

國 立 交 通 大 學

電機學院 電子與光電學程

碩 士 論 文

適用於靜態背景視訊並以型態學處理物件邊緣之

即時視訊切割

Real-time Segmentation of Video with Stationary Background Based on
Morphological Edge Processing

研 究 生：黃奕善

指導教授：林大衛 教授

中 華 民 國 九 十 六 年 六 月

適用於靜態背景視訊並以型態學處理物件邊緣之

即時視訊切割

Real-time Segmentation of Video with Stationary Background Based on

Morphological Edge Processing

研 究 生：黃奕善 Student: I-Shan Huang

指導教授：林大衛 Advisor: Dr. David W. Lin

國 立 交 通 大 學
電機學院 電子與光電學程

碩 士 論 文

A Thesis

Submitted to College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science
in

Electronics and Electro-Optical Engineering

June 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年六月

i

適用於靜態背景視訊並以型態學處理物件邊緣

之即時視訊切割

研究生: 黃奕善 指導教授: 林大衛 教授

國立交通大學 電機學院 電子與光電學程碩士班

摘要

在本論文中，我們設計並實現一個在個人電腦上的視訊影像切割系統。此

系統可以應用於靜態背景的視訊電話及視訊會議。

此系統的基本概念是利用物件的邊緣銳化來精準得到移動的物件。首先，我

們使用一個兩級的雜訊估計方法來估計攝影機的雜訊，並且把此結果拿來當做往

後參數調整的參考。為了取得一個較佳的物件遮罩，我們觀察六張連續畫面的變

化情形來取得一個初步的前景以及利用連續兩張畫面的差異選擇一適合的臨界

值將移動的物件萃取出來。接著，我們利用 Canny edge detector偵測出整張畫面
的邊界資訊，利用影像變動偵測所得之遮罩及前一張畫面所求得之物件遮罩可以

將屬於背景的邊界移除，然後使用收縮的技巧來取得一個粗略的物件遮罩，並利

用此資訊來取得移動物件最外圍之邊界資訊。為了得到更精確的物件遮罩，我們

使用 Dijkstra所提之最短路徑搜尋演算法，將物件的邊緣連接並利用此封閉的物

件輪廓將移動的物件給萃取出來。最後的模擬結果顯示我們所提的方法，切割出

來的物體邊界是相當精確的，且在經過我們的加速之後，整個系統能快速且精準

的切割出移動的物件。

 在 1.733-GHz CPU 及 1024-MB RAM的個人電腦上且攝影機不移動時，目

前的執行速度是每秒約四張 CIF Frame及每秒約二十張 QCIF Frame，在格式影
片的應用上，我們有提出一簡化的方法，則每秒約十二張。

ii

Real-Time Segmentation of Video With
Stationary Background Based on Morphological

Edge Processing

Student: I-Shan Huang Advisor: Dr. David W. Lin

Degree Program of Electrical and Computer Engineering
National Chiao Tung University

Abstract

In the thesis, we consider the design and implementation of video segmentation

on a personal computer. The system can be applied on video conference and

videophone with stationary background.

The basic idea of the system is a graph-based edge linking technique. At first, we

adopt a two staged method for camera noise estimation and those thresholds are

adjusted based on the estimated camera noise. To get the change detection mask, we

consider six consecutive frames as time of observation to estimate the background and

select a suitable threshold to estimate the foreground by two consecutive frames. Next,

we use Canny edge detector to get the edge information of entire frame. We use the

change detection mask and the moving object mask of previous frame to remove the

edges of background. Then, we shrink the object mask to edge map. To refine the

object mask, we use Dijkstra’s shortest path search algorithm to link the boundary of

moving object and extract the object by the closed contour. Simulation results show

iii

that our method can give correct segmentation results. After optimization, the

proposed segmentation system can get the moving object accurately and quickly.

With a Intel Pentium M 1.733 GHz CPU and 1024-MB RAM, the system can

achieve 20 QCIF frames per second and 4 CIF frames per second. We also propose a

simple method and it can achieve 12 CIF frames per second.

