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Abstract
By considering the next nearest neighboring defects between two photonic crystal waveguides
(PCWs) and analytic formulae derived from the tight binding theory, we will explain the
physical properties of an asymmetric directional coupler made from two coupled PCWS:
(1) The dispersion curves of a photonic crystal coupler will decouple into the dispersion curves
of a single line defect, and the electric field will only be localized in one waveguide of the
coupler at a particular point, which we name a decoupling point. (2) The parities of the
eigenmodes switch at the decoupling point, even though the dispersion curves are not crossing.
(3) The eigenfield at a higher (lower) dispersion curve is always mainly localized in the
waveguides that have higher (lower) eigenfrequencies of single line defects, even though the
eigenmodes are switched. As a given frequency is incident into the coupler, the energy transfer
between two waveguides and the coupling length can be expressed analytically. Due to there
being no dispersion curve crossing, the coupling length is no longer infinite at the decoupling
point in asymmetric PCWs, but it still has the minimal energy transfer between two waveguides
when the frequency of the incident wave is close to the decoupling point.

Keywords: directional coupler, defects, tight-binding model

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A photonic crystal waveguide (PCW) is a structure in which a
series of point defects are created within the photonic crystal
(PC) [1]. The electromagnetic (EM) wave is strongly confined
along the defect channel, where low loss of energy in Y-
branches and tight bending are possible [2]. Furthermore,
directional couplers each composed of two line defects are
used as add/drop filters [3], switches [4], and multiplexers [5].
To design the PC devices, simulation tools such as the plane
wave expansion (PWEM) [6–8] and finite difference time
domain (FDTD) [9–11] methods are often used. However,
there still is no efficient and analytic method for analyzing the
physical properties of the PC waveguides (PCWs), especially
for the directional coupler. The tight binding theory (TBT) is
widely used, not only in condensed matter physics but also
recently analytically to address the EM wave propagation in

a linear or nonlinear PCW [12–14]. TBT usually takes into
account the coupling between nearest neighboring defects and
ignores further coupling between distant defects. Although
this approximation is valid for coupled cavity waveguides,
it is invalid for PCWs, where the coupling between next
nearest neighboring defects should be considered within a
single waveguide and between two waveguides [15]. The
cross-coupling coefficient (α) of the nearest neighbors between
two waveguides causes a split of the dispersion curves, whereas
the cross-coupling coefficient (β) of the next nearest neighbor
causes a sinusoidal modulation of the dispersion curves in
symmetric PCWs. The split dispersion curves will cross in
symmetric PCWs if |2β/α| > 1. At the crossing point, the
coupling length that can be used to design dual-wavelength
demultiplexing is infinite [16, 17].

On changing the radii or dielectric constants of the defect
rods in one channel of the PCWs, the symmetry of the PCWs
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Figure 1. Geometric structures of the photonic crystal waveguide couplers of (a) a square lattice and (b) a triangular lattice with the lattice
constant a. Ps and Qs are the coefficients of coupling between defects within a single waveguide. α, and β are the coefficients of coupling
between waveguides.

will be broken. From the simulation results for the PWEM
for the triangular lattice, the dispersion curves of asymmetric
PCWs are not crossing, but the eigenmodes do switch. The
electric field ratios of the eigenmodes in both waveguides are
no longer ±1, especially at the switching point of the mode
pattern (figure 3). However, the results for the PWEM or TBT
derived from symmetric PCWs cannot provide good reasons
for explaining these phenomena. Therefore, using a method
similar to the tight binding one [15, 18, 19], we derive an
analytic solution considering up to the next neighbor coupling
between two PCWs to describe the physical properties of
asymmetric PCWs. This formula provides more generalized
discussion and gives a good explanation for asymmetric
PCWs. In practice, the coupled identical PCWs should become
asymmetric due to the intensity dependent index of refraction
in the nonlinear photonic crystal directional coupler, and this
can be used in switches for controlling EM waves to the output
with the proper ratio in each channel.

