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摘 要       

 
近幾年來無線區域網路被廣範使用並快速的普及, 維特比 (Viterbi) 解碼器是大家

耳熟能詳的解碼方法,它在基頻接收器中扮演非常重要的角色, 維特比演算法可以

採用軟決策(soft decision)或是硬決策(hard decision)的做法來實現, 軟決策的做法

可以得到較佳的解碼效能但是需要較複雜的運算能力, 在某些無線網路的應用中

並不嚴苛要求效能,此時硬決策便可以滿足系統的要求。在本論文中,我們考慮設

計並實現一個無線網路中使用硬決策的維特比解碼器,我們提出一個加權硬決策

的做法,此做法可以有效提升硬決策維特比解碼器的效能並且享有硬決策的簡易

運算的優點,另外我們使用預測追蹤法來有效降低記憶體使用頻率, 如此可降低約

20%的電源損耗,最後我們使用高階硬體描述語言(VHDL)來模擬探討我們的設計

並且用可程式化邏輯陣列(FPGA)加以實現。 
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ABSTRACT  

The wireless local area network (WLAN) has been widely used in recent years. 

The Viterbi decoder, a well-known decoding scheme, plays an important role in the 

baseband receiver. The Viterbi algorithm can be implemented as soft-decision or 

hard-decision. The soft-decision Viterbi algorithm has better performance but requires 

higher computational complexity. In some WLAN applications, the performance 

requirement is not stringent. In this case, the hard-decision decoding algorithm can be 

sufficient. In this thesis, we consider the design and implementation of a hard-

decision WLAN Viterbi decoder.  We propose a hard-decision weighting scheme that 

can effectively enhance the conventional hard-decision Viterbi decoder while remains 

the inherent low complexity property. We also use a trace back prediction method that 

can reduce the memory access frequency during the trace back operation. This can 

reduce the power consumption of the whole decoder up to 20%. Finally, we use 

VHDL to model the designed decoder and implement it using an FPGA. 
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Chaper 1  

Introduction 

 
1-1 Motivation 

Convolution coding [11] is widely used in wireless communication system, such 

like satellite communication, broadcast systems, and WLAN. The Viterbi algorithm   

is a well-known algorithm for maximum likelihood convolution decoding. 

Unfortunately, the Viterbi decoder requires high computational complexity. When it 

is implemented, a complex logic circuit will result. Conventionally, the Viterbi 

decoder can provide two kinds of solutions; one is called hard decision and the other 

soft decision. The soft decision Viterbi algorithm can give better decoding result; 

however, its complexity is higher. It depends on the application where the hard or soft 

decision Viterbi algorithm will be called for. In some scenarios, we need a low-cost 

solution rather high performance. In others, we may need high performance disregard 

its cost. We have to take cost, performance, and power consumption into account in 

order to make a best decision. In this thesis, we will focus on the hard decision Viterbi 

decoder and develop and implement a low complexity yet low power Viterbi decoder.  

1-2 Previous work review 
The Viterbi decoder use an efficient architecture to perform the maximum 

likelihood sequence estimation (MLSE) on the receive data. It keeps track of the path 

metric (PM), which is an accumulation of the branch metric (BM), and selects the 

path with the lowest PM as its output.  The difference between the soft-decision and 

hard-decision Viterbi algorithm lies in that the different criteria used in the BM 

calculation. The soft-decision approach first quantizes the input signal with multiple 

bits and uses the Euclidean distance as the BM criterion. On the other hand, the hard-

decision approach quantizes the input signal with one bit and uses the Hamming 

distance as the BM calculation criterion. It is known that the Euclidean distance is 

more accurate then the Hamming distance reflecting the likelihood of a particular bit 

sequence. As a result, the performance of the soft-decision approach is better. 

However, it’s requires higher computational complexity. The difference will become 

even more apparent when the Viterbi decoder is implemented. We require only 
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“XOR” logic operations to calculate the Hamming distance, while we require 

multiplication operations to calculate Euclidean distance.  

For OFDM systems, transmit bits are spread all over different tones. As a result, 

the signal to noise ratio (SNR) may be different for all bits. The performance of soft-

decision Viterbi algorithm can be further enhanced if we take channel state 

information (CSI) into account. In this approach, the BM for each transmit bit is 

weighted according to the SNR in the corresponding tone [16]. The soft-decision 

Viterbit algorithm with CSI needs to estimate the signal power and noise power.  This 

may complicate the receiver design and real-world implementation. As mentioned, in 

some scenarios, a higher performance Viterbi recoder may not be necessary. The issue 

is the implementation cost. In this case, the hard-decision Viterbi algorithm will be 

more suitable.  

There are two well know structures for the Viterbi decoder implementation. The 

first one is called the register exchange method (REM) [14] and the other one is called 

the track back method (TBM). Implementation of the REM is simpler and its 

throughput is higher. The disadvantage is that it requires many registers to store 

survive bits and these bits must be read and rewritten for each data cycle [12] [13]. 

Thus, this method will require more chip area and more power consumption. The 

TBM, on the other hand, stores the survivor bits in memory and then traces back the 

path history for decoding. Since the area and power consumption of memory is much 

lower than those of the register, the TBM is used more often. The disadvantage of the 

TBM is the memory control is somewhat more complicated.  

In the TBM, the memory transactions contribute more than half the total power 

dissipation [3]. Thus, if we want to further reduce the power consumption, how to 

reduce the memory transaction times is the key issue.  

1-3 Our approach 
This thesis considers a low-cost and low-power hard decision Viterbi decoder 

design that is applied to IEEE802.11a WLAN system. As mentioned, although the 

hard-decision approach is simple, its performance is not as good as the soft-decision 

approach.  In this thesis, we propose a new method called “hard-decision weighting” 

to improve the decoding performance. The proposed algorithm has a simple operation, 

but it can effectively enhance the performance. We also propose a modified “adaptive 

trace back” scheme that can help to reduce memory transactions in the TBM. As a 
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result, the power consumption can be further reduced. Combing with our hard-

decision weighting, we can then obtain a high performance yet low power hard-

decision Viterbi decoder design.  

1-4 Outlines 
In this thesis, we will design and implement the hard-decision Viterbi decoder 

base on the IEEE 802.11a WLAN standard.  The encoding rate is ½, the constraint 

length is 7, and the generator polynomials G1=1388 and G2=1718 (see Figure 2.1). 

The organization of the thesis is described as follows. Chapter 2 briefly describes the 

IEEE802.11a WLAN system. Chapter 3 describes various Viterbi algorithms 

including the hard-decision, soft-decision, and soft-decision with CSI schemes. We 

also described the proposed hard-decision weighting and modify adaptive trace back, 

besides, we discuss about Viterbi decoder with receiver diversity. Chapter 4 addresses 

implementation issues. In this chapter, we discuss our implementation flow, specific 

functional blocks, function simulations, and gate level simulations. We also use the 

FPGA (Xilinx Vertix-2) implementation to evaluate our design and Prime power for 

power analysis. Chapter5 describes conclusions and future works. 
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Chapter 2 

WLAN system description    

 
2-1 WLAN introduction 

In 1997, IEEE released IEEE 802.11 standard. Two year later, IEEE announced 

802.11b wireless local area network (WLAN).  The initial standard provides 1 Mbps 

and 2 Mbps transmission rate. Since the data rate is not high enough for many 

applications, the WLAN was not popular at that time. Due to the strong demand for 

higher data rates, IEEE 802.11b then incorporates the complementary code keying 

(CCK) scheme in direct sequence spread spectrum (DSSS) and increases the data rate 

up to 5.5 and 11Mbps. Since then, the WLAN usage experiences a rapid growth.   

