP/(TP+FN) i : T
- used for PTM prediction_ 5 I—» (cross- |14 Sp.=TN/(TN+FP)  [* :
1 041
\ validation) |1 | Acc. = (TP+TN)/ o . e
e 1 | Parameter | (TP+FP+TN+FN)| - [
| | optimization ! T
Swiss-Prot & TrEMBL 1 1 itsne
I e e e e e e e o e e o = = ——— 1

Figure 2.9 System flow of KinasePhos-like method.

The positive set for training might contain several homologous sites from homologous

proteins. If the training data are highly similar with too many homologous sites, the prediction
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accuracy will be overestimated. To avoid the overestimation, we filtered the identical training
sequences from homologous proteins in positive set. Thus, we obtained a high quality training

set with non-redundant positive set for model training.

The PTM site sequences in the positive sets with a larger size could be alternatively

clustered by MDD method in order to increase the predictive sensitivity and specificity of the
models. The Maximal Dependence Decomposition (MDD) [62] employs statistical > -test to

group an set of aligned signal sequences to moderate a large group into subgroups that capture
the most significant dependencies between positions. In previous work, MDD was proposed
to group the splice sites during the identification process of splice site prediction [62].
However, in our study, we group protein sequences instead of nucleotides. In order to reduce
the data complexity of the phosphorylated sites when applying MDD, we categorize the
twenty types of amino acids into five groups such as neutral, acidic, basic, aromatic and imino
groups, as the mapping given in Table 2.5. Then, we implement the MDD algorithm in JAVA
programming language for amino acids and apply it to cluster PTM site sequences with large

data sets.

Table 2.5 The amino acids group usedin MDD.

Group name Amino acids

Neutral threonine (T), valine (V), leucine (L), isoleucine (I), methionine (M), glycine
(G), alanine (A), serine(S);cysteine (C)

Acid aspartic acid (D), asparagine (N), glutamic acid (E), glutamine (Q)

Basic lysine (K), arginine (R), histidine (H)

Aromatic phenylalanine (F), tyrosine (Y), tryptophan (W)

Imino proline (P)

To perform the null hypothesis test of independence on a pair of i-th and j-th positions of
a PTM site, we formed a 5 x 5 contingency table, as shown in Figure 2.10, by counting the
observed number Xm» of PTM site sequence where the i-th amino acid 4i was m and j-th
amino acid 4j was n (for simplicity, we have encoded neutral, acid, basic, aromatic, imino as 1,

2,3, 4, 5, respectively) from a sample of X PTM site sequences. The numbers X, ,and X, in
Figure are row sums and column sums, respectively. It is clear thatz S X =Y X, =X

The test statistic used is as follows:

£ a)= 33 KBl

m=1 n=1 mn

where
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X, 2 X

— mR“™ Cn

mn
X

is the expected number of amino acids in which the i-th position 4; is m and the j-th position
Aj is n from a sample of X PTM site sequences when the null hypothesis of independence was

true. To determine the rejection region for the null hypothesis, we have specified a numerical
value « for the Type I error of the test, according to a y°—distribution with degrees of

freedom (5—1)x(5—1) =16, and then the critical point, K, was computed as follows:

P ( null hypothesis is rejected when it is true ) = P(y” (A4, ,A4;) 2 K | null hypothesis) = « .

PTM
!
L L PMS P EE E
S FMMS P RE E
L ABE B8 B EEREBM
B a B8 b &R S
A As Ao Ay Av Ac As Au

A contingency table between two positions in PTM site
AVA Neutral Acid Basic  Aromatic Imino Total
Neutral X Xiz X3 Xra Xis X
Acid X Xaz Xaz X4 Xos Xor
Basic Xsi X3z X33 X34 Xss Xsr
Aromatic  Xy¢ Xaz Xas Xas Xus Xar
Imino Xs1 Xsz Xs3 Xs4 Xs5 Xsr
Total Xcy Xeo Xca X Xes X

Figure 2.10 A 5x5 contingency table between two positions in PTM site.

The MDD is a recursive process to divide the positive sets into tree-like subgroups.
When applying MDD to cluster the sequences of a positive set, a parameter, i.e., the
minimum-cluster-size, should be set. If the size of a subgroup is less than the
minimum-cluster-size, the subgroup will not be divided any more. The MDD process
terminates when all the subgroup sizes are less than the minimum-cluster-size. When
considering a MDD-clustered data set, for instance, MDD-clustered PKA catalytic serine
(S_PKA), the model are trained separately from the subgroups of the phosphorylated sites
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resulted by MDD. Each model is used to search in the given protein sequences for the
phosphorylated sites. A positive prediction of the model group is defined by at least one of the
model makes a positive prediction, whereas a negative prediction is defined as all the models

make negative predictions.

Profile Hidden Markov Models (HMMs) are trained from the PTM site sequences
aligned without gaps of the positive sets. An HMM describes a probability distribution over a
potentially infinite numbers of sequences [63]. It can be used to detect distant relationships
between amino acids sequences. Here, we use the software package HMMER][63] (version
2.3.2) to build the models, to calibrate the models and to search the putative PTM sites against
the protein sequence. The emission and transition probabilities are generated from each of the
training set to capture the characteristics of the training sequences. All residue types of the
PTM sites with enough data set were taken to train the HMM; moreover, as well as the sets of

the kinase-specific or MDD-clustered sets of PTM sites.

After the models are trained, it is necessary to evaluate whether the models are fitted or
not. The following measures of the predictive performance of the models are then calculated:
Precision (Pr) = TP / (TP+FP), Sensitivity (Sn) = TP/ (TP+FN), Specificity (Sp) = TN /
(TN+FP) and Accuracy (Ac) = (TP + TN) / (TP+FP+IN+FN), where TP, TN, FP and FN
represent true positive, true negative, false-positive and false negative predictions,
respectively. In general, we make the"equal sizes of the positive samples and the negative

samples during the cross-validation processes.

To evaluate the trained models, two cross-validation methods, k-fold cross-validation
and leave-one-out cross-validation, are applied in this study. For a large positive set, i.e., the
number of a positive set of PTM sites is equal or greater than thirty sites, the k-fold
cross-validation is used to evaluate the model trained from the data set. The size of the
negative set, which is constructed by randomly selected from the corresponding non-PTM
sites, is equal to the size of positive set. The experiments are repeated for 20 times and the
average precision, sensitivity, specificity and accuracy are calculated. Furthermore, in order to
avoid a skewed sampling during the cross-validation process, for a small positive set (less
than 30), the leave-one-out cross-validation is alternatively applied. Similarly, the negative set

in this cross-validation is constructed by the same strategy as the k-fold cross-validation.

For each training set of PTM sites, the best performed model is selected and used to

identify the PTM sites within the input protein sequences by HMMsearch [63]. To search the
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hits of a model, HMMER returns both a HMMER bit score and an expectation value
(E-value). The score is the base two logarithm of the ratio between the probability that the
query sequence is a significant match and the probability that it is generated by a random
model. The E-value represents the expected number of sequences with a score greater than or
equal to the returned HMMER bit scores. While decreasing the E-value threshold favors
finding true positives, increasing the E-value threshold favors finding true negatives. We
select the HMMER score as the criteria to define a HMM match. A search of a model with the
HMMER score greater than the threshold 7 of bit score is defined as a positive prediction, i.e.,
a HMM recognizes a PTM site. The threshold 7 of each model is decided by maximizing the
accuracy measure during a variety of cross-validations with the HMM bit score value range
from 0 to -10. For instance, Figure 2.11 depicts the optimization of the threshold of the HMM
bit scores in the model of phosphorylated serine which is catalyzed by PKA (S _PKA). The

threshold of the S PKA model is set to -4.5 to maximize the accuracy measure of the model.

09
08
07t
0.6 <
05
04 ”_,ﬁ,,

03 F
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01 b ---&--- Specificity —<— Accuracy

il R =

-0 -85 -9 B35 -8 75 7 65 -6 55 -5 45 4 2503 -25 -2 -15 -1 0500
HMM bit score threshold

Figure 2.11 The optimization of the threshold of the HMM bit score in the model of phosphorylated
serine which is catalyzed by PKA.

KinasePhos-like method was applied to 20 types of PTM with over 30 experimentally
verified PTM sites, which were learned the computational models and then adopted to
identify potential PTM sites against all Swiss-Prot proteins. The learned models were

evaluated using k-fold cross validation. To reduce the number of false positive predictions
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when the potential PTM sites were fully detected against the Swiss-Prot protein sequences,

the predictive parameters were set to ensure a predictive specificity of 100%.

2.4.3 Structural and Functional Annotations

In order to provide more effective information about protein structural and functional
annotations relevant to protein post-translational modification, a variety of biological
databases, such as Swiss-Prot [64], Ensembl [65], InterPro [66], Protein Data Bank [67], and
RESID [4], are integrated.

Protein variation is the change of amino acids in polypeptides. As shown in Table 2.6,
Swiss-Prot contributes 32,101 protein variants corresponding to 6,115 proteins, where 47
variant residues are located at the PTM sites and 267 variant residues are located surrounding
236 PTM sites (-4 ~ +4 AA). Furthermore, Single Amino acid Polymorphism (SAP) is the
amino acid variation corresponding to the genetic variation as the definition of
non-synonymous Single Nucleotide Polymorphism (SNP) in genomic sequence. The amino
acid variants may have an impact on'protein folding, active sites, or the overall solubility and
stability of a protein. SAP is the type of variation most frequently related to human diseases
[64]. Therefore, when the amino acid variatiens-eccur in the post-translational modification
sites or the surrounding residues, they'may affect the recognition of PTM sites by catalytic
kinases. 23,378 human non-synonymous single nucleotide polymorphisms (SNP) located at
7,230 Swiss-Prot human proteins were obtained from the variation part of Ensembl database

[65].

InterPro provides 1113928 entries corresponding to 247238 Swiss-Prot proteins. We
found that about 65% of Swiss-Prot annotated PTM sites are located at InterPro annotated
protein functional domains. The RESID [4] protein modifications database is integrated into
dbPTM to provide PTM related information such as mass difference, chemical formula,
enzymatic activities, literature citations, Gene Ontology (GO) cross-references, structure

diagrams, and molecular models.

The latest version of Protein Data Bank (PDB) contains 31,721 tertiary structures
corresponding to 6,806 Swiss-Prot protein entries (Table 2.6). For the proteins with known
tertiary structures, the DSSP [68] program was used to extract the true secondary structure
and solvent accessibility for those 6,808 Swiss-Prot proteins. Solvent accessibility of amino

acids residues is important for both the structure and function of proteins, especially the
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post-translational modifications studied in this investigation. Protein secondary structure is
the regular arrangement of amino acid residues in a segment of a polypeptide chain, where
each amino acid is assigned a structure state, helix (H), strand (E) or coil (C). There are 1,124

experimentally verified PTMs have the true secondary structure and solvent accessibility.

Table 2.6 List of the integrated external databases and programs for structural and functional
annotations.

Database

Name

Description

Statistics

Swiss-Prot [42, 64]

Protein variants

32,101 variants corresponding to
6,115 proteins

RESID [4]

Annotations of Post-Translational
Modification (PTM)

431 PTM annotations

InterPro [66]

Protein domain

1,113,928 entries can be
corresponded to 247,238 Swiss-Prot
entries

Protein Data Bank [67]

Protein structures

30,937 entries can be corresponded
to 10,274 Swiss-Prot proteins

Clusters of orthologous groups of

138,458 proteins form 4873 COGs in
66 genomes of unicellular organisms.
The eukaryotic orthologous groups

COG [69] . (KOGs) include proteins from 7
proteins eukaryotic genomes consisting of
4852 clusters of orthologs, which
include 59,838 proteins.
Rrogram
Name Description Version

KinasePhos [56]

Identifying Kinase-specific
phosphorylation sites

Release 1.0

DSSP [68]

Calculating the secondary structure
and solvent accessibility of residues

April 1,2000

Predicting the solvent accessibility

RVP-net [70] of residues Release 1.0
PSIPRED [21] Etrri‘i‘t‘ifrlgsg the protein secondary p 100002 45
DISOPRED2 [35] Predicting the protein disorder Version 2.1

region

Jmol®

An open-source Java viewer for
chemical structures in 3D

Release 11.2.4

Weblogo [60]

Generating sequence logo for PTM
substrates

Release 2.8.2

The programs BLASTCLUST and

Blast [71] BL2SEQ were used to remove the Release 2.2.12
redundant PTM sites
ClustalW [72] Multiple sequences alignment in Release 1.83

orthologous protein clusters

However, only ~ 4% of Swiss-Prot proteins have the known tertiary structures. For

proteins without known tertiary structures, two previously published tools, RVP-net [70],

% Jmol: http://www.jmol.org/
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PSIPRED [21] and DISOPRED [35], were applied to predict the solvent accessibility,
secondary structure and protein disorder region, respectively. RVP-net [70] presents a
feed-forward type neural network which can predict a real value ranging from 0% to 100% of
Accessible Surface Areas (ASA) for amino acid residues, based on their neighborhood
information. We applied the RVP-net program [70] to fully predict the real-valued ASA for
the amino acid residues of all Swiss-Prot proteins. By selecting a suggested threshold [70] (i.e.
25%), the residues with larger ASA values are viewed as surface residues. Moreover,
dynamically disordered regions appear to be relatively abundant in eukaryotic proteomes. The
DISOPRED server allows users to submit a protein sequence, and returns a probability

estimate of each residue in the sequence being disordered.

2.4.4 Benchmark of PTM Prediction

= Clustered groups [
PTM dataset [ .
-SP1_HUMAN
H3_HUMAN = . " SP1_MOUSE
/ H3"MOUSE =™ o g w | SP1_SHEEP
| H3_SHEEP e / " SPI_CHIMP
BLASTCLUST “H3_CHIMP — . SPI_YEAST
No (identity> 30%) e SPLECOLI -
JYes Two sequences whose identity more than 30% are clustered.
BL2SEQ _
SPL MOUSE  Pi1-n ‘,|D” Pit+n "?’2
o
Ik e Kot
No position and SP1_YEAST | ///////|///
equence?
d P P
Yes Given PTM sites Pz and Py in two proteins which are clustered
Only one item if  PTM peptide Pu = peptide P and Pi1 = Pj
was kept =>the two PTM peptides are homologous peptide, keep one.
else keep two sites.
representative data
‘ . in each k-mean cluster
, Given non-homologous
.. Non-homologous

dataset with data size N-

the N data should be clustered

into N/10 clusters by K-mean

K-mean Clustering clustering method, and choose
I one from each cluster as test

- set, the remainder as training
Training set Testset set

(nine-tenth (one-tenth Test set

dataset

Figure 2.12 Flowchart of constructing PTM benchmark dataset.

With the recent exponential increase in some PTM sites identified by mass spectrometry, the

opportunity has arisen to analyze the motifs surrounding each PTM site and use these motifs
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to identify potential PTM sites in proteins. Up to now, about 40 PTM site prediction servers
have been developed and made publicly available through the internet. Several representative
prediction servers of PTMs are show in Table 2.7 which displays the method and predictive

performance of each PTM prediction server.

Table 2.7 Several representative PTM prediction servers.

PTM type Prediction Method Predictive
Server performance
I[\;‘f;f]OGlyc SREENN Sn = 76%, Sp = 93%
Glycosylation NetNGlyc 1.0 NN N/A
DictyOGlyc [74] NN
KinasePhos [56] MDD+HMM Ac=87%
GPS [75] Group-based g, _ g7 goj, 5p = 85%
Phosphorylation Scalile
osphorylatio PPSP [76] Bayesian theory  Ac ~=88%
NetPhosK [77] NN
PredPhospho [78] SVM Ac =83%~95%
N-terminal acetylation NetAcet [79] NN Sn =75%, Sp =92%
. Ac of lysine = 67.1%
Methylation MeMo [80] SVM Ac of argine = 86.7%
Bayesian
N-acetylation on internal lysines ~ PAIIL[81] Discriminant Ac=89%
Method
Sulfation Sulfinator-[82] HMM Ac =98%
NBA-Palm [83] _have — Bayes g6,
. . Algorithm
Palmitoylation

Clustering  and

CSS-Palm [84] Scoring Strategy

Sn=82%, Sp=83%

NMT [85] Sn=95%
' —= 070
N-terminal myristoylation ﬁymi [816 ]t HMM Ac~=97%
[8%“5 oylator NN Sn= 93.8%, Sp=97.9%
Sumoylation SUMOsp [88] GPS+MotifX Ac=92.71%
Glycosylphosphatidylinositol GPI-SOM [89] NN
(GPI) anchoring big-IT [90] N/A Ac=83%

Abbreviations: Sn, sensitivity; Sp, specificity; Ac, accuracy; NN, neural network; MDD, maximal
dependence decomposition, HMM, hidden markov model; SVM, support vector machine.

A PTM benchmark comprising the experimental sites for each PTM type was built to
provide a standard for evaluating the predictive performance of various prediction tools.
Figure 2.12 shows the process for compiling the PTM benchmark, which is based on the
previous work of Chen et al. [80]. To eliminate the redundancy, the protein sequences
containing the same type of PTM sites were grouped by a threshold of 30% identity using
BLASTCLUST [71]. If the identify of two protein sequences is greater than 30%, then the
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fragment sequences of the substrates were re-aligned with BL2SEQ. If the fragment
sequences of two substrates with the same location are identical, then only one of the
substrate sequences was included in the benchmark. After the reduction of homologous
dataset, the non-homologous dataset could be further categorized into training set and test set.
Usually, one-tenth of the non-homologous dataset is extracted as the independent test set. The
remainder (nine-tenth) is defined as the training set. To avoid the biased sampling of test set,
we adopted the k-mean clustering method to cluster the non-homologous dataset into N/10
clusters, given non-homologous dataset with data size N. k-mean clustering method can let
the PTM peptide sequences that are similar to each other are clustered together. Then, select
one point from each cluster and join them into the test set. These selected points that from

each cluster are uniformly distributed. Therefore, the constructed test set could be not biased.

K-means Clustering Algorithm

The k-means algorithm (J.A. Hartigan and;M:A. Wong, 1979) is an algorithm to cluster »
objects based on attributes into: k£ pattitions,s £k < n. It is similar to the
expectation-maximization algorithm for mixtures of Gaussians in that they both attempt to
find the centers of natural clusters-in the data. It assumies that the object attributes form a
vector space. The objective it tries to’achieve 1S to minimize total intra-cluster variance, or, the
squared error function

k

V=2 20w

i=l xS,

where there are k clusters S;, i = 1, 2, ..., k and L, is the centroid or mean point of all the

points .

The most common form of the algorithm uses an iterative refinement heuristic known as
Lloyd's algorithm. Lloyd's algorithm starts by partitioning the input points into £ initial sets,
either at random or using some heuristic data. It then calculates the mean point, or centroid, of
each set. It constructs a new partition by associating each point with the closest centroid. Then
the centroids are recalculated for the new clusters, and algorithm repeated by alternate
application of these two steps until convergence, which is obtained when the points no longer

switch clusters (or alternatively centroids are no longer changed).
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2.5 Results

dbPTM integrates several databases to accumulate known protein modifications, as well as
the putative protein modifications predicted by a series of accurately computational tools.
KinasePhos [55, 56], which incorporates the profile hidden Markov model (HMM) to identify
kinase-specific phosphorylation sites, is integrated into dbPTM. Moreover, dbPTM is a
knowledge base for protein post-translational modification, which comprises the modified
sites, solvent accessibility of substrate, protein secondary and tertiary structures, protein
domains and protein variations. Literature related to PTM, protein conservations and substrate

specificity are also provided in the resource.

2.5.1 Performance of PTM Computational Models

KinasePhos-like method was applied to 20 types of PTM with over 30 experimentally verified
PTM sites, which were learned the profile hidden Markov models and then adopted to
identify potential PTM sites againsttall Swiss-Prot proteins. The profile hidden Markov
models of each PTM are constructed by HMMER package [63] (version 2.3.2); for example, a
HMM of N-linked (GIcNAc) asparagine is shown in Figure 2.13b, which is difficult for
biologist to understand what the profile HMM parameters say. Therefore, Figure 2.13a shows
the graphical representation of profile hidden;Markov model which let users understand the
framework of HMM concretely. The HMM is mainly composed of three kinds of state, such
as match state, insertion state, and deletion state. The HMM in Figure 2.13a contains nine
match states (squares labeled ml, m2, ..., m9), each of which has 20 residue emission
probabilities, shown with sequence logos. The first column of Figure 2.13b is the node
number (1 ...9) corresponding to the match state (m1 ...m9) of Figure 2.13a. Insertion states
(circles labeled 10 — 19) also have 20 emission probabilities each. Deletion states (circles
labeled d1-d9) are ‘mute’ states that have no emission probabilities. A begin and end state are
included (b,e). State transition (m->m, m->i, m->d, i->m, i->1, d->m, d->d, b->m, m->e)

probabilities are shown as arrows.
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Figure 2.13 The profile hidden Markov model of N-linked (glcNAc) asparagine.

After the evaluation of the learned models using k-fold cross validation, the parameters

of the predictive models that achieved the best predictive accuracy are listed in
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Table 2.8, which contains the number of known PTM sites, method, cross-validation method,
precision (Pr), sensitivity (Sn), specificity (Sp), accuracy (Ac). Twenty PTMs were trained
with the computational models. The parameters, including window length and HMMER bit
score, were optimized iteratively during cross-validation. The models with good predictive
accuracy will be selected to implement the PTM prediction. In contrast, those PTM models
with poor predictive performance will be improved in two ways which include changing the
machine learning method and considering other features such as secondary structure and

solvent accessibility.
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Table 2.8 Parameters and predictive performance of the PTM computational models.

No. of Window HMM
PTM Types Substrates P_TM length bit Pr. Sn. Sp. Ac
sites score
N-linked Asparagines (GIcNAc) 3019 -6~+6 > 085 098 083 091
glycosylation
Serine (GalNAc) 212 -6~+6 -5 0.80 0.85 0.79 0.82
Serine (GlcNAc) 35 -6~+16 -6 0.81 0.71 0.83 0.77
O-linked Serine (Man) 79 -6~+6 -5 0.88 0.74 0.90 0.82
alycosylation Threonine (GalNAc) 386 -6~+6 -45 081 075 0.82 0.79
Threonine (GlcNAc) 42 -6~+6 -4 0.77 0.82 0.76 0.79
Threonine (Man) 83 -6~+6 -7 0.83 0.88 0.81 0.85
Lysine (Gal) 46 -6~+6 -5 1.00 1.00 1.00 1.00
C-linked glycosylation Tryptophan (Man) 49 -6~+6 -0.5 1.00 0.98 1.00 0.99
Serine (kinase-specific) 4382 -6~+16 -55 0.88 0.84 0.88 0.86
Threonine 1030 -6~+6 -4 091 092 091 091
. (kinase-specific)
Phosphorylation Tyrosine 5
. . 901 -6~+6 0.86 0.81 0.87 0.84
(kinase-specific)
Histidine 41 -6~+46 -3 090 0.80 091 0.86
Alanine 403 0~+6 -6 0.64 0.72 0.60 0.66
Lysine 292 0~+6 -6 0.77 073 0.79 0.76
Acetylation Methionine 199 0~+6 -4 0.83 0.75 0.85 0.80
Serine 402 0~+6 -4 059 0.84 042 0.63
Threonine 58 0~+6 -6 0.85 0.53 0.90 0.71
Methylation Arg.inine 180 #.-6 ~+6 -1 097 0.78 098 0.88
Lysine 407, -6~ 16 0 0.83 0.60 0.88 0.74
N-myristoyl glycine Glycine 100, -6~ +6 -10 099 091 0.99 0.95
N-palmitoyl csteine Cysteine 58 “6~+6 -5 0.88 093 0.88 0.91
S-palmitoyl csteine Cysteine 169 ' -6~+46 -4 094 0.70 0.95 0.83
S-farnesyl cysteine Cysteine 63w -6~+6 -4 0.78 0.89 0.75 0.82
S-geranylgeranyl Cysteine 52 4%6~0 6 069 088 061 074
cysteine
Hydroxylation Prol.ine 635 -6~+6 -4 0.82 0.88 0.81 0.84
Lysine 83 -6~+6 -3 097 0.84 098 0091
Asparagine 77 -6~+6 -5 1.00 1.00 1.00 1.00
Glycine 143 -6~+6 -5 1.00 096 1.00 0.98
Isoleucine 72 -6~+6 -4 092 0.85 0.92 0.88
Amidation Leuci.ne . 263 -6~+6 -4 092 092 092 092
Methionine 88 -6~+6 -8 1.00 1.00 1.00 1.00
Phenylalanine 433  -6~+16 -1 0.97 099 097 098
Proline 95 -6~+6 -7 096 1.00 0.96 0.98
Tyrosine 88 -6~+6 -7 .00 1.00 1.00 1.00
Sulfation Tyrosine 162 -6~+6 -45 096 091 096 0.94
Sumoylation Lysine 77 -6~+6 -5 0.86 0.75 0.88 0.81
Ubiquitination Lysine 284 -6~+6 -5 0.82 0.67 0.85 0.76
Pyrrolidone Glutamate acid 598 0~+6 -4 076 069 079 0.74
Carboxylic Acid
4-carboxyglutamate Glutamate 371 -6~+6 -4 0.92 090 093 091
Nitration Tyrosine 47 -6~+6 -3 0.85 0.65 0.81 0.73
S-diacylglycerol Cysteine 36 -6~+6 > 100 094 100 097
cysteine
Average 0.87 0.82 0.86 0.84

Abbreviations: Pr., precision; Sn., sensitivity; Sp., specificity; Ac., accuracy.

49



2.5.2 Data Statistics

Table 2.9 Data statistics of dbPTM.