In this paper, we first use TBT to derive the analytic
expressions for the dispersion relation and eigenmodes of a
directional coupler with two asymmetric PCWs. On the basis
of the derived equations and the definition of the coupling
coefficients, the mode switching, mode parity, and electric field
distribution are discussed. Here, we consider only the PCs
formed from dielectric rods in air as an example, and two line
defects created by reducing the radii of the dielectric rods as
the waveguides. The derived TBT is also applicable for airhole
PCs with the enlarged airholes as the line defect PCWs, in
order to preserve a single-mode property in each of the PCWs.
However, the TBT derived in this paper may not be suitable for
a PC directional coupler formed from dielectric defect PCWs,
which were created by increasing the radii of the dielectric rods
or by decreasing the radii of the airholes, although switching of
eigenmodes can also be observed, because the dielectric defect
PCWs would sustain multi-guided modes [20].

Secondly, by superimposing these two eigenmodes of
the asymmetric PCW at a given frequency, electric field
amplitudes of individual PCWs can also be obtained by
deriving the coupling length and the ratio of the energy transfer.
Finally, the PCWs of the triangular lattice are used to verify the
validity of the derived expressions and the predicted physical
properties. The results derived from the TBT coincide quite
well with the PWEM results. Therefore, TBT is a good

method for analytically characterizing the coupling phenomena
of asymmetric PCWs.

2. Coupled equations of asymmetric photonic crystal
waveguides

The asymmetric coupled PCWs in a PC with the lattice
constant a are formed from two rows of periodic defect rods
partitioned by a perfect row of rods, shown as PCW1 and
PCW2 in figure 1 for the square and the triangular lattices,
respectively. To ensure that the PCWs are both single-mode
waveguides, we simply reduce the radii of the dielectric rods
or decrease the refractive indexes of the rods. The field
distribution of the eigenmode of an isolated (point) defect in
each PCW can be written as the product of time varying and
spatially varying functions, i.e., E10(r, t) = u0(t)E10(r) in
PCW1 and E20(r, t) = v0(t)E20(r) in PCW2, where u0(t) =
U ′ exp(−iω1t) and v0(t) = V ′ exp(−iω2t), with U ′ and V ′
being the constant amplitudes of the electric fields and ω1 and
ω2 the frequencies of the localized modes of the point defect in
each PCW.

Under the TBT, the propagating electric field of PCW1 can
be expanded in terms of the localized fields of the individual
point defects as E1(r, t) = ∑

n E1n(r)un(t). Here, E1n(r) =
E10(r − nax̂) is the localized electric field at the defect site
n and un(t) is its time varying function. Considering the
coupling by means of the Lorentz reciprocity relation [21], the
evolution equation of the isolated PCW1 can be written as

i
∂

∂ t
un = (ω1 − P0)un −

∑

m=1

Pm(un+m + un−m) (1)

and Pm = C11
m , where Ci j

m is the coefficient of coupling
between the site n of the i th PCW and the site n + m of the
j th PCW, and is defined as

Ci j
m = ωi

∫ ∞
−∞ dv �ε(r)Ein · E jn+m

∫ ∞
−∞ dv[μ0|Hin|2 + ε|Ein|2] . (2)

�ε(r) = ε′(r) − ε(r) is the difference between the perturbed
and unperturbed dielectric constants, and P0 represents the
frequency shift of a localized mode due to the change of the
dielectric constant at the site n of the first PCW. In general,
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Figure 2. (a) The electric field distribution (Ez) of a point defect mode in the square lattice for f = 0.364c/a with a reduced rod (rd = 0.05a)
defect; (b) that in the triangular lattice for eigenfrequency f = 0.365c/a with a defect rod εr = 2.56; and (c) the electric field distribution
(dashed lines).

the electric field at the defect rods that are fourth neighbors is
almost zero, so considering the coupling coefficients Pm up to
m = 3 is quite enough [15]. Let k and ω̄1 be the wavevector
and its corresponding eigenfrequency for PCW1, respectively.
We then substitute the function un(t) = U0 exp(ikna − iω̄1t)
into equation (1) and obtain the dispersion relation for PCW1:

ω̄1(k) = ω1 − P0 −
3∑

m=1

2Pm cos(mka), (3)

where U0 is a constant. Similarly, the evolution equation and
dispersion relation for the isolated PCW2 are as shown below:

i
∂

∂ t
vn = (ω2 − Q0)vn −

3∑

m=1

Qm(vn+m + vn−m), (4)

ω̄2(k) = ω2 − Q0 −
3∑

m=1

2Qm cos(mka), (5)

where Qm = C22
m . vn(t) and ω̄2 are the time varying function

and the eigenfrequency of the isolated PCW2, respectively.
Due to the field distributions of defect modes being not

strongly localized around defects, we shall consider the effect
of coupling of two asymmetric PCWs up to the defects that are
second neighbors, with coupling coefficients α = C12

