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A PERFORMANCE STUDY OF CACHE COHERENCE
PROTOCOLS AND WRITE CACHES FOR PARALLEL-
MULTITHREADED SHARED-MEMORY MULTIPROCESSORS

Chao-Chin Wu* and Cheng Chen

Department of Computer Science and Information Engineering
National Chiao Tung University,
Hsinchu, Taiwan 300, R.O.C.

ABSTRACT

According to published research results, no directory-based cache
coherence protocol provides best performance for all application
programs in conventional multiprocessor systems that use sequential
consistency models. However, recently it has been claimed that
competitive-update protocols are superior to other protocols under a
relaxed consistency model. Moreover, incorporating write caches
improves the system performance of clean and competitive-update
protocols.

In this paper, we examine the different effects that occur when
processing elements are replaced by parallel-multithreaded processors.
According to our simulation results, the clean protocol provided the
best performance for five out of six SPLASH programs. After
augmentation with write caches, the clean protocol outperformed
others for all applications. Though competitive-update protocols
have been improved, their performance is not better than that of write-
invalidate protocols for most programs.

Key Words: Write cache, Multithreaded processor, Shared-memory
multiprocessor, Cache coherence protocol.

I. INTRODUCTION

According to Dahlgren and Stenstrom [4], cache
coherence protocols can be divided into four types:
write-invalidate, write-update, clean, and competi-
tive-update. Write-invalidate protocols have lower
write traffic and write penalties but have higher co-
herence miss rates and read penalties. Write-update
protocols, on the other hand, have higher write traf-
fic and write penalties but have lower coherence miss
rates and read penalties. Clean and competitive-
update are two hybrid update/invalidate protocols
[4]. Clean protocols are similar to write-invalidate

*Correspondence addressee

protocols except that they update the memory copy if
there are copies in caches other than that from which
the write request came. The advantage they offer is
that latency periods for coherence misses can be re-
duced because the misses can be served by the
memory controller instead of by a remote cache con-
troller [4]. Competitive-update protocols are similar
to write-update protocols except that a cache block is
invalidated when it has been updated a fixed number
of times, called the competitive threshold, without in-
tervening local accesses. The advantage they pro-
vide is that the number of updates not contributing to
reductions in the number of misses is reduced [4].
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Unfortunately, none of them is always superior
to the others for all application programs. Accord-
ing to previous evaluations [1, 6], determining
which protocol is best depends on individual pro-
gram characteristics. However, Grahn and Stenstrom
[9] reported an exciting observation: competitive-
update protocols outperform write-invalidation and
write-update protocols in distributed shared-memory
multiprocessor systems with centralized directories
that use relaxed consistency models because (1)
centralized directories provide higher network band-
width for parallel updates, and (2) relaxed consistency
models allow write request latencies to be hidden by
overlapping them with each other and with local
computation. In addition, compared with write-
invalidate protocols, competitive-update protocols
provide much lower read miss rates at a cost of some
increase in memory traffic.

Dahlgren and Stenstrom [4] also studied a
related topic: using write caches to improve the per-
formance of cache coherence protocols in distributed
shared-memory multiprocessors with centralized
directories using relaxed consistency models. Write
caches were first proposed by Bray and Flynn for
uniprocessors. They used allocate-on-a-write-miss,
write-back, and no-allocate-on-a-read-miss strategies,
with a single combined dirty/valid bit per word [3].
For a write miss, a block frame in the write cache
was allocated to buffer the data, and the correspond-
ing dirty bit was set. Therefore, all write accesses
belonging to the same block were merged into a single
write miss request. Only dirty words needed to be
transferred to the next level in the memory hierarchy
when the block was replaced, or the whole write cache
was flushed. Consequently, write traffic was reduced
because of the temporal and spatial locality of write
accesses.

