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ABSTRACT

The wireless local area network (WLAN) has been widely used in recent years.
The Viterbi decoder, awell-known decoding scheme, plays an important role in the
baseband receiver. The Viterbi algorithm:can be implemented as soft-decision or
hard-decision. The soft-decision Viterbi algorithm has better performance but requires
higher computational complexity. In some WLAN applications, the performance
requirement is not stringent. In this case, the hard-decision decoding algorithm can be
sufficient. In thisthesis, we consider the design and implementation of a hard-
decision WLAN Viterbi decoder. We propose a hard-decision weighting scheme that
can effectively enhance the conventional hard-decision Viterbi decoder while remains
the inherent low complexity property. We also use atrace back prediction method that
can reduce the memory access frequency during the trace back operation. This can
reduce the power consumption of the whole decoder up to 20%. Finally, we use

VHDL to model the designed decoder and implement it using an FPGA.
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Chaper 1

| ntr oduction

1-1 Motivation

Convolution coding [11] is widely used in wireless communication system, such
like satellite communication, broadcast systems, and WLAN. The Viterbi algorithm
is a well-known algorithm for maximum likelihood convolution decoding.
Unfortunately, the Viterbi decoder requires high computational complexity. When it
is implemented, a complex logic circuit will result. Conventionally, the Viterbi
decoder can provide two kinds of solutions; one is called hard decision and the other
soft decision. The soft decision Viterbi algorithm can give better decoding result;
however, its complexity is higher. It depends on the application where the hard or soft
decision Viterbi algorithm will be called for. In some scenarios, we need a low-cost
solution rather high performance. In others, we may need high performance disregard
its cost. We have to take cost, performance, and. power consumption into account in
order to make a best decision. I this thesis; we will focus on the hard decision Viterbi
decoder and develop and implement a low.complexity yet low power Viterbi decoder.

1-2 Previous work review

The Viterbi decoder use an efficient architecture to perform the maximum
likelihood sequence estimation (MLSE) on the receive data. It keeps track of the path
metric (PM), which is an accumulation of the branch metric (BM), and selects the
path with the lowest PM as its output. The difference between the soft-decision and
hard-decision Viterbi algorithm lies in that the different criteria used in the BM
calculation. The soft-decision approach first quantizes the input signal with multiple
bits and uses the Euclidean distance as the BM criterion. On the other hand, the hard-
decision approach quantizes the input signal with one bit and uses the Hamming
distance as the BM calculation criterion. It is known that the Euclidean distance is
more accurate then the Hamming distance reflecting the likelihood of a particular bit
sequence. As a result, the performance of the soft-decision approach is better.
However, it’s requires higher computational complexity. The difference will become

even more apparent when the Viterbi decoder is implemented. We require only



“XOR” logic operations to calculate the Hamming distance, while we require
multiplication operations to calculate Euclidean distance.

For OFDM systems, transmit bits are spread all over different tones. As a result,
the signal to noise ratio (SNR) may be different for all bits. The performance of soft-
decision Viterbi algorithm can be further enhanced if we take channel state
information (CSI) into account. In this approach, the BM for each transmit bit is
weighted according to the SNR in the corresponding tone [16]. The soft-decision
Viterbit algorithm with CSI needs to estimate the signal power and noise power. This
may complicate the receiver design and real-world implementation. As mentioned, in
some scenarios, a higher performance Viterbi recoder may not be necessary. The issue
is the implementation cost. In this case, the hard-decision Viterbi algorithm will be
more suitable.

There are two well know structures for the Viterbi decoder implementation. The
first one is called the register exchange method (REM) [14] and the other one is called
the track back method (TBM). Implementation of the REM is simpler and its
throughput is higher. The disadvantage issthat.it requires many registers to store
survive bits and these bits must ‘be read and rewritten-for each data cycle [12] [13].
Thus, this method will require more chip‘area and more power consumption. The
TBM, on the other hand, stores the survivor bits in memory and then traces back the
path history for decoding. Since the area and power consumption of memory is much
lower than those of the register, the TBM is used more often. The disadvantage of the
TBM is the memory control is somewhat more complicated.

In the TBM, the memory transactions contribute more than half the total power
dissipation [3]. Thus, if we want to further reduce the power consumption, how to
reduce the memory transaction times is the key issue.

1-3 Our approach

This thesis considers a low-cost and low-power hard decision Viterbi decoder
design that is applied to IEEE802.11a WLAN system. As mentioned, although the
hard-decision approach is simple, its performance is not as good as the soft-decision
approach. In this thesis, we propose a new method called “hard-decision weighting”
to improve the decoding performance. The proposed algorithm has a simple operation,
but it can effectively enhance the performance. We also propose a modified “adaptive

trace back” scheme that can help to reduce memory transactions in the TBM. As a



result, the power consumption can be further reduced. Combing with our hard-
decision weighting, we can then obtain a high performance yet low power hard-
decision Viterbi decoder design.
1-4 Outlines

In this thesis, we will design and implement the hard-decision Viterbi decoder
base on the IEEE 802.11a WLAN standard. The encoding rate is /2, the constraint
length is 7, and the generator polynomials G1=138s and G2=171s (see Figure 2.1).
The organization of the thesis is described as follows. Chapter 2 briefly describes the
IEEE802.11a WLAN system. Chapter 3 describes various Viterbi algorithms
including the hard-decision, soft-decision, and soft-decision with CSI schemes. We
also described the proposed hard-decision weighting and modify adaptive trace back,
besides, we discuss about Viterbi decoder with receiver diversity. Chapter 4 addresses
implementation issues. In this chapter, we discuss our implementation flow, specific
functional blocks, function simulations, and gate level simulations. We also use the
FPGA (Xilinx Vertix-2) implementation to evaluate our design and Prime power for

power analysis. Chapter5 describes conglusions.and future works.



Chapter 2
WLAN system description

2-1 WLAN introduction
In 1997, IEEE released IEEE 802.11 standard. Two year later, IEEE announced

802.11b wireless local area network (WLAN). The initial standard provides 1 Mbps
and 2 Mbps transmission rate. Since the data rate is not high enough for many
applications, the WLAN was not popular at that time. Due to the strong demand for
higher data rates, IEEE 802.11b then incorporates the complementary code keying
(CCK) scheme in direct sequence spread spectrum (DSSS) and increases the data rate
up to 5.5 and 11Mbps. Since then, the WLAN usage experiences a rapid growth.

