
國 立 交 通 大 學

電機資訊學院 電信學程

碩 士 論 文

一低複雜度無線區域網路Viterbi解碼器

之設計與實作

Design and Implementation of a Low-

complexity WLAN Viterbi decoder

研 究 生：劉昌明

指導教授：吳文榕 教授

中 華 民 國 九 十 三 年 六 月

一低複雜度無線區域網路Viterbi解碼器

之設計與實作

Design and Implementation of a Low-

complexity WLAN Viterbi decoder

研 究 生：劉昌明 Student：Chang-Ming Liu

指導教授：吳文榕 Advisor：W.R. Wu

 國 立 交 通 大 學

電機資訊學院 電信學程

碩 士 論 文

A Thesis
Submitted to Degree Program of Electrical Engineering and Computer Science

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
 for the Degree of

Master of Science
in

Communication Engineering
June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

 i

一低複雜度無線區域網路Viterbi解碼器

之設計與實作

學生: 劉昌明 指導教授: 吳文榕 教授

國立交通大學電機資訊學院 電信學程﹙研究所﹚碩士班

摘 要

近幾年來無線區域網路被廣範使用並快速的普及, 維特比 (Viterbi) 解碼器是大家

耳熟能詳的解碼方法,它在基頻接收器中扮演非常重要的角色, 維特比演算法可以

採用軟決策(soft decision)或是硬決策(hard decision)的做法來實現, 軟決策的做法

可以得到較佳的解碼效能但是需要較複雜的運算能力, 在某些無線網路的應用中

並不嚴苛要求效能,此時硬決策便可以滿足系統的要求。在本論文中,我們考慮設

計並實現一個無線網路中使用硬決策的維特比解碼器,我們提出一個加權硬決策

的做法,此做法可以有效提升硬決策維特比解碼器的效能並且享有硬決策的簡易

運算的優點,另外我們使用預測追蹤法來有效降低記憶體使用頻率, 如此可降低約

20%的電源損耗,最後我們使用高階硬體描述語言(VHDL)來模擬探討我們的設計

並且用可程式化邏輯陣列(FPGA)加以實現。

 ii

Design and Implementation of a Low-

complexity WLAN Viterbi Decoder

Student: Chang-Ming Liu Advisors：Prof. Wen-Rong Wu

Degree Program of Electrical Engineering

Computer Science
National Chiao Tung University

ABSTRACT

The wireless local area network (WLAN) has been widely used in recent years.

The Viterbi decoder, a well-known decoding scheme, plays an important role in the

baseband receiver. The Viterbi algorithm can be implemented as soft-decision or

hard-decision. The soft-decision Viterbi algorithm has better performance but requires

higher computational complexity. In some WLAN applications, the performance

requirement is not stringent. In this case, the hard-decision decoding algorithm can be

sufficient. In this thesis, we consider the design and implementation of a hard-

decision WLAN Viterbi decoder. We propose a hard-decision weighting scheme that

can effectively enhance the conventional hard-decision Viterbi decoder while remains

the inherent low complexity property. We also use a trace back prediction method that

can reduce the memory access frequency during the trace back operation. This can

reduce the power consumption of the whole decoder up to 20%. Finally, we use

VHDL to model the designed decoder and implement it using an FPGA.

 iii

Acknowledgement

At first, I would like to acknowledge to my advisor, Dr. Wen-Rong Wu, for his

encouragement and give me the guidelines during my graduate study. I also

appreciate with my friend Ming and Leory for the discussion and help me to build up

the simulation environment. Finally, I want to thanks my wife for her kindly support

and encouragement.

 iv

Contents

Chinese Abstract ... i

English Abstract... ii

Acknowledgement .. iii

Contends ... iv

List of Figures ... vi

Chapter 1 Introduction

1-1 Motivation ...1

1-2 Previous work review ..1

1-3 Our approach ...2

1-4 Outlines..3

Chapter 2 WLAN system description ...4

 2-1 WLAN introduction...4

 2-2 IEEE 802.11a standard ..5

 2-3 Coded OFDM systems ..10

Chapter 3 The Viterbi decoder design ..11

 3-1 Viterbi algorithm ...11

 3-2 Hard decision and soft decision...16

 3-3 Hard decision weighting..18

 3-4 Viterbi decoder with receiver diversity ...27

 3-6 Memory management and adaptive tracing back31

Chapter4 Low power Viterbi decoder implement..38

 4-1 Design and implementation flow...38

 4-2 Implementation of Viterbi algorithm...39

 4-3 Over flow consideration ..41

 4-4 Radix-4 ACS..44

 v

 4-5 Function simulation, gate level simulation and power verification.....46

Chapter5 Conclusions ...50

References ...51

 vi

List of Figures

Figure 2.1 Convolutional encoder (k=7) ... 6

Figure 2.2 IEEE 802.11a baseband system architecture...7

Figure 2.3 Data stream from transmitter to receiver (using 16QAM modulation).......9

Figure 3.1 Convolutional encoder (rate ½ k=3 m=2) ...11

Figure 3.2 (a) Viterbi decoder trellis diagram (1)...13

Figure 3.2 (b) Viterbi decoder trellis diagram (2)...13

Figure 3.2 (b) Viterbi decoder trellis diagram (3)...14

Figure 3.3 Viterbi decoder trace back path ... 14

Figure 3.4 (a) QPSK hard decision plane ..16

Figure 3.4 (b) Trellis section, when data input as (1,1) ...16

Figure 3.5 (a) QPSK 2-bit (4-level) soft decision plane .. 16

Figure 3.5 (b) Trellis section, when data input as (3,1) ...16

Figure 3.6 BPSK decision plane .. 17

Figure 3.7 Received symbol distribution (1). ...19

Figure 3.8 Received symbol distribution (2) ...20

Figure 3.9 The cost function vs. threshold ...21

Figure 3.10 BER vs. threshold and weight ..22

Figure 3.11 Received symbol distribution (3) ..23

Figure 3.12 Cost function value vs. γ2 for two-weight algorithm24

Figure 3.13 Cost function value vs. γ1 for two-weight algorithm (γ2=0.77) 25

Figure 3.14 Hard decision weighting improve performance 25

Figure 3.15 Antenna selection diversity ..27

Figure 3.16 Antenna combing diversity ...28

Figure 3.17 Comparison between NORMAL, OMRC and VMRC29

Figure 3.18 Comparison between NORMAL, OMRC2, OMRC3, OMRC4, VMRC2,

VMRC3 and VMRC4 ..30

Figure 3.19 One-pointer trace back method ...32

Figure 3.20 Viterbi decoder trace back path in memory bank................................... 33

Figure 3.21 Write data to recode all possible trace.. 34

Figure 3.22 Trace forward skip trace back scheme ... 34

Figure 3.23 Trace forward hit rate with different SNR ... 35

Figure 3.24 Memory saving by trace forward scheme .. 35

 vii

Figure 3.25 Minimum-transition trace back operation scheme37

Figure 4.1 Design and implementation flow.. 38

Figure 4.2 802.11a channel decoder architecture .. 39

Figure 4.3 802.11a Viterbi decoder design block diagram.. 40

Figure 4.4 802.11a trellis diagram ... 41

Figure 4.5 Structure of adder comparator selective unit (ACSU) 42

Figure 4.6 Modulo comparison of normalized metrics.. 43

Figure 4.7(a) Radix-2 trellis... 44

Figure 4.7(b) Radix-4 trellis .. 44

Figure 4.7(c) Radix-2 one node structure ..44

Figure 4.7(d) Radix-4 one node structure .. 45

Figure 4.8 Prime power shows Viterbi decoder power consumption47

Figure 4.9 (a) Viterbi decoder input and output signal waveform47

Figure 4.9 (b) Viterbi decoder internal signal waveform .. 48

Figure 4.10 Prime power shows Viterbi decoder power distribution 49

.

 1

Chaper 1

Introduction

1-1 Motivation

Convolution coding [11] is widely used in wireless communication system, such

like satellite communication, broadcast systems, and WLAN. The Viterbi algorithm

is a well-known algorithm for maximum likelihood convolution decoding.

Unfortunately, the Viterbi decoder requires high computational complexity. When it

is implemented, a complex logic circuit will result. Conventionally, the Viterbi

decoder can provide two kinds of solutions; one is called hard decision and the other

soft decision. The soft decision Viterbi algorithm can give better decoding result;

however, its complexity is higher. It depends on the application where the hard or soft

decision Viterbi algorithm will be called for. In some scenarios, we need a low-cost

solution rather high performance. In others, we may need high performance disregard

its cost. We have to take cost, performance, and power consumption into account in

order to make a best decision. In this thesis, we will focus on the hard decision Viterbi

decoder and develop and implement a low complexity yet low power Viterbi decoder.