However, write caches have a different effect
on shared-memory multiprocessor systems. Unlike
uniprocessor systems, memory access ordering re-
quirements must be enforced by some underlying
memory consistency model. Sequential consistency
[12] and processor consistency [8] require that be-
fore any one processor can perform a write access,
all previous write accesses in the program order must
first be performed. Consequently, there is no use
incorporating write caches in this kind of system
because each write access must be made consistent
with respect to other processors before the cache
controller can issue the next memory request. How-
ever, in weak [S] or release [7] consistency systems,
every ordinary access can be performed independently
of other ordinary accesses, so write caches must only
be flushed upon arrival of a synchronization access
or a release access. Therefore, write caches can merge
write access requests between any two adjacent

synchronization points. Dahlgren and Stenstrom
showed that using write caches can improve the per-
formance of shared-memory multiprocessor systems
that use relaxed consistency models [4].

In this paper we study the performance implica-
tions of cache coherence protocols and write caches
in parallel-multithreaded shared-memory multipro-
cessor systems because of the importance of
multithreaded architectures. According to the
simulation results obtained from six SPLASH
programs, with and without write caches, the clean
protocol, rather than the competitive-update, had the
best performance in this kind of architecture. We also
found that merging too many write accesses delays
the execution of release accesses and thus degrades
system performance. Consequently, larger write
cache sizes or complicated placement policies do not
ensure better performance. We suggest write caches
be direct-mapped with eight blocks.

The rest of the paper is organized as follows.
Section 2 introduces parallel-multithreaded multipro-
cessor systems. Section 3 describes our simulation
environment and benchmark programs. The effects
of cache coherence protocols and adding write caches
are evaluated in Sections 4 and 5. Then, the impacts
of write cache parameters are discussed in Section 6.
Finally, we give concluding remarks.

II. PARALLEL-MULTITHREADED MULTI-
PROCESSOR

Improvements in semiconductor technology al-
low much more complicated designs on single chips,
stimulating the study of multithreaded processors
[11]. In multithreaded architectures, whenever a long
latency operation occurs in a running thread, the sys-
tem immediately switches out the thread and selects
another waiting thread for execution. Hiding long
latencies by executing these other threads improves
system resource utilization [10].

Parallel multithreaded processors (PMPs) [10]
can execute more than one thread at the same time.
Although, they usually require more expensive hard-
ware and greater design complexity, they can hide
latencies at the instruction level rather than at the
thread level. When an instruction from a thread
cannot be issued, because of either a control or data
dependence within the thread, an independent instruc-
tion from another thread is executed instead. PMPs
are stalled instead of performing context switching
upon cache misses. Thus, the advantage of PMPs is
that they enable greater hardware utilization because
the processors’ functional units are shared by all
parallel running threads. We expect that this type of
processor will become one of the most popular single-
processor designs because of its superior resource
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Fig. 1. Organization of PMP-based NUMA multiprocessor.

utilization.

PMP architectures are not powerful enough for
huge computations, however, because a single chip
cannot support execution of tens of parallel threads.
One alternative architecture is the PMP-based
multiprocessor system (PMP-MP) shown in Fig. 1.
It is a cache-coherent, non-uniform memory archi-
tecture (CC-NUMA) and consists of a number of
processing elements linked by an interconnection
network. Each processing element contains a PMP,
a private cache, and a part of the global shared
memory. The shared address space is partitioned
into equal-sized pages and these memory pages are
distributed to the local memories of processing ele-
ments. Like conventional multiprocessor systems, the
PMP-MP has to employ a protocol to maintain cache
coherence because each processing element has its
own cache. However, the most compelling feature
of the PMP-MP is that several threads share only one
cache in each processing element. Though memory
accesses may replace useful data of previous execut-
ing threads in the cache, we do not handle this situa-
tion by a special method. In this paper, we focus on
PMP-MP systems.

III. SIMULATION ENVIRONMENT AND
BENCHMARK PROGRAMS

In order to evaluate the performance differences
among various architectures, we constructed a simu-
lation environment by extending the MINT package
[15], which is a program-driven simulation framework
that uses MIPS processors. The environment was
constructed on a SUN SPARC workstation and
written in C programming language. It consists of
two parts: the memory reference generator and the
memory subsystem simulator. The former interprets
instructions and forwards memory references to
the latter. The memory subsystem simulator is

Table 1. Architecture Parameters

Parameter Value
Number of Processing nodes 16
Number of threads per PE 4

Size of FLC 16Kbytes
Size of SLC 256Kbytes
Block size of FLC and SLC 32bytes
Number of entries in FLWB 16
Number of entries in SLWB 32

composed of a two-level cache hierarchy, directory-
based cache coherence protocols, memory consistency
models and an interconnection network. All func-
tions were modeled carefully and simulated cycle by
cycle. :

We assume that all memory accesses to code and
private data always hit in the first level cache (FLC)
and each takes a single processor clock cycle.