  Recently, more and more applications are explored in the Internet. These include   

E-mail, VOIP, interactive games, and multimedia on demand (MOD).  The bandwidth 

requirement becomes larger and larger and 802.11b seems not able to satisfy the 

requirement now. In the recent years, a high efficient transmission scheme called 

orthogonal frequency division multiplexing (OFDM) has been developed. In order to 

boost the data rate in the WLAN, IEEE then announced two standards 802.11a and 

802.11g in 1999 and 2003, respectively. Both standards use the OFDM technique 

operated in 5-GHz and 2.4-GHz radio band.  The data rate for both systems can up to 

54Mbps.   

Many manufacturers provide 802.11/a/b/g combined solution for WLAN 

application now. The WLAN technology has been becoming the major stream in the 

notebook communication. We will introduce the 802.11a standard and coded OFDM 

system in the following sections. 
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2-2 IEEE 802.11a standard 
IEEE802.11a standard adopts the OFDM modulation for high transmutation data 

rate in the 5GHz band [7]. Table2.1 summarizes the major parameters for the OFDM 

system. 

 

 

Information data rate     6,9,12,18,24,36,48 and 54 Mbit/s 

Modulation                         BPSK,QPSK,16QAM,64QAM 

Error correcting code          k=7(64states) convolutional code 

Coding rate                         1/2, 2/3,3/4 

Number of subcarriers        52 

OFDM symbol duration     4.0us 

Guard interval                     0.8us 

Occupied bandwidth          16.6MHz 

FFT/IFFT                            64-point 

 

Table 2.1 Major parameters for the OFDM in 802.11a 

 

                               

Table 2.2 Data rate dependent parameters for IEEE802.11a 

 

As we can see, the modulation involves BPSK, QPSK, 16QAM, and 64 QAM and 

Data rate 

(Mbits/s) 

Modulation Coding 

rate 

Coded bits per 

sub carrier 

(Ncbps) 

Coded bits per 

OFDM    

symbol(Ncbps)   

Data bits 

per OFDM 

symbol(Nbps) 

6 BPSK 1/2 1 48*1=48 48*1/2 = 24 

9 BPSK       3/4   1 48*1=48 48*2/3 = 36 

12 QPSK 1/2    2    48*2=96 96*1/2 =48 

18 QPSK 3/4 2 48*2=96 96*3/4 =72 

24 16-QAM 1/2 4 48*4=192 192*1/2=96 

36 16-QAM 3/4 4 48*4=192 192*3/4=144 

48 64-QAM 2/3 6 48*6=288 288*2/3=192 

54 64-QAM 3/4 6 48*6=288 288*3/4=216 
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the information data rate can be 6, 9, 12, 18, 24, 36, 48, and 54Mbit/s. Note that the 

data rate depends on the modulation scheme and coding rate, shown in Table 2.2. The 

data rates 6, 12, 24Mbit/s are mandatory. 

 The OFDM system uses 48 subcarriers to carrier data and reserves 4 subcarriers 

for pilot signal; there are total 52 subcarriers within the system. The OFDM symbol 

consist of a 3.2 µs inverse fast Fourier transformed symbol and a 0.8 µs guard interval. 

The guard interval contains the cyclic prefix and it can help OFDM system to solve 

the inter symbol interference (ISI) problem. 

 Figure 2.2 depicts the OFDM baseband system structure. All data are scrambled 

with a length-127 frame-synchronous scrambler (polynomial s(x) = x7 + x4 + 1) 

before convolution encoding. Thus, continuing zeros or ones are avoided. The 

convolutional encoder uses the industry standard (polynomial g0=1338, g1=1718) 

which is shown in Figure 2.1. If 1/2 rate is used, the output data volume will become 

twice. Besides 1/2, 3/4 and 2/3 coding rates are also used with a puncturing scheme. 

This thesis designs and implements the Viterbi decoder for this convolutional encoder.  

 

 

 

   

 

 

 

 

Figure 2.1 Convolutional encoder (k=7) 
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Consider the data stream flow shown in Figure 2.2. The data sequence is first 

interleaved before assigned to each tone. This can combat the carrier fading channel 

effect. Depending on transmission rate, all data are then modulated as BPSK, QPSK, 

16QAM or 64QAM symbol. Four pilot tones are added into location {-21,-7,7,21} 

beside 48 data location (64 tones are indexed as -32,-31,-30,…0,1,2…31), other 

locations will be inserted zeros. Using a 64-point inverse fast Fourier transform 

(IFFT), the data symbol is transformed into the time domain.  

 The receiver has to perform synchronization before the data can be actually 

demodulated. This includes the frame synchronization and the frequency offset 

estimation. The 64-point fast Fourier transform (FFT) block transform the data back 

to the frequency domain. All the process performed in the transmitter will be reversed 

such as symbol mapping and interleaving. The Viterbi decoder is then used to decode 

the convolutionally encoded data. Finally, the receiver obtains the transmit data by 

descrambling the Viterbi outputs.  

Figure 2.3 gives an example for the data flow. We assume that the transmit signal 

is a stream of 96-bit data. A stream of 192 bits will be obtained after the convolutional 

encoder.  If bit 0 is fed into the encoder, we will have two output bits which are 

denoted as “0a_0b” in Figure 2.3.  All bits will be generated by this way. All encoded 

Figure 2.2 IEEE 802.11a baseband system architecture 
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bits shall be interleaved by a block interleaver. The block size depends on the number 

of coded bit per symbol (NCBPS) and NCBPS is 192 for this example. The data will be 

interleaved by two-step permutation which is defined in (2.1) and (2.2), respectively. 

After interleaving, the resultant bits will be assigned to each subchannel, and mapped 

as symbols fed into the IFFT module. The receiver part will reverse operations 

performed at the transmitter side.  The data will first be transferred to the time domain 

to the frequency domain by the FFT module. Then, all symbols will be demapped as 

coded bits. Before convolution decoding, we have to perform deinterleaving; the 

operation is defined in (2.4) and  (2.5), respectively. Finally, the Viterbi decoder will 

decode the 192-bit data into 96-bit data. 