1-2 Previous work review
The Viterbi decoder use an efficient architecture to perform the maximum

likelihood sequence estimation (MLSE) on the receive data. It keeps track of the path

metric (PM), which is an accumulation of the branch metric (BM), and selects the

path with the lowest PM as its output. The difference between the soft-decision and

hard-decision Viterbi algorithm lies in that the different criteria used in the BM

calculation. The soft-decision approach first quantizes the input signal with multiple

bits and uses the Euclidean distance as the BM criterion. On the other hand, the hard-

decision approach quantizes the input signal with one bit and uses the Hamming

distance as the BM calculation criterion. It is known that the Euclidean distance is

more accurate then the Hamming distance reflecting the likelihood of a particular bit

sequence. As a result, the performance of the soft-decision approach is better.

However, it’s requires higher computational complexity. The difference will become

even more apparent when the Viterbi decoder is implemented. We require only

 2

“XOR” logic operations to calculate the Hamming distance, while we require

multiplication operations to calculate Euclidean distance.

For OFDM systems, transmit bits are spread all over different tones. As a result,

the signal to noise ratio (SNR) may be different for all bits. The performance of soft-

decision Viterbi algorithm can be further enhanced if we take channel state

information (CSI) into account. In this approach, the BM for each transmit bit is

weighted according to the SNR in the corresponding tone [16]. The soft-decision

Viterbit algorithm with CSI needs to estimate the signal power and noise power. This

may complicate the receiver design and real-world implementation. As mentioned, in

some scenarios, a higher performance Viterbi recoder may not be necessary. The issue

is the implementation cost. In this case, the hard-decision Viterbi algorithm will be

more suitable.

There are two well know structures for the Viterbi decoder implementation. The

first one is called the register exchange method (REM) [14] and the other one is called

the track back method (TBM). Implementation of the REM is simpler and its

throughput is higher. The disadvantage is that it requires many registers to store

survive bits and these bits must be read and rewritten for each data cycle [12] [13].

Thus, this method will require more chip area and more power consumption. The

TBM, on the other hand, stores the survivor bits in memory and then traces back the

path history for decoding. Since the area and power consumption of memory is much

lower than those of the register, the TBM is used more often. The disadvantage of the

TBM is the memory control is somewhat more complicated.

In the TBM, the memory transactions contribute more than half the total power

dissipation [3]. Thus, if we want to further reduce the power consumption, how to

reduce the memory transaction times is the key issue.

1-3 Our approach
This thesis considers a low-cost and low-power hard decision Viterbi decoder

design that is applied to IEEE802.11a WLAN system. As mentioned, although the

hard-decision approach is simple, its performance is not as good as the soft-decision

approach. In this thesis, we propose a new method called “hard-decision weighting”

to improve the decoding performance. The proposed algorithm has a simple operation,

but it can effectively enhance the performance. We also propose a modified “adaptive

trace back” scheme that can help to reduce memory transactions in the TBM. As a

 3

result, the power consumption can be further reduced. Combing with our hard-

decision weighting, we can then obtain a high performance yet low power hard-

decision Viterbi decoder design.

1-4 Outlines
In this thesis, we will design and implement the hard-decision Viterbi decoder

base on the IEEE 802.11a WLAN standard. The encoding rate is ½, the constraint

length is 7, and the generator polynomials G1=1388 and G2=1718 (see Figure 2.1).

The organization of the thesis is described as follows. Chapter 2 briefly describes the

IEEE802.11a WLAN system. Chapter 3 describes various Viterbi algorithms

including the hard-decision, soft-decision, and soft-decision with CSI schemes. We

also described the proposed hard-decision weighting and modify adaptive trace back,

besides, we discuss about Viterbi decoder with receiver diversity. Chapter 4 addresses

implementation issues. In this chapter, we discuss our implementation flow, specific

functional blocks, function simulations, and gate level simulations. We also use the

FPGA (Xilinx Vertix-2) implementation to evaluate our design and Prime power for

power analysis. Chapter5 describes conclusions and future works.

 4

Chapter 2

WLAN system description

2-1 WLAN introduction

In 1997, IEEE released IEEE 802.11 standard. Two year later, IEEE announced

802.11b wireless local area network (WLAN). The initial standard provides 1 Mbps

and 2 Mbps transmission rate. Since the data rate is not high enough for many

applications, the WLAN was not popular at that time. Due to the strong demand for

higher data rates, IEEE 802.11b then incorporates the complementary code keying

(CCK) scheme in direct sequence spread spectrum (DSSS) and increases the data rate

up to 5.5 and 11Mbps. Since then, the WLAN usage experiences a rapid growth.

 Recently, more and more applications are explored in the Internet. These include

E-mail, VOIP, interactive games, and multimedia on demand (MOD). The bandwidth

requirement becomes larger and larger and 802.11b seems not able to satisfy the

requirement now. In the recent years, a high efficient transmission scheme called

orthogonal frequency division multiplexing (OFDM) has been developed. In order to

boost the data rate in the WLAN, IEEE then announced two standards 802.11a and

802.11g in 1999 and 2003, respectively. Both standards use the OFDM technique

operated in 5-GHz and 2.4-GHz radio band. The data rate for both systems can up to

54Mbps.

Many manufacturers provide 802.11/a/b/g combined solution for WLAN

application now. The WLAN technology has been becoming the major stream in the

notebook communication. We will introduce the 802.11a standard and coded OFDM

system in the following sections.

 5

2-2 IEEE 802.11a standard
IEEE802.11a standard adopts the OFDM modulation for high transmutation data

rate in the 5GHz band [7]. Table2.1 summarizes the major parameters for the OFDM

system.

Information data rate 6,9,12,18,24,36,48 and 54 Mbit/s

Modulation BPSK,QPSK,16QAM,64QAM

Error correcting code k=7(64states) convolutional code

Coding rate 1/2, 2/3,3/4

Number of subcarriers 52

OFDM symbol duration 4.0us

Guard interval 0.8us

Occupied bandwidth 16.6MHz

FFT/IFFT 64-point

Table 2.1 Major parameters for the OFDM in 802.11a

Table 2.2 Data rate dependent parameters for IEEE802.11a

As we can see, the modulation involves BPSK, QPSK, 16QAM, and 64 QAM and

Data rate

(Mbits/s)

Modulation Coding

rate

Coded bits per

sub carrier

(Ncbps)

Coded bits per

OFDM

symbol(Ncbps)

Data bits

per OFDM

symbol(Nbps)

6 BPSK 1/2 1 48*1=48 48*1/2 = 24

9 BPSK 3/4 1 48*1=48 48*2/3 = 36

12 QPSK 1/2 2 48*2=96 96*1/2 =48

18 QPSK 3/4 2 48*2=96 96*3/4 =72

24 16-QAM 1/2 4 48*4=192 192*1/2=96

36 16-QAM 3/4 4 48*4=192 192*3/4=144

48 64-QAM 2/3 6 48*6=288 288*2/3=192

54 64-QAM 3/4 6 48*6=288 288*3/4=216

 6

the information data rate can be 6, 9, 12, 18, 24, 36, 48, and 54Mbit/s. Note that the

data rate depends on the modulation scheme and coding rate, shown in Table 2.2. The

data rates 6, 12, 24Mbit/s are mandatory.

 The OFDM system uses 48 subcarriers to carrier data and reserves 4 subcarriers

for pilot signal; there are total 52 subcarriers within the system. The OFDM symbol

consist of a 3.2 µs inverse fast Fourier transformed symbol and a 0.8 µs guard interval.

The guard interval contains the cyclic prefix and it can help OFDM system to solve

the inter symbol interference (ISI) problem.

 Figure 2.2 depicts the OFDM baseband system structure. All data are scrambled

with a length-127 frame-synchronous scrambler (polynomial s(x) = x7 + x4 + 1)

before convolution encoding. Thus, continuing zeros or ones are avoided. The

convolutional encoder uses the industry standard (polynomial g0=1338, g1=1718)

which is shown in Figure 2.1. If 1/2 rate is used, the output data volume will become

twice. Besides 1/2, 3/4 and 2/3 coding rates are also used with a puncturing scheme.

This thesis designs and implements the Viterbi decoder for this convolutional encoder.