0 = C21
0

and β = C12
±1 = C21

±1, shown in figure 1 for the square and
the triangular lattices, respectively. The coupled equations for
asymmetric PCWs are given by

i
∂

∂ t
un = (ω1 − P0)un −

3∑

m=1

Pm(un+m + un−m) − αvn

− β(vn+1 + vn−1), (6)

i
∂

∂ t
vn = (ω2 − Q0)vn −

3∑

m=1

Qm(vn+m + vn−m) − αun

− β(un+1 + un−1). (7)

The stationary solutions of coupled equations (6) and (7)
are taken as un = U0 exp(ikna − iωt) and vn = V0 exp(ikna −
iωt). We obtain the characteristic equations of the coupler:

(ω − ω̄1)U0 + g(ka)V0 = 0, (8)

(ω − ω̄2)V0 + g(ka)U0 = 0, (9)

where g(ka) = α + 2β cos(ka) and
[ U0

V0

]
stands for the

eigenvector or field amplitude in the two PCWs. The
eigenfrequencies (dispersion relations) and eigenvectors (field
amplitudes) of equations (8) and (9) are

ω±(k) = (ω̄1 + ω̄2)

2
±

√
�2 + (g(ka))2, (10)

χ± = (V0/U0)
± = −� ± √

�2 + (g(ka))2

g(ka)
, (11)

where � = (ω̄2 − ω̄1)/2 and χ± are the amplitude ratios
corresponding to frequencies ω±(k). Note that χ+χ− = −1,
due to the orthogonality of these two eigenmodes at a fixed
wavevector k. At a fixed frequency, χ+χ− is not necessarily
equal to −1.

From the electric field distributions of defects in the square
and triangular lattices, shown in figure 2, we find that the
electric field at the site (x = 0, y = 0) of the square lattice has
the same polarity (sign) as its nearest neighboring site (x = 0,
y = 2a) and the next nearest neighboring site (x = a, y = 2a).
Because �ε < 0 for the air–defect PCWs in both square and
triangular lattices, the coupling coefficients α and β are both
negative values. Here, we assume ω̄2 > ω̄1 in the following
discussion; therefore, we shall call the high frequency PCW2
(low frequency PCW1) waveguide 2 (waveguide 1).

Because |g(ka)| has a maximum value at k = 0, one
should expect the dispersion curves to have the largest splitting
there. As α and β are negative values as discussed before,
g(ka) is always a negative value for all k if |2β/α| < 1, and
its value can change from negative to positive as k increases
from 0 to π when |2β/α| > 1. Under this condition,
|2β/α| > 1, the coupler can be decoupled when g(kDa) = 0
at a certain k = kD and have eigenfrequencies ω+ = ω̄2 and
ω− = ω̄1 separately; that is, the field launched in PCW1
will always be confined in PCW1 without being coupled to
PCW2, and vice versa. We can simply use the ratio of the
maximal field values instead of integrals such as equation (2)
to estimate coefficients α, β and |2β/α| by assuming the field
distribution to be strongly localized near the dielectric rods.
Thus, |2β/α| ∼ 2E(0, 2a)/E(±a, 2a) in the square lattice
and ∼2E(0,

√
3a)/E(±a,

√
3a) in the triangular lattice.
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Figure 3. Simulation results from the PWEM. (a) Dispersion
relations for two isolated PCWs (ε = 2.56 and ε = 2.25) and the
directional coupler in the triangular lattice (shown as the inset).
(b) The dispersion curves of the directional coupler and its
eigenmode profiles below, above and at the decoupling point.
(c) The mode amplitude ratios of the coupler.

Because g(ka) < 0 for 0 � k < kD under the condition
|2β/α| > 1 (or for all k under the condition |2β/α| < 1),
the lower frequency mode (ω−) has −1 < χ− < 0; namely,
the eigenmode of the coupler displays the PCW1 and PCW2
electric fields not only as out of phase but also concentrated
on the low frequency PCW1. This odd-like fundamental (low
frequency) mode is called the ‘anti-bonding’ mode, borrowed
from the molecular physics of two atoms. On the other hand,
the high frequency and even-like mode called the ‘bonding’
mode has χ+ > 1; thus, it is superposed with in-phase electric
fields from both PCWs, where the field strength is concentrated
on the high frequency PCW2.

