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In general, fault dictionary is prevented from practical applications in fault diagnosis due to its

extremely large size. Several previous works are proposed for the fault dictionary size reduction.

However, some of them fail to bring down the size to an acceptable level, and others might not

be able to handle today’s million-gate circuits due to their high time and space complexity. In this

article, an algorithm is presented to reduce the size of pass-fail dictionary while still preserving

high diagnostic resolution. The proposed algorithm possesses low time and space complexity by

avoiding constructing the huge distinguishability table, which inevitably boosts up the required

computation complexity. Experimental results demonstrate that the proposed algorithm is capable

of handling industrial million-gate large circuits in a reasonable amount of runtime and memory.
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1. INTRODUCTION

Semiconductor technology advances constantly so that electronic products with
higher performance and versatile functions can be provided to end users. How-
ever, denser and finer fabrication processes make chips vulnerable to defects,
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leading to lower manufacturing yield and reliability. Fault diagnosis techniques
help physically locate the faults and determine the causes of failures in the man-
ufacturing process. Based on the diagnosis results, manufacturers can refine
their processes and designers can modify their designs to improve the yield of
chips. Conventionally, diagnosis techniques are classified into two major cate-
gories, effect-cause and cause-effect analysis. Dynamic diagnosis is an effect-
cause analysis which observes the faulty responses of the circuit under test
(CUT) and then deduces the cause of error based on the comparison against
the fault-free response. There are many research works devoted to dynamic
diagnosis [Kocan and Saab 1999, Li et al. 1990, Venkataraman et al. 1996].

For the cause-effect analysis, the diagnosis procedure first selects a specific
fault model to represent how the effects of physical faults affect the behavior
of circuits. The fault simulator iteratively injects a modeled fault into the cir-
cuit, applies a test vector at the primary inputs, and simulates the circuit to
obtain the responses. A fault dictionary is a database constructed during fault
simulation to store the output responses in the presence of every modeled fault
under every test vector. The corresponding sequence (combination of responses
of every test vector) of a modeled fault in the fault dictionary is called a fault
signature. By looking up in the precomputed fault dictionary for the observed
output responses of the CUT, faults can be recognized and hence located. A set
of faults share the same signature under a test set can not be distinguished.
These faults form a fault equivalence class, limiting the diagnostic resolution
of the test set. Here the diagnostic resolution (DR) is defined as the ratio of
distinguishable fault pairs over all fault pairs under the fault model.

Nevertheless, two obstacles generally prevent fault dictionaries from prac-
tical applications: (1) Creating a dictionary with high diagnostic resolution re-
quires long computation time. (2) The dictionary is usually too large and thus
impractical to be used in the diagnosis process. The first obstacle has been eval-
uated by Pomeranz and Reddy [1992]. They show that only a small number of
diagnostic runs are sufficient to compensate for the nonrecurring effort of creat-
ing a fault dictionary. Therefore, fault dictionary is still attractive as long as its
size can be kept small. Unfortunately, as the circuit size increases, the memory
requirement of fault dictionary grows so rapidly and becomes unacceptable.

Though many research works [Ryan et al. 1993, Boppana and Fuchs 1994]
are contributed to tackle the second obstacle, some of them are still unable to
bring down the dictionary size to an acceptable level, while others consume
too much time or space to be applied on real industrial circuits. Arslan and
Orailoglu [2002] propose to further convert a pass-fail dictionary into an XORed
dictionary in which only one combined signature is stored for each partition
of test vectors, and then select a limited number of signatures from it. This
approach accomplishes a great reduction on the size of the fault dictionary. But
during the selection process, it requires to construct the distinguishability table
with space complexity up to O(|T|*|F|2), where |T| and |F| are the number of
test vectors and faults. The complexity is too high to be acceptable for today’s
million-gate scale circuits.

In this article, we focus on size reduction for pass-fail fault dictionary. Given
a precomputed pass-fail dictionary, we propose an edge factor-based algorithm
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to efficiently reduce the size of original dictionary by extracting signatures of a
small subset of test vectors (or partitions) from it. The proposed edge factor elim-
inates the need to explicitly build a time- and space-consuming distinguisha-
bility table. As a result, our algorithm possesses low time and space complexity.
The experimental results show that the edge factor based algorithm, when ap-
plied to an XORed dictionary, is able to deliver comparable results against the
previous work [Arslan and Orailoglu 2002] but in a much shorter runtime and
with much lower memory requirement.