We summarize several important architecture
parameters in Table 1 and others are as follows: (1)
the processor is blocked on read misses but not on
write misses [14]; (2) the processor clock rate is 100
MHz; (3) the FLC and second level cache (SLC) take
1 and 3 processor clock cycles, respectively; (4) write
cache size is 8 blocks; (5) FLC, SLC, and write cache
are all direct-mapped; (6) the size of the memory page
is 4-Kbytes and the memory pages are distributed in
a round-robin fashion; (7) the interconnection net-
work is a 4-by-4 torus; (8) the linked width of the
network is 64 bits; (9) release consistency is used as
the memory consistency model; and (10) the cache
coherence protocol is fully-mapped, directory-
based.

Some parameters differ from those in Dahlgren
and Stenstrom [4] and influence performance, so we
must point them out. Because the total number of
threads was 64 (16x4) in our study, the acquire-stall
time was perhaps much larger than that for the 16
threads in [4]. In addition, because the SLC capacity
was 256 Kbytes instead of the infinite size in [4], we
have to consider the impact of replacement on the
SLC. A smaller cache increases the number of dirty
blocks that must be replaced and the number of
coherence misses accessing to clean memory blocks
under write-invalidate protocols, thus diminishing the
advantage of the clean protocol.

We used the six SPLASH [13, 16] applications
listed in Table 2 as benchmark programs. All appli-
cations were written in C using the PARMACS mac-
ros from Argonne National Laboratory [2] and were
compiled using cc under IRIS version 3 at the opti-
mization level 2 in an SGI workstation. Because the
working set of these six programs was very small
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Table 2. Benchmark Programs
Benchmark Description Data sets
MPED 3-D particle-based wind-tunnel simulator 5K particles, 10 time steps
Cholesky Cholesky factorization of a sparse matrix The matrix bcsstk 14
Pthor Distributed time digital circuit simulator RISC circuit, 1000 time step
Ocean Ocean basin simulator 130x130 grid, tolerance 107’
Barnes Hierarchical N-body gravitation simulator 1024 bodies, 3 steps
Water N-body water molecular dynamics simulation 343 molecules, 3 time steps
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Fig. 2. Normalized execution time for various cache coherence protocols.
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when compared to the size of the FLC and SLC used,
the influence of replacements on the performance was
little. The effect of coherence maintenance is the
primary factor that influences performance. All sta-
tistics collected in the following were gathered in the
parallel sections of the benchmarks.

IV. EFFECTS OF CACHE COHERENCE
PROTOCOL

In this section we report on which cache coher-
ence protocol proved more suitable for a PMP-
MP without write caches. Fig. 2 shows comparisons
of how write-invalidate protocols without write
caches (Inv), clean protocols without write caches
(Clean), and competitive-update protocol with thresh-
old T and no write caches (CompT) performed. The
execution times for each application and protocol
were normalized relative to the execution times un-
der Inv. In addition, we divided each execution-time
bar into five sections: busy time (bottom section);
the read-stall time (i.e., the time spent servicing
cache misses); the acquire-stall time (i.e., the time
spent waiting for a lock to be acquired); the conten-
tion time (i.e., the time spent waiting for access to
the FLC); and on top, the buffer-stall time (i.e., the
time the processor spnt stalled due to a full FLWB).

Because Cholesky, Pthor, and Barnes are dynamically
scheduled during the run time, the busy times may be
not equal for different protocols. In addition, be-
cause Water has a long busy time, the potential per-
formance improvement is very limited.

The clean protocol had the best performance
on all application programs, as shown in Figure
2, except that the write-invalidate protocol per-
formed better on the MP3D. The competitive-
update protocol had longer execution times than
the Inv for all programs. This result is different
from the observations of Grann, Stenstrom, and
Dubois [9], and we will explain the reason in the
following.

