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Abstract

A numerical simulation program has been developed in this work to investigate
the transmission of electrons through the metalsemiconductor contacts. The
semiconductor surface is discretized properly into a number of small intervals and the
potential barrier is approximated as a series.of piece-wise linear or step functions. The
transfer matrix for electron ‘transmission through or cross each interval of simple
potential distribution can be obtained-bysolving the Schrodinger equation using Airy or
exponential function. The transmission-coefficient of electrons through or across the
whole contact barrier is then derived from the cascaded transfer matrices. As a
com parison, the conventional WKB approximation method has also been illustrated.

Since the transmission coefficient can be calculated numerically for electron with
energy below or above the contact barrier, we propose, for the first time, a unified
simulation for electron tunneling through the semiconductor surface and
thermionic -emission at the metalsemiconductor interface. The thermionic-emission
current across the Schottky barrier is integrated from te transmission coefficient,
which is a function of electron energy together with the transition probability of electron
between metal and semiconductor. However, the tunneling current through the

Schottky barrier is converted into a local generation or recombination process with
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local rate depending on the local Fermilevel and the potential distribution. The
tunneling processes are self-consistently treated with all current transport in the
semiconductor.

The transmission coefficient is a function of electron energy as well as the
tunneling and thermionic -emission currents as a function of applied voltage for
different transmission models and various doping concentrations has been discussed

in this paper.
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Fig. 2.1 Electron Transmission through Various Potentials

Fig. 2.2 Trapezoidal Potential Barrier

Fig. 2.4.1 Potential distribution of Schottky barrier\
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Fig. 2.5.2 Transmission coefficient vs. barrier width by (a) Airy function (b) WKB
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Fig. 3.1.1 Piecewise linear approximation for Schottky Barrier.

Fig. 3.1.2 Step approximation for Schottky Barrier

Fig 34 Energy Band diagram of metaln type semiconductor junction under
forward-biased condition

Fig 3.5. Generation rate due to tunneling in the bulk of the barrier and thermoinic
emission at the metal-semiconductor interface.

Fig 4.1.1 Transmission coefficient.vs'electron energy calculated by (a) Airy function
solution (b) exponential solution (c) WKB. approximation under conditions of barrier
height 0.72eV and doping concentration 10*®cm®at zero apply voltage

Fig 4.1.2 Transmission coefficient vs ‘electron energy calculated by Airy function
solution for doping concentration of“a)40%-cm?, b) 10" cm3,¢) 2108 cm=3,d) 10*°
cmunder conditions of barrier height=0.72eV at zero apply voltage

Fig 4.1.3 Space distribution of transmission coefficient calculated by (a) Airy function
and (b) WKB approximation, under conditions of barrier height 0.72eV , doping
concentration=10%cm=* and zero apply voltage

Fig 4.2.1 Space distribution of transition probability by using a) Degenerated modelb)
Non-degenerated model ,and c) Maxwell-Bolzman model under conditions of doping
concentration 10*° cm®, applyvoltage 0.2eV and barrier height 0.72eV

Fig 4.2.2 Space distribution of transition probability under conditions of doping
concentration 10 cm™, apply voltage=0.2eV and barrier height=0.72eV using a)
Degenerated modelb) Non-degenerated model ¢c) Maxwell-Bolzmann model

Fig 4.3.1 Spatially distribution of (a) transition probability (b) electric field, (c)
transmission coefficient, and (d) generation rate under conditions of barrier height
0.72eV and Cd 10*° cm™ and apply voltage 0.2eV

Fig 4.3.2 Spatially distribution of (a) transition probability (b) electric field, (c)
transmission coefficient, and (d) generation rate under conditions of barrier height
0.72eV and Cd 10%*® cm and apply voltage 0.2eV

Fig 4.4.1 Current density vs apply voltage calculated by (a) Airy function solution (b)
exponential function s olution (¢c) WKB approximation under conditions of barrier height
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0.72eV and doping concentration 10'° cm

Fig. 4.4.2 The ratio of tunneling current, Jr_ to total current, J, vs apply voltage under
condition of a) Cd=10%® cm* b) Cd=10'"cm™ and barrier height 0.72eV

Fig. 4.4.3 Thermoinic -Emission current , Jre vs apply voltage, for a) Unified and b)
Unity Transmission Coefficient under conditions of barrier height 0.72eV and
doping concentration Cd 10*® cm™

Fig. 4.4.4 Thermoinic-emission current vs electron energy, for a) Unified and b) Unity
Transmission Coefficient under conditions of barrier height 0.72eV and apply voltage
0.5eV and doping concentration Cd 102° cm

Fig. 4.4.5 Thermoinic -emission current vs electron energy, for a) unity and b) unified
transmission coefficient under conditions of barrier height 0.72eV and apply voltage
-0.5eV and doping concentration Cd 10°° cm?
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Chapter 1 Introduction

For future design of deep sub-micron device, metal-semiconductor contact is an
important consideration in the development of integrated circuit technology. It may
work as a rectifying Schottky or pure ohmic contact depending on the metal work
function and semiconductor impurity concentration. It is important to predict the effect
of the Schottky contact on the semiconductor devices by the numerical simulation to
promote the circuit development [1]. From the device design point of view, a practical
and accurate model for the metal-semiconductor contact should be established.

Numerical approaches should be employed to calculate the electrical
characteristic of metal-semiconductor contact.under various conditions. The method in
which only the thermionic emission at the metal-semiconductor interface is considered
is simple and accurate for Schottky barrier diodes at low impurity concentrations or
under low bias conditions [2].. However, it-is insufficient when the tunneling
phenomenon is dominated at high impurity concentration or under reverse bias. The
tunneling current has been included as the current boundary condition at the
metal-semiconductor interface in addition to the thermionic emission current [34].
Naturally, this method is not expected to be accurate when tunneling occurs far from
the interface. Under this condition, the distribution of carriers and potential would be
inaccurate in self-consistent calculations since all carriers are artificially injected at the
interface. The region for calculating the tunneling current has been estimated and the
carrier transport by drift and diffusion has been neglected inside the region [5,6]. This
ignorance of carrier transport in the tunneling region would cause inaccuracy of
potential and carrier distribution in the space charge region due to Schottky barrier.

