
國 立 交 通 大 學 

 

電機學院  電機與控制學程 

碩 士 論 文 

 

 

 

嵌入式 Linux 系統開機程序的時間分析 

A Timing Analysis of Booting Procedures on Embedded 

Linux Systems 

 
 

 

 

 

研 究 生：黃建銘 

指導教授：黃育綸  博士 

 

 

 

 

 

中 華 民 國 九 十 六 年 五 月 



嵌入式 Linux 系統開機程序的時間分析 

A Timing Analysis of Booting Procedures on Embedded 

Linux Systems 
 

 

研 究 生：黃建銘          Student：Chien-Ming Huang 

指導教授：黃育綸 博士     Advisor：Dr. Yu-Lun Huang 

 

國 立 交 通 大 學 

電機學院  電機與控制學程 

碩 士 論 文 

 

 
A Thesis 

Submitted to College of Electrical and Computer Engineering 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master of Science 

in 

Electrical and Control Engineering 

May 2007 

 

Hsinchu, Taiwan, Republic of China 

 

 

 

 

中華民國九十六年五月 



 i

嵌入式 Linux 系統開機程序的時間分析 

 

 
學生：黃建銘                 指導教授：黃育綸 博士 

 

國 立 交 通 大 學   電 機 學 院   電 機 與 控 制 學 程 碩 士 班 

摘    要 

 
在蓬勃發展的嵌入式產品中，縮短系統開機時間往往是產業研發人員致

力解決的問題之一。在本篇論文中，我們針對於不同系統架構，雙核心與單

核心等，嵌入式 Linux 作業平台，從硬體跟軟體兩方面去分析系統開機相關

的因素，瞭解這些開機因素對開機時間的影響程度，以及互相之間的關連性。

在本論文中，選擇 TI OMAP5912 作為雙核心實驗平台、Intel PXA270 為單核

心實驗平台，針對平台的差異性，找出各種可能的軟硬體因素，設計一連串

的實驗，得到不同的開機時間，並透過數據分析，歸納出各種因素組合對此

一問題的影響程度。首先，我們先分析嵌入式 Linux 作業系統的開機流程，

將其區分為四大部分、十二階段，包括硬體初始化、開機載入程式、作業系

統核心、使用者應用程式階段等；接下來，利用硬體電路的產生訊號、軟體

核心公用程式產生的時間郵戳，加上示波器與邏輯分析儀等工具的輔助，量

測各階段所耗費的時間。然後，對兩種架構各異的硬體平台架構進行結構分

析，再搭配不同的軟硬體因素與其組合，由一系列的實驗結果、數據整合，

分析並歸納出各因素對開機時間的影響程度。本論文中系列實驗所得之結論

除了有助於開發人員選擇合適的嵌入式平台，並能提供從硬體與軟體等方面

改善開機時間的參考依據。 
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ABSTRACT 
 
 
  Shortening boot time is one of the major challenges in developing embedded 

products. In this thesis, the boot times of various system architectures, including 

single-core and dual-core architectures, running Embedded Linux are analyzed. 

To figure out the varieties of various architectures, TI OMAP5912 and Intel 

PXA270 are chose for the experimental platforms with dual-core and single-core 

processor, respectively. First, the boot-up procedure is analyzed and divided into 4 

stages (hardware initialization, boot-loader, kernel and user space) and 12 phases. 

Secondly, the oscilloscope, logic analyzer and kernel functions are used to capture 

the chipset pins and log timestamps to measure the boot time of each phase. 

According to the difference concluded from the comparison of the two 

experimental platforms, a series of experiments are designed based on various 

combinations of the hardware and software factors. Theoretically, the 

experimental results are compared, analyzed and concluded. The conclusion helps 

developers in selecting the embedded platforms and improving the boot time by 

hardware and software factors.  
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Chapter 1 

INTRODUCTION 

 

 With the rapid growth of the embedded computing technologies, boot time 

becomes a major challenge in designing embedded systems, especially the 

consumer electronics. Currently the most popular consumer electronics is the  

multimedia device. There are many fancy features supported inside the  

multimedia device while the boot time of the device is taken longer. For better 

impression of product, the devices should be available after users turn on the 

device. For example, Sony DSC-T50 [25] is a popular digital camera with 7 

million pixels CCD. Its boot-up times is about 1.3sec. The newer DSC-T100 is a 

digital camera with 8 million pixels CCD. Its boot-up time is about 1.5sec. But the 

latest DSC-G1 with 6 million pixels CCD and extra wireless LAN module inside 

take about 4.2 sec when it boots up. More features with more boot times are not 

acceptable by end customer. 

