B F RS RANRTE Sy kg R 3P

Automatic Assertion Checking Using Formal Symbolic Model Verifier

hEFE YRy B

ik B4

PoE AR A4 e AT

B RPN REFRORD RS
Automatic Assertion Checking Using Formal Symbolic Model Verifier

oy o4 idben Student : Chia-Yuan Uang
hERRE R RY Advisor : Jing-Yang Jou
B = #h Jen-Hui Chuang
B oz 2o+ F
T T agmuga g
i,
AThests

Submitted to Degree Program of Electrical Engineering and Computer Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Computer Science

June 2005

Hsinchu, Taiwan, Republic of China

PEARAY e &Y

i I ARPEEA% ;ﬂ%mg\p’; e P 1>

Frd: dten R rRHHEL
1n W, iz 4

R < §

TWFAE R FTAFE ALs

e
v Ep (Assertion) 3 R ERIES © 5§ S RPHE L o7 B
MR SR LR 2, & A R S T R kY § R
e A AR - BB iR R B BER AR 0 3 E A RAURHE hiEp
it A5 " Ur p &8 (Deterministic Finite Automata) % {28 (Property),
£ 1% Ry ek R A %% B (Symbolic Model Verifier)$ g #+48{-i
FERA%E, NN 2LF T FHRFd P2 EPERE &

g Bl E NP Fa 2 % 7|33 (Simulation) 4 # R -

Automatic Assertion Checking
Using Formal Symbolic Model Verifier

Student: Chia-Yuan Uang Advisor: Dr. Jing-Yang Jou
Advisor: Dr. Jen-Hui Chuang

Master Program of Electrical Engineering and Computer Science

National Chiao Tung University

Abstract

Assertion based verification-(ABYV) methodology -has emerged as a paradigm of high-level
design verification. An assertion is used;to specify what is to be exercised and verified against the
intended functionality. However assertions which may contain conflicts among themselves are not
inspected until later simulation stage.In this thesis, we present an automatic assertion checking
which utilizes an existing symbolic model verifier as a model checker to check if there is any
conflict among input assertions. We propose an approach to convert the assertions into structural
Deterministic Finite Automata (DFA) and their corresponding properties. Those converted DFA
and properties are then checked by using formal model verifier. This approach may facilitate
assertion checking to find out potential conflict in the early stage of design activities without

simulation.

i

Acknowledgements

First and foremost I wish to express my deepest gratitude to my advisor, Professor Jing-Yang
Jou (% # 4§). He has provided a model of a holistic approach to perspective of problems, which I
have been learning over the past few years since I joined his research group. I very much appreciate
his constructive criticism and continual patient reviews on this thesis, which even provided
meticulous attention to grammatical detail on my draft. Particularly, I wish to thank to his patience
on my struggling on nailing the research topic.

My thanks go out to my honorary advisor, Professor Jen-Hui Chuang (3 i=#&) of Department of
Computer and Information Science (CIS) He is extremely generous to provide exceptional freedom
for me to fully join the studying group under Department of Electronics Engineering.

I also want to thank the esteemed professors, Dt Juinn-Dar Huang (% % i£), Dr. Chun-Yao
Wang (2 % £), and Dr. Chien-Nan Liu (£]2& ¥) for their marvelous advice and comments on this
thesis.

I have to especially appreciate my senior and peer mentor, Chia-Chih Yen (g £.%), Ph.D.
candidate, for his warm-hearted help. His proof-reading provided many stylistic suggestions and
crucial aids in writing this thesis. The depth of his knowledge and willingness to advise me and
share his experience was extremely valuable through all stages in my studying.

Also, I wish to thank IRST (Trento, Italy), etc. for opening NuSMV for my experiments.

iii

Table of Contents

ADBSIract (CRINESE)vviiiiti i e e e e e 1
Abstract (English) oo e 1
ACKNOWIEdZEMENTSueiiiee e e e e 111
Table of CONENLSouuin e v
List Of Tablesoneii e e vii
35 0 i S U viil
Chapter I Introduction ... i e 1
1.1 Assertion-based Verification «i...7 .o ..o 1
1.2 Motivation o o i 2
L3 OVEIVIEW .ttt e 3
1.4 Organization of This ThesiScooocviiiiiiiiiii, 4
Chapter 2. Preliminarycooooviiiiiiiiiin e, 5
2.1 Symbolic Model Checkingccvviiiiiiiiiiiiiii e 5
2.2 Kripke Modeloooiiiii 6
2.3 State in Kripke Modelcoooiiiii 6
24 Computation TTeEovvuriitie e e e e 7
2.5 Computation Tree LogICS ...ovvviiriiiiii i 8

iv

Chapter 3. Proposed Approachc.ooiiiiiiiiiiiiii 9

3.1 Problem Formulationc.ooiiiiiii 10
3.2 Input EXampleoooviiniiii e 10
3.3 Frameworkoooiiiiiii e 11
3.4 Input Languageovviiniiiii i e 12
3.5 Partitioning ASSEITIONSevreiinieeiteeiieateetiieeeaneerneenannens 13
3.6 Assertion Conversion Techniquescoevviiiiiiiiiiie e, 16
3.7 Conversion of Common Types of AssSertionsceceeeeeennnnnnn. 18
3.7.1 Conversion Template of "sequénce" Operatorc.eeeeennnnn 19

3.7.2 Conversion Example of "sequence-imply-sequence" Operator 21

3.7.3 Conversion Example of "and" Operatorcccceevviiniiniinnn.. 24
3.7.4 Conversion Example of "or" Operatorccocvviiviiiiiiinnnn. 25
3.7.5 Conversion Example of "until" Operatorcccoevvviniinnnnn.. 25

3.7.6 Conversion Example of "before" Operatorc.ceeviinne. ... 26

3.7.7 Conversion Example of "repetition" Operatorcceeevvennnn. 27

3.7.8 Conversion Example of "eventually" Operator 28
3.8 Verifying Assertions with SMV 29
3.9 A More Complete Example of Assertion Checking 29
Chapter 4 Case Studycooviiiiiiiiiii e 35