Figure 2.1 Convolutional encoder (k=7)

 7

Data scramblerConvolution encode
Inter_leaver
QAM modulation

Inverse fast Fourier
transform (IFFT)

RF receiver

 Digital to analogy
converter (DAC)

RF transmitter
Cyclic extension
wave shaping

Fast Fourier
Transform(FFT)

Channel frequency
offset and timing
phase estimation

Remove cyclic
extension and
frequency offset
compensation

Analogy to digital
converter (ADC)

Channel
equalization and
QAM demodulation,
deinterleaver

Convolution decodeData descramber

Transmit data

Receive data

Consider the data stream flow shown in Figure 2.2. The data sequence is first

interleaved before assigned to each tone. This can combat the carrier fading channel

effect. Depending on transmission rate, all data are then modulated as BPSK, QPSK,

16QAM or 64QAM symbol. Four pilot tones are added into location {-21,-7,7,21}

beside 48 data location (64 tones are indexed as -32,-31,-30,…0,1,2…31), other

locations will be inserted zeros. Using a 64-point inverse fast Fourier transform

(IFFT), the data symbol is transformed into the time domain.

 The receiver has to perform synchronization before the data can be actually

demodulated. This includes the frame synchronization and the frequency offset

estimation. The 64-point fast Fourier transform (FFT) block transform the data back

to the frequency domain. All the process performed in the transmitter will be reversed

such as symbol mapping and interleaving. The Viterbi decoder is then used to decode

the convolutionally encoded data. Finally, the receiver obtains the transmit data by

descrambling the Viterbi outputs.

Figure 2.3 gives an example for the data flow. We assume that the transmit signal

is a stream of 96-bit data. A stream of 192 bits will be obtained after the convolutional

encoder. If bit 0 is fed into the encoder, we will have two output bits which are

denoted as “0a_0b” in Figure 2.3. All bits will be generated by this way. All encoded

Figure 2.2 IEEE 802.11a baseband system architecture

 8

bits shall be interleaved by a block interleaver. The block size depends on the number

of coded bit per symbol (NCBPS) and NCBPS is 192 for this example. The data will be

interleaved by two-step permutation which is defined in (2.1) and (2.2), respectively.

After interleaving, the resultant bits will be assigned to each subchannel, and mapped

as symbols fed into the IFFT module. The receiver part will reverse operations

performed at the transmitter side. The data will first be transferred to the time domain

to the frequency domain by the FFT module. Then, all symbols will be demapped as

coded bits. Before convolution decoding, we have to perform deinterleaving; the

operation is defined in (2.4) and (2.5), respectively. Finally, the Viterbi decoder will

decode the 192-bit data into 96-bit data.

i=(NCBPS/16)(k mod 16)+floor(k/16) k =0,1…, NCBPS-1 (2.1)

j=s * floor(i/s) + (i + NCBPS-floor(16 * i/ NCBPS)) mod s i=0,1…, NCBPS-1 (2.2)

s=max(NBPSC/2,1) (2.3)

i =s * floor(j/s) + (j + floor(16 * i/ NCBPS)) mod s j=0,1…, NCBPS-1 (2.4)

k=16 * i-(NCBPS-1) floor(16 * i/ NCBPS) i=0,1…, NCBPS-1 (2.5)

 9

Figure 2.3 Data stream from transmitter to receiver (using 16QAM modulation)

I(t)+Q(t)

I(t)+Q(t)

Data interleave
Channel data
assignment

Data
symbol
mapping

0

1

2

3

94

0a _0b

1a _1b

2a _2b

94a _94b

95a _95b

3a _3b

95

0a_1

0b_2

1a_3

1b_4

94a_189

94b_190

95a_191

95b_192

0a_1

0b_2

1a_3

1b_4

94a_189

94b_190

95a_191

95b_192

ch1

ch2

ch48

a+jb

a+jb

a+jb

IFFT

a+jb

a+jb

a+jb

Symbol
demapping

FFT

xx_0

xx_1

xx_2

xx_3

xx_188

xx_189

xx_190

xx_191

ch1

ch48

ch2

0a_1

0b_2

1a_2

1b_2

94a_189

94b_190

95a_191

95b_192

0a _0b

1a _1b

2a _2b

3a _3b

94a _94b

95a _95b

0

1

2

3

94

95

Data deinterleave
Viterbi
decoder input

Input
96-bit data

Data encode:
generate 192bit

Output
96-bit data

 10

2-3 Coded OFDM systems
 The OFDM scheme can provide good spectral efficiency for multicarrier

transmission. This is because each sub-carrier can overlap with others and

interference will not result. In conventional systems, when the transmission data rate

is high, the ISI become a problem difficult to solve. Since a guard-interval is provided,

it can be shown that as long as the guard interval is longer then the maximum channel

delay, the OFDM system can be free of the ISI problem.

Besides, the OFDM system uses multicarriers to transmit data. For each carrier,

only flat fading will result. This will facilitate the data detection in fading

environments. To avoid the deep fade in some specific carriers, the interleaving and

channel coding are used [10]. This approach can make the bit error rate (BER)

performance approximately equal for all tones. The convolutional encoding (k=7) was

selected by IEEE 802.11a. With the Viterbi decoding, this coding scheme can provide

desired BER. The coded OFDM architecture provides a reliable solution for high data

rate communication systems.

 11

Chapter 3

The Viterbi decoder design

 3-1 Viterbi algorithm
 In 1967, Viterbi developed a decoding algorithm for convolutional codes, which

is referred to as the Viterbi algorithm. The Viterbi decoder consists of three main

building blocks: a BM computation unit (BMU), the add-compare select unit (ACSU),

and the survivor memory unit (SMU). Both the BMU and the ACSU perform

arithmetic operations and the results are stored in the SMU. The most likely transmit

sequence is found by the trace back operation in the SMU. The detailed operation will

be addressed in the following.

 In order to establish the Viterbi principle, it is convenient to start with the

convolution encoding first.

D D

Output data(i)_a

Output data(i)_b

Input data(i)

)111(7 2

)101(5 2

Figure 3.1 Convolutional encoder (rate ½ k=3 m=2)

Figure 3.1 shows a k=3, (7,5) convolutional encoder. The numbers 7 and 5

represent the code generator polynomials. They can be read in binary format as 1112

1012; each binary number indicate that if the shift register output is connected to the

output or not. The values in two registers can be used to indicate the current encoder

 12

state. Table 3.1 shows the state transaction. The encoder behavior then follows that

described in the table. For example, if the current state is “00” and input data is “1”,

the encoder output must be “11” and the state transits to “10” state.

 Current input=0 input =1 I
State next state output symbols next state output symbols

 00 00 00 10 11

 01 00 11 10 00

 10 01 10 11 01

 11 01 01 11 10

 Table 3.1 The state translation table

 We now use a simple example to describe the Viterbi algorithm. Let the transmit

data stream be (0101-1101). Using the encoder in Figure 3.1, the data stream after

encoding is then (00111000-01100100). Also, let the received sequence be

(00111100-01100100). Note that there is one bit erroneously detected at receiver (the

six-th bit),

In the receiver, the Viterbi algorithm uses a trellis diagram to trace the data

transition and select a sequence with maximum likelihood. We depict the operations

in Figure 3.2. For example, from time t0 to t1, the received pair symbol is ”00”. We

can then calculate the BM for input bit “0” and “1”. We denote these metrics as BM1

and BM2. It is simple to have that BM1=0 BM2=2 (the Hamming distance from the

received pair symbol to the encoder output). For time t1 to t2, we then have four BMs

to compute. Using the similar notations, we have BM3=2, BM4=0, BM5=1, and

BM6=1. We now can calculate the PM, which is an accumulation of BMs, from t0 to

t2. Denote the PM from t0 to the state “ij” at t2 as PMij_2. We then have four PMs to

compute. We can find that PM00_2, obtained from BM1+BM3, is 2. Similarly, we

can obtain PM01_2=3, PM10_2=0, and PM11_2=3. Figure 3-2 (b) and Figure 3-2 (c)

show the trellis transition from t2 to t3 and t3 to t4, respectively. As shown are PMs

calculated for all paths at each time unit. Table 3.2 shows the PM values at each time

unit. From the table, we can find the minimum PM at t8, which is 1 and the

corresponding terminate state is 10. From this state, we can trace back to the previous

 13

states and find the state transition sequence. Table 3.3 gives “surviving predecessor

states “. Figure 3.3 displays the trellis trace back path. Along with the trace back, we

can decode the data according to the state transition table (Table 3.1). We finally

obtain the decoded data as “0101- 1101” which is identical to the transmit ones.

 time t0 t1 t2

state00

state01

state10

state11

Encoder Out 00 11

Receiver 00 11

Figure 3.2 (a) Viterbi decoder trellis diagram (1)

 time t0 t1 t2 t3

state00

state01

state10

state11

Encoder Out 00 11 10

 Receiver 00 11 11

Figure 3.2 (b) Viterbi decoder trellis diagram (2)