However, as k > kD under the condition |2β/α| > 1,
g(ka) becomes positive and 0 < χ− < 1. The fundamental

mode is a bonding mode, which is superposed with the in-
phase electric fields from both PCWs, where the field strength
is concentrated on the low frequency PCW1. And the high
frequency anti-bonding mode with χ+ < −1 has the field
strength concentrated on the high frequency PCW2. We find
that the fundamental modes of the asymmetric coupler contain
no degenerate state (anti-crossing dispersion relations) and can
switch from the anti-bonding to the bonding mode as k varies,
crossing the decoupling point kD. As in the previous study on
the symmetric coupler [15], we can simply set � = 0 to obtain
χ± = ±1 at all k, i.e., the fundamental mode is either odd or
even depending upon the sign of g(ka). The dispersion curves
of the symmetric coupler can cross at the decoupling point
if |2β/α| > 1. Furthermore, upon increasing the separation
of PCWs to two rows apart [22], from equation (2), coupling
coefficients α and β become positive values and are smaller
than the coupling coefficients of the one-row-separation PCWs.
The fundamental mode becomes a bonding mode, and whether
or not mode switching will happen is still determined by the
criterion |2β/α| > 1.

In order to prove that the formula derived using TBT
can explain phenomena obtained from the PWEM well,
we consider as an example a two-dimensional triangular
(square) lattice PC made from dielectric rods with dielectric
constant εr = 12 and radius = 0.2a in the air. Due
to the field symmetry, the coupling coefficient ratio β/α is
a larger value in the triangular lattice than in the square
lattice. It should be easier to reach the criterion |2β/α| ≈
2E(0, 2a)/E(±a, 2a) > 1 for the mode switching behavior
in the triangular lattice than in the square lattice, as shown in
figure 2(c) [15]. Therefore, we consider a triangular lattice
PC, and the line defects forming PCW1 and PCW2 are created
by setting the dielectric constants of defect rods at 2.56 and
2.25, respectively. The eigenfrequencies of a point defect
with a transverse magnetic field (TM), whose electric field
is parallel to the dielectric rods, are ω1 = 0.365 (2πc/a)
and ω2 = 0.371 (2πc/a), respectively, where c is the speed
of light in vacuum. The decoupling point is located at
kD = 0.73π/a where the eigenfrequencies of the PC couplers
decouple in eigenfrequency in single-line-defect PCWs, as
shown in figure 3(a). Note that the dispersion curves do not
cross in the asymmetric coupler. As shown in figure 3(b),
the eigenmode of the high (low) frequency band at wavevector
k < kD is the bonding (anti-bonding) mode, but these modes
switch when k > kD; namely, the eigenmode of high (low)
frequency band is anti-bonding (bonding). And the electric
field is concentrated on PCW2 for the high frequency (ω+(kD))
mode and on PCW1 for the low frequency (ω−(kD)) mode at
the decoupling point kD. The mode switching phenomenon at
kD is shown easily by plotting the ratios of the eigenmodes
(χ = V0/U0) obtained from the PWEM. We observe that χ

changes sign at the decoupling point kD (see figure 3(c)).

3. Electric field distribution and energy transfer

After obtaining the eigenfrequencies (dispersion relations) and
eigenvectors (field amplitudes) of the directional coupler, we
shall calculate the energy transfer between the coupled PCWs.
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If an EM wave with a given frequency propagates in the
directional coupler, the wavefunction or field distribution at
site n in each of the coupled PCWs can be expressed as the
superposition of the eigenmodes of the directional coupler,

Un(na) = A eikana + B eikbna, (12)

Vn(na) = Aχ a eikana + Bχb eikbna, (13)

where the propagation constants of the anti-bonding mode ka

and bonding mode kb and their corresponding amplitude ratios
of χ a and χb can be obtained from equations (10) and (11).
Note that χ aχb is not necessarily equal to −1 for a given
frequency because the mode patterns of the directional coupler
at a given frequency are not the eigenmodes of the same
system. Let x = na; one can rewrite equations (12) and (13)
as the following continuous equations:

U(x) = A eika x + B eikb x, (14)

V (x) = Aχ a eika x + Bχb eikb x . (15)