4.1 Case DeSCIIPLION ...oe.etit ettt et e e e e eeeeeeee e eaaeans 35

4.2 Experimental Environmentcoooiiiiiiiiiiiie e 35

4.3 Experimental Result ... 36
Chapter 5 Conclusions and Future Worksc..cccccoiiiiiinn, 37
5.1 ConCIUSIONS ...ttt e 37

5.2 DISCUSSION .. .etuttttent ettt et et et ettt et e e eeee s 38

5.3 Future Workss ... 39
APPENAICES .. .eeetiit ettt et e e e e 41

A The BNF Grammar of PSL-like Assertion Language 41

B Proving of Assertiofl CONVEISION ..o .ouuieeeniiinn it eeeieeaanns 43
Bibliography ... i i 46
VIt 49

vi

List of Tables

Table. 3.1

Table. 4.1

Event Attribute

Experimental Result of Case Study ...

vil

List of Figures

Figure. 2.1 Symbolic Model Checkingcooiiiiiiiiiiiiiii e 5
Figure 2.2 A State of Kripke Model ... 7
Figure 2.3 Unwinding Computation Treecooviiiiiiiiiiiiiiiiiiii e 7
Figure 3.1 The Brief Flow ... 10
Figure 3.2 The Framework 11
Figure 3.3 Constructs of our Languageccoviiiiiiiiiiiiiiieie e, 13
Figure 3.4 Partition Assertions into Assertion Groupsccccvvevvieeneennnn. 14
Figure 3.5 The Partition Algorithm ... 0ile.. ..o 15
Figure 3.6 The Conversion PEOCESS . .oti . ieivie i 16
Figure 3.7 (a) The Converted Primitive DEA".................coiiiiiii e 19
Figure 3.7 (b) The Converted Composite DFAccoiiiiiiiiiiiiiiien, 20
Figure 3.8 The Computation Tree LOgICc.oviviiiiiiiiii e, 20
Figure 3.9 Decomposing The ASSertioncceveiiiiiiiiiiiiiniiiinenan.. 21

Figure 3.10 (a) The Converted Primitive DFA for the Primitive Sequence 21

Figure 3.10 (b) The Converted Composite DFAccciiiiiiiiiiiiieenne. 22
Figure 3.10 (c) The Converted DFAot 22
Figure 3.11 The Assembled DFAo 22
Figure 3.12 Assemble CTL propertyc.overiiiiiiiiiiiiieie e, 23

viii

Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20
Figure 3.21
Figure 3.22
Figure 3.23
Figure 3.24
Figure 3.25
Figure 3.26

Figure 3.27

Converted DFA ... 24
Converted DFA ... 25
Converted DFA ... 26
Converted DFA ..o 26
Converted DFA ..o 27
Converted DFA ... 28
Verify Assertions with SMV ... 29
Input of the Exampleoooiiiiiiii e 30
Partitioning Result’ it o 30
Decomposed Assertions of Assertion Groupcceeeeeenn. 31
Converted FA fromi Assertion Al ..o 31
Converted FA from Assertion A3cooiiiiiiiiiiiiiinn, 32
Converted FA from Assertion ASoooiiiiiiiiiiiiiiinn, 32
Converted FA from Assertion A6coooviiiiiieiiiininnn. 32
Checking Resultcoooiiiiiii e 33

X

Chapter 1

Introduction

1.1 Assertion-based Verification

Due to the increasing complexity of today's hardware design, functional verification has become a
major bottleneck in the design process. Design teams reportedly spend as much as 50 to 70 percent of
their time and resources on the functional verification effort. The advent of new technologies—such as
constrained-random test generation, assertion-based verification, coverage-driven verification, and
formal model checking [1]—has changed the way we see functional verification productivity, where
assertion-based verification methodology has emerged as a paradigm of functional verification and
been implemented in verification flow in the industry.

While the term assertion-based verification (ABV) [2-4] is often used to refer to the use of

assertions as monitors in simulation, ABV more correctly refers to the use of assertions in both

simulation and formal verification. Assertions are a central part of both simulation and formal model
checking. They are mathematically precise descriptions of behavior that must hold or that constrains
the operating environment of the block.

While assertion coding is a major task of designers or verification engineers, the debugging process

of assertion writing is where efficiency improvements are required.

1.2 Motivation

With design complexities rapidly exploding, assertion modeling has become more and more
complicated. Assertion writing is sophisticated afid. is prone to make mistakes due to some common
causes: misinterpretation of specification, ambiguity of protocol, and incompleteness of specification.
Usually, coded assertions have not.becn inspecfed until design simulation. In fact, within the assertion
draft, most of conflicts could be detected automatically to improve the productivity of designers.

The basic goals of any comprehensive assertion writing process are driven by:

1. It must check that the design behaves everything it is supposed to do.

2. It must check that the design never do anything it is not supposed to do.

Today, assertion writers do not have any methods to check their assertions at the early stage of
assertion development flow. Instead, they respond to assertion violations reported by simulation tools
and simulate it again after correcting their assertion. This is an error-prone, and time wasting process

that continues throughout the early verification flow.

To the best of our knowledge, there has been not any related work on assertion self-checking in
design automation field. Some analogous researches on hypothetical syllogisms field discuss finding
out the causes of that (antinomy) conflict from opposing assertions. Most of which are based on
dialectical reasoning [12]. The other few work were proposed from software validation field. [13] :

Motivated by this trend and background, we attempt to study an approach to automatically find out

if any conflicts among assertions.

1.3 Overview

In this thesis, we provide an approach to éheCking assertion conflicts for design verification based
on a PSL-like assertion language using syn;bolic inodei checking [10,11].

In our approach, we construct a framework to convert the input assertions into composite structural
deterministic finite automata (DFA) and their corresponding properties, which can be reflected as
assertion intent in specification modeling. By utilizing symbolic model verifier (SMV) [5,6], we may
check the behavior against its properties. If any conflict exists in input assertions, our approach will
report the violation of argument and its counterexample.

Symbolic model checking based on binary decision diagrams (BDDs) [10,11] is an efficient
automatic verification technique that has been applied successfully to many industry -scale hardware
circuits. Therefore we utilize the existing symbolic model checking package (NuSMV [6-8]) as a

formal model checker to find out the conflict between any two assertions.

Here, we propose an approach to checking assertions in early stage without requiring design
content and its testbench. Instead, we just rely on the statement of an assertion itself. This enables the
conformance checking of assertions being done prior to running time-consuming simulation process.
We also come out with a means to avoid the common state-explosion problem while using symbolic
model checker. Therefore, most assertion conflicts can be detected quickly and easily with this

methodology.