iv

誌 謝

本篇論文的產生，最感謝的是我的指導教授－林大衛老師。身為一位在職

研究生要兼顧研究學習及工作本來是件不容易的事，但老師給予我多方面的協助

與鼓勵，讓我在研究學習中能夠順利進行，使我在研究學習及工作中得以兼顧而

能完成本篇論文。老師除給了我完善的專業知識訓練外，在論文實作部份，老師

更培養了我認真踏實的的研究態度，讓我獲益良多。

實驗室完善的資源，讓我可以順利的克服許多實作上所遇的的困難。感謝

學弟介遠、政達，在你們的討論與幫助下，讓我在工作中亦保有快樂的研究生生

涯。

最後，要特別感謝我的爸媽。他們給了我精神上的支持與鼓勵，陪伴我度

過所有的艱難。在此，我要將我的論文獻給所有關心與幫助我的人。

黃奕善

民國九十六年七月於新竹

Contents

1 Introduction 1

2 Overview of Video Segmentation 3

2.1 Meaning of Segmentation . 3

2.2 Basic Procedure of Segmentation . 3

2.3 Change Detection-Based Technique . 5

2.4 Background Subtraction-Based Technique 6

2.5 Graph-Based Edge Linking Technique 10

2.6 Summary . 12

3 The Proposed Segmentation Method 14

3.1 System Overview . 14

3.2 Two-Stage Noise Estimation . 14

3.2.1 Influence of Noise . 14

3.2.2 Motivation for Noise Estimation 16

3.2.3 Camera Noise Model . 16

3.2.4 Procedure for Two-Stage Noise Estimation 16

3.3 Temporary Moving Object Mask . 22

3.3.1 Foreground Estimation . 22

3.3.2 Mathematical Morphological Operator 23

3.3.3 Background Estimation . 23

3.3.4 Obtaining Initial Object Mask 25

3.3.5 Refining Initial Object Mask . 25

V

3.4 Edge Linking for Moving Object . 29

3.4.1 Find the Candidate of Edge Map 32

3.4.2 Overview of Shortest Path Algorithm 32

3.4.3 Edge-Link Method . 35

3.5 Post-Processing . 35

3.6 Temporal Filtering . 37

3.7 Conclusion . 39

4 Optimized Implementation on Personal Computer 42

4.1 Optimization of Algorithm . 42

4.2 Overview of Intel’s MMX Technology 44

4.2.1 The MMX Architecture [16], [17], [18] 44

4.2.2 The MMX Instruction Set [18] 47

4.3 Code Acceleration . 52

4.3.1 Labeling Function Optimization 52

4.3.2 Edgelink Function Optimization 54

4.3.3 Post processing Function Optimization 56

4.3.4 Erosion and Dilation Function Optimization 58

4.4 Conclusion . 60

5 Simulation Results 63

5.1 Segmented Object Masks . 63

5.1.1 Segmentation Results . 63

5.1.2 Performance Evaluation . 64

5.2 Run-time Analysis . 64

5.3 Complexity Analysis . 69

6 Integration of System on Personal Computer 76

6.1 Video Capturing . 77

6.1.1 Video for Windows . 77

6.1.2 AVI Format . 77

VI

6.1.3 Implementation of Capture . 78

6.2 Result Display . 79

6.3 Graphed User Interface . 79

6.4 Conclusion . 80

7 Conclusion and Future Work 82

VII

List of Tables

4.1 Profile and Run Time Comparison of Claire Sequence (CIF) 43

4.2 Run Time of Optimization of Labeling Function per Frame 44

4.3 MMX Instruction Set Summary (from [19]) 49

4.4 MMX Instruction Set Summary (from [19]) 50

4.5 Run Time of Optimization of Labeling Function per Frame 54

4.6 Run Time of Optimization of Edgelink Function per Frame 56

4.7 Run Time of Optimization of Post process Function per Frame 58

4.8 Run Time of Optimization of Erosion and Dilation Function per Frame . . 58

4.9 Profile and Run Time Comparison of Claire Sequence (CIF) in Debug Mode 61

4.10 Run Time Comparison of Claire Sequence (CIF) in Debug Mode and Re-

lease Mode . 62

5.1 Profile and Run Time Comparison of Akiyo Sequence (CIF) in Debug Mode 71

5.2 Profile and Run Time Comparison of LabI Sequence (CIF) in Debug Mode 72

5.3 Run Time and Frame Rate of Different Sequences with CIF or QCIF For-

mats in Release Mode . 73

5.4 Run Time and Frame Rate of Different Sequences use Simple Segmenta-

tion Method in Release Mode . 73

5.5 Comparison of Run-time between Different Algorithms 74

5.6 Complexity of Major Algorithms in One CIF Frame of Claire Sequence . 75

VIII

List of Figures

2.1 A basic segmentation system (from [8]). 4

2.2 Background subtraction-based segmentation system (from [4]). 8

2.3 Initial object mask generation (from [4]). 9

2.4 Graph-based edge linking segmentation system (from [5]). 11

2.5 Correction of a boundary segment. (a) Enlarged portion of the wrong

boundary. (b) Corresponding binary model points. (c) Weights assigned

for Dijkstra’s algorithm. (From [5]). 13

3.1 The block diagram of proposed method. 15

3.2 A thresholded frame difference map of the Mother-and-Daughter sequence

(from [8]). 17

3.3 A thresholded frame difference map of the Akiyo sequence (from [8]). . . 17

3.4 A frame difference map of Mother-and-Daughter sequence (from [8]). . . 19

3.5 Four masks of directional sums (from [8]). 19

3.6 Mother-and-Daughter sequence (from [8]). 19

3.7 Claire sequence (from [8]). 20

3.8 Noise estimation of Mother-and-Daughter sequence (from [8]). 20

3.9 Noise estimation of Claire sequence (from [8]). 21

3.10 Noise estimation of Mother-and-Daughter sequence for the two-stage method

(from [8]). 21

3.11 Noise estimation of Claire sequence for the two-stage method (from [8]). 22

3.12 Threshold frame difference map of frame 27 in Claire sequence. 24

IX

3.13 Threshold frame difference map of frame 27 in Claire sequence after clos-

ing operation. 24

3.14 The original frame 60 in Claire sequence. 26

3.15 Threshold frame difference map after foreground estimation of frame 60

in claire sequence. 26

3.16 Threshold frame difference map after background estimation of frame 60

in Claire sequence. 27

3.17 The OR map of Fig 3.15 and Fig 3.16. 27

3.18 Threshold frame difference map after remove small region of frame 60 in

Claire sequence. 28

3.19 Threshold frame difference map after fill-in of frame 60 in Claire se-

quence . 28

3.20 Edge map of frame 60 in Claire sequence. 30

3.21 Edge map after opening operator of frame 60 in Claire sequence. 30

3.22 Edge map after removing background edges of frame 60 in Claire sequence. 30

3.23 Final object edge map of frame 60 in Claire sequence. 31

3.24 Final object mask of frame 60 in Claire sequence. 31

3.25 The edge map of frame 49 after Canny operation in Mother-and-Daughter

sequence. 33

3.26 The edge map of frame 49 after removing background edges in Mother-

and-Daughter sequence. 33

3.27 The outmost edge map of frame 49 in Mother-and-Daughter sequence. . . 34

3.28 The weighted edge map of frame 49 in Mother-and-Daughter sequence. . 34

3.29 Flowchart of edge-link method. 36

3.30 The edge map of frame 49 after edge-link in Mother-and-Daughter se-

quence. 36

3.31 The object mask of frame 49 after padded with edge pixels in Mother-

and-Daughter sequence. 38

3.32 The original frame 49 in Mother-and-Daughter sequence. 38

3.33 The moving object of frame 49 in Mother-and-Daughter sequence. 38

X

3.34 Flowchart of temporal filter. 39

3.35 Segmentation of the Claire sequence. (a) The original frame 29. (b) The

original frame 30. (c) The original frame 31. (d) Frame 29 without tem-

poral filter. (e) Frame 30 without temporal filter. (g) Frame 31 without

temporal filter. (g) Frame 29 with temporal filter. (h) Frame 30 with tem-

poral filter. (i) Frame 31 with temporal filter. 40

4.1 The object mask after applying down-sample. 45

4.2 The object mask after applying labeling and up-sample. 45

4.3 MMX packed data types (from [16]). 47

4.4 MMX register set (from [19]). 48

4.5 PACKSSDW instruction operation using 64-bit operands (from [18]). . . 51

4.6 Section of code that we would like to optimize with MMX. 53

4.7 Code in Fig. 4.6 after optimization using MMX instructions. 53

4.8 The section of original code with malloc function. 55

4.9 The section of revised code with calloc function. 55

4.10 The section of original code without break instruction. 55

4.11 The section of revised code with break instruction. 56

4.12 Section of code that we would like to optimize with MMX. 57

4.13 Code in Fig. 4.12 after optimization using MMX instructions. 57

4.14 The section of original code without continue instruction. 59

4.15 The section of original code with continue instruction. 59

5.1 Segmentation of the Mother-and-Daughter sequence. (a) Frame 48. (b)

Frame 156. (c) Frame 234. (d) Segmented object in frame 48. (e) Seg-

mented object in frame 156. (f) Segmented object in frame 234. 65

5.2 Segmentation of the Claire sequence. (a) Frame 16. (b) Frame 63. (c)

Frame 104. (d) Segmented object in Frame 16. (e) Segmented object in

Frame 63. (f) Segmented object in Frame 104. 66

XI

5.3 Segmentation of the Akiyo sequence. (a) Frame 24. (b) Frame 60. (c)

Frame 141. (d) Segmented object in Frame 24. (e) Segmented object in

Frame 60. (f) Segmented object in Frame 141. 67

5.4 Segmentation of the LabI sequence. (a) Frame 18. (b) Frame 19. (c)

Frame 20. (d) Segmented object in frame 18. (e) Segmented object in

frame 19. (f) Segmented object in frame 20. 68

5.5 Fractional agreement between the segmented foreground object of the

Akiyo sequence and the reference mask. 68

5.6 Flowchart of simple segmentation method. 70

6.1 System block diagram (from [8]). 76

6.2 Circumstance of implementation (from [8]). 77

6.3 AVI header (from [8]). 78

6.4 Related code for creating a capture window. 78

6.5 Related code for parameter modification. 79

6.6 Related code for capture operation. 79

6.7 Related code for displaying. 80

6.8 Application program interface. 81

XII

Chapter 1

Introduction

We consider the design and implementation of video segmentation system on a personal

computer. The intended application is PC-based videoconference and videophone system.

We assume the camera is fixed.

Video segmentation is one of the fundamental technologies for content-based real-

time MPEG-4 camera system. For real-time requirement, the segmentation algorithm

should be fast and accurate. The main objective in segmentation is to partition the data

into meaningful and independent regions. According to the type of data, we can classify

the processes into image segmentation and video segmentation. Here, we focus on the

video segmentation. The general schemes for video segmentation can be seen as the

following steps: pre-processing, feature extracting, decision, and post-processing. In this

thesis, a method based on change detection and graph-based edge linking is proposed.

The basic idea of the system is a graph-based edge linking technique. The moving

objects of current frame can be roughly obtained by the change detection technique. It

requires statistical modeling of the background noise. To begin, we estimate the vari-

ance of the background noise by finding the difference of consecutive frames. Then we

obtain a compact image region by a fill-in procedure employing the edge map from em-

ploying the Canny method. However, typical edge detection algorithms, including the

Canny method [1], do not yield closed region contours or fully connected curves at object

boundaries. To help object segmentation, we employ a shortest-path algorithm to find and

connect the boundary edges and the favorite algorithm is Dijkstra’s algorithm [2].

1

After linking edge, we could obtain a closed object boundary. The postprocessing is to

eliminate the redundant region and smooth the object boundary. To smooth the boundary,

morphological operations are applied. At last, the object alpha map is generated after this

process.

The technologies described as above deal with the video in spatial domain in addition

to change detection. In temporal domain, we use the temporal filter. The simplest way to

judge whether the value of a pixel is background is to check the alpha map at this location.

Our idea is to record the weight of variability of consecutive alpha frames. If the weight

is greater than the threshold, the pixel is considered that stationary.

In many steps of our algorithm, we need a threshold to make decisions. In many

situations, the threshold is adjusted to counteract the influence of noise and therefore we

estimate the camera noise at first and the adjustment of threshold is based on camera

noise.

We propose an automatic segmentation system which include change detection, back-

ground registration, and graph-based edge linking techniques. At first, we modify and

integrate these techniques to get the most accurate object mask. Second, we improve

the system to achieve the real-time requirement. Finally, we integrate our segmentation

system on personal computer to test natural video sequence.

This thesis is organized as follows. Chapter 2 is an overview of popular video seg-

mentation techniques. Chapter 3 gives a detailed description of proposed segmentation

method. Chapter 4 discuss the optimization of proposed video segmentation method.

Chapter 5 shows the simulation result. Chapter 6 shows the integration of the proposed

segmentation method on the personal computer. Chapter 7 contains the conclusion and

future work.

2

Chapter 2

Overview of Video Segmentation

2.1 Meaning of Segmentation

The main objective in segmentation is to partition the data into meaningful and indepen-

dent regions. According to the type of data, we can classify the segmentation processes

into image segmentation and video segmentation. In the case of image segmentation, the

problem is two-dimensional in nature, while in case of video segmentation, in addition to

the two-dimensional information we can also handle the problem with the aid of motion

information.

The algorithm of segmentation depends to a large extent on the application and the

data that are used. In one application, partition into ten regions may be ideal but for

an other application partition into two regions may be desired. In the ideal case, we may

develop a best algorithm for each application but it likely come with very high complexity.

In practice, we often develop an algorithm best suited to specific applications, not to

general situations.

2.2 Basic Procedure of Segmentation

In [8], the author mention that a general scheme for segmentation can be seen as composed

of the following steps: pre-processing, feature extraction, decision, and post-processing,

as illustrated Figure 2.1.

3

Figure 2.1: A basic segmentation system (from [8]).

1. Pre-processing:

The original data may include a high amount of information but most of it is irrel-

evant to our application and sometimes influences our decision. In the stage, we

remove the irrelevant information and keep the desired data.

2. Feature extraction:

Depending on various segmentation algorithms, we need some specific features to

achieve our goals. In this stage, we extract the desired features from original data.

3. Decision:

The values of extracted features are usually more than two values and therefore

we need to find a threshold to classify those data. In the stage, we can use many

strategies to make a desired threshold set to find out the regions which meet our

goal.

4. Post-processing:

Although we can use many decision strategies to make a best threshold set, we may

still make wrong decisions in some special regions. In the stage, we will try to

correct those improper regions.

In the following sections, we introduce some popular segmentation techniques.

4

2.3 Change Detection-Based Technique

It is possible to extract the independently moving objects from background by calculating

frame difference between consecutive frames. This technique is usually named change

detection. The main advantage of change detection is that it has relatively low computa-

tional complexity and can extract the moving objects roughly. Many video segmentation

algorithms employ this technique for simplicity.

Change detection algorithms usually start with the gray value difference map between

the two frames considered. The local sum (or mean) of absolute difference is computed

inside a small measurement window which slides over the difference map. At each lo-

cation, this local sum of absolute differences is compared against a threshold. Whenever

this threshold is exceeded, the center pixel of the current window location is marked as

changed. The key issue of this technique is how to decide the threshold.

The algorithm in [3] provides some statistical methods to decide the threshold. It

starts by computing the gray level difference image D = {dk}, with dk = y1(k) −
y2(k), between two considered pictures Y1 = {y1(k)} and Y2 = {y2(k)}. The index k

denotes the pixel location on the image grid. Under the hypothesis that no change occurs

at location k, the corresponding difference dk obeys a zero mean Gaussian distribution

N(0, σ) with variance σ2, that is,

p(dk|H0) =
1√

2πσ2
exp{− d2

k

2σ2
}. (2.1)

Since the camera noise is uncorrelated between different frames, the variance σ2 is

equal to twice the variance of the assumed Gaussian camera noise distribution. H0 denotes

the null hypothesis, i.e., the hypothesis that there is no change at pixel k. The unknown

parameter σ can be estimated offline for the used camera system, or recursively online.

In order to make the detection more reliable, a region may be used to evaluate the

difference di instead of only a single pixel. One may thus compute the local sum 42
i of

(dk

σ
)2 inside a small sliding window wi, with i denoting the center pixel of the window.

