

國 立 交 通 大 學

電機資訊學院 資訊學程

碩 士 論 文

使用正規符號模型驗證器的聲明檢驗法

Automatic Assertion Checking Using Formal Symbolic Model Verifier

研 究 生：汪加元

指導教授：周景揚 博士

莊仁輝 博士

中 華 民 國 九 十 四 年 六 月

使用正規符號模型驗證器的聲明檢驗法

Automatic Assertion Checking Using Formal Symbolic Model Verifier

 研 究 生：汪加元 Student：Chia-Yuan Uang

指導教授：周景揚 Advisor：Jing-Yang Jou

莊仁輝 Jen-Hui Chuang

國 立 交 通 大 學
電機資訊學院 資訊學程

碩 士 論 文

A Thesis

Submitted to Degree Program of Electrical Engineering and Computer Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Computer Science

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

使用正規符號模型驗證器的聲明檢驗法

研究生: 汪加元 指導教授: 周景揚博士

指導教授: 莊仁輝博士

國立交通大學

電機資訊學院 資訊學程 碩士班

摘要

以聲明(Assertion)為基礎的驗証法已經成為當今設計驗証法的典範。而聲

明是用來檢驗電路功能的,但人們所撰寫的聲明很可能其本身即含有衝突錯

誤。在此我們提出一個自動檢查聲明衝突的方法。此方法主要是將輸入的聲明

轉化成有限確定自動機(Deterministic Finite Automata)及性質(Property),

再利用現有的正規符號模型驗證器(Symbolic Model Verifier)對自動機和性

質作交叉驗證, 以檢查出聲明之間的矛盾衝突。藉由此法能幫助聲明撰寫者在

早期就自動檢查出聲明的矛盾而不需要等到模擬(Simulation)時才發現。

 i

Automatic Assertion Checking

Using Formal Symbolic Model Verifier

Student: Chia-Yuan Uang Advisor: Dr. Jing-Yang Jou

Advisor: Dr. Jen-Hui Chuang

Master Program of Electrical Engineering and Computer Science

National Chiao Tung University

Abstract

Assertion based verification (ABV) methodology has emerged as a paradigm of high-level

design verification. An assertion is used to specify what is to be exercised and verified against the

intended functionality. However assertions which may contain conflicts among themselves are not

inspected until later simulation stage.In this thesis, we present an automatic assertion checking

which utilizes an existing symbolic model verifier as a model checker to check if there is any

conflict among input assertions. We propose an approach to convert the assertions into structural

Deterministic Finite Automata (DFA) and their corresponding properties. Those converted DFA

and properties are then checked by using formal model verifier. This approach may facilitate

assertion checking to find out potential conflict in the early stage of design activities without

simulation.

 ii

Acknowledgements

 First and foremost I wish to express my deepest gratitude to my advisor, Professor Jing-Yang

Jou (周景揚). He has provided a model of a holistic approach to perspective of problems, which I

have been learning over the past few years since I joined his research group. I very much appreciate

his constructive criticism and continual patient reviews on this thesis, which even provided

meticulous attention to grammatical detail on my draft. Particularly, I wish to thank to his patience

on my struggling on nailing the research topic.

My thanks go out to my honorary advisor, Professor Jen-Hui Chuang (莊仁輝) of Department of

Computer and Information Science (CIS) He is extremely generous to provide exceptional freedom

for me to fully join the studying group under Department of Electronics Engineering.

I also want to thank the esteemed professors, Dr. Juinn-Dar Huang (黃俊達), Dr. Chun-Yao

Wang (王俊堯), and Dr. Chien-Nan Liu (劉建男) for their marvelous advice and comments on this

thesis.

I have to especially appreciate my senior and peer mentor, Chia-Chih Yen (顏嘉志), Ph.D.

candidate, for his warm-hearted help. His proof-reading provided many stylistic suggestions and

crucial aids in writing this thesis. The depth of his knowledge and willingness to advise me and

share his experience was extremely valuable through all stages in my studying.

Also, I wish to thank IRST (Trento, Italy), etc. for opening NuSMV for my experiments.