1.4 Organization of This Thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces the basis of symbolic
model checking, which is used as the verifier m’our approach. We explain the detail of our approach to
assertion checking in Chapter2. A'case study and expetrimental result are illustrated in Chapter 4. The

conclusions and future works are touched upon in Chapter 5.

Chapter 2

Preliminary

Our approach uses Symbolic:Model Verifier (SMV) as a tool to check converted assertions. In this

section, we introduce preliminary knowledge about Symbolic Model Checking.

2.1 Symbolic Model Checking

Symbolic Model Checking [10,11,14-16] is an automatic technique for verifying properties of a

finite state model of a system. Its flow is illustrated in Figure 2.1.

Finite State
Model |

System) Model Checker {—* o fot

' Properties |~

Figure 2.1 Symbolic Model Checking

The general approach of symbolic model checking is to describe the finite model for the behavior
of the system by giving as Kripke structure, and to define the expected property of the system as
Temporal Logic. It checks whether finite model satisfies the property. If not, the counterexample is

generated.

2.2 Kripke Model

Kripke Model is used to model the finite state model of the system [10]. Let AP be a set of atomic
proposition. A Kripke structure M over AP is a four touple M=(S, S0, R, L), where:
S is a finite set of states
Sy < Sis the set of initial state; |
R < § x S'is transition relation that must-be total
LS —»2"is a function that lébels each state with the set of atomic proposition being true in

that state

2.3 State in Kripke Model

Let V= {vy, vo, -+ vy} be the set of system variables, the variables in } range over a finite set D.
A state of a system can be described by giving values for all of the elements in V. A state is just a

valuation s: V — D for the set of variables in V. For example,

V= {Vla Vo, V3}a D= {Oal} 5 then

a state s; 18 a valuation: <v;<—1, v,<—0, v3<—1>, and thus we
derive the formula: (vi=1) * (v,=0) " (vs=1)

Figure 2.2 illustrates an example of that state in Kripke model.

SN

Fig. 2.2 A State of Kripke Model

2.4 Computation Tree
Computation tree, as illustrafedyin Figure 2.3, is formed by designating the initial state in Kripke
structure, and then unwinding (unfolling) the stricture into an infinite tree. The computation tree shows

all of the possible executions starting from the initial state.

e (@)
B ® © ©

Figure 2.3 Unwinding Computation Tree

2.5 Computation Tree Logics

The formulae of computation tree logics are constructed from path quantifiers and temporal

operators:

1. Path quantifier:
A—"for every path”

E—“there exists a path”
2. Temporal modality:

Xp—> holds next time
Fp——p holds sometime in the future
Gp—p holds globally in the future

pUqg—> holds until q holds

Chapter 3

Proposed Approach

In this chapter, we will describe our overall approach. It is organized as the following sections.
Section 3.1 defines the problem:.Section 3.2 gives an input example. Section 3.3 introduces the
framework. Section 3.4 determines the input language. Section 3.5 describes partitioning. Section 3.6
explains conversion techniques. Section 3.7 depicts some conversion examples. Section 3.8 elucidates

verifying process. And then finally, section 3.9 demonstrates a complete example.

3.1 Problem Formulation

In our approach, the input is design assertions written in assertion language. The goal is to find out

whether there are conflicts among input assertions. If yes, the approach will report which assertions are

conflict and generate the counterexamples. The brief flow of our approach is illustrated in Figure 3.1.

l‘ Assertions

o,

Automatic

Assertion Checking

—

Conflict Counter-
ornot ? example

Figure.3.1 The Brief Flow

3.2 Input Example

Here is a simple example of input assertions:

Assertion-i:

assert Ai always {@a; @b; @c} => eventually {@x; @y};
Assertion-j:

assert Aj never {@b; [2:5]; @x};
Assertion-k:

assert Ak always {@a; @b;@c} before {@x;@y; @z};

Our approach will check whether there are conflicts among these assertions.

10

3.3 Framework

Figure 3.2 illustrates the framework of our approach to assertion checking. The proposed approach
contains three portions. The first one is to partition input assertions into assertion groups. In the second
portion, for each assertion group, we convert each assertion into deterministic finite automata (DFA)
and their respective properties. Finally, we take those DFA and properties to run symbolic model
checking. It will report contradiction and its counterexample if there is any conflict among input

assertions. We will describe each portion in details in the following sections.

Partition Assertions into

Assertion Groups
= =

Convert Assertions into
DFA and Properties
= =
Veritfy DFA and
Properties with SMV

Checking

Repor

Figure 3.2 The Framework

11

3.4 Input Language

Assertion languages for design verification such as Property Specification Language (PSL)/(Sugar)
[17], OpenVera [18], and e [19,20] have been gaining in popularity and applied in industry. In order to
implement our approach, we formally define an assertion language as our input assertion language. For
simplicity, we choose the common set of above three popular assertion languages (PSL, OpenVera and
e) as our input assertion language and call it a PSL-like language. The common set of above languages
are the most frequently used common part of general design assertion languages, which is capable of
modeling most of real world design properties. Our simplified PSL-like assertion language has

following characteristics and assumptions:
B [t consists of common.basie parts of popular assertion languages.

1
J

B [t has rigorously well-&e"_ﬁpcd-fgfmaf"iéeﬁlgi@tics and concise syntax.
B [t cover all major temporal lay‘er exl)“féssions and Boolean layer expressions.
B All primitive events are assumed clocked and synchronized.
B Properties are restricted to time move forward from left to right sequentially.
The assumption we made is only for the purpose of simplicity on implementation. It does not lose
the generality of common assertion languages. The major constructs of our language are described
Figure 3.3. For the syntax detail, please refer to "BNF Grammar of PSL-like Assertion Language in

Appendix A.

12

assert Id once TE

Assertion

| assertId always TE

| assert Id never TE

| assert Id eventually TE
TE = Sequence and Sequence
Sequence or Sequence
not Sequence
Sequence => Sequence
Sequence <=> Sequence
Sequence wuntil Sequence

Sequence before Sequence

Sequence = Event
| {Event; Event; ...; Event}
| {[mmn]*Event; ...; Event}

| {[k]*Event; ...; Event}

Figure 3.3 _Construets of our Language

In this thesis, we focus on th& temporal layer expressions of general assertion languages, since this
is the heart of the language. The temporal layer.expressions are used to define properties, which
describe Boolean expressions related over time. Temporal layer expression is sophisticated enough to

describe the complex behavior of specification.