The local sum 42
i is proportional to the sample mean of (dk

σ
)2 as computed inside the

window. Under the assumption that no change occurs inside the window when centered

at location i, the normalized difference (dk

σ
) obeys a zero-mean Gaussian distribution

5

N(0, 1) with variance 1. Thus, the sum 42
i obeys a χ2-distribution with as many degrees

of freedom as there are pixels inside the window. With the distribution p(42|H0) known,

the decision between “changed” and “unchanged” can be arrived at by a significance

test. For this purpose, one may usually specify a significance level α and compute a

corresponding threshold tα according to

α = Prob(42
i > tα|H0). (2.2)

The statistic 42
i is now evaluated at each location i on the image grid, and whenever

it exceeds tα, the corresponding pixel is marked as changed, otherwise as unchanged.

The method given above exhibits some shortcomings. First, there are inevitably deci-

sion errors. Typically, these errors appear as small isolated spots inside correctly labeled

regions. Another drawback is that in some critical image areas the boundaries between

differently classified regions tend to be somewhat irregular. To avoid these shortcomings,

the MAP (maximum a posteriori) criterion can be used to get a better change mask. That

is to say, one may try to find the change mask Q = qk which maximizes the a posteriori

density p(Q|D), where D is the given difference image. The label qk at location k can

take either the value u for “unchanged” or c for “changed”. After a series of deduction,

we can get the final decision rule as

d2
k

u
>
<
c 2

σ2
cσ

2

σ2
c − σ2

(ln
σc

σ
+ (vB(c)− vB(u))B + (vC(c)− vC(u))C). (2.3)

where B is a positive cost term of each horizontally or vertically oriented border pixel

pair and C is that of diagonally pair, and vB(qk) and vC(qk) denote the number of inho-

mogeneous cliques to which pixel k belongs when its label is qk.

2.4 Background Subtraction-Based Technique

The idea of background subtraction is to subtract the current image from the still back-

ground, which is acquired before the objects move in. After subtraction, only non-

stationary or new object are left. The most straightforward way to separate background is

to apply a simple difference and threshold method.

6

An example of background subtraction-based technique is proposed in [4]. This seg-

mentation system consists of five major steps as shown in Figure 2.2.

1. Frame difference:

The frame difference mask is generated simply by thresholding the frame differ-

ence. This data is sent to the background registration step where the reliable back-

ground is constructed from the accumulated information of several frame difference

masks. Since the accumulated frame difference mask are used in the final decision

for a reliable background, no filtering or boundary relaxation is applied on the frame

difference.

The changed detection technique as show in last section is used to obtain the thresh-

old value.

2. Background registration:

The goal of background registration is to construct a reliable background informa-

tion from the video sequence. In this application, it needs a reliable background

information for change detection.

The history of frame difference mask is considered in constructing and updating

the background buffer. A stationary map is maintained for this purpose. If a pixel

is marked as changing in the frame difference mask, the corresponding value in

the stationary map is cleared to zero; otherwise, if the pixel is stationary, the corre-

sponding value is incremented by one. The values in the stationary map indicate that

the corresponding pixel has not been changing for how many consecutive frames.

If a pixel is stationary for the past several frames, then the probability is high that

it belongs to the background region. Therefore, if the value in the stationary map

exceeds a predefined value, then the pixel value in the current frame is copied to the

corresponding pixel in the background buffer.

A background registration mask is also changed in this process. The value in the

background registration mask indicates that whether the background information

of the corresponding pixel exists or not. If a new pixel value is added into the

7

Figure 2.2: Background subtraction-based segmentation system (from [4]).

8

background buffer, the corresponding value in the background registration mask is

changed from nonexisting to existing.

3. Background difference:

This step generates a background difference mask by thresholding the difference

between the current frame and the background information stored in the background

buffer. This step is very similar to the generation of frame difference mask.

4. Object detection:

The object detection step generates the initial object mask from the frame differ-

ence mask and the background difference mask. The background registration mask,

frame difference mask, and background difference mask of each pixel are required

information. Figure 2.3 lists the criteria for object detection, where BD means the

absolute value of difference between the current frame and the background informa-

tion stored in the background buffer, FD is the absolute value of frame difference,

and the OM field indicates that whether or not the pixel is included in the object

mask. THBD and THFD are the threshold values for generating the background

difference mask and frame difference mask, respectively. If BD is greater than

THBD, the pixel would be judged belong to moving object. If the BD is not ex-

ist, it would depend on the FD to judge the pixel change or unchange. And the

condition is the same as change detection technique.

5. Post-processing:

Figure 2.3: Initial object mask generation (from [4]).

9

After the object detection step, an initial object mask is generated. However, due

to the camera noise and irregular object motion, there exist some noise regions in

the initial object mask. The approach to eliminate the noise region relies on an

observation that the area of noise regions tend to be smaller than the area of the

object. Regions with area smaller than a threshold value are removed from the

object mask. In this way, the object shape information is preserved while smaller

noise regions are removed. After removing noise regions, a close and an open

operation with a 3× 3 structuring element are applied on the object mask.

2.5 Graph-Based Edge Linking Technique

In [5],[6],[7], authors proposed an automatic video segmentation algorithm based on

graph-based edge linking technique. The algorithms link up the boundaries of the moving

object to extract the moving object. In the following we will show a system proposed

in [5] in which the edge linking technique is used. The system incorporates edge tracking

has been proposed. A dense optical flow field and a global affine motion model has been

computed to derive the motion mask. After the initial binary model for the interest is

derived, the object tracker matches the model against subsequent frames in the sequence

and updates the model. The basic idea of the algorithm is shown in Figure 2.4.

In the block of Video Object Plane (VOP) Extraction, the shortest path algorithm has

been applied in order to correct the incorrect object boundaries resulting from the use

of the filling-in procedure. Each wrong boundary segment is corrected separately. After

removing one of those, there will be a gap in the otherwise closed contour, as illustrated

in Figure 2.5(a).

Naturally, the contour between A and B should coincide with binary model points,

which are showed in Figure 2.5(b). Hence, a small weight or distance d0 is assigned

to these model points. The weight is also set to d0 for all pixels along the four frame

boundaries, because in many situations they form part of the VOP contour. All remaining

pixels are less likely to belong to the VOP boundary and a weight d1 with d1 > d0 is

assigned to them. Furthermore, the goal is to close the gap between A and B with the

10

Figure 2.4: Graph-based edge linking segmentation system (from [5]).

11

corrected boundary segment. Therefore, all pixels that already belong to the VOP contour

after removing the wrong boundary segment must be excluded. This is accomplished by

setting the corresponding weights to infinity. To summarize, pixels that already belong to

the VOP boundary must be excluded from the search by assigning infinity or a suitably

large distance to them. The distance is set to d0 both for object model points that are

not yet VOP boundary pixels and for pixels along the four frame boundaries. All other

pixels have a weight of d1. Figure 2.5(c) visualizes the weights assigned to the pixels in

example.

This technique has to link the boundaries of moving object and get the closed contour.

It can extract the moving objects for accurate locating of moving object boundaries. But

this scheme is quite computationally expensive.

2.6 Summary

All techniques described above can obtain a desired object mask. Here, we explain the

reason why we employ these techniques. In our application, the camera is fixed. For real

time requirement, we employ the change detection-based technique to get the moving

objects roughly because it can avoid complex computation. The object masks obtained

by change detection-based technique are hard to resist the camera noise and the accuracy

of object mask is hard to keep for the entire sequence. So we employ graph-based edge

linking technique to get the closed contour of moving object and use it to refine the object

masks.

However, since the behavior and characteristics of the moving objects differ signifi-

cantly, the quality of segmentation result depends strongly on background noise, object

motion, and the contrast between the object and the background. Reliable and consistent

object information from the changing part of the scene is not easy to maintain for the

entire sequence, we concentrate on the stationary background where the characteristics

are well known and more reliable. So we employ the background registration technique

in temporal domain to smooth the boundaries of moving object.

12

Figure 2.5: Correction of a boundary segment. (a) Enlarged portion of the wrong bound-

ary. (b) Corresponding binary model points. (c) Weights assigned for Dijkstra’s algo-

rithm. (From [5]).

13

Chapter 3

The Proposed Segmentation Method

3.1 System Overview

Our segmentation system employs a graph-based edge linking scheme. The block dia-

gram is shown in Figure 3.1. To start, we estimate the camera noise and the following

thresholds are decided according to estimated camera noise. We use the foreground es-

timation and background estimation to generate the object mask. The edge map can be

obtained by Canny operator in current frame. We can remove the edges of background

and shrinks object mask to edge map. According to shortest path algorithm, we can get

the closed contour of moving object. In the step of postprocessing we refine the object

mask and get accurate object mask. The boundaries of moving object can be smoothed

by temporal filter.

In this system, most of these modules are used for processing each frame. The details

of this system are discussed in the following sections.

3.2 Two-Stage Noise Estimation

3.2.1 Influence of Noise

In this system, the image is captured by camera and then we get the initial image from

the output of camera. In the process of capturing, the image may suffer from camera

14

Figure 3.1: The block diagram of proposed method.

15

noise and therefore the stationary background usually has some difference between suc-

cessive frames. In general, larger camera noise makes good segmentation more difficult

to achieve. For example, when change detection-based technique is applied, the frame

difference map of larger noise sequence (Figure 3.2) includes more background pixels

than smaller noise sequence (Figure 3.3). It is apparent that the larger noise sequence

needs more processing to obtain a better object mask.

3.2.2 Motivation for Noise Estimation

In the following steps of the system, we need many thresholds or parameters to make

decisions and those thresholds are usually adjusted to counteract the influence of noise.

We can adjust those parameter empirically but it is inconvenient since we have to tune

them for different situations and it usually needs some experiences. In order to reduce

the complexity of threshold decision, those parameters in the following steps are adjusted

based on estimated camera noise.

3.2.3 Camera Noise Model

In the thesis, we assume the difference dk of stationary pixels between successive frames

obeys a zero mean Gaussian distribution N(0, σ) with variance σ2, that is,

p(dk|H0) =
1√

2πσ2
exp{− d2

k

2σ2
}. (3.1)

where H0 denotes the null hypothesis. As in [3], since the camera noise is uncorrelated

between different frames, the variance σ2 is equal to twice the variance of the assumed

Gaussian camera noise distribution.