This article makes the following contributions. 1) We address one of the
major problems of fault dictionary, the huge size, and propose an edge factor
based algorithm to efficiently perform size reduction for pass-fail dictionary. Us-
ing cause-effect diagnostic approaches with fault dictionary can thus be more
promising. 2) We introduce the edge factor and prove that it is strictly propor-
tional to the number of undistinguished fault pairs so that the resource-hungry
distinguishability table is longer needed.

2. RELATED WORKS

For each modeled fault, a full fault dictionary stores the full response for each
test vector applied to the CUT. It possesses the largest size of all kinds of fault
dictionaries; the size is O(R*|T|*|F|) for a full fault dictionary containing R pri-
mary outputs, |T| test vectors, and |F| faults. A pass-fail dictionary discards
all output responses and stores only an entry for each fault-test pair to denote
whether the test vector can detect the fault. Usually, a 0 stands for an unde-
tected fault, and a 1 stands for a detected fault for the test vector. The size of a
pass-fail dictionary is O(|T|*|F|).

On top of the pass-fail dictionary, Arslan and Orailoglu [2002] propose a size
reduction method that partitions the test set and stores a combined signature
for each partition. To locate the modeled faults, the diagnosis process needs to
partition all modeled faults into distinctive fault equivalence sets. With the ap-
plication of more test vectors, the length of the fault signatures increases, and
the fault equivalence sets break down into more smaller sets. Full resolution is
achieved when each set contains only a single fault. Ideally, if every test vector
equally partitions the faults in a way different from the former ones, �log2|F|�
test vectors are enough to distinguish all faults. This rarely happens because
a test vector usually can detect only a small portion of faults. (There are more
0s than 1s in a row in the dictionary.) By taking advantages of this feature, the
authors introduce an XORed pass-fail dictionary, storing the combined fault
signatures. Let the i-th row of a pass-fail dictionary indicates which faults the
test vector ti can detect. The XORed dictionary has the same first row as the
pass-fail dictionary, but its i-th row (i > 1) is the result of XORing its (i − 1)-th
row with the i-th row in the pass-fail dictionary. Thus the i-th row in the XORed
dictionary is a combined signature for the test vectors 1 to i. After XORing, the
number of 1s increases and with more balanced numbers of 1s and 0s, the com-
bined signatures can distinguish the faults better. Hence it is reasonable to ex-
pect that a compacted XORed dictionary can have higher diagnostic resolution
than directly compacted dictionary. [Arslan and Orailoglu [2002] show that a
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Fig. 1. Pass-fail dictionary D1.

dictionary can be compacted to contain only �log2|F|� combined signatures with
a minor loss in diagnostic resolution. This compaction process, however, builds
a distinguishability table with the space complexity O(|T|*|F|2), inevitably el-
evating its time complexity to the same level. The authors neither detail any
algorithm to accelerate the construction of the table nor provide experimental
results on large circuits. It is doubtful whether the method can deal with mil-
lions of possible faults. Therefore, a more efficient method for dictionary size
reduction is demanded to handle large-scale circuits.

3. PRELIMINARIES

We define several terms used in this section. Also note that the proposed edge
factor based algorithm, to be described later, can be applied on either an original
or an XORed pass-fail dictionary. Without loss of generality, we simply assume
that all operations are performed on an original pass-fail dictionary throughout
Sections 3 and 4.

Given a fault set F and a test vector set T, a pass-fail dictionary D is defined
as a |T|x|F| matrix where

{
Dij = 1, if ti can detect f j 1 ≤ i ≤ |T |, 1 ≤ j ≤ |F |
Dij = 0, otherwise 1 ≤ i ≤ |T |, 1 ≤ j ≤ |F |.