Number of ~ Number of
Number of utative utative
PTM types Substrates experiment P f putaty
al sites SIt?S rom sites in
Swiss-Prot dbPTM
N-linked Asparagine and lysine 3,036 72,0125 479,955
Glycosylation parag Y ’ ’ ’
O-linked ' Lysme, proline, serine, threonine, and 1.896 2,558 386,545
Glycosylation tyrosine
C-linked
Glycosylation Tryptophan 49 31 4,015
Phosphorylation ~ ocing  threonine, tyrosine, - aspartate, 22,363 27200 1,815,472
histidine or cysteine
Acetylation N—terrpmal of some residues and side chain 2,071 5,143 1,206
of lysine or cysteine
Generally at the C-terminal of a mature
Amidation active peptide after oxidative cleavage of 2,150 1,117 24,352
last glycine
Hydroxylation gz?neéally of asparagine, aspartate, proline or 1,033 1,074 9,743
Generally of N-terminal phenylalanine, side
Methylation chain .of lysine, arginine, hlst1d.1ne, 746 2.846 18,716
asparagine or glutamates and - C-tetminal
cysteine
Pyrrohdope ' N—termmal glutamlne which has| formed an 508 534 12322
Carboxylic Acid internal cyclic lactam.
Gamma-Carboxygl 1 1o mate 371 361 1,924
utamic Acid
Farnesylation Cysteine 61 216 5,349
Myristoylation Glycine 108 765 10,998
Palmitoylation Cysteine 210 3,582 27,841
Seranylgeranyla“o Cysteine 47 819 14317
S-diacylglycerol (o i cine 36 1,529 8,977
cysteine
GPI anchoring C-terminal asparagine, asparate, and serine 27 681 -
Deamidation Asparagine and glutamine (needs to be 38 2 2,022
followed by a G)
Sulfation Serine, threonine, and tyrosine 165 570 15,654
. Glycyl lysine isopeptide
Sumoylation (Lys-Gly)(interchain with G-Cter in SUMO) 77 259 10,342
Glycyl lysine isopeptide
Ubiquitylation (Lys-Gly)(interchain ~ with ~ G-Cter  in 286 516 8,865
ubiquitin)
Nitration Tyrosine 47 5 1,432
ADP-ribosylation Arginine 3 203 -
Formylation Of the N-terminal methionine 28 35 -
Citrullination Arginine 27 91 -
Bromination Tryptophan 18 3 -
FAD Tyrosine, histidine, and cysteine 12 116 -
S-nitrosylation Cysteine 9 93 -
Others 889 2,358 -
Total 36,466 124,933 2,860,047
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Table 2.9 summarizes the statistics of the experimental PTM sites and the predicted PTM sites
in the updated dbPTM. This updated dbPTM had a total of 36466 experimental PTM sites.
The experimental PTM sites obtained from Swiss-Prot, Phospho.ELM, O-GLYCBASE and
UbiProt were categorized by PTM type, and the number of non-redundant PTM sites was
calculated. For instance, the database contains 22363 experimental phosphorylation sites and
2071 experimental acetylation sites. Besides the experimental PTM sites, a machine learning
method was adopted to build predictive models for twenty types of PTM. The computational
predictions are described in detail in our previous works [19, 55, 56, 91]. These models were
used to search the potential PTM sites against Swiss-Prot protein sequences. As listed in Table

2.9, 2860047 sites for all PTM types were detected.

Table 2.10 The statistics of the putative phosphorylation sites, sulfation sites, and glycosylation
sites with different thresholds of the Accessible Surface Area (ASA) of residues.
No. of phosphorylated  No. of sulfated No. of N-linked  No. of C-linked

Accessible Surface

Area (ASA) serin_e, threonine and tyrosine glycosylgted glycosylated
tyrosine asparagine tryptophane
2 0% 1,346,067 189,457 38,416 5,478
>25% 652,756 13,315 33,836 51
> 50% 32,816 2 4,973 0
> 75% 7 0 7 0

Statistics of PTM Sites and Solvent Accessibility

The numbers of putative phosphorylation and sulfation sites, where the ASA of the
substrates are greater than 25% (defined as the residue locating at the protein surface), are
652,756 and 13,315, respectively. There are a total of 33, 887 predicted N-linked
glycosylations of asparagine and C-linked glycosylations of tryptophan.

Statistics of PTM Sites and Referable Literatures

PTM profile, which annotates the PTM sites and related literatures, can help biologist to
understand the relationship between the protein function and PTMs. With the comprehensive
annotation of PTMs from dbPTM, the experimentally verified and computational detected
PTMs of a protein can be provided to users. However, the relationship between protein
function and PTMs is not understood while only provide the PTM sites. Thus, the related
literatures about the protein and PTMs are extracted from literature databases and integrated
in PTM profiles. In release 51.2 of Swiss-Prot knowledgebase, there are totally 490,996

literatures against 243,975 proteins. Based on searching keyword in literature titles, the

51



number of literatures about several common PTMs is listed in Table 2.11. Users not only get
the PTM information, but also look into the relationship between PTM sites and protein

functions. There are totally 490,996 literatures against 243,975 proteins.

Table 2.11 The statistics of literatures extracted from release 55.0 of Swiss-Prot knowledgebase in
several common PTMs.

No. of No. of

PTM type Keyword literatures  proteins

Glyco, glycosylation, glycosylated,
Glycosylation O-linked, N-linked, C-linked, 1,793 1,422
carbohyd, carbohydrate
Phospho, phosphorylated ,

Phosphorylation 5,944 4,177

phosphorylation
Acetylation Acetyl, acetylated, acetylation 992 842
Methylation Methyl, methylated, methylation 310 222
Palmitoylation Palmitoyl, palmitoylated, 171 146
palmitoylation
Myristoylation Myr.l stoyl, myrlstoylated, 109 103
myristoylation
. Hydroxyl, hydroxylated,
Hydroxylation hydroxylation 121 105
Amidation Amid, amided, amidation 380 358
Deamidation Deamidation 32 24
Nitration Nitrated, 'S-Nitresylation, nitration 40 40
Ubiquitination i T R 450 316
ubiquitination
Sumoylation SUMOj; sumoylated,'Sumoylation 132 102
Sulfation Sulfo, sulfated, sulfation 72 62
Glycosylphosphatidylinositol GPI, GPI-anchor, GPI-anchoring 219 141

(GPI) anchor

2.5.3 Data Access

To facilitate the use of the dbPTM resource, we developed a website for users to browse and
search for content. As depicted in Figure 2.14, the database can be queried using the protein
name, gene name, Swiss-Prot ID or accession, the input of protein sequences for homology
search against Swiss-Prot protein sequence database. Both tabular and graphical visualizations
of the experimental and predicted PTM sites are displayed, revealing an overview of the
post-translational modification sites, solvent accessibility, protein variations, protein
secondary structures and protein functional domains in a protein sequence. A summary table
shows the details of all PTM types, and the number of PTM sites categorized by substrate

amino acid.
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Protein Name
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@ Search by Database ID Species
SwissProt ID|w Taonomy 3, EULEIE0MOA, MAmMata; EUtheria

iidae, Homo
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Tissue Specificity

Gene Onoiegy
@ Search by Protein Sequence (7AS7A format)
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(Crypbc locwegulator 4).
3 Secondary
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Figure 2.14 Search interface of dbPTM.

]

Substrate Specificity Investigation

Substrate specificity is the preference of amino acids surrounding the modification sites,
which is usually investigated for the identification of particular modification type. To provide
the substrate specificity in each type of PTM in detail, the experimentally validated sites in
each type of PTM were initially categorized by amino acid types of the substrates. For
instance, protein phosphorylation sites can be categorized into subgroups of serine, threonine,
tyrosine and histidine. Given a window length n, the fragment of 2n+1 residues centering on
PTM site (position 0) is extracted, and the positional frequencies of amino acids are calculated
and presented as sequence logos [60], allowing the sequence entropy to be computed by
summing over the height of the letter stacks along the sequence positions. The structural
information, such as solvent accessibility and secondary structure surrounding the modified
sites, are adopted to calculate the positional solvent accessibility and the matrix of positional

secondary structure.

As indicated in Figure 2.15, users can choose the acetylation of lysine (K), for instance,
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to obtain more detailed information, including the position of the modified amino acid, the
location of the modification in protein sequence, the modified chemical formula and the mass
difference. The Jmol program generates the visualization of the formula structure. In
particular, the subcellular localization distribution of proteins with acetyllysine was provided
to investigate the relationship between them. Furthermore, the sequence logo presents the
substrate site specificity, including the composition of amino acid surrounding the
modification site [60]. All the experimental PTM sites and putative PTM sites are available

and downloadable in the web interface. The PTM benchmark for computational studies is also

downloadable.
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Figure 2.15 Browse interface of dbPTM.

Orthologous Conserved PTM Sites

Moreover, the Clusters of Orthologous Groups of proteins (COGs) [69] was integrated to
observe whether a PTM sites located in the conserved regions of protein orthologous

sequences. The alignment of the protein sequences in each cluster is provided in the resource.
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In Figure 2.16, an experimentally verified acetyllysine located in a protein-conserved region
indicates an evolutionary influence in which orthologous sites in other species could be

involved in the same type of PTM.

Locations : . i Orthologous
NTaliheatan Cat.alyl:lc Secondary Sulvtanli Saitice 1olog
(AA) Sites Shructure Accessilibity Protein Cluster
2 Phosphoarginine (Potential) -——ARTEQT ———CCCCCo 55.07 SwissProt
[ Phosphothreonine (by PEC) RTKQTARES cocoeccce 29.85 Predicted
= NE-methyllysine QTARESTGE CCCCCCCCC 50.32 SwissProt
10 Phogphoserine (by PEG) TARESTGGE CCCCCCCeo 27.08 Predicted
11 Phosphothreonine (by PEC) ARESTGGEA CCCCCCCCo S3ueh Predicted
14 NE-acetyllysine STGGKAPRK COCCCCCCC 37.47 SwissProt
23 NE-acetyllysine QLATEAARE [ealalalalaletes 34,15 SwissProt | show
27 H6-methyllysine KEARKSAFR  COCCOCCCC 46,36 SwissFrot
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Figure 2.16 Example of PTM site located in orthologous conserved region.

2.5.4 Characteristics

The proposed server enables both wet-lab biologists and bioinformatics researchers to easily
explore the information about protein post-translational modifications. dbPTM not only
accumulates the experimentally verified PTM sites with relevant literature references, but also
computationally annotates twenty types of PTM sites on Swiss-Prot proteins without any
previously annotated PTM sites. As indicated in Table 2.12, the proposed knowledge base
provides effective information relating to each type of PTM, including orthologous conserved
regions, relationship between PTMs and subcellular localization, and the substrate specificity
such as the frequency of amino acids, the average solvent accessibility and the frequency of

secondary structure surrounding the modified site. Moreover, the proposed PTM benchmark
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can be adopted to compare the predictive performance of various tools involved in the same

type of PTM prediction, based on the same testing set.

Table 2.12 Advances and improvements in current dbPTM.

Features

dbPTM [19]

dbPTM update

Protein entry

Swiss-Prot (release 46)

Swiss-Prot (release 55)

Experimental PTM Swiss-Prot, Phospho.ELM, and Swiss-Prot, Phospho.ELM,
resource O-GLYCBASE O-GLYCBASE, and UbiProt

About 25 types of PTM
Computationally Phosphorylation, glycosylation, gﬁ}ft% ?;1;)ra}llclzz?olzii%lgcosylatlon,
predicted PTMs and sulfation ’ Y ’

methylation, sumoylation,
hydroxylation, etc.)

Experimental structural
properties

Protein Data Bank (PDB)

Protein Data Bank (PDB)

Computational
structural properties

RVP-net and PSIPRED

RVP-net and PSIPRED

PTM annotation

RESID (373 PTM annotations)

RESID (431 PTM annotations)

Protein domain

InterPro

InterPro

Protein variation

Swiss-Prot and Ensembl

Swiss-Prot and Ensembl

Swiss-Prot, Phospho.ELM,

PTM literature none O-GLYCBASE, and UbiProt
Amino acid frequency, solvent
e accessibility, and  secondary
Substrate specificity none structure surrounding modified
sites
Protein clusters none COG and ClustalW
Providing the benchmark of PTM
PTM Benchmark none test . get to comparing the
predictive performance base on
the same dataset
Relationship between Analyzing the relationship
PTM and subcellular none between PTM and subcellular
localization localization

Graphical visualization

PTM, solvent accessibility,
secondary  structure, protein
variation, protein domain, and
tertiary structure

PTM, solvent accessibility,
secondary  structure, protein
variation, protein domain, tertiary
structure, orthologous conserved
regions and  substrate  site
specificity
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2.6 Summary

The proposed resource, dbPTM, not only integrates the experimentally validated
post-translational modification information, but it also computationally annotates the
Swiss-Prot proteins for putative phosphorylation, glycosylation and sulfation sites.
Furthermore, the PTM related protein structural properties and functional information, such as
solvent accessibility of amino acid residues, protein variations, protein secondary structures,
protein tertiary structures and protein domains, are provided to facilitate the research of
protein post-translational modifications. dbPTM also provides comprehensive and effective
PTM information about substrate specificity and their roles in biological systems. The PTM
benchmark has much potential to become a performance evaluation standard for
computational studies of protein post-translational modification. Previous investigations have
indicated that many protein modifications create binding sites for specific protein-protein
interaction domains to regulate cellular behavior [92]. As shown in Figure 2.17 [92],
interaction domains often recognize short peptide.motifs that are embedded in target proteins,
but do not bind stably until the peptide hasjaequired an appropriate PTM. Such domains
usually have a conserved binding pocket for the modified residue and a more variable surface
that selectively engages the flanking amino acids, and thereby distinguishes between different
peptide motifs with the same PTM6-9. Both the domains and the peptide motifs that they
recognize are modular in design and can therefore, in principle, be incorporated into many
different proteins. Future work of dbPTM will combine information about protein-protein

interaction domains, such as InterDom [93].
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Figure 2.17 Example post-translational modification reactions and structures of
protein-interaction-domain—ligand complexes (Seet, B.T., et al., 2006).
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Chapter 3 Identification of Kinase-Specific

Phosphorylation Sites

3.1 Introduction

Protein phosphorylation, which is an important reversible mechanism in post-translational
modifications, is involved in many essential cellular processes including cellular regulation,
cellular signal pathways, metabolism, growth, differentiation, and membrane transport [59].
Phosphorylation of substrate sites at serine, threonine, and tyrosine residues of eukaryotic
proteins is performed by members of the protein kinase family. Additionally, phosphorylation
on histidine plays an important role in signal transduction in prokaryotes known as
two-component histidine kinase [94]. It is estimated that one-third of proteins are
phosphorylated and around half of kinome are disease- or cancer-related by chromosomal

mapping [95].

Protein kinase Consensus sequence and phosphorylated residue”

Protein kinase A -X-R-(R/K)-X-(S/T)-B-

Protein kinase G -X-R-(R/K)-X~(S/T)-X-

Protein kinase C ~(R/K)-(R/K)-X-(S/T)-B-(R/K)-(R/K)-

Protein kinase B “X-R-X~(S/T)-X-K-

Ca®*/calmodulin kinase | -B-X-R-X-X-(S/T)-X-X-X-B-

Ca®™/calmodulin kinase || B-X~(R/K)-X-X-(S/T)-X-X-

Myosin light chain kinase (smooth muscle) -K-K-R-X-X-S-X-B-B-

Phosphorylase b kinase -K-R-K-Q-1-S-V-R-

Extracellular signal-regulated kinase (ERK) -P-X-(S/T)-P-P-

Cyclin-dependent protein kinase (cdc2) -X-(S/T)-P-X-(K/R)-

Casein kinase | ~(Sp/Tp)-X-X-(X)-(S/T)-B

Casein kinase |l -X-(S/T)-X-X-(E/D/Sp/Yp)-X-

B-Adrenergic receptor kinase -(D/E),~(S/T)-X-X-X-

Rhodopsin kinase X-X~A(S/T)~E)-

Insulin receptor kinase -X-E-E-E-Y-M-M-M-M-K-K-S-R-G-D-Y-M-T-M-Q-I-G-K-K-K-
[-P-A-T-G-D-Y-M-N-M-S-P-V-G-D-

Epidermal growth factor (EGF) receptor kinase -E-E-E-E-Y-F-E-L-V-

Figure 3.1 Consensus sequences for protein kinases (Lehninger et al., 2005).

The Ser, Thr, or Tyr residues that are phosphorylated in regulated proteins occur within
common structural motifs, called consensus sequences, that are recognized by specific protein
kinases (Figure 3.1) [6]. Some kinases are basophilic, preferring to phosphorylate a residue

having basic neighbors; others have different substrate preferences, such as for a residue near
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a Pro residue. Primary sequence is not the only important factor in determining whether a
given residue will be phosphorylated, however. Protein folding brings together residues that
are distant in the primary sequence; the resulting three-dimensional structure can determine
whether a protein kinase has access to a given residue and can recognize it as a substrate.
Another factor influencing the substrate specificity of certain protein kinases is the proximity

of other phosphorylated residues.

With the recent exponential increase in protein phosphorylation sites identified by mass
spectrometry (MS), many researches are undertaken to identify the kinase-specific
phosphorylation sites using consensus sequences. Our previous work, KinasePhos 1.0,
incorporated profile hidden Markov model (HMM) for identifying kinase-specific
phosphorylation sites prediction, whose overall predictive accuracy is about 87% [55, 56].
Recently, version 2.0 of KinasePhos incorporated the protein coupling pattern as a feature for
training computer models for identifying phosphorylation sites [91]. In this work, we propose
a new method that incorporates support vector machine (SVM) with protein structural
information such as surface accessibility; secondary structure and protein disorder region for

identifying phosphorylation sites.
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Figure 3.2 Structural environment of reversible modifications (Pang et al., 2007).
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Structural Properties of Phosphorylated Sites

A side chain of amino acid that undergoes enzymatic modification needs to be accessible on
the surface of protein [15]. Several works have been proposed the links between the
post-translational modifications and their solvent accessible surface area. Pang et al
investigated the structural environment of 8378 incidences in 44 types of post-translational
modifications [15]. As shown in Figure 3.2 [15], the structural environment of reversible
modifications indicated that protein phosphorylation prefers to occur in regions that are
intrinsically disorder and easily accessible. The information of surface accessibility, disorder
region, and linker/domain are computationally annotated by several published programs,
including ASA [16], GOR [17] and RVP-net [18] for surface accessibility, RONN[19] and
DISEMBL [20] for disorder, PSIPRED [21] for secondary structure, and George et al. [22] for

linker/domain.

i . \\ Target protein
in substrate-

binding site

Active (triply phosphorylated)
TyT kinase domain

Figure 3.3 Phosphorylated insulin-receptor Tyr kinase (PDB: 11R3) (Lehninger et al., 2006).

It has been observed that protein phosphorylation prefers to occur in regions that are
intrinsically disorder and easily accessible, as an example of phosphorylated insulin-receptor
Tyr kinase (PDB: 11R3) in Figure 3.3. In other study, the solvent accessibility has been used to
aid the detection of phosphorylation, glycosylation, and tyrosine sulfation sites, whose
residues with solvent accessibility above a threshold are identified as surfaced modification
sites [19]. Arthur et al. incorporated homology modeling of protein tertiary structure and
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solvent accessibility calculation of predicted structure for identifying phosphorylation sites
[96]. As a result, the preference of surface accessibility could provide the useful indication for

the prediction of protein methylation.

In order to investigate the preference of solvent accessible surface area (ASA)
surrounding phosphorylation sites in tertiary structures, the collected experimental
phosphorylation sites should be mapped to the correct position of protein entries in Protein
Data Bank (PDB) [67]. The preference of secondary structure surrounding phosphorylation
sites is also taken into account. DSSP [68] is a database of secondary structure assignments
(and much more) for all protein entries in the Protein Data Bank (PDB). DSSP also provides
the program for calculating the solvent accessibility and standardizing secondary structure of
PDB entries. Table 3.1 lists the mapping hits of phosphorylated residues between Swiss-Prot
and PDB in detail, which composed of 1078 serines, 404 threonines, and 432 tyrosines. In the
case of phopshoserine, there are 77.3% of phosphorylated sites located in coil region, 17.5%
sites were observed in helical region, and 5.2% located in sheet. As given in Table 3.1, the
average percentage of solvent accessible:surface atea for phosphoserine is 34.9%. Moreover,

the flanking positions -4, -3, +1, +2, and +3-have highersurface accessibility.

In the case of phosphothreonine, out of 404 phosphorylated sites covered by the PDB
hits, of the 68.6% sites are observed in coil regions, 12.8% sites are observed in helical
regions, and 18.6% are in sheet regions. The average percentage of accessible surface area for
phosphorylated threonine is 33.0%, which is higher exposed to surface than flanking regions.
In phosphotyrosine, out of 432 phosphorylated sites covered by the PDB hits, of the 42.5%
sites are observed in coil regions, 27.3% sites are observed in helical regions, and 30.2% are
in sheet regions. The average percentage of accessible surface area for phosphorylated

threonine is 28.3%, which is slightly exposed to surface.

Although the number of experimental phosphorylated sites which locate in the protein
regions with tertiary structure is not enough to be investigated the preferences of solvent
accessibility and secondary structure in each kinase group, it seems that protein
phosphorylation site prefers to occur on the exposed and coil regions. Even though
phosphorylated sites may not always be in surface-accessible regions, surface-accessible

amino acids would have a higher likelihood been modified.
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Table 3.1 The statistics of structural information in phosphorylated serine, threonine and tyrosine.

Phosphorylated residue

Serine

Threonine

Tyrosine

Number of experimental
phosphorylated sites with
PDB structure

1,078

404

432

Sequence logo of amino
acids surrounding
phosphorylated sites

Distribution of secondary
structure on phosphorylated
site

17.5% helix, 5.2% sheet, 77.3% coil

12.8% helix, 18.6% sheet, 68.6% coil

27.3% helix, 30.2% sheet, 42.5% coil

Sequence logo of secondary
structure surrounding

H=helix E=Sheet C=Coil

(eeoceeoace

H=helix E=Sheet C=Coil
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H=helix E=Sheet C=Coil
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3.2 Related Works

In this section, several common machine learning methods which have been frequently used
to phosphorylation site prediction are described over here. Following, some representative

prediction servers of protein post-translational modifications are listed and briefly introduced.

3.2.1 Machine Learning Methods

Machine learning is programming computers to optimize a performance criterion using
example data or past experience. In bioinformatics, machine learning is usually referred to
classification which learns predictive model from training data sets for distinguishing between
different exemplars based on their differentiating patterns. Several common machine learning
algorithms such as k-Nearest Neighbor (KNN), decision three, Bayesian decision theory
(BDT), neural network (NN), hidden Markov model (HMM), and support vector machine
(SVM) are described as follows.

k-Nearest Neighbor (KNN)

Arguably the simplest method is the k-Nearest Neighbor classifier (Cover and Hart, 1967).
Here the k points of the training data clesest.to the test point are found, and a label is given to
the test point by a majority vote between the k points. This method is highly intuitive and
attains — given its simplicity — remarkably low classification errors, but it is computationally

expensive and requires a large memory to store the training data.

Decision Tree

Another intuitive class of classification algorithms are decision trees. As shown in Figure 3.4,
these algorithms solve the classification problem by repeatedly partitioning the input space, so
as to build a tree whose nodes are as pure as possible (that is, they contain points of a single
class). Classification of a new test point is achieved by moving from top to bottom along the
branches of the tree, starting from the root node, until a terminal node is reached. Decision
trees are simple yet effective classification schemes for small datasets. The computational
complexity scales unfavorably with the number of dimensions of the data. Large datasets tend

to result in complicated trees, which in turn require a large memory for storage. The C4.5
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implementation by Quinlan (1992) is frequently used and can be downloaded at

http://www.rulequest.com/Personal.

Does 1t have

Do its adults
have gills?

Does it have
feathers?

Does it
live all its life
on land?

Bird Mammal Fish

T

Yes N

Reptile Amphibian

Figure 34 An example of decision tree.

Bayesian Decision Theory (BDT)

Bayesian decision theory is a fundamental statistical approach to the problem of pattern
classification. This approach is based on quantifying the tradeoffs between various
classification decisions using probability and the costs that accompany such decisions. It
makes the assumption that the decision problem is posed in probabilistic terms, and that all of
the relevant probability values are known. Suppose that we have an unclassified data x that
belongs to one of two certain categories: C/ (defined as phosphorylation sites) and C2
(defined as non-phosphorylation sites). Suppose that we know both the prior probabilities
P(Cj) and the conditional densities p(x|Cj ). In addition, the posterior probability of x for these

two categories can be denoted as: p(Ci|x) and p(C:|x), which are called Bayes’ formula:

p(x|CHP(C))

MO =0

where in this case of two categories
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p(X)ZZP(XIC,-)P(Cj)-

Then the probability of wring prediction is:

C |x),xeC
P(err0r|x)=p( 1) :
p(C, | x),x e C,

To minimize the expectation of error probability that is defined as [97]:
P(error) = J P(error | x) p(x)dx

It is obvious that one should choose the more probable category as the prediction result,

which can be formulated by the Bayesian Decision Rule:

G, if P(C [x)>P(C, [ x)

predict x as )
C,, otherwise

Furthermore, by definition the loss function A(e, | C,), where o, i = 1,2 is the finite set of

possible solution. Thus, the expected loss (risk)-of taking action i is:
2
R(afx) = Aa; | C)PC, | x)
=1

In this condition, the goal of optimization-becomes to minimize the overall risk for every x.
Similar to the rationale of Bayesian Decision Rule, we can obtain the best performance by
computing R(ai |x) for each solution ai and choose that for which has the minimal overall risk

[97].

Neural Network (NN)

Neural network (NN) is one of the most commonly used approaches to classification.
Artificial neural network (ANN) is a computational model inspired by the connectivity of
neurons in animate nervous systems [98]. A simple scheme for ANN is shown in Figure 3.5
[98]. Each circle denotes a computational element referred to as a neuron, which computes a
weighted sum of its inputs, and possibly performs a nonlinear function on this sum. If certain
classes of nonlinear functions are used, the function computed by the network can
approximate any function (specifically a mapping from the training patterns to the training

targets), provided enough neurons exist in the network and enough training examples are
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provided.

Input
signals

Hidden Neurons Output layer

Figure 3.5 A schematic diagram of artificial neural network. Each circle in the hidden and output layer
is a computation element known as a neuron (Haykin et al., 1999).

ANN is capable of classifying highly: complex and nonlinear biological sequence
patterns, where correlations between positions-are important. Not only does the network
recognize the patterns seen during-training, but.it also retains the ability to generalize and
recognize similar, though not identical pattérns. Artificial neural network algorithms have
been extensively used in biological sequence analysis. An artificial neural network library

ANNLIB [99], which were implemented in C program language, is available.

Hidden Markov Model (HMM)

A hidden Markov model (HMM) is a statistical model in which the system being modeled is
assumed to be a Markov process with unknown parameters, and the challenge is to determine
the hidden parameters from the observable parameters. The extracted model parameters can
then be used to perform further analysis, for example for pattern recognition applications. A
HMM can be considered as the simplest dynamic Bayesian network. The key idea is that an
HMM is a finite model that describes a probability distribution over an infinite number of
possible sequences. The HMM is composed of some number of states, which might
correspond to positions in a three-dimensional structure or columns of a multiple alignment.
Each state “emits” symbols (residues) according to symbol emission probabilities, and the
states are interconnected by state tramsition probabilities. Starting from initial state and a

sequence of states is generated by moving from state to state according to the state transition
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probabilities until an end state is reached. Each state then emits symbols according to that

state’s emission probability distribution, creating an observable sequence of symbols.

