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摘要 

以聲明(Assertion)為基礎的驗証法已經成為當今設計驗証法的典範。而聲

明是用來檢驗電路功能的,但人們所撰寫的聲明很可能其本身即含有衝突錯

誤。在此我們提出一個自動檢查聲明衝突的方法。此方法主要是將輸入的聲明

轉化成有限確定自動機(Deterministic Finite Automata)及性質(Property),

再利用現有的正規符號模型驗證器(Symbolic Model Verifier)對自動機和性

質作交叉驗證, 以檢查出聲明之間的矛盾衝突。藉由此法能幫助聲明撰寫者在

早期就自動檢查出聲明的矛盾而不需要等到模擬(Simulation)時才發現。 
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Abstract 

Assertion based verification (ABV) methodology has emerged as a paradigm of high-level 

design verification. An assertion is used to specify what is to be exercised and verified against the 

intended functionality. However assertions which may contain conflicts among themselves are not 

inspected until later simulation stage.In this thesis, we present an automatic assertion checking 

which utilizes an existing symbolic model verifier as a model checker to check if there is any 

conflict among input assertions. We propose an approach to convert the assertions into structural 

Deterministic Finite Automata (DFA) and their corresponding properties. Those converted DFA 

and properties are then checked by using formal model verifier. This approach may facilitate 

assertion checking to find out potential conflict in the early stage of design activities without 

simulation.
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Chapter 1 
 
Introduction 
 
1.1  Assertion-based Verification 

 Due to the increasing complexity of today's hardware design, functional verification has become a 

major bottleneck in the design process. Design teams reportedly spend as much as 50 to 70 percent of 

their time and resources on the functional verification effort. The advent of new technologies—such as 

constrained-random test generation, assertion-based verification, coverage-driven verification, and 

formal model checking [1]—has changed the way we see functional verification productivity, where 

assertion-based verification methodology has emerged as a paradigm of functional verification and 

been implemented in verification flow in the industry.  

While the term assertion-based verification (ABV) [2-4] is often used to refer to the use of 

assertions as monitors in simulation, ABV more correctly refers to the use of assertions in both 
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simulation and formal verification. Assertions are a central part of both simulation and formal model 

checking. They are mathematically precise descriptions of behavior that must hold or that constrains 

the operating environment of the block. 

While assertion coding is a major task of designers or verification engineers, the debugging process 

of assertion writing is where efficiency improvements are required.  

 

1.2  Motivation 

With design complexities rapidly exploding, assertion modeling has become more and more 

complicated. Assertion writing is sophisticated and is prone to make mistakes due to some common 

causes: misinterpretation of specification, ambiguity of protocol, and incompleteness of specification. 

Usually, coded assertions have not been inspected until design simulation. In fact, within the assertion 

draft, most of conflicts could be detected automatically to improve the productivity of designers. 

The basic goals of any comprehensive assertion writing process are driven by: 

1. It must check that the design behaves everything it is supposed to do. 

2. It must check that the design never do anything it is not supposed to do. 

Today, assertion writers do not have any methods to check their assertions at the early stage of 

assertion development flow. Instead, they respond to assertion violations reported by simulation tools 

and simulate it again after correcting their assertion. This is an error-prone, and time wasting process 

that continues throughout the early verification flow. 
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To the best of our knowledge, there has been not any related work on assertion self-checking in 

design automation field. Some analogous researches on hypothetical syllogisms field discuss finding 

out the causes of that (antinomy) conflict from opposing assertions. Most of which are based on 

dialectical reasoning [12]. The other few work were proposed from software validation field. [13] : 

Motivated by this trend and background, we attempt to study an approach to automatically find out 

if any conflicts among assertions.  

 

1.3  Overview 

In this thesis, we provide an approach to checking assertion conflicts for design verification based 

on a PSL-like assertion language using symbolic model checking [10,11]. 

In our approach, we construct a framework to convert the input assertions into composite structural 

deterministic finite automata (DFA) and their corresponding properties, which can be reflected as 

assertion intent in specification modeling. By utilizing symbolic model verifier (SMV) [5,6], we may 

check the behavior against its properties. If any conflict exists in input assertions, our approach will 

report the violation of argument and its counterexample. 

Symbolic model checking based on binary decision diagrams (BDDs) [10,11] is an efficient 

automatic verification technique that has been applied successfully to many industry -scale hardware 

circuits. Therefore we utilize the existing symbolic model checking package (NuSMV [6-8]) as a 

formal model checker to find out the conflict between any two assertions.  
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Here, we propose an approach to checking assertions in early stage without requiring design 

content and its testbench. Instead, we just rely on the statement of an assertion itself. This enables the 

conformance checking of assertions being done prior to running time-consuming simulation process. 

We also come out with a means to avoid the common state-explosion problem while using symbolic 

model checker. Therefore, most assertion conflicts can be detected quickly and easily with this 

methodology. 

 

1.4  Organization of This Thesis 

The remainder of this thesis is organized as follows. Chapter 2 introduces the basis of symbolic 

model checking, which is used as the verifier in our approach. We explain the detail of our approach to 

assertion checking in Chapter2. A case study and experimental result are illustrated in Chapter 4. The 

conclusions and future works are touched upon in Chapter 5. 
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Chapter 2 
 
Preliminary 
 

Our approach uses Symbolic Model Verifier (SMV) as a tool to check converted assertions. In this 

section, we introduce preliminary knowledge about Symbolic Model Checking. 