 iii

Table of Contents

Abstract (Chinese) ……….……………………………….………….….……....…. i

Abstract (English) ……… ………………………………………….…...……...… ii

Acknowledgements ……….………………………..……….……...…...……..…. iii

Table of Contents ………….…………….……………………….……....…….… iv

List of Tables ……………………………………………….…….……..….…… vii

List of Figures …….……………………………...…………..…………....….… viii

Chapter 1 Introduction ………………………………..……….....……….…. 1

1.1 Assertion-based Verification ……………………………..…….………. 1

1.2 Motivation ………………………….…………………….…..…..……. 2

1.3 Overview ………………………………………………….……...….… 3

1.4 Organization of This Thesis .……………………………….……… 4

Chapter 2. Preliminary …….………………………………………….…….. 5

2.1 Symbolic Model Checking ….……...……………………………..…… 5

2.2 Kripke Model …………………………………..………………..……... 6

2.3 State in Kripke Model ………..……………………………………..….. 6

2.4 Computation Tree …………………………………………………….... 7

2.5 Computation Tree Logics …………………………………..……..…… 8

 iv

Chapter 3. Proposed Approach …….………………….……...……………. 9

3.1 Problem Formulation …………………………………..…………...…. 10

3.2 Input Example …………………………………………….…….…….. 10

3.3 Framework ……….………………………………………..…....……. 11

3.4 Input Language ...….…….……………………...…………...………… 12

3.5 Partitioning Assertions ………………………………...…….……..... 13

3.6 Assertion Conversion Techniques …………………………..…...……. 16

3.7 Conversion of Common Types of Assertions ……………….....……… 18

3.7.1 Conversion Template of "sequence" Operator ..……….……..……… 19

3.7.2 Conversion Example of "sequence-imply-sequence" Operator …….... 21

3.7.3 Conversion Example of "and" Operator ……………....…………...… 24

3.7.4 Conversion Example of "or" Operator …………………...……..…… 25

3.7.5 Conversion Example of "until" Operator ……………..…….……..… 25

3.7.6 Conversion Example of "before" Operator ……...…………….....….. 26

3.7.7 Conversion Example of "repetition" Operator ………..……...…….... 27

3.7.8 Conversion Example of "eventually" Operator ……….…….……….. 28

3.8 Verifying Assertions with SMV ………………………………..……… 29

3.9 A More Complete Example of Assertion Checking …………….……... 29

Chapter 4 Case Study ………………………………...…………..……...…. 35

 v

4.1 Case Description ….……………………………………..….………… 35

4.2 Experimental Environment ………………………………....………… 35

4.3 Experimental Result ………………………………………..………… 36

Chapter 5 Conclusions and Future Works …………..….………......…… 37

5.1 Conclusions ……………….………………...………………..….…… 37

5.2 Discussion ……………….…………………………….…….….….… 38

5.3 Future Works ….…....…………………………………...……...….…. 39

Appendices …………………………………………………….…………...…… 41

A The BNF Grammar of PSL-like Assertion Language ………...………..... 41

B Proving of Assertion Conversion …………………………..…………… 43

Bibliography …….……………………………………………….……………… 46

Vita ………...……………………………………………………..……..……….. 49

 vi

List of Tables

Table. 3.1 Event Attribute ……………………………………...……..……...… 17

Table. 4.1 Experimental Result of Case Study ………………..……..……..….. 36

 vii

List of Figures

Figure. 2.1 Symbolic Model Checking ……...……………..…………...……….. 5

Figure 2.2 A State of Kripke Model …………………………………..………… 7

Figure 2.3 Unwinding Computation Tree …………………………..…………… 7

Figure 3.1 The Brief Flow ………………………………………..….....……… 10

Figure 3.2 The Framework …………………………………………..………… 11

Figure 3.3 Constructs of our Language ……………………………..…………. 13

Figure 3.4 Partition Assertions into Assertion Groups ……….....……...………. 14

Figure 3.5 The Partition Algorithm ……………………………….……...……. 15

Figure 3.6 The Conversion Process ……….……………………….……..….… 16

Figure 3.7 (a) The Converted Primitive DFA ……………………….….……… 19

Figure 3.7 (b) The Converted Composite DFA ………………..……....……….. 20

Figure 3.8 The Computation Tree Logic ……………………….….….……….. 20

Figure 3.9 Decomposing The Assertion ………………………….……….…… 21

Figure 3.10 (a) The Converted Primitive DFA for the Primitive Sequence…. 21

Figure 3.10 (b) The Converted Composite DFA ………….……..……...……… 22

Figure 3.10 (c) The Converted DFA ……………..………………….….……… 22

Figure 3.11 The Assembled DFA …………………...……..……….….……….. 22

Figure 3.12 Assemble CTL property …………………………………..………. 23

 viii

Figure 3.13 Converted DFA ……………………………….……………..……. 24

Figure 3.14 Converted DFA ……………………..……….……………….…… 25

Figure 3.15 Converted DFA …………………………...……….……………… 26

Figure 3.16 Converted DFA …………………………………….…………… 26

Figure 3.17 Converted DFA …………………………………….…………… 27

Figure 3.18 Converted DFA ……………………………………….………..…. 28

Figure 3.19 Verify Assertions with SMV ….………………………...….……… 29

Figure 3.20 Input of the Example ……………………..………………..……… 30

Figure 3.21 Partitioning Result ……………………….………………..………. 30

Figure 3.22 Decomposed Assertions of Assertion Group ………………...….… 31

Figure 3.23 Converted FA from Assertion A1 ………………………...……….. 31

Figure 3.24 Converted FA from Assertion A3 ……………………..….……….. 32

Figure 3.25 Converted FA from Assertion A5 ……………….……..………….. 32

Figure 3.26 Converted FA from Assertion A6 …………….……..…………….. 32

Figure 3.27 Checking Result ……………………..………………...………….. 33

 ix

Chapter 1

Introduction

1.1 Assertion-based Verification

 Due to the increasing complexity of today's hardware design, functional verification has become a

major bottleneck in the design process. Design teams reportedly spend as much as 50 to 70 percent of

their time and resources on the functional verification effort. The advent of new technologies—such as

constrained-random test generation, assertion-based verification, coverage-driven verification, and

formal model checking [1]—has changed the way we see functional verification productivity, where

assertion-based verification methodology has emerged as a paradigm of functional verification and

been implemented in verification flow in the industry.

While the term assertion-based verification (ABV) [2-4] is often used to refer to the use of

assertions as monitors in simulation, ABV more correctly refers to the use of assertions in both

 1

simulation and formal verification. Assertions are a central part of both simulation and formal model

checking. They are mathematically precise descriptions of behavior that must hold or that constrains

the operating environment of the block.

While assertion coding is a major task of designers or verification engineers, the debugging process

of assertion writing is where efficiency improvements are required.

1.2 Motivation

With design complexities rapidly exploding, assertion modeling has become more and more

complicated. Assertion writing is sophisticated and is prone to make mistakes due to some common

causes: misinterpretation of specification, ambiguity of protocol, and incompleteness of specification.

Usually, coded assertions have not been inspected until design simulation. In fact, within the assertion

draft, most of conflicts could be detected automatically to improve the productivity of designers.

The basic goals of any comprehensive assertion writing process are driven by:

1. It must check that the design behaves everything it is supposed to do.

2. It must check that the design never do anything it is not supposed to do.

Today, assertion writers do not have any methods to check their assertions at the early stage of

assertion development flow. Instead, they respond to assertion violations reported by simulation tools

and simulate it again after correcting their assertion. This is an error-prone, and time wasting process

that continues throughout the early verification flow.

 2

To the best of our knowledge, there has been not any related work on assertion self-checking in

design automation field. Some analogous researches on hypothetical syllogisms field discuss finding

out the causes of that (antinomy) conflict from opposing assertions. Most of which are based on

dialectical reasoning [12]. The other few work were proposed from software validation field. [13] :

Motivated by this trend and background, we attempt to study an approach to automatically find out

if any conflicts among assertions.

1.3 Overview

In this thesis, we provide an approach to checking assertion conflicts for design verification based

on a PSL-like assertion language using symbolic model checking [10,11].

In our approach, we construct a framework to convert the input assertions into composite structural

deterministic finite automata (DFA) and their corresponding properties, which can be reflected as

assertion intent in specification modeling. By utilizing symbolic model verifier (SMV) [5,6], we may

check the behavior against its properties. If any conflict exists in input assertions, our approach will

report the violation of argument and its counterexample.

Symbolic model checking based on binary decision diagrams (BDDs) [10,11] is an efficient

automatic verification technique that has been applied successfully to many industry -scale hardware

circuits. Therefore we utilize the existing symbolic model checking package (NuSMV [6-8]) as a

formal model checker to find out the conflict between any two assertions.

 3

Here, we propose an approach to checking assertions in early stage without requiring design

content and its testbench. Instead, we just rely on the statement of an assertion itself. This enables the

conformance checking of assertions being done prior to running time-consuming simulation process.

We also come out with a means to avoid the common state-explosion problem while using symbolic

model checker. Therefore, most assertion conflicts can be detected quickly and easily with this

methodology.