The findings of the methods are used for reducing the boot time but those 

methods mostly focused on software side [1] [2] [3]. The relationship between 

boot time, platform architecture and software will be the good reference for future 

SoC design, software and product development. 

 To find the relationship, we divide the boot sequence of embedded system into 

12 phases [5] [6] [7] and modify some hardware and software factors [4] [8] 

related to the boot times. For application specific, we choose two platforms: 

OMAP5912 [9] [10] [11] and PXA270 [12] [13] [15]. To find out what kind of 

processor architecture will benefit the system boot time and what factors inside 

the processor will affect the boot time. The system bus architectures will also the 

factors related to system boot time. The bottlenecks of different platform will be 

proposed. 

 After the architecture analysis, we proposed the experiments with different 

factors modified. According to those experiments, the relationship between the 

boot time and different kind of hardware and software factors will be proposed. 

The experiments will be done at each phase of the boot sequence. 

 In the reset of this thesis, we will introduce the methods of timing 
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measurement first. Then overview of Linux boot, factors related to the boot time 

and the boot sequence of embedded Linux are presented in Chapter 4. For 

application specific, the analysis of different platforms and bottleneck of 

architectures related to boot time are discussed in Chapter 5. After platforms and 

architectures analysis, we’ll introduce the experiments designed to find the 

relationship between the boot time and hardware and software factors. The 

experiments are done on two platforms in Chapter 6. In Chapter 7, the conclusion, 

according to the experimental results, will be proposed for platform selection and 

methods for boot time reduction by hardware and software side. 
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Chapter 2 

RELATED WORK 

There are many exist techniques to improve and analyze the boot procedure of 

Linux. They include the technique of quick mounting the file system for flash 

storage device [3], the special method to execute kernel [1] and the study of Linux 

kernel initialization [16]. 

 

2.1 Snapshot Technique for NOR Flash 

 

In embedded computing devices, flash memory has many advantages such as 

light-weight, shock-resistance, and low-power consumption. There are two types 

of flash memories: NOR and NAND. NOR flash is usually used for codes stored 

because it supports word-unit I/O and provides faster read speed than NAND flash. 

NAND flash supports only page-based I/O (e.g., 512B or 2KB) and provides 

faster write speed. It is mostly used for large-scale data storage requirements. 

In flash memory, write operations must be preceded by an erase operation, and 

the number of erase in a block is limited. In order to hide the erase while ensuring 

the wear-leveling property, the flash translation layer (FTL) [26] [27] [28] has 

been developed to be able to translate the logical addresses generated by a host 

system to physical addresses of flash memory. But the use of FTL is restricted by 

international patents. It is known that the performance of FTL can be seriously 

reduced if the host file system generates write operations frequently. Therefore, 

embedded computing devices directly use flash file systems (e.g., JFFS2 [29] and 

YAFFS2 [30]) which are based on a data journaling technique. Unfortunately, the 

journaling technique incurs long mounting time for the flash file systems. 

The technique providing an instant lookup method for the lastly stored 

in-memory file system metadata is the snapshot technique. It stores snapshots to 

variable-size areas managed by linked lists and sequentially record the location of 

the stored snapshots to prearranged areas by using an ordered tree data structure. 

In Figure 1, the first block of flash memory is reserved as a root block which 
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stores pointers to snapshot header blocks sequentially. When running the 

mount_root operation, the last stored pointer can be found quickly using 

sequential or binary search algorithms. The binary searching divides the root 

block into two sub-blocks and reads the boundary pointer of these sub-blocks. If 

the pointer is null, the searching selects the left sub-block. Otherwise, the other 

one is selected. The above procedure is repeated with the selected sub-block, until 

the last stored pointer is found. Since the block size (Bsize) is typically 128KB in 

NOR flash and the size of a pointer to block is 2B (Psize), this search algorithm has 

a better time complexity of O(lg(Bsize / Psize)) = O(16). 