3.2.4 Procedure for Two-Stage Noise Estimation

In order to estimate the variance σ2, the sample space should include those pixels belong-

ing to stationary background and exclude pixels belonging to moving objects. Our idea to

discriminate the two kind of pixels is based on the observation which can be seen in Fig-

ure 3.4. The lighter pixels which represent larger difference are usually lumped together

16

Figure 3.2: A thresholded frame difference map of the Mother-and-Daughter sequence

(from [8]).

Figure 3.3: A thresholded frame difference map of the Akiyo sequence (from [8]).

17

or are distributed like a strip when they are introduced by moving objects. On the other

hand, the larger frame differences caused by camera noise are usually randomly distrib-

uted. Hence, we reject the pixels whose neighbors have larger frame difference from the

sample space during noise estimation.

We use the same mask of [11] to find out those pixels that belong to moving objects.

For each pixel, we consider the four directional sums in frame difference map as shown

in Figure 3.5. If one of the four directional sums is larger than certain threshold, we can

assume that the pixel belongs to a moving object.

The following problem is how we choose the threshold. Up to the present, we can only

calculate variance σ2
G of frame difference of entire frame, and therefore it is natural that

we initially adjust the threshold based on σ2
G. If one of the four directional sums of a pixel

is larger than ασ2
G, the pixel is classified to pixels influenced by moving objects. After we

remove those pixels influenced by objects, those remaining pixels are used to estimate σ2.

In order to verify the result of our method, we first manually choose the pixels belonging

to stationary background to estimate the variance σ2. In Figures 3.6 and 3.7, the white

areas are chosen to estimate σ2 and the estimation result is regarded as exact. As we can

see in Figures 3.8 and 3.9, this method can effectively remove most pixels influenced by

moving objects.

It is obvious that the results in Figures 3.8 and 3.9 are still influenced by moving

objects, because we adjust the threshold based on variance σ2
G of entire frame which has

high relationship with moving objects. In order to reduce this problem, we use a two-stage

noise estimation in this system. In the first stage, we use the ασ2
G (In the experiment, α

is 25) to be the threshold and get the variance σ2
1 of stage one. In the second stage, we

use the βσ2
1 (In the experiment, β is 20)as the threshold and then we can obtain the final

result σ2
2 of stage two. The final result is shown in Figures 3.10 and 3.11. It can be seen

that the result of two stage method is closer to exact value.

18

Figure 3.4: A frame difference map of Mother-and-Daughter sequence (from [8]).

Figure 3.5: Four masks of directional sums (from [8]).

Figure 3.6: Mother-and-Daughter sequence (from [8]).

19

Figure 3.7: Claire sequence (from [8]).

Figure 3.8: Noise estimation of Mother-and-Daughter sequence (from [8]).

20

Figure 3.9: Noise estimation of Claire sequence (from [8]).

Figure 3.10: Noise estimation of Mother-and-Daughter sequence for the two-stage

method (from [8]).

21

Figure 3.11: Noise estimation of Claire sequence for the two-stage method (from [8]).

3.3 Temporary Moving Object Mask

In this section, we will generate a temporary foreground mask and then the mask is used to

get the outmost edge map of moving object. In this stage, we use change detection-based

technique to obtain a rough mask. The major advantage of this technique is that the frame

difference can be easily and speedily obtained. Then we use the binary morphological

operator to remove small regions that arise due to camera noise. After these steps we can

get a rough moving object mask in this stage.

3.3.1 Foreground Estimation

A moving object is also called foreground and the stationary parts are called background.

At first, we use the 3 × 3 window to calculate the mean of squared frame difference for

each pixel. If the result is larger than threshold, the pixel is classifed as in a moving

object. On the other hand, a pixel is classified as background when the result is smaller

than threshold. The threshold here is adjusted based on the camera noise, that is, γσ2.

The range of γ is from 20 to 100. An example of thresholded frame difference map is

22

shown in Figure 3.12.

3.3.2 Mathematical Morphological Operator

The output of thresholded frame difference map is binary image. The pixels of foreground

are marked in white. As shown in Figure 3.12, there are many small regions which are

marked in white and they do not belong to foreground. So we use morphology operator

to delete them and make the pixels of foreground to lump together.

Mathematical morphology is a well-known set theoretic and shape oriented approach

which treats the image as a set and the kernel of operation, dilation, erosion, opening,

closing, etc., as another set. Each operation set, namely structuring element, plays an

important role in dealing with shape or extracting features from the image. The structuring

element is a kind of coefficients set in mathematical morphology. In digital image, there

are two popular kinds of structuring elements, 4-connectivity and 8-connectivity.

In our application, we select the 3 × 3 and 8-connectivity structuring elements. The

operation of binary erosion means if one of 8-connectivity pixels is marked black, then

the central pixel is marked black. The operation of binary dilation means if one of 8-

connectivity pixels is marked white, then the central pixel is marked white. The opening

and closing operators are composed of erosion and dilation. In [9], closing operator can

remove the salt noise and opening operator can remove pepper noise. So we employ

closing operator to the thresholded frame difference map and the result is as shown in

Figure 3.13.

3.3.3 Background Estimation

To obtain the robust moving object mask, we employ the background estimation in the

same time.

The simplest way to judge whether the value of a pixel is background is to check the

frame difference at this location. Since moving objects will cause larger frame difference,

we can assume that a pixel belongs to background at this location when the frame dif-

ference at this location is very small from start to finish. For real-time application, it is

23

Figure 3.12: Threshold frame difference map of frame 27 in Claire sequence.

Figure 3.13: Threshold frame difference map of frame 27 in Claire sequence after closing

operation.

24

impossible to make a decision after whole data is collected from beginning to end. In the

system, we regard the value of pixel as background when its frame difference is small for

some consecutive frames.

We consider six consecutive frames fk(i) (1 ≤ k ≤ 6) as the time of observation and

a 3× 3 window is used to calculate frame difference dm(i) = f6(i)− fm(i) (1 ≤ m ≤ 5)

for each location i in a frame. For every location i, we calculate the mean and variance

of dm(i) (1 ≤ m ≤ 5). If the variance is smaller than threshold, it means the changes

between the six frames are small and we can regard the value of pixel at location i of sixth

frame as background. The threshold here is also based on camera noise, that is, λσ2. The

range of λ is from 2 to 10.

3.3.4 Obtaining Initial Object Mask

After foreground and background estimation, we can get two thresholded frame difference

maps. In this stage, we want to generate the initial moving object mask. At first, we obtain

a rough object by ORing the two maps. There might be noise present, which can be

suppressed based on the size of connected components in the object mask. In the second

step, we label the connected components in the object mask and set a threshold. In the

experiment,the threshold is from 10 to 40. If the size of a component exceeds a threshold,

we assume it belong to object mask. In the third step, we use the fill-in technique proposed

in [5]. The fill-in technique is described as that at first we assign the pixels between the

first and last white points of 3.18 to white points for each row. This procedure is then

repeated for each column. The step-by-step results are shown in Figures 3.15 to 3.19.

3.3.5 Refining Initial Object Mask

Since the fill-in technique always marks the region between left and right boundaries,

there are some pixels belong to background always regarded as objects. So we refine the

object mask. It will be very helpful if the mask here is more accurate.

In this stage, we use the edge information to correct the initial mask and the Canny

operator proposed in [1] is adopted to get edge information. The operator performs a gra-

25

Figure 3.14: The original frame 60 in Claire sequence.

Figure 3.15: Threshold frame difference map after foreground estimation of frame 60 in

claire sequence.

26

Figure 3.16: Threshold frame difference map after background estimation of frame 60 in

Claire sequence.

Figure 3.17: The OR map of Fig 3.15 and Fig 3.16.

27

Figure 3.18: Threshold frame difference map after remove small region of frame 60 in

Claire sequence.

Figure 3.19: Threshold frame difference map after fill-in of frame 60 in Claire sequence .

28

dient operation on the image which convolutes it with Gaussian filter and then nonmaxi-

mum suppression is applied to thin the edge. In the last step, the thresholding operation

with hysteresis is used to find and link edges. The thresholding operation including two

thresholds: high-threshold and low-threshold. Pixels whose gradient is larger than high-

threshold are regarded as edges and pixels whose gradient is smaller than low-threshold

are regarded as non-edges. Pixels whose gradient is between high-threshold and low-

threshold need to check their neighbors. If one of its neighbors is regarded as edge, these

pixels are classified to edge. The edge map after applying Canny operator is shown in

Figure 3.20. The related code of Canny operator is obtained from [12].

At first, we employ the opening operator to lump the pixel which is marked in black.

The edge map after applying opening operator is shown in Figure 3.21. The way to refine

the initial object mask is shrinking the initial mask to fit the edge map. The initial mask,

edge map and shrunk mask are shown in Figures 3.22, 3.23 and 3.24, respectively, for

Claire sequence. In these figures, we can see that the edge map includes many background

edges and those background edges usually interfere with the final result. According to the

initial moving object mask, when a position of object mask is marked black, we assume

that there is a background edge in the position. The result after removing the background

edge can be seen in Figure 3.22. In Figure 3.22, we can find some pixels which belong

to background edges. To reduce the influence of those background edges, we use the

connected algorithm to delete them. In Figures 3.23 and 3.24, we can see that background

edges can be effectively removed and the final object masks are obtained.

3.4 Edge Linking for Moving Object

In our application, we employ the change detection technique to obtain a rough outline

of an object. Next, we employ the Canny method [1] for edge detection and remove the

background edges. Then, we employ roll operator [8] to shrink the initial object mask to

edge map. Edge information is very useful in identifying object boundaries. However,

typical edge detection algorithms, including the Canny method, do not necessarily yield

closed region contours or fully connected curves at object boundaries. And the change

29

Figure 3.20: Edge map of frame 60 in Claire sequence.

Figure 3.21: Edge map after opening operator of frame 60 in Claire sequence.

Figure 3.22: Edge map after removing background edges of frame 60 in Claire sequence.

30

Figure 3.23: Final object edge map of frame 60 in Claire sequence.

Figure 3.24: Final object mask of frame 60 in Claire sequence.

31

detection mask is influenced by camera noise and the intensity of light. So it would

lose some edges of moving object. In the section, the outermost edges in the region are

identified and linked using a shortest path algorithm.