 

i=(NCBPS/16)(k mod 16)+floor(k/16)    k =0,1…, NCBPS-1 (2.1) 

 

j=s * floor(i/s) + (i + NCBPS-floor(16 * i/ NCBPS)) mod s  i=0,1…, NCBPS-1 (2.2)                     

 

s=max(NBPSC/2,1) (2.3)  

 

i =s * floor(j/s) + (j + floor(16 * i/ NCBPS)) mod s  j=0,1…, NCBPS-1 (2.4)                     

 

k=16 * i-(NCBPS-1) floor(16 * i/ NCBPS)    i=0,1…, NCBPS-1 (2.5) 
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Figure 2.3 Data stream from transmitter to receiver (using 16QAM modulation) 
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2-3 Coded OFDM systems  
 The OFDM scheme can provide good spectral efficiency for multicarrier 

transmission. This is because each sub-carrier can overlap with others and 

interference will not result. In conventional systems, when the transmission data rate 

is high, the ISI become a problem difficult to solve. Since a guard-interval is provided, 

it can be shown that as long as the guard interval is longer then the maximum channel 

delay, the OFDM system can be free of the ISI problem. 

Besides, the OFDM system uses multicarriers to transmit data. For each carrier, 

only flat fading will result. This will facilitate the data detection in fading 

environments. To avoid the deep fade in some specific carriers, the interleaving and 

channel coding are used [10].  This approach can make the bit error rate (BER) 

performance approximately equal for all tones. The convolutional encoding (k=7) was 

selected by IEEE 802.11a. With the Viterbi decoding, this coding scheme can provide 

desired BER. The coded OFDM architecture provides a reliable solution for high data 

rate communication systems. 
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Chapter 3  

The Viterbi decoder design 

 
  3-1 Viterbi algorithm 
    In 1967, Viterbi developed a decoding algorithm for convolutional codes, which 

is referred to as the Viterbi algorithm. The Viterbi decoder consists of three main 

building blocks: a BM computation unit (BMU), the add-compare select unit (ACSU), 

and the survivor memory unit (SMU). Both the BMU and the ACSU perform 

arithmetic operations and the results are stored in the SMU. The most likely transmit 

sequence is found by the trace back operation in the SMU. The detailed operation will 

be addressed in the following. 

 In order to establish the Viterbi principle, it is convenient to start with the 

convolution encoding first.     

D D

Output data(i)_a

Output data(i)_b

Input data(i)

)111(7 2

)101(5 2

 

Figure 3.1 Convolutional encoder  (rate ½  k=3 m=2) 

 

 

Figure 3.1 shows a k=3, (7,5) convolutional encoder. The numbers 7 and 5 

represent the code generator polynomials. They can be read in binary format as 1112  

1012; each binary number indicate that if the shift register output is connected to the 

output or not. The values in two registers can be used to indicate the current encoder 
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state. Table 3.1 shows the state transaction. The encoder behavior then follows that 

described in the table. For example, if the current state is “00” and input data is “1”, 

the encoder output must be “11” and the state transits to “10” state. 

 

 

  Current                           input=0                                    input =1                 I       
State                   next state    output symbols            next state         output symbols                     

     00                    00               00                        10                   11 

     01                    00               11                        10                   00 

     10                    01               10                        11                   01 

     11                    01               01                        11                   10      

 

                               Table 3.1 The state translation table 

 

   We now use a simple example to describe the Viterbi algorithm. Let the transmit 

data stream be (0101-1101). Using the encoder in Figure 3.1, the data stream after 

encoding is then (00111000-01100100).  Also, let the received sequence be 

(00111100-01100100). Note that there is one bit erroneously detected at receiver (the 

six-th bit), 

In the receiver, the Viterbi algorithm uses a trellis diagram to trace the data 

transition and select a sequence with maximum likelihood. We depict the operations 

in Figure 3.2. For example, from time t0 to t1, the received pair symbol is ”00”. We 

can then calculate the BM for input bit “0” and “1”.  We denote these metrics as BM1 

and BM2. It is simple to have that BM1=0 BM2=2 (the Hamming distance from the 

received pair symbol to the encoder output). For time t1 to t2, we then have four BMs 

to compute. Using the similar notations, we have BM3=2, BM4=0, BM5=1, and 

BM6=1. We now can calculate the PM, which is an accumulation of BMs, from t0 to 

t2. Denote the PM from t0 to the state “ij” at t2 as PMij_2. We then have four PMs to 

compute.  We can find that PM00_2, obtained from BM1+BM3, is 2. Similarly, we 

can obtain PM01_2=3, PM10_2=0, and PM11_2=3. Figure 3-2 (b) and Figure 3-2 (c) 

show the trellis transition from t2 to t3 and t3 to t4, respectively. As shown are PMs 

calculated for all paths at each time unit. Table 3.2 shows the PM values at each time 

unit. From the table, we can find the minimum PM at t8, which is 1 and the 

corresponding terminate state is 10. From this state, we can trace back to the previous 
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states and find the state transition sequence. Table 3.3 gives “surviving predecessor 

states “. Figure 3.3 displays the trellis trace back path. Along with the trace back, we 

can decode the data according to the state transition table (Table 3.1). We finally 

obtain the decoded data as “0101- 1101” which is identical to the transmit ones.  

 

 time            t0                         t1                         t2             

state00 

    

state01               

    

state10 

 

state11 

    

Encoder Out           00                                11              

Receiver                 00                                11             

Figure 3.2 (a) Viterbi decoder trellis diagram (1)  

 

 

 time            t0         t1       t2                                                            t3         

state00 

 

state01 

 

state10 

 

state11 

 

Encoder Out      00    11                                                                 10 

    Receiver        00    11                                                                 11 

Figure  3.2 (b) Viterbi decoder trellis diagram (2)  

BM3=2

00 00

11 11

BM1=0 

BM2=2 

BM4=0

BM5=1

BM6=1

01

PM00_2=BM1+BM3=2 

PM01_2=BM2+BM5=3 

PM10_2=BM1+BM4=0 

PM11_2=BM2+BM6=3 

BM8=0 BM9=1

BM10=1BM11=1

BM12=1
BM13=1

BM14=1

01

10

00

10
11

00 BM7=1

01

10

PM00_3=PM00_2+BM7=3  or 
PM00_3=PM01_2+BM9=4 

PM01_3=PM10_2+BM11=1  or
PM01_3=PM11_2+BM13=4 

PM10_3=PM00_2+BM10=4  or
PM10_3=PM01_2+BM8=2 

PM11_3=PM10_2+BM12=1  or
PM11_3=PM11_2+BM14=4 

10
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 time     t0    t1       t2       t3                                                           t4 

state00 

 

state01 

 

state10 

 

state11 

Encoder out 

               00    11      10                                                               00 

Receive 

               00    11      11                                                               00 

 

 

Figure 3.2 (c) Viterbi decoder trellis diagram (3)  

 

 

 

     time               t0          t1         t2          t3         t4         t5         t6         t7       t8  

   state00 

    

state01 

    

state10 

 

state11 

   Encoder in          0         1         0            1            1         1            0          1          

   Encoder out        00        11        10         00         01       10          01       00 

   Receiver             00        11        11         00         01       10          01       00 

Figure 3.3 Viterbi decoder trace back path 

 