1.4 Organization of This Thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces the basis of symbolic

model checking, which is used as the verifier in our approach. We explain the detail of our approach to

assertion checking in Chapter2. A case study and experimental result are illustrated in Chapter 4. The

conclusions and future works are touched upon in Chapter 5.

 4

Chapter 2

Preliminary

Our approach uses Symbolic Model Verifier (SMV) as a tool to check converted assertions. In this

section, we introduce preliminary knowledge about Symbolic Model Checking.

2.1 Symbolic Model Checking

Symbolic Model Checking [10,11,14-16] is an automatic technique for verifying properties of a

finite state model of a system. Its flow is illustrated in Figure 2.1.

Figure 2.1 Symbolic Model Checking

 5

The general approach of symbolic model checking is to describe the finite model for the behavior

of the system by giving as Kripke structure, and to define the expected property of the system as

Temporal Logic. It checks whether finite model satisfies the property. If not, the counterexample is

generated.

2.2 Kripke Model

Kripke Model is used to model the finite state model of the system [10]. Let AP be a set of atomic

proposition. A Kripke structure M over AP is a four touple M=(S, S0, R, L), where:

S is a finite set of states

S0 ⊆ S is the set of initial states

R ⊆ S × S is transition relation that must be total

L : S → 2AP is a function that labels each state with the set of atomic proposition being true in

that state

2.3 State in Kripke Model

Let V = {v1, v2, … vn} be the set of system variables, the variables in V range over a finite set D.

A state of a system can be described by giving values for all of the elements in V. A state is just a

valuation s : V → D for the set of variables in V. For example,

V = {v1, v2, v3}, D = {0,1} , then

 6

a state si is a valuation: <v1←1, v2←0, v3←1>, and thus we

derive the formula: (v1=1) ^ (v2=0) ^ (v3=1)

Figure 2.2 illustrates an example of that state in Kripke model.

 [v1, ¬v2, v3]

Fig. 2.2 A State of Kripke Model

2.4 Computation Tree

Computation tree, as illustrated in Figure 2.3, is formed by designating the initial state in Kripke

structure, and then unwinding (unrolling) the structure into an infinite tree. The computation tree shows

all of the possible executions starting from the initial state.

bc

ab

c

c ab c

cbc

ab
unwinding

Figure 2.3 Unwinding Computation Tree

 7

2.5 Computation Tree Logics

The formulae of computation tree logics are constructed from path quantifiers and temporal

operators:

1. Path quantifier:

A—“for every path”

E—“there exists a path”

2. Temporal modality:

Xp—p holds next time

Fp—p holds sometime in the future

Gp—p holds globally in the future

pUq—p holds until q holds

 8

Chapter 3

Proposed Approach

In this chapter, we will describe our overall approach. It is organized as the following sections.

Section 3.1 defines the problem. Section 3.2 gives an input example. Section 3.3 introduces the

framework. Section 3.4 determines the input language. Section 3.5 describes partitioning. Section 3.6

explains conversion techniques. Section 3.7 depicts some conversion examples. Section 3.8 elucidates

verifying process. And then finally, section 3.9 demonstrates a complete example.

 9

3.1 Problem Formulation

In our approach, the input is design assertions written in assertion language. The goal is to find out

whether there are conflicts among input assertions. If yes, the approach will report which assertions are

conflict and generate the counterexamples. The brief flow of our approach is illustrated in Figure 3.1.

Figure.3.1 The Brief Flow

3.2 Input Example
Here is a simple example of input assertions:

Assertion-i:
assert Ai always {@a; @b; @c} => eventually {@x; @y};

Assertion-j:
assert Aj never {@b; [2:5]; @x};

Assertion-k:
assert Ak always {@a; @b; @c} before {@x; @y; @z};

Our approach will check whether there are conflicts among these assertions.

 10

3.3 Framework

Figure 3.2 illustrates the framework of our approach to assertion checking. The proposed approach

contains three portions. The first one is to partition input assertions into assertion groups. In the second

portion, for each assertion group, we convert each assertion into deterministic finite automata (DFA)

and their respective properties. Finally, we take those DFA and properties to run symbolic model

checking. It will report contradiction and its counterexample if there is any conflict among input

assertions. We will describe each portion in details in the following sections.

Checking
Report

Verify DFA and
Properties with SMV

Convert Assertions into
DFA and Properties

Partition Assertions into
Assertion Groups

Assertions

Figure 3.2 The Framework

 11

3.4 Input Language

Assertion languages for design verification such as Property Specification Language (PSL)/(Sugar)

[17], OpenVera [18], and e [19,20] have been gaining in popularity and applied in industry. In order to

implement our approach, we formally define an assertion language as our input assertion language. For

simplicity, we choose the common set of above three popular assertion languages (PSL, OpenVera and

e) as our input assertion language and call it a PSL-like language. The common set of above languages

are the most frequently used common part of general design assertion languages, which is capable of

modeling most of real world design properties. Our simplified PSL-like assertion language has

following characteristics and assumptions:

� It consists of common basic parts of popular assertion languages.

� It has rigorously well-defined formal semantics and concise syntax.

� It cover all major temporal layer expressions and Boolean layer expressions.

� All primitive events are assumed clocked and synchronized.

� Properties are restricted to time move forward from left to right sequentially.

The assumption we made is only for the purpose of simplicity on implementation. It does not lose

the generality of common assertion languages. The major constructs of our language are described

Figure 3.3. For the syntax detail, please refer to "BNF Grammar of PSL-like Assertion Language in

Appendix A.

 12

In this thesis, we f

is the heart of the la

describe Boolean exp

describe the complex

3.5 Partitionin

To alleviate the st

solution. That is, we

checking. That is beca

conflict. Hence we d

Assertion := assert Id once TE
 | assert Id always TE
 | assert Id never TE
 | assert Id eventually TE
TE := Sequence and Sequence
 | Sequence or Sequence
 | not Sequence
 | Sequence => Sequence
 | Sequence <=> Sequence
 | Sequence until Sequence
 | Sequence before Sequence
Sequence := Event
 | {Event; Event; …; Event}
 | {[m:n]*Event; …; Event}
 | {[k]*Event; …; Event}
Figure 3.3 Constructs of our Language

ocus on the temporal layer expressions of general assertion languages, since this

nguage. The temporal layer expressions are used to define properties, which

ressions related over time. Temporal layer expression is sophisticated enough to

behavior of specification.

g Assertions

ate explosion problem in formal model checking, we come up with a reduction

put together the assertions which share common event variables to run model

use only the assertions which have common event variables are possible to have

efine an assertion group for our approach. An assertion group contains some

13

assertion members, such that assertion members may have some common event variables. Therefore,

the assertions belonging to different groups must not have any common variable.