Recently, more and more applications are explored in the Internet. These include
E-mail, VOIP, interactive games, and multimedia on demand (MOD). The bandwidth
requirement becomes larger and largerand 802:11b seems not able to satisfy the
requirement now. In the recent years, a high efficient transmission scheme called
orthogonal frequency division multiplexing (OFDM) has been developed. In order to
boost the data rate in the WLAN, IEEE then announced two standards 802.11a and
802.11g in 1999 and 2003, respectively. Both standards use the OFDM technique
operated in 5-GHz and 2.4-GHz radio band.” The data rate for both systems can up to
54Mbps.

Many manufacturers provide 802.11/a/b/g combined solution for WLAN

application now. The WLAN technology has been becoming the major stream in the
notebook communication. We will introduce the 802.11a standard and coded OFDM

system in the following sections.



2-2 |EEE 802.11a standard

IEEE802.11a standard adopts the OFDM modulation for high transmutation data
rate in the SGHz band [7]. Table2.1 summarizes the major parameters for the OFDM

system.

Information data rate 6,9,12,18,24,36,48 and 54 Mbit/s
Modulation BPSK,QPSK,16QAM,64QAM
Error correcting code k=7(64states) convolutional code
Coding rate 1/2,2/3,3/4

Number of subcarriers 52

OFDM symbol duration 4.0us

Guard interval 0.8us

Occupied bandwidth 16.6MHz

FFT/IFFT 64-point

Table 2.1 Major parameters for the OFDM in 802.11a

Datarate | Modulation | Coding Coded bitsper Coded bitsper | Data bits
(Mbitg/s) rate sub carrier OFDM per OFDM
(Ncbps) symbol(Ncbps) | symbol(Nbps)

6 BPSK 172 1 48*1=48 48%1/2 =24
9 BPSK 3/4 1 48%1=48 48%2/3 =36
12 QPSK 12 2 48*2=96 96*1/2 =48
18 QPSK 3/4 2 48*2=96 96*3/4 =72
24 16-QAM 12 4 48%4=192 192*1/2=96
36 16-QAM 3/4 4 48*4=192 192*3/4=144
48 64-QAM | 2/3 6 48%6=288 288*2/3=192
54 64-QAM 3/4 6 48%6=288 288*3/4=216

Table 2.2 Data rate dependent parameters for IEEE802.11a

As we can see, the modulation involves BPSK, QPSK, 16QAM, and 64 QAM and




the information data rate can be 6, 9, 12, 18, 24, 36, 48, and 54Mbit/s. Note that the
data rate depends on the modulation scheme and coding rate, shown in Table 2.2. The
data rates 6, 12, 24Mbit/s are mandatory.

The OFDM system uses 48 subcarriers to carrier data and reserves 4 subcarriers
for pilot signal; there are total 52 subcarriers within the system. The OFDM symbol
consist of a 3.2 us inverse fast Fourier transformed symbol and a 0.8 pus guard interval.
The guard interval contains the cyclic prefix and it can help OFDM system to solve
the inter symbol interference (ISI) problem.

Figure 2.2 depicts the OFDM baseband system structure. All data are scrambled
with a length-127 frame-synchronous scrambler (polynomial s(x) = X’ + x*+ 1)
before convolution encoding. Thus, continuing zeros or ones are avoided. The
convolutional encoder uses the industry standard (polynomial g0=133g, gl=1713)
which is shown in Figure 2.1. If 1/2 rate is used, the output data volume will become
twice. Besides 1/2, 3/4 and 2/3 coding rates are also used with a puncturing scheme.

This thesis designs and implements the:Vitérbi.decoder for this convolutional encoder.

Figure 2.1 Convolutional encoder (k=7)
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Figure 2.2 IEEE 802.11a baseband system architecture

Consider the data stream flow shown in'Figure 2.2. The data sequence is first
interleaved before assigned to each tone. This can combat the carrier fading channel
effect. Depending on transmission rate,-all-data are then modulated as BPSK, QPSK,
16QAM or 64QAM symbol. Four pilot tones are added into location {-21,-7,7,21}
beside 48 data location (64 tones are indexed as -32,-31,-30,...0,1,2...31), other
locations will be inserted zeros. Using a 64-point inverse fast Fourier transform
(IFFT), the data symbol is transformed into the time domain.

The receiver has to perform synchronization before the data can be actually
demodulated. This includes the frame synchronization and the frequency offset
estimation. The 64-point fast Fourier transform (FFT) block transform the data back
to the frequency domain. All the process performed in the transmitter will be reversed
such as symbol mapping and interleaving. The Viterbi decoder is then used to decode
the convolutionally encoded data. Finally, the receiver obtains the transmit data by
descrambling the Viterbi outputs.

Figure 2.3 gives an example for the data flow. We assume that the transmit signal
is a stream of 96-bit data. A stream of 192 bits will be obtained after the convolutional
encoder. If bit 0 is fed into the encoder, we will have two output bits which are

denoted as “Oa_0b” in Figure 2.3. All bits will be generated by this way. All encoded



bits shall be interleaved by a block interleaver. The block size depends on the number
of coded bit per symbol (Ncgps) and Negps is 192 for this example. The data will be
interleaved by two-step permutation which is defined in (2.1) and (2.2), respectively.
After interleaving, the resultant bits will be assigned to each subchannel, and mapped
as symbols fed into the IFFT module. The receiver part will reverse operations
performed at the transmitter side. The data will first be transferred to the time domain
to the frequency domain by the FFT module. Then, all symbols will be demapped as
coded bits. Before convolution decoding, we have to perform deinterleaving; the
operation is defined in (2.4) and (2.5), respectively. Finally, the Viterbi decoder will
decode the 192-bit data into 96-bit data.

i=(Ncgps/16)(k mod 16)+floor (k/16) k =0,1..., Negps-1 (2.1)

j:S* floor (I/S) + (I + NCBps-ﬂOOI’(].G* i/ NCBPS)) mod s i=0,1..., Ncgps-1 (22)

s=max(Ngpsc/2,1) (2.3
i =s* floor(j/s) + (j + floor (16 * i/ Neeps)) mod s j=0,1..., Ncgps-1 (2.9
k=16 * i-(NCBps-l) floor (16 * i/ NCBPS) i:0,l..., Nceps-1 (25)
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2-3 Coded OFDM systems

The OFDM scheme can provide good spectral efficiency for multicarrier
transmission. This is because each sub-carrier can overlap with others and
interference will not result. In conventional systems, when the transmission data rate
is high, the ISI become a problem difficult to solve. Since a guard-interval is provided,
it can be shown that as long as the guard interval is longer then the maximum channel
delay, the OFDM system can be free of the ISI problem.