Figure 1 shows an example of a pass-fail dictionary D1. For example, the test
vector t1 can detect two faults f4 and f5, while the test vector t2 can detect f2, f3, f4,
and f5. Based on the pass-fail dictionary, we construct a subset of T, the selected
test set TS, which includes vectors to be stored in the resultant reduced fault
dictionary. Our proposed method aims at efficiently constructing a small but
effective TS. In this article, TS is considered as an ordered set for convenience
in the test vector selection phase, though the order does not actually affect the
diagnostic resolution of the selected test set.

Once the TS is created, the corresponding fault equivalence sets are formed.
A fault equivalence set FE is a set of faults in which all fault pairs are indistin-
guishable with respect to TS. For example, given D1 in Figure 1, assume TS =
{t1}; then there are two fault equivalence sets, FE1 = {f1, f2, f3} and FE2 =
{f4, f5}. The distinguishability information can be presented using a table by
first defining a fault pair set P as

P = {fpk = ( fi, f j )| fi, f j ∈ F, i < j }.
ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 27, Pub. date: March 2009.
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Fig. 2. Distinguishability table A1.

Then, the distinguishability table A is a |T|x|P| matrix, where{
Aij = 1, if ti can detect fPj

Dij = 0, otherwise.

A1 in Figure 2 is the distinguishability table obtained from D1 in Figure 1. The
row of t1 in A1 with 4 0s that indicate fault pairs (f1, f2), (f1, f3), (f2, f3), (f4, f5)
are indistinguishable for t1. Hence, the dictionary size reduction problem can be
translated into finding a minimum number of rows in the distinguishability ta-
ble to cover all fault pairs. This set-cover problem is a well-known NP-complete
problem [Cormen et al. 2003]. Even worse, due to the extremely high space
complexity O(|T|*|F|2) of the distinguishability table, a circuit with one million
faults leads to a table whose size is of 1015 order even if only 1000 test vectors
are present.

As in [Arslan and Orailoglu 2002], a greedy algorithm, Greedy-Set-Cover, is
adopted to deal with this NP-complete problem. This algorithm selects the test
vector that distinguishes most new fault pairs in every iteration. Take A1 as
an example, the algorithm ends up with TS = {t1, t3, t2} after three iterations.
The time complexity of this algorithm is O(N*|T|*|F|2), where N is the size of
TS. Though the greedy algorithm seems simple, the complexity introduced by
the distinguishability table still keeps it far from practical.

4. PROPOSED METHOD

The key to achieving low complexity is to avoid the construction of the dis-
tinguishability table during test selection process. In this section, we review
the problem from the perspective of graph, derive an edge factor for the selec-
tion process, present our algorithm, and provide implementation details and
complexity analysis.

4.1 Distinguishability Graph and Edge Factor

We start from transforming the distinguishability table into a distinguishability
graph G and then identify several important properties which serve as the
keystones of our algorithm. Given a fault set F, a selected test set TS, and the
corresponding distinguishability table A, the distinguishability graph G = (V,
E) is defined as

V = F = { fi|1 ≤ i ≤ |F |}
E =

{
eij|fpm = ( fi, f j ) and

Akm∑
tk∈T S

= 0

}
.
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Each vertex in the distinguishability graph represents a fault. If no test vector
in TS can distinguish the fault pair (fi, fj) in the distinguishability table, there
exists an edge eij in the graph. The graph G can be constructed by the following
steps. First, construct a complete graph G with |F| vertices. Next, remove the
edge eij in G if the fault pair (fi, fj) is distinguished by any test vector in TS. The
resultant distinguishability graph has the following properties:

Property 1. A distinguishability graph is a complete graph if TS = ∅.

Property 1 is trivial since an empty test set is incapable of distinguishing
any fault pair, so every vertex pair should be connected by an edge. It is the
initial condition at which the test selection process just begins.

Property 2. In a distinguishability graph, there is an edge ei j between vi and
vj if and only if the corresponding fault pair ( fi, f j ) is indistinguishable under
the given TS .

Property 2 comes directly from the definition of the distinguishability graph.

Property 3. The given TS partitions G into a set of disjoint connected compo-
nents. Faults within the same connected component form a fault equivalence
set.