BM3=2

00 00

11 11

BM1=0

BM2=2

BM4=0

BM5=1

BM6=1

01

PM00_2=BM1+BM3=2

PM01_2=BM2+BM5=3

PM10_2=BM1+BM4=0

PM11_2=BM2+BM6=3

BM8=0 BM9=1

BM10=1BM11=1

BM12=1
BM13=1

BM14=1

01

10

00

10
11

00 BM7=1

01

10

PM00_3=PM00_2+BM7=3 or
PM00_3=PM01_2+BM9=4

PM01_3=PM10_2+BM11=1 or
PM01_3=PM11_2+BM13=4

PM10_3=PM00_2+BM10=4 or
PM10_3=PM01_2+BM8=2

PM11_3=PM10_2+BM12=1 or
PM11_3=PM11_2+BM14=4

10

 14

 time t0 t1 t2 t3 t4

state00

state01

state10

state11

Encoder out

 00 11 10 00

Receive

 00 11 11 00

Figure 3.2 (c) Viterbi decoder trellis diagram (3)

 time t0 t1 t2 t3 t4 t5 t6 t7 t8

 state00

state01

state10

state11

 Encoder in 0 1 0 1 1 1 0 1

 Encoder out 00 11 10 00 01 10 01 00

 Receiver 00 11 11 00 01 10 01 00

Figure 3.3 Viterbi decoder trace back path

00
BM15=0

BM22=1

BM21=1

BM17=2

BM20=1

BM18=0
BM19=1

00

11

10

10

01

01

BM16=2

PM00_4=PM00_3+BM15=3 or
PM00_4=PM01_3+BM17=3

PM01_4=PM10_3+BM19=3 or
PM01_4=PM11_3+BM21=2

PM10_4=PM00_3+BM16=5 or
PM10_4=PM01_3+BM18=1

PM11_4=PM10_3+BM20=3 or
PM11_4=PM11_3+BM22=2

11

 15

 t0 t1 t2 t3 t4 t5 t6 t7 t8

state00 0 2 3 3 3 3 4 3

state01 3 1 2 2 3 1 4

state10 2 0 2 1 3 3 4 1

state11 3 1 2 1 1 3 4

 t0 t1 t2 t3 t4 t5 t6 t7 t8

state00 0 0 0 1 0 1 1 0 1

state01 0 0 2 2 3 3 2 3 3

state10 0 0 0 0 1 1 1 0 1

state11 0 0 2 2 3 2 3 2 3

 Table 3.3 Surviving predecessor states from t0 to t8

 Table 3.2 Path metrics from t0 to t8

0: state00 1: state01 2:state10 3: state11

 16

3-2 Hard decision and soft decision
The decoder described in the previous section is a hard-decision decoder which

uses a Hamming distance metric in the BM calculation. As mentioned, the

computational complexity is low, but its BER is higher.

The soft-decision Viterbi decoder replaces the Hamming distance metric with the

Euclidean distance metric. It can explore more useful information and enhance the

Viterbi decoder performance.

Figure 3.4 (a) shows the decision plane for a QPSK modulation. Any received

QPSK symbol is first decided to be one of four possible transmit symbols, (0,0), (0,1),

(1,0) or (1,1). In the figure, the receive symbol is decided to the nearest symbol (1,1).

1,1

1,0

0,1

0,0

3,3

3,0

t1t0
0,0

1,1

BM1=2

0,3

0,0

t1 t0
0,0

3,3

BM2=2

BM1= 10

Figure 3.5 (a)
 QPSK 2-bit (4 level) soft decision plane

Figure 3.5 (b)
Trellis for data input (3,1)

Figure 3.4 (a)
QPSK hard decision plane

Figure 3.4 (b)
Trellis for data input (1,1)

Receive
data

Receive
data

I

Q

I

Q

BM2=0

 17

One QPSK symbol carries two bits data in I and Q branch. In the hard-decision

scheme, the received symbol is equivalently be quantized to one bit in I and Q branch.

In other words, one QPSK symbol will be represented as two bits in the hard-decision

scheme. Figure 3.4 (b) shows that the hard-decision scheme uses the Hamming

distance to calculate BMs as those in (3.1) and (3.2).

Figure 3.5 (a) shows a 2-bit soft-decision Viterbi scheme. The received symbol

can then be quantized to one of 16 possible symbols. This is because two bits have

been used for I and Q branch. In Figure 3.5 (a), the received symbol is quantized as

symbol (3,1) and this serves as the Viterbi decoder input. Figure 3.5 (b) shows the soft

decision trellis diagram. Using the Euclidean distance metric, we find that the BMs

are those shown in (3.3) and (3.4). Since the Viterbi decoder is a maximum likelihood

decoder, the more quantization bits, the better performance we will obtain.

For the WLAN application, it has been shown that a three-bit quantization results in

a performance improvement about 2 dB then a two-bit quantization [17]. Quantization

with more then 6 bits can yield very little performance improvement.

BM1=XOR {(0,0),(1,1)} =2 (3.1)

BM2=XOR{(0,0),(0,0)} =0 (3.2)

BM1= 2)10(2)30(−+− = 10 (3.3)

BM2= 2)13(2)33(−+− = 2 (3.4)

 18

3-3 Hard decision weighting
From the previous section, we know that the hard-decision Viterbi scheme is

simple but may not have satisfactory performance. In this section, we propose a new

algorithm, which is as simple as the hard-decision decoder but enjoys higher

performance. We call this algorithm as a hard-decision weighting decoder.

We use a simple example to describe our idea. Figure 3.6 shows the decision

plane for a BPSK modulation. Note that due to noise, the received symbol r can be

located at anywhere in the x-axis. For hard-decision, if r > 0, the decision as 1,

otherwise it is -1. The decision region for 1 is (0,∞) and the decision region for –1 is

then (-∞,0)

Take two received signals r = 0.1 and r = 1 as examples. Both decision are “1”

by the hard-decision principle. However, it is simple to see that the confidence for the

decision is different for these two signals. Of course, soft-decision can solve the

problem easily, but it requires higher computational complexity. It is our objective to

solve this problem using a simple way.

The basic idea for “hard decision weighting” scheme is simple. For each decision

region, we further partition it into two regions; the first one is considered reliable and

the second one is not reliable. In the BM calculation, we then increase the weight if

the observation is located in the reliable region. We can choose the weight with some

special format such that its implementation has low complexity (for example 2n where

-1 10

Figure 3.6 BPSK decision plane

Received
signal Z(t)

 19

n is an integer). Consider a special BPSK scenario that the transmit symbol is either

a1 or a2. The received signal is then r = a+n0 where a can be a1 or a2 and n0 is additive

white Gaussian noise with mean zero and varianceσ2. Figure 3.7 illustrates the

conditional probability density function (PDF) for the binary noise-perturbed received

symbol. The ML decision gives

2
 where

 if ,1
 if ,1

ˆ

21 aa
r

r
a

+
=





<−
≥

=

γ

γ
γ

The probability of error shown in the shaded are in Figure 3.7 is then

where Q(.) is the complementary error function.

probability

∞

2/)(21 aa +

2a1a

bP

 Figure 3.7 Received symbol distribution (1)

We now want to find the threshold, γ1, that determines weighting regions.

Without loss of generality, we let a1= -1, a2=1, and σ=1. Also, let the transmit symbol




























































−=

−∫
∞=

−−∫
∞=

σ

γ πσ

σγ πσ

2

2exp
2

1

(
2
1exp

2
1

21

2

2
2

aaQ

duu

dzazP b

(3.5)

(3.6)

 20

be from a2. Figure 3.8 shows the received symbol distribution. In the figure, note that

1γ =1- s1. For our algorithm, we add weighting on the BM calculation when the

receive signal is in the area “A” (the interval between –s1 and a2). First, we define a

cost function (3.7) that measures the probability of correct weighting and incorrect

weighting.

(A) (B) (C)

(D) (E) (F)

12 −=a 11 =a

)0(Q
)1(Q

)1()(1 QQ −γ

)()0(1γQQ −

)2()1(1γ−−QQ

)0(Q
)1(Q

)2(1γ−Q

1s−

111 s−=γ

0=s

Figure 3.8 Received symbol distribution (2)

)]1()()[2()]2()1()][()0([)(11111 QQQQQQQJ −−−−−−= γγγγγ (3.7)

 Note that Q(0)-Q(γ1) indicates the probability that the transmit symbol is from

a2 and the receive signal is in the area “A”. In other words, the hard-decision is

correct and the weighing should be carried out. The term Q(1)-Q(2-γ1) indicates the

probability that the transmit symbol is from a1 and the receive signal in the area “E”.