Besides, the OFDM system uses multicarriers to transmit data. For each carrier,
only flat fading will result. This will facilitate the data detection in fading
environments. To avoid the deep fade in some specific carriers, the interleaving and
channel coding are used [10]. This approach can make the bit error rate (BER)
performance approximately equal for all tones. The convolutional encoding (k=7) was
selected by IEEE 802.11a. With the Viterbi decoding, this coding scheme can provide
desired BER. The coded OFDM architecture provides a reliable solution for high data

rate communication systems.
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Chapter 3
The Viterbi decoder design

3-1Viterbi algorithm

In 1967, Viterbi developed a decoding algorithm for convolutional codes, which
is referred to as the Viterbi algorithm. The Viterbi decoder consists of three main
building blocks: a BM computation unit (BMU), the add-compare select unit (ACSU),
and the survivor memory unit (SMU). Both the BMU and the ACSU perform
arithmetic operations and the results are stored in the SMU. The most likely transmit
sequence is found by the trace back operation in the SMU. The detailed operation will
be addressed in the following.

In order to establish the Viterbi principle, it is convenient to start with the

convolution encoding first.

/g 7(1L1,)
A

Inpudtat“(il 5 5

=

Figure 3.1 Convolutional encoder (rate 2 k=3 m=2)

»=OQutpuatta /) _ a

5U101,) y. Ou't pauatt a (i ) _ b

Figure 3.1 shows a k=3, (7,5) convolutional encoder. The numbers 7 and 5
represent the code generator polynomials. They can be read in binary format as 1112
1012; each binary number indicate that if the shift register output is connected to the

output or not. The values in two registers can be used to indicate the current encoder
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state. Table 3.1 shows the state transaction. The encoder behavior then follows that
described in the table. For example, if the current state is “00” and input data is “1”,

the encoder output must be “11” and the state transits to “10” state.

Current input=0 input =1 I
State next state  output symbols next state output symbols

00 00 00 10 11

01 00 11 10 00

10 01 10 11 01

11 01 01 11 10

Table 3.1 The state translation table

We now use a simple example to describe the Viterbi algorithm. Let the transmit
data stream be (0101-1101). Using the encoderin Figure 3.1, the data stream after
encoding is then (00111000-01100100)., Also;, let the received sequence be
(00111100-01100100). Note that there is one-bit erroneously detected at receiver (the
six-th bit),

In the receiver, the Viterbi algorithm uses a trellis diagram to trace the data
transition and select a sequence with maximum likelihood. We depict the operations
in Figure 3.2. For example, from time t0 to t1, the received pair symbol is ”00”. We
can then calculate the BM for input bit “0” and “1”. We denote these metrics as BM1
and BM2. It is simple to have that BM1=0 BM2=2 (the Hamming distance from the
received pair symbol to the encoder output). For time t1 to t2, we then have four BMs
to compute. Using the similar notations, we have BM3=2, BM4=0, BM5=1, and
BM6=1. We now can calculate the PM, which is an accumulation of BMs, from t0 to
t2. Denote the PM from t0 to the state “ij” at t2 as PMij 2. We then have four PMs to
compute. We can find that PMO00 2, obtained from BM1+BM3, is 2. Similarly, we
can obtain PMO1 2=3, PM10_2=0, and PM11 2=3. Figure 3-2 (b) and Figure 3-2 (c)
show the trellis transition from t2 to t3 and t3 to t4, respectively. As shown are PMs
calculated for all paths at each time unit. Table 3.2 shows the PM values at each time
unit. From the table, we can find the minimum PM at t8, which is 1 and the

corresponding terminate state is 10. From this state, we can trace back to the previous

12



states and find the state transition sequence. Table 3.3 gives “surviving predecessor
states “. Figure 3.3 displays the trellis trace back path. Along with the trace back, we
can decode the data according to the state transition table (Table 3.1). We finally

obtain the decoded data as “0101- 1101 which is identical to the transmit ones.

BM1=0 BM3=2
: PM00 2=BM1+BM3=2
time t0 00 tl 00 t2 -
state00
11
state01 PMO1_2-BM2+BM5=3
BM2=2
state10 PM10 2=BMI1+BM4=0
statel ] PMI11 2=BM2+BM6=3
Encoder Out 00 Il
Receiver 00 11
Figure 3.2 (a) Viterbi decoder trellis diagram (1)
time t0 tl t2 t3
Stateoo PMO00 3=PMO00 2+BM7=3 or
PMO00 3=PM01 2+BM9=4
tate01 PMO1_3=PM10_2+BM11=1 or
state PMO1_3=PM11_2+BM13=4
PM10_3=PM00 2+BM10=4 or
state10 PM10_3=PM01 2+BM8=2
PMI11 3=PMI10 2+BMI2=1 or
statell PM11 3=PM11 2+BM14=4
Encoder Out 00 11 10
Receiver 00 11 11

Figure 3.2 (b) Viterbi decoder trellis diagram (2)
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time t0 tl t2 t3 t4

Q0 »
stateO@ @ *@ @ >®

stateOl\ >O [ ]

state10 o /0

statel 1 o_, o BAO3=1 »O

Encoder out

00 11 10 00
Receive
00 11 11 00
Figure 3.2 (c)-Viterbidecoder trellis diagram (3)
time t0
state00 .»\4—
stateO1 O \\ O
state10 @)
statel 1 @)
Encoder in 0 1 0 1 1 1 0
Encoder out 00 11 10 00 01 10 01
Receiver 00 11 11 00 01 10 01

Figure 3.3 Viterbi decoder trace back path
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PMO00_4=PM00_3+BM15=3 or
PM00_4=PM01_3+BM17=3

PMO1_4=PM10_3+BM19=3 or
PMO1_4=PM11 _3+BM21=2

PM10_4=PM00_3+BM16=5 or
PM10_4=PM01_3+BM18=1

PMI11_4=PM10_3+BM20=3 or
PM11 4=PM11 _3+BM22=2




t0 tl 2 t3 t4 t5 t6 t7 t8
state00 0 2 3 3 3 3 4 3
state01 3 1 2 2 3 1 4
state10 2 0 2 1 3 3 4 1
statel 1 3 1 2 1 1 3 4

Table 3.2 Path metrics from t0 to t8

t0 tl t2 t3 t4 t5 t6 t7 t8
state00 0 0 1 0 1 1 0 1
state01 0 2 2 3 3 2 3 3
state10 0 0 0 1 1 1 0 1
statel 1 0 2 2 3 2 3 2 3

0: state00 1: stateO1 2:statel0  3: statell

Table 3.3 Surviving predecessor states from t0 to t8
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3-2 Hard decision and soft decision
The decoder described in the previous section is a hard-decision decoder which
uses a Hamming distance metric in the BM calculation. As mentioned, the
computational complexity is low, but its BER is higher.
The soft-decision Viterbi decoder replaces the Hamming distance metric with the
Euclidean distance metric. It can explore more useful information and enhance the

Viterbi decoder performance.