Property 3 says that after removing the edges representing distinguishable
fault pairs according to the distinguishability table, G is broken into a set of
disjoint connected components. Because a test vector can only distinguish the
detected faults from the undetected ones, it applies a cut on G. Edges across the
cut are then removed. The remaining edges represent the indistinguishability
among the faults within a connected component, in which the vertices (faults)
form a fault equivalence set.

Property 4. In a distinguishability graph G, each connected component, rep-
resenting a fault equivalence set, is a complete graph.

Property 4 is based on the definition of fault equivalence set that every two
faults are indistinguishable in this set. In other words, there should be edges
between all vertex pairs within a connected component. Hence every connected
component in G must be a complete graph.

The above properties can be examined using the example shown in Figure 3,
derived from the same example given in Section 3. As mentioned earlier, the
greedy algorithm in Section 3 always selects the best test vector covering the
most fault pairs in each iteration. From the perspective of distinguishability
graph, the best vector should remove the most edges when added into the cur-
rent TS. Figure 4 demonstrates the effectiveness of two test vectors, t1 and t2,
as candidates for joining an empty test set. The vector t1 can remove more
edges and thus is a better choice than t2. Recall that for the distinguishability
table, the goal of the greedy algorithm is to minimize the uncovered 0s; for the
distinguishability graph, the goal becomes to minimize the remaining edges.

Based on the above properties, the number of remaining edges in the distin-
guishability graph for a given selected test set TS can be calculated as follows.
Assume TS partitions all faults into n fault equivalence sets, FE1, FE2, FE3, . . . ,
FEn. From Property 4, each fault equivalence set is represented as a complete
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Fig. 3. Selection process resulting in a set of complete connected components.

Fig. 4. Effectiveness of different test vectors.

connected component in the distinguishability graph. Hence, the number of
remaining edges in the graph is( |FE1|

2

)
+

( |FE2|
2

)
+ · · · +

( |FEn|
2

)

= |FE1|(|FE1| − 1)

2
+ |FE2|(|FE2| − 1)

2
+ · · · + |FEn|(|FEn| − 1)

2

= |FE1|2 + |FE2|2 + · · · + |FEn|2 − (|FE1| + |FE2| + · · · + |FEn|)
2

= EF(Ts) − |F |
2

where EF(Ts) =
n∑

i=1

|FEi|2.

Edge Factor, EF, is introduced and defined in the preceding. Note that a sim-
ilar approach to calculate the number of undetected bridging faults is also used
in Thadikaran et al. [1997]. Since |F| is a constant, the number of remaining
edges is solely determined by the edge factor, which is the square sum of the
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Fig. 5. The pseudo-code of the proposed EF-based algorithm.

cardinalities of all fault equivalence sets. That is, if we know the number of
fault equivalence sets with their cardinalities; neither the distinguishability
table nor the distinguishability graph is required for the EF calculation. In
fact, the calculation can be done in O(|F|) time with implementation techniques
in Section 4.2. A similar problem also exists for two-line single bridging faults
(TSBFs). The number of line pairs for all possible TSBFs is too huge to be com-
pletely enumerated. Based on a similar notion, [Chakravarty et al. 1992, 1996]
propose a specific data structure to efficiently represent those TSBFs without
explicit fault enumeration. Our EF-based algorithm is outlined in Figure 5.

4.2 Implementation Techniques

Calculation of EFs dominates the computation complexity of the EF-based al-
gorithm and hence special cares need to be taken in the implementation. Ob-
taining EF for a given TS requires two tasks: 1) find which fault equivalence
set each fault belongs to; 2) find the cardinality of each fault equivalence set.
For the first task, a Set IDentification (SID) of a fault fi with respect to TS is a
vector defined as

SID fi |Ts = [w1w2w3 · · · w|Ts|]

where wk indicates whether the k-th test vector in TS can detect fi. SID can
be easily obtained by extracting and concatenating the corresponding rows of
the selected test vectors from the pass-fail dictionary in the order of how they
are selected. Since each bit within the SID vector records whether the fault is
detected by a specific test vector, the length of SID depends on the size of TS.
Faults with the same SID belong to the same fault equivalent set because they
can not be distinguished under the given TS. Figure 6 gives an example of the
SIDs for a given TS from the pass-fail dictionary in Figure 1.
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Fig. 6. SIDs corresponding to growing selected test sets.