Recently, leong et al [f/] have presented a physical contact model where all

Sierra 1 7/22/2005



tunneling processes are self-consistently treated with all current transport in the
semiconductor. The key feature of the model is that tunneling current through the
barrier is converted into a spatially distributed generation or recombination process
where the local generation rate depends on the local Fermi-level at each grid and the
potential profile along the tunneling path. The tunneling integral over distance and
energy can be transformed into a double integral over distance alone.

The transmission coefficient of an electron through the Schottky barrier plays a
key for the calculation of tunneling current The Wentzel-Kramers-Brillouin (WKB)
approximation has been widely used due to its simple mathematical form [1,7].
However, this approximation is not valid for the potential variation in the contact barrier
is not very slowly in the general device structures. The purpose of this work is to
present a more accurate numerical method to solve the Schrodinger equation in
arbitrary contact potential.

Analytical solutions for>-Schrodinger_equation exist only for some particular
potential distributions such as canstant potential and constant field [8,9]. Plane wave
and evanescent wave solutions can be used for a step potential. The exact solution of
a particle in a uniform static field can be expressed as a linear combination of Airy and
complementary Airy functions.

The transfer matrix approach introduced by Tsu and Esaki [10] has been used for
transmission coefficient calculation. This approach is easily extended to many layer
structures with electron energy above or below the potential distribution.

The thermionic emission current can be evaluated with the calculated
transmission coefficient. A unified simulation for electron transmission through the
Schottky barrier is proposed in this work. The effective barrier lowering has been
included in the calculation of thermionic emission current. The tunneling process is

self-consistently treated with all current transport in the semiconductor [7].
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In Chapter 2, several analytic solutions are introduced for transmission coefficient
calculation. Single barrier is used to illuminate the Airy function and exponential
function solution and then expressed in Matrix form. The electron energy over and
under the barrier potential are also discussed. The traditional WKB approximation
method and its limitation is explained for comparison.

In Chapter 3, some numerical simulation techniques which are used in the
developed program are introduced. The space discretization concept is important for
tunneling current calculation of Schottky barrier. The barrier is divided into n sections
for the tunneling current calculation at each grid by transfer matrix formulation. The
current density through the Schottky barrier includes the thermoinic-emission at the
interface and tunneling current*at bulk region. A self-consistent calculation is
introduced to well link the tunneling process and thermoinic -emission process with all
current transport through the Schottky barrier. The key to calculate the tunneling
current through the barrier is converted into a‘local generation rate or recombination
process which can be got by solving the device equations with boundary conditions.
The barrier lowering effect is also considered with a voltage drop at the interfacial
layer. The thickness of interfacial layer can be calculated for electric field calculation.
The key contribution in this paper is the unified simulation for thermionic emission
current calculation since the transmission coefficient can be calculated for the electron

energy above the Schottky barrier.

In Chapter 4, all the simulation results and discussionare presented. They break
into several parts in term of transmission coefficient of different transmission models ,
transition probability of different degeneracy models, generation rate as a function of
electric field, transmission coefficient and transition probability, and unified simulation

for current density through the Schottky barrier.
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In Chapter 5, our conclusions are shown.
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Chapter 2 Transmission Models

2.1 Analytic Solutions of Schrédinger Equation
The transmission of electrons through a potential barrier is usually investigated by

solving the time independent Schrédinger equation:

95 vy (9 =y (9

Where the Y (X) is the wave function as a function of the position X,
V(X) is the potential distribution of the potential barrier,

E is the electron energy,

*
M s the effective mass of.€lectron,

h is the reduced Planck:constant.

However, this equation can be sovedonly for some simple potential distributions as

shownin Fig. 2.1:

Vi) |

W

(a) (b) (c)

Fig. 2.1 Electron Transmission through Various Potentials

For the square barrier illustrated in Fig. 2.1(a), the potential distribution is simply

Sierra 5 7/22/2005



given as V (X) =V, and (1) is reduced to

dy _2m (v, - E)
= hz y

dx 2 ?)
The solution of this equation is
Yy (X) = C+eklx +C e X (3)
Where K; is the wave number given as
_[2m (V; - E)

For the barrier illustrated in Fig. 2.1(b) having the potential smaller than the

electron energyV2 < E, the Schradinger equation should be written as

dy _ 2m*(E£V,)

= 5
dx 2 % ©)
and the corresponding solution and wave numberbecome
y (X):C+eik2x +C-e-ik2x (6)
_ [2m*(E-V,)
K —\/ 2 (M)

For the trapezoidal barrier illustrated in Fig. 2.1(c), the potential distribution in the
barrier can be expressed as
V,-V

1 2

V(X) =V, - L

(8)

Where L is the width of the trapezoidal barrier. Under this condition, the Schrodinger
equation (1) can be expressed as:
dy _2m'V,-
dx* »* L

V.
2h- x)y =0 9)
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Where

__ L _
h v v, - E) (10)
Let
a@m V, - V. 073
r(><)=§ﬁ2 L 27 [ x+h] (11)
h L &
then (9) transforms to
d
Y - ry (r) (12)

dr °

The typical solution to this differential equation is the Airy Function [9,11]:
y (r)=C*A(r)+c Bi(r) (13)
Where Ai(x) is the Airy function of the first kind and Bi(x) is the Airy function of

second kind or complementary Airy function.- The detail are described in section 3.2
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2.2 Transfer Matrix for a Single Barrier
Let us consider a trapezoidal potential barrier shown in Fig. 2.2.