BM1=2

0.1 1.1

A
Q t0
e Receive 0,0
© data
> 1,1
T
L_J BM2=0

0.0 1.0

v

Figure 3.4 (a) Figure 3.4 (b)
QPSK hard decision plane Trellis for data input (1,1)

BMI1= /10

t0 t1
33 0.0,
Receive
‘/data
1
3.0
Figure 3.5 (a) Figure 3.5 (b)
QPSK 2-bit (4 level) soft decision plane Trellis for data input (3,1)

Figure 3.4 (a) shows the decision plane for a QPSK modulation. Any received
QPSK symbol is first decided to be one of four possible transmit symbols, (0,0), (0,1),
(1,0) or (1,1). In the figure, the receive symbol is decided to the nearest symbol (1,1).
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One QPSK symbol carries two bits data in [ and Q branch. In the hard-decision
scheme, the received symbol is equivalently be quantized to one bit in I and Q branch.
In other words, one QPSK symbol will be represented as two bits in the hard-decision
scheme. Figure 3.4 (b) shows that the hard-decision scheme uses the Hamming
distance to calculate BMs as those in (3.1) and (3.2).

Figure 3.5 (a) shows a 2-bit soft-decision Viterbi scheme. The received symbol
can then be quantized to one of 16 possible symbols. This is because two bits have
been used for I and Q branch. In Figure 3.5 (a), the received symbol is quantized as
symbol (3,1) and this serves as the Viterbi decoder input. Figure 3.5 (b) shows the soft
decision trellis diagram. Using the Euclidean distance metric, we find that the BMs
are those shown in (3.3) and (3.4). Since the Viterbi decoder is a maximum likelihood
decoder, the more quantization bits, the better performance we will obtain.

For the WLAN application, it has been shown that a three-bit quantization results in
a performance improvement about 2 dB then a two-bit quantization [17]. Quantization

with more then 6 bits can yield very little perfermance improvement.

BM1=XOR {(0,0),(1,1)} =2 (3.1)
BM2=XOR {(0,0),(0,0)}= =0 (3.2)
BMI=,/(0-3)2+(0-1)2. = 10 (3.3)
BM2=,/(3-3)2+(3-1)2 =2 (3.4)
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3-3 Hard decision weighting

From the previous section, we know that the hard-decision Viterbi scheme is
simple but may not have satisfactory performance. In this section, we propose a new
algorithm, which is as simple as the hard-decision decoder but enjoys higher
performance. We call this algorithm as a hard-decision weighting decoder.

We use a simple example to describe our idea. Figure 3.6 shows the decision
plane for a BPSK modulation. Note that due to noise, the received symbol r can be
located at anywhere in the X-axis. For hard-decision, if r > 0, the decision as 1,
otherwise it is -1. The decision region for 1 is (0,00) and the decision region for —1 is

then (-00,0)

Received
signal Z(1)
A A A
@ © @
-1 0 1

Figure 3.6 BPSK decision plane

Take two received signals r = 0.1 and r = 1 as examples. Both decision are “1”
by the hard-decision principle. However, it is simple to see that the confidence for the
decision is different for these two signals. Of course, soft-decision can solve the
problem easily, but it requires higher computational complexity. It is our objective to
solve this problem using a simple way.

The basic idea for “hard decision weighting” scheme is simple. For each decision
region, we further partition it into two regions; the first one is considered reliable and
the second one is not reliable. In the BM calculation, we then increase the weight if
the observation is located in the reliable region. We can choose the weight with some

special format such that its implementation has low complexity (for example 2" where
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nis an integer). Consider a special BPSK scenario that the transmit symbol is either
a, or &. The received signal is then r = a+ny where a can be @; or @ and ny is additive
white Gaussian noise with mean zero and varianced 2 Figure 3.7 illustrates the
conditional probability density function (PDF) for the binary noise-perturbed received
symbol. The ML decision gives

. [ Lifrzy (3.5)
-1, ifr<y
wherey:%

The probability of error shown in the shaded are in Figure 3.7 is then

_ (@ 1 _1((z-a
Pb_bf o 2 exp 2( e dz
o0 1 u?
= € — S |du
I}/ o N2rx P [ 2 ]
3 a, - a
- Q[T (3.6)
where Q(.) is the complementary error function.
a, +a,)/2
| (@, 4a5) \
©
o
8
B, =)
l é‘
a, a, ©

Figure 3.7 Received symbol distribution (1)
We now want to find the threshold, v, that determines weighting regions.

Without loss of generality, we let a;= -1, =1, and o=1. Also, let the transmit symbol
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be from &. Figure 3.8 shows the received symbol distribution. In the figure, note that
7, =1- S;. For our algorithm, we add weighting on the BM calculation when the

receive signal is in the area “A” (the interval between —S; and &,). First, we define a

cost function (3.7) that measures the probability of correct weighting and incorrect

weighting.
A -5 s=0 A
= Q) :
Q)
A) (B) ©)
. BEE—
Q) -Q()
Q(0)-Q(r) \
< e
B Q(0) /
Q)
Q2-7)
oo e
QM)-QR=7
(D) (E) )
-
a, =-1 y1=1-3 a =1

Figure 3.8 Received symbol distribution (2)

J(71) =1Q(0) - Q(yNIQM) - Q2 - y)] - Q2 - y)IQ(r,) - Q)] (3.7)
Note that Q(0)-Q(y;) indicates the probability that the transmit symbol is from
& and the receive signal is in the area “A”. In other words, the hard-decision is
correct and the weighing should be carried out. The term Q(1)-Q(2-y,) indicates the
probability that the transmit symbol is from &, and the receive signal in the area “E”.
The hard-decision for this case is not correct and there should no be weighting in this
case. Assume that the data from a; and &, are equally likely. Thus, the first term on

the left hand side of (3.8), which is the product of two probabilities, indicates the joint
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probability of correct weighting for symbols from a; and correct “not weighting” for
symbols from &,. Now, the term Q(2-y;) gives the probability that the transmit symbol
is from a; and the receive signal is in the area “D”. In this case, it should no be
weighting; however, it is weighted. Thus, the weighting is incorrect. Finally, the term
Q(y1)-Q(1) gives the probability that the transmit symbol is from &, and the receive
signal is in the area “B”. It should be weighted; it is not actually. This is incorrect
either. Thus, the second term on the left hand side of (3.8), which is the product of
two probabilities, indicates the joint probability of incorrect weighting for symbols
from &, and incorrect “no weighting” for symbols from &;. The cost function then
corresponds to the relative probability of correct weighting decision. We then
minimize the cost function in (3.8) and obtain the optimal threshold. Figure 3.9 shows

the cost function vs. the threshold. We can see that the optimal threshold is around 0.6.