For MPs with non-multithreaded PEs as
evaluated in [9], the competitive-update protocol
outperforms other protocols because: (1) the direc-
tory structure can update more than one cached copy
simultaneously, and (2) only those cached copies
recently accessed by their own PEs need to be up-
dated, the others are invalidated and require no up-
dating. The latter is the key difference between the
competitive-update protocol and the write-update pro-
tocol. The write-update protocol updates all cached
copies even though some of them not will be accessed
again, resulting in huge network traffic. For MPs with
PMP processors, because each PE executes more than
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one thread at any time and these threads share only
one cache, there is a higher probability that several
caches will have the same block at the same time.
This increases write latency because the memory con-
troller has to invalidate or update all other cached
copies for each write request. This is the primary

factor that degrades the performance of competitive-
update protocols in PMP-MP systems.

We next compare the distributions of invalida-
tion/update counts for different protocols, as shown
in Fig. 3. The percentages were derived using the
following formula:

the number of write accesses issuing A invalidation/ update requests

the total number of write accesses in the Inv protocol
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The formula considers not only the invalidation/up-
date count distribution for each protocol but also the
amount of network traffic relative to the Inv. If 4
equals zero, there are no other cached copies and
we only have to update the memory copy. These
write requests are completed as soon as the cache
controller receives a reply from the memory control-
ler. For the Inv protocol, these requests are issued to
memory because of write misses or requests for own-
ership, thus they are necessary. However, other pro-
tocols have to send a write request to update the
memory copy even though the requesting processor
has the only cached copy. Consequently, a lot of these
requests are wasted because no other cache will ac-
cess them. Analysis shows that the competitive-up-
date protocol has a much higher percentage of count-
zeros than the write-invalidate protocol. Another
interesting observation is that Compl had a higher
percentage of count-zeros than the Comp4 because
there is a probability that at Compl cached copies
will be invalidated because the local processor
did not access the updated copy when receiving a
new update request, rather than four new update re-
quests.

On the other hand, when A is larger than zero,
these write accesses have to issue A requests to other
caches. The memory controller has to wait for all
the invalidation/update acknowledgments from cache
controllers before it can send a reply message back
to the requesting cache controller. As a result, not
only is network traffic increased but write latency is
also lengthened. The situation happens much more
frequently with competitive-update protocols; Comp4
in particular always had longer update counts for all
programs.

Figure 3 shows only the network traffic for write

. requests, therefore, we need another diagram to show

the total network traffic including read and write
requests. Competitive-update protocols have much
higher traffic than Inv and Clean protocols, as shown
in Fig. 4. This contradicts the philosophy of com-
petitive-update protocols: reducing read penalties at
the expense of some increase in network traffic. In
other words, the performance of competitive-update
protocols deteriorates to nearly that of write-update
protocols in PMP-MP architectures.

Clean, on the other hand, only increases network
traffic a little more than Inv for four applications
(MP3D, Cholesky, Pthor, and Water). Surprisingly,
it has less traffic than Inv for Ocean and Barnes.
Like the write-invalidate protocol, Clean invalidates
all cached copies. Unlike the write-invalidate proto-
col, the memory is kept clean until a write request
arrives from the only node that has a cached copy.
Clean has the disadvantage of having to send an
additional message to invalidate the memory copy if
the cached copy has become the only one after the
last write. However, its advantage is that read re-
quests can be served directly from memory. With
the write-invalidate protocol, the memory has to re-
direct read requests to the dirty cache if the memory
copy is invalidated. That is, in such a case, Inv sends
an additional message for each read request. If this
happens frequently, Clean will have less traffic be-
cause Clean often reduces read penalties at the
expense of some increase in network traffic. It out-
performs other protocols for all applications except
MP3D.

In summary, the PMP-MP system has a higher
probability that more than one cache will have the
same block at the same time because several threads
are executing simultaneously on each processing
element. Therefore, competitive-update protocols
have much higher network traffic in PMP-MP
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systems than in ordinary multiprocessor systems.