3.5 Partitioning Assertions

To alleviate the state explosion problem in formal model checking, we come up with a reduction
solution. That is, we put together the assertions which share common event variables to run model
checking. That is because only the assertions which have common event variables are possible to have

conflict. Hence we define an assertion group for our approach. An assertion group contains some

13

assertion members, such that assertion members may have some common event variables. Therefore,

the assertions belonging to different groups must not have any common variable.

Based on this idea, all input assertions will be partitioned into several assertion groups. An example

of assertion groups is illustrated in Figure 3.4, where EV are event variables.

Input assertions:
Al: (EVy, EV,, EVy)
A2: (EVs, EVg, EVy)
A3: (EV,, EV4, EVy)
A4: (EVs, EVy)
AS5: (EVs, EVy)

L

Partitioning

JE

Output assertion groups:

The group-1:

Al: (EVy, EV,, EVy)
A3: (EV,, EV4, EVy)
A4: (EVs, EVy)

The group-2:

A2: (EVs, EVg, EVy)
A5: (EVs, EVy)

Figure 3.4 Partition Assertions into Assertion Groups

14

We apply the techniques in [21-23] to parse all input assertions and collect all event variables for

building event variable table in the first pass. Then we partition all assertions by applying the algorithm

illustrated in Figure 3.5.

function partition (all assertions):
fori=1 to i=N do {
for j=i+1 to j=N do {
if (Assertion j is not empty) do {
if (Assertion j and Assertion j have common event variables) do {
Assertion j := Assertion j U Assertion j;
Assertion j := &
53
s
¥
if (any _merger happened) do {
swap(Assertion j, Assertion Jast merged)
Assertion i := J;

¥5

Figure 3.5 The Partition Algorithm

As the shown pseudo code in the Figure 3.5, the assertions which have common variables will be
put together.

By partitioning the assertions, the runtime of symbolic model checking is greatly reduced.
Furthermore , the time complexity of this algorithm is O(N?). In most real cases, the assertions may be

partitioned to tens or hundreds of groups.

15

3.6 Assertion Conversion Techniques

The essential part of our approach is assertion conversion. After partitioning assertions, each
assertion is converted into a deterministic finite automata (DFA) and its corresponding CTL property.

The process is illustrated in Figure 3.6.

Assertion;

(1) Decompose

an assertion

(4) Build (2) Build
CTL formula primitive DFA
(5) Assemble (3) Assemble
CTL property whole DFA
Assetion;'s Properties Assertion;' DFA

Figure 3.6 The Conversion Process

Before the conversion routines work, we derive the conversion templates for various assertion

types and temporal operators. These templates facilitate the conversion work in the later processes. In

the conversion process, the first step is to decompose the assertions into primitive sequences and to

extract temporal operators. We also determine the assertion types by those decomposition and

extraction.

16

Then the second step is to build primitive DFA. Since the assertion type and temporal operator have

been known from the first step, we may decide which type to apply. In this step, the primitive sequence

is also decomposed further into the passive part and/or active part.

For example, consider a part of an assertion, {@a; @b} => {@x; @y}. We define the left hand side

({@a; @b}) of the temporal operator as the passive part; the right hand side ({@x; @y}) as the active

part. Once the premise condition is matched, the consequence sequence will be forced to hold. The

events with active attribute in that sequence will be forced to occur. So those events should be actively

driven. In terms of event correlation and contribution of stimulation for asserted argument, the event

attribute of an assertion is also determined by both assertion type and temporal operator. The attribute

categories are listed in Table 3.1.

eventually Segq.

Activ
., eventually Segq. and/or/not Seq.

always Seq.

Proactive always Seq. and/or/not Seq.

always Seq. => Seq.

Co-active always Seq. <=> Seq.

. . always/once Seq. before Seq.
(passive-active) .
always/once Seq. until Seq.

SOINQLINY

never Segq.

Passive

never Seq. and/or/not Seq.

once Seq.

once Seq. and/or/not Seq.

Table. 3.1 Event Attributes

The third step is to assemble the whole composite DFA. The composite DFA is a structural DFA

which is constructed by combining DFA according to assertion type and temporal operators.

17

The fourth step is to build Computation Tree Logic (CTL) formula. The primitive CTL formula are
constructed from path quantifiers and CTL temporal modalities. The atomic proposition is directly
extracted and converted from the events of original assertion. The proposition whose events have
passive attribute will be specified with the "E" path quantifier because they are free event variables in
that property. That means the event value depends on the path in the computation tree. On the contrary,
the proposition whose events have active attribute will be specified with "A" path quantifier because
their value is constrained to specific ones for the all paths. Temporal modalities in CTL are also
determined by original temporal operator and assertion types. For example, if it is an atomic event of a
sequence holding at the next time, just'specify its temporal modality as "X".

The final step is to assemble the whole property-by combining the CTL formula which were
converted at previous steps and thé.logical connectives which are determined according to the assertion
type. At the end, we get the DFA and the corresponding property by above conversion steps.

We explain the correctness of assertion conversion in our approach in Appendix B.

3.7 Conversion of Common Types of Assertions

According to assertion type and temporal operator, we pre-build the conversion templates which
are used in conversion steps. In this section, we depict how to build such conversion templates for

some most common used temporal operator or the assertions which use these operators.

18

3.7.1 Conversion Template of "'sequence' Operator

B Definition: A sequence is a finite series of events that represent a set of sequential behaviors,
which is enclosed in curly braces.

B Example: {wa; @b; not@c; @d};

B Converted DFA in SMV:

As in Figure 3.7 (a), we create the leave DFA of each event variable for current state and

previous states, which keep the current event states and the previous states.