L L e e e

1
'
___________ L
1
1
1
|

|
0 20 40 B0 B0 100 120
Threshold y,x100

Figure 3.9 The cost function vs. threshold
The SNR used is 7 dB here. We have found that the optimal threshold is between 0.6
and 0.75 when the SNR varies from 0 to 20 dB. The optimal threshold is not sensitive

to the SNR. We can generalize (3.7) to have the optimization criterion for the general
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noise case scenarios as
100 =1 - - M-ed MRy -y (3.8)
O O O O O O O

After finding optimal thresholds, we then have to determine how much weight we
should give. Since this is something to do with the Viterbi algorithm, it is difficult to
find a criterion to optimize. We then use simulations to find the optimal one. Figure
3.10 shows the simulation results. In the figure, “w1.0” indicates the results without
weighting, “w1.2” indicates the results with weighting (weight is 1.2), and so on.
From the figure, we found that if the weight value is between 1.1 and 2, the Viterbi
performance is similar. Also note that the optimal threshold is around 0.6. The SNR
used here is 7 dB. Other cases will give similar results. We then use 0.625 as the

threshold and 2 as the weight for simplicity.
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Figure 3.10 BER vs. threshold and weight
The idea of hard-decision weighting can be extended further. We can partition
each decision region into three regions and assign different weights for these regions.

We now have two thresholds, (yi, y2). We refer this as a two-weight algorithm. To
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find optimal thresholds, we can formulate a criterion similar that in (3.8). The

resultant cost function is shown in (3.9).

J77)=RL7) =B, 7)) (3.9)

where
B (71,7,) =(Q(0) = Q(y )N(Q() — Q2 = 7)) + (Q(¥,) = Q(y,)N(Q() - Q2 - 7,)) (3.10)
P, (71,7,) = Q2 =y )(Q(y) — Q) + (Q2 - 7,) = Q2 =y ))(Q(r,) — QD) (3.11)

A _s | -s, o A
S Q) >
- A g
00— 1
A) \@ ©) ®)
PENCAECa T
2 = o >
<« -
Q(0)—Q(n)
B i 4 b >
- Q(l) : »u L Q(O) I/”r ‘\‘\\
L ORES S
TR =0E T
- A
Q2 7)-02-7) )
- -
Q2-p)
€ | ® G G)
= I- S
7, =1-5
a,=-1 a, =1

Figure 3.11 Received symbol distribution (3)

Figures 3.12 and 3.13 display the results at the optimal solution. The optimal
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thresholds are found to be y;=0.77 and y,=0.5. The optimal weights are found to be
around 2 and 1.5. We can generalize (3.10) and (3.11) to obtain the optimization

criterion for the general noise case as

R (y.72:0) = (Q(g) - Q(%))(Q(é) - Q(z‘T”» +Q)- Q(%))(Q(é) - Q(z%»
(3.12)

R (720 = Q11 - Q(é)) 1@ 12y ol ToyQ)- Q(é))

(o} O

(3.13)

0 10 20 30 40 50 G0 70 Gl 90 100
Threshold y,x100

Figure 3.12 Cost function value vs. y, for two-weight algorithm
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Threshold v, x100
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Figure 3.13 Cost function-value vs.-y;- fortwo-weight algorithm (y ,=0.77)

Bit Error Rate %

—& HDW1

-%- HDW2

Figure 3.14 BER performance for hard-decision weighting algorithm
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Figure 3.14 illustrates the BER performance for various Viterbi algorithms (in
AWGN environment). In the figure, HD denotes the conventional hard-decision
decoding, HDW1 denotes the proposed one-weight algorithm, and HDW?2 denotes the
proposed two-weight algorithm. As we can see, the proposed hard-decision weighting
algorithm outperforms the hard-decision algorithm by 2dB at BER=10". The two-
weight algorithm only performs slightly better than the one-weight algorithm. For this
reason, we then use the one-weight algorithm in our implementation. As we
mentioned, the hard-decision weighting algorithm only needs XOR logic operations

to compute BMs and its computational complexity is lower.
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3-4 Viterbi decoder with receiver diversity
In the WLAN environment, the multipath channel effect may affect the

receiver performance significantly. It is known that the diversity technique can
effectively solve the problem. Space diversity is a popular and effective diversity
technique and its can be easily applied in WLAN systems. In this approach, an
antenna array is used in the receiver. There can be different various implementation
architectures for the antenna diversity. The first one shown in Figure 3.15 is called
the antenna selection. In this architecture, we need only one RF module although L
antennas are used. This architecture only selects the antenna with the strongest
output for processing. Baseband processing is not affected at all and its
implementation cost is lowest. However, its performance enhancement capability is
limited. For other structures we require L RF modules in general. Figure 3.16 shows
the architecture. Outputs from RF modules are first down converted, sampled, and
transformed using FFT. Various divefsity combing methods can then be applied.

We only discuss the optimal ong, which'is the.maximum ratio combing (MRC).

Antenga\l\

— X Antennpla

R F
CIRCU|I T

MU X
Y
Y

DSP

Anten;"laN
vyVvY 7y

Compar tor

Figure 3.15 Antenna selection diversity
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Figure 3.16 Antenna combing diversity

Simulations indicate that this scheme can enhanee10dB performance with two
receive antenna in an exponential decay AWGN channel. The performance

enhancement is significant. Let the received signal for the ith tone signal of a nth

symbol at the jth antenna be X,'(n), and:the corresponding transmit signal, channel,

and noise be §'(n), H/(n), and V.!(n), respectively. Then,
X! (n)=H/ (s (n)+V/(n) (3.14)

The MRC output signal, denoted by s (n), is then

XM XM
§ M=t (3.15)
YIH P

j=1

Note that the conventional approach uses diversity combing first and then pass
the result to the Viterbi decoder. We call this observation MRC (OMRC). We propose
a new approach that combing the multiple observations in the Viterbi decoder. Let

the BM for the state i transiting to state j at the nth time instant when the receive
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antenna is the kth be Zi‘j‘(n) . We then have a new BM as

Z, =Z;’;(n) (3.16)

As we can see, this BM takes all the observations from all antennas into account.
Since the channel effect is taken into account, it will give the MRC-like results for
the Viterbi algorithm. We call this a Viterbi MRC (VMRC) algorithm.

Simulation results for an exponential decay AWGN channel are shown in

Figure 3.17. Here, two antennas are used for the diversity approach. From the figure,
we can see that at BER=10"*, the OMRC and the VMRC outperform the decoder

without diversity (NORMAL) by 9dB and 11dB, respectively. Apparently, the
VMRC outperforms the OMRC by 2 dB. The gain is significant.