Based on this idea, all input assertions will be partitioned into several assertion groups. An example

of assertion groups is illustrated in Figure 3.4, where EV are event variables.

 Figure 3.4 P

Input assertions:
A1: (EV1, EV2, EV4)
A2: (EV3, EV6, EV8)
A3: (EV2, EV4, EV7)
A4: (EV5, EV7)
A5: (EV6, EV9)
Partitioning
Output assertion groups:
The group-1:
A1: (EV1, EV2, EV4)
A3: (EV2, EV4, EV7)
A4: (EV5, EV7)
The group-2:
A2: (EV3, EV6, EV8)
A5: (EV6, EV9)
artition Assertions into Assertion Groups

14

We apply the techniques in [21-23] to parse all input assertions and collect all event variables for

building event variable table in the first pass. Then we partition all assertions by applying the algorithm

illustrated in Figure 3.5.

As the

put togethe

By pa

Furthermo

partitioned

function partition (all_assertions):
for i=1 to i=N do {

 for j=i+1 to j=N do {
if (Assertion j is not empty) do {

if (Assertion i and Assertion j have common event variables) do {
Assertion i := Assertion j ∪ Assertion j;
Assertion j := ∅;

};
};

};
if (any_merger_happened) do {

swap(Assertion i, Assertion last_merged);
Assertion i := ∅;
};

};
};
Figure 3.5 The Partition Algorithm

 shown pseudo code in the Figure 3.5, the assertions which have common variables will be

r.

rtitioning the assertions, the runtime of symbolic model checking is greatly reduced.

re , the time complexity of this algorithm is O(N2). In most real cases, the assertions may be

 to tens or hundreds of groups.

15

3.6 Assertion Conversion Techniques

The essential part of our approach is assertion conversion. After partitioning assertions, each

assertion is converted into a deterministic finite automata (DFA) and its corresponding CTL property.

The process is illustrated in Figure 3.6.

(4) Build
CTL formula

Assertioni' DFA Assetioni's Properties

Assertioni

(5) Assemble
CTL property

(3) Assemble
whole DFA

(2) Build
primitive DFA

(1) Decompose
an assertion

Figure 3.6 The Conversion Process

Before the conversion routines work, we derive the conversion templates for various assertion

types and temporal operators. These templates facilitate the conversion work in the later processes. In

the conversion process, the first step is to decompose the assertions into primitive sequences and to

extract temporal operators. We also determine the assertion types by those decomposition and

extraction.

 16

Then the second step is to build primitive DFA. Since the assertion type and temporal operator have

been known from the first step, we may decide which type to apply. In this step, the primitive sequence

is also decomposed further into the passive part and/or active part.

For example, consider a part of an assertion, {@a; @b} => {@x; @y}. We define the left hand side

({@a; @b}) of the temporal operator as the passive part; the right hand side ({@x; @y}) as the active

part. Once the premise condition is matched, the consequence sequence will be forced to hold. The

events with active attribute in that sequence will be forced to occur. So those events should be actively

driven. In terms of event correlation and contribution of stimulation for asserted argument, the event

attribute of an assertion is also determined by both assertion type and temporal operator. The attribute

categories are listed in Table 3.1.

Active
� eventually Seq.

� eventually Seq. and/or/not Seq.

Proactive
� always Seq.

� always Seq. and/or/not Seq.

C
(pa

o-active
ssive-active)

� always Seq. => Seq.

� always Seq. <=> Seq.

� always/once Seq. before Seq.

� always/once Seq. until Seq.

A
ttributes

Passive
� never Seq.

� never Seq. and/or/not Seq.

� once Seq.

� once Seq. and/or/not Seq.

Table. 3.1 Event Attributes

The third step is to assemble the whole composite DFA. The composite DFA is a structural DFA

which is constructed by combining DFA according to assertion type and temporal operators.

 17

The fourth step is to build Computation Tree Logic (CTL) formula. The primitive CTL formula are

constructed from path quantifiers and CTL temporal modalities. The atomic proposition is directly

extracted and converted from the events of original assertion. The proposition whose events have

passive attribute will be specified with the "E" path quantifier because they are free event variables in

that property. That means the event value depends on the path in the computation tree. On the contrary,

the proposition whose events have active attribute will be specified with "A" path quantifier because

their value is constrained to specific ones for the all paths. Temporal modalities in CTL are also

determined by original temporal operator and assertion types. For example, if it is an atomic event of a

sequence holding at the next time, just specify its temporal modality as "X".

The final step is to assemble the whole property by combining the CTL formula which were

converted at previous steps and the logical connectives which are determined according to the assertion

type. At the end, we get the DFA and the corresponding property by above conversion steps.

We explain the correctness of assertion conversion in our approach in Appendix B.

3.7 Conversion of Common Types of Assertions

According to assertion type and temporal operator, we pre-build the conversion templates which

are used in conversion steps. In this section, we depict how to build such conversion templates for

some most common used temporal operator or the assertions which use these operators.

 18

3.7.1 Conversion Template of "sequence" Operator

� Definition: A sequence is a finite series of events that represent a set of sequential behaviors,

which is enclosed in curly braces.

� Example: {@a; @b; not@c; @d};

� Converted DFA in SMV:

As in Figure 3.7 (a), we create the leave DFA of each event variable for current state and

previous states, which keep the current event states and the previous states.

a=T a=F
T

F
a-2

a=F
T

F
a-1

a=T
F

T

a-3

a=F a=T

a

F

b-1

a=T
T

b-2

F
a=T

b a=F a=F

F

T

c-1

a=Tc a=F

d

Figure 3.7 (a) The Converted Primitive DFA
19
T

Then, we construct the composite DFA by combining those leave DFA. It is illustrated in

Figure 3.7 (b).

b

a

c-1

b-2

a-3

b-1

a-1 a-2

{@a; @b; not@c; @d}

 c

d

Figure 3.7 (b) The Converted Composite DFA

� Converted Property in SMV:

According to the Computation Tree Logic (CTL), the sequence could be represented as the

unwinding computation tree in Figure 3.8.

d=T

c=F

b=T

a=T

Figure 3.8 The Computation Tree Logic

Therefore, we can describe its property with CTL formula the following:

EF(a=T & EX(b=T & EX(c=F & EX(d=T))))

 20

3.7.2 Conversion Example of "sequence-imply-sequence" Operator

We demonstrate an example of conversion template of sequence-imply-sequence. The conversion

steps are depicted in following respective figures.

