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摘 要  

近年來，研究零維奈米結構陣列的吸引與日俱增，因為他們獨特

的物理和化學特性應用在例如光電、資訊儲存、量子元件和感測上

面。許多不同製造奈米點的方法已經被開發，但是常常受限於材料或

是製造成本上的困難。 

因此，我們發展出一套新穎的方法透過陽極氧化鋁模板來自主裝

產生金屬氧化物的規則奈米點陣列。以電化學的方式在陽極產生氧化

鋁孔洞的同時，底層的金屬同時被氧化而在孔洞底端成長出奈米點。

以草酸、硫酸和磷酸不同的電解液和不同施加電壓下觀察奈米點的陣

列。製造出來的奈米點直徑可由10nm~200nm相對應密度1011/cm2 ~ 

109/cm2。奈米點的大小和密度都可以透過控制施加電壓的改變來獲得

控制。以掃描式電子顯微鏡、穿透式電子顯微鏡和電子能譜儀來觀

察、分析，進而推測其成長的機制。利用本篇論文的製造方法可以快

速的以簡單而廉價的方式製造出高密度的奈米點陣列。  
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Abstract  

Recently, 0-D nanostructure arrays have attracted growing interest due to unique 

chemical and physical properties in the field of optoelectronics, information storage, 

quantum device and sensing. Variety of alternative methods has been proposed for the 

formation of nanodot arrays but most of these works can be applied to only limit 

material systems. A novel strategy for fabricating the ordered nanodot arrays of metal 

oxide with anodic alumina film to serve the template. Anodising reaction proceeds in 

the sequence of growth of porous anodic alumina when the aluminum layer is 

consumed up to the underlying metal, and the growth of metal oxide under the 

bottoms of the alumina pores occurred simultaneously. The nanodot diameter 

demonstrated here ranges between 10nm ~ 200nm and density ranges between 

1011/cm2 ~ 109/cm2. Size and density of nanodot arrays can be controlled by various 

anodic conditions. Nanodot arrays have been investigated by scanning electron 

microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy 

depth profiling hence infer the growth mechanism. High density nanodot arrays can 

be easily and inexpensively fabricated by the method in this thesis. 
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