3.4.1 Find the Candidate of Edge Map

In this stage, we use the Mother-and-Daughter sequence for instance. The edge map

after applying Canny operator is shown in Figure 3.25. The edge map after removing

background edges is shown in Figure 3.26. Given a set of edges in a region, one common

way to obtain a rough outline of the object is by orthogonal scans. Each row that contains

edge pixels is considered. The space between the leftmost and the rightmost such pixels

is filled in. Likewise, for each column that contains edge pixels, the space between the

topmost and the bottommost such pixels is fill in. Then a rough object mask is obtained

by ANDing the two pixel map. After the orthogonal scans, we use the 8-connectivity

method to get the outmost edges of objects.

The method of 8-connectivity is that if the pixel is marked black and one of its 8-

connectivity neighbors is marked white, we consider the pixel belong to the outmost edge

pixel of moving object. The result can be seen in Figure 3.27. The others of the edge map

is marked gray, as shown in Figure 3.28.

3.4.2 Overview of Shortest Path Algorithm

In [2], the author provides solutions to two graph problems under the following assump-

tions. There are n vertices, there exists at least one path between any pair of vertices, and

the paths have positive lengths. The first problem is to construct a tree of minimum total

length between n vertices, and the second problem is to find the path of minimum total

length between two given vertices. In here, we consider the second problem.

To find the shortest path from vertex S to vertex t, the algorithm does the following:

1. Set a variable D[x], x is any vertex. D[x] = 0 when x is equal to S, and D[x] = inf

when x is not equal to S. Set y = S.

32

Figure 3.25: The edge map of frame 49 after Canny operation in Mother-and-Daughter

sequence.

Figure 3.26: The edge map of frame 49 after removing background edges in Mother-and-

Daughter sequence.

33

Figure 3.27: The outmost edge map of frame 49 in Mother-and-Daughter sequence.

Figure 3.28: The weighted edge map of frame 49 in Mother-and-Daughter sequence.

34

2. Assume D[x] = min(D[x], D[y] + a(y, x)), a(y, x) is the distance from y to x.

Let y = x, if x is not equal to S and x never be assigned to y. For example:

D[S] = 0, D[a] = 5, D[b] = 7, D[c] = 6, the result is y = a.

3. If y = t, the shortest path from S to t is found. Otherwise repeat step 2.

4. Calculate the total number of vertices from S to t and record the number of them.

3.4.3 Edge-Link Method

In this stage, we introduce the edge-link method in our system. After previous step, we

can get the outermost edge map and weighted edge map of moving objects. We divide the

edge map into two parts. Edge-linking is applied to each part independently. At first, we

assign an equivalent length d0 to the pixels which are marked in Figure 3.28, assign an

equivalent length d1 to the pixels which are marked white, and assign an equivalent length

inf to the pixels which are marked black. We let d0 = 1, d1 = 10, and inf = 10000 in

the experiments. To control the computational complexity, we may limit the search area

to a band around the mask’s boundary. We adopt two search areas, 22× 22 and 46× 46,

in our system.

Then we find out all vertices and the number of segments. We employ the connected

algorithm to calculate the number of segments. We find out the coordinates of start vertex

and termination. According to the coordinates, we can divide the direction into first and

second quadrants. Then we can transfer the coordinate of vertex to a number. According

to the number of vertex, we can employ the shortest path algorithm to link them from

bottom to top. The Figure 3.29 shows the flowchart of edge-link algorithm. The result

after edge-link is shown in Figure 3.30

3.5 Post-Processing

In this section, we want to refine the object mask and to extract the moving object. After

linking the edges of moving object, we get the closed contour. At First, the object mask

is padded with the edge pixels. The result is shown as Figure 3.31. Then we employ

35

Figure 3.29: Flowchart of edge-link method.

Figure 3.30: The edge map of frame 49 after edge-link in Mother-and-Daughter sequence.

36

the connected algorithm to remove the redundant pixels of moving object and to extract

moving object. The algorithm is based on the size of connected components in the object

mask. We employ 8-connectivity method to label the connected components which is

marked in white and set up a threshold. In the experiment, the threshold is 10000. If the

size of a component does not exceed the value, we can assume it does not belong to the

object mask. after the step we can get the accurate object mask. The original frame is

shown in Figure 3.32. The result after post-processing is shown in Figure 3.33.

3.6 Temporal Filtering

Usually, the object mask does not change violently between the current frame and previ-

ous. Based on this, we employ the background registration technique. The flowchart is

shown in Figure 3.34.

There is a buffer to store the object mask of previous frame in our system. When we

get the first object mask, the temporal filter is started. The step-by-step procedure is as

follow:

1. Weighting: Compare the object mask in previous fame and current frame. If the

pixel at the same location between the previous and current frames is marked in

different colors, we would mark the pixel in gray.

2. Registration: According to the weighting object mask, we prepare a buffer to record

the accumulated value. If the pixel is marked black, we assume the pixel belongs

to background and add a constant to the buffer. (In the experiment the constant is

10.) If the pixel is marked white, we know it belongs to foreground and we would

set the buffer for zero. If the pixel is marked gray, we would subtrate a constant to

the buffer. (In the experiment the constant is 5.)

3. Object mask decision: We select a suitable threshold to judge the pixel belongs to

background or not. (In the experiment the threashold is 50.) And we use the mask

to extract moving object.

37

Figure 3.31: The object mask of frame 49 after padded with edge pixels in Mother-and-

Daughter sequence.

Figure 3.32: The original frame 49 in Mother-and-Daughter sequence.

Figure 3.33: The moving object of frame 49 in Mother-and-Daughter sequence.

38

Figure 3.34: Flowchart of temporal filter.

The original frames of Claire sequence is shown in Figures 3.35(a), (b),and (c), re-

spectively .The result without applying temporal is shown in Figures 3.35(d), (e),and (f),

respectively. The result after applying temporal filter is shown in Figures 3.35(g), (h),and

(i), respectively.

3.7 Conclusion

We summarize the proposed segmentation method. In the first step, the two-stage noise

estimation is used to estimate the camera noise. As shown in section 3.2, this method can

effectively remove the influence of moving objects. In the second step, we employ the

change detection technique which includes foreground estimation and background esti-

mation to get the initial object mask. To refine the initial objet mask, we use mathematical

morphological operators and connected algorithm to remove the undesirable region. For

a better result, we use the edge information to refine the initial object mask. We get

the edge map by applying the Canny operator, which is a good method for edge detec-

tion. Then we use the initial object mask to remove the background edges and use the

connected algorithm to refine the edge map. According to the refined edge map and the

39

Figure 3.35: Segmentation of the Claire sequence. (a) The original frame 29. (b) The

original frame 30. (c) The original frame 31. (d) Frame 29 without temporal filter. (e)

Frame 30 without temporal filter. (g) Frame 31 without temporal filter. (g) Frame 29 with

temporal filter. (h) Frame 30 with temporal filter. (i) Frame 31 with temporal filter.

40

initial object mask, we can get refined object mask. To get a more accurate object mask,

the core of proposed segmentation method, edge-link method, is applied. However, since

the behavior and characteristics of the moving objects differ significantly, the quality of

segmentation result depends strongly on background noise, object motion, and the con-

trast between the object and the background. We adopt the temporal filter to maintain the

reliable and consistent object information.

After all steps described as above are executed, we can get an rather accurate object

mask for the entire sequence.

41

Chapter 4

Optimized Implementation on Personal

Computer

In this chapter, we discuss the optimization of our implementation of video segmentation

system on the personal computer. The optimization techniques are categorized two types,

code acceleration and algorithm. We also discuss the performance of the optimization.

Finally, we would show the performance after optimization in Claire sequence with CIF

(352× 288) format.

4.1 Optimization of Algorithm

In this section, we introduce the algorithmic optimization. To help us to locate and remove

software performance bottlenecks, we employ the Intel VTune Analyzer [13] to collect,

analyze, and display the performance data from the system-wide level down to the source

level. The VTune Analyzer provides multiple profiling technologies that enables opti-

mization across multiple operating system platforms and development environments and

support the latest Intel process. Our system is applied in PC which is Intel Pentium M

1.733GHz with 1024-MB RAM.

At first, we employ the VTune Analyzer to collect the performance data of the original

system as shown in Table4.1. We test the sequences Claire in our system.

In Table4.1, we can observe that over 50% of run time is consumed by the function

42

Table 4.1: Profile and Run Time Comparison of Claire Sequence (CIF)

Callee function contribution Average run time

(%) (ms/frame)

labeling 52.3 776

edgelink 14 208

TmpBack 9.6 142

Post process 5.7 85

canny 4.7 70

erosion 2.5 37

dilation 2.5 37

NoiseEstimation 1.8 27

Roll 1.1 16

Another function 5.8 85

Total 100 1483

43

named labeling(). The function is to apply the connected algorithm. Recall from the

last chapter that the connected algorithm is used frequently. So we first focus on the

optimization of the function. To reduce the run time of the function and to maintain the

accurate object mask, we review the flowchart of our system. According to the straight

thinking we decrease the edge times of the labeling() function. It can obtain more speed-

up.

Although we decrease the edge times of labeling() but it still consumes more compu-

tation. According to our experience, we find out the run-time of labeling() is correlated

with the size of moving object. So we down-sample the initial object mask before apply-

ing the function of labeling(). The object mask after applying down-sample is shown in

Figure 4.1. When the function is finished we up-sample the mask. The object mask after

applying up-sample is shown in Figure 4.2. It can also obtain some speed-up.

We compare the run time of the original algorithm and the revised algorithm in Table4.2.

4.2 Overview of Intel’s MMX Technology

In previous section, we focus on the optimization of algorithm. Then we would focus on

the Intel’s multimedia extensions (MMX) instruction. We revise the code effectively and

use the multimedia extensions (MMX) instruction to speed up.

4.2.1 The MMX Architecture [16], [17], [18]

The multimedia extensions (MMX) for the Intel Architecture (IA) were designed to en-

hance performance of advanced media and communication applications. The MMX tech-

Table 4.2: Run Time of Optimization of Labeling Function per Frame

Function Original run time Run time with optimization Speedup

(ms) (ms) (%)

Labeling 776 206 276.7

44

Figure 4.1: The object mask after applying down-sample.

Figure 4.2: The object mask after applying labeling and up-sample.

45

nology introduces new general-purpose instructions. These instructions operate in parallel

on multiple data elements packed into 64-bit quantities. These instructions accelerate the

performance of applications with compute-intensive algorithms that perform localized,

recurring operations on small native data.