Each pointer in the root block directs the corresponding header block as shown 

in Figure 1. A header block contains several snapshot headers, and a snapshot 

header consists of a mounting flag (M), an unmounting flag (U), and a pointer to 

the snapshot data block (Pt). Since the snapshot header size (Hsize) is typically 4B, 

the maximum number of snapshot headers that can be stored in a header block is 

Bsize / Hsize (=215). The searching algorithms used to find the last stored 

snapshot header is the same way as done by the root block. The pointer stored in 

the latest snapshot header is used to access the snapshot data that were last stored. 

In summary, this technique only reads lg(Bsize / Psize) x Psize + lg(Bsize / Hsize) x 

Hsize (=92) bytes in an average case to fine the location of the last stored snapshot, 

providing an instant lookup time. 

The source code of the technique is not released, so it is difficult to verify the 

performance at our experimental platforms. 

 

Figure 1: Snapshot Management of Snapshot Technique 
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2.2 Kernel Execute-In-Place 

 

Execute-In-Place (XIP) allows the kernel run from flash memory directly. 

Without the copy procedure, it is faster invoked, and it consumes less RAM at run 

time. This saves RAM space since the text section of the kernel is not loaded from 

flash to RAM. Read-write sections, such as the data section and stack, are still 

copied to RAM. The flash address used to link the kernel object files, and for 

storing it, is configuration dependent. Therefore, the proper physical address 

where to store the kernel image depending on specific flash memory usage must 

be known. XIP is consuming more flash memory storage, because XIP kernel 

must be flat without any compression. 

 

2.3 Linux Kernel Initialization 

 

The overview of the boot process of an Intel x86-based personal computer is 

how the initialization routine provided by the operating system running. Generally, 

there are three stages to the booting process. When a PC is powered on, the BIOS 

(Basic Input-Output System) run first followed by a boot loader and finally the 

operating system initialization routine. 

The BIOS is the first code executed by the processor when boot-up. When 

power is initially applied to the computer this triggers the RESET pin on the 

processor. This causes the processor to read from memory location 0xFFFFFFF0 

and begin executing the code located there. This address is mapped to the 

Read-Only Memory (ROM) containing the BIOS. The BIOS must poll the 

hardware and set up an environment capable of booting the operating system. 

Once the BIOS load the first sector of the boot device into RAM, the boot loader 

begins execution. 

After the chosen boot loaders [31] [32] has run, it loads the Linux kernel image 

as shown as Figure 2, typically named vmlinuz-[version number] for a 

compressed kernel image and vmlinux-[version number] for an uncompressed 

image. A compressed kernel image will have the Linux boot loader, found in 
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/arch/i386/boot/bootsect.S, located at the very beginning of the image. After the 

boot loader execute the assembly code, the code runs assembly level initialization, 

like reinitialize all hardware, switches CPU from real mode to protected mode, 

fills the bss segment of the kernel with zeros and final jump to assembly function 

startup_32(). The code runs high-level initialization till process 1 executing, and 

then the Linux kernel initialization is complete. 

 

 

Figure 2: System Boot-up Memory Map 
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Chapter 3 

MULTIMEDIA DEVICE 

 

In designing embedded systems, especially the consumer electronics, the boot 

time becomes a major challenge. As streaming multimedia applications become 

popular in consumer devices, the multimedia device is the application for boot 

time analysis. 
 

3.1 Product Specification 
 

There are many multimedia devices on the marked. Before making the decision 

of using which platform on the product, the PRD (Product Requirement 

Document) from the customer is the major reference. For the multimedia 

application, there are some minimum hardware and software requirements [23]: 

1. Processor Requirement: Processors are the main brain of the product. For 

more and more fancy features, powerful processor is necessary. From 

software point of view, ARM based processors are more popular and has 

more resources. So ARM version 5TE (v5TE) architecture, which support 

DSP-Enhanced instruction set, is what product needed. 