The hard-decision for this case is not correct and there should no be weighting in this

case. Assume that the data from a1 and a2 are equally likely. Thus, the first term on

the left hand side of (3.8), which is the product of two probabilities, indicates the joint

 21

probability of correct weighting for symbols from a1 and correct “not weighting” for

symbols from a2. Now, the term Q(2-γ1) gives the probability that the transmit symbol

is from a1 and the receive signal is in the area “D”. In this case, it should no be

weighting; however, it is weighted. Thus, the weighting is incorrect. Finally, the term

Q(γ1)-Q(1) gives the probability that the transmit symbol is from a2 and the receive

signal is in the area “B”. It should be weighted; it is not actually. This is incorrect

either. Thus, the second term on the left hand side of (3.8), which is the product of

two probabilities, indicates the joint probability of incorrect weighting for symbols

from a2 and incorrect “no weighting” for symbols from a1. The cost function then

corresponds to the relative probability of correct weighting decision. We then

minimize the cost function in (3.8) and obtain the optimal threshold. Figure 3.9 shows

the cost function vs. the threshold. We can see that the optimal threshold is around 0.6.

r

 Figure 3.9 The cost function vs. threshold

The SNR used is 7 dB here. We have found that the optimal threshold is between 0.6

and 0.75 when the SNR varies from 0 to 20 dB. The optimal threshold is not sensitive

to the SNR. We can generalize (3.7) to have the optimization criterion for the general

 22

noise case scenarios as

)]1()()[2()]2()1()][()0([)(1111
1 σσ

γ
σ
γ

σ
γ

σσ
γ

σ
γ QQQQQQQJ −

−
−

−
−−= (3.8)

After finding optimal thresholds, we then have to determine how much weight we

should give. Since this is something to do with the Viterbi algorithm, it is difficult to

find a criterion to optimize. We then use simulations to find the optimal one. Figure

3.10 shows the simulation results. In the figure, “w1.0” indicates the results without

weighting, “w1.2” indicates the results with weighting (weight is 1.2), and so on.

From the figure, we found that if the weight value is between 1.1 and 2, the Viterbi

performance is similar. Also note that the optimal threshold is around 0.6. The SNR

used here is 7 dB. Other cases will give similar results. We then use 0.625 as the

threshold and 2 as the weight for simplicity.

Figure 3.10 BER vs. threshold and weight

The idea of hard-decision weighting can be extended further. We can partition

each decision region into three regions and assign different weights for these regions.

We now have two thresholds, (γ1, γ2). We refer this as a two-weight algorithm. To

 23

find optimal thresholds, we can formulate a criterion similar that in (3.8). The

resultant cost function is shown in (3.9).

),(),(),(21221121 γγγγγγ PPJ −= (3.9)

where

))2()1())(()(())2()1())(()0((),(22111211 γγγγγγγ −−−+−−−= QQQQQQQQP (3.10)

))1()())(2()2(())1()()(2(),(21211212 QQQQQQQP −−−−+−−= γγγγγγγ (3.11)

(A) (B) (C) (D)

(E) (F) (G) (H)

)0(Q

)(1γQ

)1(Q

)1(Q
)0(Q

0=s1s− 2s−

)1()(2 QQ −γ

)()0(1γQQ −

)()(21 γγ QQ −

)1()(1 QQ −γ

)2()1(1γ−−QQ

)2()1(2γ−−QQ

)2()2(12 γγ −−− QQ
)2(1γ−Q

11 1 s−=γ

22 1 s−=γ
12 −=a 12 =a

 Figure 3.11 Received symbol distribution (3)

Figures 3.12 and 3.13 display the results at the optimal solution. The optimal

 24

thresholds are found to be γ1=0.77 and γ2=0.5. The optimal weights are found to be

around 2 and 1.5. We can generalize (3.10) and (3.11) to obtain the optimization

criterion for the general noise case as

))2()1())(()(())2()1())(()0((),,(22111
211 σ

γ
σσ

γ
σ
γ

σ
γ

σσ
γ

σ
σγγ −

−−+
−

−−= QQQQQQQQP

 (3.12)

))1()())(2()2(())1()()(2(),,(21211
211 σσ

γ
σ
γ

σ
γ

σσ
γ

σ
γσγγ QQQQQQQP −

−
−

−
+−

−
=

 (3.13)

Figure 3.12 Cost function value vs. γ2 for two-weight algorithm

 25

Figure 3.13 Cost function value vs. γ1 for two-weight algorithm (γ2=0.77)

Figure 3.14 BER performance for hard-decision weighting algorithm

 26

Figure 3.14 illustrates the BER performance for various Viterbi algorithms (in

AWGN environment). In the figure, HD denotes the conventional hard-decision

decoding, HDW1 denotes the proposed one-weight algorithm, and HDW2 denotes the

proposed two-weight algorithm. As we can see, the proposed hard-decision weighting

algorithm outperforms the hard-decision algorithm by 2dB at BER=10-3. The two-

weight algorithm only performs slightly better than the one-weight algorithm. For this

reason, we then use the one-weight algorithm in our implementation. As we

mentioned, the hard-decision weighting algorithm only needs XOR logic operations

to compute BMs and its computational complexity is lower.

 27

3-4 Viterbi decoder with receiver diversity
In the WLAN environment, the multipath channel effect may affect the

receiver performance significantly. It is known that the diversity technique can

effectively solve the problem. Space diversity is a popular and effective diversity

technique and its can be easily applied in WLAN systems. In this approach, an

antenna array is used in the receiver. There can be different various implementation

architectures for the antenna diversity. The first one shown in Figure 3.15 is called

the antenna selection. In this architecture, we need only one RF module although L

antennas are used. This architecture only selects the antenna with the strongest

output for processing. Baseband processing is not affected at all and its

implementation cost is lowest. However, its performance enhancement capability is

limited. For other structures we require L RF modules in general. Figure 3.16 shows

the architecture. Outputs from RF modules are first down converted, sampled, and

transformed using FFT. Various diversity combing methods can then be applied.

We only discuss the optimal one, which is the maximum ratio combing (MRC).

RF
CIRCUIT DSPM

U
X

Comparator

Antenna1

Antenna2

AntennaN

Figure 3.15 Antenna selection diversity

 28

Combining

RF
CIRCUIT

RF
CIRCUIT

RF
CIRCUIT

DSP

FFT

FFT

FFT

 Simulations indicate that this scheme can enhance10dB performance with two

receive antenna in an exponential decay AWGN channel. The performance

enhancement is significant. Let the received signal for the ith tone signal of a nth

symbol at the jth antenna be)(nX j
i , and the corresponding transmit signal, channel,

and noise be)(nS j
i ,)(nH j

i , and)(nV j
i , respectively. Then,

)()()()(nVnSnHnX j
i

j
i

j
i

j
i += (3.14)

The MRC output signal, denoted by)(ˆ nSi , is then

∑

∑

=

=

∗

= L

j

j
i

L

j

j
i

j
i

i

nH

nXnH
nS

1

2

1

|)(|

)()]([
)(ˆ (3.15)

Note that the conventional approach uses diversity combing first and then pass

the result to the Viterbi decoder. We call this observation MRC (OMRC). We propose

a new approach that combing the multiple observations in the Viterbi decoder. Let

the BM for the state i transiting to state j at the nth time instant when the receive

Figure 3.16 Antenna combing diversity

 29

antenna is the kth be)(nzk
ij . We then have a new BM as

∑
=

=
L

k

k
ijij nzz

1

)((3.16)

As we can see, this BM takes all the observations from all antennas into account.

Since the channel effect is taken into account, it will give the MRC-like results for

the Viterbi algorithm. We call this a Viterbi MRC (VMRC) algorithm.

 Simulation results for an exponential decay AWGN channel are shown in

Figure 3.17. Here, two antennas are used for the diversity approach. From the figure,

we can see that at BER= 410− , the OMRC and the VMRC outperform the decoder

without diversity (NORMAL) by 9dB and 11dB, respectively. Apparently, the

VMRC outperforms the OMRC by 2 dB. The gain is significant.

We then add more antennas and carry out more simulations Figure 3.17 shows the

results. In the figure, the solid line with symbol “+” indicates the result with the

Figure3.17 Comparison between NORMAL, OMRC and VMRC

 30

decoder without diversity. Solid lines with symbols “o”, “ * ”, and “+” indicate the

performance of the OMRC with two, three, and four antennas, respectively (denoted

as OMRC2, OMRC3, and OMRC4). Dashed lines with symbols “o”, “ * ”, and “+”

indicate the performance of the VMRC with two, three, and four antennas,

respectively (denoted as VMRC2, VMRC3, and MRC4). From these results, we can

clearly see that the VMRC is always better than the OMRC. When the number of

antenna is larger, the performance gap becomes larger also.