 

2.1  Symbolic Model Checking 

Symbolic Model Checking [10,11,14-16] is an automatic technique for verifying properties of a 

finite state model of a system. Its flow is illustrated in Figure 2.1. 

Figure 2.1  Symbolic Model Checking
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The general approach of symbolic model checking is to describe the finite model for the behavior 

of the system by giving as Kripke structure, and to define the expected property of the system as 

Temporal Logic. It checks whether finite model satisfies the property. If not, the counterexample is 

generated. 

 

2.2  Kripke Model 

Kripke Model is used to model the finite state model of the system [10]. Let AP be a set of atomic 

proposition. A Kripke structure M over AP is a four touple M=(S, S0, R, L), where: 

S is a finite set of states 

S0 ⊆ S is the set of initial states 

R ⊆ S × S is transition relation that must be total 

L : S → 2AP is a function that labels each state with the set of atomic proposition being true in 

that state 

 

2.3  State in Kripke Model 

Let V = {v1, v2, … vn} be the set of system variables, the variables in V range over a finite set D.  

A state of a system can be described by giving values for all of the elements in V. A state is just a 

valuation  s : V → D for the set of variables in V. For example, 

V = {v1, v2, v3},    D = {0,1} , then 
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a state si is a valuation: <v1←1, v2←0, v3←1>, and thus we 

derive the formula: (v1=1) ^ (v2=0) ^ (v3=1) 

Figure 2.2 illustrates an example of that state in Kripke model. 

 [v1, ¬v2, v3] 

 

 

 

 
Fig. 2.2  A State of Kripke Model 

 

2.4  Computation Tree 

Computation tree, as illustrated in Figure 2.3, is formed by designating the initial state in Kripke 

structure, and then unwinding (unrolling) the structure into an infinite tree. The computation tree shows 

all of the possible executions starting from the initial state. 

 

bc

ab

c 

c ab       c 

 
 

cbc 

ab 
unwinding

 

 

 

 

 

 
Figure 2.3  Unwinding Computation Tree 
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2.5  Computation Tree Logics 

The formulae of computation tree logics are constructed from path quantifiers and temporal 

operators: 

1. Path quantifier: 

A—“for every path” 

E—“there exists a path” 

2. Temporal modality: 

Xp—p holds next time 

Fp—p holds sometime in the future 

Gp—p holds globally in the future 

pUq—p holds until q holds 
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Chapter 3 
 
Proposed Approach 
 

In this chapter, we will describe our overall approach. It is organized as the following sections. 

Section 3.1 defines the problem. Section 3.2 gives an input example. Section 3.3 introduces the 

framework. Section 3.4 determines the input language. Section 3.5 describes partitioning. Section 3.6 

explains conversion techniques. Section 3.7 depicts some conversion examples. Section 3.8 elucidates 

verifying process. And then finally, section 3.9 demonstrates a complete example. 
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3.1  Problem Formulation 

In our approach, the input is design assertions written in assertion language. The goal is to find out 

whether there are conflicts among input assertions. If yes, the approach will report which assertions are 

conflict and generate the counterexamples. The brief flow of our approach is illustrated in Figure 3.1. 

 

Figure.3.1  The Brief Flow 

3.2  Input Example 
Here is a simple example of input assertions: 

Assertion-i:  
assert  Ai  always {@a; @b; @c} => eventually {@x; @y}; 

Assertion-j:  
assert  Aj  never {@b; [2:5]; @x}; 

Assertion-k:  
assert  Ak  always  {@a; @b; @c}  before  {@x; @y; @z}; 

Our approach will check whether there are conflicts among these assertions. 
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3.3  Framework 

Figure 3.2 illustrates the framework of our approach to assertion checking. The proposed approach 

contains three portions. The first one is to partition input assertions into assertion groups. In the second 

portion, for each assertion group, we convert each assertion into deterministic finite automata (DFA) 

and their respective properties. Finally, we take those DFA and properties to run symbolic model 

checking. It will report contradiction and its counterexample if there is any conflict among input 

assertions. We will describe each portion in details in the following sections. 

Checking
Report 

Verify DFA and 
Properties with SMV 

Convert Assertions into
DFA and Properties 

Partition Assertions into
Assertion Groups 

Assertions 

Figure 3.2  The Framework 
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3.4  Input Language 

Assertion languages for design verification such as Property Specification Language (PSL)/(Sugar) 

[17], OpenVera [18], and e [19,20] have been gaining in popularity and applied in industry. In order to 

implement our approach, we formally define an assertion language as our input assertion language. For 

simplicity, we choose the common set of above three popular assertion languages (PSL, OpenVera and 

e) as our input assertion language and call it a PSL-like language. The common set of above languages 

are the most frequently used common part of general design assertion languages, which is capable of 

modeling most of real world design properties. Our simplified PSL-like assertion language has 

following characteristics and assumptions: 

� It consists of common basic parts of popular assertion languages. 

� It has rigorously well-defined formal semantics and concise syntax. 

� It cover all major temporal layer expressions and Boolean layer expressions. 

� All primitive events are assumed clocked and synchronized. 

� Properties are restricted to time move forward from left to right sequentially. 