In the following, we examine the different
effects on total performance of various numbers of
threads for each processing element in Fig. 5. The
performance difference between different protocols
becomes larger when the number of threads is
increased. In particular, the competitive-update
protocol is not suitable for the PMP-MP with more
threads per PE. However, for the architecture with
one thread per PE, i.e., the conventional MP, Compl
is better than or equal to Inv except for Ocean.
Though Grahn and Stenstrom concluded that the
competitive-update protocol outperforms the write-
invalidation and write-update protocols, we found that
Clean is the best protocol for the MP system with
non-multithreaded processing elements. (Clean was
not evaluated in [9].) As the number of threads per
PE increases, the speedup that Clean has over Inv is
reduced. Moreover, Inv is better than Clean for MP3D
when each PE has four threads. Clean has the disad-
vantage of having to send an additional message to
invalidate the memory copy if the cached copy has
become the only one after the last write. Once the
amount of additional message becomes large enough,
Clean is worse than Inv. For the clean protocol, the
normalized network traffic for MP3D for 1, 2, and 4
threads per PE are 141%, 149%, and 155%, respec-
tively. Consequently, Clean is not the best protocol
for MP3D for the PMP-MP system with 4 threads per
PE. Nevertheless, Clean still outperforms the other
protocols for most application programs under
different architectures.

V. EFFECTS OF ADDING WRITE CACHES

Write caches can merge several write requests
to the same block into a single request. Through

cutting the number of write requests, write caches
can enhance the performance of cache coherence
protocols. As reported in [4], after adding write
caches, competitive-update protocols are superior to
any other protocol for multiprocessors with non-
parallel-multithreaded processing elements. We
investigate their effect on PMP-MP systems in this
section.

First, we study the distribution of write run
lengths to understand the characteristics of individual
application programs. Write run length indicates how
many global write accesses have been executed by
the local processor without any intervening read or
write accesses from other processors. During the
interval, there is no need to update other copies
because they will not be accessed. Therefore,
the more long write run lengths, the better the
performance of write-invalidate based protocols.
The distribution of write run lengths for a PMP-MP
architecture without write caches is shown in Fig. 6.

After we incorporate write caches in a multipro-
cessor system, the distribution of write run lengths is
obviously changed as shown in Fig. 7. The percent-
age of write runs of length-one is significantly in-
creased. A write run length equal to one means that
a write is followed by an access from another
processor before the original processor writes to it
again. If we update instead of invalidate other cached
copies, the followed access will hit the block, and thus
reduces the access latency. Consequently, such a new
distribution of write run lengths is more advantageous
for competitive-update protocols. However, we must
note that there are still 20% to 40% write run lengths
larger than one, which would degrade the performance
of competitive-update protocols.

The distributions of write run lengths in write
caches is depicted in Fig. 8. Write run lengths in write
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caches represent how many write requests to the same
block are combined into single ones. Write runs of
length one indicate no merging. Therefore, Pthor will
have a lower performance gain after addition of write
caches because of its larger percentage of length-one
runs. On the other hand, the larger the write run
length, the more write requests are reduced. That is,
the function of write caches is exploited much more
fully if write run lengths are larger.

Figure 9 shows the performance improvement
after adding write caches to write-invalidate (Inv-
WCQ), clean (Clean-WC), and competitive-update with
threshold T (CompT-WC) protocols. The most im-
portant observation is that Clean-WC outperformed
Inv for all applications. The advantage of the Clean-
WC protocol is short read-penalties with slight
increase in network traffic. On the other hand, Inv-
WC and Comp-WC were generally worse than Inv
although the performance difference was small for
three of the applications (Cholesky, Pthor, and
Ocean). Inv-WC had longer acquire-stall times than
Inv for the following reason.

Inv-WC delays the issuance of global writes in
write caches until it encounters a synchronization
point. The synchronization access then has to wait
for the flushing of the write cache. In particular,
release accesses cannot be issued until the write
requests have all been flushed from the write cache
and have all been performed. This waiting keeps
other processes from entering the critical section
and thus increases the acquire-stall time. On the
other hand, the write-invalidate protocol without
write caches sends only the first in a sequence of
writes to the same block to the memory controller.
Once the write-miss reply is returned, (which means
the cache controller has acquired ownership of that
block), all other write misses are deleted after the

block is updated according to the write ordering. The
effect of this procedure is similar to the function of
write caches: merging all write requests to the same
block into a single one. As a result, adding write
caches is not beneficial for the write-invalidate pro-
tocol.