Figure 3.18 Comparison between NORMAL, OMRC2, OMRC3,
OMRC4, VMRC2, VMRC3 and VMRC4

 31

3-6 Memory management and adaptive tracing back
The REM (register exchange method) is simple, but it is not efficient for the

WLAN system since it requires high power consumption and large chip area. Thus,

we employ the TBM as our implementation scheme. This section addresses the

memory management scheme for the TBM.

There are several trace back algorithms known as, the K-pointer even algorithm, the

K-pointer odd algorithm [18], the one-pointer algorithm, and the hybrid algorithm. In

one- pointer trace back architecture [6], it only uses a single read pointer and needs

approximately half as much memory as other approaches. The disadvantage of the

one-pointer algorithm is that we need to provide separate column counters for the

write and read operations individually. Another disadvantage is that the trace back

operation clock must be three times as fast as the writing operation clock if the read

region is three times as large as the write region. Since in the WLAN application, the

clock rate is not particularly high, we then adopt this memory management method in

our implementation.

Figure 3.19 shows the one-pointer algorithm operation. Here, “TB” denotes the

track back read. This operation is to find out the previous state according the data

stored in the memory. There are two banks memory for trace back and this implies

that this Viterbi decoder trace back with depth 2T. The notation “DC” means the data

decode read. The first decode read (starting state) in a memory bank is determined by

the previously two track back bank result. The decoder reads the newer data, decode

them, and send them to the LIFO (last in first out) register performing the bit-order

reverse. The operation “WR” means decoder new data write. Decisions, indicating the

previous surviving state, are made by the ACS and written into locations representing

corresponding states.

We now explain the operations outlined in Figure 3.19. We assume that the time

interval between t0 and t1 is a unit time, so is that between t1 and t2 (and so on).

During the T0 interval (between t0- t1), one write pointer points out the write location

and ACS out data is written into bank0 memory. In the same time, one read pointer

starts tracking back and reading data from bank3 memory. The read pointer is

operated as three times faster as the write pointer. Thus, the write operation only fills

1/3 bank0 memory when the “TB” has finished bank3 memory track back. Then, at

 32

time t2, the trace back operation has terminated at the end of bank2 memory, the write

operation fills 2/3 bank0 memory. Finally, the decoder read bank1 memory and

finishes the decoding operation at t3 and the write operation fills bank0 memory at the

same time. During the T3 (t3-t4) time period, we then shift the read/write pointer as

that shown in Figure 3.19 and repeat the operations all over again. We can obtain the

data out from the decoder continually.

Figure 3.19 displays the memory organization for storing the survivor path. Here,

the memory depth for each bank is Γ. In order to find the optimal decode starting

state, we have to trace back two memory banks before decode. In other words, the

trace back length is 2Γ. One data output from the decoder must have four memory

accesses; the first is “WR” data write. When the memory bank is full (3/3 WR), we

will start trace back for the next time unit. After two times trace back, we then have

the decode (DC) operation. Since the trace back unit contributes almost half of power

dissipation (the trace back length is 2Γ). Howe to reduce the memory access

frequency during the trace back is then the main concern.

Figure 3.19 One-pointer trace back method

Figure 3.20 also shows the Viterbi decoder memory trace back paths. As we can

see if the trace back length is long enough, all the trace back paths will merge at some

block. Figure 3.21 illustrates the trace back path within two memory banks; the solid

line indicates one trace back path and dash lines indicate other trace back paths. It is

desirable that all paths merge before the decode block. It means that trace back from

any state will find the same starting state in the decode memory. Note that this case is

not always true when the SNR is lower or trace back length is not long enough.

 DC TB

BANK0 BANK1 BANK2 BANK3

 DC

 DC

TB

TB

TB

TB

TB 1/3wr TB TB

Γ

T0(t0-t1)

T1(t1-t2)

T2(t2-t3)

TB

T3(t3-t4)

TIME

1/3wr

2/3wr

3/3wr

 33

Before the trace back, we can guess a terminating state having a minimum PM in

the previous memory block. In the writing operation, we can record all possible states

(at each time instant) that can reach the terminating state. Then, if the trace back

starting state is in these states, we can immediately know that the track back will end

with the terminating state we guessed; we call this case as a “trace forward hit”.

Figure 3.21 shows an example. In the figure, the state (s35) with the minimum PM in

the previous block is written at t=0. When t=1, we found that only one survivor path

(s17) is from s35 and we record this state (s17) by writing a “1” in a 64x1 register

array. This means that if trace back starts from state17 (s17), it will go through the

state (s35). When t=2, there are two survivor paths coming from the state (s17). We

record these two states (s8) (s40) by writing two “1”s in the register array (note that

the array is reset before writing). These two “1”s indicate that if trace back starts from

state8 (s8) or state40 (s40), it will go through the state (s35) in the end. When t=3,

there are three survivor paths coming from the previous two states. We then write

three “1”s in the 64x1 register array. As the writing process proceeds, the values in

the register array are updated. Finally, at t=n, the register array remains four “1”s

indicating states s2, s8, s32, and s63. The four states imply that if trace back starts

from state2 (s2), state8 (s8), state32 (s32), or state63 (s63), it will terminate at s35.

Thus, we can skip the trace back operation in the memory block. This will reduce the

memory access frequency. Figure 3.22 illustrates this skip scheme. When bank0 is

decoded, we write data to bnak3 and record the trace forward states. After the

decoding in bank0 is finished, we write data to bnak1 and starts trace back from

bank3. If the state with the minimum PM is in the trace forward states, the track back

operation in bank3 will be skipped (see T1). If once again, the trace forward is hit in

bank0. At T3, we can skip the trace back in bank0 and bank3.

DECODE
BLOCK MERGE BLOCK

TB TBDC

decode starting state

Figure 3.20 Viterbi decoder trace back path in memory bank

 34

Unfortunately, the “trace forward” is not always hit. Figure 3.23 shows the hit rate

with different SNR in AWGN channel. It is obviously that a higher hit rate appears in

a higher SNR environment. The percentage that the memory access activity can be

reduced is shown in Figure 3.24.

t=0 t=1 t=2 t=n-1 t=ntime

Previous block
minimum
path metric state

current block minimum
path metric state

(s35)

(s32)

(s63)

(s8)

(s2)

(s8)

(s17)

(s40)

(s36)

(s20)

(s52)

t=3

WR

TB1 TB2 DC

TB1TB2DCWR

WR DCTB1 TB2

Figure 3.22 Trace forward skip trace back scheme

Bank0 Bank1 Bank2 Bank3

Figure 3.21 Write data to record all possible trace

 35

Figure 3.23 Trace forward hit rate with different SNR

Figure 3.24 Memory saving by trace forward scheme

 36

As we can see, when the SNR is 12 dB, the “look forward” scheme can save only

45% memory access activity. Note that the hitting rate is over 90%. This is because

“WR” and “DC” are still needed. To further reduce the memory access frequency, we

need to merge these two operations

The advance minimum-transition trace back (AMTTB) scheme in [3] is the

algorithm can further reduce the memory access activity. Figure 3.25 shows the

operation. Here, we assume that the trace back depth is 32 and the size for each

memory bank is 64x32. We need one extra predict buffer 1x32 for storing the data

for the most likely path. In the write operation we record the most likely trace back

path in the predict buffer. In the trace back stage, read data from the memory bank,

find the previous state, and compare the read data with the predict data. If these data

are different, modify the data in the predict buffer. Otherwise, the trace back operation

is replaced by reading the predict buffer only. This is because the trace back has

merged at this point and we do not have to read the memory bank. By using so, we

can substantially reduce the memory access frequency in the trace back and decode

stages. How munch the memory access times can we save? It depends on the merge

point. Table 3.4 shows some simulation results. It indicates that in most cases, the

prediction hits at first trace back stage. Almost all cases will be hit (merged) before

the decode stage. This scheme can reduce the memory access frequency significantly.

However, we have to add an extra trace back circuit.