The assumption we made is only for the purpose of simplicity on implementation. It does not lose 

the generality of common assertion languages. The major constructs of our language are described 

Figure 3.3. For the syntax detail, please refer to "BNF Grammar of PSL-like Assertion Language in 

Appendix A. 
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Assertion     :=  assert  Id  once TE 
              |  assert Id always TE 
              |  assert  Id  never TE 
              |  assert  Id  eventually TE 
TE           :=  Sequence  and  Sequence 
              |  Sequence  or  Sequence 
              |  not  Sequence 
              |  Sequence  =>  Sequence 
              |  Sequence  <=>  Sequence 
              |  Sequence  until  Sequence 
              |  Sequence  before  Sequence 
Sequence      :=  Event 
              |  {Event; Event; …; Event} 
              |  {[m:n]*Event; …; Event} 
              |  {[k]*Event; …; Event} 
Figure 3.3  Constructs of our Language 

ocus on the temporal layer expressions of general assertion languages, since this 

nguage. The temporal layer expressions are used to define properties, which 

ressions related over time. Temporal layer expression is sophisticated enough to 

behavior of specification.  

g Assertions 

ate explosion problem in formal model checking, we come up with a reduction 

put together the assertions which share common event variables to run model 

use only the assertions which have common event variables are possible to have 

efine an assertion group for our approach. An assertion group contains some 
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assertion members, such that assertion members may have some common event variables. Therefore, 

the assertions belonging to different groups must not have any common variable.  

Based on this idea, all input assertions will be partitioned into several assertion groups. An example 

of assertion groups is illustrated in Figure 3.4, where EV are event variables. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3.4  P

 

Input assertions: 
A1: (EV1, EV2, EV4) 
A2: (EV3, EV6, EV8) 
A3: (EV2, EV4, EV7) 
A4: (EV5, EV7) 
A5: (EV6, EV9) 
Partitioning
Output assertion groups: 
The group-1: 
A1: (EV1, EV2, EV4) 
A3: (EV2, EV4, EV7) 
A4: (EV5, EV7) 
The group-2: 
A2: (EV3, EV6, EV8) 
A5: (EV6, EV9) 
artition Assertions into Assertion Groups 
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We apply the techniques in [21-23] to parse all input assertions and collect all event variables for 

building event variable table in the first pass. Then we partition all assertions by applying the algorithm 

illustrated in Figure 3.5. 

 

 

 

 

 

 

 

 

 

 

 

As the

put togethe

By pa

Furthermo

partitioned

 

function partition (all_assertions): 
for i=1 to i=N do { 

 for j=i+1 to j=N do { 
if (Assertion j is not empty) do { 

if (Assertion i and Assertion j have common event variables) do {
Assertion i := Assertion j ∪ Assertion j; 
Assertion j := ∅; 

}; 
}; 

}; 
if (any_merger_happened) do { 

swap(Assertion i, Assertion last_merged ); 
Assertion i := ∅; 
}; 

}; 
}; 
Figure 3.5  The Partition Algorithm 

 shown pseudo code in the Figure 3.5, the assertions which have common variables will be 

r. 

rtitioning the assertions, the runtime of symbolic model checking is greatly reduced. 

re , the time complexity of this algorithm is O(N2). In most real cases, the assertions may be 

 to tens or hundreds of groups. 
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3.6  Assertion Conversion Techniques 

The essential part of our approach is assertion conversion. After partitioning assertions, each 

assertion is converted into a deterministic finite automata (DFA) and its corresponding CTL property. 

The process is illustrated in Figure 3.6. 

 

(4)  Build 
CTL formula

Assertioni' DFA Assetioni's Properties

Assertioni

(5)  Assemble
CTL property 

(3)  Assemble 
whole  DFA  

(2)  Build  
primitive DFA  

(1) Decompose
an assertion 

 

 

 

 

 

 

 

 

Figure 3.6 The Conversion Process 
 

Before the conversion routines work, we derive the conversion templates for various assertion 

types and temporal operators. These templates facilitate the conversion work in the later processes. In 

the conversion process, the first step is to decompose the assertions into primitive sequences and to 

extract temporal operators. We also determine the assertion types by those decomposition and 

extraction.  
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Then the second step is to build primitive DFA. Since the assertion type and temporal operator have 

been known from the first step, we may decide which type to apply. In this step, the primitive sequence 

is also decomposed further into the passive part and/or active part.  

For example, consider a part of an assertion, {@a; @b} => {@x; @y}. We define the left hand side 

({@a; @b}) of the temporal operator as the passive part; the right hand side ({@x; @y}) as the active 

part. Once the premise condition is matched, the consequence sequence will be forced to hold. The 

events with active attribute in that sequence will be forced to occur. So those events should be actively 

driven. In terms of event correlation and contribution of stimulation for asserted argument, the event 

attribute of an assertion is also determined by both assertion type and temporal operator. The attribute 

categories are listed in Table 3.1. 

Active 
� eventually  Seq. 

� eventually  Seq. and/or/not Seq.  

Proactive 
� always  Seq. 

� always  Seq. and/or/not Seq. 

C
(pa

o-active 
ssive-active) 

� always  Seq. => Seq. 

� always  Seq. <=> Seq. 

� always/once  Seq. before Seq. 

� always/once  Seq. until Seq. 

A
ttributes 

Passive 
� never Seq. 

� never Seq. and/or/not Seq. 

� once  Seq. 