Region I I m

vix)

Vi

0 =

Fig. 2.2 Trapezoidal Potential Barrier

There are three regions in this barrier. In region I, the solution of wave

equation is given by (6) and can be written as

ik, x

y 1(X) = "X + Re™ ™ (14)
_ [2mE
K = 72 (15)
In region 1, the wave solution is given by (13)
y o (r (x))=C7 A (r (x))+C;Bi(r (x)) (16)
VIRYV: J
r(x)=¢ m L x] (17)
L
h VA v, - E) (18)
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In region Ill, we have

— ik.Xx

y 3(X) =Te™ (19)
2m,(E - V

k3 :\/ 3(h2 3) (20)

The transfer matrix for a single barrier can be obtained by using the continuity of
wave functions as well as its slope at both boundaries of the barrier. At the boundary

between region | and region Il, the continuity conditions are:

1+ R=C; Ai(r (0))+C; Bi(r (0)) 1)

ik,(1- R) = C;Ai{r (0))+C,Bidr (0)) 22)
The continuity conditions at the boundary between region Il and region Ill are:

C5 Ai(r (L)) + C3Bi(r (k) =T (29)

C,AiI¢r (L)) +C;Bifr (L)) =ik,T 24)
In matrix forms, (21) to (24) may be Written as

¢l 1 telu_¢A(r(0) Bi(r (0)uéc;u

gk, -ikERN &AiGr©) BigrOMEc,n *

A (r (L)) B (r(L))uec u_gliy 2

en-
gaidr (1) BiGr (L)EC; & 8koli
Eliminating the Cz vector from matrix equations (25) and (26), we get the transfer

matrix equation
éel 1 uelu el
A M 2 A
g - 1ue g 3

where

r (27)
u

_eAi(r(0) Bi(r ()ueAi(r (L)) Bi(r(L))u’
* BAIgr (0)) Bigr (0))d€AICr (L)) Bigr (L))
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Note that this matrix is defined as the transfer matrix for region Il and is a
characteristic matrix for a trapezoidal barrier using the Airy function solution.

The transfer matrix for the square well using the exponential function can be
derived in a similar way. For the case of an electron tunneling through a square

barrier as shown Fig. 2.1 (a), we get the transfer matrix of evanescentwave solution

1
=

1 ué ekZL e— KoL

_el €
’ _g<2 - K, Hg%ekzl_ - ke o
cosh(i,L) - kisinh(kzL)
S k,smh(k,L)  cosh(k,L)

] ey ey

(29)

D> D> D~
(e ] any any ey

While for the case of an electron transmission‘o ver a square barrier as shown Fig.

2.1 (b), we get the transfer matrix of plane wave solution:

_él 1 uee g ket B
° 8k, - ik e|ke'kL - ik,e et

(e ey ey

(30)

gcos( k,L) - kisin(kzL)

&, sin(k,L)  coslk,L)

(] el ey e
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2.3 Transmission Coefficients

In general, the transfer matrix eq.(27) may be written as:

el 1 celu_emy uT

rn Vd

gk, - ik R Swlrwﬁﬁ&u .

Multiplying out the matrices and identifying T and R as the two independent

variables, we get

em, +ikm, -1uéra_ély
161" 6. (32)
Gny, +ikomy ik H8RE G
or
GTU_émy +ikm, - 10710
g?u 8“21 +ik,m,, ile gle
_16 ik 1. %6lo 53)
DE’ My - KMy, Myt 'knnb'fﬁkw
where
Dzikl(mn"'iknmlz)"'m21+iknm22 (34)
Therefore, the transmissivity T and reflectivity R can be obtained as
Ak
(35)
ik (M kM) + 1y, ik,
e My - ikgmy, +ik(m, +ikym,) -
il (my +ikgmy,)+ my, +ikgm,,
The transmission coefficient C is defined as
dE)=T*
2
= (Z(l) (37)

(mﬂ - k1k3rnl2)2 + (klnh + k3mz2)2
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Square potential

For V(x) >E

m, =cosh(k,L), ~ m,=- kismh(kzL)

2

m, = - kzsinh(kzl—), m, = COSh(kZL)

The eq.(37) becomes as

1 .
m, = COS(kzL), M= = k_sn(kzl-)

My =K, S n(kzl—), m, = COS(k2 L)

The eq.(37) becomes as

2 .2 u
118,59 co§(k2L)+?- 22 §n?(k,L)a
G 4 klg 2 2 H

Sierra L
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2.4 WKB approximation for Arbitrary Potential

| g9,

Semiconductor

?'jB E<

Metal 0 L X

Fig. 2.4.1 Potential distribution of Schottky barrier

The WKB phase integral approximation or method is known to approximate a
real Schrodinger wave function by a sinuseidal-oscillation whose phase is given by
the space integral of the classical momentum; the phase integral, and whose
amplitude varies inversely as.the -fourth—root .of the classical momentum. This
approximation was already known for. the physical waves of optics and acoustics,

and was quickly applied to the new Schrddinger "probability” waves.

Base on the One-dimensional time-independent Schrédinger of equation (1)

And classical momentum P = \/2m(E -V (X)) (40)
d 2
(1) can be expressed as sz(X) =" ;)2 y (X) 41)

In semiclassical region, E>V(x), p(x) is real. Then the solution can be written in
form of

y (x) = Alx)explif (x)] (42)

In classical forbidden region, V(x)>E, and p(x) is imaginary
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C

y (x)= Alx)explxf (x)] = NEC @<p§t % Ap(x) dx

e i e

(43)

with A(x) and f(x) are real function. The general solution of Schradinger can be
expressed in the following

We can separate the equation into real and imaginary part. There is no general

analytic solution, but if A(x) varies very slowly then the A & A" would be very small

compareto f . We can neglectthe A" to get

)2 2 1.
& ) :5—2® f =i;0p(x)jx (44)

The transmission coefficient C can be approximated under the assumption of

barrier is high or wide, V(x) >> E, and neglecting the reflective wave. It can be

written as
2 _ 1

G= ’T‘ = eXp(- 2g) e G % Q‘ p(X)‘dX , that is, (45)
- 26/(2m/h2)[v(x)- E Jdx

G=e © (46)

There are some assumptions in the WKB approximation method when we got

the general solution. The first one is amplitude A(x) variation should be small

enough to make A'and A" can be ignored compare to f (X) . The 2™ s, it would

make the WKB approximation invalid at the turning point, E =V(X). That is,

p(x)® 0 at the turning point, which is the key, make the solution turn into invalid.