The MMX technology uses the single instruction, multiple data (SIMD) technique.

This technique speeds up software performance by processing multiple data elements in

parallel, using a single instruction. The MMX technology supports parallel operations on

byte, word, and doubleword data elements, and the new quadword (64-bit) integer data

type.

The MMX technology defines a simple and flexible SIMD execution model to handle

64-bit packed integer data. This model adds the following new features to the IA: New

data types, MMX registers and enhanced instruction set.

MMX Data Types

The MMX technology introduced the following four new 64-bit data types as illustrated

in Fig. 4.3:

• Packed byte: 8 bytes packed into one 64-bits quantity.

• Packed word: 4 words packed into one 64-bits quantity.

• Packed doubleword: 2 doubleword packed into one 64-bits quantity.

• Packed quadword: One 64-bits quantity.

The 64 bits are numbered 0 through 63. Bit 0 is the least significant bit (LSB), and

bit 63 is the most significant bit (MSB). The low-order bits are the lower part of the data

element and the high-order bits are the upper part of the data element. Bytes in a multi-

byte format have consecutive memory addresses. The ordering is little endian. That is,

the bytes with lower addresses are less significant than the bytes with higher addresses.

46

Figure 4.3: MMX packed data types (from [16]).

MMX Registers

The MMX register set consists of eight 64-bit registers as shown in Fig. 4.4 , which are

used to perform calculations on the MMX packed data but cannot be used to address

memory. Values in MMX registers have the same format as a 64-bit quantity in memory.

These registers are aliased to the floating-point registers. The MMX instructions access

the MMX registers directly using the register names MM0 to MM7.

4.2.2 The MMX Instruction Set [18]

The MMX instructions are grouped into the following categories:

• Data transfer

• Arithmetic

• Comparison

• Conversion

• Unpacking

47

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0

0 64

Figure 4.4: MMX register set (from [19]).

• Logical

• Shift

• Empty MMX state instruction (EMMS)

Table 4.3 gives a summary of the instructions in the MMX instruction set.

Data Transfer Instructions

We can transfer 32-bit or 64-bit data from memory to MMX registers and visa versa, or

from integer registers to MMX registers and visa versa by a single instruction. We can

transfer 32-bit data by MOVD and 64-bit data by MOVQ.

Arithmetic

The arithmetic instructions perform addition, subtraction, multiplication, and multiply-

add operation on packed data types. For example, PADDB, PADDSB and PADDUSB

instructions add signed or unsigned packed byte integers in wraparound mode, signed

packed byte integers in signed saturation mode, unsigned packed byte integers in unsigned

saturation mode, respectively.

48

Table 4.3: MMX Instruction Set Summary (from [19])

Category Wraparound Signed Usinged

Saturation Saturation

32-bit Transfers 64-bit Transfers

Data Transfer

Register to Register MOVD MOVQ

Load from Memory MOVD MOVQ

Store to Memory MOVD MOVQ

Arithmetic

Addition PADDB, PADDW, PADDSB, PADDUSB

PADDD PADDSW PADDUSW

Subtraction PSUBB, PSUBW, PSUBSB, PSUBUSB,

PSUBD PSUBSW PSUBUSW

Multiplication PMULL, PMULH

Multiply and Add PMADD

Comparison

Compare for Equal PCMPEQB,

PCMPEQW,

PCMPEQD

Compare for PCMPGTPB,

Greater Than PCMPGTPW,

PCMPGTPD

Conversion

Pack PACKSSWB, PACKUSWB

PACKSSDW

49

Table 4.4: MMX Instruction Set Summary (from [19])

Category Wraparound Signed Unsinged

Saturation Saturation

32-bit Transfers 64-bit Transfers

Unpack

Unpack High PUNPCKHBW,

PUNPCKHWD,

PUNPCKHDQ

Unpack Low PUNPCKLBW,

PUNPCKLWD,

PUNPCKLDQ

Packed Full 64-bit

Logical

And PAND

And Not PANDN

Or POR

Exclusive OR PXOR

Shift

Shift Left Logical PSLLW, PSLLD PSLLQ

Shift Right Logical PSRLW, PSRLD PSRLQ

Shift Right Arithmetic PSRAW, PSRAD

Empty MMX State EMMX

50

Comparison Instructions

The comparison instructions compare the packed data in the source and destination operands

for equal to or greater than. These instructions generate a mask of ones or zeros which

are written to the destination operand.

Conversion Instructions

The conversion instructions perform conversions between the packed data types. For ex-

ample, PACKSSDW instruction converts packed signed doubleword integers into packed

signed word integers, using saturation to handle overflow conditions as shown in Fig. 4.5

for an example of the packing operation.

Unpack Instructions

The unpack instructions unpack bytes, words, or doublewords from the high- or low-

order elements of the source and destination operands and interleave them in destination

operand. By placing all 0s in the source operand, these instruction can be used to con-

vert byte integers to word integers, word integers to doubleword integers, or doubleword

integers to quadword integers.

Logical Instructions

The logical instructions perform bitwise logical operations on 64-bit quantities. For ex-

ample, we can generate a zero register in MM0 by using “PXOR mm0, mm0.”

Figure 4.5: PACKSSDW instruction operation using 64-bit operands (from [18]).

51

Shift Instructions

The shift instructions have two types: logical shift and arithmetic shift. Logical shift

instructions perform a logical left or right shift of the data elements and fill the empty high

or low order bit position with zeros. Arithmetic shift instructions perform an arithmetic

right shift, copying the sign bit for each data elements into empty bit positions on the

upper end of each data elements.

EMMS Instructions

The EMMS instruction empties the MMX state. This instruction must be used to clear the

MMX state at the end of an MMX routine before calling other routines that can execute

floating-point instructions.

4.3 Code Acceleration

In this section, we focus on the code acceleration. In the original code we try to achieve

the goal of video segmentation accurately. Now we want to revise the code effectively

and do not change the result. According to VTune analyzer, we can find out where the

function is more time-consumed. And we focus on them to speed up our system.

4.3.1 Labeling Function Optimization

Although we reduce the edge times of labeling(). According to VTune analyzer, we can

find out that the labeling() is still more time-consumed. In this stage, we would optimize

the code with MMX instruction. The code section is shown in Figure 4.6. The function is

a subroutine of function labeling(). It deals with the size of connected region. When we

set the labels to the connected region, then we would calculate the size of pixels of each

label of connected region. After optimization, we get the modified function in Figure 4.7.

First, we move the data of image label and value to register mm1 and mm2, respec-

tively. The labels of eight continued pixels are stored in image label. The label that we

want to calculate the size of pixels is stored in value. In the same way, we define all

52

Figure 4.6: Section of code that we would like to optimize with MMX.

Figure 4.7: Code in Fig. 4.6 after optimization using MMX instructions.

53

the bytes of the register mm4 1 and view the register mm4 as the criterion with 1. Next,

we could compare mm1 with mm2 and set the byte of mm1 to 1 if the byte of mm1 and

mm2 is equal. Then we apply the AND operation to mm4 and mm1 and set the byte of

mm4. In this step, we could imply the function “(image label[i] == label)”. Finally we

accumulate the value of counter and it could be implied as function “total + +”.

After optimization, we compare the run time of the original code with the revised code

in Table 4.5.

4.3.2 Edgelink Function Optimization

In this stage, we focus on the function edgelink(). The function edgelink() is to connect

the segments of boundary of moving object.

1. Replace malloc() function by calloc() function:

According to the VTune analyzer, we find out the function malloc() which is pro-

vided with C library is more time-consuming. So we replace it by function calloc().

The malloc() function shall allocate unused space for an object whose size in bytes

is specified by size and whose value is unspecified. The calloc() function shall al-

locate unused space for an array of n elements each of whose size in bytes is esize.

The space shall be initialized to all bits 0. The original code with malloc() func-

tion is shown in Figure 4.8, and the revised code with calloc() function is shown in

Figure 4.9. After this procedure, it can reduce 50 milliseconds time-consumed.

2. Add the break instruction to the section of original code:

Table 4.5: Run Time of Optimization of Labeling Function per Frame

Function Original run time Run time with optimization Speedup

(ms) (ms) (%)

Labeling 206 188 9.57

54

Figure 4.8: The section of original code with malloc function.

Figure 4.9: The section of revised code with calloc function.

In our idea, we want to find out the vertex from down to up. In the original code, it

find out the all vertices and the coordinate of the last vertex is what we want. In the

revised code it search the vertex from down to up and when we find out the vertex

it would leave the loop. The original and revised codes are shown in Figure 4.10

and Figure 4.11, respectively. After this procedure, it can reduce 28 milliseconds

time-consumed.

Figure 4.10: The section of original code without break instruction.

55

Figure 4.11: The section of revised code with break instruction.

After optimization, we compare the run time of the original code and the revised code

in Table 4.6.

4.3.3 Post processing Function Optimization

We use MMX instruction for optimization. The code section is shown in Figure 4.12. The

function is to pad the edge pixels to object mask. After optimization, we get the modified

function in Figure 4.13. The algorithm is introduced as follow. First, we make all the

bytes in register mm0 0. Next, we move data of image mask and edge to mm2 and mm3

respectively. Then we could compare mm0 with mm2 and set the byte of mm0 is 255 if

the byte of mm2 is 0. Finally, the data of mm3 could subtract the mm0 and store the result

in register mm3. After optimization, we compare the run time of the original code with

the revised code in Table 4.7.

Table 4.6: Run Time of Optimization of Edgelink Function per Frame

Function Original run time Run time with optimization Speedup

(ms) (ms) (%)

edgelink 208 130 60

56

Figure 4.12: Section of code that we would like to optimize with MMX.

Figure 4.13: Code in Fig. 4.12 after optimization using MMX instructions.

57

Table 4.7: Run Time of Optimization of Post process Function per Frame

Function Original run time Run time with optimization Speedup

(ms) (ms) (%)

post process 85 68 25

4.3.4 Erosion and Dilation Function Optimization

According to VTune analyzer, we focus on erosion() and dilation() to speed up our

system. In our application, we select the 8-connectivity structuring element. The oper-

ation of binary erosion means if one of 8-connectivity neighbor pixels is marked black,

the central pixel is marked black. The section of original code is shown in Figure 4.14.