� Assertion example: always {@a; @b; @c} => {@x; @y}

� Converted DFA in SMV:

Step 1 is to decompose the assertion into primitive sequences, they are {@a; @b; @c} and

{@x; @y}, and temporal operator "=>".

always {@a; @b; @c} => {@x; @y}

always {@a; @b; @c} => {@x; @y}

Main

temporal

operator

Primitive

sequence with

passive attribute

Determine the assertion type by

the assertion keyword "always"

and the main temporal operator

Primitive

sequence with

active attribute

 Figure 3.9 Decomposing The Assertion

The step 2 is to build primitive DFA. In Figure 3.10 (a), the primitive sequence {@a; @b;

@c} with passive attribute is converted into a leave DFA.

b-1

a-2a-1

b

a

 c

Then

Figure 3.10 (a) The Converted DFA for the Primitive Sequence

we build the
composite DF
A for the passive part by c

21
{@a; @b; @c}
omposing the leave DFA which

is shown in Figure 3.10 (a). The composite DFA is shown in Figure 3.10 (b).

 {@a;@b;@c} not{@a;@b;@c}

not{@a;@b;@c}

i abc
{@a;@b;@c}

Figure 3.10 (b) The Converted Composite DFA

On the other side, the primitive sequence {@x; @y} with active attribute is converted into

a leave DFA, which is shown in Figure 3.10 (c)

x y

x ← 1 y ← 1

Figure 3.10 (c) The Converted DFA

In step 3, we assemble the whole composite DFA. The composite DFA is assembled by

composing some leave DFA. The assembled DFA is illustrated in Figure 3.11.

The passive part The active part
y ← 1 x ← 1

x y

not{@a;@b;@c}

{@a;@b;@c}

not{@a;@b;@c}

i i abc

Figure 3.11 The Assembled DFA

 22

� Converted Property in SMV:In step 4, we build CTL formula for each decomposed primitives.

The respective converted CTL is shown in below.

always {@a; @b; @c} => {@a; @y};

EX(a=T & EX(b=T & EX(c=T -> AX(x=T & AX(y=T)))));

In this case, we apply the CTL temporal modality "X" for each events of sequences, because

they are the continuous next events in a sequence. For the passive sequence, the "E"

quantifier is specified due to there is some path for which the sequence matching codition

(@a; @b; @c) holds. On the contrary, for the active sequence, the "A" quantifier is specified

since it holds for every paths once the condition matched.

In step 5, we assemble the whole CTL property by combining the primitive CTL formula

which are converted in step 4. The converted CTL property is illustrated in Figure 3.12.

SPEC EG (a=T & EX(b=T & EX(c=T -> AX(x=T & AX(y=T))))) ;

 Figure 3.12 Assemble CTL Property

The final converted CTL property for this example is:

SPEC EG (a=T & EX(b=T & EX(c=T -> AX(x=T & AX(y=T)))));

 23

3.7.3 Conversion Example of "and" Operator

In the following section, we demonstrate the conversion results, but omit the conversion details.

� Definition: An expression with length-matching "and" operator succeeds when both

compound TE hold at the current cycle, and furthermore both complete in the same cycle.

� Example: {@a; @b; @c} and {@p; @q; @r}

� Converted DFA in SMV:

{@p; @q; @r}

{ b }

a-2
b-1

p

q-1

p-2

r

q

c

Figure 3.13 Converted DFA

� Converted property in SMV:

SPEC EF((a=T &
a

b

p

 p=T) & EX((b
-1
@a; @
a-1

; @c
=T & q=T) &

24
{@a; @b; @c} and {@p; @q; @r}
 EX(c=T & r=T)));

3.7.4 Conversion Example of "or" Operator

� Definition: An expression holds on a path iff at least one of events/sequences holds on the

path.

� Example: {@a; @b; @c; @d} or {@p; @q}

� Converted DFA in SMV:

{@a; @b; @c; @d}

{@a; @b; @c; @d} or {@p; @q}

{@p; @q}

Figure 3.14 Converted DFA

� Converted properties in SMV:

 SPEC EF(a=T & EX(b=T & EX(c=T & EX(d=T))) | (p=T & EX(q=T)));

3.7.5 Conversion Example of "until" Operator

� Definition of “@a until @b”: It holds in the current cycle iff: 1) @b holds at the current cycle

or at some future cycle and 2) @a holds at all cycles up to and including the earliest cycle at

which @b holds.

� Example: once @a until @b

� Converted DFA in SMV:

 25

We add an additional state named as "Fail" in the converted DFA. When it enters the "Fail"

state, it means it violates the assertion.

Figure 3.15 Converted DFA

� Converted properties in SMV

SPEC A[a=T U b=T]

or

SPEC !EF state=Fail;

3.7.6 Conversion Example of "before" Operator

� Example: always @a before @b;

� Converted DFA in SMV:

Figure 3.16 Converted DFA

 26

� Converted properties in SMV:

3.7.7

�

�

�

�

SPEC !EF state=Fail;

or
SPEC !EF(((a=F & b=T) & EF(a=T)) |

((a=F & b=F) & EG((a=F & b=F) & EF(a=T & b=T))));
 Conversion Example of "repetition" Operator

 repetitions of the repeat-expression such that the number falls

Example: {@a; [2:4]; @c}

Converted DFA in SMV

igure 3.17 Converted DFA

V:

Definition: any number of

within the specified range.

t4
a=T a t1 t2 t3

c=F i

F

Converted property in SM

c=T

c

a=F
SPEC =T & EX(EX(EX(c=T | EX(c= EX(T| EF(a

27
c=T))))));
c=T
c=F
a=T
c=T
a=F
c=F

3.7.8 Conversion Example of "eventually" Operator

 @c} => eventually {@x; @y}

 C

� Converted Property in SMV

The operator, "eventually" mean

cycle. That is it must hold at some ti

assertion, we have SMV to assign val

bound. That means the assertion will

upper bound should be greater than

ensures the assertion will be held in fin

SPEC EF(EG(a=T & E

� Example: always {@a; @b;

onverted DFA in SMV: �

a
b

c

"eventually" timeout

a-1
 b-1

i xy
{@a; @b; @c}

not{@a; @b; @c}

Figure 3.18 Converted DFA
{@a; @b; @c}
s

m

u

h

t

{@a; @b; @c}
not{@ @b; @c}
a-2
 that the prop

e in the inde

e non-determ

old at most o

he maximum

ite time.