� once  Seq. and/or/not Seq. 

Table. 3.1  Event Attributes 
 

The third step is to assemble the whole composite DFA. The composite DFA is a structural DFA 

which is constructed by combining DFA according to assertion type and temporal operators. 
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The fourth step is to build Computation Tree Logic (CTL) formula. The primitive CTL formula are 

constructed from path quantifiers and CTL temporal modalities. The atomic proposition is directly 

extracted and converted from the events of original assertion. The proposition whose events have 

passive attribute will be specified with the "E" path quantifier because they are free event variables in 

that property. That means the event value depends on the path in the computation tree. On the contrary, 

the proposition whose events have active attribute will be specified with "A" path quantifier because 

their value is constrained to specific ones for the all paths. Temporal modalities in CTL are also 

determined by original temporal operator and assertion types. For example, if it is an atomic event of a 

sequence holding at the next time, just specify its temporal modality as "X".  

The final step is to assemble the whole property by combining the CTL formula which were 

converted at previous steps and the logical connectives which are determined according to the assertion 

type. At the end, we get the DFA and the corresponding property by above conversion steps. 

We explain the correctness of assertion conversion in our approach in Appendix B. 

 

3.7  Conversion of Common Types of Assertions 

According to assertion type and temporal operator, we pre-build the conversion templates which 

are used in conversion steps. In this section, we depict how to build such conversion templates for 

some most common used temporal operator or the assertions which use these operators. 
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3.7.1  Conversion Template of "sequence" Operator 

� Definition: A sequence is a finite series of events that represent a set of sequential behaviors, 

which is enclosed in curly braces. 

� Example: {@a; @b; not@c; @d}; 

� Converted DFA in SMV: 

As in Figure 3.7 (a), we create the leave DFA of each event variable for current state and 

previous states, which keep the current event states and the previous states. 

 

a=T a=F
T

F 
a-2 

a=F
T 

F
a-1 

a=T
F 

T 

a-3 

a=F a=T

 

a 
 

F

b-1

a=T
T

b-2

F
a=T

 

b  a=F a=F

 

F

T

c-1 

a=Tc  a=F

 
d  

 

 

 

Figure 3.7 (a)  The Converted Primitive DFA 
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Then, we construct the composite DFA by combining those leave DFA. It is illustrated in 

Figure 3.7 (b). 

b 

a 

c-1 

b-2

a-3

b-1 

a-1 a-2 

 
{@a; @b; not@c; @d}

 c 
 

d 
 

Figure 3.7 (b)  The Converted Composite DFA 

 

� Converted Property in SMV: 

According to the Computation Tree Logic (CTL), the sequence could be represented as the 

unwinding computation tree in Figure 3.8. 

 

d=T

c=F

b=T

a=T  

 

 

 

 

Figure 3.8  The Computation Tree Logic 
 

Therefore, we can describe its property with CTL formula the following: 

EF(a=T & EX(b=T & EX(c=F & EX(d=T)))) 
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3.7.2  Conversion Example of "sequence-imply-sequence" Operator 

We demonstrate an example of conversion template of sequence-imply-sequence. The conversion 

steps are depicted in following respective figures. 

� Assertion example:  always {@a; @b; @c} => {@x; @y} 

� Converted DFA in SMV: 

Step 1 is to decompose the assertion into primitive sequences, they are {@a; @b; @c} and 

{@x; @y}, and temporal operator "=>". 

always {@a; @b; @c} => {@x; @y} 
 
 
 
 
 

always   {@a; @b; @c}   =>   {@x; @y} 

Main 

temporal 

operator 

Primitive 

sequence with 

passive attribute

Determine the assertion type by 

the assertion keyword "always" 

and the main temporal operator

Primitive 

sequence with 

active attribute  

 Figure 3.9  Decomposing The Assertion 

 

The step 2 is to build primitive DFA. In Figure 3.10 (a), the primitive sequence {@a; @b; 

@c} with passive attribute is converted into a leave DFA. 

 

b-1

a-2a-1

b 

a 
 

 c
 

Then

 

Figure 3.10 (a)  The Converted DFA for the Primitive Sequence 
 
we build the 
composite DF
A for the passive part by c
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{@a; @b; @c} 
omposing the leave DFA which 



is shown in Figure 3.10 (a). The composite DFA is shown in Figure 3.10 (b). 

 {@a;@b;@c} not{@a;@b;@c} 

not{@a;@b;@c} 

i abc
{@a;@b;@c}  

 

Figure 3.10 (b)  The Converted Composite DFA 
 

On the other side, the primitive sequence {@x; @y} with active attribute is converted into 

a leave DFA, which is shown in Figure 3.10 (c) 

x y 

x ← 1 y ← 1  

 
Figure 3.10 (c)  The Converted DFA 

 
 

In step 3, we assemble the whole composite DFA. The composite DFA is assembled by 

composing some leave DFA. The assembled DFA is illustrated in Figure 3.11. 

The passive part The active part  
y ← 1 x ← 1

x y 

not{@a;@b;@c}

{@a;@b;@c} 

not{@a;@b;@c}

i i abc 
 

 

Figure 3.11  The Assembled DFA  
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� Converted Property in SMV:In step 4, we build CTL formula for each decomposed primitives. 