The 3" is the WKB approximation neglects the reflected wave. This would make the
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deviation of the probability compare to the numerical analysis results. The
transmission coefficient is assumed to be one if the electron energy equal or above
the potential dis tribution. This is used in the program to avoid the calculation
problem at the turning point.

Base on the above limitation, we can see the WKB approximation to calculate
the tunneling probability in Schottky Barrier as shown in Fig2.4.1, is less accuracy
than other numerical methods of Airy function and exponential function solution.

Base on the description on section 2.2 and above, the transmission coefficient of
the trapezoidal potential barrier is a function of electron energy, barrier width,. The C
calculated by Airy function of trapezoidal barrier to electron energy, and barrier width

are shown on Fig.2.5.1, and Fig.2.5.2 respectively.

1.2

1.1
1.0 fiﬁm
09

_E 08 ;/
=
% 07
o
: /
g 06
]
‘£ 05
w
j=
S 04
/! =+={(a} TC by Biry fubction
03 // =o={b} TC by WKB
0.2 Barrier Height (0} : 1.0eV

// Apply Voltage (Va): 0.5eV
0.1 ; o Barrier Width (L) : 1nm
oo L L L L

0 0.2 04 086 038 1 12
Electron Energy(eV)

Fig.2.5.1 Transmission coefficient vs. electron energy by (a) Airy function (b) WKB
approximation of trapezoidal barrier
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00 ‘ e
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Fig.2.5.2 Transmission coefficient:vs. barrierwidth by (a) Airy function (b) WKB

approximation of trapezoidal barrier
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2.5 Current through the Schottky Barrier

The current through a Schottky Barrier consists of the component flowing from

metal to semiconductor J . and the component flowing from semiconductor to metal

Jgy, - For a non-degenerated semiconductor, the current density J . is proportional

ms
to the quantum mechanidgl transmission coefficient G(x) multiplied by the

occupation probability in the metal fm(x) and the unoccupied probability in

semiconductor 1- f (x):

Jms = - qVRNcQ¥ G(X)fm(x )[1' fs(X )]dX (47)

where Vj is the thermal velocity of electrons, N, is the effective density of states in
the conduction band, and x:=e/kgT IS the normalized electron energy. Similar

expressionfor J_ can be expressedas

‘Jsm = qVRNcS G(X)fs(x )[1' 1:m (X )]dX (48)

The total current flowing across the Schottky barrier is the sum of the above two

components:

J=- qVRNc(\a¥ Gx ) )~ f5(x )oix (49)

However, for heavily doped degenerated semiconductor the total current flowing

from metal to semiconductor is given as:

2 éfx)u
J=- qVRNC(SG(x)Ine—:f ((X)),px 50
e'm™/u

Here fm(x) and fs(x) are the Fermi-Dirac distribution functions in the metal and
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semiconductor respectively:

_ 1 _
fm(x)_1+exp(x 7 Xm = €rm (51)

1
f = , h = €r 52
) 1+exp(x - x,) Xn =€ 2

For a heavily doped semiconductor or for operation at low temperatures, the

Schottky barrier current given in (49) and (60) actually can be divided into two
components: the quantum mechanical tunneling current JTL and the

thermionic -emission tunneling current J TE

Jr =-aVgN¢ (\é(b G(X )Fms (X )dX (53)

Jre = - AV N g G )Fme (x )ax e

where Xy is the barrier height. and Fms (X) is the transition probability of

electrons from semiconductor to meal and is given as:

Frs )= frn(x)- f(x) 59

for non-degenerate semiconductor and

éf.(x)u
I: :l ~ S V4
ms(X) ngfm(x )H (56)

for degenerate semiconductor.
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Chapter 3. Numerical Simulation

3.1 Space Discretization

The solutions described in Chapter 2 are base on single potential barrier. If we
like to demonstrate those solutions in matrix form, the potential should be divided into
small areas. Each area can be treated as single potential barrier and cascade the
solution as probability and transmission coefficient calculation. There are two ways to

discretized the potential barrier as shown on Fig3.1.1 by piecewise linear

approximation and Fig3.1.2 by step approximation. V, is the barrier height, V, is the
applied voltage across the barrier. bis the width of each region. L is the total width

of barrier.

Piecewise Linear Approximation

=

Rl

reflection wave

> semiconductor

Fig3.1.1 Piecewise linear approximation for Schottky Barrier. T he barrier, total depth is
L, is divided into n section. S is the s section in the barrier. The Width of each barrier
isb
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Step Approximation

reflection wave

> semiconductor

Fig3.1.2 Step approximationifor ‘Schettky-Barrier. The barrier, total depth is L, is
divided into n section. S is the sth:section in the barrier. The width of each barrier is b
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3.2 Transfer Matrix Formulation

0 I I1 11

Ve
| V
0 L, >
L.
In the region O
Y o (x)=e"* + Re " He¥ X £0 (57)
I, = /2n12E
h (58)
In the region |
Y, (r,)=C/A(r)+C;Bi(r,) (59)
1
&2mV, - V, 63
ri(x)= —2%2 (- x+h,)
n 1 g 0Ef£ XxXEL, (60)
h, = = (Vo - E)
Vo' Vl (61)
In the region |I
Y,(r,)=C A (r,)+C;Bi(r,) (62)
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&2 mvV, -V, o3]
rZ(X) L2 —( X +h )
h L, o ,L1£X£ |_2 (63)
L
h,=-——-\-E)
i Vi- Vs ' (64)
In the region 3
— ikgX
Y3(X) Te X3 L, (65)
2m(E - V;)
ks = >
R (66)
at boundary of regions 0 and |
1+ R:Cf'A‘i(r 1(0))+C1- Bi(r 1(0)) (67)
iko(1- R) = Ci Aidr4(0))# 61 Bilr ,(0)) -
é1 1 ge}lg:éAi(rl(O)) Bi (rl(O))ueC u
8ko - ikotERY  EAIA(T4(0)) BT 4(0) )icC; g ©9)

at boundary of regions | and II
ClA(r (L)) +CBi(r (L)) =CAI(r 2(0)+C;Bi(r () 7

C/AIGr y(L,)) +C; Bigr(L,))=C; Aikr ,(0) +C;Bitr ,(0) (79

6Ai(r1 (L)) Bi(r,(L))iCu_eAi(r,(0) Bi(r,(0)c;