The state path is a Markov chain, meaning that what stat we go to next depends only on
what state we’re in. Since we’re only given the observed sequence, this underlying state path

is hidden - these are residue labels that we’d like to infer. The state path is a hidden Markov

chain, whose probability P(S,7|{HMM,0) that an HMM with parameters 6 generates a

state path 7 and an observed sequence S is the product of all the emission probabilities and
transition probabilities that were used. Why are they called hidden Markov models? The
sequence of states is a Markov chain, because the choice of the next state to occupy is
dependent on the identity of the current state. However, this state sequence is not observed; it
is hidden. Only the symbol sequence that these hidden states generate is observed. The most
likely state sequence must be inferred from an alignment of the HMM to the observed

sequence.

|
80
60

A A
7m2 7

4 A
Figure 3.6 An example of small profile HMM representing a short multiple alignment of five
sequences with three consensus columns (Eddy et al., 1998).
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Hidden Markov models now provide a coherent theory for profile methods, namely
Profile hidden Markov models (profile HMMs) [63], which are statistical models (maximum
likelihood) of multiple sequence alignments. They capture position-specific information about
how conserved each column of the alignment is, and which residues are likely. An example of
small profile HMM is shown in Figure 3.6 [63]. The three columns are modeled by three
match states (squares labeled ml, m2, and m3), each of which has 20 residue emission
probabilities, shown with black bars. Insert states (diamonds labeled i0 - i3) also have 20

emission probabilities each. Delete states (circles labeled d1-d3) are ‘mute’ states that have no
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emission probabilities. A begin and end state are included (b,e). State transition probabilities

are shown as arrows.

Support Vector Machine (SVM)

Support vector machine (SVM) [100] is a useful technique for data classification. A
classification task usually involves with training and testing data which consist of some data
instances. Each instance in the training set contains one “target value” (class label) and
several “attributes” (features). The goal of SVM is to produce a model which predicts target
value of data instances in the testing set which are given only the attributes. The basic concept
of SVM is to transform the samples into a high dimensional space and find a separating

hyperplane with the maximal margin between two classes in the space (Figure 3.7).

Kernel Function (b

\
Hyperplane

Input Space Higher Space

Figure 3.7 Basic concept of support vector machine.’

Basically, SVM is a binary classifier. Given training vectors xi, i = 1, ..., / and a vector y

defined as: yi= 1 if xi is in class I, and yi= -1 if xi is in the class II. The support vector

technique tries to find the separating hyperplane w'x, +b=0 with the largest distance

between two classes, measured along a line perpendicular to this hyperplane, which require

the solution of following optimization problems (Figure 3.8):

7 The figure was obtained from http://www.imtech.res.in/raghava/rbpred/svm.jpg
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i
mbirg%wTw+CZ§i subjectto y, (W @(x,)+b)>1-&,, & >0,
" i=1

Here training vectors xi are mapped into a higher dimensional space b the function ¢.

Constraints y,(w'@(x,)+b)>1-¢, allow that training data may not be on the correct side of

the separating hyperplanew’ x, +5=0. Then SVM finds a linear separating hyperplane with
the maximal margin in this higher dimensional space. C is the penalty parameter of the error
term to be optimized. Furthermore, K (x,.,xj)5¢(xl.)T #(x,) is called the kernel function.

Four basic kernel functions are listed as follows:

® Linear: K(x,,x;)= xiij
®  Polynomial: K(x,,x,)=(, x, +7)*,y >0
. . . 2
®  Radial basis function (RBF): K(x;,x;) = exp(—y”xi -X /H ),y >0
e Sigmoid: K(x,,x,)=tanh(x, X, +7)

Here,y, r, and d are kernel parameters. Most commonly used kernel functions are RBF

kernel.

i
|
| ®
| @
| e ©
| O
| .
~ L
I o O O g w\\x\ir b>0
| T O " " .
I wx+b<( R ) Maximized Margin
L S

Figure 3.8 Principle of hyperplane in support vector machine. *

Recently, SVM has been successfully applied in solving many biological problems, such

as predicting protein subcellular localization [101], protein secondary structures [102], tumor

¥ The figure was obtained from http://www.imtech.res.in/raghava/rbpred/
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classification [103] and phosphorylation sites [78], which shown to be an effective machine
learning method. A public SVM library, namely LIBSVM [104], was available at
http://www.csie.ntu.edu.tw/~cjlin/libsvim/.

Boosting

The basic idea of boosting and ensemble learning algorithms in general is to iteratively
combine relatively simple base hypotheses — sometimes called rules of thumb — for the final
prediction. One uses a so-called base learner that generates the base hypotheses. In boosting
the base hypotheses are linearly combined. In the case of two-class classification, the final
prediction is the weighted majority of the votes. The combination of these simple rules can
boost the performance drastically. It has been shown that Boosting has strong ties to support
vector machines and large margin classification (R"atsch, 2001, Meir and R"atsch, 2003).
Boosting techniques have been used on very high dimensional data sets and can quite easily
deal with than hundred thousands of examples. Research papers and implementations can be

downloaded from http://www.boosting:0re.

3.2.2 Phosphorylation Site Prediction

With the recent exponential increase in protein phosphorylation sites identified by mass
spectrometry (MS), many researches are undertaken to identify the kinase-specific
phosphorylation sites. The summary of tool name, reference, material, method, number of
kinase group, and predictive performance of the previously developed phosphorylation site
prediction tools is shown in Table 3.2. Our previous work, KinasePhos 1.0, incorporated
profile hidden Markov model (HMM) for identifying kinase-specific phosphorylation sites
prediction, whose overall predictive accuracy is about 87% [55, 56]. Version 2.0 of
KinasePhos incorporated support vector machine (SVM with )the protein coupling pattern for
identifying phosphorylation sites [91]. NetPhos [57] developed neural networks to predict
phosphorylation sites on serine, threonine and tyrosine residues; however, it cannot provide
information on the kinases involved and NetPhosK [77] applied an artificial neural network
algorithm to predict 17 PK groups-specific phosphorylation sites. DISPHOS [58] took
advantage of the position-specific amino acid frequencies and disorder information to
improve the discrimination between phosphorylation sites and non-phosphorylation sites.

Scansite 2.0 [105] identified short protein sequence motifs that are recognized by modular
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signaling domains, phosphorylated by protein serine/threonine, tyrosine kinases or mediate
specific interactions with protein or phospholipid ligands. PredPhospho [78] predicts
phosphorylation sites limited to four protein major kinase families, such as CDK, CK2, PKA
and PKC, and four protein kinase groups (AGC, CAMK, CMGC and TK) with predictive
accuracy 83-95% and 76-91%, respective. GPS [75, 106], is a group-based phosphorylation
site predicting and scoring platform which clustered the 216 unique protein kinases in 71
groups. PPSP [76] developed an approach based on Bayesian decision theory for predicting
the potential phosphorylation sites accurately for around 70 protein kinase groups. PHOSIDA
[45], incorporated support vector machine with surface accessibility and evolutionary
conservation, made 91.75%, 81.06%, and 76.19% accuracies in serine, threonine, and tyrosine,
respectively. Recently, a proficient meta-predictor [107] adopted weighted voting strategy to
organize and process the predictions produced by several other predictors, including GPS,

KinasePhos, NetPhosK, PPSP, PredPhospho and Scansite.
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Table 3.2 List of the previously developed phosphorylation site prediction tools.

Proposed predictive performance

Tool Reference Material Feature Method  Kinase group
Overall PKA PKC CK2
NetPhos Blom et al., 1999 PhosphoBase sequence ANN - Sn=69%~96% - - -
Swiss-Prot+TrEM PSSM
. Obenauer et al., .
Scansite 2003 BL+ sequence (motif-based -
Genpept+Ensembl service)
predicted protein . . _ro
Lakoucheva et al., Swiss-Prot+Phosp disordered region LOgISt.IC Serine AC 76? 0
DISPHOS regression - Threonine Ac=81% - - -
2004 hoBase and secondary .  on0
models Tyrosine Ac=83%
structure
BPNN. dedision BPNN: Ac=89.65+1.64,
rBPNN Berry et al., 2004 PhosphoBase sequence treq ;BBFNN - rBBFNN:Ac=87.77+1.05 - - -
3 C4.5: Ac=90.43+2.03
. Plewczynski etal.,  Swiss-Prot (12 Precision > 70% (12 Sn=41% Sn=17% Sn=11%
AutoMotif 2005 types of PTM) sequence SVIp ; types of PTM) Pre=75%  Pre=83% Pre=53%
. . Ac=89.98%  Ac=82.9% Ac=91.47%
PredPhospho °nga{{“;01§m ot SWISSﬁgg’;:thSP sequence SVM 4 Ac=76-91% Sn=88.32%  Sn=78.71%  Sn=83.9%
? Sp=91.11%  Sp=85.79% Sp=96.43%
Swiss-Prot, Sn = 849
NetPhosK Blom et al., 2004 PhosphoBase, sequence ANN 17 _mzo ’ - - -
. Sp =76%
PhosphoSite
Feng-Feng Zhouet  PhosphoBase, Clustering or Sn =94.44% i )
GPS al., 2004 Phospho.ELM sequence Segmentation 7 Sp=97.14% j
Serine Ac = 86% . _ _
KinasePhos  Huang et al., 2005 PhosphoBase, sequence MDD + HMM 18 Threonine Ac = 91% Sn B 0.91 Sn B 0.80 Sn B 0.87
Swiss-Prot . oo Sp=0.86 Sp =0.87 Sp=0.85
Tyrosine Ac = 84%
kNN measured
. . Sn=~87.36% Sn=~67.88%
Lietal. Li et al., 2005 PhosphoBase sequence by (li\;lsegl;l?;tan - - Sp=-99.07% Sp=-99.16%
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— 0, — 0
ppsp YU X“E/lztr;ll 2006 ppospho.ELM sequence BDT 68 Na nggg:g%‘j Na ggzgigg(ﬁ
. simplified _
pkaPS Neuberger et UniProttPhospho. sequence kinase-substrate Na Sn:~96% Na Na
al.,2007 January ELM . Sp=~94%
binding model
. . Serine Ac =90% _ _ _
KinasePhos =~ Wong, Lee etal., Swiss-Prot+Phosp Sequence + . a0 Sn=0.92 Sn=0.84 Sn =0.87
2.0 2007 hoELM  coupling pattem SVM 58 Threonine Ac=93% o089 sp-0.86 Sp = 0.86
' ) Tyrosine Ac = 88% ) ) )
S: Ac=81.3~81.8%,
Sn=80.5~80.9%,
Sp=82.7~83.5% T:
Ac=77.5~81.2%,
GANNPhos  Tang et al., 2007 Phospho.ELM sequence GA+NN Sn=74.3~77.6%, Na Na Na
Sp=83.1~86.4% Y:
Ac=74~80.2% ,
Sn=72.5~76.6%,
Sp=77.3~85.6%
. . Sn=14% Sn=6%
AutoMotif 2.0 Plewczzy(r)lgl;l ctal, Uml;ro'F(06.2OO7)+ sequence SVM - Precision > 90% Precision=86 SnfS.% _1nno, Precision=80
wiss-Prot o Precision=100% o
Gnad. Ren et al SequencetASA+ Serine Ac =91.75%
PHOSIDA ; ' PHOSIDA evolutionary SVM - Threonine Ac = 81% - - -
2007 ) . -
conservation Tyrosine Ac =76.2%
voting from
GPS,
Swiss-Prot+Phosp KinasePho, Sn=88.3% Sn=77.3% Sn=87.8%
MetaPredPS  Ji wan et al.,2008 hoSite+ - NetPhosk, - - Sp=82.8% Sp=79.1% Sp=90.4%
Phospho.ELM PPSP, Ac=85% Ac=78.4% Ac=89.3%
PredPhospho,
Scansite

Abbreviation: ANN, artificial neural networks; BPNN, back propagation neural network; PSSM, position-specific scoring matrix; SVM, support vector machine; MDD,
maximal dependency decomposition; HMM, hidden Markov model; KNN, k-Nearest Neighbor; BDT, Bayesian decision theory; GA, genetic algorithm; ASA, accessible

surface area; Ac, accuracy; Sn, sensitivity; Sp, specificity; Pre, precision.
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KinasePhos 1.0

The known phosphorylation sites from public domain data sources are categorized by their
annotated protein kinases. Based on the concepts of profile Hidden Markov Model (HMM),
computational models are learned from the kinase-specific groups of the phosphorylation sites.

The Maximal Dependence Decomposition (MDD) [62], employs statistical y>-test to group

an set of aligned signal sequences to moderate a large group into subgroups that capture the
most significant dependencies between positions, was adopted to group the phosphorylation
site sequences of each kinase group with data size more than 50. Based on k-fold
cross-validation and Jackknife cross-validation, the average predictive accuracy of
phosphorylated serine, threonine, and tyrosine are 86%, 91%, and 84%, respectively. After
evaluating the learned models, we select the model with highest accuracy in each
kinase-specific group and provide a web-based prediction tool for identifying protein
phosphorylation sites. The main contribution here is that we develop a kinase-specific
phosphorylation site prediction tool with both high sensitivity and specificity. The proposed

web server is freely available at http://KinasePhos.mbe¢.nctu.edu.tw/.

KinasePhos
\ "
C B Preprocessing Serine O |;
Te—— . ; . + Constructing positive sets and PKA (232 . _m. min
Experimentally validated , Xk X
e g negative sets Py
Data sources | Phosphorylation sites from + Large data sets are clustered PR
PhosphoBase and Swiss-Prot by Maximal Dependence "
~—_ - > Decomposition (MDI)
1
- - 2 #3 (6)
Making non-redundant Phosphorylation sites
training sets decomposition

1 i

S

Learning

e - wdels ™
Lbdl'lllllg models | +  Models are trained by HMMER

% *  Models are calibrated by HMMER
aramete -
P 7 ; i _[ > + Models are evaluated by k-fold cross-validanon (posinve set
i OptlII]lZ&thll size >= 30) ad leave-one-out cross-validation (positive sel
. size < 30)
v ]
E a]llfftlm':l +  Score threshold of each model 15 optinuzed
(cross-validation) /

S
@ Prediction of kinase-specific phosphorylation sites
] »  Users mput protein sequences

¢ Users specify the preferences of protein kinases

* Users specify the score threshold

Web interfaces

4

Figure 3.9 The system flow of KinasePhos 1.0.
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KinasePhos 2.0

This work proposed a kinase-specific phosphorylation site prediction server which
incorporates support vector machines (SVM) with two features, i.e., protein sequence profiles
surrounding the modified sites and coupling patterns surrounding the modified sites [91]. The
coupling pattern of proteins, which is firstly used for analyzing the protein thermostability
[108]. Protein coupling pattern is a novel feature used for identifying phosphorylation sites.
The coupling pattern [XdZ] denotes the amino acid coupling-pattern of amino acid types X
and Z that are separated by d amino acids. The differences or quotients of coupling strength
Cxqz between the positive set of phosphorylation sites and the background set of whole
protein sequences from Swiss-Prot are computed to determine the number of coupling
patterns for training SVM models. After the evaluation based on k-fold cross-validation and
Jackknife cross-validation, the average predictive accuracy of phosphorylated serine,
threonine, tyrosine and histidine are 90%, 93%, 88% and 93%, respectively. KinasePhos 2.0
performs better than other tools previously developed. The proposed web server is freely

available at http://KinasePhos2.mbc.nctuiedu.tw/.

KinasePhos 2.0
Data Preprocessing Phosphoserine
) Experimentally validated
Phosphorylation phosphorylation sites from Sﬂfg%b B S
- — — i eyitis

SULIECES Phospho. ELM and Swiss-Prot A ek

Making non-redundant Kinase-specific ) i ! :
> x . .. 4k 5.
training set clustering L EB_ - Il ¥ T R =_s!_g,k_.E__ 4 --F»'.«‘TSP- -
i S ) RS CTMAPE
ﬂ Feature Extraction
coupling
The top ranks of coupling KRRDSQPSK s R B strength
1mtte1‘1'1s [Xa¥] in training Protein RGDQSFRTE [RsQ] P_{j—?S—:: v RRgQ
set against the background sequence RRRISUS s R s T
set are extracted for (Swiss-Prot) HRLDSZRHK "o Semo- P(Q)
training SVM model LRDsEELL RS RRE R : : i
LRRGSORYK —-R-80-—- | RR:Q is the probability of [R3Q]
P(Q) is the probability of Q
ﬂ Model Training and Evaluation
MD('(‘::{\'};""'g — Prec.= TP/ (TP+FP) | [ i
Sn. =TP / (TP+FN) e B : T
Evaluation Sp. =TN/(TN+FP) E
T (cross-validation) Acc. =(TP+TN)/ o H
(TP+FP+TN+FN) | ™ ﬂ: gz il
Parameter o <
optimization S SR A

Figure 3.10 The system flow of KinasePhos 2.0.
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3.3 Motivation and The Specific Aim

Protein phosphorylation is a ubiquitous and important post-translational modification,
responsible for modulating protein function, stability, localization, and cellular signaling
network. Experimental identifications of kinase-specific phosphorylation sites on substrates in
vivo and in vitro are the foundation of understanding the mechanisms of phosphorylation
dynamics and important for the biomedical drug design. However, these experiments are often
time-consuming, labor-intensive, and expensive. Thus, in silico prediction of phosphorylation
sites with high predictive performance could be a promising strategy to conduct preliminary
analyses and could heavily reduce the number of potential targets that need further in vivo or

in vitro confirmation.

We propose a method, namely KinasePhos, which incorporates support vector machine
(SVM) to construct the computational models for identifying the kinase-specific
phosphorylation sites. It has been observed that protein phosphorylation prefers to occur in
regions that are intrinsically disorder and easily accessible. Not only protein amino acids, but
also the structural information such as secondary structure, solvent accessibility and protein
disorder region were used for analysis. The constructed models were evaluated based on
k-fold cross-validation. Moreover, the independent.test set, which was constructed based on
the proposed benchmark, was used to‘evaluate whether the constructed model over-fitted the
training set. With the highly predictive performance of kinase-specific phosphorylation sites, a
better understanding of relationships between protein kinases and substrates will be facilitated

and engineered to analyze the therapeutic usefulness.
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3.4 Materials and Methods

Figure 3.11 depicts the system flow of the proposed method, which consists of four major
analyzing processes such as data preprocessing, feature extraction and coding, model training
and evaluation, and independent test. The detailed descriptions are illustrated in following

subsection.

Data Preprocessing

dbPTM . PKA PKC Abl
(Phospho.ELM : Rr S I s v g Y
& Swiss-Prot) IR IR I RS e T
v
‘ Non-homologous positive and negative datasets ‘ one-tenth ‘

v

‘ Balanced positive and negative datasets (nine-tenth) ‘

Feature Extraction ﬂ
ASA . Disorder SS
Lanabne || FRRODRRR
- |

| Feature coding (for LibSVM) |

Model Training & Evaluation ﬂ

| | HARUILU | |

| Training models (LibSVM ) |
Parameter . Evaluation
optimization ) (cross-validation)
Independent Test @

The independent test set is used to test the model trained with the
parameters and features which reach the best accuracy

Figure 3.11 The system flow of kinase-specific phosphorylation site prediction.

3.4.1 Data Preprocessing

The experimentally validated phosphorylation sites are extracted from version 7.0 of
Phospho.ELM [49] and release 55.0 of UniProtKB/Swiss-Prot [48], containing totally 16525

experimental phosphorylation sites within 5484 proteins and 24328 experimental
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phosphorylation sites within 8606 proteins, respectively. After removing the redundant data
between Phospho.ELM and Swiss-Prot, the number of serine (S), threonine (T), and tyrosine
(Y) phosphorylated sites are 22640, 4982, and 3175, respectively, as given in Table 3.3. It
notices that the sum of serine, threonine, and tyrosine is not equal to total number of
phosphorylation sites because there are several phosphorylation sites located on other kinds of

residue.

Table 3.3 The statistics of phosphorylation sites obtained from Phospho.ELM and Swiss-Prot.

Number of Number of phosphorylation sites
Data source ~ Version phosphorylated . Threonine  Tyrosine
proteins Serine (S) (T) (Y) Total
Phospho.ELM 7.0 5,484 12,082 2,361 2,081 16,525
Swiss-Prot * 55.0 8,606 18,320 3,982 2,003 24,328
Combined 90966 22,640 4982 3,175 30818

(non-redundant)

29 <¢

*The entries which contain residues annotated as “phosphoserine,” “phosphothreonine,” and
“phosphotyrosine” in the “MOD_RES” field jare. extracted and the entries annotated as “by
similarity,” “potential,” and “probable”:are excluded.

The collected experimental phesphorylation sites are further categorized according to the

annotations of catalytic kinases.
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Table 3.4 shows the number of phosphorylated serine, threonine, and tyrosine in each
kinase-specific group. The kinase-specific groups whose data size is more than ten are
selected to construct the computational models. Otherwise, the kinase groups whose data size
is smaller than ten are used to construct the positional weighted matrix for scan the

phosphorylation sites.
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Table 3.4 Statistics of non-redundant kinase-specific phosphorylation sites in Swiss-Prot and

Phospho.ELM.

Kinase family

Number of

Number of substrate site

phosphoprotein  Total Serine  Threonine Tyrosine
Protein kinase A(PKA) 286 458 401 56 1
Protein kinase C(PKC) 274 485 403 80 2
Casein kinase 2(CK2) 192 368 305 61 2
Mitogen-activated protein
kinasge “(MAPK) p 192 333 230 103 0
Cell Division Control 2 (CDC2) 138 328 167 161 0
Cyclin dependent kinase (CDK) 82 153 91 62 0
CaM kinase 2 (CAMK?2) 77 119 91 28 0
protein Kinase B(PKB) 79 114 91 23 0
Ataxia telangiectasia mutated(ATM) 63 102 94 8 0
Casein Kinase 1(CK1) 52 101 73 27 1
Glycogen synthase 3 kinase (GSK) 50 87 62 35 0
G protein-coupled receptor kinase(GRK) 27 85 59 26 0
p21-activated kinase (PAK) 37 59 51 8 0
Aurora kinase (Aurora) 28 57 46 11 0
Phosphoinositide-dependent protein
kinasf; DK) p p 28 54 23 31 0
Ribosomal S6 Kinase(RSK) 38 51 49 2 0
Polo-like kinase (PLK) 21 50 36 14 0
I kappa B kinase(IKK) 16 49 48 1 0
cGMP-dependent protein kinas (PKGQG) 26 47 37 10 0
Rho-associated protein kinase (ROCK) 25 41 14 26 1
AMP-activated protein kinase(AMPK) 28 38 35 3 0
MAP kinase-activated protein kinase
(MAPKAPK) P 20 36 32 4 0
Beta Adrenergic Receptor Kinase
(BARK) & P 17 35 19 16 0
DNA dependent protein
kinase(DpNA—PK; Y 35 19 16 0
Mammalian STE20-like kinase (MST) 32 34 15 19 0
Checkpoint kinase 2 (CHK?2) 11 33 24 9 0
Checkpoint kinase 1 (CHK1) 7 16 13 3 0
MAP kinase kinase (MAP2K) 14 30 7 14 9
CaM kinase 1 (CAMK1) 22 26 22 4 0
Death-associated protein kinase (DAPK) 15 24 11 13 0
Serum and Glucocorticoid Resposive
Kinase (SGK) b 13 24 18 6 0
MAP kinase kinase kinase (MAP3K) 14 22 6 16 0
Phosphorylase kinase(PHK) 11 20 18 2 0
LKB1 kinase (LKB) 18 20 1 19 0
Serine/threonine-protein kinase IPL1
(PL1) P 14 19 16 3 0
Interferon-induced, double-stranded 6 17 7 10 0
RNA-activated protein kinase (PKR)
FKBP12-rapamycin-associated protein
(FRAP) paty P 5 15 6 9 0
p21-activated kinase 2 (PAK2) 9 15 13 2 0
Mitogen- and stress-activated protein
kinas% (MSK) i > 12 12 0 0
Protein Kinase D 9 13 10 3 0
NimA-Related Kinase (NEK) 7 13 8 5 0
Microtubule Affinity Regulating Kinase 4 10 10 0 0
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(MARK)

Myosin Light Chain Kinase (MLCK) 7 10 5 5 0
Dual-specificity Tyrosine Regulated

Kinase (DYRK) 1 13 7 0 6
Proto-oncogene tyrosine-protein kinase 101 171 0 0 171
Src (Src)

Epidermal growth factor receptor

(EGFR) 29 67 0 0 67
Lymphocyte specific protein tyrosine

kinase(LCK) 36 o4 6 > >3
Abl Protein Tyrosine Kinase (Abl) 39 56 0 0 56
Proto-oncogene tyrosine-protein kinase

FYN (Fyn) 31 56 0 0 56
Spleen tyrosine kinase (SYK) 22 51 0 0 51
Tyrosine-protein kinase LYN (Lyn) 28 50 0 0 50
Janus kinase (Jak) 22 46 0 0 46
Insulin Receptor kinase (InsR) 14 46 0 0 46
platelet derived growth factor receptor

(PDGFR) 12 32 0 0 32
Insulin-like growth factor I receptor

(IGFIR) 7 31 0 0 31
Met proto-oncogene tyrosine kinase

(MET) 6 31 0 0 31
Tec protein tyrosine kinase family (Tec) 14 30 0 0 30
Fibroblast growth factor receptor

(FGFR) 8 30 0 0 30
Anaplastic lymphoma kinase (ALK) 22 0 0 22
Ephrin receptor (EPH) 13 22 0 0 22
C-SRC kinase (CSK) 11 22 0 0 22
Vascular Endothelial Growth Factor

Receptors (VEGFR) 4 23 0 0 23
Tyrosine-protein kinase ZAP-70

(ZAP70) 9 20 0 0 20
Insulin receptor (IR) 12 18 2 2 14
Bruton's tyrosine kinase (BTK) 8 18 0 0 18
Hemopoietic cell kinase (Hck) 12 17 2 3 12
Focal adhesion kinase (FAK) 12 15 0 0 15
Proto-oncogene tyrosine-protein kinase 3 14 0 0 14
receptor ret (Ret)

TRK transforming tyrosine kinase

protein (TRK) 4 13 0 0 13
Discoidin Domain Receptor kinase

(DDR) 11 13 0 0 13
Integrin Linked Kinase (ILK) 9 11 0 0 11
Proto-oncogene tyrosine-protein kinase

Fes/Fps (Fes) 3 o 0 0 ?
Proto-oncogene tyrosine-protein kinase

FGR (Fgr) 4 8 0 0 8
Platelet-derived growth factor, FMS 5 8 0 0 8
(Fms)

Non-receptor tyrosine-protein kinase 5 g 0 0 8
TYK2 (TYK2)

Proto-oncogene tyrosine-protein kinase 4 6 0 0 6

YES (YES)
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The combined experimental verified phosphorylation sites (non-redundant) are defined
as the positive data set. On the other hand, the serine, threonine and tyrosine, which are not
annotated as phosphorylated sites within the experimental validated phosphorylated proteins,
are defined as the negative data set. However, the positive data set may contain several
homologous sites among orthologous proteins. To avoid the overestimation of predictive
performance, the positive data set was further removed the homologous sequences with a
given window size 2n+1 (from upstream n to downstream n residues centering the
phosphorylated site) among orthologous proteins, where n varies from 4 to 10. Referred to the
homology reduction of MeMo [83], two phosphorylated protein sequences with more than
30% identity were specified to re-aligne the fragment sequences with residues of window
length 2n+1 centered on modified sites using BL2SEQ. If two fragment sequences were
similar with 100% identity, and the phosphorylated sites from the two proteins were at the
same position corresponding whole protein, then only one site was kept, while the other one

was discarded. The homology reducing process was also carried out on negative data set.