00
BM15=0

BM22=1

BM21=1

BM17=2

BM20=1

BM18=0
BM19=1

00

11

10

10 

01

01

BM16=2

PM00_4=PM00_3+BM15=3  or
PM00_4=PM01_3+BM17=3 

PM01_4=PM10_3+BM19=3  or
PM01_4=PM11_3+BM21=2 

PM10_4=PM00_3+BM16=5  or
PM10_4=PM01_3+BM18=1 

PM11_4=PM10_3+BM20=3  or
PM11_4=PM11_3+BM22=2 

11 
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               t0         t1        t2        t3        t4       t5       t6         t7        t8 
 
state00                0         2         3         3        3         3        4        3 
 
state01                           3         1         2        2         3        1        4 
 
state10                 2        0         2         1        3         3        4        1 
              
state11                           3         1         2        1         1        3        4 

               t0          t1        t2       t3        t4      t5        t6        t7        t8 
 
state00       0        0         0         1         0        1         1        0        1 
 
state01       0        0         2         2         3        3         2        3        3 
 
state10       0        0         0         0         1        1         1        0        1 
              
state11       0         0        2         2         3        2         3        2        3 

  Table 3.3 Surviving predecessor states from t0 to t8 

  Table 3.2 Path metrics from t0 to t8  

0: state00       1: state01      2:state10      3: state11 
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3-2 Hard decision and soft decision    
The decoder described in the previous section is a hard-decision decoder which 

uses a Hamming distance metric in the BM calculation. As mentioned, the 

computational complexity is low, but its BER is higher.  

The soft-decision Viterbi decoder replaces the Hamming distance metric with the 

Euclidean distance metric.  It can explore more useful information and enhance the 

Viterbi decoder performance. 

 
 

 

Figure 3.4 (a) shows the decision plane for a QPSK modulation. Any received 

QPSK symbol is first decided to be one of four possible transmit symbols, (0,0), (0,1), 

(1,0) or (1,1). In the figure, the receive symbol is decided to the nearest symbol (1,1).  

1,1 

1,0 

0,1 

0,0 

3,3 

3,0 

t1t0
0,0

1,1

BM1=2

0,3 

0,0 

t1 t0
0,0

3,3

BM2=2

BM1= 10  

Figure 3.5 (a) 
 QPSK 2-bit (4 level) soft decision plane 

Figure 3.5 (b) 
Trellis for data input (3,1) 

Figure 3.4 (a) 
QPSK hard decision plane 

Figure 3.4 (b) 
Trellis for data input (1,1) 

Receive 
data 

Receive 
data 

I

Q 

I

Q 

BM2=0
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One QPSK symbol carries two bits data in I and Q branch. In the hard-decision 

scheme, the received symbol is equivalently be quantized to one bit in I and Q branch.  

In other words, one QPSK symbol will be represented as two bits in the hard-decision 

scheme. Figure 3.4 (b) shows that the hard-decision scheme uses the Hamming 

distance to calculate BMs as those in (3.1) and (3.2). 

Figure 3.5 (a) shows a 2-bit soft-decision Viterbi scheme. The received symbol 

can then be quantized to one of 16 possible symbols. This is because two bits have 

been used for I and Q branch. In Figure 3.5 (a), the received symbol is quantized as 

symbol (3,1) and this serves as the Viterbi decoder input. Figure 3.5 (b) shows the soft 

decision trellis diagram. Using the Euclidean distance metric, we find that the BMs 

are those shown in (3.3) and (3.4). Since the Viterbi decoder is a maximum likelihood 

decoder, the more quantization bits, the better performance we will obtain.  

For the WLAN application, it has been shown that a three-bit quantization results in 

a performance improvement about 2 dB then a two-bit quantization [17]. Quantization  

with more then 6 bits can yield very little performance improvement. 

 

BM1=XOR {(0,0),(1,1)}     =2 (3.1) 

BM2=XOR{(0,0),(0,0)}      =0                            (3.2) 

BM1= 2)10(2)30( −+−    = 10                      (3.3) 

BM2= 2)13(2)33( −+−    = 2                           (3.4)          
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3-3 Hard decision weighting  
From the previous section, we know that the hard-decision Viterbi scheme is 

simple but may not have satisfactory performance. In this section, we propose a new 

algorithm, which is as simple as the hard-decision decoder but enjoys higher 

performance. We call this algorithm as a hard-decision weighting decoder. 

We use a simple example to describe our idea.  Figure 3.6 shows the decision 

plane for a BPSK modulation. Note that due to noise, the received symbol r can be 

located at anywhere in the x-axis. For hard-decision, if r > 0, the decision as 1, 

otherwise it is -1. The decision region for 1 is (0,∞) and the decision region for –1 is 

then (-∞,0) 

    

 

 

 

 

  

 

 

 

 

 

 

 

Take two received signals r = 0.1 and r = 1 as examples. Both decision are  “1” 

by the hard-decision principle. However, it is simple to see that the confidence for the 

decision is different for these two signals. Of course, soft-decision can solve the 

problem easily, but it requires higher computational complexity. It is our objective to 

solve this problem using a simple way. 

The basic idea for “hard decision weighting” scheme is simple. For each decision 

region, we further partition it into two regions; the first one is considered reliable and 

the second one is not reliable. In the BM calculation, we then increase the weight if 

the observation is located in the reliable region. We can choose the weight with some 

special format such that its implementation has low complexity (for example 2n where 

-1 10

Figure 3.6 BPSK decision plane 

Received 
signal Z(t) 
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n is an integer).  Consider a special BPSK scenario that the transmit symbol is either 

a1 or a2. The received signal is then r = a+n0 where a can be a1 or a2 and n0 is additive 

white Gaussian noise with mean zero and varianceσ2.  Figure 3.7 illustrates the 

conditional probability density function (PDF) for the binary noise-perturbed received 

symbol. The ML decision gives 

2
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 if  ,1
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The probability of error shown in the shaded are in Figure 3.7 is then 

 

where Q(.) is the complementary error function. 
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                                              Figure 3.7 Received symbol distribution (1) 

We now want to find the threshold, γ1, that determines weighting regions. 

Without loss of generality, we let a1= -1, a2=1, and σ=1. Also, let the transmit symbol 
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be from a2. Figure 3.8 shows the received symbol distribution. In the figure, note that 

1γ  =1- s1. For our algorithm, we add weighting on the BM calculation when the 

receive signal is in the area “A” (the interval between –s1 and a2). First, we define a 

cost function (3.7) that measures the probability of correct weighting and incorrect 

weighting. 

(A) (B) (C)

(D) (E) (F)

12 −=a 11 =a

)0(Q
)1(Q

)1()( 1 QQ −γ

)()0( 1γQQ −

)2()1( 1γ−−QQ

)0(Q
)1(Q

)2( 1γ−Q

1s−

111 s−=γ

0=s

     
Figure 3.8 Received symbol distribution (2) 

)]1()()[2()]2()1()][()0([)( 11111 QQQQQQQJ −−−−−−= γγγγγ  (3.7) 

    Note that Q(0)-Q(γ1)  indicates the probability that the transmit symbol is from 

a2 and the receive signal is in the area “A”. In other words, the hard-decision is 

correct and the weighing should be carried out. The term Q(1)-Q(2-γ1)  indicates the 

probability that the transmit symbol is from  a1 and  the receive signal in the area “E”.  