The respective converted CTL is shown in below. 

always   {@a; @b; @c}     =>   {@a; @y}; 

 

EX(a=T & EX(b=T & EX(c=T  ->  AX(x=T & AX(y=T)) ))); 

 

In this case, we apply the CTL temporal modality "X" for each events of sequences, because 

they are the continuous next events in a sequence. For the passive sequence, the "E" 

quantifier is specified due to there is some path for which the sequence matching codition 

(@a; @b; @c) holds. On the contrary, for the active sequence, the "A" quantifier is specified 

since it holds for every paths once the condition matched. 

 

In step 5, we assemble the whole CTL property by combining the primitive CTL formula 

which are converted in step 4. The converted CTL property is illustrated in Figure 3.12. 

SPEC  EG   (a=T & EX(b=T & EX(c=T   ->  AX(x=T & AX(y=T)) )))   ;  

 Figure 3.12  Assemble CTL Property 

 

The final converted CTL property for this example is: 

SPEC EG (a=T & EX(b=T & EX(c=T -> AX(x=T & AX(y=T))))); 
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3.7.3  Conversion Example of "and" Operator 

In the following section, we demonstrate the conversion results, but omit the conversion details. 

� Definition: An expression with length-matching "and" operator succeeds when both 

compound TE hold at the current cycle, and furthermore both complete in the same cycle. 

� Example:  {@a; @b; @c} and {@p; @q; @r} 

� Converted DFA in SMV: 

{@p; @q; @r} 

{ b } 

a-2 
b-1 

p  

q-1 

p-2 

r 

q 

 

 

c 

 
 

 

 

 

 

Figure 3.13  Converted DFA 

 

� Converted property in SMV: 

 

 

SPEC  EF((a=T &
a

b

p

 p=T) & EX((b
-1
@a; @
a-1 

; @c
=T & q=T) &
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{@a; @b; @c} and {@p; @q; @r}
 EX(c=T & r=T))); 



3.7.4  Conversion Example of "or" Operator 

� Definition: An expression holds on a path iff at least one of events/sequences holds on the 

path. 

� Example:  {@a; @b; @c; @d} or {@p; @q} 

� Converted DFA in SMV: 

 

{@a; @b; @c; @d}

{@a; @b; @c; @d} or {@p; @q} 

{@p; @q} 

Figure 3.14  Converted DFA 

� Converted properties in SMV: 

 SPEC  EF(a=T & EX(b=T & EX(c=T & EX(d=T))) | (p=T & EX(q=T))); 

 

3.7.5  Conversion Example of "until" Operator 

� Definition of “@a until @b”: It holds in the current cycle iff: 1) @b holds at the current cycle 

or at some future cycle and 2) @a holds at all cycles up to and including the earliest cycle at 

which @b holds. 

� Example:  once @a until @b 

� Converted DFA in SMV: 
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We add an additional state named as "Fail" in the converted DFA. When it enters the "Fail" 

state, it means it violates the assertion. 

Figure 3.15  Converted DFA 

� Converted properties in SMV 

SPEC  A[a=T U b=T] 

or 

SPEC  !EF state=Fail; 

 

3.7.6  Conversion Example of "before" Operator 

� Example:  always @a before @b; 

� Converted DFA in SMV: 

Figure 3.16  Converted DFA 
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� Converted properties in SMV: 

 

 

 

3.7.7 

� 

� 

 

 

� 

 

 

� 

 

SPEC  !EF state=Fail; 

or 
SPEC !EF(((a=F & b=T) & EF(a=T)) | 

((a=F & b=F) & EG((a=F & b=F) & EF(a=T & b=T)))); 
 Conversion Example of "repetition" Operator 

 repetitions of the repeat-expression such that the number falls 

Example: {@a; [2:4];  @c} 

Converted DFA in SMV 

igure 3.17  Converted DFA 

 

V: 

Definition: any number of

within the specified range. 

t4 
a=T a t1 t2 t3 

c=F i 

F

Converted property in SM

c=T 

c 

a=F 
SPEC   =T & EX(EX(EX(c=T | EX(c= EX(T| EF(a
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c=T)))))); 
c=T 
c=F
a=T
c=T 
a=F 
c=F 



3.7.8  Conversion Example of "eventually" Operator 

 @c} => eventually {@x; @y} 

 C

 

 

 

 

 

 

 

� Converted Property in SMV

 

The operator, "eventually" mean

cycle. That is it must hold at some ti

assertion, we have SMV to assign val

bound. That means the assertion will 

upper bound should be greater than 

ensures the assertion will be held in fin

SPEC   EF(EG(a=T & E

� Example: always {@a; @b;

onverted DFA in SMV: �

a 
b 

c 

"eventually" timeout 

a-1 
 b-1 
 

i xy 
{@a; @b; @c} 

 

not{@a; @b; @c} 
 

Figure 3.18  Converted DFA 
{@a; @b; @c} 
s

m

u

h

t

{@a; @b; @c} 
not{@ @b; @c} 
a-2 
 that the prop

e in the inde

e non-determ

old at most o

he maximum

ite time. 

X(b=T & EX
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e

f

i

f

 

abc
rty holds at the current cyc

inite future. To implement 

nistically until it reaches the

 upper limit time. Accordin

depth of time step of all i

(c=T &  AF(x=T & AX(y=
x←T; y←T 
le or at some future 

the checking for this 

 specified time upper 

g to the analysis, this 

nput assertions. That 

T)))))); 



3.8  Verifying Assertions with SMV 

After assertion conversion finishes, we apply symbol model verifier ( SMV) to verify converted 

asse s  the converted set of DFA and set of properties are fed to SMV. If 

ny conflict exists, the verifier will report the counterexample. Figure 3.19 illustrates the process. 