After the homology reduction, randomly sampled nine-tenth of the non-homologous
positive datasets is defined as the positive-training;set.”To avoid the skew classifying ability
for positive or negative set, the-balanced negative training set is extracted from the
non-homologous negative datasets. However, the negative training set, if is randomly selected
in one time, may be not random sampling enough. Therefore, thirty negative training sets are
constructed by randomly extracting from the non-homologous negative datasets. The average
predictive performance of the thirty sets of training data is calculated after cross-validation.
On the other hand, randomly sampled one-tenth of the non-homologous positive datasets is
defined as the positive independent test set. The negative independent test set is also randomly
sampled from the non-homologous negative datasets, which is balanced to positive
independent test set. Sometimes, the trained model can classify the training data very well, but
not effective for the independent test set. It might indicate that the trained model is over fitting
for the training data. Thus, the constructed independent test set not only can be used to
evaluate the predictive performance of the trained model, also can be used to measure whether
the trained model is over fitting for the training data. To avoid the skew sampling of

independent test set in one time, the independent test is executed in ten rounds.
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3.4.2 Feature Extraction and Coding

Since the flanking sequences (position -5 ~ +5) of the phosphorylation sites (position 0) are
graphically visualized as sequence logos [61], the conservation of amino acids in the
phosphorylation sites can be observed. 11-mer sequences (-5 ~ +5) of kinase-specific

phosphorylation sites are extracted and constructed as training sets.

This study not only takes the flanking amino acids (AA) as the training feature, but also
takes the solvent accessible surface area (ASA) and secondary structure (SS) surrounding the
phosphorylated sites into account. The fragment of amino acids with window length 2n+1
centered on phosphorylated site are extracted from positive and negative training sets. An
orthogonal binary coding scheme is used to transform amino acids into numeric vectors,
which is the so called 20-dimensional vector coding. For example, glycine is encoded as
“10000000000000000000,” alanine is encoded as “01000000000000000000,” and so on. The
number of feature vector representing the flanking amino acids surrounding phosphorylated
site 1s (2n+1) x 20. Different values of # varying from 4 to 10 are used to determine the
optimized window length. Furthermore, thepositional weighted matrix (PWM) of amino
acids surrounding the phosphorylated sites is calculated for four phosphorylated residues by
using non-homologous training data. The positional weighted matrix (PWM) is the relative
frequency of amino acids in a position surrounding the phosphorylated sites, which is also

used to encode the fragment sequences.

Because most of the experimental phosphorylated proteins don’t have the corresponded
protein tertiary structures in PDB, an effective tool, named RVP-Net[18, 70], is used to
compute the ASA value based on protein sequence. The computed ASA value is the
percentage of accessible surface area for each amino acid on protein sequence. RVP-net
incorporated the neural network to predict real value of ASAs for residues based on
neighborhood information, which could reach 18.0 — 19.5% mean absolute error, defined as
per residue absolute difference between the predicted and experimental values of relative
ASA.[18] The full-length protein sequences with experimental phosphorylated sites are
inputted to RVP-Net to compute the ASA value for all residues. The ASA values of amino

acids surrounding the phosphorylated site are extracted and scaled in 0 to 1.

In the investigation of secondary structure surrounding the phosphorylated sites,
PSIPRED][21] is used to compute secondary structure based on protein sequence. PSIPRED is

a simple and reliable secondary structure prediction method, incorporating two feed-forward
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neural networks which perform an analysis on output obtained from PSI-BLAST (Position
Specific Iterated - BLAST) [71]. PSIPRED 2.0 achieved an average Qs score of 80.6% across
all 40 submitted target domains with no obvious sequence similarity to structures present in
PDB, which ranked PSIPRED top out of 20 evaluated methods[109]. The output of PSIPRED
includes three symbols “H,” “E” and “C” which stand for helix, sheet and coil, respectively.
The full-length protein sequences with phosphorylated sites are inputted to PSIPRED to
determine the secondary structure for all residues, respectively. The orthogonal binary coding
scheme is used to transform three symbols of secondary structure into numeric vectors. For

example, helix is encoded as “100,” sheet is encoded as “010,” and coil is encoded as “001.”

3.4.3 Model Learning and Evaluation

There are mainly four types of features such as amino acid (AA), secondary structure (SS),
accessible surface area (ASA) and disorder region (DIS) been evaluated the discriminatory
power between phosphorylated and non-phosphorylated sites. The support vector machine
(SVM) is applied to create the computational models with the encoded amino acids and
structural features, secondary structure and accessible surface area. With the binary
classification, the concept of SVM-is mapping the input samples onto a higher dimensional
space through a kernel function, and. then secking a hyper-plane that discriminates the two
classes with maximal margin and minimal error. A public SVM library, namely LibSVM [110],
is adopted to train the predictive model with the positive and negative training sets which are

encoded according to different types of training features. Radial basis function (RBF)

K(S;,S;)= exp(—;/HSl. - SJ,HZ) is selected as the kernel function of SVM.

Referred to previous work, KinasePhos [55], incorporated profile hidden Markov models
(HMMs) for identifying kinase-specific phosphorylation sites. It shows that the HMM can
perform accurate prediction for phosphorylation sites. Therefore, HMMER [63] is used to
train the HMMs from the fragments of amino acids surrounding the phosphorylated sites. An
HMM describes a probability distribution over a potentially infinite numbers of sequences,
which can be used to detect distant relationships between amino acid sequences. The emission
and transition probabilities of HMM are generated from the positive training set to capture the

characteristics of the phosphorylated sites.

To evaluate the predictive performance of the trained models, k-fold cross-validation is

85



performed on phosphorylated lysine and arginine, and Jackknife cross-validation is adapted to
phosphorylated glutamate and asparagine whose data size is smaller than 30. The following

measures of predictive performance of the trained models are defined:

Precision (Pre) = _r ,
TP + FP
. P
Sensitivity (Sn) = ——,
TP + FN
o N
Specificity (Sp) = —,
P y 5p) TN + FP
Accuracy (Ac) = TP+ TN ,
TP+ FP+TN + FN

where TP, TN, FP and FN are true positive, true negative, false positive and false negative,

respectively. Matthews Correlation Coefficient (MCC) is defined as

_ (TRXTEN)—(FN x FP)
J(TP+ FN)X(TN +FP)x (TP~+ FP)x (TN + FN)

MCC

Because there are thirty negative training sets, the average precision, sensitivity, specificity,
accuracy, and MCC are computed for each model-trained with different window lengths and
features. Moreover, the parameters of'the predictive-models, including window length, the
cost value and gamma value of the SVM models, and bit score of HMM models, are
optimized for achieving the best predictive accuracy. Finally, the window size and features
that achieve the highest accuracy are adopted to construct the prediction models for

independent test.

3.4.4 Independent Test

The prediction performance of the trained models might be overestimated because of the
over-fitting for training set. To estimate the real prediction performance, about one-tenth part
of the non-homologous data set are randomly selected as the independent test set, which will
be used to evaluate the predictive performance of the trained models which reach the best
accuracy based on the cross-validation. Because the number of training set in several
kinase-specific groups is not efficient, the independent test set is constructed only for the

groups that contain more than 10 phosphorylated sites. However, the performance of
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independent test may be good by chance. To avoid the skew sampling of independent test set,
the process of independent test is executed in ten rounds. Therefore, the construction of
positive and negative training set, feature extraction, model training and evaluation, and
independent test are implemented in ten rounds. The average performance of independent test
will be computed. The independent test sets of lysine and arginine are not only adopted to test
our method but also used to test other previously proposed protein phosphorylation prediction
tools. Moreover, the experimentally verified phosphorylation sites with catalytic kinase from
Human Protein Reference Database (HPRD) [51] are used to evaluate the predictive

performance of the constructed models.

3.5 Results

In this section, the structural preferences of each kinase-specific group are investigated in
detail. The predictive performances of cross-validation and independent test are discussed for
each kinase-specific group. Finally, the.selected models with highest predictive accuracy are

used to implement a predictive system for protein kinase-specific phosphorylation sites.

3.5.1 Structural Investigation-of Phosphorylation Sites

Previous studies have already shown that phosphorylation sites are mainly located in parts of
proteins without regular structure [26, 58]. To verify this observation on the basis of
large-scale studies and to enable users to investigate the structural properties of each
kinase-specific group of interest, we employed several tools to large-scale analysis. The
structural propensity of phosphorylated site was compared to non-phosphorylated site. The
flanking amino acids of the non-redundant combined phosphorylated sites are graphically
visualized as sequence logo, which can be easily investigated the conservation of amino acids
surrounding the phosphorylated sites. WebLogo [60, 61] is used for creating the graphical
sequence logo for the relative frequency of the corresponding amino acid at each position
surrounding the phosphorylated sites, with a given window -n ~ +n (position 0 is the
phosphorylated site). Figure 3.12 shows that the amino acids surrounding phosphorylated
sites have higher conservation than non-phosphorylated sites. Moreover, the amino acids
surrounding the phosphorylation sites in each kinase group are listed to investigate the

kinase-specific substrate specificity.
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Non-phosphorylated Serine, Threonine, and Tyrosine

| o

[=

Figure 3.12 Comparison of flanking amino acids between phosphorylated and non-phosphorylated
sites.

Structural Investigation of Kinase-spécific Phosphorylation Site

Due to various types of the annotated catalyti(.: i(jnase, the investigation of structure features,
such as surface accessibility, secondary structure-and intrinsic disorder regions, are presented
for each kinase-specific group. Table 3.5 lists seéveral common kinase-specific groups,
including PKA, PKC, PKB, ATM, CaMK2, CDK, CDC2, CK1, CK2, MAPK, Aurora, Abl,
EGFR, InsR, and Src, due to the abundance of enough experimental verified data. The
flanking amino acids of the non-redundant combined phosphorylated sites categorized by
their catalytic kinase are graphically visualized as sequence logo, which can be easily
investigated the conservation of amino acids surrounding the phosphorylated sites. WebLogo
[60, 61] is used for creating the graphical sequence logo for the relative frequency of the
corresponding amino acid at each position surrounding the phosphorylated sites, with a given

window -5 ~ +5 (position 0 is the phosphorylated site).

As the representation of sequence logo, there are obvious conserved amino acids
surrounding the modified sites in most kinase-specific groups. In the case of serine/threonine
kinase groups, for example, PKA group have enriched arginine (R) in position -2 and -3,
which get the same consensus motif in Figure 3.1 [6]. Group PKB, CaMK2, and Aurora also
have the enriched arginine surrounding the phosphorylated sites. PKC group have slightly

enriched arginine surrounding the phosphorylated sites. Several kinase groups are
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proline-directed phosphorylated sites, such as CDK, CDC2, and MAPK. Moreover, ATM
kinase is involved in glutamine (Q) in position +1. Although Figure 3.1 shows that the InsR
and EGFR have consensus motifs, in the case of tyrosine kinase groups. However, most of

them have no obvious conserved amino acids surrounding the phosphorylated sites.

Due to the number of experimental phosphorylated sites which are located in the protein
regions with tertiary structure of PDB [67] is not sufficient, RVP-Net [18, 70], PSIPRED [21],
and DISOPRED?2 [35] are used to compute the ASA value, secondary structure, and intrinsic
disorder region based on protein sequence, respectively. The average percentage of ASA,
sequence logo of secondary structure, and average percentage of disorder region within
11-mer window (-5 ~ +5) are also shown in Table 3.5. In the investigation of solvent
accessibility, most of the methylated sites are located in the highly accessible surface area,
besides the methylated asparagines. The average solvent accessible surface area surrounding
the methylated lysine is highly similar to the observation in protein tertiary structure. In the
observation of secondary structure surrounding the phosphorylated sites, most of the

phosphorylated sites are likely occurred.on coil (1oop,).
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Table 3.5 Structural features of kinase-specific groups.

. Number of . . Average surface .
Kinase Description phosphorylated Amino acids of accesgibility of Secondary structure  Average disorder rate
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*The statistics of phosphorylated sites is the non-redundant experimentally verified phosphorylation sites extracted from Phospho.ELM and
UniProtKB/Swiss-Prot.

92



3.5.2 Predictive Performance
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Figure 3.13 Predictive accuracy of PKA, PKC, CK2, CDK, Src and EGFR models trained with
different training features, based on various window sizes.

To investigate what kinds of window length and feature can be adopted to construct the model

which achieves the best prediction performance in each kinase-specific group, the models

trained with different window lengths and various features are evaluated based on k-fold

cross-validation. There are four major types of features which are including amino acid (AA),

accessible surface area (ASA), secondary structure (SS), and intrinsic disorder (DIS). The

feature of amino acids surrounding the phosphorylated sites is encoded with 20-dimensional

vector and positional weighted matrix, which are named “AA(20D)” and “AA(PWM),”

respectively. The features of accessible surface area and secondary structure are encoded with

the ASA values and 3-dimensional vector, respectively. Figure 3.13 illustrates the predictive

accuracy of the models trained with different training features, based on various window sizes
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2n+1, where n varies from 4 to 10. Especially, the feature of amino acids surrounding the
phosphorylated sites is also trained with profile hidden Markov model. Investigating into the
models trained with individual features, the model trained with ASA values performs slightly
better than the models trained with SS or DIS in overall kinase groups, whose amino acids
surrounding the phosphorylated site are not conserved. In general, the kinase-specific model
trained with AA performs strongly better than the model trained with ASA, and the model
trained with SS performs worst. In PKA, PKC, CK2 and CDK groups, the performance of the
model trained with AA is usually better than the model trained with ASA, SS and DIS,
because their flanking amino acids are conserved. However, the performance of the model
trained with AA in Src and EGFR groups is not absolutely better than ASA, SS, or DIS,
because the amino acids surrounding the phosphorylated site are not highly conserved. As you
can see, the performance of the model trained with SS is generally worst. As far as various
window sizes are concerned in each kinase group, the predictive accuracy is increased with

window size increasing from 4 to 10.

The predictive performance of the . model trained with the combination of AA, ASA, SS
and DIS features is also evaluated. As previous illustration, the feature of ASA can perform
higher than 70% accuracy on most kinase groups. Therefore, the models trained with the
combination of AA and ASA can perform better-than the model trained individually with AA
or ASA. However, the predictive accuracy of themodel trained with the combination of
AA(20D) and ASA is not better than the model trained individually with ASA. Because
AA(20D) encoding method is 20 times the number of dimensions in ASA, the weight of AA
feature is higher than ASA features in phosphorylation prediction. Thus, the predictive
performance is mainly dominated by the AA feature. On the other hand, the number of
dimensions in AA(PWM) is equal to ASA, which makes the weight of ASA and AA balanced
in the classification between phosphorylated and un-phosphorylated sites. The average
cross-validation performance of the models trained with different window sizes and features
which achieve the highest accuracy are listed in Table 3.6. The training features which achieve
the highest accuracy is the combination of AA(PWM) and ASA. To consider the overall
performance of the models trained with different window sizes, -6 ~ +6 is selected as the
feasible window size for the four phosphorylated residues. The average precision, sensitivity,
specificity, accuracy and Matthews Correlation Coefficient of the models trained with the
selected features and window sizes are given in Table 3.6. The overall predictive accuracy of

the kinase-specific groups is 89.6%.
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Table 3.6 Average cross-validation performance of several common kinase-specific groups with training features which reach highest accuracy.

Kinase Kinase Number of - .
non-homologous Training features Window length Pre (%) Sn(%) Sp (%) Acc (%) MCC
type group o
training set

PKA 373 AA+ASA+SS+DIS -5 ~+5 91.2 89.4 91.0 90.2 0.82

PKC 386 AA+ASA -6 ~+6 87.1 80.8 86.2 83.5 0.67

CK2 299 AA+SS -6 ~+6 87.9 87.1 88.1 87.6 0.75

MAPK 286 AA+ASA -4 ~+4 93.9 90.2 93.2 91.7 0.83

Serine/ CDC2 172 AA+ASA+DIS -5 ~+5 93.1 88.2 92.6 90.4 0.71
threonine CDK 105 AA+ASA -5~+45 97.1 92.7 96.3 94.5 0.89
kinase PKB 98 AA+ASA S5~+5 91.4 91.9 91.5 91.7 0.83
CaMK?2 94 AA+DIS -6 ~+6 82.7 77.9 84.3 81.1 0.62

ATM 90 AA -4 ~+4 98.9 96.1 98.1 97.1 0.94

CK1 87 AA+DIS -8~ +8 74.2 77.2 75.6 76.4 0.53

Aurora 49 AA+ASA -5~ a5 80.2 78.1 81.1 79.6 0.59

Src 142 AA+ASA -9 ~+49 77.0 77.1 76.7 76.9 0.54

Tyrosine Abl 48 AA+ASA -8 ~+8 73.8 72.8 74.0 73.4 0.47
kinase EGFR 55 AA+ASA+DIS -10~ +10 74.8 78.7 75.5 77.1 0.54
InsR 41 AA+SS+DIS =9 ~+9 75.0 77.4 75.2 76.3 0.53

Abbreviation: AA, amino acid; ASA, accessible surface area; SS, secondary structure; DIS, disorder; Pre, precision; Sn, sensitivity; Sp, specificity; Acc,
accuracy; MCC, Matthews Correlation Coefficient.
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3.5.3 Predictive Performance of Independent Test

Based on the proposed benchmark of constructing the training data and test data, nine-tenth
part and one-tenth part of experimental data of several kinase groups which contain more than
50 experimental phosphorylation sites are defined as the training set and independent test set,
respectively. After the evaluation of cross-validation, the independent test sets are used to
evaluate whether the constructed models are over-fitting for their training data. As given in
Table 3.7, the number of test set, precision, sensitivity, specificity, and accuracy in each
kinase group are listed. In general, kinase groups with enough training data, such as PKA,
PKC, CK2, and MAPK, will perform robustly for classifying phosphorylation sites from
non-phosphorylation sites. However, CaMK2, CK1, and EGFR perform worse than the

cross-validation accuracy in 10%.

Table 3.7 Performance of independent test in several common kinase-specific groups.

Number of Number of

Kinase positive test set negative test set i Sn Sp Acc
PKA 41 41 86:4 92.7 85.4 89.0
PKC 44 44 89.7 79.5 90.9 85.2
PKB 11 11 100 90.9 100 95.4
ATM 9 9 100 100 100 100

CaMK?2 10 10 75.0. 60.0 80.0 70.0
CDK 11 11 100 90.9 100 95.4

CDC2 19 19 88.9 84.2 89.5 86.8
CKl 9 9 63.6 77.8 55.6 66.7
CK2 34 34 82.9 85.3 82.4 83.8

MAPK 32 32 90.3 87.5 90.6 89.1

Aurora 5 5 66.7 80.0 60.0 70.0

Abl 5 5 80.0 80.0 80.0 80.0

EGFR 6 6 66.7 66.7 66.7 66.7

Src 16 16 73.3 68.7 75.0 71.9

Abbreviation: Pre, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy.

The average performance of the independent test is slightly worse than the performance
of cross-validation. If the performance of independent test is strongly worse than
cross-validation, it indicates that the constructed model may be over fitting for the training
data. This independent test shows that the constructed models may be not over fitting to the
training data. The independent test sets of several representative kinase groups are also used

to test other phosphorylation site predictors.
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3.5.4 Web-based Prediction Tool

After evaluating the trained models for identifying kinase-specific phosphorylation sites, the
model with the highest predictive accuracy for each data set was selected. To facilitate the
investigation of protein kinase and their substrate, the proposed method was implemented as a
web-based system for users to search their interested proteins. Sometimes, biologist only
understands that a protein was phosphorylated, due to the time-consuming and lab-intensive
experimental identification, the precise phosphorylated sites on the substrate still remain to be
verified. Therefore, an effective prediction server can help them to focus on several potential
sites efficiently. 101 kinase groups containing at least 10 experimental phosphorylation sites
were selected to implement the web-based prediction tool. Moreover, the catalytic kinase of
each identified phosphorylation site is provided to wusers. Users can submit their
uncharacterized protein sequences and select the kinase-specific models for predicting
phosphorylated serine, threonine, and tyrosine. As depicted in Figure 3.14, the web server
locates the predictive phosphorylation sites and the involved catalytic protein kinases. The
system efficiently returns you the spredicted results including phosphorylated position,
flanking amino acids, and ASA values which are predicted by RVP-Net. Furthermore, users
can choose different threshold for phosphorylation prediction based on predictive sensitivity.
Moreover, users can download the predicted results‘with tab-delimited format for further
analyses. The web server can accurately-and" efficiently predict the kinase-specific

phosphorylation sites in the input protein sequences.

SlUbmission L
|GP1BB_HUMAN
Pasle a single sequence or several sequences in FASTA | Locations | Phosphorylated HMM i | Catalytic Predictive Models
(AB) Sites Bit Score Valte | Kinases | pmme TG
GALSLL . 2 21 HMM
Submif a file in FASTA format directly frorn your lacal disk RUsLSL 2 S S

Predict on: @ Serine(S) M Threonine(T) M Tyrasine(Y) s

Kinase : [cAMP-dependent protein kinase (PKA) =l i RTAAST . oot
HMM bit score > F by default

Submit Clear fields

HMM

Protein kinase C (PKC)

cAMP-dependent protein kinase (PKA)

Casein kinase 11 (CK11)

Cyclin-dependent kinase (CDK)
Calmodulin-dependent protein kinase 11 (CaM-11)
cGMP-dependence protein kinase (PKG)

Casein kinase | (CK1)

Cell division cycle protein kinase p34cdc2
Mitogen-activated protein kinase (MAPK) ol
Ataxria telangiectasia mutated kinase (ATM) SRS
IkappaB kinase (1KK)
Protein kinase B (PKB) VLTGNNLTAL FPGLLDALFL LRTAHLGANF URCDCRLVFL RAWLAGRFER LPYRDLRCVA 120
Epidermal growth factor receptor (EGFR)
Tyrosine kinase Src

Insulin receptor (INSR) RARARALRARL SLTDPLVAER AGTDES 206
Abelson murine leukemia virus oncoprotein (AbI) |  ———m—---- S
Spleen tyrosine kinase (Sy0 | T S
Janus kinase (Jak)

CaM-IT

PEALRGRLLF YLAEDELRAL CAPGPLCUGA LAAQLALLGL GLLEALLLVL LLCRLRRLRE 180

Figure 3.14 Web interface of KinasePhos.
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3.6 Discussions

3.6.1 Kinase-specific Groups with Similar Consensus Motif

In order to assess the cross predictive specificity of the kinase-specific models containing the
similar substrate site motifs, we take a particular group as the positive set and the other groups
as the negative sets one by one. The higher specificity the cross-validation, the less incorrect
prediction of the phosphorylation sites in other groups. As given in Table 3.8, the number in
the parenthesis besides the kinase name indicates the size of the positive set. For example, the
first row gives that there are 414 phosphorylated sites in kinase PKA group. The sensitivity
(Sn) of the PKA model is 89.4%. The specificity are given in the table, for instance, in the
first column the specificity (Sp) of PKC, PKB, CaMK2 and Aurora sets corresponding to the
PKA model are 51.4%, 27.5%, 39.2% and 38.6%, respectively. The Sp values marked in red
color indicate they are relatively lower between the kinases PKA, PKC, PKB, CaMK2 and
Aurora in basophilic group. Similarly, the Sp values in green color indicate they are relatively
lower between the kinases CKI and CKII in acidophilic group. The Sp values in blue color
indicate they are relatively lower between the kinases €DC2 and MAPK in proline-directed
group. We observe that the specificity corresponding to-the kinase-specific data sets in the
same kinase group, such as basophilic, acidophilic-and proline-directed groups, are relatively

lower than the specificity corresponding to the kinase-specific data sets in other groups.
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Table 3.8 The cross predictive specificity of the kinase-specific models with similar substrate motif.

Positive set Negative set | iﬁf) PKC (430)  PKB(109) CaMK2(104) Aurora(54)  CKI (96) CK2(333) CDC2(191) MAPK (318)
PKA (414) 5 “ EB TS PPPPP sH -894 514 275 39.2 38.6 84.7 97.3 97.6 98.1
PKC (430) . S_ - 343 Sn=80.8 36.2 437 62.1 85.6 96.8 87.4 93.4
PKB (109) HH Sr o 478 83.2 Sn=91.9 522 81.2 97.9 98.1 100 100
(CIE%KZ _H s " 56.2 69.6 49.2 Sn=77.9 . 583 93.2 95.4 98.0 93.5
Aurora (54) _____ __5:5__ i 241.8 71.3 70.2 68.9 Sn=78.1 86.7 91.2 98.4 94.2
CK1 (96) $_ . 84.3 85.5 92.4 88.8 82.4 Sn=77.2 75.8 94.0 96.2
CK2 (333) . SE__ 95.2 95.4 98.1 89.5 90.7 72.4 Sn=287.1 100 97.6
CDC2 (191) nnnnn §Ph “ 98.1 96.2 100 95.7 100 100 99.3 Sn=88.2 67.6
(l\gfgl;K i §P e 98.6 98.9 99.1 96.4 96.2 98.9 462 Sn=90.2
Abbreviati(;n: Pr, precisiocn; Sn, sensitivity; Sp, specificity; Acc, accuracy.
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3.6.2 Comparison with Other Phosphorylation Prediction

Tools

The proposed method is compared with several previously developed phosphorylation
prediction tools, such as PredPhospho [78], GPS [75, 106], PPSP [76], MetaPredictor [107],
KinasePhos 1.0 [55, 56], and KinasePhos 2.0 [91]. As given in Table 3.9, the number of
kinases, sensitivity and specificity of prediction and the overall predictive performance of
these tools are compared. GPS, PPSP, PredPhospho, KinasePhos 1.0 and 2.0, and the
proposed methods all support the identification of kinase-specific phosphorylation sites.
Although only the kinase groups containing at least 10 experimental phosphorylation sites
were selected to evaluate the average predictive performance, this proposed version of
KinasePhos provided about 100 kinase-specific models. The predictive performance of three
representative kinases such as PKA, PKC and CK2 are compared. As given in Table 3.9, the
cross-validation performances of three representative kinases in KinasePhos 3.0 are similar to
PredPhospho, GPS, PPSP, and KinasePhos 1.0 and 2:0. In particular, KinasePhos 2.0 provides
the predictive model for phosphohistidine, whose predictive accuracy is 93%. In this version,
the kinase-specific group was not-further categorized ito serine, threonine, and tyrosine,
while the predictive performance was not decréased. The overall predictive accuracy of the

kinase-specific groups with at least 10 phosphorylation sites of the proposed method is 89%.
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Table 3.9 Comparison of KinasePhos 3.0 with PredPhospho, GPS, PPSP, MetaPredictor, KinasePhos 1.0, and KinasePhos 2.0.