When one of 8-connectivity neighbor pixels is marked black, the central pixel is marked

black and we can ignore the statements below. So we add the continue instruction for

optimization. After optimization, we get the modified function in Figure 4.15. It is the

same way to binary dilation operator for optimization. The run time after optimization is

shown in Table 4.8.

Table 4.8: Run Time of Optimization of Erosion and Dilation Function per Frame

Function Original run time Run time with optimization Speedup

(ms) (ms) (%)

erosion 37 22 68.18

dilation 37 22 68.18

58

Figure 4.14: The section of original code without continue instruction.

Figure 4.15: The section of original code with continue instruction.

59

4.4 Conclusion

In the other functions, we also use the similar optimization with MMX instruction. After

optimization, we compare the run time of the original system with optimization of Claire

sequence. The result is shown in Table 4.9. The run time per frame for labeling() is re-

duced from 776 milliseconds to 188 milliseconds in debug mode. The run time per frame

for edgelink() is reduced from 208 milliseconds to 130 milliseconds in debug mode. The

run time per frame for erosion() is reduced from 37 milliseconds to 22 milliseconds in

debug mode. The run time per frame for post process() is reduced from 85 milliseconds

to 68 milliseconds in debug mode. The run time per frame for entire system is reduced

from 1483 milliseconds to 755 milliseconds in debug mode. The speed-up of entire video

segmentation system is 96.42%. The comparison of run time between debug and release

mode is shown in Table 4.10.

60

Table 4.9: Profile and Run Time Comparison of Claire Sequence (CIF) in Debug Mode

Callee function contribution After opt. Average run time After opt.

(%) (%) (ms/frame) (ms/frame)

labeling 52.3 24.9 776 188

edgelink 14 17.2 208 130

TmpBack 9.6 15.4 142 116

Post process 5.7 9.2 85 68

canny 4.7 9.6 70 73

erosion 2.5 2.8 37 22

dilation 2.5 2.8 37 22

scale - 3.1 - 24

NoiseEstimation 1.8 3.4 27 26

Roll 1.1 2.3 16 18

Another function 5.8 9.3 85 68

Total 100 100 1483 755

61

Table 4.10: Run Time Comparison of Claire Sequence (CIF) in Debug Mode and Release

Mode

Mode Average run time

(ms/frame)

Debug 755

Release 261

62

Chapter 5

Simulation Results

In the last chapter, we discussed how we optimized some functions of the proposed sys-

tem. In this chapter, we present some simulation results and run-time analysis in our

system.

5.1 Segmented Object Masks

In this section, we show some simulation results of Mother-and-Daughter, Claire, Akiyo,

and LabI sequences with CIF format. The Claire and Akiyo sequences are commonly

test sequence in videoconferencing, Mother-and-Daughter is the case which include two

major objects, and LabI is a natural video sequence which is captured in our lab. It can be

seen that we can get more accurate object masks in the proposed system.

5.1.1 Segmentation Results

Some results of Mother-and-Daughter sequence, Clare sequence, Akiyo sequence, and

LabI sequence in Figures 5.1– 5.4, respectively.

As we can see, the boundary of mask is very accurate. There are two major factors

to influence the segmentation result. First, the boundary of moving object depends on the

camera noise. In the case of low camera noise sequence, we can set more critical thresh-

olds in foreground estimation and background estimation and get more accurate object

63

boundary. The camera noises of the four sequences from high to low are Mother-and-

Daughter, LabI, Claire and Akiyo. According to the camera noise, the accuracy of object

mask is in inverse order. If the camera noise is more great, the global threshold value

would not get accurate object mask in entire sequence. For example, we only get accurate

object mask in several frames of Mother-and-Daughter sequence because its huge camera

noise. Second, if the object in the sequence moves fast, the boundary of object would

cover background. Because these covered background become uncovered, the related

boundary is usually incorrect, such as in Figure 5.4. To overcome the question, we find

that if the background is flat and without other things although the object moves fast but

we still can eliminate the covered background in the system.

5.1.2 Performance Evaluation

The criterion for performance evaluation is defined as the fractional agreement between

our segmentation result and the reference mask for each frame which is proposed in [20].

We take MPEG-4 released segmented of Akiyo sequence comparing with our simulation

result. The percentage of Akiyo sequence result is over 99% for all frames. We can see

the result in Figure 5.5.

5.2 Run-time Analysis

In this section, we would show the comparison of run time between the original and the

optimized system in Akiyo and LabI sequences with debug mode and we would show the

run time with different format such as CIF (352 × 288) and QCIF (176 × 144) formats.

The profiles of Akiyo and LabI sequences are shown as Tables 5.1 and 5.2. If the camera

noise is large and cannot obtain accurate boundary of moving object, it would consume

more computation in edge-link function. Table 5.3 shows the run time and frame rate

of different sequences (CIF or QCIF format) in release mode in Visual C++. When we

process the sequence with QCIF format in release mode, we can achieve the requirement

of real time application. The fast frame rate would be over 20 frames per second.

As we can see, the run time of sequence with CIF format is not fast enough. So we

64

Figure 5.1: Segmentation of the Mother-and-Daughter sequence. (a) Frame 48. (b) Frame

156. (c) Frame 234. (d) Segmented object in frame 48. (e) Segmented object in frame

156. (f) Segmented object in frame 234.

65

Figure 5.2: Segmentation of the Claire sequence. (a) Frame 16. (b) Frame 63. (c) Frame

104. (d) Segmented object in Frame 16. (e) Segmented object in Frame 63. (f) Segmented

object in Frame 104.

66

Figure 5.3: Segmentation of the Akiyo sequence. (a) Frame 24. (b) Frame 60. (c) Frame

141. (d) Segmented object in Frame 24. (e) Segmented object in Frame 60. (f) Segmented

object in Frame 141.

67

Figure 5.4: Segmentation of the LabI sequence. (a) Frame 18. (b) Frame 19. (c) Frame

20. (d) Segmented object in frame 18. (e) Segmented object in frame 19. (f) Segmented

object in frame 20.

Figure 5.5: Fractional agreement between the segmented foreground object of the Akiyo

sequence and the reference mask.

68

also propose the simple segmentation method which can speed up the system but it can

not maintain the accuracy of segmentation result for the entire sequence. We remove the

function of edge-link and background estimation in original segmentation system and the

result is shown as in Table 5.4. The block diagram is shown in Figure 5.6. The frame rate

could be 12 frames per second. We also compare our algorithm with [23] as shown in

Table 5.5.

5.3 Complexity Analysis

In the following analysis, the designation “data” in front of a dash indicates that the op-

eration is associated with data values(memory contents), whereas the designation “mem”

indicates that operation is associated with memory address. The reason for distinguishing

“data” and “mem” operations is that many processors treat these two types of operation

differently.

We calculate the number of addition and multiplication in major algorithms. In Ta-

ble 5.6, we estimate the necessary computations for completing each major algorithms of

one CIF frame of Claire sequence. According to our observation, the complexity would be

associated with the size of moving object. If the moving object is bigger, the complexity

would increase.

69

Figure 5.6: Flowchart of simple segmentation method.

70

Table 5.1: Profile and Run Time Comparison of Akiyo Sequence (CIF) in Debug Mode

Callee function contribution After opt. Average run time After opt.

(%) (%) (ms/frame) (ms/frame)

labeling 29.5 21.6 413 164

edgelink 30.2 17.2 422.8 130

TmpBack 13.3 19.2 186.2 146

Post process 7.3 10.5 102.2 80

canny 5.2 9.4 72.8 71

erosion 2.1 2.2 29.4 17

dilation 2.2 2.4 30.8 18

scale - 3.1 - 23

NoiseEstimation 2 3.2 28 24

Roll 1.1 2 15.4 15

Another function 7.1 9.2 99.4 70

Total 100 100 1400 758

71

Table 5.2: Profile and Run Time Comparison of LabI Sequence (CIF) in Debug Mode

Callee function contribution After opt. Average run time After opt.

(%) (%) (ms/frame) (ms/frame)

labeling 26.3 15.3 526 160

edgelink 37.4 41.2 748 431

TmpBack 7.3 11.2 146 117

Post process 4.9 7.3 98 76

canny 3.9 7.7 78 81

erosion 6.4 2.1 128 22

dilation 5.1 1.9 102 20

scale - 2.3 - 24

NoiseEstimation 1.4 2.5 28 26

Roll 1.1 2.1 22 22

Another function 6.2 6.4 124 66

Total 100 100 2000 1045

72

Table 5.3: Run Time and Frame Rate of Different Sequences with CIF or QCIF Formats

in Release Mode

Sequence Average run time Frame rate

(format) (ms/frame) (frame/sec)

Claire 261 3.83

(CIF)

Akiyo 284 3.52

(CIF)

LabI 364 2.75

(CIF)

Claire 49 20.41

(QCIF)

Akiyo 66 15.16

(QCIF)

Table 5.4: Run Time and Frame Rate of Different Sequences use Simple Segmentation

Method in Release Mode

Sequence Average run time Frame rate

(CIF) (ms/frame) (frame/sec)

Claire 106 9.43

Akiyo 86 11.63

LabI 100 10

73

Table 5.5: Comparison of Run-time between Different Algorithms

Algorithm Processor Test sequence Average run-time Frame rate

(CPU) (QCIF) (ms/frame) (frame/sec)

Proposed Pentium M Claire 49 20.41

1.733-GHz

Proposed Pentium M Akiyo 66 15.16

1.733-GHz

Predictive Watershed [23] Pentium III Not mentioned 106.64 9.4

800-MHz

74

Table 5.6: Complexity of Major Algorithms in One CIF Frame of Claire Sequence

Algorithm

(function name) Mem-add Mem-mult Data-add Data-mult Data-comparison

Connected algorithm

(labeling) 1,915,163 613,549 56 0 2,336,959

Edgelink algorithm

(edgelink) 26,762,567 24,725,864 702,408 128,026 46,959,042

Background Estimation

(TmpBack) 11,081,708 0 23,270,247 1,611,792 8,260,434

Canny Operation

(Canny) 6,835,508 1,512,960 3,923,490 2,301,566 2,056,984

Erosion

(erosion) 258,087 85,817 100,100 100,100 85,817

Dilation

(dilation) 51,510 16,958 100,100 100,100 16,958

Roll Operation

(Roll) 6,760,576 4,260,179 0 0 198,115

75

Chapter 6

Integration of System on Personal

Computer

In this chapter, we demonstrate the implementation on the personal computer. The system

block diagram is shown in Figure 6.1.