2. Display Requirement: LCD supported is important for multimedia 

requirement. For most popular multimedia format, we at least require 

262144 colors (18-bits), 640x480 resolution of LCD module. 

3. Memory Requirement: According to the LCD requirement and related 

software features for multimedia device, the product’s minimum system 

memory requirement is 64MB and minimum flash memory requirement is 

32MB. 

4. Storage Requirement: The most cost effective storage memory card, which 

also have small form factor, is MMC/SDIO memory card. So MMC/SDIO 

card supported is also required. 

5. Networked Interfaces Requirement: For internet access or remote 

multimedia display, the product needs 10 or 10/100 Ethernet port supported 

or 802.11b/g WLAN supported. 
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6. Peripheral Requirement: IrDA and USB are minimum requirements of 

peripheral interfaces. 

7. Operating System and Other Software Feature Requirements: OS could 

be Linux. Other software features are not mainly related to the boot time 

analysis, so the features are not listed here. 
 

3.2 Platforms 
 

According to the product specification of multimedia device, there are two 

kinds of platform for our selection. One platform is the dual-core architecture. 

One main processor is used for normal computing and another DSP core is 

specially handle the multimedia data computing. The other platform is the 

single-core architecture. It has one powerful processor to handle all data 

computing and by software codec with strong computing power to handle the 

multimedia data. 

According to the two kinds of the platforms, we select two platforms, which 

meet the minimum requirement of multimedia device, for boot time analysis. One 

is TI OMAP5912, and the other one is Intel PXA270. The platform specifications 

of the related evaluation boards are described below: 
 

3.2.1 OMAP5912 
 

 Board  

– TI OMAP5912osk (OMAP Starter Kit) is a highly integrated evaluation 

board, designed to meet the application processing needs of 

next-generation embedded devices. The dual-core architecture of the 

OMAP5912 provides benefits of both DSP and reduced instruction set 

computer (RISC) technologies. It is incorporating a TMS320C55x DSP 

core and a high-performance ARM926EJ-S ARM core. There are rich 

peripherals reserved on the boards which could meet the requirements 

of different products. 

 Processor 

– The DSP core of the OMAP5912 device is based on the TMS320C55x 

DSP generation CPU processor core. The C55x DSP architecture achieves 
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high performance and low power through increased parallelism and total 

focus on reduction in power dissipation. The CPU supports an internal bus 

structure composed of one program bus, three data read buses, two data 

write buses, and additional buses dedicated to peripheral and DMA 

activity. These buses provide the ability to perform up to three data reads 

and two data writes in a single cycle. In parallel, the DMA controller can 

perform up to two data transfers per cycle independent of the CPU 

activity. 

– The ARM926EJ-S processor is a member of the ARM9 family of 

general-purpose microprocessors. The ARM926EJ-S processor is targeted 

at multi-tasking applications where full memory management, high 

performance, low die size, and low power are all important. The 

ARM926EJ-S processor supports the 32-bit ARM and 16-bit Thumb 

instruction sets, so it provides the user to trade off between high 

performance and high code density. ARM926EJ-S processor implements 

ARM architecture version 5TEJ. 
 

3.2.2 PXA270 
 

 Board  

– The MT Creator PXA270 is a highly integrated evaluation board. It 

includes the integrated system-on-a-chip microprocessor for high 

performance, dynamic, low-power portable handheld and hand-set 

devices as well as embedded platforms. The processor incorporates the 

Intel XScale technology. The processor also provides Intel Wireless 

MMX media enhancement technology, which supports integer 

instructions to accelerate audio and video processing. In addition, it 

incorporates Wireless Intel Speedstep Technology, which provides 

sophisticated power management capabilities enabling excellent 

MIPs/mW performance. There are also rich peripherals reserved on the 

boards which could meet the requirements of different products. 