The hard-decision for this case is not correct and there should no be weighting in this 

case. Assume that the data from a1 and a2 are equally likely. Thus, the first term on 

the left hand side of (3.8), which is the product of two probabilities, indicates the joint 
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probability of correct weighting for symbols from a1 and correct “not weighting” for 

symbols from a2. Now, the term Q(2-γ1) gives the probability that the transmit symbol 

is from  a1 and the receive signal is in the area “D”. In this case, it should no be 

weighting; however, it is weighted. Thus, the weighting is incorrect. Finally, the term 

Q(γ1)-Q(1) gives the probability that the transmit symbol is from a2 and the receive 

signal is in the area “B”. It should be weighted; it is not actually. This is incorrect 

either. Thus, the second term on the left hand side of (3.8), which is the product of 

two probabilities, indicates the joint probability of incorrect weighting for symbols 

from a2 and incorrect “no weighting” for symbols from a1. The cost function then 

corresponds to the relative probability of correct weighting decision. We then 

minimize the cost function in (3.8) and obtain the optimal threshold. Figure 3.9 shows 

the cost function vs. the threshold. We can see that the optimal threshold is around 0.6. 

                                      

r 

                                         Figure 3.9 The cost function vs. threshold 

The SNR used is 7 dB here. We have found that the optimal threshold is between 0.6 

and 0.75 when the SNR varies from 0 to 20 dB. The optimal threshold is not sensitive 

to the SNR.  We can generalize (3.7) to have the optimization criterion for the general 
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noise case scenarios as  

 

)]1()()[2()]2()1()][()0([)( 1111
1 σσ

γ
σ
γ

σ
γ

σσ
γ

σ
γ QQQQQQQJ −

−
−

−
−−=  (3.8) 

 

After finding optimal thresholds, we then have to determine how much weight we 

should give. Since this is something to do with the Viterbi algorithm, it is difficult to 

find a criterion to optimize. We then use simulations to find the optimal one. Figure 

3.10 shows the simulation results. In the figure, “w1.0” indicates the results without 

weighting, “w1.2” indicates the results with weighting (weight is 1.2), and so on. 

From the figure, we found that if the weight value is between 1.1 and 2, the Viterbi 

performance is similar. Also note that the optimal threshold is around 0.6. The SNR 

used here is 7 dB. Other cases will give similar results. We then use 0.625 as the 

threshold and 2 as the weight for simplicity. 

 
Figure 3.10 BER vs. threshold and weight 

The idea of hard-decision weighting can be extended further. We can partition 

each decision region into three regions and assign different weights for these regions. 

We now have two thresholds, (γ1, γ2). We refer this as a two-weight algorithm. To 
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find optimal thresholds, we can formulate a criterion similar that in (3.8). The 

resultant cost function is shown in (3.9). 

),(),(),( 21221121 γγγγγγ PPJ −=                                                                               (3.9) 

where 

))2()1())(()(())2()1())(()0((),( 22111211 γγγγγγγ −−−+−−−= QQQQQQQQP (3.10)  

))1()())(2()2(())1()()(2(),( 21211212 QQQQQQQP −−−−+−−= γγγγγγγ           (3.11)             
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                                  Figure 3.11 Received symbol distribution (3) 

 

Figures 3.12 and 3.13 display the results at the optimal solution. The optimal 



 24

thresholds are found to be γ1=0.77 and γ2=0.5.  The optimal weights are found to be 

around 2 and 1.5.  We can generalize (3.10) and (3.11) to obtain the optimization 

criterion for the general noise case as 
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                                                                                                                   (3.12) 
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                                                                                                                (3.13) 

 

Figure 3.12 Cost function value vs. γ2 for two-weight algorithm 
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Figure 3.13 Cost function value vs. γ1 for two-weight algorithm (γ2=0.77) 

 

 
Figure 3.14 BER performance for hard-decision weighting algorithm 
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Figure 3.14 illustrates the BER performance for various Viterbi algorithms (in 

AWGN environment). In the figure, HD denotes the conventional hard-decision 

decoding, HDW1 denotes the proposed one-weight algorithm, and HDW2 denotes the 

proposed two-weight algorithm. As we can see, the proposed hard-decision weighting 

algorithm outperforms the hard-decision algorithm by 2dB at BER=10-3. The two-

weight algorithm only performs slightly better than the one-weight algorithm. For this 

reason, we then use the one-weight algorithm in our implementation. As we 

mentioned, the hard-decision weighting algorithm only needs XOR logic operations 

to compute BMs and its computational complexity is lower.  
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3-4 Viterbi decoder with receiver diversity  
In the WLAN environment, the multipath channel effect may affect the 

receiver performance significantly. It is known that the diversity technique can 

effectively solve the problem.  Space diversity is a popular and effective diversity 

technique and its can be easily applied in WLAN systems. In this approach, an 

antenna array is used in the receiver. There can be different various implementation 

architectures for the antenna diversity. The first one shown in Figure 3.15 is called 

the antenna selection. In this architecture, we need only one RF module although L 

antennas are used.  This architecture only selects the antenna with the strongest 

output for processing. Baseband processing is not affected at all and its 

implementation cost is lowest. However, its performance enhancement capability is 

limited. For other structures we require L RF modules in general. Figure 3.16 shows 

the architecture. Outputs from RF modules are first down converted, sampled, and 

transformed using FFT. Various diversity combing methods can then be applied. 

We only discuss the optimal one, which is the maximum ratio combing (MRC). 

 

 

RF 
CIRCUIT DSPM

U
X

Comparator

Antenna1

Antenna2

AntennaN

 

 

 

 

 

 

Figure 3.15 Antenna selection diversity 



 28

 

 

Combining

RF 
CIRCUIT

RF 
CIRCUIT

RF 
CIRCUIT

DSP

FFT

FFT

FFT

 

 

 

  

 Simulations indicate that this scheme can enhance10dB performance with two 

receive antenna in an exponential decay AWGN channel.  The performance 

enhancement is significant. Let the received signal for the ith tone signal of a nth 

symbol at the jth antenna be )(nX j
i , and the corresponding transmit signal, channel, 

and noise be )(nS j
i , )(nH j

i , and )(nV j
i , respectively. Then, 

 

 )()()()( nVnSnHnX j
i

j
i

j
i

j
i +=   (3.14) 

 

The MRC output signal, denoted by )(ˆ nSi , is then 
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Note that the conventional approach uses diversity combing first and then pass 

the result to the Viterbi decoder. We call this observation MRC (OMRC). We propose 

a new approach that combing the multiple observations in the Viterbi decoder.  Let 

the BM for the state i transiting to state j at the nth time instant when the receive 

Figure 3.16  Antenna combing diversity 
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antenna is the kth be )(nzk
ij . We then have a new BM as 

∑
=

=
L

k

k
ijij nzz

1

)(   (3.16) 

 

As we can see, this BM takes all the observations from all antennas into account. 