The overall architecture of our segmentation system is shown in Figure 6.2. Here, we

need a digital camera to capture images, a personal computer to control the system and to

segment the image, and a displayer to show the final result.

We adopt the GUI (Graphed User Interface) mode and it is implemented by Win-

dows SDK (Software Development Kit) which is developed by Microsoft for high-level

computer languages to easily implementation.

Figure 6.1: System block diagram (from [8]).

76

Figure 6.2: Circumstance of implementation (from [8]).

6.1 Video Capturing

6.1.1 Video for Windows

In this system, the input image is captured by digital camera. To control the operation

of capturing, a standard video capturing method, named VfW (abbreviation of Video for

Windows), in the Microsoft OS is adopted. Video for Windows version 1.0 was released

in November 1992 for the Windows 3.1 operating system and was optimized for capturing

movies to disk [14]. This SDK provides applications with a simple, message-based inter-

face to access video and waveform-audio acquisition hardware and to control the process

of streaming video capture to disk. Besides, VfW helps with connectivity to device driver

and retrieve the capability and information of it.

6.1.2 AVI Format

In VfW, AVI is the mostly used format. The captured raw frame is embedded in an AVI

file which can be extracted for segmentation input.

AVI stands for Audio-Video Interleaved. Figure 6.3 shows the hierarchical structure.

Refer to header file (vfw.h in Visual C++) for complete information about parsing AVI

file. To extract video data, we use a file parser that simply locate]]db and copy suitable

length of data following that.

77

Figure 6.3: AVI header (from [8]).

6.1.3 Implementation of Capture

The implementation of capture is aided by a free application called AVICap from [15]. It

contains three steps:

1. Create capture handle:

An AVICap capture window handles the details of streaming audio and video cap-

ture to AVI files and it provides a flexible interface for applications. The video

capture can be add to application by the code shown in Figure 6.4.

2. Parameter modification:

After initializing driver window handler, some fundamental parameters should be

confirmed to ensure captured data fit system requirement, such as the code shown

in Figure 6.5.

3. Capture operation:

In this step, we start to capture image from digital camera and related code is shown

in Figure 6.6. Here, the captured image which is AVI format is stored in a buffer

Figure 6.4: Related code for creating a capture window.

78

Figure 6.5: Related code for parameter modification.

and then the required video data is extracted from the buffer. Finally, the extracted

data is sent to the module of video segmentation.

6.2 Result Display

After we finish the video segmentation, we need to display the result on the displayer.

The procedure to create a display window is similar to previous section. After creating a

window, we can show the result on displayer according to the related code in Figure 6.7.

6.3 Graphed User Interface

There are two major control unit: capture-control unit and threshold-adjustment unit. The

capture-control unit controls every option needed for digital camera, such as start, stop,

image size, and luminance. The threshold-adjustment unit is used to adjust the related

threshold in foreground estimation and background estimation. The application program

is shown in Figure 6.8. The window at left side is the preview captured image and the

window at right side is the extracted moving object. The window below is the message

Figure 6.6: Related code for capture operation.

79

Figure 6.7: Related code for displaying.

window which shows the related threshold and the frame rate.

6.4 Conclusion

In the system, the image size is CIF (352×288) and the PC is Intel Pentium M 1.733GHz

with 1024-MB RAM. We use the digital camera which is produced by company Logitech

to capture image. For quickly obtaining an apparent improvement, we use the simplifica-

tive segmentation method which is introduced in chapter 5. According to our observation,

the GUI mode would consume more computation. It is because the function SetP ixel. If

there is no moving object existed, the frame rate of demonstration is 4 frames per second.

Otherwise, the frame rate is 3 frames per second. If illumination of the video sequence is

better and the background is flat, the moving object can be extracted accurately.

80

Figure 6.8: Application program interface.

81

Chapter 7

Conclusion and Future Work

We developed and implemented of an video segmentation system on the personal com-

puter.

The core of our system was the graph-based edge linking technique. We used the

change detection technique to get the object mask roughly. For easier obtaining the rel-

ative thresholds of each module a two staged method for camera noise estimation was

introduced to reduce the effect of moving objects and those thresholds were adjusted

based on the estimated camera noise. We used the Canny operation to detect the edge

of entire frame and we removed the edges of background by the change detection mask

and the object mask of previous frame. Then we shrinked the object mask to the edge

map by roll operation and we could get the object mask. To refine the object mask, we

employed edge-link method, postprocessing, and temporal filter which was based on the

background registration technique.

If the format of video sequence was QCIF (176 × 144), the proposed segmentation

method could achieve 20 frames per second. For CIF format application, we also pro-

posed a simple segmentation method. The frame rate could achieve 12 frames per second.

Simulation results showed that our algorithm could give correct segmentation results very

quickly. According to these features, our algorithm was very suitable for videophone and

videoconference with stationary background.

For quality improvement we can do some improvements for the main projects in the

future.

82

1. Adding the module to deal with shadow and light change.

The position of shadow is controlled by the position of light and therefore the

shadow effect greatly depends on the position of light. If the great shadows appear

in background, the shadows are also regarded as moving objects in the module of

background subtraction. Hence, a module to reduce the shadow effect can improve

the accuracy of final image mask when the shadow is great.

2. Combine the segmentation system with MPEG-4 encoder.

The MPEG-4 Encoder is completed by another member in our laboratory. In the

future, we will combine the segmentation system and MPEG-4 encoder to achieve

a whole system.

3. More optimization.

The current processing time is not fast enough for CIF format and a better opti-

mization is need to improve the efficiency. The optimization may focus on labeling,

edgelink, and SetPixel functions.

83

Bibliography

[1] J. F. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern

Anal. Machine Intell., vol. 6, pp. 679–698, Nov. 1986.

[2] D. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math.,

vol. 1, pp. 269–271, 1959.

[3] T. Aach, A. Kaup ,and R. Mester, “Statistical model-based change detection in mov-

ing video,” Signal Processing, vol. 31, pp. 165–180, Mar. 1993.

[4] S. Y. Ma, S. Y. Chien, and L. G. Chen, “Efficient moving object segmentation al-

gorithm using background registration technique,” IEEE Trans. Circuits Syst. Video

Technol., vol. 12, no. 7, pp. 577–586, July 2002.

[5] T. Meier and K. N. Ngan, “Video segmentation for content-based coding,” IEEE

Trans. Circuits Syst. Video Technol., vol. 9, no. 8, pp. 1190–1203, Dec. 1999.

[6] E. P. Ong, B. J. Tye, W. S. Lin, and M. Etoh, “An efficient video object segmentation

scheme,” in IEEE Int. Conf. Acoust. Speech Signal Processing, vol. 4, 2002, pp.

3361–3364.

[7] H. Luo and A. Eleftheriadis, “Rubberband: an improved graph search algorithm for

interactive object segmentation,” in IEEE Int. Conf. Image Processing, vol. 1, 2002,

pp. 101–104.

[8] Y-H. Lin, “Real-time video segmentation based on background modeling for video-

conferencing,” M.S. thesis, Department of Electronics Engineering, National Chiao

Tung University, Hsinchu, Taiwan, R. O. C., June 2004.

84

[9] R. C. Gonzales and R. E.Woods, Digital Image Processing. Addison-Wesley, 1992.

[10] C. Kim and J. N. Hwang, “Fast and automatic video object segmentation and track-

ing for content-based application,” IEEE Trans. Circuits Syst. Video Technol., vol.

12, no. 2, pp. 122–129, Feb. 2002.

[11] Y-H. Jan and D. W. Lin, “Video segmentation with extraction of overlaid objects

via multi-tier spatio-temporal analysis,” Int. J. Electrical Engineering, vol. 11, no.

3, pp. 205–218, Aug. 2004.

[12] “Canny operator code,” http://ouray.cudenver.edu/ na0alber/DataCompressionPaper.htm.

[13] Intel, Getting Started With the VTune (TM) Performance Analyzer. 2003.

[14] “Video for Windows,” http://msdn.microsoft.com/library/psdk/multimed/avifile 8dgz.htm.

[15] “VidCap: full-featured video capture application,”

http://msdn.microsoft.com/library/devprods/vs6/visualc/vcsample/vcsmpvidcap.htm.

[16] Intel, MMX Technology — Programmers Reference Manual 2000.

[17] Intel, IA-32 Intel Architecture Software Developer’s Manual, vol. 1. 2003.

[18] Intel, IA-32 Intel Architecture Software Developer’s Manual, vol. 2. 2003.

[19] M-Y. Liu, “Real-time implementation of MPEG-4 video encoder using SIMD-

enhanced Intel Processor,” M.S. thesis, Degree Program of Electrical Engineering

and Computer Science, National Chiao Tung University, Hsinchu, Taiwan, R. O. C.,

July 2004

[20] M. Wollborn and R. Mech, “Refined procedure for objective evaluation of VOP gen-

eration algorithms,” Doc. ISO/IEC JTC1/SC29/WG11 MPEG98/3448, Mar. 1998

[21] T. Meier and K. N. Ngan, “Automatic segmentation of moving objects for video

object plane generation,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, pp. 525–

538, Sep. 1998.

85

[22] E. Sifakis, L. Grinias, and G. Tziritas, “Video segmentation using fast marching

and region growing algorithms,” EURASIP J. Applied Siginal Processing, vol. 8, pp.

379–388, Apr. 2002.

[23] S. Y. Chien, Y. W. Huang, and L. G. Chen, “Predictive Watershed: A Fast Watershed

algorithm for video segmentation,” IEEE Trans. Circuits Syst. Video Technol., vol.

13, no. 5, pp. 453–461, May 2003.

[24] W. Si, Z. Yong-dong, and L. Shou-xun, “An automatic segmentation algorithm for

moving objects in video sequence under multi-constraints,” in IEEE Int. Conf. Mul-

timedia Expo, vol. 1, June 2004, pp. 555–558.

[25] W. Wei, K. N. Ngan, and N. Habili, “Multiple feature clustering algorithm for

automatic video segmentation,” in IEEE Int. Conf. Accoustics Speech and Signal

Processing, vol. 3, May 2004, pp. 625–628.

[26] “Demo page of video segmentation,” http://video.ee.ntu.edu.tw/web/demo/seg.htm.

86