Fig. 7. Hash table facilitating the computation of EF.

For the second task, a chained hash table of size M is constructed to count
the number of faults in each fault equivalence set, where M is selected as a
prime number slightly larger than |F|. Each node in the hash table contains a
key, which is an SID, and a counter. Our algorithm scans all the faults one by
one, calculates their SIDs under a given TS, and then searches for their SIDs
in the hash table. If there is a search hit, the counter of the associated node
is incremented by 1. This implies the current fault belongs to an existing fault
equivalence set. Otherwise, the algorithm creates a new node and attaches it
to the end of the linked list with a key as the SID and a counter initialized
to 1. Thus each node has a unique key and the number of nodes is exactly
the same as the number of fault equivalence sets. Note that there are at most
min(2|Ts|,|F|) nodes in the hash table because the maximum number of equiv-
anlence sets is |F| . Typically, min(2|Ts|,|F|) is bounded to |F| as TS becomes large
enough. Hence, a hash table with size M > |F| ensures the loading density < 1
all the time. Empirically, this implies on average 1.5 search is sufficient to check
whether an SID is in the hash table or not [Horowitz et al. 1995]. After con-
structing the hash table, every node in the hash table represents a unique fault
equivalence set and the associated counter is its cardinality. Figure 7 illustrates
the constructing process for TS in Figure 6. The last step is traversing the hash
table and calculating the EF(TS). Both of these two steps take about O(|F|)
time.

It is now clear that neither the distinguishability table nor the distinguisha-
bility graph needs to be explicitly constructed in our algorithm. Instead, the
edge factor guides the iterative test vector selection process in EF-based. By
using the above implementation, it takes merely O(|F|) time to obtain the EF
for a given test set. So given an upper bound of the number of selected test
vectors, N, the time complexity of EF-Based is O(N*|T|*|F|). In this paper, N
is set to �log2|F|� for maximum dictionary size reduction. Therefore, the time
complexity is only O(|T|*|F|*log2|F|). Moreover, the length of an SID is at most
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Table I. Diagnostic Resolution of the ISCAS’85 Benchmark Circuits

Reduction DR

ratio of before DR after DR in

Circuit |T| |F| �log2|F|� FD size reduction reduction [Arslan et al. 2002]

c432 50 524 10 0.800 0.995877 0.989374 0.993403

c499 53 758 10 0.811 0.999456 0.997121 0.997257

c880 54 942 10 0.815 0.999621 0.996950 0.996970

c1355 86 1574 11 0.872 0.999241 0.997302 0.997274

c1908 120 1879 11 0.908 0.999403 0.997000 0.997063

c2670 106 2747 12 0.887 0.997739 0.996207 0.996088

c3540 150 3428 12 0.920 0.998169 0.996568 0.996694

c5315 125 5350 13 0.896 0.999776 0.999268 0.999083

c6288 30 7744 13 0.567 0.999815 0.999578 0.999555

c7552 217 7550 13 0.940 0.999566 0.998992 0.998871

O(log2|F|). Hence the hash table requires only O(|F|*log2|F|) space. The size of
the given pre-computed pass-fail dictionary D is O(|T|*|F|), which determines
the overall space complexity.

5. EXPERIMENTAL RESULTS

The proposed algorithm is implemented in C++ with the details described in
Section 4. All experiments are conducted on a dual-core Intel Xeon 2.0GHz plat-
form. For better diagnostic resolution, all fault dictionaries are preprocessed by
XORing the responses of the test vectors just as in Arslan and Orailoglu [2002].

5.1 Diagnostic Resolution

Diagnostic resolution (DR) is defined as the ratio of distinguishable fault pairs
over all possible fault pairs. For each circuit in the ISCAS’85 and ’89 benchmark
sets [Brglez and Fujiwara 1985; Brglez et al. 1989], we generate the original
fault dictionary through the Atalanta test pattern generator [Lee and Ha 1993]
and HOPE fault simulator [Lee and Ha 1992]. In order to meet the industrial
practice, the fault collapsing techniques in Atalanta are turned on. Thus we
report only the number of collapsed faults and preclude all the undetected
faults.