 Figure 3.25 Minimum-transition trace back operation scheme

WR

DC
TB1
Compare and
 modify buffer

Predict buffer
1*32

TB2
Compare and
 modify buffer

Predict buffer
1*32

Predict buffer
1*32

Predict buffer
1*32

 37

 Prediction Hit distribution

 Table 3.4 Minimum-transition trace back hit rate distribution

 SNR 18 19 20 21

Hit 1stage 79.9286 84.0000 89.5000 91.0714

Hit 2stage 97.7857 98.2143 99.2857 99.4286

 38

Chapter 4

 Low power Viterbi decoder implementation

4-1 Design and implementation flow

Figure 4.1 shows our design and implementation flow. The first step is to study

algorithms and choose the best solution for our requirement. Then, we carried out

simulations to realize its behavior and evaluate its performance. In this stage, we often

use a high level language such as C language or MATLAB. Algorithm study and

simulation must be repeated until it passes the performance requirement. The next

step is to use VHDL for low-level modeling. Then, we perform RTL (Function)

simulations to make sure the model work properly. Using the standard cell library, we

then synthesize our design to the gate level. Finally, the gate level simulations were

conducted to verify the circuit timing and functionality. Power analysis is import

since the low power and low complexity is our design target. We use Prime Power to

analyze the average and peak power consume for our design. We are interested to

know how much power reduced by the various designs. To evaluate the chip area

consumed, we can use a FPGA (field programmable gate array) for the circuit

implementation. The routing and simulation are simple in the FPGA implementation

flow.

Algorithm study

Algorithm simulation

RTL coding

Function simulation

FPGA evaluation

Synthesize and gate
level simulation

Power analysis

Figure 4.1 Design and implementation flow

Done

 39

4-2 Implementation of Viterbi algorithm
 Figure 4.2 illustrates a 802.11a channel decoder architecture. The receive symbol

is first de-mapped and de-interleaved and then forwarded to the Viterbi decoder. The

decoded bits are stored in the LIFO data buffer. After the LIFO, data are transferred to

the media access control (MAC) module. It is the Viterbi decoder module that we

implemented.

Figure 4.3 shows our design block diagram for 802.11a Viterbi decoder. There

are four memory banks and each one with size of 64x32. That means we have 64

states and the track back depth is 32. Besides the main memory, we also have to

implement the prediction buffer for each memory bank. The predicted trace back can

reduce the memory access frequency as described before. The predict buffer has the

size of 32x1.

Memory banks and predict buffers are controlled by the memory controller and

the buffer controller individually. The decoder controller, which includes the decoder

main state machine, receives the input frame enable signal and outputs the decoded

results. The BMU is responsible for BM calculation and the BM weighting. The result

from the BMU is then transferred to the ACSU for each cycle. The ACSU feeds all

the memory banks with survivor path data. This module also needs to perform the PM

calculation and the PM comparison. Since these operations cannot be pipelined, the

timing bottleneck for the decoder is in this unit. We will further discuss the topic in

Section 4-4. In our design, the memory bank uses the Verilog model made by

Symbol
De-mapping

Data buffer
de-interleave

Viterbi
Decoder

Data buffer

MAC

Figure 4.2 802.11a channel decoder architecture

 40

“Artisan“. The memory compiler can be used to obtain the corrsponding VHDL

design. When transferring our design to FPGA, the compiler will be replaced by the

Xilinx memory compiler.

Predict buffer (64bit)

RegFile_A
64X32

Predict buffer (64bit)

RegFile_A
64X32

Predict buffer (64bit)

RegFile_A
64X32

Predict buffer (64bit)

RegFile_A
64X32

Buffer controller

Decoder controler

Memory controller

Branch Metric Unit
(BMU)

Add Comparator
Selector Unit
(ACSU)

Decoder output data

Frame enable

Decoder input data

64 bit write data

Figure 4.3 802.11a Viterbi decoder design block diagram

 41

4-3 Over flow consideration
Figure 4.4 illustrates the trellis diagram for the 802.11a Viterbi decoder. Here,

s00 indicates state-00 and it will transfer to s00 (state-00) or s32 (state-32). All other

state transactions can be obtained using this figure. Using this figure, we construct the

ACSU module. Figure 4.4 shows the ACSU structure. Since the value in the PM is

accumulated, it should be normalized (after all comparators) to avoid PM over flow.

The modulo arithmetic approach [9] [20] can then be used here.

S00
S01
S02
S03
S04
S05
S06
S07
S08
S09
S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23
S24
S25
S26
S27
S28
S29
S30
S31
S32
S33
S34
S35
S36
S37
S38
S39
S40
S41
S42
S43
S44
S45
S46
S47
S48
S49
S50
S51
S52
S53
S54
S55
S56
S57
S58
S59
S60
S61
S62
S63

S00
S01
S02
S03
S04
S05
S06
S07
S08
S09
S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23
S24
S25
S26
S27
S28
S29
S30
S31
S32
S33
S34
S35
S36
S37
S38
S39
S40
S41
S42
S43
S44
S45
S46
S47
S48
S49
S50
S51
S52
S53
S54
S55
S56
S57
S58
S59
S60
S61
S62
S63

S00
S01
S02
S03
S04
S05
S06
S07
S08
S09
S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23
S24
S25
S26
S27
S28
S29
S30
S31
S32
S33
S34
S35
S36
S37
S38
S39
S40
S41
S42
S43
S44
S45
S46
S47
S48
S49
S50
S51
S52
S53
S54
S55
S56
S57
S58
S59
S60
S61
S62
S63

In Figure 4.5, the “adder” block implements the PM computing in (4.11) while the

comparator implements (4.12). After the minimum PM is found, one bit survivor path

indicator is written to the memory bank. The new PM will be latched at the PM

register (denoted as “PM_reg”) for the next state computing. The ACSU conducts the

same operations cycle by cycle.

Figure 4.4 802.11a trellis diagram

 42

PM(A)_next state = PM(A)_current state +BM(A)_next state (4.1)

PM= min {(PM(A)_c + BM(A)_n), (PM(B)_c + BM(B)_c) } (4.2)

adder comparatornormalizationPM_reg0

Wr_data0 (one bit survivor path indicator write to memory)

BM(s00)_n

PM(s00)_c

adder comparatornormalizationPM_reg0BM(s01)_n

PM(s01)_c

Wr_data1

adder comparatornormalizationPM_reg0BM(s31)_n

PM(s31)_c

adder comparatornormalizationPM_reg0BM(s32)_n

PM(s32)_c

wr_data32

adder comparatornormalizationPM_reg0BM(s63)_n

wr_data63

PM(s63)_c

wr_data31

Figure 4.5 Structure of adder comparator selective unit (ACSU)

There are many solutions to solve the PM over flow [20] problem. These

includes the reset, the difference metric ACS, the variable shift, the fixed shift,

and the modulo normalization algorithm. Among them, the modulo

normalization with a modified comparator is well suited to VLSI

implementation.

 The key idea for modulo normalization is that the difference between two

survivors path is bounded [19]. Denote the bounded value as c. Let mj be a

certain PM jm be the result of a modulo operation shown in (4.3). Also, let

θj=(2 jm /c)π. Consider two PMs, m1 and m2. and σ = θ1-θ2. Figure 4.6 shows the

 43

variation of θ1and θ2. If |m1-m2|< c/2, then 1m - 2m = m1-m2. When σ < 180°, then

m1<m2. Note that since 1m and 2m are signed numbers, we have to use a

subtractor to perform comparison.

We can use a modified comparator to replace the subtractor and reduce the

computational complexity. Let 1m =(pm ,1 ,…, 0,1m) and 2m =(pm ,2 ,…, 0,2m)

be the two’s-complement representations for 1m and 2m . Equation (4.6) show

the operation in which “^” indicates exclusive-or operation , y(.,.) unsigned

comparison, and Z(.,.) the comparison result.

2
)mod()

2
(cccmm jj −+≡ (4.3)

1m = j
p

j
jm 2

0
,1∑

=

 2m = j
p

j
jm 2

0
,2∑

=

 (4.4)

 P1= j
p

j
jm 2

1

0
,1∑

−

=

 P2= j
p

j
jm 2

1

0
,2∑

−

=

 (4.5)

 Z(1m , 2m)= pm ,1 ^ pm ,2 ^ y(P1, P2) (4.6)

.

2
c

−

This approach can speed up the normalization operation since 1m ^ 2m and

y(P1,P2) can be performed in parallel and subtraction operation is not required.

0

Figure 4.6 Modulo comparison of normalized metrics

σ

1m2
c

2m

 44

4-4 Radix-4 ACS
Note that the ACSU must finish all operations in adders, comparators and

path normalizations in one cycle. In order to increase the processing time, we

consider the radix-4 ACS implementation.

 Figure 4.7 (a) depicts the radix-2 trellis and Figure 4.7 (b) the radix-4 trellis.

It is obviously that the radix-4 structure is as twice fast as radix-2 structure, but

it is more complicated then radix-2 structure. For the Viterbi decoder considered

here, the trellis is radix-2. We can merge two radix-2 trellis into one radix-4

trellis and it provides two cycle time to finish the operations. The processing

time is doubled that the critical path problem can be mitigated. However, the

computational complexity is increased almost as twice. Figure 4.7 (d) shows the

radix-4 ACSU.