X(b=T & EX

28
not{@a; @b; @c}
e

f

i

f

abc
rty holds at the current cyc

inite future. To implement

nistically until it reaches the

 upper limit time. Accordin

depth of time step of all i

(c=T & AF(x=T & AX(y=
x←T; y←T
le or at some future

the checking for this

 specified time upper

g to the analysis, this

nput assertions. That

T))))));

3.8 Verifying Assertions with SMV

After assertion conversion finishes, we apply symbol model verifier (SMV) to verify converted

asse s the converted set of DFA and set of properties are fed to SMV. If

ny conflict exists, the verifier will report the counterexample. Figure 3.19 illustrates the process.

3.9 A More Complete Example of Assertion Checking

In this section, we use a complete example to demonstrate our approach, and explain its process step

by step. First at all, as shown in Figure 3.20, there are six assertions in the input.

rtion . For each assertion group,

a

Figure 3.19 Verify Assertions with SMV

 29

assert A1 always {@a; @b; @c} => ev

In our approach, we p

algorithm, the six are as

Group 2, as Figure 3.21

se

entually {@x; @y;@z};
assert A2 eventually {{@m; [2:5]*@n; @o} or {@p;@q}};

assert A4 once {{[2]*{@m; @n; @o}} and {[2]*{@p; @q; @r}}};

assert A6 always (@a or @b) => {[3]*@w; @x};

assert A3 never {@b; [2:5]; @x};

assert A5 always {@a; @b; @c} before {@x; @y};

Assertion G
assert A1
assert A3
assert A5
assert A6

Assertion G
assert A2
assert A4

We take Assertion Gr

quences and temporal

result. It is illustrated in

artition the input assertions into assertion groups. According to the partitioning

sertions are partitioned into two groups, Assertion Group 1 and Assertion

 shows.

mposed into primitive

Figure 3.21 Partitioning Result

Figure 3.20 Input of the Example

roup 1:
 always {@a; @b; @c} => eventually {@x; @y; @z};
 never {@b; [2:5]; @x};
 always {@a; @b; @c} before {@x; @y};
 always (@a or @b) => {[3]*@w; @x};

roup 2:
 eventually {{@m; [2:5]*@n; @o} or {@p; @q}};
 once {{[2]*{@m; @n; @o}} and {[2]*{@p; @q; @r}}};

oup 1 to demonstrate the process. In the step 1, it is deco

 operators, and the conversion template is applied according to the decomposed

 Figure 3.22.

30

Then at step 2, the primitive DFA are built according to decomposed primitive sequence . At step3,

composite DFA is assembled by each primitive DFA and temporal operators. The converted DFA of

Assertion Group 1 is depicted in Figure 3.23.

Similarly, assertion A3, assertion A5 and asse

respectively.

Figure 3.23 Converte

A1: always {@a; @b; @c} => eventually {@x; @y; @z};

 "eve ut i

 Figure 3.22 Decomposed Assertions of Assertion Group 1

y; @z};

x};

assert A1 always {@a; @b; @c} => eventually {@x; @

assert A3 never {@b; [2:5]; @x};

assert A5 always {@a; @b; @c} before {@x; @y};

assert A6 always (@a or @b) => {[3]*@w; @

abc
rtion A6 are shown in the Fi

d DFA from Assertion A1

31
xyz
; @c}{@a; @b
not{@ @b; @c}
 not{@a; @b; @c}
x←T; y←T; z←T
not{@ @b; @c}
ntually" timeo

{@ @b; @c}
gure 3.24, 3.25 and 3.26

Figure 3.24 Converted DFA from Assertion A3

A3: never {@b; [2:5]; @x};

b=F

x=Fx=F i b t t1 t t

fail

b=T x=F
t2 3 54

x=T x=T x=T x=T

A3: always {@a; @b; @c} before {@x; @y};

abc xyz i

fail

{@a; @b; @c}

not{@ @b; @c}

not{@a; @b; @c } & not{@x; @y}

{@x; @y}

{@x; @y}

c } & not{@x;

i

not

 @y} {@a; @b; @

not{@ax; @y}

Figure 3.25 Converted DFA from Assertion A5

w x

b

a
w w

x←T
w←T

(@ a or @b)
a=T

a=T
Figure 3.26 Converted DFA from Assertion A6
A6: always (@a or @b) => {[3]*@w; @x};
32

At the step 4 and step 5, CTL formula are built and then properties are assembled with them. The

onverted properties are illustrated in the following.

After the conversion is done, the converted DFA and properties are fed into SMV for checking. The

port is shown in Figure 3.27.

g

c

(D

Property of assertion A1:
SPEC !EF(EG(a=T & EX(b=T & EX(c=T & !AF(x=T & AX(y=T & AX(z=T))))));

Property of assertion A3:
SPEC !EF(b=T & EX(EX(EX(x=T | EX(x=T | EX(x=T | EX(x=T)))))));

Property of assertion A5:SPEC !EF state=Fail;

Property of assertion A6:
SPEC EG((a=T | q=T) -> AX(w=T & AX(w=T & AX(w=T & AX(x=T)))));

c

re

Conflicts found:
DFA1 ↔ Prop3 conflicted
DFA1 ↔ Prop5 conflicted

Unilateral conflicts, suspected conflicts alerted

Mutual conflicts, definite conflicts reported

a

A

Conflicts found:
DFA3 ↔ Prop6 conflicted
DFA6 ↔ Prop3 conflicted
As the Figure 3.27 s

ainst Property3, DFA1

cording to our analys

FA1,Property5) are un
Figure 3.27 Checking Result
hows, there are four conflicts found in this assertion group. They are DFA1

 against Property5, DFA3 against Property6, and DFA6 against Property3.

is from the checking results of SMV, where (DFA1,Property3) and

ilateral conflict, so they are suspected conflicts alert. That means it could be

33

ind

rtions. The other two, (DFA3, Property6), are

m lict. That means they are definite conflicts.

eed conflict or either one of two is redundant. Therefore, users who perform our approach can

inspect the result to identify the errors among the asse

utual conf

 34

Chapter 4

Case Study

4.1 Case Description

We choose the assertions for the Bus Transaction Protocol of PCI Local Bus Specification as our

case. The assertions cover Bus Transfer Control, Addressing, Byte Lane and Byte Enable, Bus Driving

and Turnaround, as well as Transaction Ordering and Posting [26].

In general, the assertions consist of two parts: PCI master and PCI target. There are 41 assertions in

this case study.

4.2 Experimental Environment

We implement our approach in C program and some shell scripts. They are executed on Sun Sparc

 35

Workstation with 1 GB memory on 400MHz speed.

4.3 Experimental Result

We partition the input assertions into 5 and 4 assertion groups for PCI master and PCI target

pectively.

ected conflicts alerted),

1 mutual conflicts, (definite conflicts reported).