C - E> a=F a=T

Figure 3.7 (a) The Converted Primitive DFA

19

Then, we construct the composite DFA by combining those leave DFA. It is illustrated in

Figure 3.7 (b).

all—a, a, a3

b m—b b,
,—O:>—l {@a; @b; not@c; @d}
cll—c

d &

Figure 3.7 (b) The Converted Composite DFA

| Converted Property in SMV:

According to the Computation Tree Logic (CTL), the sequence could be represented as the

unwinding computation tree in Figure 3.8:

Figure 3.8 The Computation Tree Logic

Therefore, we can describe its property with CTL formula the following:

EF(a=T & EX(b=T & EX(c=F & EX(d=T))))

20

3.7.2 Conversion Example of "sequence-imply-sequence' Operator

We demonstrate an example of conversion template of sequence-imply-sequence. The conversion
steps are depicted in following respective figures.
B Assertion example: always {@a; @b; @c} => {@x; @y}
B Converted DFA in SMV:
Step 1 is to decompose the assertion into primitive sequences, they are {@a; @b; @c} and

{@x; @y}, and temporal operator "=>".

always {wa; @b; @c} => {@x; @y}

Determine the assertion type by Primitive Main Primitive
the assertion keyword "always" sequence with temporal sequence with
and the main temporal operator passive attribute operator active attribute

Figure 3.9 Decomposing The Assertion

The step 2 is to build primitive DFA. In Figure 3.10 (a), the primitive sequence {(@a; @b;

@c} with passive attribute is converted into a leave DFA.

=l
bm—p. D = (@= @b @

o

Figure 3.10 (a) The Converted DFA for the Primitive Sequence

Then we build the composite DFA for the passive part by composing the leave DFA which

21

is shown in Figure 3.10 (a). The composite DFA is shown in Figure 3.10 (b).

not{@a;@b;@c} {@a;@b;@c}

not{@a;@b;@c}

Figure 3.10 (b) The Converted Composite DFA

On the other side, the primitive sequence {(@x; @y} with active attribute is converted into

a leave DFA, which is shown in Figure 3.10 (¢)

3
o

Figure 3:10 (c) miFheConverted DFA

In step 3, we assemble the whole composite DFA. The composite DFA is assembled by

composing some leave DFA. The assembled DFA is illustrated in Figure 3.11.

The passive part The active part

Figure 3.11 The Assembled DFA

22

B Converted Property in SMV:In step 4, we build CTL formula for each decomposed primitives.

The respective converted CTL is shown in below.

always {@a; @b; @c} = {@a; @y};

g

EX(a=T & EX(b=T & EX(c=T > AX(x=T & AX(y=T1)))));

In this case, we apply the CTL temporal modality "X" for each events of sequences, because
they are the continuous next events in a sequence. For the passive sequence, the "E"
quantifier is specified due to there is some path for which the sequence matching codition
(@a; @b; @c) holds. On the contrary, for the active sequence, the "A" quantifier is specified

since it holds for every paths onee the condition matched.

In step 5, we assemble the whole CTL property by combining the primitive CTL formula

which are converted in step 4. The converted CTL property is illustrated in Figure 3.12.

SPEC | EG | ((a=T & EX(b=T & EX(c=T, > AX(=T & AX(=T)) | |5

Figure 3.12 Assemble CTL Property

The final converted CTL property for this example is:

SPEC EG (a=T & EX(b=T & EX(c=T > AX(x=T & AX(y=T1)))));

23

3.7.3 Conversion Example of "and" Operator

In the following section, we demonstrate the conversion results, but omit the conversion details.

® Definition: An expression with length-matching "and" operator succeeds when both

compound TE hold at the current cycle, and furthermore both complete in the same cycle.

B Example: {@a; @b; @c} and {@p; @q; @r}

B Converted DFA in SMV:

T {@a; @b, @cj

aAl—A-1—a., 1.

— o — -y

Figure 3.13 Converted DFA

B Converted property in SMV:

SPEC EF((2=T & p=T) & EX((b=T & q=T) & EX(c=T & r=T)));

24

3.7.4 Conversion Example of "or" Operator

B Definition: An expression holds on a path iff at least one of events/sequences holds on the
path.

B Example: {@a; @b; @c; @d} or {@p; @q}

B Converted DFA in SMV:

éa I—a_1—a_2—a_3—L

@a; @b; @c; @d} or {@p; @q}
u

Figure 3.14 . Converted DFA

B Converted properties in SMV:

SPEC EF(a=T & EX(b=T & EX(c=T & EX(d=T))) | (p=T & EX(q=T)));

3.7.5 Conversion Example of "until" Operator
B Definition of “@a until @b”: It holds in the current cycle iff: 1) @b holds at the current cycle
or at some future cycle and 2) @a holds at all cycles up to and including the earliest cycle at
which @b holds.
B Example: once @a until @b

| Converted DFA in SMV:

25

We add an additional state named as "Fail" in the converted DFA. When it enters the "Fail"

state, it means it violates the assertion.

Add an extra state here

Figure 3.15 Converted DFA

B Converted properties in SMV
SPEC A[a=T U b=T]
or

SPEC !EF state=Fail;

3.7.6 Conversion Example of "before" Operator
B Example: always @a before @b;

[] Converted DFA in SMV:

Figure 3.16 Converted DFA

26

| Converted properties in SMV:

SPEC !EF state=Fail;
or
SPEC !EF(((a=F & b=T) & EF(a=T)) |
((a=F & b=F) & EG((a=F & b=F) & EF(a=T & b=T))));

3.7.7 Conversion Example of "repetition" Operator
| Definition: any number of repetitions of the repeat-expression such that the number falls
within the specified range.
B Example: {@a; [2:4]; @c}

| Converted DFA in SMV

a=F
Figure 3.17 Converted DFA

| Converted property in SMV:

SPEC EF(a=T & EX(EX(EX(c=T | EX(c=T| EX(c=T))))));

27

3.7.8 Conversion Example of "eventually'" Operator

B Example: always {(@a; @b; @c} => eventually {@x; @y}

| Converted DFA in SMV:

not{@ @b; @¢ not{@a; @b; @c}

{@a;, @b @Y @ "eventually" timeout @
a5 , @c
{@a; @b; @c}
not {@a; @b; @c}

Figure 3.18, ‘Converted DFA

| Converted Property in SMV

SPEC EF(EG(@(a=T & EX(b=T & EX(c=T & AF(x=T & AX(y=T))))));

The operator, "eventually" means that the property holds at the current cycle or at some future

cycle. That is it must hold at some time in the indefinite future. To implement the checking for this

assertion, we have SMV to assign value non-deterministically until it reaches the specified time upper

bound. That means the assertion will hold at most of upper limit time. According to the analysis, this

upper bound should be greater than the maximum depth of time step of all input assertions. That

ensures the assertion will be held in finite time.