For competitive-update protocols, each write
request definitely incurs a global write. This feature
has two extreme effects on write caches. First, write
caches can cut considerable network traffic by
merging write requests, therefore, performance can
be substantially enhanced. Second, there are usually
many write requests to be flushed from the write cache
whenever a synchronization access is encountered,
thus acquire-stall time is increased. We see from
Fig. 9 that the second effect dominates the results.
Competitive-update protocols have higher acquire-
stall time though the network traffic is drastically
reduced, as shown in Fig. 10.

In the following, we examine the different
effects on total performance of various numbers of
threads for each processing element in Fig. 11. Com-
pared with Fig. 5, write caches improve performance
significantly for the clean and the competitive-
update protocols. For the system with one thread
per PE, the competitive-update protocol with write
caches outperforms the write-invalidation protocol.
However, when the number of threads per PE is
increased, the competitive-update protocol with
write caches may be worse than Inv. On the other
hand, Clean-WC outperforms Inv for all application
programs for architectures with various numbers
of threads per PE. Moreover, because the competi-
tive-update protocol requires one counter per cache
block, the clean protocol is more suitable for
PMP-MPs after considering cost/performance
tradeoff.
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Table 3. Write cache hit ratio for two different mapping policies

Barnes Water

MP3D Cholesky Pthor Ocean
Direct-mapped 72.64% 84.15% 32.38% 80.82% 74.47% 82.11%
Fully-associative 74.85% 84.51% 32.41% 82.41% 75.73% 82.30%
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Fig. 10. Normalized network traffic for various cache coherence protocols after augmentation with write caches.
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Fig. 11. Normalized execution times for various cache coherence protocols with write caches for various numbers of threads per PE.

VI. IMPACTS OF ARCHITECTURE
PARAMETERS

So far, we have assumed that the write cache
mapping policy is direct-mapped. Below, we study
what occurs when the mapping policy is fully asso-
ciative with an LRU replacement policy. We use the
suffix “-full” to represent the new architecture. More-
over, because Clean-WC outperforms Inv for all ap-
plication programs, we focus only on this kind of
architecture.

Table 3 illustrates the write cache write

hit- ratios for two different mapping policies. As
expected, the fully-associative policy had higher hit
ratios. However, Clean-WC-full was slightly better
than Clean-WC on only four programs because of
longer acquire-stall times as shown in Fig. 12. Like
the effect of augmenting the competitive-update
protocol with write caches, a higher hit ratio for
write caches means more write requests are merged,
and thus network traffic is reduced. However,
acquire-stall time is probably increased because
write caches must be flushed. Fully-associative
write caches do not reduce network traffic much
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Fig. 13. Normalized network traffic for two different mapping policies using the clean cache coherence protocol.

more than direct-mapped write caches, as shown in
Fig. 13. Consequently, the normalized execution
times for Clean-WC and Clean-WC-full are almost
the same.

We also observed that read-stall times were
reduced slightly in Clean-WC-full systems because
of higher hit ratios. Because more write requests are
buffered in write caches, other cached copies will not
be invalidated too early. As a result, other proces-
sors will hit the block before invalidation requests
arrive. Reducing read-stall times is why the fully
associative policy was better.

Size is a critical factor in write cache design
because it affects the hardware cost. The disadvan-
tage of a small write cache is that there are fewer write
requests to merge. On the other hand, a large write
cache will increase hardware cost. The execution

times for different write cache sizes, ranging from
four to thirty-two blocks, are illustrated in Fig. 14.
Performance does not improve along with the increase
in size; on the contrary, larger sizes may worsen
performance because too many write requests must
be flushed from write caches when a synchronization
access is encountered. Release accesses cannot be
issued to the memory system before all write requests
have been flushed and performed. Because of this
delay in release access, acquire accesses from
other processors have to wait longer to enter the criti-
cal section. Consequently, not only is the acquire-
stall time increased but the read-stall time is also
lengthened because an acquire access is a read re-
quest.