Since the channel effect is taken into account, it will give the MRC-like results for 

the Viterbi algorithm. We call this a Viterbi MRC (VMRC) algorithm.  

 Simulation results for an exponential decay AWGN channel are shown in 

Figure 3.17. Here, two antennas are used for the diversity approach. From the figure, 

we can see that at BER= 410− , the OMRC and the VMRC outperform the decoder 

without diversity (NORMAL) by 9dB and 11dB, respectively. Apparently, the 

VMRC outperforms the OMRC by 2 dB. The gain is significant. 

  
 

 

 

 

We then add more antennas and carry out more simulations Figure 3.17 shows the 

results. In the figure, the solid line with symbol “+” indicates the result with the 

Figure3.17 Comparison between NORMAL, OMRC and VMRC 
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decoder without diversity.  Solid lines with symbols “o”,  “ * ”, and “+” indicate the 

performance of the OMRC with two, three, and four antennas, respectively (denoted 

as OMRC2, OMRC3, and OMRC4).  Dashed lines with symbols “o”,  “ * ”, and “+” 

indicate the performance of the VMRC with two, three, and four antennas, 

respectively (denoted as VMRC2, VMRC3, and MRC4).  From these results, we can 

clearly see that the VMRC is always better than the OMRC. When the number of 

antenna is larger, the performance gap becomes larger also. 

 

 

 

 

 
 

Figure 3.18 Comparison between NORMAL, OMRC2, OMRC3, 
OMRC4, VMRC2, VMRC3 and VMRC4 
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3-6 Memory management and adaptive tracing back     
The REM (register exchange method) is simple, but it is not efficient for the 

WLAN system since it requires high power consumption and large chip area. Thus, 

we employ the TBM as our implementation scheme. This section addresses the 

memory management scheme for the TBM.  

There are several trace back algorithms known as, the K-pointer even algorithm, the 

K-pointer odd algorithm [18], the one-pointer algorithm, and the hybrid algorithm. In 

one- pointer trace back architecture [6], it only uses a single read pointer and needs 

approximately half as much memory as other approaches. The disadvantage of the 

one-pointer algorithm is that we need to provide separate column counters for the 

write and read operations individually. Another disadvantage is that the trace back 

operation clock must be three times as fast as the writing operation clock if the read 

region is three times as large as the write region. Since in the WLAN application, the 

clock rate is not particularly high, we then adopt this memory management method in 

our implementation.  

Figure 3.19 shows the one-pointer algorithm operation. Here, “TB” denotes the 

track back read. This operation is to find out the previous state according the data 

stored in the memory. There are two banks memory for trace back and this implies 

that this Viterbi decoder trace back with depth 2T. The notation “DC” means the data 

decode read. The first decode read (starting state) in a memory bank is determined by 

the previously two track back bank result. The decoder reads the newer data, decode 

them, and send them to the LIFO (last in first out) register performing the bit-order 

reverse. The operation “WR” means decoder new data write. Decisions, indicating the 

previous surviving state, are made by the ACS and written into locations representing 

corresponding states.  

We now explain the operations outlined in Figure 3.19. We assume that the time 

interval between t0 and t1 is a unit time, so is that between t1 and t2 (and so on).  

During the T0 interval (between t0- t1), one write pointer points out the write location 

and ACS out data is written into bank0 memory. In the same time, one read pointer 

starts tracking back and reading data from bank3 memory. The read pointer is 

operated as three times faster as the write pointer. Thus, the write operation only fills 

1/3 bank0 memory when the “TB” has finished bank3 memory track back. Then, at 
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time t2, the trace back operation has terminated at the end of bank2 memory, the write 

operation fills 2/3 bank0 memory. Finally, the decoder read bank1 memory and 

finishes the decoding operation at t3 and the write operation fills bank0 memory at the 

same time. During the T3 (t3-t4) time period, we then shift the read/write pointer as 

that shown in Figure 3.19 and repeat the operations all over again. We can obtain the 

data out from the decoder continually. 

Figure 3.19 displays the memory organization for storing the survivor path. Here, 

the memory depth for each bank is Γ. In order to find the optimal decode starting 

state, we have to trace back two memory banks before decode. In other words, the 

trace back length is 2Γ. One data output from the decoder must have four memory 

accesses; the first is “WR” data write.  When the memory bank is full (3/3 WR), we 

will start trace back for the next time unit. After two times trace back, we then have 

the decode (DC) operation. Since the trace back unit contributes almost half of power 

dissipation (the trace back length is 2Γ). Howe to reduce the memory access 

frequency during the trace back is then the main concern.  

 
                                

 

 

 

 

 

  

 

 

Figure 3.19 One-pointer trace back method 

  

Figure 3.20 also shows the Viterbi decoder memory trace back paths. As we can 

see if the trace back length is long enough, all the trace back paths will merge at some 

block. Figure 3.21 illustrates the trace back path within two memory banks; the solid 

line indicates one trace back path and dash lines indicate other trace back paths. It is 

desirable that all paths merge before the decode block. It means that trace back from 

any state will find the same starting state in the decode memory. Note that this case is 

not always true when the SNR is lower or trace back length is not long enough. 
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Before the trace back, we can guess a terminating state having a minimum PM in 

the previous memory block. In the writing operation, we can record all possible states 

(at each time instant) that can reach the terminating state. Then, if the trace back 

starting state is in these states, we can immediately know that the track back will end 

with the terminating state we guessed; we call this case as a “trace forward hit”. 

Figure 3.21 shows an example. In the figure, the state (s35) with the minimum PM in 

the previous block is written at t=0. When t=1, we found that only one survivor path 

(s17) is from s35 and we record this state (s17) by writing a “1” in a 64x1 register 

array. This means that if trace back starts from state17 (s17), it will go through the 

state (s35). When t=2, there are two survivor paths coming from the state (s17). We 

record these two states (s8) (s40) by writing two “1”s in the register array (note that 

the array is reset before writing). These two “1”s indicate that if trace back starts from 

state8 (s8) or state40 (s40), it will go through the state (s35) in the end. When t=3, 

there are three survivor paths coming from the previous two states. We then write 

three “1”s in the 64x1 register array. As the writing process proceeds, the values in 

the register array are updated.  Finally, at t=n, the register array remains four “1”s 

indicating states s2, s8, s32, and s63. The four states imply that if trace back starts 

from state2 (s2), state8 (s8), state32 (s32), or state63 (s63), it will terminate at s35. 