Tools PredPhospho GPS PPSP MetaPredictor KinasePhos 1.0 KinasePhos 2.0 KinasePhos 3.0
Reference Kim et al., 2004 Zhou et al., 2004 Xue et al., 2006 Ji Wan et al., 2008 Huang a;(c)lolgee ctal, Wong a;(c)lolaee ctal. -
Voting from GPS,
KinasePho,
Method SVM MCL+GPS BDT NetPhoskK, PPSP, MDD+HMM SVM SVM
PredPhospho,
Scansite
Phospho.ELM (5.0) +
PhosphoSite (July Phospho.ELM (7.0) +
. PhosphoBase + PhosphoBase + Phospho.ELM + . )
Material UniProtllzB/SwissProt Phospho.ELM Phospho.ELM . 2006) +. UniProtII;B/SwissProt UniProtII)(B/SwissProt R e
UniProtKB/SwissProt (55.0)
(51.1)

Training AA AA AA d AA AA+CP AA+ASA+SS+DIS
features
No. of kinases 4 groups 71 groups 68 groups - 18 58 101 groups
Kinase PKA Sn =0.88 Sn =10.89 Sn=10.90 Sn =10.88 Sn=0.91 Sn=0.92 Sn =0.89

Sp=0.91 Sp=0.91 Sp=092 Sp=0.83 Sp=0.86 Sp=0.89 Sp=0.91
Kinase PKC Sn=0.79 Sn=0.82 Sn =0.82 Sn=0.77 Sn =0.80 Sn =0.84 Sn =0.81

Sp =10.86 Sp =0.83 Sp=0.86 Spi=0.79 Sp=0.87 Sp=0.86 Sp =10.86
Kinase CK2 Sn=0.84 Sn=0.83 Sn =0.83 Sn = 0.88 Sn =0.87 Sn=0.87 Sn =0.87

Sp =0.96 Sp =0.88 Sp=10.90 Sp=0:90 Sp=0.85 Sp=0.86 Sp =0.88
Serine Acc=0.81 - - - Acc=0.86 Acc=0.90 -
Threonine Acc=0.77 - - - Acc =091 Acc=0.93 -
Tyrosine - - - - Acc=10.84 Acc=0.88 -
Histidine - - - - - Acc=10.93 -
Overall Ace =0.76~0.91 . . . Acc =087 Acc =091 Acc =0.89
performance

Abbreviation: SVM, support vector machine; MCL, Markov cluster algorithm; GPS, group-based phosphorylation scoring method; BDT, Bayesian decision
theory; MDD, maximal dependence decomposition; HMM, hidden Markov model; CP, coupling pattern; AA, amino acid; ASA, accessible surface area; SS,
secondary structure; DIS, disorder region; Sn, sensitivity; Sp, specificity; Acc, accuracy.
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3.7 Summary

In general, the previous works of phosphorylation site prediction focused on flanking residues
of phosphorylation sites; like our previous work (KinasePhos 1.0 and 2.0). Herein,
KinasePhos 3.0 comprehensively investigates structural properties in each kinase-specific
phosphorylated site. The protein structural properties, such as accessible surface area (ASA),
secondary structure, and intrinsic disorder, were considered in the model training of each
kinase groups. Because most of the experimentally verified kinase-specific phosphorylation
sites do not located in the protein regions with known structure from PDB [67], the effective
prediction tools RVP-net [70], PSIPRED [21], and DISOPRED?2 [35] are adopted to compute
the accessible surface area of residues, secondary structures, and protein disorder regions,
respectively. The cross-validation demonstrates that the structural properties can improve the
predictive accuracy ranging from 1% to 10%. The models trained with various features,
including sequence profiles and structural features, were evaluated by 5-fold and Jackknife
cross-validation, the predictive performanceof the models trained with the combination of
sequence and structural features are better than.the models trained only with sequence. The
overall accuracy of 101 kinase groups.is 89.4%.-Moreover, the independent test shows that
the constructed model of kinase-specific groups were not over-fitting to training data. Finally,
the constructed SVM models with best predictive .accuracy were used to implement the

web-based prediction tool.
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Chapter 4 Discovery of Protein Kinase-Substrate

Phosphorylation Networks

4.1 Introduction

Protein phosphorylation catalyzed by protein kinases is the most widespread and well-studied
signaling mechanism in eukaryotic cells. It was estimated that one-third to one-half of all
proteins in a eukaryotic cell are phosphorylated [1]. Phosphorylation can regulate almost
every property of a protein and is involved in all fundamental cellular processes. Cataloging
and understanding protein phosphorylation is not easy task: many kinases may be expressed
in a cell, and one-third of all intracellular proteins may be phosphorylated, representing as
many as 20,000 distinct phosphoprotein states [111]. Manning et al. [95] have identified 518
human kinases, and every active protein Kinase phosphorylates a distinct set of substrates in a
regulated manner. Defining the kinase complement of the human genome, the kinome, has

provided an excellent starting point-for understanding the-scale of the problem.

With the high-throughput mass spectrometry (MS) proteomics, the number of in vivo
phosphorylation sites is increasing rapidly. However, about 20% of the experimentally
verified phosphorylation sites have the annotation of catalytic kinases. To fully investigate
how protein kinases regulate the intracellular processes, it is necessary to comprehensively
and accurately identify the kinase-specific substrates. Therefore, we were inspired to integrate
experimentally verified phosphorylation data and computational techniques for identifying
physiological substrates of the protein kinases and studying phosphorylation network in cell.
Due to the fact that signaling proteins are modular in the sense that they contain domains
(catalytic or interaction) and linear motifs (phosphorylation or binding sites), which mediate
interactions between proteins [92], the protein-protein interaction and protein association are
incorporated. It also exploits both the inherent propensity of kinase catalytic domains to
phosphorylated particular sequence motifs and contextual information regarding the physical
interaction, functional association, cellular co-localization and coexpression of kinases and

substrates.

Intracellular signal transduction is the process by which chemical signals from outside

the cell are passed through cytoplasm to nucleus or cytoskeleton, where appropriate responses
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to those signals are generated [7]. Deciphering the complex network of protein kinase and
substrate is necessary for a thorough and therapeutically applicable understanding of the
functioning of a cell in physiological and pathological states. Therefore, the comprehensive
kinase-substrate interactions are used to construct the intracellular phosphorylation network
starting from receptor kinases to transcription factors. Moreover, the gene expression data is

adopted to validate the syn-expression of kinase and substrate with statistical significance.

Human Kinome

Manning et al. [95] have catalogued the protein kinase complement of the human genome, the
so-called “kinome", using public and proprietary genomic, complementary DNA, and
expressed sequence tag (EST) sequences. This provides a starting point for comprehensive
analysis of protein phosphorylation in normal and disease states, as well as a detailed view of
the current state of human genome analysis through a focus on one large gene family. There
are 518 putative protein kinase genes been identified, of which 71 have not previously been
reported or described as kinases, and we extend or correct the protein sequences of 56 more
kinases. New genes include members of -well-studied families as well as previously
unidentified families, some of which are conserved in todel organisms. Classification and
comparison with model organism kinomes identified ‘orthologous groups and highlighted
expansions specific to human and other lincages. The authors also identified 106 protein

kinase pseudogenes.

Novel

Group Families Subfamilies ktt’east W°r"‘ _Fly I-!uman Human human
inases kinases kinases kinases pseudogenes ki

inases
AGC 14 21 17 30 30 63 6 7
CAMK 17 33 21 46 32 74 39 10
CK1 3 5 4 85 10 12 5 2
CMGC 8 24 &l 49 33 61 12 3
Other 37 39 38 67 45 83 21 23
STE 3 13 14 25 18 47 6 4
Tyrosine kinase 30 30 0 90 32 90 5 i
Tyrosine 7 13 0 15 7 43 6 5

kinase-like

RGC 1 1 0 27 6 &y B8 0
Atypical-PDHK 1 1 2 1 1 4 0 0
Atypical-Alpha 1 2 0 4 1 6 0 0
Atypical-RIO 1 3 2 3 3 3 1 2
Atypical-A6 1 1 1 2 1 2 2 0
Atypical-Other 7 7 2 1 2 9 0 4
Atypical-ABC1 1 1 3 3 3 4 0 4
Atypical-BRD 1 1 0 1 1 4 0 1
Atypical-PIKK 1 6 i 5 5 6 0 0
Total 134 201 130 454 240 518 106 7

Figure 4.1 Kinase distribution by major groups in human and model systems (Manning et al., 2002).

Most protein kinases contain a conserved catalytic domain belonging to the eukaryotic
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protein kinase (ePK) superfamily (all other protein kinases are classified as atypical protein
kinases, or aPKs). As shown in Figure 4.1, ePKs are classified into 9 major groups, and are
subdivided into families, and sometimes subfamilies, based on the sequence of their ePK
domains, including AGC, CAMK, CK1, CMGC, Other, STE, TK, TKL, and RGC. Manning
et al. also identified 13 atypical protein kinase (aPK) families, which contain proteins reported
to have biochemical kinase activity, but which lack sequence similarity to the ePK domain,
and their close homologs. To compare related kinases in human and model organisms and to
gain insights into kinase function and evolution, we classified all kinases into a hierarchy of
groups, families, and subfamilies. Kinases were classified primarily by sequence comparison
of their catalytic domains, aided by knowledge of sequence similarity and domain structure
outside of the catalytic domains, known biological functions, and a similar classification of
the yeast, worm, and fly kinomes. Phylogenetic comparison of the human kinome with those
of yeast, worm, and fly confirms that most kinase families are shared among metazoans and
defines classes that are expanded in each lineage. Of 189 subfamilies present in human, 51 are
found in all four eukaryotic kinomes, and these:presumably serve functions essential for the
existence of a eukaryotic cell. Comparison with.the draft mouse genome indicates that more
than 95% of human kinases have direct.orthologs-in mouse; additional orthologs may emerge

as that genome sequence is completed.

Figure 4.2 [95] shows a phylogenetic tree that dépicts the relationships between members
of the complete superfamily of human protein kinases. The 518 human protein kinases control
protein activity by catalyzing the addition of a negatively charged phosphate group to other
proteins. Most protein kinases belong to a single superfamily of enzymes whose catalytic
domains are related in sequence and structure. The main diagram illustrates the similarity
between the protein sequences of these catalytic domains. Each kinase is at the tip of a branch,
and the similarity between various kinases is inversely related to the distance between their
positions on the tree diagram. Most kinases fall into small families of highly related
sequences, and most families are part of larger groups. The seven major groups are labeled
and colored distinctly. Other kinases are shown in the center of the tree, colored gray. The
relationships shown on the tree can be used to predict protein substrates and biological
function for many of the over 100 uncharacterized kinases presented here. The inset diagram
shows trees for seven atypical protein kinase families. These proteins have verified or
strongly predicted kinase activity, but have little or no sequence similarity to members of the

protein kinase superfamily. A further eight atypical protein kinases in small families of one or
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two genes are not shown.

o v W s w2 B s i E U i

..... many i L o B, U P s - |=“ .
Figure 4.2 Phylogenetic tree of human kinome (Manning et al, 2002).

4.2 Related Works

Due to the high-throughput of mass spectrometry-based proteomics, there are several
databases storing experimentally verified phosphorylation sites with catalytic kinase, such as

106



Phospho.ELM [2], PhosphoSite [43], UniProtKB/Swiss-Prot [42], Phosphorylation Site
Database [44], and PHOSIDA [45]. The resource can be utilized for constructing the
phosphorylation network between kinase and substrate proteins. The experimental data,
ultimately, need to be combined by systems biology analysis, which translates the separate,

large-scale datasets into signaling networks [13].

4.2.1 Discovery of Human Phosphorylation Networks

Protein kinases control cellular decision processes by phosphorylating specific substrates.
Thousands of in vivo phosphorylation sites have been identified, mostly by proteome-wide
mapping. However, systematically matching these sites to specific kinases is presently
infeasible, due to limited specificity of consensus motifs, and the influence of contextual
factors, such as protein scaffolds, localization, and expression, on cellular substrate specificity.
Linding et al. [112] proposed a method, namely NetworKIN’, that augments motif-based
predictions with the network context of kinasesrand phosphoproteins. In the first step, the
authors use neural networks (NetPhosK i[113]) and position-specific scoring matrices
(ScanSite [105]) to assign each phospherylation site to one or more kinase families, based on
the intrinsic preference of kinases“for consensus substrate motifs. In the second stage, the
context for each substrate is represented by a probabilistic protein network extracted from the
STRING database [114], which integrates” information from curated pathway databases,
cooccurrence in abstracts, physical protein interaction assays, mRNA expression studies, and
genomic context. This approach captures both direct and indirect interactions; for example,
phosphorylation events mediated by scaffolds are predicted, as the scaffolding protein

provides a path in the probabilistic network between the substrate and kinase.

NetworKIN pinpoints kinase responsible for specific phosphorylation and yields a
2.5-fold improvement in the accuracy with which phosphorylation networks can be
constructed. As shown in Figure 4.3, manually curated data sets of CDK, PKC, PIKK, and
INSR in vivo phosphorylation sites were used to assess the prediction accuracy (the fraction
of predictions that are known to be correct) and sensitivity (the fraction of known sites that
are correctly predicted) of NetworKIN and solely motif-based methods (NetPhosK and
Scansite). This shows that including the cellular context (in the form of a protein association

network) leads to a significant improvement in accuracy. Notably, the accuracy of

? NetworKIN URL: http://networkin.info/index.php
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NetworKIN predictions is likely to be an underestimate since not all the kinases that target

each phosphorylation site in the set of test proteins may currently be known from

experiments.
80+
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Figure 4.3 Effects of ineluding network context (Linding et al., 2007).

4.2.2 Human Kinase Interactome Resource

PhosphoPOINT [115] is comprehensive human kinase interactome and phosphor-protein
database, which collects 4,195 phospho-proteins with a total of 15,738 phosphorylation sites.
PhosphoPOINT annotates the interactions among kinases, with their downstream substrates
and with interacting (phospho)-proteins to modulate the kinase-substrate pairs.
PhosphoPOINT integrates various gene expression profiles and Gene Ontology (GO) cellular
component information to evaluate each kinase and their interacting
(phospho)-proteins/substrates. Integration of cSNPs that cause amino acids change with the
proteins with the phospho-protein dataset reveals that 64 phosphorylation sites result in a
disease phenotypes when changed; the linked phenotypes include schizophrenia and
hypertension. PhosphoPOINT also provides a search function for all phospho-peptides using
about 300 known kinase/phosphatase substrate/binding motifs. Altogether, PhosphoPOINT
provides robust annotation for kinases, their down-stream substrates and their interaction
(phospho)-proteins and this should accelerate the functional characterization of
kinome-mediated signaling. Figure 4.4 [115] shows Auroa kinase as an example to illustrate

the search result.
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Figure 4.4 Annotation and visualization of PhosphoPOINT (Yang et al., 2008).

4.2.3 Modeling of Signal Transduction Networks

interactions.

Steffen et al. [119] have developed a computational approach for generating static
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Signaling pathways have been an active research area in recent history. There are many
studies in which signaling pathways were modeled using various approaches. Previously,
signaling pathways were modeled through modular kinetic simulations of biochemical
networks [116] and detailed integration of biochemical properties of the pathways [117]. In
another study, Bayesian Networks were applied to multi-variable cell data to infer signaling
pathways [118]. Correlating cancer based mRNA expression levels, autocrine receptor
signaling loops were also discovered [14]. Another approach to model cellular pathways was
developed based on perturbations of critical pathway components [15]. These were analyzed

using DNA microarrays, quantitative proteomics, and databases of known physical



models of signal transduction networks which utilizes protein-interaction maps generated
from large-scale two-hybrid screens and expression profiles from DNA microarrays.
Networks are determined entirely by integrating protein-protein interaction data with
microarray expression data, without prior knowledge of any pathway intermediates. In effect,
this is equivalent to extracting subnetworks of the protein interaction dataset whose members
have the most correlated expression profiles. The authors show that their technique accurately
reconstructs MAP Kinase signaling networks in Saccharomyces cerevisiae. This approach
should enhance the ability to model signaling networks and to discover new components of
known networks. More generally, it provides a method for synthesizing molecular data, either
individual transcript abundance measurements or pairwise protein interactions, into higher

level structures, such as pathways and networks.
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Figure 4.5 MAPK signal transduction pathways in yeast (Roberts et al., 2000).

The proposed approach is calibrated using the yeast MAPK (mitogen-activated protein
kinases) pathways involved in pheromone response, filamentous growth, and maintenance of
cell wall integrity (Figure 4.5). These pathways are activated by G protein-coupled receptors
and characterized by a core cascade of MAP kinases that activate each other through
sequential binding and phosphorylation reactions; they are among the most thoroughly

studied net works in yeast and are therefore excellent benchmarks against which to test our
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approach. As shown in Figure 4.5, membrane proteins are depicted in blue, transcription

factors in red, and intermediate proteins in green. Figure is adapted from [120].

Signaling pathways have been an active research area in recent history. There are many
studies in which signaling pathways were modeled using various approaches. Previously,
signaling pathways were modeled through modular kinetic simulations of biochemical
networks and detailed integration of biochemical properties of the pathways [12]. In another
study, Bayesian Networks were applied to multi-variable cell data to infer signaling pathways
[13]. Correlating cancer based mRNA expression levels, autocrine receptor signaling loops
were also discovered [14]. Another approach to model cellular pathways was developed based
on perturbations of critical pathway components [15]. These were analyzed using DNA

microarrays, quantitative proteomics, and databases of known physical interactions.

4.3 Motivation and Specific Aim

Protein phosphorylation catalyzed by kinase plays crucial regulatory role in intracellular
signal transduction that is achieved by networks of proteins and small molecules that
transmit information from the cell surface to the nucleus, where they ultimately effect
transcriptional changes. How differential résponses are generated by these networks is not
obvious nor is the reason cells evolved‘a eomplicated mechanism for transducing signals.
Thus, a full understanding of the mechanism of intracellular signal transduction remains a
major challenge in cellular biology. Manning et al. have identified 518 human kinase
genes, the so-called “kinome", that provides a starting point for comprehensive analysis of

protein phosphorylation networks.

Mass spectrometry-based proteomics have enabled the large-scale mapping of in vivo
phosphorylation sites. However, only 20% of the experimentally verified phosphorylation
sites have the annotation of catalytic kinases. To fully investigate how protein kinases
regulate the intracellular processes, it is necessary to comprehensively and accurately
identify the kinase-specific substrates. Therefore, we propose a method, RegPhos,
incorporates computational model with protein associations (protein-protein interactions,
functional associations, and subcellular localization) for identifying the catalytic kinase for
each phosphoprotein with experimental phosphorylated sites. To observe the expressed
relationship between kinase and substrate, the gene expression microarray data is adopted

to observe the expression of kinase and substrate genes in specific conditions, for instance,
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the normal tissue and cancerous tissue.

With the increasing number of in vivo phosphorylation sites have been identified, the
desire to map the phosphorylation network of protein kinase and substrate has motivated.
The experimental kinase-specific substrates, ultimately, need to be combined by systems
biology analysis, which translates the separate, large-scale datasets into signaling networks.
Therefore, we incorporated the experimentally verified kinase-substrate interactions with
computationally identified kinase-substrate interactions to construct the intracellular
phosphorylation network starting from receptor kinases to transcription factors, associated
with the formation of protein subcellular localization. Moreover, the experimental
expression evidence, such as gene microarray data and mass spectra, are adopted to
validate the syn-expression of the constructed kinase-substrate phosphorylation network

with statistical significance.

4.4 Materials

To construct the intracellular phosphorylation network between protein kinase and substrate,
we propose a method, namely RegPhos, which incorporates computational models with
protein associations (protein-protein interaction, functional associations, and protein
subcellular localizations) for assigning. the -potential kinase for the experimental
phosphorylation sites without annotated catalytic kinase. Moreover, the gene expression

microarray data is adopted to validate the syn-expression of kinase and substrate.

4.4.1 Protein Kinase and Phosphorylation Site Resource

The experimental verified phosphorylation sites are extracted from dbPTM which has
integrated version 7.0 of Phospho.ELM [2], release 55.0 of UniProtKB/Swiss-Prot [3], and
version 1.0 of PHOSIDA [45]. As shown in Table 4.1, Phospho.ELM contains 16428
experimental phosphorylation sites within 4026 phosphoproteins, Swiss-Prot contains 24328
experimental phosphorylation sites within 8606 phosphoproteins, and PHOSIDA consists of
6600 in vivo phosphorylation sites within 2244 phosphoproteins. Especially, Human Protein
Reference Database (HPRD), which integrates a wealth of information relevant to the
function of human proteins in health and disease, is integrated in this work. Data pertaining to

thousands of protein-protein interactions, posttranslational modifications, enzyme/substrate
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relationships, disease associations, tissue expression, and subcellular localization were
extracted from the literature for a non-redundant set of 25661 human proteins. In release 7.0
of HPRD, there are totally 16972 PTMs within 2830 protein entries, of 7438 PTMs are
phosphorylation sites within 1774 proteins.

Because this work focuses on constructing human phosphorylation network, the
phosphorylation sites in human proteins are represented in Table 4.1. After removing the
redundant dada among these databases, the number of human phosphorylation sites and

phosphoprotein are 19817 and 5083, respectively.

Table 4.1 Statistics of integrated experimental protein phosphorylation site databases.

All species Human

Database Version Number of Number of Number of Number of

phosphoprotein  phosphosite  phosphoprotein  phosphosite
Phospho.ELM 7.0 4,026 16,428 3,354 11,278
UniProtKB/Swiss-Prot 55.0 8,606 24,328 3,746 11,862
PHOSIDA 1.0 N/A N/A 2,212 8,969
HPRD 7.0 - - 1,774 7,438
Combined (NR) - - - 5,083 19,817

Abbreviation: NR, non-redundant.

Manning et al. [95] have identified-518 known protein kinase genes been identified, of
which 71 have not previously been reported.or.described as kinases, and we extend or correct
the protein sequences of 56 more kinases. These human kinase annotations extracted from
KinBase [95] are used to unify the kinase names among the external phosphorylation site
databases which contain various names for a kinase. The 518 kinases are major nodes in the
construction of human phosphorylation networks. Due to the classification of kinase
identified by Manning et al., 518 kinases are categorized by their annotated family or
subfamily, including totally 221 kinase families'’. Several representative kinase families are
listed in Table 4.2. Because the collection of experimentally verified phosphorylated sites
from PhosphoELM, UniProtKB/Swiss-Prot, and PHOSIDA involved in various species, the
number of phosphorylated sites in each kinase family is calculated in human and other species,

as well as the number of phosphorylated proteins.

10221 kinase families: http://140.113.239.26/RegPhos/statistics.php
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Table 4.2 List of representative kinase families containing more than 10 substrates.

Kinase Kinase . . Human All species
Group famil bfamil Description Kinase member - - - -
amily  subtamily Phosphosite  Phosphoprotein  Phosphosite Phosphoprotein
AGC PKB Protein kinase B AKT1,AKT2,AKT3 89 63 114 79
AGC GRK GRK GTproteln coupled Receptor GPRK7,RHOK,GPRK6,GPRKS5,GPRK 64 19 85 27
Kinase 4
AGC  GRK  BARK Eflt; S‘zdrenerglc Receptor g ARK1,BARK2 32 14 35 17
AGC PKA Protein kinase A PKACa, PKACb, PKACg 232 151 458 286
L PKCh, PKCa, PKCb, PKCd, PKCe,
AGC PKC Protein kinase C PKCg, PKCi, PKCt, PKCz 280 168 485 274
Atypical PIKK ATM Ataxia telangiectasia mutated ATM,ATR 67 34 102 63
CAMK CAMK2 CAMK family 2 CaMK2a,CaMK2b,CaMK2g,CaMK2d 56 36 119 77
CKl  CKI Cell Kinase 1 CK1a,CKAELR | o g 3.CK 1 63 33 101 52
a2,CKlgl
CMGC CDK CDK Cyclin Dependent Kinase CDR4,CHIGEERE D B, CD 64 34 123 66
K10,CDK11
CMGC CDK  cpk7  CyclinDependentKinase (s 17 1 30 2
subfamily 7
CMGC CDK CDC2 Cell Division Control 2 CDC2,CDK2,EDK3 226 95 328 138
CMGC CK2 Casein kinase II CK2al,CK2a2,CK2al-rs 241 123 368 192
Erk1(MAPK3),Erk2(MAPK 1),Erk3(M
APKG6),Erk4(MAPK4),ErkS(MAPK?7),
Mitogen Activated Protein Erk7(MAPK15),JNK1(MAPKS),JNK2
CMGC MAPK Kinase (MAPK9),INK3(MAPK 10),NLK,p38a 248 140 333 192
(MAPK 14),p38b(MAPK 11),p38g(MA
PK12),p38d(MAPK13)
CMGC MAPK JNK  INK subfamily of MAPK ggl((hﬁgpm),m K2(MAPK9),INK3( 47 27 66 40
. p38a(MAPK14),p38b(MAPK 11),p38g(
CMGC MAPK p38 p38 subfamily of MAPK MAPK12),p38d(MAPK 13) 62 35 66 38
Extracellular signal-Regulated Erkl(MAPK3),Erk2(MAPK1),Erk3(M
CMGC MAPK ERK ST & & APKG6),Erk4(MAPK4),ErkS(MAPK?7), 138 88 178 112
p Erk7(MAPK15)
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Other AUR Aur Aurora Kinase AurA, AurB, AurC 42 19 57 28

Other IKK I kappa Kinase IKKa,IKKb,IKKe, TBK 1 43 12 49 16

TK Abl Abelson murine leukemia ABLI(Abl),ABL2(ARG) 36 26 56 39
homolog

TK EGFR Epidermal Growth Factor EGFR,ErbB2,ErbB3,ErbB4 48 2 67 29
Receptor

TK InsR In.sulm Receptor and associated INSR.IRR 30 9 46 14
Kinases

TK Se Lek Proto-oncogene | LCK 48 25 64 36
tyrosine-protein kinase Lck

TK Src LYN Tyrosine-protein kinase LYN LYN 33 20 50 28

TK Src Sre Proto-oncogene SRC 108 68 171 101
tyrosine-protein kinase Src

TK Syk SYK Spleen tyrosine kinase SYK 38 17 51 22

TK Syk ZAPT0 70 kDa zeta-assoglateq protein, AP0 16 ] 20 9
Syk-related tyrosine kinase

TK Tec Tec protein tyrosine kinase v TEe R BMX BTK 26 13 30 14

family
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4.4.2 Protein-Protein Interaction Databases

To enhance the identification of kinase substrates, the physical protein-protein interaction data
is used to explore the predictive accuracy in the proposed method. This work extract human
protein-protein interactions from DIP [121, 122], MINT [123], IntAct [124], and HPRD [51],
as shown in Table 4.3. The Database of Interacting Proteins'' (DIP) is a database that
documents experimentally determined protein-protein interactions. It provides the scientific
community with an integrated set of tools for browsing and extracting information about
protein interaction networks. As of April 2008, the DIP catalogs approximately 56000 unique
interactions among 19000 proteins from > 180 organisms; the vast majority from yeast,
Helicobacter pylori and human. Tools have been developed that allow users to analyze,
visualize and integrate their own experimental data with the information about protein-protein
interactions available in the DIP database. Because the reliability of experimental evidence
varies widely, methods of quality assessment have been developed and utilized to identify the
most reliable subset of the interactions. This, CORE set of DIP can be used as a reference
when evaluating the reliability of high-throughput protein-protein interaction data sets, for
development of prediction methods, as well as in the-studies of the properties of protein

interaction networks.