 

 

3.9  A More Complete Example of Assertion Checking 

In this section, we use a complete example to demonstrate our approach, and explain its process step 

by step. First at all, as shown in Figure 3.20, there are six assertions in the input. 

rtion . For each assertion group,

a

 

Figure 3.19  Verify Assertions with SMV 
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assert  A1  always {@a; @b; @c} => ev

 

 

 

 

In our approach, we p

algorithm, the six are as

Group 2, as Figure 3.21

 

 

 

 

 

 

 

se

entually {@x; @y;@z}; 
assert  A2  eventually  {{@m; [2:5]*@n; @o} or {@p;@q}}; 

assert  A4  once  {{[2]*{@m; @n; @o}} and {[2]*{@p; @q; @r}}}; 

assert  A6  always  (@a or @b) =>  {[3]*@w; @x}; 

assert  A3  never {@b; [2:5]; @x}; 

assert  A5  always  {@a; @b; @c} before {@x; @y}; 

Assertion G
assert  A1 
assert  A3 
assert  A5 
assert  A6 

Assertion G
assert  A2 
assert  A4 

We take Assertion Gr

quences and temporal

result. It is illustrated in

 

artition the input assertions into assertion groups. According to the partitioning 

sertions are partitioned into two groups, Assertion Group 1 and Assertion 

 shows. 

mposed into primitive 

Figure 3.21  Partitioning Result 

Figure 3.20  Input of the Example 

roup 1: 
 always {@a; @b; @c} => eventually {@x; @y; @z}; 
 never {@b; [2:5]; @x}; 
 always  {@a; @b; @c} before {@x; @y}; 
 always  (@a or @b) =>  {[3]*@w; @x}; 

roup 2: 
 eventually  {{@m; [2:5]*@n; @o} or {@p; @q}}; 
 once  {{[2]*{@m; @n; @o}} and {[2]*{@p; @q; @r}}}; 

oup 1 to demonstrate the process. In the step 1, it is deco

 operators, and the conversion template is applied according to the decomposed 

 Figure 3.22. 
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Then at step 2, the primitive DFA are built according to decomposed primitive sequence . At step3, 

composite DFA is assembled by each primitive DFA and temporal operators. The converted DFA of 

Assertion Group 1 is depicted in Figure 3.23.  

 

 

 

 

 

 

Similarly, assertion A3, assertion A5 and asse

respectively. 

 

Figure 3.23  Converte

A1:  always {@a; @b; @c} => eventually {@x; @y; @z}; 

 "eve ut i 

 

 Figure 3.22  Decomposed Assertions of Assertion Group 1 

y; @z};

x}; 
 

assert  A1  always  {@a; @b; @c}  =>   eventually  {@x; @

assert  A3  never   {@b; [2:5]; @x}; 

assert  A5  always  {@a; @b; @c}  before {@x; @y}; 

assert  A6  always  (@a  or  @b)   =>  {[3]*@w; @

 

abc
rtion A6 are shown in the Fi

d DFA from Assertion A1 
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xyz
; @c}{@a; @b
not{@ @b; @c}
 not{@a; @b; @c} 
x←T; y←T; z←T 
not{@ @b; @c} 
ntually" timeo

{@ @b; @c} 
gure 3.24, 3.25 and 3.26 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24  Converted DFA from Assertion A3 

A3:  never {@b; [2:5]; @x}; 

b=F 

x=Fx=F i b  t  t1 t  t  
 

fail 

b=T x=F  
t2 3 54

x=T x=T x=T x=T

A3:  always  {@a; @b; @c} before {@x; @y}; 

abc xyz i 

fail 

{@a; @b; @c}

not{@ @b; @c} 

not{@a; @b; @c } & not{@x; @y} 

{@x; @y} 

{@x; @y} 

c } & not{@x;

i

not

 @y} {@a; @b; @

not{@ax; @y}

 

Figure 3.25  Converted DFA from Assertion A5 
 

w x 

b

a 
w  w 

x←T 
w←T

(@ a or @b) 
a=T

a=T
Figure 3.26  Converted DFA from Assertion A6 
A6:  always  (@a or @b)  =>  {[3]*@w; @x}; 
32



At the step 4 and step 5, CTL formula are built and then properties are assembled with them. The 

onverted properties are illustrated in the following. 