Thus, we can skip the trace back operation in the memory block. This will reduce the 

memory access frequency. Figure 3.22 illustrates this skip scheme. When bank0 is 

decoded, we write data to bnak3 and record the trace forward states. After the 

decoding in bank0 is finished, we write data to bnak1 and starts trace back from 

bank3. If the state with the minimum PM is in the trace forward states, the track back 

operation in bank3 will be skipped (see T1).  If once again, the trace forward is hit in 

bank0. At T3, we can skip the trace back in bank0 and bank3. 
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Figure 3.20 Viterbi decoder trace back path in memory bank 



 34

     

Unfortunately, the “trace forward” is not always hit. Figure 3.23 shows the hit rate 

with different SNR in AWGN channel. It is obviously that a higher hit rate appears in 

a higher SNR environment. The percentage that the memory access activity can be 

reduced is shown in Figure 3.24.  
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Figure 3.21 Write data to record all possible trace 
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Figure 3.23 Trace forward hit rate with different SNR 

 
Figure 3.24 Memory saving by trace forward scheme 
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As we can see, when the SNR is 12 dB, the “look forward” scheme can save only 

45% memory access activity. Note that the hitting rate is over 90%. This is because 

“WR” and “DC” are still needed. To further reduce the memory access frequency, we 

need to merge these two operations  

The advance minimum-transition trace back (AMTTB) scheme in [3] is the 

algorithm can further reduce the memory access activity. Figure 3.25 shows the 

operation. Here, we assume that the trace back depth is 32 and the size for each 

memory bank is 64x32.  We need one extra predict buffer 1x32 for storing the data 

for the most likely path. In the write operation we record the most likely trace back 

path in the predict buffer. In the trace back stage, read data from the memory bank, 

find the previous state, and compare the read data with the predict data. If these data 

are different, modify the data in the predict buffer. Otherwise, the trace back operation 

is replaced by reading the predict buffer only. This is because the trace back has 

merged at this point and we do not have to read the memory bank. By using so, we 

can substantially reduce the memory access frequency in the trace back and decode 

stages. How munch the memory access times can we save? It depends on the merge 

point. Table 3.4 shows some simulation results. It indicates that in most cases, the 

prediction hits at first trace back stage.  Almost all cases will be hit (merged) before 

the decode stage. This scheme can reduce the memory access frequency significantly. 

However, we have to add an extra trace back circuit.  

 

 

 

 

 

 

 

 

 

                      Figure 3.25 Minimum-transition trace back operation scheme 
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                                     Prediction Hit distribution 
 

    Table 3.4 Minimum-transition trace back hit rate distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 SNR                18             19               20            21 
 
Hit 1stage     79.9286     84.0000    89.5000    91.0714 
 
Hit  2stage    97.7857     98.2143    99.2857    99.4286 
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Chapter 4 

 Low power Viterbi decoder implementation 

 
4-1 Design and implementation flow 

Figure 4.1 shows our design and implementation flow. The first step is to study 

algorithms and choose the best solution for our requirement. Then, we carried out 

simulations to realize its behavior and evaluate its performance. In this stage, we often 

use a high level language such as C language or MATLAB. Algorithm study and 

simulation must be repeated until it passes the performance requirement. The next 

step is to use VHDL for low-level modeling. Then, we perform RTL (Function) 

simulations to make sure the model work properly. Using the standard cell library, we 

then synthesize our design to the gate level. Finally, the gate level simulations were 

conducted to verify the circuit timing and functionality. Power analysis is import 

since the low power and low complexity is our design target. We use Prime Power to 

analyze the average and peak power consume for our design. We are interested to 

know how much power reduced by the various designs.  To evaluate the chip area 

consumed, we can use a FPGA (field programmable gate array) for the circuit 

implementation. The routing and simulation are simple in the FPGA implementation 

flow. 
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Figure 4.1 Design and implementation flow 

Done
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4-2   Implementation of Viterbi algorithm 
     Figure 4.2 illustrates a 802.11a channel decoder architecture. The receive symbol 

is first de-mapped and de-interleaved and then forwarded to the Viterbi decoder.  The 

decoded bits are stored in the LIFO data buffer. After the LIFO, data are transferred to 

the media access control (MAC) module. It is the Viterbi decoder module that we 

implemented. 

 

 
 

 

 

 

 

 

 

 

 
Figure 4.3 shows our design block diagram for 802.11a Viterbi decoder.  There 

are four memory banks and each one with size of 64x32. That means we have 64 

states and the track back depth is 32. Besides the main memory, we also have to 

implement the prediction buffer for each memory bank. The predicted trace back can   

reduce the memory access frequency as described before. The predict buffer has the 

size of 32x1.  

Memory banks and predict buffers are controlled by the memory controller and 

the buffer controller individually. The decoder controller, which includes the decoder 

main state machine, receives the input frame enable signal and outputs the decoded 

results. The BMU is responsible for BM calculation and the BM weighting. The result 

from the BMU is then transferred to the ACSU for each cycle.  The ACSU feeds all 

the memory banks with survivor path data. This module also needs to perform the PM 

calculation and the PM comparison. Since these operations cannot be pipelined, the 

timing bottleneck for the decoder is in this unit. We will further discuss the topic in 

Section 4-4.  In our design, the memory bank uses the Verilog model made by 

Symbol 
De-mapping 

Data buffer 
de-interleave 

Viterbi 
Decoder 

Data buffer 
 

MAC 

Figure 4.2 802.11a channel decoder architecture 
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“Artisan“. The memory compiler can be used to obtain the corrsponding VHDL 

design.  When transferring our design to FPGA, the compiler will be replaced by the 

Xilinx memory compiler.   
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Figure 4.3 802.11a Viterbi decoder design block diagram 
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4-3 Over flow consideration 
Figure 4.4 illustrates the trellis diagram for the 802.11a Viterbi decoder. Here, 

s00 indicates state-00 and it will transfer to s00 (state-00) or s32 (state-32).  All other 

state transactions can be obtained using this figure. Using this figure, we construct the 

ACSU module. Figure 4.4 shows the ACSU structure. Since the value in the PM is 

accumulated, it should be normalized (after all comparators) to avoid PM over flow.  

The modulo arithmetic approach [9] [20] can then be used here. 
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In Figure 4.5, the “adder” block implements the PM computing in  (4.11) while the 

comparator implements (4.12). After the minimum PM is found,  one bit survivor path 

indicator is written to the memory bank. The new PM will be latched at the PM 

register (denoted as “PM_reg”) for the next state computing. The ACSU conducts the 

same operations cycle by cycle. 

 

 

Figure 4.4 802.11a trellis diagram 
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PM(A)_next state = PM(A)_current state +BM(A)_next state  (4.1) 

PM= min {(PM(A)_c + BM(A)_n), (PM(B)_c + BM(B)_c) } (4.2) 
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adder comparatornormalizationPM_reg0BM(s01)_n
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Wr_data1

adder comparatornormalizationPM_reg0BM(s31)_n

PM(s31)_c

adder comparatornormalizationPM_reg0BM(s32)_n

PM(s32)_c

wr_data32

adder comparatornormalizationPM_reg0BM(s63)_n

wr_data63

PM(s63)_c

wr_data31

 
 

Figure 4.5 Structure of adder comparator selective unit (ACSU) 

 
 
There are many solutions to solve the PM over flow [20] problem. These 

includes the reset, the difference metric ACS, the variable shift, the fixed shift, 

and the modulo normalization algorithm. Among them, the modulo 

normalization with a modified comparator is well suited to VLSI 

implementation. 