EAIgr (L)) Bi((rl(Li))u'euéCig gAi¢r,(0) Bidr 2(0))&28 (72)
at boundary of regions |l and Il

Co A (r,(L,))+C,Bi(r,(L,))=T (73)
C;Ai‘iﬁ(l’2(L2))+C2'Bia(r 2(L2))=ik3T (74)
6AI(r,(L,) Bir,(L))wecsu_éla

BAIdr ,(L,)) Bidr,(Ly)MEC; b 8k (75)
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Eliminating C; and C, from (69) to (72), we get

él 1 uelu

gko kngRu

¢Ai(r (0) Bi(ry(0)ueAi(ry (L)) Bi(ry(L))u

SAﬂ(r () Bidr,©)8Ai¢r (L) Bigr (L)) 76)
SA(r
A

,(0)) Bi(r,(0)ugAi(r,(L,) Bi(r,(L))ué1
) ) ) QT

u u e
r,(0) Bidr,(0)5&AICr,(L,)) Bidr, (L))} 8k,

where M1 and M, are the transfer matrix for regions| and Il

_6AI(r,(0) Bi(r.(0)oeAi(r. (L) Bi(ry(L)u’

1T Enidr,(0) Bidr,(0)%&aidr (L) Bidr,L))! ()
_6AI(r,(0) Bi(r,(0)aeAi(r,(L,)) Bi(r (L))" T
* T &Aidr,0) Bidr,(0)8Aidra)., Bidr (L)) (78)
(76) can be expressed as
61 1 (&l 61 61¢
: L 0eou= MM g ET:M s ET (79)
3k, - ik, (ERY aks ks

where M = M]_XMZ

Extend to n regions as shown in chapter 3.1, the matrix of s" region, Mg is

represented

_éA(ry0) Bilr0)ceA(r (L) Bi(rg(L))a”
*"8aidr (0) Bigr (0)BAdr (L) Bidr (L)t

- e C*

(80)
Extending to n+1 regions, we have
él 1 vélu él( el
s 0=MM,Mj 2o, & ETzMA ET 81)
Sko - HSR Skn u Skn u
where
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nol
M=M,M;---M_ , =0 Mg (82)
s=2
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3.3 Discretization of Device Equations

Device Equations

The electrical properties of semiconductor device can be completely specified by
physical relationship. They are 1) Poisson’ equation, 2) electron and hole transport
equations, 3) Electron and hole continuity equations. Applying the boundary

conditions can solve current density, electron potential, and carrier concentration.
Poisson Equation

_-q
v —g(p' n+N) (83)

Transport Equations

dn

J. = ngE, + gD, —

n — amne, +qu, X (84)
dp

J, = E, - gD, —/—

p=dm,pEy - Q P dx (85)

Continuity Equations

dn_1dl, |

dt q dx (86)

dp 1de

P e U

dt g dx &7)

where n and p, J ad J, mand m are the concentrations, current densities, and
mobility of electrons and holes, respectively. U is the recombination rate, q is the
electron charge, E is the electric field, y is the space charge potential. egis the
permittivity of semiconductor.

The main consideration in selecting a solution algorithm is the convergence
properties of discretized equation and the iterative sequence. The Poisson equation
is discretized and solved simultaneous with continuity equation and substituted into
Transport equation to calculate the current density. The discretized procedure of

Poission equation of n type semiconductor can be illuminated as
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y|+1_y&l 1 y|1_
'&DX, Dxlg DX,

-p N - Ni (88)

where

DX, =DX,(DX,,, +DX,)/2 and DX, = DX, (DX, + DX;)/2

To discretized the continuity equation between the initial time t, and final time

t,, the equations can be written as

n(6)-n) I+ Jv k- b))

SR ¥ V() PR

pi(tl)' P (to) - Jp(i +%)+Jp(i ] %)+G.
Dt Ddi +2)+ D2,

The J, of between i to i+1 section can.be presented by discretized the Current

(89)

(90)

Transport equation as

NESA
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3.4 Boundary Conditions

The boundary conditions of the device equations at the metal semiconductor
interface are used for the thremionic emission current calculation. The barrier height,
f 5, including a voltage drop, Df across the interfacial layer is the Schottky effect
induced barrier lowering.

Barrier lowering

The Schottky effect, which is the image force induced lowering of the potential

energy carrier emission when an electric field X is applied. The energy-band diagram
between a metal surface and Semiconductor is shown on Fig3.4. A voltage drop, Df

is the barrier lowering and the thickness of the interfacial layer, Xm. To make the
image force deviation by x equal to-zera can getithe Df by Schottky barrier lowering,

effect can be expressed as

_ / QX _
Df = |[— =2xXm
0. i (92)

q

Xm= lQDGSX cm (93)

Where X is applied electrical field
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Fig 3.4 Energy Band diagram of -metal-n “type semiconductor junction under
forward-biased condition, where y (x) is:the Schettky potential profile, f is the total
effective barrier height for thermoinic emission, Df is the total barrier lowering.

The thermionic emission current,...J« ", which is calculated at the grid of the

interface between the metal and semiconductor for the electron energy over the

barrier height.

Jre = - aVgN, C\)¥b GX )F s (X ol (94)

where x, = qf,
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3.5 Generation Rate

The thermoinic -emission process occurs at the interface of metal-semiconductor
and the tunneling happen in bulk region which is away from the interface. A
self-consistent calculation is introduced to well link the tunneling process and
thermoinic -emission process with all current transport through the Schottky barrier.