10° preeeees A :

Bit Error Rate %

Figure3.17 Comparison between NORMAL, OMRC and VMRC

We then add more antennas and carry out more simulations Figure 3.17 shows the

results. In the figure, the solid line with symbol “+” indicates the result with the
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decoder without diversity. Solid lines with symbols “0”, “ * ”, and “+” indicate the
performance of the OMRC with two, three, and four antennas, respectively (denoted
as OMRC2, OMRC3, and OMRC4). Dashed lines with symbols “o0”, “* ”, and “+”
indicate the performance of the VMRC with two, three, and four antennas,
respectively (denoted as VMRC2, VMRC3, and MRC4). From these results, we can
clearly see that the VMRC is always better than the OMRC. When the number of

antenna is larger, the performance gap becomes larger also.
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Figure 3.18 Comparison between NORMAL, OMRC2, OMRC3,
OMRC4, VMRC2, VMRC3 and VMRC4
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3-6 M emory management and adaptive tracing back
The REM (register exchange method) is simple, but it is not efficient for the
WLAN system since it requires high power consumption and large chip area. Thus,
we employ the TBM as our implementation scheme. This section addresses the
memory management scheme for the TBM.

There are several trace back algorithms known as, the K-pointer even algorithm, the
K-pointer odd algorithm [18], the one-pointer algorithm, and the hybrid algorithm. In
one- pointer trace back architecture [6], it only uses a single read pointer and needs
approximately half as much memory as other approaches. The disadvantage of the
one-pointer algorithm is that we need to provide separate column counters for the
write and read operations individually. Another disadvantage is that the trace back
operation clock must be three times as fast as the writing operation clock if the read
region is three times as large as the write region. Since in the WLAN application, the
clock rate is not particularly high, we.then-adopt this memory management method in
our implementation.

Figure 3.19 shows the one-pointer algorithim operation. Here, “TB” denotes the
track back read. This operation is to find out the previous state according the data
stored in the memory. There are two banks memoty for trace back and this implies
that this Viterbi decoder trace back with'depth 2T. The notation “DC” means the data
decode read. The first decode read (starting state) in a memory bank is determined by
the previously two track back bank result. The decoder reads the newer data, decode
them, and send them to the LIFO (last in first out) register performing the bit-order
reverse. The operation “WR” means decoder new data write. Decisions, indicating the
previous surviving state, are made by the ACS and written into locations representing
corresponding states.

We now explain the operations outlined in Figure 3.19. We assume that the time
interval between t0 and t1 is a unit time, so is that between t1 and t2 (and so on).
During the TO interval (between t0- t1), one write pointer points out the write location
and ACS out data is written into bankO memory. In the same time, one read pointer
starts tracking back and reading data from bank3 memory. The read pointer is
operated as three times faster as the write pointer. Thus, the write operation only fills

1/3 bank0 memory when the “TB” has finished bank3 memory track back. Then, at
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time t2, the trace back operation has terminated at the end of bank2 memory, the write
operation fills 2/3 bankO memory. Finally, the decoder read bank1 memory and
finishes the decoding operation at t3 and the write operation fills bank) memory at the
same time. During the T3 (t3-t4) time period, we then shift the read/write pointer as
that shown in Figure 3.19 and repeat the operations all over again. We can obtain the
data out from the decoder continually.

Figure 3.19 displays the memory organization for storing the survivor path. Here,

the memory depth for each bank is I . In order to find the optimal decode starting

state, we have to trace back two memory banks before decode. In other words, the

trace back length is 2I" . One data output from the decoder must have four memory

accesses; the first is “WR” data write. When the memory bank is full (3/3 WR), we
will start trace back for the next time unit. After two times trace back, we then have
the decode (DC) operation. Since the trace back unit contributes almost half of power
dissipation (the trace back length is 2I"). Howe to reduce the memory access

frequency during the trace back is thefl the maifi-concern.

PN
BANKO BANKI BANK2 BANK3  TIME
13wr__|, DC ™ | /T TO(t0-t1)
2/3wr > pc [N T]/3\/\< TRA| TI(E-2)
3/3wr ——» B TB T2(t2-t3)
TB 1/3wr TB TB T3(£3-t4)

Figure 3.19 One-pointer trace back method

Figure 3.20 also shows the Viterbi decoder memory trace back paths. As we can
see if the trace back length is long enough, all the trace back paths will merge at some
block. Figure 3.21 illustrates the trace back path within two memory banks; the solid
line indicates one trace back path and dash lines indicate other trace back paths. It is
desirable that all paths merge before the decode block. It means that trace back from
any state will find the same starting state in the decode memory. Note that this case is

not always true when the SNR is lower or trace back length is not long enough.
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Before the trace back, we can guess a terminating state having a minimum PM in
the previous memory block. In the writing operation, we can record all possible states
(at each time instant) that can reach the terminating state. Then, if the trace back
starting state is in these states, we can immediately know that the track back will end
with the terminating state we guessed; we call this case as a “trace forward hit”.
Figure 3.21 shows an example. In the figure, the state (s35) with the minimum PM in
the previous block is written at t=0. When t=1, we found that only one survivor path
(s17) is from s35 and we record this state (s17) by writing a “1” in a 64x1 register
array. This means that if trace back starts from statel7 (s17), it will go through the
state (s35). When t=2, there are two survivor paths coming from the state (s17). We
record these two states (s8) (s40) by writing two “1”’s in the register array (note that
the array is reset before writing). These two “1”’s indicate that if trace back starts from
state8 (s8) or state40 (s40), it will go through the state (s35) in the end. When t=3,
there are three survivor paths coming from the previous two states. We then write
three “1”’s in the 64x1 register array. As the'writing process proceeds, the values in
the register array are updated. Finally, at:t=n,.the register array remains four “1”’s
indicating states s2, s8, s32, and-s63. The foursstates imply that if trace back starts
from state2 (s2), state8 (s8), state32 (s32),7or state63 (s63), it will terminate at s35.
Thus, we can skip the trace back eperation in the memory block. This will reduce the
memory access frequency. Figure 3.22 dllustrates this skip scheme. When bankO is
decoded, we write data to bnak3 and record the trace forward states. After the
decoding in bankO is finished, we write data to bnak1 and starts trace back from
bank3. If the state with the minimum PM is in the trace forward states, the track back
operation in bank3 will be skipped (see T1). If once again, the trace forward is hit in

bank(. At T3, we can skip the trace back in bank0 and bank3.