28

3.8 Veritying Assertions with SMV

After assertion conversion finishes, we apply symbol model verifier (SMV) to verify converted
assertions. For each assertion group, the converted set of DFA and set of properties are fed to SMV. If

any conflict exists, the verifier will report the counterexample. Figure 3.19 illustrates the process.

Aecartinn A

Assertion n
DFA

constinen A
Assertion n
Properties

o .)FA
Properties g ;e Model)

SMV

(Symbolic Model Verifier)

| Checking | Counter-
Report example

Figure 3.19 Verity Assertions with SMV

3.9 A More Complete Example of Assertion Checking

In this section, we use a complete example to demonstrate our approach, and explain its process step

by step. First at all, as shown in Figure 3.20, there are six assertions in the input.

29

assert Al always {@a; @b; @c} => eventually {@x; @y;@z};
assert A2 eventually {{@m; [2:5]*@n; @o} or {@p;@q}};

assert A3 never {@b; [2:5]; @x};

assert A4 once {{[2]*{@m; @n; @o}} and {[2]*{@p; @q; @r}}};
assert A5 always {@a; @b; @c} before {@x; @y};

assert A6 always (@aor@b)=> {[3]*@w;@x};

Figure 3.20 Input of the Example

In our approach, we partition the input assertions into assertion groups. According to the partitioning

algorithm, the six are assertions are partitioned into two groups, Assertion Group 1 and Assertion

Group 2, as Figure 3.21 shows.

Assertion Group 1:

assert Al always {@a; @b; @c} => eventually {@x; @y; @z};
assert A3 never {@b; [2:5]; @x};

assert AS always {@a; @b; @c} before {@x; @y};

assert A6 always (@aor@b)=> {[3]*@w; @x};

Assertion Group 2:

assert A2 eventually {{@m; [2:5]*@n; @o} or {@p; @q}};
assert A4 once {{[2]*{@m; @n; @o}} and {[2]*{@p; @q; @r}}};

Figure 3.21 Partitioning Result

We take Assertion Group 1 to demonstrate the process. In the step 1, it is decomposed into primitive

sequences and temporal operators, and the conversion template is applied according to the decomposed

result. It is illustrated in Figure 3.22.

30

assert|| Al | [always | {@a; @b; @c} ||=> {@x; @y; @z

assert|| A3 | never | {@b; [2:5]; @x};

o .

assert|| AS| jalways | {@a; @b; @c} | |before |{@x; @y}

assert|| A6| lalways | (@a |or | @b)| | = [{[B]*@w} @x};

Figure 3.22 Decomposed Assertions of Assertion Group 1

Then at step 2, the primitive DFA are built according to decomposed primitive sequence . At step3,

composite DFA is assembled by each primitive DFA and temporal operators. The converted DFA of

Assertion Group 1 is depicted in Figure 3.23.

Al: always {@a; @b; @c} => eventually {@x; @y; @z};

not{(@ @b; @e}

not{@ @b; @c}

Figure 3.23 Converted DFA from Assertion A1l

Similarly, assertion A3, assertion A5 and assertion A6 are shown in the Figure 3.24, 3.25 and 3.26

respectively.

31

A3: never {@b; [2:5]; @x};

Figure 3.24 Converted DFA from Assertion A3

A3: always {@a; @b; @c} before {@x; @y};

not{@a; @b; @c } & not{@x; @y}

not{@

Figure 3.25 Converted DFA from Assertion A5

A6: always (@aor @b) => {[3]*@w; @x};

Figure 3.26 Converted DFA from Assertion A6

32

At the step 4 and step 5, CTL formula are built and then properties are assembled with them. The

converted properties are illustrated in the following.

Property of assertion Al:

SPEC !EF(EG(a=T & EX(b=T & EX(c=T & !AF(x=T & AX(y=T & AX(2=T))))));
Property of assertion A3:

SPEC !EF(b=T & EX(EX(EX(x=T | EX(x=T | EX(x=T | EX(x=T)))))));
Property of assertion A5S:SPEC !EF state=Fail;

Property of assertion A6:
SPEC EG((a=T | q=T) -> AX(w=T & AX(w=T & AX(w=T & AX(x=T)))));

After the conversion is done, the converted DEA and properties are fed into SMV for checking. The

report is shown in Figure 3.27.

Conflicts found:
DFA1 < Prop3 conflicted
DFA1 < Prop5 conflicted

Unilateral conflicts, suspected conflicts alerted

Conflicts found:
DFA3 < Prop6 conflicted
DFAG6 <> Prop3 conflicted

Mutual conflicts, definite conflicts reported

Figure 3.27 Checking Result

As the Figure 3.27 shows, there are four conflicts found in this assertion group. They are DFA;

against Property;, DFA | against Propertys, DFA3 against Propertys, and DFA¢ against Propertys.

According to our analysis from the checking results of SMV, where (DFA |,Property;) and

(DFA, Propertys) are unilateral conflict, so they are suspected conflicts alert. That means it could be

33

indeed conflict or either one of two is redundant. Therefore, users who perform our approach can

inspect the result to identify the errors among the assertions. The other two, (DFA3, Propertys), are

mutual conflict. That means they are definite conflicts.

34

Chapter 4

Case Study

4.1 Case Description

We choose the assertions for the Bus “Transaction Protocol of PCI Local Bus Specification as our
case. The assertions cover Bus Transfer Control, Addressing, Byte Lane and Byte Enable, Bus Driving
and Turnaround, as well as Transaction Ordering and Posting [26].

In general, the assertions consist of two parts: PCI master and PCI target. There are 41 assertions in

this case study.

4.2 Experimental Environment

We implement our approach in C program and some shell scripts. They are executed on Sun Sparc

Workstation with 1 GB memory on 400MHz speed.

35

4.3 Experimental Result

We partition the input assertions into 5 and 4 assertion groups for PCI master and PCI target

respectively.

After execution, it found:

4 unilateral conflicts (suspected conflicts alerted),

1 mutual conflicts, (definite conflicts reported).

The experimental result is depicted on Table. 4.1.