        The key idea for modulo normalization is that the difference between two 

survivors path is bounded [19]. Denote the bounded value as c. Let mj be a 

certain PM jm  be the result of a modulo operation shown in (4.3).  Also, let 

θj=(2 jm /c)π. Consider two PMs, m1 and m2. and σ = θ1-θ2. Figure 4.6 shows the 
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variation of θ1and θ2. If |m1-m2|< c/2, then 1m - 2m = m1-m2. When σ < 180°, then 

m1<m2. Note that since 1m  and 2m are signed numbers, we have to use a 

subtractor to perform comparison.   

We can use a modified comparator to replace the subtractor and reduce the 

computational complexity.  Let 1m =( pm ,1 ,…, 0,1m ) and 2m =( pm ,2 ,…, 0,2m )  

be the two’s-complement representations for 1m  and 2m . Equation (4.6) show 

the operation in which  “^” indicates exclusive-or operation , y(.,.) unsigned 

comparison, and Z(.,.) the comparison result.  
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This approach can speed up the normalization operation since 1m ^ 2m  and 

y(P1,P2) can be performed in parallel and subtraction operation is not required.  
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Figure 4.6 Modulo comparison of normalized metrics 
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4-4 Radix-4 ACS 
Note that the ACSU must finish all operations in adders, comparators and 

path normalizations in one cycle. In order to increase the processing time, we 

consider the radix-4 ACS implementation. 

        Figure 4.7 (a) depicts the radix-2 trellis and Figure 4.7 (b) the radix-4 trellis. 

It is obviously that the radix-4 structure is as twice fast as radix-2 structure, but 

it is more complicated then radix-2 structure. For the Viterbi decoder considered 

here, the trellis is radix-2. We can merge two radix-2 trellis into one radix-4 

trellis and it provides two cycle time to finish the operations. The processing 

time is doubled that the critical path problem can be mitigated. However, the 

computational complexity is increased almost as twice. Figure 4.7 (d) shows the 

radix-4 ACSU.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 (a) Radix-2 trellis  Figure 4.7 (b) Radix-4 trellis  
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Figure 4.7(c) Radix-2 one node structure 
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        In the evaluation step, Xinlinx Viterx_2-6000 can run at 125MHz clock 

rate without timing issue, it means this device can support short gate delay 

and trace delay for evaluation. Radix-4 architecture was replaced by radix-2 

architecture to reduce the complexity. Finally we use radix-2 architecture and 

modulo normalization as our approach.  
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Figure 4.7(d) Radix-4 one node structure 
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4-5 Function simulation, gate level simulation and power 

verification 
The decoder is divided into 5 submodule, i.e., the ACSU, the TBU, the state 

machine unit (State), the memory and memory control unit (MemCtl), and  the frame 

control unit (FramCtl).  Figure 4.9 (a) shows the input and output signal waveforms 

for a sample run. Figure 4.9 (b) shows some internal signal waveforms. From the 

function simulation, we obtain the Viterbi decoder outputs compare with convolution 

encode input data and the result like the MATLAB simulation result. Extract the 

timing information from place& route tool (Xilinx-Project Navigator), we run the gate 

level simulation again and obtain the same result as the function simulation. Based on 

Xilinx Vitrtex-II type FPGA place reports, we found that the critical path is 6ns which 

is less than 8ns (125MHz). The sampling rate for the WLAN system is 20 MHz and 

we use the trace back rate by three times. It turns out that the minimum clock rate 

must be 60MHz.  

        Prime Power provides the power analysis result shown in Figure 4.8. This figure 

shows the power consumption behavior when one frame of data is passed through the 

Viterbi decoder.  The average power consumption is listed in Table 4-1. From this 

table, we can see that the memory access plays the most important role in low power 

Viterbi decoder design. 

 

 

 

 

 

 

 

           

Module name     average power consumption(%) 
PMGen(ACS)            21 
TB (Decoder)             15 
State                           0.5 
MemCtl                      62 
FrameCtl                    1.5 

Table 4.1 Viterbi decoder power consumption distribution 
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Figure 4.8 Prime power shows Viterbi decoder power consumption 

Figure 4.9 (a) Viterbi decoder input and output signal waveform 
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 We perform power analysis for the general design and our low-power design.    

The power consumption in digital CMOS circuits is expressed as  

 

P = IstandbyVdd + IleakageVdd + Ishort-circuitVdd + αClVdd× Vdd × fclk (4.6) 

 

where Istandby is the DC current drawn continuously from the Vdd to ground, Ileakage   is 

the leakage current primarily determined by the fabrication technology, and Ishort-circuit 

is the current due to the DC path between the supply rails during output transitions.  

These three terms correspond to the circuit-level power issue and we do not discuss 

these topics here. The last term, Cl is the load capacitance, α is a factor depending on 

switching activity, and fclk denoted the clock frequency.  

Table 4-2 lists the power consumption comparison.  As we can see, the main 

power saving for our design comes from the reduction of the memory access 

frequency. During idle periods, we use “chip enable” to turn off the memory.  The 

result is significant and the power saving can be up to 20%.  

 

Figure 4.9 (b) Viterbi decoder internal signal waveform 
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Module 

name 

General design 

power consumption

Low power design 

power consumption

Enhance 

rate 

PMGen (ACS) 0.21 mw 0.21 mw 0% 

Decoder(TB) 0.15 mw 0.16 mw -1% 

State and FrameCtl 0.02 mw 0.02 mw 0% 

MemCtl 0.62 mw 0.41 mw 31% 

Top(total) 1.00mw 0.80 mw 20% 

 

 

 

 

 
 

Table 4.2 Power analysis  

Figure 4.10 Prime power shows Viterbi decoder power distribution 
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Chapter 5  

Conclusion 
        In this thesis, we focus on the low-cost WLAN Viterbi decoder design. 

Specifically, we consider the IEEE802.11a system. We proposed a hard decision 

weighting scheme to enhance the conventional hard-decision Viterbi decoder. The 

performance enhancement can be as high as 2dB. However, the computational 

complexity is still low. This scheme may be useful for some IA applications in which  

the performance requirement is not stringent. Besides, we also study the receiver 

diversity scheme and analyze the system performance with 2, 3, 4 receiver antennas. 

We have shown that the diversity combining performed inside the Viterbi decoder is 

better than that performed outside. Finally, we use a trace back prediction method that 

can reduce the memory access frequency. This approach can effectively reduce the 

power consumption. Simulations show that the power consumption can be reduced 

20%. We then implement the Viterbi decoder using a FPGA design flow.  

        The Viterbi decoder has been studied for a log time and found applications in 

many areas. However, it implementation cost is still high compared to other 

operations. This is particular true when the receiver diversity is introduced. To obtain 

higher performance, the BMU and the ACSU will become more complicated. How to 

keep the high performance while reduce the complexity is a topic for further research. 
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