CONTENTS

ABSTRACT (in Chinese)	i
ABSTRACT (in English)	iii
ACKNOWLEDGEMENTS	V
CONTENTS	vi
TABLE CAPTIONS	viii
FIGURE CAPTIONS	ix

Chapter 1 Introduction

1-1 High dielectric constant gate oxides for SONOS flash memory	
1-1.1 Scaling and gate capacitance	.1
1-1.2 Evolution of Flash Memory	.7
1-2 Motivation	
1-2.1 The Deposition Method of High-k Material1	2
1-2.2 The Sol-Gel Spin Coating Method1	13
1-2.3 Purpose of This Study1	15
1-3 Thesis Organization1	6

Chapter 2 Hafnium Silicate (HfSi _x O _y) Nanocrystal SONOS-Type	
Flash Memory Fabricated by Sol-Gel Spin Coating Method Using	
HfCl ₄ and SiCl ₄ as precursors	
2-1 Introduction	18
2-2 Experimental procedure	20
2-3 Results and Discussion	
2-3.1 Electrical Characteristics	

2-3.1.1 Id-Vg Curve	24
2-3.1.2 Program/Erase Speed	25
2-3.1.3 Data Retention Characteristics	26
2-3.1.4 Endurance Characteristics	27
2-3.2 Physical characterization	
2-3.2.1 HRTEM	29
2-3.2.2 XPS	30
2-4 Summary	31

Chapter 3 Sol-Gel-Derived Zirconium Silicate $(ZrSi_{x}O_{y})$ and

Hafnium Silicate (HfSi _x O _y) Co-existed Nanocrystal SONOS Memory
3-1 Introduction
3-2 Experimental procedure
3-3 Results and Discussion
3-3.1 Electrical Characteristics
3-3.1.1 Id-Vg Curve36
3-3.1.2 Program/Erase Speed
3-3.1.3 Data Retention Characteristics41
3-3.1.4 Endurance Characterization42
3-3.2 Physical Characterization44
3-4 Summary47

Chapter 4 Conclusions48

Table Captions

Chapter 1

Table 1Summary of 2003 Roadmap. node, gate length, EOT of high
power (CPU) and low standby power devices (mobile), gate
oxide material and gate electrode material. Earliest introduction
of high K would be late in 45 nm node.

Figure Captions

Chapter 1

- Fig. 1-1: The scaling of feature size, gate length and oxide thickness according to the 2003 semiconductor Roadmap.
- Fig. 1-2: Leakage current versus voltage for various thicknesses of SiO₂ layers.
- Fig. 1-3: Schematic of direct tunnelling through a SiO_2 layer and the more difficult tunneling through a thicker layer of high K oxide.
- Fig. 1-4: The semiconductor memory tree.
- Fig .1-5 : A comparison of (a) floating-gate and (b) SONOS non-volatile semiconductor memory (NVSM) devices.
- Fig. 1-6: The band diagram of nitride- based SONOS memory.
- Fig. 1-7: The band diagram comparison of SONOS-type memory of nitride and HfO₂ charge trapping layer when programming (SiN: solid line, HfO₂: dash line).
- Fig. 1-8: Three main applications of sol-gel method.

Chapter 2

- Fig. 2-1: The process flow of the binary high-k SONOS-type nanocrystal memory.
- Fig. 2-2: Device structure of hafnium silicate nanocrystal memory.
- Fig. 2-3: The Id-Vg curve of the hafnium silicate nanocrystal memory.
- Fig. 2-4: The program speed of the hafnium silicate nanocrystal memory..
- Fig. 2-5 : The erase speed of the hafnium silicate nanocrystal memory.
- Fig. 2-6 : The data retention of the hafnium silicate nanocrystal memory.
- Fig. 2-7 : Endurance of the hafnium silicate nanocrystal memory.
- Fig. 2-8: The high-resolution transmission microscopy (HRTEM) images of the nanocrystal on SiO₂ after annealing at 900 °C for 60 s

Fig. 2-9: Hf 4f XP spectra for our sample.

Chapter 3

- Fig. 3-1: The process flow of the high-k SONOS-type nanocrystal memory.
- Fig. 3-2: The device structure and fabrication process for the co-existed zirconium silicate ($ZrSi_xO_y$) and hafnium silicate ($HfSi_xO_y$) memory.
- Fig 3-3: The Id-Vg curve of hafnium silicates and zirconium silicates co-existed nanocrystal memory
- Fig 3-4: The Id-Vg curve of hafnium silicates nanocrystal memory
- Fig. 3-5: The program speed of the hafnium silicates and zirconium silicates co-existed nanocrystal memory.
- Fig. 3-6: The program speed comparison for Vg=10V, Vd=10V.
- Fig. 3-7: The program speed comparison for Vg=12V, Vd=10V.
- Fig. 3-8: The program speed comparison for Vg=15V, Vd=10V.
- Fig. 3-9 : The erase speed of hafnium silicates and zirconium silicates co-existed nanocrystal memory.
- Fig. 3-10 : The data retention of the nanocrystal memory.
- Fig. 3-11 : Endurance of the hafnium silicates and zirconium silicates co-existed nanocrystal memory.
- Fig. 3-12: TEM image of hafnium silicate and zirconium silicate nanocrystal.
- Fig. 3-13(a): XPS curve of hafnium silicate.
- Fig. 3-13(b): XPS curve of zirconium silicate.