The experimental result is depicted on Table. 4.1.

Case
No. of

Assertions

No. of
Assertion
Groups

No. of
Unilateral
Conflicts

No. of
Mutual

Conflicts

Runtime
(by second)

res

After execution, it found:

4 unilateral conflicts (susp

PCI Master 25 5 2 1 92

PCI Target 16 4 1 0 41

Table 4.1 Experimental Result of Case Study

36

Chapter 5

Conclusions and Future Works

5.1 ions

We check esign assert by means of converting assertion into

corresponding DFA and pr the others using SMV.

The major features of our approach are:

� Without referring the design, only the assertions required,

� Without need of simulation and test patterns,

� Stand-alone, off-line processing, may check assertions prior to design verification,

� Greatly alleviating the state explosion problem of SMV.

operties and then checking each of them against

Conclus

 propose a technique to d ions

 37

5.2 Discussion

Ensuring a set of assertions without any conflict can increase our confidence in the correctness of

 specification modeling. Not necessary all potential conflicts could be found by using our approach.

onflicts are guaranteed to be definite conflicts. According to our

experience, we found it is hard to detect redundancy of assertions merely by static formal checking

m assertions.

 of

correlation stimulation of assertions under certain combinations in the input assertions. Under this

cumstances, the assertions cannot contribute stimulus correlation to argue against each others. For

rtions in an assertion group illustrated below.

Even

are b

revea

That

F

defin

the

But all detected mutual assertion c

fro

The most serious hurdle to apply this approach to find out all possible conflicts is lack

cir

example, there are two asse

assert never {@a; @b; @c};
 and @c), but the two assertions

nnot contribute stimulation for each other. It

rrelative.

urthermore, the definition of our acceptable input assertion language must be very clear and

ite without any ambiguity; otherwise, it tends to induce problem caused by different interpretation

assert never (@a; and @b) or (@a and @c);

 the above two assertions share all common variables (@a, @b

oth with the same "passive" attribute. So they ca

ls that the ideal input set is the assertions with variety of event attributes and highly co

 provides enough assertive statement against each others.

38

of language.

As for the computational complexity, our experiences showed that runtime is acceptable for up to

hundreds of input assertions in an assertion group.

In summary, symbolic model checking, in its purest basis at least, is feasible to apply conflict

checking for assertion without design model and test patterns. Even it is more difficult than anticipated

during the developing process, particularly on coping with versatile combination of input assertions,

the

ctions such as Logic Reasoning techniques may be considered to enhance our

apability of checking. Next, we will input the simulation results or waveforms to augment the

formation about assertions. By this way, we can clearly identify conflicts and redundancy among

idea has been shown conceptually correct and furthermore this approach could be practically

implemented for the industrial usage.

5.3 Future Works

Some research dire

c

in

assertions and also check assertion violations.

Furthermore, by adding certain converting process, we may convert counterexample of SMV into

industrial standard Value Change Dump (VCD) format. That information can help user quickly identify

the problem pointed out by SMV.

 39

As for input language, we should accept the full set of common-used language by enlarging the

con version templates for remaining types of that language constructs and enriching the conversion

rules for all temporal operators.

 40

A

 Grammar of PSL-like Assertion Language

Compilation := Assertion_Collection

ppendices

Appendix A: The BNF

 ;

Assertion_Collection := Assertion
 | Assertion_Collection Assertion ;

Assertion := "assert" Assertion_Name Temporal_Assertion_Kinds ";" ;

Assertion_Name := IDENTIFIER ;

Temporal_Assertion_Kinds := Once_Assertion
 | Always_Assertion
 | Never_Assertion
 | Eventually_Assertion ;

Once_Assertion := "once" Temporal_Or_Expression
 | "once" Temporal_And_Expression "until" Temporal_And_Expression ;

Always_Assertion := "always" Temporal_Or_Expression
 | "always" Temporal_Or_Expression "=>" Temporal_And_Expression
 | "always" Temporal_Or_Expression "=>" "eventually" Temporal_And_Expression
 | "always" Temporal_And_Expression "<=>" Temporal_And_Expression
 | "always" Temporal_And_Expression "before" Temporal_And_Expression ;

Never_Assertion := "never" Temporal_Or_Expression ;

Eventually_Assertion := "eventually" Temporal_Or_Expression ;

Temporal_Or_Expression := Temporal_And_Expression

 | Temporal_Or_Expression "or" Temporal_And_Expression ;

Temporal_And_Expression := Temporal_Compound_Expression

 41

| Temporal_And_Expression "and" Temporal_Compound_Expression ;

mporal_Compound_Expression := Temporal_Repeat_ExpressionTe

 | "not" Temporal_Compound_Expression ;

Temporal_Repeat_Expression := Temporal_Primitive

 | Repaet_Times Temporal_Repeat_Opt
 | Repaet_Times ;

epaet_Times := "[" Repaet_Range

"]"
um

R
 | "[" Repaet_N "]" ;

INTLITERAL

Repaet_Range := ":" INTLITERAL ;

epaet_Num := INTLITERAL

R ;

emporal_Repeat_Opt := "*" Temporal_Compound_Expression

T ;

Temporal_Primitive := Event

 | "(" Temporal_Or_Expression ")"
 | "{" Temporal_Sequence "}" ;

Temporal_Sequence := Temporal_Or_Expression

 | Temporal_Sequence ";" Temporal_Or_Expression ;

Event := "@" Event_Name ;

Event_Name := "CYC"
 | IDENTIFIER ;

IDENTIFIER := Letter(Letter|Digit|_)* ;

TLITERAL := Digit

IN + ;

etter := [A-Za-z] ;

L

Digit := [0-9] ;

 42

Appendix B: Proving of Assertion Conversion

The conversion processing of our approach consists of two parts. One is converting assertion to

CTL property. The correctness of this part is comprehensive. Since PSL-like language and CTL

property have similar temporal semantics in temporal specification in terms of language feature. The

other is converting assertion into DFA. The most crucial part in our approach is assembling the whole

DFA with pieces of DFA. Now, we would like to explain its correctness below.

1. A sequence is part of language clause which follows regular expression grammar (RE

grammar).

2. Sequences and sequence operators belong to regular language set.

3. A temporal expression can be decomposed to primitive sequences and operators.

4. By Kleene’s Theorem, each primitive sequence has its corresponding finite automaton.

5. A larger finite automaton can be composed of pieces of small finite automata by applying our

approach which belong to operations of RE grammar.

6. So, the combined larger finite automaton can represent the collection of DFA pieces which are

converted from original assertion.