P
<«

DC

DECODE

BLOCK MERGE BLOCK

decode starting state

Figure 3.20 Viterbi decoder trace back path in memory bank
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Unfortunately, the “trace forward” is not always hit. Figure 3.23 shows the hit rate
with different SNR in AWGN channel. It is obviously that a higher hit rate appears in
a higher SNR environment. The percentage that the memory access activity can be
reduced is shown in Figure 3.24.
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Figure 3.21 Write data to record all possible trace
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Figure 3.22 Trace forward skip trace back scheme
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Figure 3.24 Memory saving by trace forward scheme
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As we can see, when the SNR is 12 dB, the “look forward” scheme can save only
45% memory access activity. Note that the hitting rate is over 90%. This is because
“WR” and “DC” are still needed. To further reduce the memory access frequency, we
need to merge these two operations

The advance minimum-transition trace back (AMTTB) scheme in [3] is the
algorithm can further reduce the memory access activity. Figure 3.25 shows the
operation. Here, we assume that the trace back depth is 32 and the size for each
memory bank is 64x32. We need one extra predict buffer 1x32 for storing the data
for the most likely path. In the write operation we record the most likely trace back
path in the predict buffer. In the trace back stage, read data from the memory bank,
find the previous state, and compare the read data with the predict data. If these data
are different, modify the data in the predict buffer. Otherwise, the trace back operation
is replaced by reading the predict buffer only. This is because the trace back has
merged at this point and we do not have torread the memory bank. By using so, we
can substantially reduce the memery access:frequency in the trace back and decode
stages. How munch the memory-access times.can we save? It depends on the merge
point. Table 3.4 shows some simulation results. It indicates that in most cases, the
prediction hits at first trace back stage.” Almost all cases will be hit (merged) before
the decode stage. This scheme can reduce the memory access frequency significantly.

However, we have to add an extra trace back circuit.

TB2 TB1
Compare and Compare and
D P P
C modify buffer modify buffer WR

Predict buffer Predict buffer Predict buffer ¢ Predict buffer
1*¥32 1¥32 1¥32 1¥32

Figure 3.25 Minimum-transition trace back operation scheme
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SNR 18 19 20 21

Hit 1stage | 79.9286 | 84.0000 | 89.5000 |91.0714

Hit 2stage| 97.7857 | 98.2143 | 99.2857 |99.4286

Table 3.4 Minimum-transition trace back hit rate distribution
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Chapter 4

L ow power Viterbi decoder implementation

4-1 Design and implementation flow

Figure 4.1 shows our design and implementation flow. The first step is to study
algorithms and choose the best solution for our requirement. Then, we carried out
simulations to realize its behavior and evaluate its performance. In this stage, we often
use a high level language such as C language or MATLAB. Algorithm study and
simulation must be repeated until it passes the performance requirement. The next
step is to use VHDL for low-level modeling. Then, we perform RTL (Function)
simulations to make sure the model work properly. Using the standard cell library, we
then synthesize our design to the gate level. Finally, the gate level simulations were
conducted to verify the circuit timing and functionality. Power analysis is import
since the low power and low complexity is our design target. We use Prime Power to
analyze the average and peak power consume for.our design. We are interested to
know how much power reduced by the various designs. To evaluate the chip area
consumed, we can use a FPGA (field-programmable-gate array) for the circuit
implementation. The routing and simulation-are simple in the FPGA implementation

flow.

Algorithm study

v
Algorithm simulation [

v
RTL coding

v
Function simulation

v

Synthesize and gate
level simulation

v
Power analysis

v
FPGA evaluation

A 4

A 4

Done

A 4

Figure 4.1 Design and implementation flow
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4-2 Implementation of Viterbi algorithm
Figure 4.2 illustrates a 802.11a channel decoder architecture. The receive symbol
is first de-mapped and de-interleaved and then forwarded to the Viterbi decoder. The
decoded bits are stored in the LIFO data buffer. After the LIFO, data are transferred to

the media access control (MAC) module. It is the Viterbi decoder module that we

implemented.
Symbol MAC
De-mapping
Data buffer -~ Viterbi -~ Data buffer
de-interleave " Decoder i

Figure 4.2 802.11a channel decoder architecture

Figure 4.3 shows our design block diagram for 802.11a Viterbi decoder. There
are four memory banks and each one with size of 64x32. That means we have 64
states and the track back depth is 32. Besides the main memory, we also have to
implement the prediction buffer for each memory bank. The predicted trace back can
reduce the memory access frequency as described before. The predict buffer has the
size of 32x1.

Memory banks and predict buffers are controlled by the memory controller and
the buffer controller individually. The decoder controller, which includes the decoder
main state machine, receives the input frame enable signal and outputs the decoded
results. The BMU is responsible for BM calculation and the BM weighting. The result
from the BMU is then transferred to the ACSU for each cycle. The ACSU feeds all
the memory banks with survivor path data. This module also needs to perform the PM
calculation and the PM comparison. Since these operations cannot be pipelined, the
timing bottleneck for the decoder is in this unit. We will further discuss the topic in

Section 4-4. In our design, the memory bank uses the Verilog model made by
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“Artisan“. The memory compiler can be used to obtain the corrsponding VHDL

design. When transferring our design to FPGA, the compiler will be replaced by the

Xilinx memory compiler.
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Figure 4.3 802.11a Viterbi decoder design block diagram
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4-3 Over flow consideration
Figure 4.4 illustrates the trellis diagram for the 802.11a Viterbi decoder. Here,
s00 indicates state-00 and it will transfer to s00 (state-00) or s32 (state-32). All other
state transactions can be obtained using this figure. Using this figure, we construct the
ACSU module. Figure 4.4 shows the ACSU structure. Since the value in the PM is
accumulated, it should be normalized (after all comparators) to avoid PM over flow.

The modulo arithmetic approach [9] [20] can then be used here.
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Figure 4.4 802.11a trellis diagram

In Figure 4.5, the “adder” block implements the PM computing in (4.11) while the
comparator implements (4.12). After the minimum PM is found, one bit survivor path
indicator is written to the memory bank. The new PM will be latched at the PM
register (denoted as “PM_reg”) for the next state computing. The ACSU conducts the

same operations cycle by cycle.
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PM(A) next state = PM(A) current state +BM(A) next state (4.1)
PM=min {(PM(A) ¢+ BM(A) n), (PM(B) ¢+ BM(B) ¢) } (4.2)
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Figure 4.5 Structure of adder comparator selective unit (ACSU)

There are many solutions to solve the PM over flow [20] problem. These
includes the reset, the difference metric ACS, the variable shift, the fixed shift,
and the modulo normalization algorithm. Among them, the modulo
normalization with a modified comparator is well suited to VLSI
implementation.