The above reason also explains why Dahlgren
and Stenstrom [4] suggested that write caches be
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Table 4. Comparison of suggestions for conventional-MP and PMP-MP systems

Conventional MP

PMP-MP
Stenstrom et al. Ours
Protocol for syst
r'o 0co o.r ySIems Com4 Clean Clean
without write caches
Protocol for systems Compl-WC or
with write caches Clean-WC Clean-WC Clean-WC

Placement policy

for write caches Direct-mapped

Direct-mapped Direct-mapped

Size of write cache 4 blocks 4 blocks 8 blocks
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Fig. 14. Normalized execution times for different write cache sizes using the clean cache coherence protocol.

flushed when encountering an acquire access request.
The purpose is to prevent write caches from buffer-
ing too many write requests when a release access
request arrives. In fact, we have no need to flush
write caches when encountering an acquire access
according to the release consistency model. An
acquire access can be performed before its pervious
writes in the program order have all become visible
to all processor nodes.

VII. CONCLUDING REMARKS

Table 4 shows a comparison of suggestions for
conventional-MP and PMP-MP systems. Previous
research has reported that directory-based com-
petitive-update protocols are superior to other
protocols for conventional multiprocessor systems
using relaxed consistency models [9] because their
directory structures allow parallel updating, and
relaxed consistency models hide write latencies.
Moreover, competitive-update protocols are
successful in reducing read penalties at the expense
of some increase in write traffic. Another important

observation is that incorporating write caches
improves the performance of clean and competitive-
update protocols because write caches can merge
several write requests to the same block into single
ones, thus reducing network traffic [4].

However, we found different results accord-
ing to our simulation results. The clean protocol
outperforms the competitive-update protocol for
most programs. We have to note that the clean
protocol was not evaluated in the study [9]. On the
other hand, although Compl1-WC and Comp4-WC
may be better than Clean-WC for some programs,
we suggest Clean-WC for conventional MP after
considering cost/performance tradeoff. The competi-
tive-update protocol requires one counter per cache
block.

In addition, we also found different results when
processing elements were replaced by parallel-
multithreaded processors. Because more than one
thread are executed simultaneously in every process-
ing element, global memory accesses from different
threads will interfere with each other. Furthermore,
it is more likely that several processing elements
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will have cached the same block at the same time.
According to our simulation results, the clean
protocol performed best for five out of six programs.
After augmentation with write caches, the clean
protocol was still the best for all applications. Though
the competitive-update protocol also showed im-
proved performance, it was not better than the
write-invalidate protocol for most programs.

Our simulations showed that merging too many
write requests has a negative effect. The issuance of
release accesses is delayed until all write requests
have been flushed from write caches and have all been
performed. Consequently, read-stall times and
acquire-stall times are both increased. Therefore,
write cache functions are exploited most fully when
modest numbers of write requests are merged. For
this reason, increasing the sizes of write caches and
adopting fully-associative mapping policies are not
certain to improve performance. Considering the
hardware cost, we suggest using direct-mapped
policies and 8-block write caches.

The results presented in this paper were obtained
from simulations made under several assumptions
on architectural parameters. In fact, varying the pa-
rameters may influence the results. Therefore, in the
future, we will study the performance implications
of using different parameter values, including the
number of threads per processing element, the
bandwidth of the interconnection network, and the
number of write buffer entries.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers
for their helpful comments. This research was
supported by the National Science Council of the
Republic of China under contract number: NSC 86-
2213-E009-094.

REFERENCES

1. Agarwal, A., and Gupta, A., “Memory-reference
Characteristics of Multiprocessor Applications
under MACH,” Proceedings of the 15™ Interna-
tional Symposium on Computer Architecture, pp.
215-225, (1988).

2. Boyle, J., Bulter, R., Disz, T., Glickfeld, B., Luck,
E., Overbeek, R., Patterson, J., and Stevens, R.,
Portable Programs for Parallel Processors,
Holt, Rinehart and Winston, Inc., New York,
(1987).

3. Bray, B.K., and Flynn, M.J., Write-caches as an
alternative to write buffers, Computer Systems
Laboratory Tech. Rep. CSL-TR-91-470, Stanford
University, USA, (1991).

4. Dahlgren , F. and Stenstrom, P., “Using Write

10.

11.

12.

13.

14.

15.

16.

Caches to Improve Performance of Cache
Coherence Protocols in Shared-Memory Multi-
processors,” Journal of Parallel and Distributed
Computing, Vol. 26, pp. 193-210, (1995).