The key to calculate the tunneling current through the barrier is converted into a local

generation or recombination process where the local generation rate,G(x), depend

on the local Fermi-level and potential profile, y (x) along the tunneling path. The
tunneling integral over distance and energy can be transformed into double integral

over distance along as Fig.3.5.[1]

Thermionic Emission

Tunneling

Gm(ﬁf}

—q4,

Metal 4. 0 semiconductor X

Fig 3.5. Generation rate due to tunneling in the bulk of the barrier and thermoinic
emission at the metal-semiconductor interface.

For n type semiconductor, the local generation rate, G, can be expressed as

1 dJ 1dJ, dy _dJ, ©
G(X) - = . = = TL — TL XE 05
g dx g dy dx de
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®
where y , e=-qy , E=- ddi are the electrostatic potential, energy level and the
X
electric field respectively. Use (71) and note that X =e/kzT, e=-qy and
E=-dy /dx, we have

q gE
dx = - — =—dd 96
X KgT & kg T X (56)

where E is the local electric field. Using @6) in (53) the energy integral becomes

the space integral:

VoN._ .
Jo = % QL G(X)FmS (X)de o7

Substitute into (95) the local generation rate can be expressed as

1dJ VN
G(x) = a d)IL = qk:T k G(x)Fan (X)E (98)
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Chapter 4 Results & Discussion

4. 1Transmission Coefficient

Different numerical models have been presented to calculate the transmission
coefficient, TC, in chapter 2. The WKB approximation is widely used to solve the
Schrodinger equation under some assumptions, which make it is not expected to be
so accurate. Besides, the WKB method is invalid at the turning point, which is the
electron energy equal to the Schottky barrier potential distribution, E(x) :V(x).
However, the Airy function and exponential function models for descritized Scottky
barrier shown in Fig.3.1.1 and Fig.3.1.2 provide more accurate simulation results than
WKB approximation model. The transmission coefficient calculation by transfer matrix
form of Airy Function solutions are described on (79) to (82)

The simulation results asqn Fig.4.1.1 shew the difference around those three
models. In WKB approximation, . TC is assumed to be one when the electron energy
above the barrier height at the interface and decrease as a function of electron energy.
The Airy function and exponential:-function-models provide the TC simulation result
even the electron energy above the barrier height. This unique finding allows a unified
simulation of harmonic emission current discussed in section 4.4,

The concept for Airy function model is shown on the Fig.3.1.1 of linear piecewise
and exponential method simulation on Fig.3.1.2 of step approximation. Theoretically, it
is more accurate by using linear piecewise approach. However, if the n sections in
Fig.3.1.1 and Fig.3.1.2 are large enough, the difference between Airy function and
exponential methods would be almostnon-visible as the results shown in Fig.4.1.1.
The potential of the Schottky barrier, V(x) decrease along the barrier depth which
make the absolute value of classical momentum of (3) decreas e as well which result in
smaller TC as shown in Fig.4.1.3. Moreover, the WKB approximation simulation result

is smaller than the simulated result by Airy function under degenerated semiconductor
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of 10%° cm™ doping concentration.

The transmission is an increasing function of doping concentration. The potential

distribution is more shaper due to the quansiFermtilevel of n type semiconductor, E,

closing to conduction band, E. as showninFig4.1.2.

Base on the above discussion, The Airy function and exponential function models
provides more accurate result than WKB approximation model and capably to
calculated the TC for the electron energy above the barrier height where a unified
simulation is proposed.

Transmission Coefficient vs Energy by Different Tunneling Models
1.5

Transmission Coefficient

14
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Barrier Height=0.72eV
Doping Concentration =1019¢m-3

ey

w

——(a) Airy Function
—— (b} Hyperbolic Function
(c) WKB Approximation

(b~

E ottt ittt gt

00 01 02 03 04

0.6

0.7

08 09

1.0

1.1

Electron Energy(eV)

Fig 4.1.1 Transmission coefficient vs electron energy calculated by (a) Airy function
solution (b) exponential solution (c) WKB approximation under conditions of barrier
height 0.72eV and doping concentration 10*°cm™ at zero apply voltage
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Transmission Coefficient vs Electron Energy for Various Doping Concentration

1.6
Barrier Height = 0.72eV
14 | —(a)Cd=1E16 ”%2";_
—— (b) Cd=1E17 /
1.2 (c) Cd=2E18 :
(d) Cd=1E19

0.8 /

0.6 //

04 0 @ o / / (a)
/]

]

0.0 L b
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Transmission Coefficient

-0.2

Electron Energy(eV)

Fig 4.1.2 Transmission coefficient vs electron energy calculated by Airy function
solution for doping concentration of a) 10%° cm™, b) 10" cm=, ¢) 2*10*® cm™, d) 10'°
cm23under conditions of barrier height=0.72eV at zero apply voltage

Transimission Coefficient vs Barrier Depth for Various Models
12
11 P

1:0 \
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03 \ \
02 \\ \
0.1 \\”\

00

Barrier Depth (nm)

Fig 4.1.3 Space distribution of transmission coefficient calculated by (a) Airy function
and (b) WKB approximation, under conditions of barrier height 0.72eV , doping
concentration=10*cm™ and zero apply voltage
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4.2 Transition Probability

The local generation rate,GR, which is the function of transmission coefficient,
transition probability and electric field as shown in (98). Most of the discussion base

on the p+ or n+ semiconductor, which is called non-degenerated model, but not for

higher doping concentration of N > N_, which is degenerated semiconductor. The

different degeneracy models of Maxwell-Boltzmann distribution, degeneracy and
non-degeneracy models are discussed. The Maxwell-Boltzmann distribution in the
metal and semiconductor are described in (47) and (48). The transition probabilities
by non-degenerated and degenerated models are described in (55) and (56).