 

 

 

 

 

After the conversion is done, the converted DFA and properties are fed into SMV for checking. The 

port is shown in Figure 3.27. 

g

c

(D

Property of assertion A1: 
SPEC !EF(EG(a=T & EX(b=T & EX(c=T & !AF(x=T & AX(y=T & AX(z=T)))))); 

Property of assertion A3: 
SPEC !EF(b=T & EX(EX(EX(x=T | EX(x=T | EX(x=T | EX(x=T))))))); 

Property of assertion A5:SPEC  !EF state=Fail; 

 
Property of assertion A6: 
SPEC EG((a=T | q=T)  -> AX(w=T & AX(w=T & AX(w=T & AX(x=T))))); 

 

c

 

re

Conflicts found: 
DFA1 ↔ Prop3  conflicted 
DFA1 ↔ Prop5 conflicted 

Unilateral conflicts, suspected conflicts alerted 
 

Mutual conflicts, definite conflicts reported 
 

 

 

 

 

 

a

A

 

Conflicts found: 
DFA3 ↔ Prop6  conflicted 
DFA6 ↔ Prop3   conflicted
As the Figure 3.27 s

ainst Property3, DFA1

cording to our analys

FA1,Property5) are un
Figure 3.27  Checking Result 
hows, there are four conflicts found in this assertion group. They are DFA1 

 against Property5, DFA3 against Property6, and DFA6 against Property3. 

is from the checking results of SMV, where (DFA1,Property3) and 

ilateral conflict, so they are suspected conflicts alert. That means it could be 
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ind

rtions. The other two, (DFA3, Property6), are 

m lict. That means they are definite conflicts. 

 

eed conflict or either one of two is redundant. Therefore, users who perform our approach can 

inspect the result to identify the errors among the asse

utual conf
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Chapter 4 
 
Case Study 
 
4.1  Case Description 

We choose the assertions for the Bus Transaction Protocol of PCI Local Bus Specification as our 

case. The assertions cover Bus Transfer Control, Addressing, Byte Lane and Byte Enable, Bus Driving 

and Turnaround, as well as Transaction Ordering and Posting [26]. 

In general, the assertions consist of two parts: PCI master and PCI target. There are 41 assertions in 

this case study.  

 

4.2  Experimental Environment 

We implement our approach in C program and some shell scripts. They are executed on Sun Sparc 
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Workstation with 1 GB memory on 400MHz speed. 



4.3  Experimental Result 

We partition the input assertions into 5 and 4 assertion groups for PCI master and PCI target 

pectively. 

ected conflicts alerted), 

1 mutual conflicts, (definite conflicts reported). 

The experimental result is depicted on Table. 4.1. 

 

 

 

 

 

 

Case 
No. of 

Assertions 

No. of 
Assertion 
Groups 

No. of 
Unilateral 
Conflicts 

No. of 
Mutual 

Conflicts 

Runtime 
(by second)

res

After execution, it found: 

4 unilateral conflicts (susp

PCI Master 25 5 2 1 92 

PCI Target 16 4 1 0 41 

 

Table 4.1  Experimental Result of Case Study 
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Chapter 5 
 
Conclusions and Future Works 
 
5.1  ions

We check esign assert by means of converting assertion into 

corresponding DFA and pr the others using SMV. 

The major features of our approach are: 

� Without referring the design, only the assertions required, 

� Without need of simulation and test patterns, 

� Stand-alone, off-line processing, may check assertions prior to design verification, 

� Greatly alleviating the state explosion problem of SMV. 

operties and then checking each of them against 

Conclus  

 propose a technique to  d ions 
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5.2  Discussion 

Ensuring a set of assertions without any conflict can increase our confidence in the correctness of 

 specification modeling. Not necessary all potential conflicts could be found by using our approach. 

onflicts are guaranteed to be definite conflicts. According to our 

experience, we found it is hard to detect redundancy of assertions merely by static formal checking 

m assertions. 

 of 

correlation stimulation of assertions under certain combinations in the input assertions. Under this 

cumstances, the assertions cannot contribute stimulus correlation to argue against each others. For 

rtions in an assertion group illustrated below. 

 

Even

are b

revea

That

F

defin

the

But all detected mutual assertion c

fro

The most serious hurdle to apply this approach to find out all possible conflicts is lack

cir

example, there are two asse

 

 

 

assert never {@a; @b; @c}; 
 and @c), but the two assertions 

nnot contribute stimulation for each other. It 

rrelative. 

urthermore, the definition of our acceptable input assertion language must be very clear and 

ite without any ambiguity; otherwise, it tends to induce problem caused by different interpretation 

assert never (@a; and @b) or (@a and @c); 

 the above two assertions share all common variables (@a, @b

oth with the same "passive" attribute. So they ca

ls that the ideal input set is the assertions with variety of event attributes and highly co

 provides enough assertive statement against each others.  
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of language.   

As for the computational complexity, our experiences showed that runtime is acceptable for up to 

hundreds of input assertions in an assertion group. 

In summary, symbolic model checking, in its purest basis at least, is feasible to apply conflict 

checking for assertion without design model and test patterns. Even it is more difficult than anticipated 

during the developing process, particularly on coping with versatile combination of input assertions, 

the 

ctions such as Logic Reasoning techniques may be considered to enhance our 

apability of checking. Next, we will input the simulation results or waveforms to augment the 

formation about assertions. By this way, we can clearly identify conflicts and redundancy among 

idea has been shown conceptually correct and furthermore this approach could be practically 

implemented for the industrial usage. 

 

5.3  Future Works 

Some research dire

c

in

assertions and also check assertion violations. 