Table 4.3 Statistics of integrated protein-protein‘interaction databases.

All species Human
Database Data source \Version Number Number of  Number Number of
of protein  interaction of protein interaction
DIP Physical 2008-04-30 19,765 56,493 1,224 1,794
1nteraction
MINT _Physical 2008-04-30 28,817 105,899 6,106 20,832
nteraction
IntAct Physical 2008-04-11 63,121 163,909 ~15,000  ~28,500
1nteraction
HPRD Physical Release 7.0 - ; 38,167 25,661
nteraction

The Molecular INTeraction database'? (MINT) aims at storing, in a structured format,
information about molecular interactions (MIs) by extracting experimental details from work
published in peer-reviewed journals. At present the MINT team focuses the curation work on

physical interactions between proteins. Genetic or computationally inferred interactions are

"' DIP URL: http:/dip.doe-mbi.ucla.edu
12 MINT URL: http://mint.bio.uniroma2.it/mint/
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not included in the database. Up to April 30™ 2008, there are totally 105899 interactions
between 28,817 proteins. The new version of MINT is based on a completely remodeled
database structure, which offers more efficient data exploration and analysis, and is
characterized by entries with a richer annotation. The whole dataset can be freely accessed
online in both interactive and batch modes through web-based interfaces and an FTP server.
MINT now includes, as an integrated addition, HomoMINT, a database of interactions
between human proteins inferred from experiments with ortholog proteins in model

organisms.

IntAct” is an open source database and software suite for modeling, storing and
analyzing molecular interaction data. The data available in the database originates entirely
from published literature and is manually annotated by expert biologists to a high level of
detail, including experimental methods, conditions and interacting domains. At present, the
database features over 163000 binary interactions extracted from over 2200 scientific
publications and makes extensive use of controlled vocabularies. The web site provides tools

allowing users to search, visualize, and doewnload data from the repository.

4.4.3 Functional Association Databases

To capture the biological context of a substrate, we'use a network of functional associations
extracted from the STRING'* database [114]. This network is based on four fundamentally
different types of evidence: genomic context (gene fusion, gene neighborhood, and
phylogentic profiles), primary experimental evidence (physical protein interactions and gene
coexpression), manually curated pathway databases, and automatic literature mining.
Information on protein-protein interactions is still mostly limited to a small number of model
organisms, and originates from a wide variety of experimental and computational techniques.
The underlying infrastructure includes a consistent body of completely sequenced genomes
and exhaustive orthology classifications, based on which interaction evidence is transferred
between organisms. Although primarily developed for protein interaction analysis, the
resource has also been successfully applied to comparative genomics, phylogenetics and
network studies, which are all facilitated by programmatic access to the database backend and

the availability of compact download files. As of release 7.1, STRING has almost doubled to

3 IntAct URL: http://www.ebi.ac.uk/intact
14 . . :
STRING URL: http://string.embl.de
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373 distinct organisms, and contains more than 1.5 million proteins for which associations

have been pre-computed.

Table 4.4 Statistics of integrated functional association databases.

All species Human
Database Data source Version Number of Number of Number  Number of
protein interaction of protein interaction
Physical interaction
STRING and functional 7.1 ~1,500,000 77,147,159 16,050 1,397,066
association
Cellular component,
GOA molecular function, 500 04 30 3.977.963 29,269,200 35,423 183,316

and biological
process

The Gene Ontology Annotation (GOA) database'> [125] aims to provide high-quality
electronic and manual annotations to the UniProt Knowledgebase (Swiss-Prot, TTEMBL and
PIR-PSD) using the standardized vocabulary of the Gene Ontology (GO) [126]. As a
supplementary archive of GO annotation; GOA' promotes a high level of integration of the
knowledge represented in UniProt with otheridatabases. GOA provides annotated entries for
nearly 60,000 species and is the largest and most comprehensive open-source contributor of
annotations to the GO Consortium annotation effort. By integrating GO annotations from
other model organism groups, GOA. consolidates specialized knowledge and expertise to
ensure the data remain a key reference for up-to-date biological information. Furthermore, the
GOA database fully endorses the Human Proteomics Initiative by prioritizing the annotation
of proteins likely to benefit human health and disease. The GOA data set can be used to
enhance the annotation of particular model organism or gene expression data sets, although
increasingly it has been used to evaluate GO predictions generated from text mining or
protein interaction experiments. Up to April 30" 2008, GOA totally stores 29,269,200

functional associations between 3,977,963.

4.4.4 Protein Subcellular Localization Databases

The eukaryotic cell is a composite system internally subdivided into membrane-enveloped
compartments that perform particular functions [41]. Every subcellular compartment contains

specific proteins, including enzymes, synthesized in the cytoplasm and translocated into the

5 GOA URL: http://www.ebi.ac.uk/GOA
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locations, where they carry out functional patterns. Therefore, knowing the localization of
every protein is important for elucidating its interactions with other molecules and for
understanding its biological function. Some major constituents of eukaryotic cells are:
extracellular space, cytoplasm, nucleus, mitochondria, Golgi apparatus, endoplasmic
reticulum (ER), peroxisome, vacuoles, cytoskeleton, nucleoplasm, nucleolus, nuclear matrix
and ribosomes. The proteins which are involved in similar biological functions are closely
located in the same subcellular localization. Protein phosphorylation plays crucial regulatory
role in intracellular signal transduction networks from the receptors of cell surface to the
transcription factors of nucleus, where they ultimately effect transcriptional changes. In order
to identify phosphorylation cascade, the information of protein subcellular localization is used
in the construction of phosphorylation network. Table 4.5 shows the list of public databases of
protein subcellular localization, including LOCATE [127], DBSubLoc [128], Organelle DB
[129], and PSORTdb [130].

Table 4.5 List of public databases of protein subcellular localization.

Database Species Statistics Statistics of human
LOCATE Human and mouse 122,765 -protein. isoforms 64,637 protein isoforms
DBSublLoc All 64,051 proteins 30,633 proteins
Organelle DB 138 organisms 30,188 genes 4,233 genes
PSORTdb Bacterial ~2000 proteins -

UniProtKB All 487,934 proteins 16,052 proteins

LOCATE'® [127] is a curated, web-accessible database that houses data describing the
membrane organization and subcellular localization of mouse and human proteins. The
membrane organization is predicted by the high-throughput, computational pipeline MemO
[131]. The subcellular locations were determined by a  high-throughput,
immunofluorescence-based assay and by manually reviewing peer-reviewed publications. The
database now contains high-quality localization data for 20% of the mouse proteome and
general localization annotation for nearly 36% of the mouse proteome. The proteome
annotated in LOCATE is from the RIKEN FANTOM Consortium Isoform Protein Sequence
[132] sets which contains 58128 mouse within 29682 transcript units and 64637 human

protein isoforms within 26583 transcript units.

DBSubLoc'’” [128] is a database of protein subcellular localization which contains

16 LOCATE URL: http://locate.imb.uq.edu.au/
7 DBSubLoc URL: http://www.bioinfo.tsinghua.edu.cn/dbsubloc.html
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proteins from primary protein database SWISS-PROT and PIR. By collecting the subcellular
localization annotation, the information are classified and categorized by cross references to
taxonomies and Gene Ontology database. Based on sequence alignment, non-redundant
subsets of the database have been built, which may provide useful information for subcellular
localization prediction. The database now contains >60,000 protein sequences including

approximately 30,000 protein sequences in the non-redundant data sets.

Organelle DB'® [129] is a web-accessible relational database presenting a supplemented
catalog of organelle-localized proteins and major protein complexes. Since its release in 2004,
Organelle DB has grown by 20% to encompass over 30,000 proteins from 138 eukaryotic
organisms. Each protein in Organelle DB is presented with its subcellular localization,
primary sequence and a detailed description of its function, as available. All records in
Organelle DB have been annotated using controlled vocabulary from the Gene Ontology
consortium. Protein localization data are inherently visual, and Organelle DB is a significant
repository of biological images, housing 1500 micrographs of yeast cells carrying stained
proteins. Organelle View offers a dimensional representation of a yeast cell; users can search
Organelle View for proteins of interest,-and the organelles housing these proteins will be

highlighted in the cell image.

PSORTdb" [130] is a web-aceessible database of SubCellular Localization (SCL) for
bacteria that contains both information determined through laboratory experimentation and
computational predictions. The dataset of experimentally verified information (approximately
2000 proteins) was manually curated by us and represents the largest dataset of its kind.
Earlier versions have been used for training SCL predictors, and its incorporation now into
this new PSORTdb resource, with its associated additional annotation information and dataset
version control, should aid researchers in future development of improved SCL predictors.
The second component of this database contains computational analyses of proteins deduced
from the most recent NCBI dataset of completely sequenced genomes. Analyses are currently
calculated using PSORTD, the most precise automated SCL predictor for bacterial proteins.
Both datasets can be accessed through the web using a very flexible text search engine, a data
browser, or using BLAST, and the entire database or search results may be downloaded in

various formats.

Moreover, UniProtKB [48] also have the annotation of subcellular localization for

'8 Organelle DB URL: http://organelledb.lsi.umich.edu
' PSORTdb URL: http://db.psort.org/
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protein entries in Swiss-Prot and TrEMBL. Based on manually curated literatures, there are
487934 proteins contain the annotation of subcellular localization, 16052 of them are human

proteins.

4.4.5 Gene Expression Database

The Gene Expression Omnibus®® (GEO) [133] at the National Center for Biotechnology
Information (NCBI) is the largest fully public repository for high-throughput molecular
abundance data, primarily gene expression data. The database has a flexible and open design
that allows the submission, storage and retrieval of many data types. These data include
microarray-based experiments measuring the abundance of mRNA, genomic DNA and
protein molecules, as well as non-array-based technologies such as serial analysis of gene
expression (SAGE) and mass spectrometry proteomic technology. GEO currently holds over
235,000 submissions for over 100 organisms. In this work, the human gene expression
samples of Affymetrix GeneChip Human 'Genome U133 Array Set HG-U133A platform
(GPL96) and Affymetrix GeneChip Humani:Genomie U133 Plus 2.0 Array (GPL570),
consisting of 22283 probe set for 12678 genes. and 54681 probe sets for 18433 genes,

respectively, are used to explore the coexpression of kinase and substrate genes.

Table 4.6 List of human gene microarray platform of GEO used in this work.

Platform Title Type P;:tk;e Genes Date Samples
Affymetrix
GeneChip Human L

GPL96  Genome U133 msttu 22283 12678 eo 19 16033

oligonucleotide 2002
Array Set
HG-U133A
1 I 1 I 1 I 1 1

Aftymetrix
GeneChip Human in situ Nov 07,

GPL570 Genome U133 oligonucleotide >4681 18433 2003 14046
Plus 2.0 Array

The UI33 set includes 2 arrays with a total of 44928 entries and was indexed
29-Jan-2002. The set includes over 1,000,000 unique oligonucleotide features covering more

than 39,000 transcript variants, which in turn represent greater than 33,000 of the best

2 GEO URL: http://www.ncbi.nlm.nih.gov/geo
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characterized human genes. Sequences were selected from GenBank, dbEST, and RefSeq.
Sequence clusters were created from Build 133 of UniGene (April 20, 2001) and refined by
analysis and comparison with a number of other publicly available databases including the
Washington University EST trace repository and the University of California, Santa Cruz
golden-path human genome database (April 2001 release). In addition, ESTs were analyzed
for untrimmed low-quality sequence information, correct orientation, false priming, false

clustering, alternative splicing and alternative polyadenylation.

Complete coverage of the Human Genome U133 Set plus 6,500 additional genes for
analysis of over 47,000 transcripts. All probe sets represented on the GeneChip Human
Genome U133 Set are identically replicated on the GeneChip Human Genome U133 Plus 2.0
Array. The sequences from which these probe sets were derived were selected from
GenBank®, dbEST, and RefSeq. The sequence clusters were created from the UniGene
database (Build 133, April 20, 2001) and then refined by analysis and comparison with a
number of other publicly available databases, including the Washington University EST trace
repository and the University of California, Santa Cruz Golden-Path human genome database
(April 2001 release). In addition, there are 9,921 new probe sets representing approximately
6,500 new genes. These gene sequences were selected from GenBank, dbEST, and RefSeq.
Sequence clusters were created from the UniGene database (Build 159, January 25, 2003) and
refined by analysis and comparison ‘with a number.of other publicly available databases,
including the Washington University EST trace repository and the NCBI human genome
assembly (Build 31).

4.5 Method

How can one bridge the gap from transcript abundances and protein-protein interaction data to
pathway models? To construct the complete phosphorylation network, the comprehensive and
reliable information of protein kinase-substrate interactions is needed. This work proposes a
method, RegPhos, not only integrates the experimentally verified phosphorylation sites which
have the annotation of catalytic kinase, but also incorporates the computational models with
protein associations to identify the catalytic kinase for the experimental phosphorylation sites
which have not the annotation of kinase. The system architecture of RegPhos is shown in
Figure 4.6, including the collection of experimental kinase-substrate resource, identification of

kinase-substrate interactions, integration of gene expression data, and construction of
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intracellular phosphorylation networks. Microarray expression data is then used to rank all

paths according to the degree of similarity in the expression profiles of pathway members.

Gene expression datasets
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Figure 4.6 System architecture of RegPhos.

4.5.1 ldentification of Kinase-Substrate Interactions

With the integration of experimental phosphorylation sites, there are totally 18,823
experimental verified phosphorylation sites within 4983 human proteins, of 3535
phosphorylation sites (~20%) have the annotation of catalytic kinases. Most of the
experimental phosphorylation sites (~80%) do not have the annotation of catalytic kinases.
Although most of human phosphorylation sites in PHOSIDA have the annotation of kinases
based on the consensus motif of kinases, the annotations are still needed to be verified by
more information, such as protein-protein interactions, subcellular localization, and functional
associations. Therefore, the enriched kinase-substrate interactions could be used to construct

the complete intracellular phosphorylation networks.
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To identify the catalytic kinase for each experimentally verified phosphorylation site
without annotated kinase, we propose a method which incorporates computational models
with protein-protein interaction, protein subcellular localization, and gene expression data for
assigning the potential kinase. The system flow is shown in Figure 4.7, including two types of
measurement. First is the model-based measurement for kinase-specific phosphorylation site
prediction (as described previously in Chapter 3 ). Second is using the functional association
such as protein-protein interaction, functional association, and subcellular co-localization to
identify the catalytic kinase for a substrate protein. Finally, the experimentally validated
phosphorylation sites with annotated catalytic kinase are used to evaluate the performance and

decide the cutoff.
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Figure 4.7 System flow of identification of kinase-substrate interactions.
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4.5.1.1 Computational Annotation of Kinase-Specific Phosphorylation

Sites

The proposed kinase-specific phosphorylation site prediction method, namely KinasePhos, is
used to identify the candidate kinase families for the phosphorylation sites without annotated
catalytic kinases. As illustrated in Chapter 3, the support vector machine (SVM) is applied to
create the computational models with the encoded amino acids and structural features,
secondary structure and accessible surface area. With the binary classification, the concept of
SVM is mapping the input samples onto a higher dimensional space through a kernel function,
and then seeking a hyper-plane that discriminates the two classes with maximal margin and
minimal error. A public SVM library, namely LibSVM [110], is adopted to train the predictive

model with the positive and negative training sets which are encoded according to different
types of training features. Radial basis function (RBF) K(S,,S))= exp(—}/HSl. —S_/Hz) is
selected as the kernel function of SVM.

There are more than 100 kinase, families been constructed the predictive models, whose
average predictive accuracy is .approaching .90%. In general, each kinase-specific
phosphorylation site prediction model has a cut-off value of score and use the value to decide
whether a phosphorylation site is catalyzed by the kinase family. However, a phosphorylation
may be predicted as the substrate site that was catalyzed by more than one kinase family
because several kinase families have the similar substrate specificity. For instance, as shown
in Figure 4.7, the amino acid motifs of PKA, PKG and Aurora, which have conserved arginine
(R) in upstream position -2 or -3 of phosphorylated site, are similar. There may be a lot of
false positives in the kinase assignment of phosphorylation site. Therefore, it needs the
experimental evidence of functional association, such as protein-protein interaction or

signaling pathway, to be used to reduce the false positive predictions.

4.5.1.2 Exploration of Protein Associations

To explore the possibility of using functional association to enhance the identification of
kinase-specific substrates, we developed an integrative computational approach, RegPhos,
which combines computational kinase-specific phosphorylation site prediction models and
protein association networks to predict which protein kinases target experimentally identified

phosphorylation sites in vivo (Figure 4.7). The association context for each substrate is
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investigated by the information of manually curated protein-protein interaction databases
(physical protein interaction assays, curated pathway, cooccurrence in literature abstracts),
cellular colocalization, and mRNA coexpression signature. This approach captures both direct
and indirect interactions; for example, phosphorylation events mediated by scaffolds are
predicted, as the scaffolding protein provides a path in the indirect connection between the
substrate and kinase. The use of indirect links between kinases and their substrates enables
unobvious predictions that would be very difficult to spot by manually inspecting the

available evidence.

Exploring the Protein-Protein Interactions

To identify the direct and indirect connection between kinase and substrate, a graph searching
algorithm, Breadth-first search (BFS), is adopted. BFS is one of the simplest algorithms for
searching a graph and the archetype for many important graph algorithms. Given a graph G =
(V, E) where V represents the set of proteins and E is the set of physical interactions between
proteins, and a distinguished source vertex s, BFS systematically explores the edges of G to
discover every vertex that is reachable from s: The brief procedure of BFS, contain four major

stpes, is listed as bellow:
1. Put the source node on the queue:
2. Pull a node from the beginning of the queue and examine it.
o [f the searched element is found in this node, quit the search and return a result.

e Otherwise push all the (so-far-unexamined) successors (the direct child nodes) of this

node into the end of the queue, if there are any.

3. If the queue is empty, every node on the graph has been examined -- quit the search and

return "not found".

4. Repeat from Step 2.

The breadth-first search (BFS) procedure assumes that the input graph G = (V, E) is
represented using adjacency lists. It maintains several additional data structures with each
vertex in the graph. The pseudocode of BES is shown in Figure 4.8, which is implemented in
C programming language. The depth of interacting neighbor is decided by the investigation of
experimentally verified kinase-substrate interactions.
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vold BFS (VLink G[], int w) {

int w;
VISIT (v); f*vlgit vertex v/
vigited[v] = 1; f*mark v as visited : 1 */
ADDQ (Q, v) ;
while (IEMPTYQ(Q)) |
v = DELQ(Q); f*Dequeus v*/
w = FIRSTADI (G, v) ; /*Find first neighbor, return -1 if no neighbor*/
whileiw 1= -1) {
if(visited[w] == 01 {
VISTIT (w) ; /*wilgit vertex wr/
ADDQ(Q,w) ; f*Enqueus current wvisited wertex wr/
vigited([w] = 1; J*mark w as viszited*/
}
w = NEXTADT (&, v); /*Find next neighbor, return -1 if no neighbor*/

Figure 4.8 Pseudocode of breadth-first search (BFS) algorithm.

Evaluating the Functional Association between Kinase and Substrate

To capture the biological context of a substrate,, we use a network of functional associations
extracted from the STRING?' database [114]. This network is based on four fundamentally
different types of evidence: genomic context (gene fusion, gene neighborhood, and
phylogentic profiles), primary experimental evidence (physical protein interactions and gene
coexpression), manually curated pathway databases, and automatic literature mining. Referred
to NetworKIN [112], it was found that physical protein interactions play the dominant role
among the primary experimental data, whereas gene coexpression contributes only very little.
As the curated pathway databases generally contain few errors, a confidence score of 0.9 is
assigned to this type of evidence, Physical protein interactions were imported and merged
from numerous repositories, and the reliability of each individual interaction was assessed
based on the promiscuity of the interaction partners using a scoring schemes described

elsewhere (Von Mering et al., 2005).

Moreover, the Gene Ontology Annotation (GOA) database [125], which aims to provide
high-quality electronic and manual annotations to the UniProt Knowledgebase using the
standardized vocabulary of the Gene Ontology (GO) [126], is used to investigate the
functional association between substrate and candidate kinase. By integrating GO annotations
from other model organism groups, GOA consolidates specialized knowledge and expertise to

ensure the data remain a key reference for up-to-date biological information. There are three

2l STRING URL: http://string.embl.de
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major types of annotation in GO, including cellular component, molecular function, and
biological process. Each GO term specifies a specific cellular component, molecular function,
or biological process. To evaluate the similarity of functional association between substrate
and candidate kinase proteins, the Cosine similarity, which is usually adopted in text mining,
is used. With the task of text clustering, Cosine similarity is a simple measure endows
documents with the same composition but different sizes to be treated identically which
makes this the most popular measure for clustering text documents [134]. Due to this property,

term vectors can be normalized to the unit sphere. Given a kinase & with GO term vector

V, =(G,,G,,...,G,), where m is the number of GO term related to kinase k. If there are n

candidate substrates Si, S2, ..., S« with GO term vectors X, =(G,,G,,,...G,,),i=1, ..., n,

the Cosine similarity of GO terms between kinase & and substrate Si is calculated as follows:

VX,

sim(Vk,Xi):W.

A schematic representation of Cosine similarity is illustrated in Figure 4.9, the Cosine
similarity between two GO term vectors jis identical to calculate the cosine angle between two
vectors. As the angle between the=vectors shorten, the cosine angle approaches 1, meaning
that the two vectors are getting closer, meaning-that the similarity of whatever is represented
by the vectors increases. Therefore; the cosine similarity between vectors A and B is
calculated as follows:

Ae B xl-x2+yl-y2

Sim(A,B) =cosf = = .
[4]-18] x> + 31227 + 32

A(x1, y1)

y-axis
B(x2, y2)

Ci(x0, y0) X-axis

Figure 4.9 Schematic representation of Cosine similarity between two vectors.
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Checking the Subcellular Co-localization of Kinase and Substrate

The eukaryotic cell is a composite system internally subdivided into membrane-enveloped
compartments that perform particular functions [41]. Some major constituents of eukaryotic
cells are: extracellular space, cytoplasm, nucleus, mitochondria, Golgi apparatus, endoplasmic
reticulum (ER), peroxisome, vacuoles, cytoskeleton, nucleoplasm, nucleolus, nuclear matrix
and ribosomes. The proteins which are involved in similar biological functions are closely
located in the same subcellular localization. Knowing the localization of every protein is
important for elucidating its interactions with other molecules and for understanding its
biological function. Protein phosphorylation plays crucial regulatory role in intracellular
signal transduction networks from the receptors of cell surface to the transcription factors of
nucleus, where they ultimately effect transcriptional changes. In order to identify
phosphorylation cascade, the information of protein subcellular localization is used in the

construction of phosphorylation network.

4.5.1.3 Logistic Regression

Logistic regression was adopted- to evaluate  the” confidence value of protein-protein
interaction [135]. In this study we utilized ‘a_modified version of the Sharan et al. [136]
method for evaluating the confidence values of the discovered kinase-substrate interactions.
Since the framework is based on the functional enrichment of proteins, we have based the
confidence evaluation on this methodology. In the logistic regression model, we incorporate
four sets of variables for a given interaction set, including (1) the prediction score of the
kinase-specific SVM model, (2) the depth of interaction between kinase and substrate was
observed, (3) the confidence score of the STRING functional association, and (4) the binary
(0/1) protein subcellular localization data of interacting pairs. Here in addition to the
previously presented first three random variables [136], we also incorporate the protein
subcellular localization data into the logistic model. This is very straightforward since in most
of the signaling cascades the proteins would transmit the signal from the membrane, where
the signal is initiated, towards to the nucleus, where the final product is transcribed. Although
proteins travel in a cell and can coexist in multiple compartments, this classification may

eliminate the false negatives.

Given the four variables, X = (X1, X2, X3, X4), represented the four types of variables, and

the positive and negative training data sets, a linear model g, + S X, + 5, X, + B, X, B. X,
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could be optimized the parameters f,,..., 5, to maximize the likelihood of training data.
is called the "intercept" and S, B2, f3, and S, are called the "regression coefficients" of X7, X3,
X, and Xy, respectively. the probability of a kinase-substrate interaction Pr(lw) under the
logistic distribution is given by

1
L+exp(-f, - > BX,)

Pr(l,, | X) =

where f3,,..., B, , are parameters of the distribution. The positive and negative can be used to

define the cutoff value of confidence score which can reach the best classifying accuracy.

4.5.1.4 Performance Evaluation

To evaluate the predictive performance of the proposed method, the experimentally verified
kinase-specific phosphorylation sites are used to cutoff value and test the prediction accuracy.