For higher dopingconcentration of n type semiconductor, the occupied probability
fs(x)is getting smaller and result in larger transition probability F .. The transition
probabilities of different degeneracy models are shown in Fig.4.2.1. and Fig4.2.2.
The transition probabilites are.almost identical- at lower doping concentration no
matter by which degeneracy maodels. The difference can be seen away interfacial
layer at higher doping concentration condition.. The non-degenerate model may not be
accurate for the degenerate semiconductor of doping concentration over N > N
where the Fermi-level is over the conduction band on degenerated semiconductor.
Even though the transition probability by degenerated model is higher than
non-degenerated model, the contribution to total current density is relative small due
to the combination effect of electric field, transition probability and transmission
coefficient which discussed in section 4.3. Base on the comparison, the degeneracy
models is suitable for the simulation of Schottky to Ohmic contacts as the impurity

concentration is increased.
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Transition Probability for Various Degeneracy Model
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Fig 4.2.1 Space distribution of transition probability by using a) Degenerated model b)
Non-degenerated model ,and c) Maxwell-Bolzman model under conditions of doping
concentration 10*° cm?, applyvoltage 0.2eV and barrier height 0.72eV
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Fig 4.2.2 Space distribution of transition probability under conditions of doping
concentration 10 cm™, apply voltage=0.2eV and barrier height=0.72eV using a)
Degenerated modelb) Non-degenerated model ¢c) Maxwell-Bolzmann model
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4.3 Generation Rate

The local generation rate as show in (98) represents the tunneling current along
the barrier depth. The total tunneling current is to integrate the tunneling current along
the X space from interfacial layer till the electron energy larger than barrier potential.
The generation rate isconsisence increasing or decreasing along the X space since it
is the function of three components, electric field, transition probability and
transmission coefficient. The maximum generation rate happen at the cross point of
transition probability and transmission coefficient as shown on Fig 4.3.1 of doping

concentration 10*° cm™. Base on the discussion on section 4.1 and 4.2, the doping

concentration is the factor to influence G(x) and F, (). The potential distribution,v(x)
and quasi Fermilevel, x,. The G(x) degraded rapidly along X space and mainly
contribute to generation rate as shiown on Fig:4.3.2 of doping concentration 10*° cm™,
It is realized that the tunneling current-most happen between the interfacial layer and
few nm of barrier depth. In this device condition we discussed, it is about 10nm. The
other point is that the maximum tunneling current is few nm away interfacial layers on
higher doping concentration due to the combination effect of transmission coefficient,

transition probability and electric field.
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0.72eV and Cd 10*® cm™ and apply voltage 0.2eV, (Log scale for both Y1 & Y2 axies)
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4.4 Current Density
4.4.1 Tunneling Current, Jq

The current density through the Schottky barrier include the thermionic emission
at the metal/semiconductor interface and the spatially distribution tunneling calculated
at each grid of semiconductor around the interface. The generation rate is used to
calculate the tunneling current as shown on (54),(98). The energy band diagram of
Schottky Barrier in thermal equilibrium condition is showed in Fig.2.4.1. The
fermi-level of metal and semiconductor are equal to each other, thatis, X, =X,. The
transition probability of (55) and (56) turn to zero and result in zero current density.
The barrier height decrease as a forward bias,V, is applied, Since the generation
rate is the increasing function of electricfield, which is increased by apply voltage. The
current density is an increasing function:of. apply voltage as shown on Fig 4.4.1. The
difference between forward and reverse ‘bias is due to the relative barrier height
increased by reverse bias, which decrease the transmission coefficient and result in
lower current density than forward bias. The thermionic emission can represent the
total current at lower impurity concentration or under lower bias conditions but
insufficient when the tunneling phenomena is dominant. This phenomena is
illuminated in Fig4.2.2 of the ratio of tunneling current to total current density. The
tunneling current is the dominated at the impurity concentration of 10*° cm™ compare

to lower impurity doping concentration of 10 ¢m?.

In brief, the current density
increased by applies voltage. The tunneling effect is the dominant contribution to total

current density at higher impurity concentration.
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Current Density for Various Tunneling Model
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Fig 4.4.1 Current density vs apply voltage calculated by (a) Airy function solution (b)
exponential function s olution (c)WKB approximation under conditions of barrier height
0.72eV and doping concentration 10*¢ em?
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Fig. 4.4.2 The ratio of tunneling current, Jr. to total current, J, vs apply voltage under
condition of a) Cd=10"° cm® b) Cd=10'" cm™ and barrier height 0.72eV
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4.4.2 Thermionic Emission Current, J

The thermionic emission current is calculated for the electron energy upward

the maximum potential distribution. The transmission coefficient, G(x) calculated by
the WKB approximation model for thermionic emission current calculation, is
assumed to be one as shown in Fig.4.1.2, the dx) can be calculated if the
electron energy over the maximum potential distribution. Fig4.4.3 shows the
thermionic emission current density versus apply voltage by the unity, G(x) equal to
one, and unified transmission coefficient under the doping concentration of 10*° cm™.
The transmission coefficient of unified method is smaller than the unity method
under low doping concentration. As the G(x) is an increasing function of forward
bias and doping concentration. The simulation result of thermionic emission current
at higher doping concentration is*larger than_ unity simulation result as shown in
Fig.4.4.4 and Fig.4.4.5. The opposite trend.of forward and reserve bias is because

the trans mission coefficient strong depends on applied voltage.
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Thermionic Emission by Models of Gama and Unity
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Fig. 4.4.3 Thermoinic -Emission current’, Jig.vs apply voltage, for a) Unified and b)

Unity Transmission Coefficient undersconditions of barrier height 0.72eV and
doping concentration Cd 10*%¢m3
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Fig. 4.4.4 Thermoinic-emission current vs electron energy, fora) Unified andb) Unity
Transmission Coefficient under conditions of barrier height 0.72eV and apply voltage
0.5eV and doping concentration Cd 10°° cm™

Sierra

41 7/22/2005



0.0E+00

Thermoinic Emission Current vs Energy

L.