Taking derivatives of U(x) and V (x) with respect to x , we have
the coupled PCW equations

dU(x)

dx
= iM1U(x) + iκ12V (x), (16)

dV (x)

dx
= iM2V (x) + iκ21U(x), (17)

where M1 = (kaχ
b − kbχ

a)/(χb − χ a) and M2 =
(kaχ

a − kbχ
b)/(χ a − χb) are the effective propagation con-

stants of PCW1 and PCW2 for the directional coupler, κ21 =
−κ12χ

bχ a and κ12 = (ka − kb)/(χ
a − χb) are the effective

coefficients of coupling between PCWs. The solutions of the
coupled PCW equations are

[
U(x)

V (x)

]

=
[

eiM1 x 0
0 eiM2 x

] [
D11η iD12η

iD21η
∗ D22η

∗

] [
U(0)

V (0)

]

.

(18)
Here U(0) and V (0) are the electric field amplitudes at x = 0,
D12 = (κ12 sin( f x))/ f , D21 = (κ21 sin( f x))/ f , D11 =
D∗

22 = cos( f x) − iδ sin( f x)/ f , and η = exp(iδx), with f =
(ka − kb)/2 and δ = f (χ a + χb)/(χ a − χb). The maximum
energy transferred from PCW1 to PCW2 is proportional to
|κ21/ f |2 = 4(χbχ a)2/(χb − χ a)2 and that transferred from
PCW2 to PCW1 is proportional to |κ12/ f |2 = 4/(χb − χ a)2.
There are maximum energy transfers into the other waveguides
at f x = π/2, so the coupling length is defined as π/|ka − kb|.
There are no crossing points in asymmetric PCWs, as the
coupling length would not be infinite by TBT, as shown in
figure 4(a), but the lower energy transfer is still around the
decoupling points. The energy will transfer completely into the
other waveguide only in symmetric ones because this happens
only at δ = 0.

For an incident wave frequency ω, the wavevector ka for
the anti-bonding mode should be larger than kb for the bonding
mode for k < kD. Since |χ a| is smaller for large wavevectors,
if we denote the mode ratio of the lower frequency band
at kb as χ a(kb), we have |χbχ a| � |χbχ a(kb)| = 1 and
4(χbχ a)2/(χb − χ a)2 � 4/(χb − χ a)2 and �1, as shown

Figure 4. (a) The wavevectors of the bonding and anti-bonding
modes and the coupling length of the PC couplers for different
frequencies. (b) The mode amplitude ratio (χ = V0/U0) of the
bonding and anti-bonding modes. (c) The ratios of the maximum
energy transferred from PCW2 to PCW1 (|k12/ f |2) and from PCW1
to PCW2 (|k21/ f |2).

in figures 4(b) and (c), which is obtained from the PWEM.
Therefore, the maximum energy transferred from PCW1 to
PCW2 should be smaller than that transferred from PCW2
to PCW1. However |κ12/ f |2 can be larger than 1, meaning
that the output peak energy can be larger than the input peak
energy. This comes from the different field localizations of the
eigenmodes.

4. Conclusion

We have extended the TBT to study asymmetric couplings
between two non-identical line defect photonic waveguides.
By considering the coupling between two waveguides beyond
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the nearest neighboring approximation, analytic expressions
for the dispersion relations and eigenmode ratios of an
asymmetric photonic crystal coupler agree well with the
phenomena calculated using PWEM results. Due to the
symmetry breaking, these two dispersion curves will never
cross, even with the criterion |2β| > |α| obeyed. Nevertheless,
as the symmetric coupler shows, the eigenmode patterns,
which are the bonding and anti-bonding modes, do switch on
the same dispersion curves when wavevector k varies across
the decoupling point. At the higher (lower) frequency of
the dispersion relation curve, the electric field distribution of
the eigenmodes would localize mainly at the PC waveguide
with a higher (lower) eigenfrequency, which corresponds to an
incomplete EM field transformation between two waveguides.
For a given incident frequency, the electric field distributions
and energy transfer of the coupler can be expressed analytically
by using the wavevector and derived amplitude ratios of the
bonding and anti-bonding modes. The coupling length at the
decoupling point is no longer infinite, but low energy transfer
occurs around there. Although complete energy transfer into
the other waveguides is impossible in asymmetric waveguides,
the peak power in the output dielectric rods can be larger
than that in the input ones due to the electric fields having
different strengths of electric field localization in each of the
waveguides.
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