Why assembling a composite DFA from piece sequences in our approach is correct in theory? Let's

explain it in more detail. First of all, we may see that the most primitive item operated by our approach

 43

is a sequence, which describes single- or multi-cycle behavior built from a series of Boolean

expressions over time. The most atomic is a Boolean expression. In Property Specification Language

SL), the sequence named as Sequential Extended Regular Expressions (SEREs)[24], that extends

the

is part of the regular

lang

concate nion, and repetition which follow regular expression definition.In our approach, we

dec heorem in formal language,

wh utomaton, or

tran o , every

lang

means primitive sequence. This is just what we

do

DFA w the composing rule which belong to regular expression set.

(P

 set of regular expression (RE) by definition for some additional temporal operations.

A sequence defined in our language is same as the sequence in PSL except pruning out some

non-necessary sequence operations without losing capability for behavior specification. It keeps all our

operations applied on sequences belonging to regular expression set.

By definition from formal languages, a sequence of our PSL-like language

uage grammar, which is also a context free grammar. The basic operations in our approach are

nation and u

ompose an assertion down to some primitive sequences. By Kleene’s T

ich states that any language which can be defined by regular expression, or finite a

siti n graph can be defined by all three methods. It implies the subordinate proposition

uage that can be defined by a regular expression can also be defined by a finite automaton. That

we can find a corresponding finite automaton for each

to convert primitive sequence to a piece finite automaton. Then, we assemble the whole composite

ith those primitive DFA by applying

So, the composed larger DFA can represent the collection of DFA pieces, and which are converted

from the original assertion. Then, we can prove our approach is correct.

 44

Fig. B-1 Proving Our Approach

 45

Bibliography

[1] Thomas Kropf, and Robert Bosch GmbH, “Introduction to Formal Hardware Verification”,

Springger-Verlag Berlin Heidelberg, Germany, 1999.

[2] Harry D. Foster, "Property Specification: The Key to an Assertion-Based Verification Platform",

Verplex Systems, Inc., 2000.

[3] Harry D. Foster, Adam C. Krolnik, and David J. Lacey, “Assertion-Based Design “ 2nd ed., Kluwer

Accademic Publishers, 2004.

[4] Ben Cohen, “Using PSL/Sugar with Verilog and VHDL, Guide to Property Specification Language

for ABV”.

[5] Carnegie Mellon University, http://www-2.cs.cmu.edu/~modelcheck/.

[6] ITC-IRST, Trento, Italy; SCS, Carnegie-Mellon University, Pittsburgh, PA, USA; DSI, University

of Milano, Milano, Italy, "NuSMV: a new Symbolic Model Verifier",

http://nusmv.irst.itc.it/NuSMV/papers/cav99/html/index.html.

[7] Roberto Cavada, Alessandro Cimatti, Emanuele Olivetti, Gavin Keighren, Marco Pistore and Marco

Roveri, "NuSMV v2.2 User Manual", http://nusmv.irst.itc.it/NuSMV/.

[8] Roberto Cavada, Alessandro Cimatti, Gavin Keighren, Emanuele Olivetti, Marco Pistore, and Marco

 46

Roveri, "NuSMV 2.2 Tutorial", http://nusmv.irst.itc.it/NuSMV/.

[9] K. L. McMillan, "The SMV language", Cadence Berkeley Labs version of SMV,

http://www.cis.ksu.edu/santos/smv-doc/language/language.html.

0] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled, “Model Checking”, The MIT Press,

[11] Model Checking”, Kluwer Academic

[12] Robert C. Koons , “Doxastic Paradox and Reputation Effects in Iterated Games”, Proceedings of the

[13] ong, and Melissa Smartt, “Assertional Checking and Symbolic

ER, January 1979.

tons for Branching Time

[15] oncurrent Systems in CESAR", In

[1

Cambridge, 1999.

 Kenneth L. McMillan, Edmund M. Clarke, “Symbolic

Publishers, 1993.

4th conference on Theoretical aspects of reasoning about knowledge, March 1992.

 J. Mack Adams, James Armstr

Execution: An Effective Combination for Debugging”, Proceedings of the 1979 annual conference,

ACM/CSC-

[14] E. M. Clarke and E. A. Emerson, "Synthesis of Synchronization Skele

Temporal Logic", in logic of programs: workshop, Yorktown Heights, NY, May 1981, volume 131

of Lecture Notes in Computer Science.Springer-Verlag, 1981.

 J.P. Quielle and J. Sifakis, "Specification and Verification of C

Proceedings of the Fifth International Symposium in Programming, volume 137 of Lecture Notes in

Computer Science.Springer-Verlag, 1981.

[16] Thomas Kropf, "Formal Hardware Verification - Methods and Systems in Comparison",

Springger-Verlag, Berlin Heidelberg, Germany, 1997.

 47

[17] Accellera Organization, "Property Specification Language Reference Manual", V

2004.

ersion 1.1, June 9,

[19] ., “e Language Reference Manual” V4.3, 2004,

[20] esign Verification with e", Prentice Hall Modern Semiconductor Design Series,

[21]

[23] GNU, "Flex reference Manual", Version 2.5.31, GNU, Free Software Foundation, Inc.,, 27 March

[24]

[25] rd Ed., 2001.

[18] Synopsys, Inc., "OpenVera 1.0 Language Reference Manual Version 1.0", March 2001.

Verisity Design, Inc

(http://www.ieee1647.org/downloads/prelim_e_lib.pdf)

 Samir Palnitkar, "D

2003.

 Charles N. Fischer, Richard J. LeBlanc, Jr., “Crafting A Compiler with C”, 1991.

[22] GNU, "Bison reference Manual", version 1.875, GNU, Free Software Foundation, Inc., 28

December 2002.

2003.

 Daniel I. A. Cohen, “Introduction to Computer Theory", 2nd Ed., Oct. 25, 1996.

 Peter Linz, "An Introduction to Formal languages and Automata", 3

[26] PCI Special Interest Group, "PCI Local Bus Specification", Revision 2.3, 1998.

 48

Vita
ia-YuaCh n Uang receiverd the B.S. degree in electronics engineering from National Taiwan Institute

T aboratories

(C with Maojet Technology Corp.

from 1 tion, RTL synthesis, and timing analysis.

echnology. From 1989 to 1996, he worked for Computer and Communications Research L

CL) of Industrial Technology Research Institute (ITRI). He has worked

996 to date. His major experiences are on design verifica

 49

	Automatic Assertion Checking Using Formal Symbolic Model Verifier
	Automatic Assertion Checking Using Formal Symbolic Model Verifier
	Master of Science
	Computer Science