Figure 4.7 (a) Radix-2 trellis Figure 4.7 (b) Radix-4 trellis

.

adder

adder

CP

N

Figure 4.7(c) Radix-2 one node structure

 45

 In the evaluation step, Xinlinx Viterx_2-6000 can run at 125MHz clock

rate without timing issue, it means this device can support short gate delay

and trace delay for evaluation. Radix-4 architecture was replaced by radix-2

architecture to reduce the complexity. Finally we use radix-2 architecture and

modulo normalization as our approach.

S[3:0]

..
.

. adder

adder

adder

adder

CP5 CP4 CP3 CP2 CP1 CP0

Combinational logic (S[3]= cp5 & cp4 &
cp3, S[2]= !cp5 & cp1 & cp2; S[1[= !cp4 & cp0
& !cp2;S[0] = !cp3& cp0&!cp1)

Figure 4.7(d) Radix-4 one node structure

 46

4-5 Function simulation, gate level simulation and power

verification
The decoder is divided into 5 submodule, i.e., the ACSU, the TBU, the state

machine unit (State), the memory and memory control unit (MemCtl), and the frame

control unit (FramCtl). Figure 4.9 (a) shows the input and output signal waveforms

for a sample run. Figure 4.9 (b) shows some internal signal waveforms. From the

function simulation, we obtain the Viterbi decoder outputs compare with convolution

encode input data and the result like the MATLAB simulation result. Extract the

timing information from place& route tool (Xilinx-Project Navigator), we run the gate

level simulation again and obtain the same result as the function simulation. Based on

Xilinx Vitrtex-II type FPGA place reports, we found that the critical path is 6ns which

is less than 8ns (125MHz). The sampling rate for the WLAN system is 20 MHz and

we use the trace back rate by three times. It turns out that the minimum clock rate

must be 60MHz.

 Prime Power provides the power analysis result shown in Figure 4.8. This figure

shows the power consumption behavior when one frame of data is passed through the

Viterbi decoder. The average power consumption is listed in Table 4-1. From this

table, we can see that the memory access plays the most important role in low power

Viterbi decoder design.

Module name average power consumption(%)
PMGen(ACS) 21
TB (Decoder) 15
State 0.5
MemCtl 62
FrameCtl 1.5

Table 4.1 Viterbi decoder power consumption distribution

 47

Figure 4.8 Prime power shows Viterbi decoder power consumption

Figure 4.9 (a) Viterbi decoder input and output signal waveform

 48

 We perform power analysis for the general design and our low-power design.

The power consumption in digital CMOS circuits is expressed as

P = IstandbyVdd + IleakageVdd + Ishort-circuitVdd + αClVdd× Vdd × fclk (4.6)

where Istandby is the DC current drawn continuously from the Vdd to ground, Ileakage is

the leakage current primarily determined by the fabrication technology, and Ishort-circuit

is the current due to the DC path between the supply rails during output transitions.

These three terms correspond to the circuit-level power issue and we do not discuss

these topics here. The last term, Cl is the load capacitance, α is a factor depending on

switching activity, and fclk denoted the clock frequency.

Table 4-2 lists the power consumption comparison. As we can see, the main

power saving for our design comes from the reduction of the memory access

frequency. During idle periods, we use “chip enable” to turn off the memory. The

result is significant and the power saving can be up to 20%.

Figure 4.9 (b) Viterbi decoder internal signal waveform

 49

Module

name

General design

power consumption

Low power design

power consumption

Enhance

rate

PMGen (ACS) 0.21 mw 0.21 mw 0%

Decoder(TB) 0.15 mw 0.16 mw -1%

State and FrameCtl 0.02 mw 0.02 mw 0%

MemCtl 0.62 mw 0.41 mw 31%

Top(total) 1.00mw 0.80 mw 20%

Table 4.2 Power analysis

Figure 4.10 Prime power shows Viterbi decoder power distribution

 50

Chapter 5

Conclusion
 In this thesis, we focus on the low-cost WLAN Viterbi decoder design.

Specifically, we consider the IEEE802.11a system. We proposed a hard decision

weighting scheme to enhance the conventional hard-decision Viterbi decoder. The

performance enhancement can be as high as 2dB. However, the computational

complexity is still low. This scheme may be useful for some IA applications in which

the performance requirement is not stringent. Besides, we also study the receiver

diversity scheme and analyze the system performance with 2, 3, 4 receiver antennas.

We have shown that the diversity combining performed inside the Viterbi decoder is

better than that performed outside. Finally, we use a trace back prediction method that

can reduce the memory access frequency. This approach can effectively reduce the

power consumption. Simulations show that the power consumption can be reduced

20%. We then implement the Viterbi decoder using a FPGA design flow.

 The Viterbi decoder has been studied for a log time and found applications in

many areas. However, it implementation cost is still high compared to other

operations. This is particular true when the receiver diversity is introduced. To obtain

higher performance, the BMU and the ACSU will become more complicated. How to

keep the high performance while reduce the complexity is a topic for further research.

 51

References
[1] VLSI Digital Signal Processing Systems Design and Implementation

[2] Suk-Jin Jung, Myeong-Hwan Lee and Hyung-Jin Choi,“A New Survivor memory

Management Method inViterbi Decoders:Trace-Delete Method and Its

Implementation”,IEEE pp3284-3286

[3] Dae-Il Oh and Sun.-Young. Hwang,”Design of a Viterbi decoder with low power

using minimum-transition trace-back scheme”, IEEE Electronics Letters,

vol.32,no. 24, pp. 2189-2199, Nov. 1996.

[4] G.Geygin and P.G Gulak, “Architectural tradeoffs for Survivor Sequence

Memory Management in Viterbi Decoders”, IEEE Trans. Commun., vol.41, no.

3, pp. 425-429, Mar. 1993

[5] C.B.Shung, P.H.Siegel, G.Ungerboeck, and H.K. Thapar,”VLSI Architecutres

for Metric Normalization in the Viterbi Algorithm”, SUPERCOMM/ICC,

Atlanta, GA, USA, vol.4, pp.1723-1728, Arp. 1990.

[6] G.Feygin, P.G.Gulak, and F. Pollara. “Survivor sequence memory management

in Viterbi decoders. In Proc. 3rd Workshop on ECC, pages 72-90, San Jose, CA,

Sept 1989.

[7] IEEE Std. 802.11a-1999, Wireless LAN Medium Access Control and Physical

Layer specifications: High-speed physical layer in the 5GHz band

[9] A.P. Hekstra, “ An Alternative to Metric Rescaling in Viterbi Decoders”, IEEE

Trans. Commun., vol. 37, no.

[10] Lacroix, D., Castelain, D. “ A study of OFDM parameters for high data rate

radio LANs”, IEEE VTC, vol.2, pp.1075-1079,2000.

[11] A. J. Viterbi, “Convolutional Codes and Their Performance in Communication

Systems”, IEEE Trans. Commun., vol. COM-19, pp. 751-772, Oct. 1971

[12] R.M. Orndorf et al. Viterbi Decoder VLSI integrated circuit for Bit error

Correctin. Rockwell International, Anaheim, California 92803, December 1981

[13] C.B.Shung , implementation Issues for the Design of a Rate 8/10 Trellis Code for

 Partial Response Channels. In Third IBM Workshop on ECC, San Jose,

California, November 1989.

[14] G.C. Clark and J.B. Cain. Error Correction Coding for Digital Communications,

page262. Plenum Press, 1981

[15] C.M. Rader. Memory Management in a Viterbi Algorithm. IEEE Transactions

 52

on communications, 29:1399-1401, September 1981.

[16] Ana Garcia Armado, et al, “Parameter Optimization and Simulated Performance

of a DVB-T Digital Television Broadcasting System”, IEEE Trans. on

Broadcasting, Vol.44, No.1 March, pp.131 –138, 1998

[17]M.R.G. Butler, S. Armour, “Viterbi Decoding Strategies for 5 GHZ Wireless

LAN Systems” IEEE 2001

[18] O.Collins and F. Pollara, “Memory management in traceback Viterbi decoders”

TDA prog. Rep. 42-99, Jet Prop. Lab., Pasadena, CA, November1989.

[19] A. P. Hekstra. An alternative to metric rescaling in Viterbi decoders. IEEE Trans.

Communications, 37(11):1220-1222, November 1989.

[20] C. B. Shung, Gottfrried Ungerboeck, H. K. Thapar, “VLSI Architecutres for

Metric Normalization in the Viterbi Algorithm”, IEEE International Conference

wol.4, 1999,pp. 1723-1728