36

No. of No. of No. of)
No. of i) Runtime
Case] Assertion Unilateral Mutual
Assertions . . (by second)
Groups Conflicts Conflicts
PCI Master 25 5 2 1 92
PCI Target 16 4 1 0 41
Table 4.1 Experimental Result of Case Study

Chapter 5

Conclusions and Future Works

5.1 Conclusions
We propose a technique to “check* design™ assertions by means of converting assertion into
corresponding DFA and properties and then checking each of them against the others using SMV.
The major features of our approach are:
B Without referring the design, only the assertions required,
B Without need of simulation and test patterns,
B Stand-alone, off-line processing, may check assertions prior to design verification,

B Greatly alleviating the state explosion problem of SMV.

37

5.2 Discussion

Ensuring a set of assertions without any conflict can increase our confidence in the correctness of

the specification modeling. Not necessary all potential conflicts could be found by using our approach.

But all detected mutual assertion conflicts are guaranteed to be definite conflicts. According to our

experience, we found it is hard to detect redundancy of assertions merely by static formal checking

from assertions.

The most serious hurdle to apply this approach to find out all possible conflicts is lack of

correlation stimulation of assertions under certain combinations in the input assertions. Under this

circumstances, the assertions cannotcontribute stimulus correlation to argue against each others. For

example, there are two assertions-inian assertion group illustrated below.

assert never {@a; @b; @c};

assert never ((@a; and @b) or (@a and @c);

Even the above two assertions share all common variables (@a, @b and (@c), but the two assertions

are both with the same "passive" attribute. So they cannot contribute stimulation for each other. It

reveals that the ideal input set is the assertions with variety of event attributes and highly correlative.

That provides enough assertive statement against each others.

Furthermore, the definition of our acceptable input assertion language must be very clear and

definite without any ambiguity; otherwise, it tends to induce problem caused by different interpretation

38

of language.

As for the computational complexity, our experiences showed that runtime is acceptable for up to

hundreds of input assertions in an assertion group.

In summary, symbolic model checking, in its purest basis at least, is feasible to apply conflict

checking for assertion without design model and test patterns. Even it is more difficult than anticipated

during the developing process, particularly on coping with versatile combination of input assertions,

the idea has been shown conceptually correct and furthermore this approach could be practically

implemented for the industrial usage.

5.3 Future Works

Some research directions suchi.as Logic Reasoning techniques may be considered to enhance our

capability of checking. Next, we will input the simulation results or waveforms to augment the

information about assertions. By this way, we can clearly identify conflicts and redundancy among

assertions and also check assertion violations.

Furthermore, by adding certain converting process, we may convert counterexample of SMV into

industrial standard Value Change Dump (VCD) format. That information can help user quickly identify

the problem pointed out by SMV.

39

As for input language, we should accept the full set of common-used language by enlarging the

conversion templates for remaining types of that language constructs and enriching the conversion

rules for all temporal operators.

40

Appendices

Appendix A: The BNF Grammar of PSL-like Assertion Language

Compilation := Assertion_Collection ;

Assertion_Collection := Assertion

| Assertion_Collection Assertion ;

Assertion :="assert" Assertion Name Temporal Assertion Kinds ";" ;
Assertion Name = IDENTIFIER ;
Temporal Assertion_Kinds = Once Assertion

| Always Assertion

| Never ~Assertion

| Eventually - Assertion ;

Once_Assertion :="once" Temporal Or_Expression

| "once" Temporal And Expression "until" Temporal And Expression ;

Always_Assertion :="always" Temporal Or_Expression

| "always" Temporal Or Expression "=>" Temporal And Expression

| "always" Temporal Or Expression "=>" "eventually" Temporal And Expression

| "always" Temporal And Expression "<=>" Temporal And Expression

| "always" Temporal And Expression "before" Temporal And Expression ;

Never Assertion :="never" Temporal Or Expression ;
Eventually Assertion :="eventually" Temporal Or_ Expression ;
Temporal Or Expression := Temporal And_Expression

| Temporal Or_Expression "or" Temporal And Expression ;

Temporal And_Expression := Temporal Compound Expression

41

| Temporal And_Expression "and" Temporal Compound Expression ;

Temporal Compound Expression := Temporal Repeat Expression

|H

not" Temporal Compound_Expression ;

Temporal Repeat Expression := Temporal Primitive

Repaet Times

Repaet_Range

Repaet Num

Temporal Repeat Opt

Temporal Primitive

Temporal Sequence

Event

Event Name

IDENTIFIER

INTLITERAL

Letter

Digit

| Repaet Times Temporal Repeat Opt
| Repaet Times ;

="[" Repaet Range"]"
| "[" Repaet Num "]" ;

=INTLITERAL ":" INTLITERAL ;

:=INTLITERAL ;

:="*" Temporal i(Cempound Expression ;

= Event

| " Temporal Or Expression "y

| "{"“Temporal=Sequence /3" ;

= Temporal ‘Or Expression

"N

| Temporal Sequence ";" Temporal Or Expression ;

="@" Event Name ;

="CYC"
| IDENTIFIER ;

:= Letter(Letter|Digit|)* ;

= Digit+;

=[A-Za-7] ;

=[0-9];

4

Appendix B: Proving of Assertion Conversion

The conversion processing of our approach consists of two parts. One is converting assertion to

CTL property. The correctness of this part is comprehensive. Since PSL-like language and CTL

property have similar temporal semantics in temporal specification in terms of language feature. The

other is converting assertion into DFA. The most crucial part in our approach is assembling the whole

DFA with pieces of DFA. Now, we would like to explain its correctness below.

1.

A sequence is part of language clause which follows regular expression grammar (RE

grammar).

Sequences and sequence 0perators belong torregular language set.

A temporal expression cartbe decomposed to primitive sequences and operators.

By Kleene’s Theorem, each primitive sequence has its corresponding finite automaton.

A larger finite automaton can be composed of pieces of small finite automata by applying our

approach which belong to operations of RE grammar.

So, the combined larger finite automaton can represent the collection of DFA pieces which are

converted from original assertion.

Why assembling a composite DFA from piece sequences in our approach is correct in theory? Let's

explain it in more detail. First of all, we may see that the most primitive item operated by our approach

is a sequence, which describes single- or multi-cycle behavior built from a series of Boolean

43

expressions over time. The most atomic is a Boolean expression. In Property Specification Language

(PSL), the sequence named as Sequential Extended Regular Expressions (SERESs)[24], that extends

the set of regular expression (RE) by definition for some additional temporal operations.