Table I lists the diagnostic resolutions of the ISCAS’85 benchmark circuits.
The second and third columns denote the number of test vectors and faults,
respectively. The size of the selected test set TS is set to �log2|F|� shown in
the fourth column to fairly compare our results with those reported in Arslan
and Orailoglu [2002]. The fifth column denotes the reduction ratio of fault dic-
tionary size. The sixth and seventh columns denote the diagnostic resolutions
before reduction and after reduction. The last column denotes the diagnostic
resolutions reported in Arslan and Orailoglu [2002]. On average, the size of
dictionary is reduced by 84.16% while the DR loss is merely 0.203%. Our di-
agnostic resolutions are comparable to those reported in Arslan and Orailoglu
[2002].

Table II shows the diagnostic resolutions of the ISCAS’89 benchmark circuits
in the similar format to that in Table I. However, due to the lack of experimental

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 27, Pub. date: March 2009.



Reducing Fault Dictionary Size for Million-Gate Large Circuits • 27:11

Table II. Diagnostic Resolution of the ISCAS’89 Benchmark Circuits

Reduction

ratio of DR before DR after

Circuit |T| |F| �log2|F|� FD size reduction reduction

s9234 384 6927 13 0.966 0.995602 0.993234

s13207 460 9815 14 0.970 0.999591 0.998303

s15850 438 11725 14 0.968 0.998871 0.997933

s35932 68 39094 16 0.765 0.989591 0.989422

s38417 901 31180 15 0.983 0.999952 0.999587

s38584 654 36303 16 0.976 0.998275 0.997943

Table III. Runtime and Memory Usage of the ISCAS’89

Benchmark Circuits

Circuit |T| |F| �log2|F|� CPU (s) Mem (MB)

s9234 384 6927 13 1.8 2

s13207 460 9815 14 3.3 4

s15850 438 11725 14 3.8 6

s35932 68 39094 16 2.0 6

s38417 901 31180 15 22.4 28

s38584 654 36303 16 20.7 24

data on this benchmark set in Arslan and Orailoglu [2002], we are unable to
compare our results with theirs. The average reduction ratio of test size is
93.8%, which is higher than that of Table I. It is predictable since �log2|F|�/|F|
decreases as the number of faults increases. The average DR loss of Table II is
only 0.091%. The DR loss is low, partly due to a well-known property that when
the size of selected test set increases, the DR rises quickly at first and then slows
down dramatically. Nonetheless, our algorithm still performs well considering
that only �log2|F|� test vectors are selected. To sum up, our algorithm is capable
of achieving a significant reduction ratio of fault dictionary size at the cost of
a slight loss in DR. Meanwhile, it can produce the comparable DRs as those in
Arslan and Orailoglu [2002] but with much lower time and space complexity.

5.2 Time and Space Efficiency

Table III gives the runtime and memory usage needed to process the ISCAS’89
benchmark circuits. The column CPU gives the runtimes in seconds for the
EF-Based algorithm; the column Mem gives the memory usage in MB. The
table shows that even the largest circuit can be processed within a minute
and consumes at most 28MB memory. Due to the lack of runtime and memory
information in Arslan and Orailoglu [2002], direct comparison of performance
between their algorithm and ours is not available.

Nonetheless, the sizes of the circuits in the ISCAS’85 and ‘89 are still far
away from those of today’s SoC designs. To further validate the efficiency of
our algorithm, we use an industrial digital signal processor (DSP) design for
further evaluation. The generated fault dictionary of this circuit, as shown in
Table IV, contains 766 test vectors and 627505 faults. The DR before reduction
is 0.944663, and is 0.925079 after reduction when �log2|F|� test vectors are
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Table IV. An Industrial DSP Design

|T|: 766, |F|: 627505, DR before reduction: 0.944663 Memory: around 500MB

# of selected test vectors Reduction ratio of FD size DR after reduction CPU (sec)

20 (�log2|F|�) 0.974 0.925079 451

40 0.948 0.938836 1153

60 0.922 0.942046 1727

80 0.896 0.943580 2330

Table V. Randomly Generated Large Dictionaries

CPU Mem CPU Mem

|T| |F| �log2|F|� (sec) (MB) |T| |F| �log2|F|� (sec) (MB)