. Dubois, M., Scheurich, C., and Briggs, F.,

“Memory Access Buffering in Multiprocessors,”
Proceedings of the 13th Annual International
Symposium on Computer Architecture, pp.
434-442, (1986).

. Eggers, S.J., and Katz, R.H., “Evaluating the

Performance of Four Snooping Cache Coherence
Protocols,” Proceedings of the 16™ International
Symposium on Computer Architecture, pp. 1-15,
(1989).

. Gharachorloo, K., Lenoski, D., Laudon, J.,

Gibbons, P., Gupta, A., and Hennessy, J.,
“Memory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors,”
Proceedings of the 17th International Symposium
on Computer Architectures, pp. 15-26, (1990).

. Goodman, J.R., Cache consistency and sequen-

tial consistency, Technical Report No. 61, SCI
Committee, (1989).

. Grahn, H., Stenstrom, P., and Dubois, M., “Imple-

mentation and Evaluation of Update-Based Cache
Protocols Under Relaxed Memory Consistency
Models,” Future Generation Computer Systems,
Vol. 11, pp. 247-271, (1995).

Hirata, H., Kimura, K., Nagamine, S., and
Mochizuki, Y., “An Elementary Processor Archi-
tecture with Simultaneous Instruction Issuing
from Multiple Threads,” Proceedings of the 19"
International Symposium on Computer Architec-
ture, pp. 136-145, (1992).

Iannucci, R.A., Gao, G.R., Halstead, R.H., Smith,
Jr., Multithreading: A Summary of the State of the
Art, Kluwer Academic Publishers, (1993).
Lamport, L., “How to Make a Multiprocessor
Computer that Correctly Executes Multiproces-
sor Programs,” IEEE Transactions on Comput-
ers, Vol. 28, No. 9, pp. 241-248, (1979).

Singh, J.P., Weber, W-D., and Gupta, A.,
“SPLASH: Stanford Parallel Applications for
Shared-Memory,” Computer Architecture News,
Vol. 20, No. 1, pp. 5-44, (1992).

Stenstrom, P., Dahlgren, F., and Lundberg, L., “A
Lockup-free Multiprocessor Cache Design,”
Proceedings of 1991 International Conference
on Parallel Processing, Vol. 1, pp. 246-250,
(1991).

Veenstra, J.E. and Fowler, R.J., MINT Tutorial
and User Manual, Technical Report No. 452, The
University of Rochester, New York, USA, (1994).
Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., and
Gupta, A., “The SPLASH-2 Programs: Charac-
terization and Methodological Considerations,”



Downloaded by [National Chiao Tung University ] at 05:18 28 April 2014

46 Journal of the Chinese Institute of Engineers, Vol. 21, No. 1 (1998)

Proceedings of the 22" Annual International be submitted to the Editor-in-Chief.
Symposium on Computer Architecture, pp.
24-36, (1995). Manuscript Received: Jan. 21, 1997
Revision Received: June 12,1997
Discussions of this paper may appear in the discus- and Accepted: Sep. 18, 1997

sion section of a future issue. All discussions should

SR A — B R S N RS R T
1153 QAT RIER S RIBHA ST 2 HEET R

{HEIER  BHIE
B R BAEEATLIEH IR

m =

RIBLMEZ A » EERN S EEERR SRR A EF R B
A QIR E A —E BRI RERC R — Bt e @A e R e A i
HIBRITRIR o R BEE IR FERE R 18 A R IR BB VR IR —BUE RS
A F A — B I E R RIFRIRR « B4 FERMPIMABAREEL
TRESHENE NN clean B2 2\ B HT IS M E — BUE IR E FOBITRRE

ARG SR IRAG R E BRAATE 5 RN » g iR
REER - BUGCERARBCREELEMETRAYE - RBAME
SPLASHIIEF AT R » MBBELEEAEclean—HHHETER
RAEZSAE 5 T E AR ARECIRER - Alclean SERHTHEFEXREF
HIRR - HERBF A — B R E R e itk E - HRHAS HEEK T
g BN TR BAEGH — BT E -

BAgEE : BARRERCIRAE - D MREESS - HERRZEERE - RECER
—HHEHE °