The key idea for modulo normalization is that the difference between two
survivors path is bounded [19]. Denote the bounded value as c. Let m;ybe a

certain PM m; be the result of a modulo operation shown in (4.3). Also, let

0;=(2m,/c)r. Consider two PMs, m; and M, and 6 = 0,-0,. Figure 4.6 shows the
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variation of 0;and 6,. If |m;-my|< ¢/2, then M, - M,= mM;-M,. When ¢ < 180°, then
m;<my. Note that since M and M, are signed numbers, we have to use a

subtractor to perform comparison.

We can use a modified comparator to replace the subtractor and reduce the
computational complexity. Let m =( ml,p,..., ﬁ,o) and m; =( ﬁz,p N Ez,o)
be the two’s-complement representations for M, and m,. Equation (4.6) show

the operation in which “*” indicates exclusive-or operation , y(.,.) unsigned

comparison, and Z(.,.) the comparison result.

m, = (m, +<)mod(c) - = (43)
2 2
— p__ . — b .
m :Zml,jzJ mZZZmMZJ (4.4)
j=0 j=0
p-l__ -l .
Plzzml,jZJ Pzzz“mz,ﬂJ 4.5)
j=0 =0
Z(ﬁ ,az ):ml,p/\mlp " Y(Pi; P) (4.6)
M
o)

Y
N

¢
2

Figure 4.6 Modulo comparison of normalized metrics

This approach can speed up the normalization operation since m~m, and

Y(P1,P,) can be performed in parallel and subtraction operation is not required.
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4-4 Radix-4 ACS

Note that the ACSU must finish all operations in adders, comparators and
path normalizations in one cycle. In order to increase the processing time, we
consider the radix-4 ACS implementation.

Figure 4.7 (a) depicts the radix-2 trellis and Figure 4.7 (b) the radix-4 trellis.
It is obviously that the radix-4 structure is as twice fast as radix-2 structure, but
it is more complicated then radix-2 structure. For the Viterbi decoder considered
here, the trellis is radix-2. We can merge two radix-2 trellis into one radix-4
trellis and it provides two cycle time to finish the operations. The processing
time is doubled that the critical path problem can be mitigated. However, the
computational complexity is increased almost as twice. Figure 4.7 (d) shows the

radix-4 ACSU.

> &D

Figure 4.7 (a) Radix-2 trellis Figure 4.7 (b) Radix-4 trellis

adder

A 4

adder

A 4

T

Figure 4.7(c) Radix-2 one node structure
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& lep2;S[0] = lep3& cpO&!epl)

Figure 4.7(d) Radix-4 one node structure

In the evaluation step, Xinlinx Viterx 2-6000 can run at 125MHz clock
rate without timing issue, it means this device can support short gate delay
and trace delay for evaluation. Radix-4 architecture was replaced by radix-2
architecture to reduce the complexity. Finally we use radix-2 architecture and

modulo normalization as our approach.
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4-5 Function simulation, gate level smulation and power

verification

The decoder is divided into 5 submodule, i.e., the ACSU, the TBU, the state
machine unit (State), the memory and memory control unit (MemCtl), and the frame
control unit (FramCtl). Figure 4.9 (a) shows the input and output signal waveforms
for a sample run. Figure 4.9 (b) shows some internal signal waveforms. From the
function simulation, we obtain the Viterbi decoder outputs compare with convolution
encode input data and the result like the MATLAB simulation result. Extract the
timing information from place& route tool (Xilinx-Project Navigator), we run the gate
level simulation again and obtain the same result as the function simulation. Based on
Xilinx Vitrtex-II type FPGA place reports, we found that the critical path is 6ns which
is less than 8ns (125MHz). The sampling rate for the WLAN system is 20 MHz and
we use the trace back rate by three times. It turns out that the minimum clock rate
must be 60MHz.

Prime Power provides the power analysis result.shown in Figure 4.8. This figure
shows the power consumption behavior when one fratne of data is passed through the
Viterbi decoder. The average power consumption is listed in Table 4-1. From this
table, we can see that the memory‘aceess plays the:most important role in low power

Viterbi decoder design.

Module name | average power consumption(%)
PMGen(ACS) 21

TB (Decoder) 15

State 0.5

MemCtl 62

FrameCtl 1.5

Table 4.1 Viterbi decoder power consumption distribution
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Figure 4.8 Prime power shows Viterbi decoder power consumption
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Figure 4.9 (a) Viterbi decoder input and output signal waveform
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Figure 4.9 (b) Viterbi decoder internal signal waveform

We perform power analysis for the general design and our low-power design.

The power consumption in digitak CMOS circuitsiis expressed as

P = lstandoyVdd + lieakageVdd + Ishort-circitVdd + a CVddx Vdd x feik (4.6)

where |standby is the DC current drawn continuously from the Vdd to ground, licakage is
the leakage current primarily determined by the fabrication technology, and Ishort-circuit
is the current due to the DC path between the supply rails during output transitions.
These three terms correspond to the circuit-level power issue and we do not discuss
these topics here. The last term, Ciis the load capacitance, a is a factor depending on
switching activity, and fck denoted the clock frequency.

Table 4-2 lists the power consumption comparison. As we can see, the main
power saving for our design comes from the reduction of the memory access
frequency. During idle periods, we use “chip enable” to turn off the memory. The

result is significant and the power saving can be up to 20%.
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Module General design Low power design | Enhance
name power consumption | power consumption | rate
PMGen (ACS) 0.21 mw 0.21 mw 0%
Decoder(TB) 0.15 mw 0.16 mw -1%
State and FrameCtl | 0.02 mw 0.02 mw 0%
MemCtl 0.62 mw 0.41 mw 31%
Top(total) 1.00mw 0.80 mw 20%
Table 4.2 Power analysis
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Figure 4.10 Prime power shows Viterbi decoder power distribution
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Chapter 5

Conclusion

In this thesis, we focus on the low-cost WLAN Viterbi decoder design.
Specifically, we consider the IEEE802.11a system. We proposed a hard decision
weighting scheme to enhance the conventional hard-decision Viterbi decoder. The
performance enhancement can be as high as 2dB. However, the computational
complexity is still low. This scheme may be useful for some IA applications in which
the performance requirement is not stringent. Besides, we also study the receiver
diversity scheme and analyze the system performance with 2, 3, 4 receiver antennas.
We have shown that the diversity combining performed inside the Viterbi decoder is
better than that performed outside. Finally, we use a trace back prediction method that
can reduce the memory access frequency. This approach can effectively reduce the
power consumption. Simulations show that the power consumption can be reduced
20%. We then implement the Viterbi decoder using a FPGA design flow.

The Viterbi decoder has been studied-for.a log:time and found applications in
many areas. However, it implementation cost.is still high compared to other
operations. This is particular true when thereceiver diversity is introduced. To obtain
higher performance, the BMU and the ACSU will become more complicated. How to

keep the high performance while reducethe complexity is a topic for further research.
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