1000 100000 17 98 96 1000 1100000 21 2783 1124

1000 200000 18 261 207 1000 1200000 21 3005 1225

1000 300000 19 505 303 1000 1300000 21 3237 1335

1000 400000 19 664 399 1000 1400000 21 3525 1431

1000 500000 19 844 492 1000 1500000 21 3683 1529

1000 600000 20 1249 606 1000 1600000 21 3897 1637

1000 700000 20 1464 716 1000 1700000 21 4127 1734

1000 800000 20 1657 812 1000 1800000 21 4327 1844

1000 900000 20 1867 922 1000 1900000 21 4581 1940

1000 1000000 20 2129 1018 1000 2000000 21 4790 2050

selected. The original DR is not high because 95.13% of the faults are marked
as “hardly detected” in this circuit. The DR can be improved by selecting more
test vectors (resulted in larger dictionaries). The results of selecting 20, 40, 60,
and 80 test vectors, respectively, are shown in Table IV. The runtime is less
than 39 minutes even when 80 vectors are selected. This experiment suggests
the proposed algorithm can handle large real industrial circuits. It is worth
noticing that the size of the distinguishability table for this circuit is at least
35TB, which is so large that it is nearly impossible for today’s computer to
construct and further operate on the table.

To perform more complete analysis of time and space complexity to support
our claim of processing million-gate large circuits, we randomly generate 20
large pass-fail dictionaries. The ratio of 1 and 0 in these dictionaries is set to
the average of ISCAS’85 and ’89 benchmark circuits. Though the dictionaries
are not derived from real circuits (there is no correlation among the faults),
they are equally reliable for runtime and memory usage evaluation. Table V
shows the results of the randomly generated circuits, of which the number of
faults ranges from 0.1 million to 2 millions. Again, �log2|F|� vectors are selected
from each dictionary. All cases in the table are processed within 1.5 hour with
memory usage lower than 2GB. Today’s modest computers should be powerful
enough to complete this job.

Figure 8 gives a clearer picture of the results shown in Table V. The vertical
axes represent runtime and memory usage; the horizontal axis gives the num-
ber of faults. A diamond-shaped dot and a dash-shaped dot shows the runtime
and the memory usage, respectively. These two lines fit perfectly for our time
and space complexity analysis given in Section 4, which is O(|T|*|F|*log2|F|) for
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Fig. 8. Runtime and memory usage for large randomly generated dictionaries.

time and O(|T|*|F|) for memory. First, since the number of test vectors |T| is
fixed, the memory usage is monotonically increasing with the number of faults,
|F|. Second, the runtime can be best described as a discontinuous piecewise
function of |F|, constituted by a few straight lines in Figure 8. Each individual
straight line follows the trend of the given time complexity O(|T|*|F|*log2|F|).
The discontinuities in the figure come from the selecting integral number of
test vectors, �log2|F|�. For example, discontinuities occur when the number of
faults jumps from 0.5 million to 0.6 million and 1 million to 1.1 million. Figure
8 strongly supports our time and space complexity analysis in Section 4 and
shows that the complexity is consistent for different sizes of dictionaries.

6. CONCLUSIONS

The large size of fault dictionary is a major reason that the dictionary-based
fault diagnosis approaches are considered not practical. In this article, we pro-
pose a time- and space-efficient algorithm for size reduction of pass-fail fault
dictionary. The edge factor, being strictly proportional to the number of in-
distinguishable fault pairs, is introduced as the guidance throughout the al-
gorithm. With the specific implementation techniques, the edge factor can be
calculated directly from the original pass-fail fault dictionary and thus the
time- and memory-consuming construction of the distinguishability table and
further operations on that table are completely excluded. Experimental results
over a large set of various circuits validate the effectiveness and efficiency of
the proposed algorithm. Hence, the proposed algorithm is capable of provid-
ing a feasible solution to fault dictionary size reduction for today’s industrial
million-gate circuits.
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