0.(

0

0.02

0.04

0.10 0.12

0.14

0.16 0.18

0.2

5.0E-12

-1.0E-11

-1.5E-11

Thermoinic Emission Current

-2.0E-11

——(a) TC=Gama
==—(b) TC=Unity

-2.5E-11

Electron Energy (eV)
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Chapter 5 Conclusions

A unified simulation for the transmission of electrons through the
metal-semiconductor contacts proved to be very useful for the calculation of tunneling
current or thermionic current. The transmission coefficient for electrons with energy
above or below the Schottky barrier can be calculated numerically using the Airy
function or the exponential function. The tunneling processes have been
self-consistently treated with all current transport in the semiconductor and more
accurate results have been obtained for Schottky or Ohmic contact with a wide range
of doping concentration. The degenerated model of transition probability can be
applied to all range of impurity concentration while the non-degenerated model is
suitable only to low doping semiconductors. Using the numerical model developed in
this work we can evaluate the performance of future nanometer devices such as

Schottky S/D MOSFETs
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Appendix

Appendix A
Algorithm for Airy Function (Bessel Function)

The Airy function of the first kind ~ Ai(x) can be defined to be

. 1¥ 1.0
Ai(X) = = &) coxt + =3t (99)
p Q aé 3 o
It also can be expressed in terms of Bessel function of the first kind, 1, (x)
. 1 é s TR
A= 3VXG s X7 1, xS (100)
3 & e8 g e3 %

Where the Airy function of second kind Bi (x) is defined as
, 1 ¥ 1.0 1 ¥l 1,0
Bi(X) = = ) expgxt - Zt° it + 3@ Sincxt ¥zt it (101)
p e 3 g P enn 30

Again, expressed by the Bessel functions of the second kind, 1,(x), and Bessel

functions of first kind, J(x)

. xXé &2 o} 2 ou
Bi(x) = ,/—AI_ =x¥2x+ ), c=x¥%Z, for x>0 102
( ) 38 1/333 g 1/383 QLJI’ (102)
. - Xé a2, 320 a2, 3200
Bi(x :,{—A 1aC=X T JysC=X T, for x<O (103)
( ) 3 8‘] 1/333| | g 1/333| | QH

Bessel Function

A function of 1,(x) which is one of the solutions of the Modified Bessel differential
equation and closely related to the Bessel function of the first kind J_(x), where n is

integer. The relationship of 1_(x) and J_(x) is as following
1L (x)° i3, (ix) = e ™'2J, (xe®'?) (104)
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For a real number v, the function can be computed using

gl 20
d 0g &4 g
I = <
,(%) gixgao‘k!G(v+k+1) (105)

Where C represent the gamma function

In term of the integral form,

1,(x)= % Qp e*™ coqvq )dq - sinivp) nIE)Vp) @qe' XtV (106)

A derivative of expressing higher order of modified Bessel Functions in term of Io(x)
is

_r &g
1. (x)=T, ¢ ox é‘lo(x) (107)

Where T,(x) is a Chebyshev pelynomialofithe first kind
g 0
¥ QZXZT
l(x)=a 7" (108)
0

(k)*

The integral form of Airy Function ne-matter Ai(x) or Bi(x) can not apply to all x

value if the x is too larger. That will cause the underflow issue when we calculate the

Ai (x) or Bi(x). By using the Bessel can avoid the underflow issue which can apply to
all x value and more accurate calculated results of the solution of Airy Function,  Ai(x)

and Bi(x)

Sierra 47 7/22/2005



Appendix B

Normalization Factors

There is one important skill used in the program to simplify the calculation rout in the
program. This can help to do convenient calculation in the derivation and numerical
calculation. All quantities are normalized to dimensionless from the appropriate

constants. The concept is described as following

Description Symbol Value Unit
Electron charge q 1.60218x10% Coulomb
Electron rest mass mO 0.91095x10™% Kg
Reduced Planck constant hb 1.05458x10™ J-s
Permittivity of free space e0 8.85418x10 F/cm
Boltzmann constant kb 1.38066x10% JK

Base on the Poisson of Eq.(56), can be \written as

eg d¥y _p-n+Np
g°Nc dx? Nec (109)

to make the y dimensionless, the'unitiofi X which is debye length LD can be

written as
“Nc Nc
LD = A kt = q kt (110)
eq \f eqV
kt
, Where vkt = E (111)
vi
hdi =q* Nc* vt (112)

All the related normalization facors are listed on table B.1
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Table B.1

Description Symbol Normalization Formula Unit
4 Permittivity of silicon esi 11.9* e0 F/cm
4 Density of state effective me me = (0.98* 0,19%)%/3mo
mass of electrons in silicon
< Thermal voltage vkt vkt = kb* temp / volt
< Thermal velocity of free w vt = 100\/(kb* tem@/(Z* me* Pi)
carrier
< Effective density of state in Nc Nc = 2.8*10" * (temp/300)"° #/cm?®
conduction band
4 Debye length LD LD =./(esi * vkt)/(q* Nc) cm
LDm=LD/100 m
LDnm= LD * 10’ nm
< Current density hdi hdi = q* Nc* vt amp/cm?
normalization factor
“time normalization factor tdi tdi = LD /vt sec
+

Schrodinger Equation of Eq.(1)

Refer to chapter 3.2 which show the selution of Schrédinger equation in region I/11/111

y ,(X) =e'%* + Re k¥ k= /Z;I;E (113)
y 2(X) :C;ekzx + Cée- k2X , k2 = /% (114)

Y 3(X) =Te'%" kg =

(115)

To sim plify the calculation, the K1/K2/K3 in program are represented in the following

table which is easier for program writing.
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Table B.2

Description Symbol Normalization Formula Unit
% simplified K1 kl k1= LDm* /(2* m0* kb* temp)/ hb
. ipe 1/
¢ simplified K2 k2 | k2=LDom* A2rme* kb*temp)/(LDm* hb? )
& simplified K3 K3 k3= LDm*/(2* me* kb*temp/hb
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