Furthermore, by adding certain converting process, we may convert counterexample of SMV into 

industrial standard Value Change Dump (VCD) format. That information can help user quickly identify 

the problem pointed out by SMV. 
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As for input language, we should accept the full set of common-used language by enlarging the 

con  version templates for remaining types of that language constructs and enriching the conversion

rules for all temporal operators. 
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A

 Grammar of PSL-like Assertion Language 

 
Compilation  := Assertion_Collection

ppendices 
 
Appendix A: The BNF

 ; 
 
Assertion_Collection  := Assertion 
   | Assertion_Collection Assertion ; 
   

Assertion   := "assert" Assertion_Name Temporal_Assertion_Kinds ";" ; 
 
Assertion_Name  := IDENTIFIER ; 
 
Temporal_Assertion_Kinds  := Once_Assertion  
   | Always_Assertion 
   | Never_Assertion 
   | Eventually_Assertion ; 
 

Once_Assertion  := "once" Temporal_Or_Expression  
   | "once" Temporal_And_Expression "until" Temporal_And_Expression ; 
 

Always_Assertion   := "always" Temporal_Or_Expression 
   | "always" Temporal_Or_Expression "=>" Temporal_And_Expression 
   | "always" Temporal_Or_Expression "=>" "eventually" Temporal_And_Expression 
   | "always" Temporal_And_Expression "<=>" Temporal_And_Expression 
   | "always" Temporal_And_Expression "before" Temporal_And_Expression ; 
 

Never_Assertion   := "never" Temporal_Or_Expression ; 
 

Eventually_Assertion  := "eventually" Temporal_Or_Expression ; 
 
Temporal_Or_Expression  := Temporal_And_Expression 

   | Temporal_Or_Expression "or" Temporal_And_Expression ; 
 
Temporal_And_Expression  := Temporal_Compound_Expression  
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| Temporal_And_Expression "and" Temporal_Compound_Expression ; 

mporal_Compound_Expression := Temporal_Repeat_ExpressionTe

 

 

  | "not" Temporal_Compound_Expression ; 
 
Temporal_Repeat_Expression := Temporal_Primitive  
 
 

  | Repaet_Times Temporal_Repeat_Opt 
  | Repaet_Times ; 

epaet_Times  := "[" Repaet_Range

 

"]"  
um

R
   | "[" Repaet_N  "]" ; 

INTLITERAL

 

Repaet_Range  :=  ":" INTLITERAL ; 

epaet_Num  := INTLITERAL
 
R  ; 

emporal_Repeat_Opt  := "*" Temporal_Compound_Expression

 

T  ; 
 
Temporal_Primitive   := Event  

   | "(" Temporal_Or_Expression ")"  
   | "{" Temporal_Sequence "}" ; 
 
Temporal_Sequence  := Temporal_Or_Expression 

   | Temporal_Sequence ";" Temporal_Or_Expression ; 
 

Event   := "@" Event_Name ; 
 

Event_Name  := "CYC"  
   | IDENTIFIER ; 
 
IDENTIFIER  := Letter(Letter|Digit|_)* ; 

TLITERAL  := Digit
 
IN + ; 

etter   := [A-Za-z] ; 
 
L
 
Digit   := [0-9] ; 
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Appendix B:  Proving of Assertion Conversion 

 

The conversion processing of our approach consists of two parts. One is converting assertion to 

CTL property. The correctness of this part is comprehensive. Since PSL-like language and CTL 

property have similar temporal semantics in temporal specification in terms of language feature. The 

other is converting assertion into DFA. The most crucial part in our approach is assembling the whole 

DFA with pieces of DFA. Now, we would like to explain its correctness below. 

1. A sequence is part of language clause which follows regular expression grammar (RE 

grammar). 

2. Sequences and sequence operators belong to regular language set. 

3. A temporal expression can be decomposed to primitive sequences and operators. 

4. By Kleene’s Theorem, each primitive sequence has its corresponding finite automaton. 

5. A larger finite automaton can be composed of pieces of small finite automata by applying our 

approach which belong to operations of RE grammar. 

6. So, the combined larger finite automaton can represent the collection of DFA pieces which are 

converted from original assertion. 

Why assembling a composite DFA from piece sequences in our approach is correct in theory? Let's 

explain it in more detail. First of all, we may see that the most primitive item operated by our approach 
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is a sequence, which describes single- or multi-cycle behavior built from a series of Boolean 



expressions over time. The most atomic is a Boolean expression. In Property Specification Language 

SL), the sequence named as Sequential Extended Regular Expressions (SEREs)[24],  that extends 

the

is part of the regular 

lang

concate nion, and repetition which follow regular expression definition.In our approach, we 

dec heorem in formal language, 

wh utomaton, or 

tran o , every 

lang

means primitive sequence. This is just what we 

do 

DFA w  the composing rule which belong to regular expression set. 

(P

 set of regular expression (RE) by definition for some additional temporal operations.  

A sequence defined in our language is same as the sequence in PSL except pruning out some 

non-necessary sequence operations without losing capability for behavior specification. It keeps all our 

operations applied on sequences belonging to regular expression set. 

By definition from formal languages, a sequence of our PSL-like language 

uage grammar, which is also a context free grammar. The basic operations in our approach are 

nation and u

ompose an assertion down to some primitive sequences. By Kleene’s T

ich states that any language which can be defined by regular expression, or finite a

siti n graph can be defined by all three methods. It implies the subordinate proposition

uage that can be defined by a regular expression can also be defined by a finite automaton. That 

we can find a corresponding finite automaton for each 

to convert primitive sequence to a piece finite automaton. Then, we assemble the whole composite 

ith those primitive DFA by applying

So, the composed larger DFA can represent the collection of DFA pieces, and which are converted 

from the original assertion. Then, we can prove our approach is correct. 
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Fig. B-1  Proving Our Approach 
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