The following measures of predictive performance of the trained models are defined:

.. TP A TP o TN
Precision (Pre) = ———, Sensitivity (Sm)»=+———— Specificity (Sp) = —,
(Pre) TP + FP y-(Gm TP +FN P y (5p) TN + FP
Accuracy (Ac) = TP+ 1N , whete TP, TN, FP and FN are true positive, true
TP+ FP+TN +EN

negative, false positive and false negative, respectively. The proposed method is test by the
experimentally verified phosphorylation sites of PKC, CDK, PIKK, and INSR kinase families
from HPRD database. Moreover, the kinase groups with similar motif of substrate sites are
used to test the predictive performance, including arginine-directed kinase families PKA,

PKB, PKC, and Aurora from HPRD database.
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4.5.2 Construction of Phosphorylation Network

After the identification of catalytic kinase of experimental phosphorylation sites, the enriched
kinase-substrate interactions are used to construct the complete phosphorylation network.
Graph-based method is adopted to formalize the construction of intracellular phosphorylation
network to a shortest path problem in graph theory. Moreover, the cellular localization of

proteins is used to constrain the search of phosphorylation network.

Graph-based Definition of Phosphorylation Network

Due to the graph-based method, the intracellular protein phosphorylation network are
visualized as an directed graph G = (V, E ) ,wherex,y € Vand (x,y) € E. Letx and y
represent kinase and substrate proteins, respectively, and (x, y) € E represent a
phosphorylation interaction when kinase x phosphorylates substrate y. In this work, V' refers to
all human proteins in UniProtKB [48], and E refers to all kinase-substrate interactions in
knowledgebase including experimentally verified. kinase-specific phosphorylations and
RegPhos-identified kinase-substrate interactipr_ls. Each edge has the weighted score from 0 to
1, 1 for the experimentally verified kinase-substrate phosphorylation and logistic regression

probability value for the RegPhos-identified kinase-substrate interaction.

[j Receptor yL Phosphorylation

Protein-protein
| interaction

. Transcription Factor

O Cytoplasmic proteins .j, DNA binding

O Kinase

Given a directed weighted graph G=(V, E)
with n nodes, m edges, a set S of start
nodes (receptor), and a set T of end
nodes (TF).

We want to find, for each node sin §, a

acyclic path p = (s,cy, ..., ¢k, t) with length

Ck.

Figure 4.10 Schematic representation of phosphorylation network.
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Identification of Signaling Pathway from Receptor Kinase to Transcription Factor

Due to the annotation of cellular localization databases, there are 84 cell membrane-associated
kinases being the start points of the phosphorylation networks. With the annotation of
TRANSFAC version 11.0 [137], there are 1364 transcription factors in human. To identify the
phosphorylation networks starting from membrane receptor to transcription factor in nucleus,
the graph-based definition can be refined as follows: given a directed weighted graph G=(V,
E) with n nodes, m edges, a set S of start nodes (receptor), and a set T of end nodes (TF). As
shown in Figure 4.10, we want to find, for each node s in S, a acyclic path p = (s,cy, ..., Ck, t)
with length K that starts from S and ends at t within T , passed through cytoplasmic proteins

Cy, ..., Ck. We restrict attention to simple paths that was constrained the order of occurrence of

proteins in a defined path length 8.
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4.5.3 Expression Profile of Kinase and Substrate Genes

How can one bridge the gap from transcript abundances and protein-protein interaction data to
pathway models? Clustering expression data into groups of genes that share profiles is a
proven method for grouping functionally related genes, but does not order pathway
components according to physical or regulatory relationships. Here we present an automated
approach for modeling signal transduction networks in human by integrating protein-protein
interaction, protein subcellular localization, and gene expression data. Our program draws all
possible linear paths of a specified length through the interaction map starting at any
membrane protein and ending on any transcription factor. Microarray expression data is then
used to rank all paths according to the degree of similarity in the expression profiles of
pathway members. Linear pathways that have common starting points and endpoints and the

highest ranks are then combined into the final model of the branched networks.

4.5.3.1 Normalization of Gene’EXpression Samples

All statistical analyses were accomplished using R, program language. Gene expression data
were processed and normalized using Bioconductor Affy package™, based on the Robust
Multichip Average (RMA) method’ [138] for single-channel Affymetrix chips. All 22,283

probe sets based on RMA summary measure.-wereused in class comparison analyses.

4.5.3.2 Distance Function

Two major distance function were used to measure how closely related are kinase and

substrate genes:

Euclidean Distance

This kind of distance strategy calculates the length of two separate points in n-directional
space by their absolute differences. For example, Euclidean distance is measure by following

definition:

Given two points A= (ai, a, ..., an) and B= (b, b2, ..., bn), Euclidean distance is

2 Bioconductor package: http://www.bioconductor.org/
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W,i(ai _bi)z :

Pearson Correlation Coefficient

Contrasting to Euclidean distance, Pearson correlation coefficient accounts for the trends of
two expression profile. For instance, Pearson correlation measures the similarity in shape

between two profiles by the following formula:

Given two points A= (ai, a, ..., an) and B= (b, b,, ..., bn), Pearson correlation coefficient

n‘s\ o o,

a

.. 1&[a,—a)b b — -
similarity is lZ(a’ a]( L j,where a and b arethe mean of Aand B, and o, and

o, are the standard deviation of A and B. Pearson correlation distance is

1 & a.—a\b —b
1-— ! ! )

These two kinds of distance strategies will'lead to'different clustering results. As shown

in Figure 4.11, different distances will render different classifications because we are asking
for grouping based on different features: trends-in the case of correlation and absolute

differences in the case of Euclidean distance.

A

1 M

A BZC

Pearson Correlation Distance
L\.//. P ]
""" e C A BC

Euclidean Distance

L

Figure 4.11 Comparison of clustering results between Euclidean distance and Pearson
correlation distance strategies.

> The figure was obtained from http://gepas.bioinfo.cipf.es/cgibin/tutoX?c=clustering/clustering.config

134



4.5.3.3 Clustering of Syn-expressed Genes

Clustering aims to group data with similar characteristics together. Some clustering
algorithms are usually used in gene expression analysis, including hierarchical clustering and
k-means clustering. Gene coexpression was measured by calculating the Pearson correlation
coefficient between two genes across all data sets in the Gene Expression Omnibus repository

for the organism in question.

K-means Clustering Algorithm

The k-means algorithm (J.A. Hartigan and M.A. Wong, 1979) is an algorithm to cluster »
objects based on attributes into k& partitions, k& < n. It is similar to the
expectation-maximization algorithm for mixtures of Gaussians in that they both attempt to
find the centers of natural clusters in the data. It assumes that the object attributes form a
vector space. The objective it tries to achieve is to minimize total intra-cluster variance, or, the
squared error function

sz Z(xj —ﬂ[)z

i=1 x;€eS$;

where there are k clusters S;, i = 1,'2;....5 k and |, is the centroid or mean point of all the

points .

The most common form of the algorithm uses an iterative refinement heuristic known as
Lloyd's algorithm. Lloyd's algorithm starts by partitioning the input points into & initial sets,
either at random or using some heuristic data. It then calculates the mean point, or centroid, of
each set. It constructs a new partition by associating each point with the closest centroid. Then
the centroids are recalculated for the new clusters, and algorithm repeated by alternate
application of these two steps until convergence, which is obtained when the points no longer

switch clusters (or alternatively centroids are no longer changed).

Hierarchical Clustering

In hierarchical clustering, a series of partitions takes place, which may run a single cluster
containing all objects to n clusters, each contains a single object. Hierarchical clustering is
subdivided into agglomerative methods, which proceed by series of fusions of the n objects

into group, and divisive method, which separate n objects successively into finer groupings.
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One of the simplest agglomerative hierarchical clustering methods is single linkage, also
known as the nearest neighbor technique. The feature of the method is that distance between
groups is defined as the distance between the closest pair of objects, where only pairs
consisting of one object from each group are considered. The minimum value of these
distances is said to be the distance between two clusters. At each stage of hierarchical

clustering, the clusters whose distance is minimal are merged.
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4.6 Results

The investigation of subcellular localization, protein interacting neighbor, and expression

profiles of protein kinases and their substrate are illustrated as follows. The predictive

performance of the proposed method is also discussed in this section. Finally, the statistics of

the identified kinase-substrate interactions are listed.

Table 4.7 Statistics of integrated experimental protein phosphorylation sites.

All species Human
Database Version Number of Number of Number of Number of
phosphoprotein  phosphosite  phosphoprotein  phosphosite
Phospho.ELM 7.0 4,026 16,428 3,354 11,278
UniProtKB/Swiss-Prot 55.0 8,606 24,328 3,746 11,862
HPRD 7.0 - - 1,774 7,438
Combined (NR) - - - 4,825 18,031

Abbreviation: NR, non-redundant.

4.6.1 Protein Kinas

Proteins

(1801)

Kinases
(518)

Phosphoproteins
(4825)

Kinase-specific
substrates (1200)

and Interacting

_——=> Interacting
phosphoproteins

Figure 4.12 The schematic representation of kinase, interacting proteins, and phosphoproteins.
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There are totally 518 known kinase genes identified by Manning et al. [95]. With the
collected experimentally verified phosphorylation sites from version 7.0 of Phospho.ELM,
release 55.0 of UniProtKB/Swiss-Prot, and release 7.0 of HPRD, there are totally 18031
experimental phosphorylation sites within 4825 human phosphoproteins (Table 4.7). With the
annotation of catalytic kinases, there are 3550 kinase-specific phosphorylation sites within
1200 human phosphopproteins, catalyzed by 356 protein kinases. With the collected
protein-protein interactions from DIP, MINT, IntAct, and HPRD, most of the 518 kinases (~
80%) have interacting proteins. As shown in Figure 4.12, there are four types of interactions
between kinases, interacting proteins and substrates, including kinase-protein interactions,
kinase-phosphoprotein interactions, kinase-substrate phosphorylations, and kinase-substrate

interactions.

Table 4.8 Statistics of kinases and their interacting proteins.

. Number of Number of Number of

Interaction Type . . . . . .
interactions kinase interacting proteins

Kinase-protein interactions 10,056 451 3,357
Klnase—phosphoprotem 7.155 430 1,801
interactions
Kmase-subst?ate 6.015 356 1,200
phosphorylations
Kinase-substrate interactions 5,443 342 1,039

The number of kinases and interacting proteins in the four types of interactions is listed
in Table 4.8. There are totally 3357 proteins interacting with 451 human protein kinases, of
1801 interacting proteins contain experimental phosphorylation sites (interacting
phosphoproteins). The 7155 kinase-phosphoprotein interactions could be used to indicate the

potential kinase-specific substrates.

Table 4.9 Statistics of kinases and their interacting proteins and functionally associated proteins.

. Number of Number of Number of

Interaction Type . . . . . .
Interactions kinase lnteractlng protelns

Kinase-protein interactions 11,235 453 3,569
Kmase—phosphoprotem 7.838 434 1.872
interactions
Kmase-substr.ate 6,015 356 1.200
phosphorylations
Kinase-substrate interactions 5,922 352 1,056

To fully investigate the interacting proteins of human proteins kinases, the functional
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association database, STRING, is integrated for enhance the protein interaction resource. This
association is based on four fundamentally different types of evidence: genomic context (gene
fusion, gene neighborhood, and phylogentic profiles), primary experimental evidence
(physical protein interactions and gene coexpression), manually curated pathway databases,
and automatic literature mining. The protein associations, whose confidence score are more
than 0.9, are adopted. The number of kinases and interacting proteins in the four types of

interactions is listed in Table 4.9.

Table 4.10 The protein interacting neighbor of several representative human kinase families.

Kinase Kinase Number of Number of interacting proteins
famil members substrates
y Depth=1 Depth=2 Depth=3 Depth> 4

PKACa, PKACD,

PKA PKACg 194 123 39 25 7
PKCh, PKCa,
PKCb, PKCd,

PKC PKCe, PKCg, 231 175 41 6 9
PKCi, PKCt,
PKCz
CK2al, CK2a2,

CK2 CK2b, CK2al-rs 158 120 28 9 1
CDC2, CDK2,
CDK3, CDK4,
CDKS5, CDKG6,

CDK CDK7. CDKS, 157 135 15 2 5
CDK9, CDK10,
CDK11,

Src Src 92 68 19 3 2

EGFR EGFR 27 25 0 1 1

InsR InsR 14 12 0 1 1

This approach captures both direct and indirect interactions. The use of indirect links
between kinases and their substrates enables unobvious predictions that would be very
difficult to spot by manually inspecting the available evidence. To investigate the interacting
depth of indirect connection between kinase and substrate, the number of interacting
substrates in each kinase group is observed in different interacting depth. As shown in Table
4.10, the number of interacting substrates in PKA, PKC, CK2, CDK, Src, EGFR, and InsR

families are listed with various interacting depth. For instance, PKA family, consisting of
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PKACa, PKACb and PKACg kinases, has 123 (63%) directly interacting substrates. About
37% of PKA-specific substrates are indirect connection to PKA kinases. Base on the statistics
of interacting depth between kinase and substrate, most of the substrates (~95%) are

connecting to kinases within interacting depth 3.

4.6.2 Subcellular Localization of Protein Kinases and

Substrates

Protein phosphorylation can control intracellular translocation and trafficking of proteins. Due
to the annotation of cellular component from the collected protein subcellular localization
databases, the cellular distribution of human proteins including kinase and substrate proteins
can be investigated in detail. There are 18609 human proteins in UniProt KB/Swiss-Prot,
13146 of which contain the localization information. Table 4.11 shows the statistics of human
protein cellular localization categorized mainly into nucleus, cytoplasm, Golgi apparatus,
mitochondrion, endoplasmic reticulum (ER), ‘and ‘cell membrane. With the annotation from
UniProtKB, there are 339 kinases have the anformation of subcellular localization, which are
mainly located in nucleus (34.5%); cytoplasm (52.8%),and cell membrane (31%). Most of
the kinases located in cell membrane are receptot. tyrosine kinase (RTK). However, many
kinases not only locate in a specific' eellular localization, like PKA, PKC, MAPK kinase
groups, which translocate between cytoplasm and nucleus. Moreover, the substrate proteins

are mainly located in nucleus (44.6%) and cytoplasm (36.7%).
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Table 4.11 Subcellular localization of human proteins, kinases and substrates.

Cell

Localization Nucleus Cytoplasm Golgi Mitochondrion ER Other
membrane
Human 13146 3953 3082 482 733 576 1932 4103
proteins (30%) (23.4%) (3.7%) (5.6%) (4.4%) (14.7%) (31.2%)
Kinase 139 117 179 10 9 6 105 84
(34.5%) (52.8%) (2.9%) (2.7%) (1.8%) (31%) (24.8%)
P-value 0.0415 0.0 0.801 0.997 0.997 0.0 0.996
Substrate 3863 1724 1419 154 131 136 439 723
u (44.6%) (36.7%) (4%) (3.4%) (3.5%) (11.4%) (18.7%)
P-value

0.0 0.0 0.446 0.984 0.803 0.976 0.999
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To easily categorize the subcellular localization for kinase and substrate, the localization
of substrates is classified into nuclear and cytoplasmic substrates. The subcellular
localizations of each human kinase-specific substrate proteins extracted from Phospho.ELM
and UniProtKB/Swiss-Prot are schematically represented in Figure 4.13. We mapped
localizations from Swiss-Prot to the kinase-specific substrates, which resulted in 3863
phosphoproteins that are described as localizing to either the cytoplasm or the nucleus. Based
on these statistics, we found 33 kinase groups that show a statistically significant preference
for either cytoplasmic or nuclear substrates. For membrane-associated kinases (such as EGFR,
INSR, and the Src family kinases), it almost exclusively was cytoplasmic substrates.
Although receptor tyrosine kinases (RTKs) can occasionally translocate to the nucleus, there
are very few nuclear substrates. However, we cannot exclude the possibility that the available

phosphorylation data sets do not currently cover the cellular states where RTKs are active in

the nucleus.

Substrate localization preference

Nucleus Cytoplasm EGFR

Nucleus

. . Aurora

GSK RSK

. CDK

cDC2 cK2

MAPK

PKA

FYN!

Cytoplasm

PAK

MQZK g IKK
X,

ATM PKC  PKB CaM

Figure 4.13 Subcellular localization preference of kinase family and their substrates.

In contrast, we find no kinases that are predicted to exclusively phosphorylated nuclear
proteins. For the kinase groups that are primarily localized to the nucleus (DNAPK, ATM,
CDK, CDC2, CK2, RSK, GSK and Aurora), were about 2-fold more nuclear than cytoplasmic
targets. There are at least three possible explanations for this: (1) all nuclear kinases are
synthesized in the cytosol and may phosphorylated cytosolic proteins prior to entering the
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nucleus, (2) nuclear kinases may have access to cytosolic substrates during mitosis when the
nuclear membrane is absent, and (3) many kinases may shuttle between the nucleus and the
cytosol. This is exemplified by PKA and MAPK family, which, upon activation, translocate
from the cytosol to the nucleus or the perinuclear region. However, PKB, PKC, Abl, IKK, and
MAP2K families are both fairly pleiotropic kinases, which in the phosphorylation network
show a weak preference for cytoplasmic substrates. The statistics of substrate localization
preference of kinase families is listed in Table 4.12. The statistically significant (P-value <

0.05) localization preference of kinase family is marked in bold.

Table 4.12 Subcellular localization of human kinase-specific substrates.

Kinase Kinase localization All Cytoplasmic Nuclear Cytoplasmic and

group substrates substrates substrates  Nuclear substrates
PKA Cytoplasm, Nucleus 151 96 74 21
PKC Cytoplasm, Nucleus 168 105 81 26

Cell membrane,

PKB Cytoplasm, Nucleus 63 49 32 19
GRK Cytoplasm 19 18 2 2
ROCK Cytoplasm 15 15 1 1
BARK Cytoplasm 14 14 1 1
CaMK2 Cytoplasm 36 29 11 6
CaMK1 Cytoplasm, Nucleus 14 5 8 2
CK1 Cytoplasm 33 29 14 10
ATM Nucleus 34 11 32 9
DNAPK Nucleus 13 3 12 2
RSK Nucleus 31 15 25 9
CK2 Nucleus 123 46 91 17
CDK Nucleus 121 34 79 30
CDC2 Nucleus 95 37 66 17
GSK Nucleus 34 15 23 9
MAPK Cytoplasm, Nucleus 140 59 91 29
INK Cytoplasm, Nucleus 27 13 22 9
P38 Cytoplasm, Nucleus 35 15 22 4
ERK Nucleus 88 41 63 18
Aurora Nucleus 19 8 14 4
IKK Cytoplasm, Nucleus 12 10 8 6
PAK Cytoplasm 25 19 6 1
MAP2K Cytoplasm, Nucleus 13 9 6 2
Abl Cytoplasm, Nucleus 26 18 13 5
EGFR Cell membrane 2 18 0 4
Nucleus
InsR Cell membrane 9 9 0 0
JAK Membrane associated 17 17 6 6
Src Membrane associated 68 61 22 16
FYN Membrane associated 21 16 9 5
LCK Membrane associated 25 22 1 1
LYN Membrane associated 20 17 3 3
SYK Membrane associated 17 15 1 1
Total 3863 1661 2195 612
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Despite the caveats of possible biases in the various data sets, the putative
kinase-substrate interactions are consistent with localization data for the substrates and
kinases. The cell membrane-linked kinases show clear preference for cytoplasmic substrates,
the predominantly nuclear kinases are biased toward nuclear substrates, and the kinases that

shuttle between the cytosol and the nucleus exhibit a more even distribution of substrates.

4.6.3 Expression Analysis of Kinase and Substrate

In this work, the human gene expression samples of Affymetrix GeneChip Human Genome
U133 Array Set HG-U133A platform (GPL96), consisting of 22283 probe set for 12678 genes,
are used to explore the co-coexpression analysis of kinase and substrate genes. However, the
first problem we faced is what kind of microarray experiment should be selected for
investigating the co-expression of kinase and substrate genes. Without any specific interest
and limitation, we decide to focus on the experimental series of microarray with the raw data.
Totally 2714 samples within 98 experlment serles (GSE), including Large-scale analysis of
the 79 human normal tissue transcrlptome (GSEI 133) Colon cancer progression (GSE1323),

Lung tissue from smokers with severe emphysema (GSE1650) Lung cancer cell line response
to motexafin gadolinium: time course (G_SEM&L_E_pldermal growth factor effect on cervical
carcinoma cell line: time course (Gé'E§7é3'), etc, we_r':é'.:were processed and normalized using

Bioconductor Affy package, based on the Robust' Multichip Average (RMA) method [138].
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Figure 4.14 Comparison of Pearson correlation coefficient distribution between background gene
pairs and kinase-substrate pairs.

Pearson correlation coefficient is used to analyze the expression pattern of two genes. To
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investigate the statistically significant syn-expressed pair of kinase and substrate genes, all the
pairs of genes are calculated for background correlation. However, it is time-expensive for
calculating all pairs of genes. Therefore, the random sampling is adopted to extract 100,000
gene pairs as the background set for estimating the distribution of Pearson correlation
coefficients of background gene pairs. All the 6015 experimentally verified kinase-substrate
pairs are calculated the Pearson correlation coefficients. As shown in Figure 4.14, the
distribution of correlation coefficients of background gene pairs is similar to normal
distribution, based on central limit theorem. In the case of kinase-substrate pairs, the
correlation distribution is slightly skew to right-side. It indicated that the kinases do not have
high similarity of expression pattern to their substrates. The average correlation coefficients of

background gene pairs and kinase-substrate pairs are 0.019 and 0.031.
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Figure 4.15 Distribution of Pearson correlation coefficients of PKA-substrate pairs, CDC2-substrate
pairs, and EGFR-substrate pairs based on 98 microarray series.
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The distribution of Pearson correlation coefficient of specific kinase-substrate pairs is
also investigated. Figure 4.15 shows the distribution of correlation coefficient of
PKA-substrate pairs, CDC2-substrate pairs, and EGFR-substrate pairs, based on 98
microarray series. Most of the PKA-substrate pairs (40%) belong to the low positive
correlation (0 < r < 0.4), with the average correlation coefficient 0.08. In particular, about
65% of CDC2-substrate pairs have the positive correlation, with ~ 20% high positive
correlation (r>0.7). The average correlation coefficient of CDC2-substrate pairs is 0.14. In the
case of EGFR-substrate pairs, the distribution of correlation coefficient is similar to the
distribution of all kinase-substrate pairs. The average correlation coefficient of

EGFR-substrate pairs is 0.028.
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Figure 4.16 Distribution of Pearson correlation coefficients of PKA-substrate pairs, CDC2-substrate
pairs, and EGFR-substrate pairs based on time-coursed microarray data.

Moreover, the distribution of Pearson correlation coefficient of specific kinase-substrate
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pairs is investigated based on time-coursed microarray data. Figure 4.16 shows the distribution
of correlation coefficient of PKA-substrate pairs, CDC2-substrate pairs, and EGFR-substrate
pairs based on 9 time-coursed microarray series, including Esophageal cell response to low
pH (GSE2144), Lung cancer cell line response to motexafin gadolinium (GSE2189),
Cyanobacterial metabolite apratoxin A cytotoxic effect on colon adenocarcinoma cells
(GSE2742), Interleukin 13 effect on bronchial cell line (GSE3183), Endotoxin effect on
leukocytes (GSE3284), Blood response to various beverages (GSE3846), Androgen receptor
modulator effect (GSE4636), Glucocorticoid receptor activation effect on breast cancer cells
(GSE4917), and Epidermal growth factor effect on cervical carcinoma cell line (GSE6783).
The average correlation coefficient of PKA-substrate pairs is up to 0.12. The proportion of
PKA-substrate pairs belonged to the low positive correlation (0 < r < 0.4) is increased from
40% to 45%. In the case of EGFR-substrate pairs, the average correlation coefficient of
EGFR-substrate pairs is raised from 0.028 to 0.08. The proportion of EGFR-substrate pairs
belonged to high positive correlation (r>0.6) is approaching 16%. However, based on
time-coursed microarray data, the average.correlation coefficient of CDC2-substrate pairs is

decreased to 0.10.

Table 4.13 Predictive performance of purely!SVM-based.prediction (KinasePhos).

Kinase Sequence lodo Number of Number of Pr sn S Acc
family 9 9 positive data- . negative data P
3
a
PKC ‘"’f: 160 149 84.8 84.2 83.8 84.0
0= -a-_=:__u_ r--!:ln--.i-_::v w
|, SR c
: S
a
CDK *‘*f: P 100 209 793 92.0 885 89.6
UN_.I}?:?(\IJF.D_:N_::QQ
3_
a
PIKK *‘*f: 37 272 60.0 89.1 919 091.5
E,'q:;:_ 9 o 1:5 an<e
3_
a
INSR *‘*f: 12 297 145 750 822 819

Abbreviation: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy.
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4.6.4 Predictive Performance

To compare the predictive performance of RegPhos with NetworKIN [112], we also adopted
the same data set to test the ability of RegPhos to correctly predict which kinases are
responsible for catalyzing each of 667 known phosphorylation sites from four well-annotated
kinase families, including CDK, PKC, PIKK, and INSR from HPRD database. The
classifying specificity of each pair of PKC, CDK, PIKK, and INSR families are listed in Table
4.14. As given in table, the number in the parenthesis besides the kinase name indicates the
size of the positive set. For example, the first row gives that there are 160 phosphorylated
sites in kinase PKA set. The sensitivity (Sn) of the PKA model is 84.2%. The specificity are
given in the table, for instance, in the first row the specificity (Sp) of CDK, PIKK and INSR
sets corresponding to the PKA model are 81.9%, 89.1% and 83.3%, respectively. Similarly,
the cross specificity values among PKC, CDK, PIKK, and INSR are generally higher than
80%. However, the specificity of INSR model is slightly weak when differentiating PKC
substrates from INSR substrates. The higher specificity the cross-validation, the less incorrect

prediction of the phosphorylation sites:in other groups.

Table 4.14 Cross classifying specificity among PKC, CDK, PIKK, and INSR families based on
KinasePhos method.