A sequence defined in our language is same as the sequence in PSL except pruning out some

non-necessary sequence operations without losing capability for behavior specification. It keeps all our

operations applied on sequences belonging to regular expression set.

By definition from formal languages, a sequence of our PSL-like language is part of the regular

language grammar, which is also a context free grammar. The basic operations in our approach are

concatenation and union, and repetitioft which follow regular expression definition.In our approach, we

decompose an assertion down to‘some primitive sequenices. By Kleene’s Theorem in formal language,

which states that any language which can be defined by regular expression, or finite automaton, or

transition graph can be defined by all three methods. It implies the subordinate proposition, every

language that can be defined by a regular expression can also be defined by a finite automaton. That

means we can find a corresponding finite automaton for each primitive sequence. This is just what we

do to convert primitive sequence to a piece finite automaton. Then, we assemble the whole composite

DFA with those primitive DFA by applying the composing rule which belong to regular expression set.

So, the composed larger DFA can represent the collection of DFA pieces, and which are converted

from the original assertion. Then, we can prove our approach is correct.

44

(1) (4)

GV.T.S, P)

-y~

by Kleene's Theorem

(2)
(3)

Our Approach

in

45

Bibliography

[1] Thomas Kropf, and Robert Bosch GmbH, “Introduction to Formal Hardware Verification”,
Springger-Verlag Berlin Heidelberg, Germany, 1999.

[2] Harry D. Foster, "Property Specification: The Key to an Assertion-Based Verification Platform",
Verplex Systems, Inc., 2000.

[3] Harry D. Foster, Adam C. Krolnik, and David J. Lacey, “Assertion-Based Design “ 2nd ed., Kluwer
Accademic Publishers, 2004.

[4] Ben Cohen, “Using PSL/Sugarwith Verilog and VHDL, Guide to Property Specification Language
for ABV”.

[5] Carnegie Mellon University, http://www-2.cs.cmu.edu/~modelcheck/.

[6] ITC-IRST, Trento, Italy; SCS, Carnegie-Mellon University, Pittsburgh, PA, USA; DSI, University
of Milano, Milano, Italy, "NuSMV: a new Symbolic Model Verifier",
http://nusmv.irst.itc.it/NuSMV/papers/cav99/html/index.html.

[7] Roberto Cavada, Alessandro Cimatti, Emanuele Olivetti, Gavin Keighren, Marco Pistore and Marco
Roveri, "NuSMV v2.2 User Manual", http:/nusmv.irst.itc.it/NuSMV/.

[8] Roberto Cavada, Alessandro Cimatti, Gavin Keighren, Emanuele Olivetti, Marco Pistore, and Marco

Roveri, "NuSMV 2.2 Tutorial", http://nusmv.irst.itc.it/NuSMV/.

46

[9] K. L. McMillan, "The SMV language", Cadence Berkeley Labs version of SMV,

http://www.cis.ksu.edu/santos/smv-doc/language/language.html.

[10] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled, “Model Checking”, The MIT Press,

Cambridge, 1999.

[11] Kenneth L. McMillan, Edmund M. Clarke, “Symbolic Model Checking”, Kluwer Academic

Publishers, 1993.

[12] Robert C. Koons , “Doxastic Paradox and Reputation Effects in Iterated Games”, Proceedings of the

4th conference on Theoretical aspects of reasoning about knowledge, March 1992.

[13]J. Mack Adams, James Armstronggand Melissa Smartt, “Assertional Checking and Symbolic

Execution: An Effective Combination for Debugging’’, Proceedings of the 1979 annual conference,

ACM/CSC-ER, January 1979.

[14] E. M. Clarke and E. A. Emerson, "Synthesis of Synchronization Skeletons for Branching Time

Temporal Logic", in logic of programs: workshop, Yorktown Heights, NY, May 1981, volume 131

of Lecture Notes in Computer Science.Springer-Verlag, 1981.

[15] J.P. Quielle and J. Sifakis, "Specification and Verification of Concurrent Systems in CESAR", In

Proceedings of the Fifth International Symposium in Programming, volume 137 of Lecture Notes in

Computer Science.Springer-Verlag, 1981.

[16] Thomas Kropf, "Formal Hardware Verification - Methods and Systems in Comparison",

Springger-Verlag, Berlin Heidelberg, Germany, 1997.

47

[17] Accellera Organization, "Property Specification Language Reference Manual", Version 1.1, June 9,
2004.

[18] Synopsys, Inc., "OpenVera 1.0 Language Reference Manual Version 1.0", March 2001.

[19] Verisity Design, Inc., “e Language Reference Manual” V4.3, 2004,
(http://www.ieee1647.org/downloads/prelim e _lib.pdf)

[20] Samir Palnitkar, "Design Verification with e", Prentice Hall Modern Semiconductor Design Series,
2003.

[21] Charles N. Fischer, Richard J. LeBlanc, Jr., “Crafting A Compiler with C”, 1991.

[22] GNU, "Bison reference Manual", vérsion 1.875; GNU, Free Software Foundation, Inc., 28
December 2002.

[23] GNU, "Flex reference Manual'", Version 2.5.31, GNU, Free Software Foundation, Inc.,, 27 March
2003.

[24] Daniel 1. A. Cohen, “Introduction to Computer Theory", 2nd Ed., Oct. 25, 1996.

[25] Peter Linz, "An Introduction to Formal languages and Automata", 31 Ed., 2001.

[26] PCI Special Interest Group, "PCI Local Bus Specification", Revision 2.3, 1998.

48

Vita
Chia-Yuan Uang receiverd the B.S. degree in electronics engineering from National Taiwan Institute
Technology. From 1989 to 1996, he worked for Computer and Communications Research Laboratories
(CCL) of Industrial Technology Research Institute (ITRI). He has worked with Maojet Technology Corp.

from 1996 to date. His major experiences are on design verification, RTL synthesis, and timing analysis.

49

	Automatic Assertion Checking Using Formal Symbolic Model Verifier
	Automatic Assertion Checking Using Formal Symbolic Model Verifier
	Master of Science
	Computer Science