PKC (160) CDK . (100) PIKK (37) INSR (12)
PKC model Sn=84.2% 81.9% 89.1% 83.3%
CDK model 86.9% Sn=92.8 94.6% 91.7%
PIKK model 89.4% 96.0% Sn=89.1% 91.7%
INSR model 77.5% 88.0% 86.5% Sn=75.0%

Using only computational model (KinasePhos), we obtained the predictive accuracies
84%, 89.6%, 91.5% and 81.9% in PKC, CDK, PIKK, and INSR, respectively. Although the
kinase families used for benchmarking have by necessity been studied more than most kinases,
the predictive power of the consensus sequence motifs for CDK, PKC, PIKK, and INSR are
representative for many other kinase families. By incorporating contextual information of
protein association, the prediction accuracy improves to 84.1%, 91.6%, 91.9% and 91.9% in
PKC, CDK, PIKK and INSR, respectively, because of the improvement of specificity (see
Figure 4.17). However, there are slight drops in predictive sensitivity. These results highlight
the importance of including contextual information in identifying kinase-substrate
relationships for experimentally verified phosphorylation sites without annotated catalytic

kinases.
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Figure 4.17 Effectsof including protein associations.
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4.6.5 Statistics of Disé@.yefg’d:t,éhﬁasgfspecific Substrate
Interactions re——

With the experimental verified kinase-specific phosphorylation sites extracted from version
7.0 of Phospho.ELM [2], release 55.0 of UniProtKB/Swiss-Prot [3], and release 7.0 of HPRD
[51], there are 18031 experimentally verified human phosphorylation sites within 4825
phosphoproteins. Out of 3550 experimental sites have the annotation of catalytic kinases,
which cover 356 kinases. In order to fully construct the intracellular phosphorylation
networks, the 14481 experimental phosphorylation sites without annotated kinases are
systematically discovered the catalytic kinases by the proposed method (RegPhos). In first
step, 101 kinase group models (by support vector machine) with 89% overall predictive
accuracy are used to scan the putative kinase-specific phosphorylation site. Secondly, the
protein association including protein-protein interaction, functional association and cellular
localization is adopted to help the discovery of catalytic kinase. The number of

RegPhos-identified kinase-specific phosphorylation sites is 12,037.
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4.7 Case Study
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Figure 4.18 Example of the discovered phosphorylation networks.

MAPK

RSK3 may playa rolein
mediating the growth-
factor and stress induced
activation of the
transcription factor
CREB.

PAK1 acts on a variety of
targets. Likely to be the
GTPase effector that
links the Rho-related
GTPasesto the INK MAP
kinase pathway.
Activated by CDC42 and
RACL.

To demonstrate the effectiveness of the proposed method, the discovered phosphorylation

networks associated with the insulin signaling pathway are represented in Figure 4.18. Insulin

regulates both metabolism and gene expression: the insulin signal passes from the plasma

membrane receptor to insulin-sensitive metabolic enzymes and to the nucleus, where it

stimulates the transcription of specific genes. The well-known insulin signaling pathway,

INSR — IRS1 — Grb2 — SOS1 — RAS — Rafl - MEK — ERK1 — EIlkl, can be

successfully identified by the presented graph-based phosphorylation network searching

method (“—” stands for phosphorylation and “— stands for protein-protein interaction). Due

to the protein-protein interactions can be allowed in the network searching, so many insulin

receptor (INSR) related signaling pathways have been discovered, which contain about

150



100000 pathways in depth 8. After the validation of time-coursed microarray data, the
discovered INSR-related phosphorylation networks can be decreased to about 2000 networks.

Phospho.ELM and UniProtKB/Swiss- H PKCe
Prot annotated phosphorylation sites 21
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| RegPhos identified phosphorylation | Erk2 05,5—‘:!:"'?'572’5,-'::?:

Vo osites
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Figure 4.19 Example of RegPhos-identified kinase-specific phosphorylation sites.

Insulin receptor substrate 1 (IRS1), which may mediate the control of various cellular
processes by insulin [139], were used to present the RegPhos-identified kinase-specific
phosphorylation sites. With the annotation of Phospho.ELM [49] and UniProtKB/SwissProt
[48], IRS1 has totally 32 experimentally verified phosphorylation sites. Some of the
experimental phosphorylation sites don’t have the annotation of catalytic kinases. Based on
the trained threshold of logistic regression probability score in each kinase group, these
phosphorylation sites were annotated the potential catalytic kinases. As illustrated in Figure
4.19, seven kinase-specific phosphorylation sites with their protein associations are identified.
For instance, the tyrosine phosphorylation sites “Y612” and “Y632” were potentially
catalyzed by Janus kinase 1 (JAK1), with the indirect protein-protein interaction which was
linked by v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ErtbB2). The tyrosine
phosphorylation sites “Y46” and “Y896” were catalyzed by Insulin-like Growth Factor I
Receptor (IGF1R), with the directly functional association annotated by STRING [114].
Phosphoserine “S636” was catalyzed by MAPK group, and a functional association shows
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that Mitogen-Activated Protein Kinase I (MAPKI1 or Erk2) was directly link to IRSI.
Phosphotyrosine “Y1229” was catalyzed by insulin receptor (InsR) with the direct
protein-protein interaction (DIP:429E) of DIP [122]. Some phosphorylation sites were
identified by more than two kinases, for example, phosphoserine “S1145” was potentially
catalyzed by v-akt murine thymoma viral oncogene homolog 1 (Aktl) with directly functional
association or was potentially catalyzed by protein kinase C epsilon (PKCe) with indirect
protein-protein interaction in depth 3, passing through Stratifin (SFN) and B-Raf

proto-oncogene serine/threonine-protein kinase (BRAF).

Phospho.ELM and UniProtKB/Swiss- HPRD annotated phosphorylation | RegPhos identified phosphorylation sites
Protannotated phosphorylation sites sites A 4

'
| @‘
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,

5268 $307 Y612 S$794 Y896 S1101
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Figure 4.20 Validation of the RegPhos-identified kinase-specific phosphorylation sites using HPRD
annotation.

The annotation of kinase-specific phosphorylation sites in HPRD [51] was used to
validate the correction of the RegPhos-identified phosphorylation sites. As shown in Figure
4.20, the RegPhos-identified results can be verified by HPRD. IRS1 plays an important role in
insulin signaling or insulin-like growth factor signaling [140], phosphotyrosine “Y896” were
indeed catalyzed by Insulin-like Growth Factor I Receptor (IGF1R), by the annotation of
HPRD.

152



Phosphorylation events often occur in a cascade, in which activity of one kinase is
dependent on the upstream activity of another. One of the best-studied examples of this is the
regulation of the mitogen activated protein kinase (MAPK)-signaling cascade, as the suffix
pathway MEK — ERKI1 in insulin signaling pathway. MAPK signaling has no fewer than
five levels of kinase regulation [141], MAP4K, MAP3K, MAP2K, MAPK, and MAPKAPK
[142]. Furthermore, there is considerable cross talk between signaling cascades involving
other phosphoregulators , as the INSR — IRS1 — Grb2 and IGFIR — IRS1 — Grb2,

resulting in a network of phosphoregulators rather than a linear cascade.
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4.8 Web-based System of RegPhos

To facilitate the investigation of protein kinase and their substrate, a web-based system was
implemented for users to efficiently browse the protein kinase and their substrate proteins in a
user-friendly manner. Three major functions, including browsing kinase or substrate,
constructing phosphorylation network, and microarray expression analysis, are provided in
the proposed system. The box of “quick search” can let users input their interested kinase
name or substrate name, as shown in Figure 4.21, users can investigate into the protein
description, subcellular localization, functional domain, tertiary structure, and
phosphorylation sites with catalytic kinase of CEBPB. All the experimentally verified
kinase-specific phosphorylation sites and RegPhos-identified kinase-specific phosphorylation

sites are provided to users. The JMol viewer is adapted for the visualization of PDB structure.
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Statistics: Substrate: CEBPB

518 human kinases
221 human kinase
5549 substra
20606 phosp tion sites Ensembl ID: ENSGO0000172216
10417 interactions
6647 lteratures

Description: CCAAT/enhancer-binding protein beta (C/EBP beta) (Nuclear factor NF-ILE) (Transcription factor 5) PDB 1GTW

nilies

Synonyms. TCF5

s o8 0 00

UniprotKB/SwissProt. CEBPB_HUMAN (P17676)

Function: Important transcriptional activator in the reguiation of genes invol
responses. Specifically binds to an IL-1 response element in the IL-& gene. |
of several acute-phase and cytokines genes. it probably plays a role in the
Quick search: inflammation and hemopoiesis. The consensus recognition site is 5'-T[TGJNNGNAATG]-3

Other Modifications View all modification sites in dpPTh

e Search the kinases
Protein Subcellular Localization Nucleus

PKA
e Search the substrate proteins Protein Domain and Phosphorylation Sites
CEEFB -

=

= Search the phosphorylation

-

network (protein group) & | - &
INSR, IRS1,GRBZ, SOS1 s .
,HRAS,RAF 1, MAPZKI, M :
APK1,ELK1
The phosphorylated sites of CEBPB
No u iD | Position P P Solvent Cataiytic kinase Source Shortest path interacting Partners Expression Analysis
1 CEBPB CEBPB_HUMAN T235|SSFPG T PSPaD % | EMK1(MAPK3) Phospho ELM 7 0 STRING View Analyzing
1 |CEBPB |CEBPB HUMAN|  T235|SSPPG T PSPAD Phospha ELM 70 view Analyzing
2 |CEBPB CEBPB_HUMAN KK T VDKHS 1 Phospho ELM 7 0| STRING View Analyzing
3 |cEeps  |CEBPB_HUMAN|  s2 RK S RDKAK 9% | Pra_group Phospho ELM 7.0 View Analyzing
4 CEBPB CEBPB_HUMAN S83; LSREL S TLRHL % | CaMK2_group Phospho ELM 7 0 Vien Analyzing

[Marranhana-indurhle Cvna  (CFRER (Rv cimiariv)

Che interacting partners of kinase Erk1(MAPK3) and substrate CEBPB

Figure 4.21 Graphical visualization of substrate protein with catalytic kinases.

To investigate the expression correlation of kinase and substrate, the human gene

expression samples of Affymetrix GeneChip Human Genome U133 Array Set HG-U133A
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platform (GPL96), consisting of 22283 probe set for 12678 genes, are used to explore the
co-coexpression analysis of kinase and substrate genes. However, the first problem we faced
is what kind of microarray experiment should be selected for investigating the co-expression
of kinase and substrate genes. Without any specific interest and limitation, we decide to focus
on the experimental series of microarray with the raw data. Totally 2714 samples within 98
experiment series (GSE) are provided in the web-based system. The Pearson correlation
coefficient of gene expression pattern between kinase and substrate are calculated in all 98
experiment series. As shown in Figure 4.22, the expression correlation of kinase CDC2 and
substrate p53 in 98 experiment series are provided, and users can investigate into the

expression pattern of CDC2 and p53 genes in detail.
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Figure 4.22 The expression profile of kinase and substrate genes.

The proposed system can let users input a group of protein names to be constructed the
phosphorylation network associated with the information protein subcellular localization. To
fully investigate how protein kinase control the intracellular processes, the experimentally
verified kinase-specific phosphorylation sites and the discovered kinase-substrate interactions

identified by RegPhos are incorporated to construct the phosphorylation networks starting
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from receptor kinases associated with membrane to transcription factors located in nucleus.
However, the phosphorylation-driven signal transduction pathway is not always the
phosphorylation cascade. Some protein-protein interactions are involved in the signal
transduction pathway, such as IRS1-GRB2 interaction, GRB2-SOSI1 interaction, SOS1-HRAS
interaction, and HRAS-RAF1 interaction in insulin signaling pathway. Figure 4.23 shows an
example of insulin signaling network in the construction of phosphorylation network. A group
of proteins associated with insulin signaling pathway are inputted to construct the network

from membrane-associated proteins to nuclear proteins.
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Figure 4.23 Example of insulin signaling network in the construction of phosphorylation network.
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4.9 Summary

The desire of mapping phosphorylation networks has motivated the development of
computational methods to investigate the substrate specificity of kinase-specific
phosphorylation sites, based on experimental identification of the consensus sequence motifs
recognized by the active site of kinase catalytic domains. However, only 20% experimental
phosphorylation sites have the annotation of catalytic kinases, covering 350 kinases (67%).
The presented method is designed to link experimentally validated phosphorylation sites to
protein kinases. Due to the fact that signaling proteins are modular in the sense that they
contain domains (catalytic or interaction) and linear motifs (phosphorylation or binding sites),
which mediate interactions between proteins [92], the protein-protein interaction and protein
association are incorporated. It also exploits both the inherent propensity of kinase catalytic
domains to phosphorylated particular sequence motifs and contextual information regarding
the physical interaction, functional association, cellular co-localization and coexpression of

kinases and substrates.

Investigating into the predictive power of the context of protein associations, physical
protein interactions play the dominant role among the primary experimental data, whereas
gene coexpression contributes only very little. Physical protein interactions were imported
and merged from numerous repositories, and the reliability of each individual interaction was
assessed based on the promiscuity of the 'interaction partners. Gene coexpression was
measured by calculating the Pearson correlation coefficient between two genes across 98
human gene expression experiment series of Affymetrix GeneChip Human Genome U133
Array Set HG-U133A platform (GPL96) collected from Gene Expression Omnibus repository.
After the evaluation, the improved predictive power gained from using context of protein
association underlines the importance of kinase-substrate interactions in the specificity of
protein phosphorylation within cells. The predictive specificity of kinase groups with similar
consensus motifs can be improved by the consideration of protein association. We would also
suggest that this underlines the utility of protein association data in modeling cellular
processes. The identified kinase-substrate interactions were adopted to fully construct the
intracellular phosphorylation networks. Furthermore, GEO microarray expression data were
used to validate whether the kinase and substrate genes in the constructed phosphorylation

networks have syn-expression pattern.
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Chapter 5 Discussions

5.1 Characteristics

To fully investigate how protein kinases regulate the intracellular processes, the
comprehensive and accurate identification of the kinase-specific substrates is necessary.
Therefore, we propose a method, RegPhos, incorporates computational model with protein
associations (protein-protein interactions, functional associations, and subcellular
localization) for identifying the catalytic kinase for each phosphoprotein with experimental
phosphorylated sites. To observe the expressed relationship between kinase and substrate,
the gene expression microarray data is adopted to observe the expression of kinase and

substrate genes in specific conditions, for instance, the normal tissue and cancerous tissue.

With the increasing number of in vivo phosphorylation sites have been identified, the
desire of map the network of protein kinase and substrate has motivated. The experimental
kinase-specific substrates, ultimately, need to be combined by systems biology analysis,
which translates the separate, large=scale datasets into signaling networks. Therefore, we
incorporated the experimentally verified kinase-substrate interactions with computationally
identified kinase-substrate interactions torconstruct’ the intracellular phosphorylation
network starting from receptor kinases.to tramscription factors, associated with the
formation of protein subcellular localization. Moreover, the experimental expression
evidence, such as gene microarray data, was adopted to validate the syn-expression of the

constructed kinase-substrate phosphorylation network with statistical significance.

Comparison between RegPhos and NetworKIN

Rune Linding and the authors have developed an approach, NetworKIN [112], that augments

motif-based predictions with the network context of kinases and phosphoproteins. As given in

Table 5.1, the comparison between RegPhos and NetworKIN are listed. NetworKIN collected

the experimental phosphorylation data from Phospho.ELM and adopted NetPhosK and

Scansite to the phosphorylation site prediction on 20 kinase families encompassing 112

individual kinases. The protein association database STRING, which integrates information

from curated pathway databases, co-occurrence in abstracts, physical protein interaction

assays, mRNA expression studies, and genomic context, is used to investigate the direct and
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indirect interactions between kinase and substrate. NetworKIN pinpoints kinases responsible

for specific phosphorylation and yields a 2.5-fold improvement in the accuracy with which

phosphorylation networks can be constructed. T

Table 5.1 Comparison between RegPhos and NetworKIN.

Method NetworKIN RegPhos
Species Human Human

Phospho.ELM (7.0),
Phosphorylation resource Phospho.ELM UniProtKB/SwissProt (55.0),

HPRD (7.0) and PHOSIDA (1.0)

Number of kinase
families

20 kinase families encompassing
112 individual kinases

101 kinase families covering 300 kinases

Kinase-specific
phosphorylation site
prediction

1.NetPhosK (neural network)
2.Scansite (position-specific
matrix)

KinasePhos ( SVM model trained with
sequence and structural features)

Blast (for individual kinase whose
substrate site are less than 10)

Protein association
context

Protein functional association
database STRING

1.Protein-protein interaction (DIP, MINT,
IntAct, and HPRD)

2.Functional association (STRING)
3.Cellular localization (LOCATE,
PSORTdb, OrganelleDB, UniProtKB, and
GOA)

Method

Two-staged prediction:

1. Kinase-specific phosphorylation
site prediction

2.Protein association context

Logistic regression of
1.Kinase-specific phosphorylation site
prediction score

2.Interacting depth of Protein-protein
interaction

3.Confidence score of functional
association

4.Cellular localization

Gene expression analysis

Predictive performance

52% sensitivity and 64% accuracy
for classifying 282
phosphorylation sites of PKC,
CDK, PIKK, and INSR

98 experiment series of Affymetrix
HG-U133A platform (GPL96)

89% sensitivity and 91% accuracy for
classifying 309 phosphorylation sites of
PKC, CDK, PIKK and INSR from HPRD
(independent test)

Phosphorylation network

Only kinase-substrate pairs

1.Using graph-based method to construct
phosphorylation networks starting from
membrane receptor to transcription factor
2.Using time-coursed microarray data to
validate the discovered phosphorylation
networks

To compare the predictive power between RegPhos and NetworKIN, the similar dataset

of four well-known types of kinase group, such as PKC, CDK, PIKK and INSR, were used to

evaluate the classifying power of RegPhos. There are totally 309 phosphorylation sites, which
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were independent to training data, extracted from HPRD. By using logistic regression model
to integrate the phosphorylation site prediction with protein associations (protein-protein
interactions, functional associations, and subcellular localization), the predictive accuracy of
RegPhos is higher than the NetworKIN, especially in INSR group. Finally, the constructed
kinase-substrate phosphorylation network with statistically significant co-expression of

time-coursed microarray data were provided to users.

5.2 Limitations

The proposed method, RegPhos, was used to link the protein kinase to experimentally validated
phosphorylation sites. Although the predictive power of RegPhos is effective based on the independent

test, there are several limitations about this study.

5.2.1 How Reliable are Protein-Protein Interaction?

Data of protein—protein interactions, provide valuable, insight into the molecular networks
underlying a living cell. However, their accuracy is often questioned, calling for a rigorous
assessment of their reliability. The high-throughput methods are believed to contain many
false positives, i.e. interactions that ate identified in the experiment but never take place in the
cell [143]. It is therefore essential to obtain an estimate of the reliability of the interactions
documented by the various methods [144]. Elinat Sprinzak et al. [145] have developed an
intelligible mean to assess directly the rate of true positives in a data set of experimentally
determined interacting protein pairs. They show that the reliability of high-throughput yeast
two-hybrid assays is about 50%, and that the size of the yeast interactome is estimated to be
10,000-16,600 interactions. To assess the quality of the data we can use two measures in
future analysis: the fraction of interacting proteins that were documented as localized in the
same cellular compartment, and the fraction of interacting proteins that were annotated as

having a common cellular-role.

5.2.2 Time Complexity and Path Length of Signaling Pathway

Construction

Given a graph G=(V, E) with n nodes, m edges, a set S of start nodes (receptor), and a set 7 of
end nodes (TF). When searching acyclic path p = (s, c;, ..., ¢ t) with length k that starts from
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S and ends at ¢ within 7 in human protein-protein interaction network, the time complexity is
approaching to O(nk ) To accomplish the path searching in a reasonable time, in general, the

length of path is defined no more than eight [119]. To address the NP-hard graph search
problem, Alon et al. (1995) devised a novel randomized algorithm, called color coding, for
finding simple paths and simple cycles of a specified length &, within a given graph. Scott et
al. [146] have adopted and extended the efficient techniques, color coding algorithm, for
finding paths in a graph to the problem of identifying pathways in protein interaction
networks. The authors presented linear-time algorithms for finding path in a given network
under several biologically motivated constraints, and demonstrated that the algorithm was
very efficient, computing optimal paths of length 8 within minutes and paths of length 10 in

about three hours.

5.2.3 Visualization of Complex Phosphorylation Network

In computer science, the graphical visualization of'a graph without any overlap of nodes or
edges is close to NP-hard problem! Therefore, in this. work, we applied an excellent and
popular package namely Graphviz’' to graphically visualize the constructed networks. To
present a signaling pathway starting-from.membrane protein to transcription factor in nucleus,
the order of protein occurrence was.constrained by the cellular localization of proteins.
Figure 5.1 shows the comparison of Graphviz visualization between pure network and
complex, using insulin signaling pathway as an example. If the constructed signaling pathway
contains pure interactions across the proteins, the graphical visualization could be illustrated
in a reasonable layout. However, the network which contains complex interactions across
proteins is visualized in an uneasily interpretable representation. Therefore, it is needed to

improvement the visualization of complex network in an easily interpretable representation.

** Graphviz URL: http://www.graphviz.org/
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(a) Pure Network (b) Complex Network
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5.3 Perspectives

Despite those limitations in the proposed method, combining multiple data types (i.e.,
experimentally validated kinase-specific phosphorylation sites, computationally identified
kinase-substrate interactions, and protein association context) is essential for constructing

phosphorylation networks and is, as we show in case study, also sufficiently accurate to allow
meaningful, theoretical and experimental investigations.

5.3.1 Phosphorylation Sites on Various Protein Isoforms

Gene exonl exon2 exon3 exond exon5 ]
Exon array
z
(%]
c
g
£
Probeset 1 Probeset 2 Probeset 3 Probeset 4 Probeset 5
Figure 5.2 Schematic representation of phosphorylation site located in alternatively spliced
exon.

With the alternative slicing in mRNA processing, one gene has more than one protein
isoforms. Alternative splicing may make the essential phosphorylation sites un-occurred
specifically in a protein isoform. Then, the protein function, may be involved in an
intracellular signaling pathway, is affected by the missed phosphorylation sites. Therefore, a
repository of protein isoforms with experimental phosphorylation sites should be constructed.
Moreover, the newly developed exon array, Affymetrix Human Exon 1.0 ST Array (HG16),
can be used to investigate the different isoforms in mRNA level in specific experimental
condition. Up to May 15™ 2008, there are 220 and 352 samples in two exon array platforms
GPL5155 and GPL5160 in GEO, respectively. Figure 5.2 shows the schematic representation
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of phosphorylation site located in alternatively spliced exon with the experimental exon

expression evidence.

5.3.2 Downstream Genes of Transcription Factors

Intracellular signal transduction is the process by which chemical signals from outside the cell
are passed through the cytoplasm to nucleus, and affect the activity of transcription factors to
regulate their target gene expression. This work focuses on the protein kinase-substrate
phosphorylation network starting from membrane-associated proteins to transcription factors
in nucleus. However, the constructed network just ends at transcription factor. The target
genes of transcription factor may be more important to biologist. With the annotation of
TRANSFAC [137], there are about 1300 transcription factors in human. Due to the statistics
from the collected human experimental phosphorylation sites, ~ 40% of transcription factors
contain phosphorylation sites. Therefore, the experimentally verified downstream genes of
transcription factors can be incorporated to exténd and complete the signal transduction

network in cellular system.

5.3.1 Dephosphorylation and Phosphatase

Protein phosphorylation is a reversible post-translational modification implicated in many
areas of biology. A phosphatase, act in opposition to protein kinases, is an enzyme that
removes a phosphate group from its substrate by hydrolysing phosphoric acid monoesters into
a phosphate ion and a molecule with a free hydroxyl group [142]. Protein kinases and
phosphatases can regulate the phosphorylation status of the protein complement of a cell, and
in turn, regulate the activity of their target phosphoproteins in cellular processes. The presence
or absence of a phosphate group can change the conformation of the target protein, thereby
modifying its activity. Defining the entire complement of these proteins gives us an
opportunity to view the system as a whole. Forrest et al. [142] have identified 162 candidate
protein phosphatases for the investigation of phosphoregulation. Phosphorylation events often
occur in a cascade, in which activity of one kinase or phosphatase is dependent on the
upstream activity of another. One of the best-studied examples of this is the regulation of the
mitogen activated protein kinase (MAPK)-signaling cascade. MAPK signaling has no fewer

than five levels of kinase regulation, MAP4K, MAP3K, MAP2K, MAPK, and MAPKAPK
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[147] and one level of phosphatase regulation (MKP) [148]. Therefore, phosphatase is
necessary in the signaling pathway and is needed to be considered in the investigation of

protein phosphorylation networks.
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Chapter 6 Conclusion

Protein phosphorylation catalyzed by kinase plays crucial regulatory role in intracellular
signal transduction that transmits information from the cell surface to the nucleus, where they
ultimately effect transcriptional changes. With the full annotation of human kinome identified
by Manning ef al., there is a starting point for comprehensive analysis of intracellular protein
phosphorylation networks. Mass spectrometry-based proteomics have enabled the large-scale
mapping of in vivo phosphorylation sites. In order to fully and accurately investigate the
phosphorylation networks, the experimentally validated phosphorylation site databases have
been integrated. However, only 20% experimental phosphorylation sites have the annotation
of catalytic kinases, covering 350 kinases (67%). Experimental identification of
kinase-specific phosphorylation sites is an inconvenient work and usually limited by the
availability of detailed data on the kinase-specific substrates. In silico prediction could be a
promising strategy to conduct preliminary:analyses and could greatly reduce the number of

potential targets that need further in vivo or imyitro.confirmation.

The presented method, namely RegPhos, was desighed to link experimentally validated
phosphorylation sites to protein kinases. Due-to-the-fact that signaling proteins are modular in
the sense that they contain domains (catalytic or interaction) and linear motifs
(phosphorylation or binding sites), which mediate interactions between proteins, the
protein-protein interaction, protein functional association, and cellular localization are
incorporated. Investigating into the predictive power of the context of protein associations,
physical protein interactions play the dominant role among the primary experimental data,
whereas gene coexpression contributes un-robust correlation between kinase and substrate
genes. Physical protein interactions were imported and merged from numerous repositories,
and the reliability of each individual interaction was assessed based on the promiscuity of the
interaction partners. After the evaluation, the improved predictive power gained from using
context of protein association underlines the importance of kinase-substrate interactions in the
specificity of protein phosphorylation within cells. The predictive specificity of kinase groups
with similar consensus motifs can be improved by the consideration of protein association.
We would also suggest that this underlines the utility of protein association data in modeling

cellular processes.

To complete the intracellular processes about protein kinases and phosphorylation, the
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identified kinase-substrate interactions were adopted to fully construct the intracellular
phosphorylation networks starting from membrane receptor to transcription factors. The
discovered phosphorylation networks were validated by calculating the Pearson correlation
coefficient of gene expression patterns between kinase and substrate genes across 9
time-coursed experiment series of Affymetrix GeneChip Human Genome U133 Array Set
HG-U133A platform (GPL96) collected from Gene Expression Omnibus repository. As
illustrated in case study, the discovered phosphorylation networks with highly correlated
expression pattern demonstrated that they may be involved in insulin signaling pathway or

EGF signaling pathway.
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Appendix | - Human Kinase Families

Table A1 221 human kinase families with sequence logos of amino acid surrounding substrate sites.
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zeta-associated

196 TK Syk ZAP70  protein, ZAP70 16(8)
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TXK
Tec protein TEC
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