 Processor  

– The Intel XScale core is an ARM V5TE compliant microprocessor. It 

has been designed for high performance and low-power; leading the 
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industry in mW/MIPs. The core is not intended to be delivered as a 

stand alone product but as a building block for an ASSP (Application 

Specific Standard Product) with embedded markets such as handheld 

devices, networking, storage, remote access servers, etc. 
 

3.3 Comparison 
 

According to the device specifications of OMAP5912 and PXA270, there are 

some comparisons of device specification in Table 2 and Table 3. 

In Table 1, both processors are all ARM version 5TE (v5TE) architecture 

compliant. XScale has large size cache, 7 stage pipeline and higher processor 

frequency. 

In Table 2, OMAP5912 has additional DSP core for multimedia data, but 

PXA270 supports Intel Wireless MMX for additional media instructions. 

OMAP5912 support hardware accelerators for cryptographic and PXA270 use 

software features to handle. Both platforms support minimum memory 

requirements (32MB flash and 64MB SDRAM). Although OMAP5912 use 16-bit 

memory bus, but it supports Mobile DDR RAM, which sampling the data at rising 

and falling edge of memory clock then it gets the 16-bit data twice per clock cycle. 

Other peripherals of both are all meet the requirements of product specification of 

multimedia device. The difference on network interface is OMAP5912 supported 

10Mbps and PXA270 supported 10/100Mbps. 
 

Table.1 Comparison of ARM926EJ-S and XScale 

  ARM926EJ-S Core XScale Core 

ISA ARM V5TEJ ARM V5TE 

Pipeline 5 stage pipeline 7 stage pipeline 

16 KB i-cache 32 KB i-cache 
Cache 

8 KB d-cache 32 KB d-cache 

Clock/Freq. Max. 192 MHz Max. 520 MHz 
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Table.2 Comparison of OMAP5912 and PXA270 

 TI OMAP5912 Intel PXA270 

Multimedia TMS320C55x DSP Core Intel Wireless MMX 

16-bit Mobile DDR SDRAM

(max. 64MB) 

32-bit SDRAM 

(max. 1GB) Memory 

16-bit Flash (max. 256MB) 16-bit Flash (max. 384MB) 

USB 1.1 Client USB 1.1 Client 
USB 

USB 1.1 Host USB 1.1 Host 

UART 
3 UART  

(2 SIR IrDA) 

3 UART  

(FIR and SIR IrDA) 

LCD 16-/18bit LCD Controller 18-bit LCD Controller 

Card Slot SD/MMC SD/MMC/MS 

Keypad Keypad I/F Keypad I/F 

LAN 10 Mbps 10/100 Mbps 
 

 

3.4 Analysis 
 

3.4.1 Processor Architecture 
 

Refer to Figure 3 [22] and Figure 4 [15], ARM926EJ-S Core is the 5-stage 

pipeline architecture, and XScale Core is the 7-stage super-pipeline architecture. 

So XScale Core has the better performance. XScale Core also has larger cache 

size and higher clock frequency. So doing the comparison from the processor 

architecture, XScale Core has the better performance than ARM926EJ-S. 
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Figure 3: ARM926EJ-S block diagram 

 

Figure 4: XScale block diagram 
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3.4.2 Platform Architecture 
 

OMAP5912 is the dual-core architecture, so there is the multi-level bus 

architecture. According to the block diagram of OMAP5912 on Figure 5, there are 

many different buses: MPU bus, DSP bus, DMA bus, MPU public/private 

peripheral bus and DSP public/private peripheral bus. This architecture could get 

the better performance when each subsystem access different components. A 

multi-level bus architecture could reduce the resource conflict and interference 

when access the same bus. 
 

 
Figure 5:OMAP5912 block diagram 

 

PXA270 is the single-core architecture, so its bus architecture is simpler than 

OMAP5912. From Figure 6, it has system bus and peripheral bus. There are six 

clients on system bus: the core, the DMA controller, the LCD controller, the USB 

host controller, and the two memory controllers (internal and external). Most of 

all peripherals are on peripheral bus connected to the DMA controller. Even it 
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support programmable weight on system bus arbitration, the single bus is still the 

bottleneck of the architecture. 

PXA270’s memory controller could be use to connect external ASIC. When 

ASIC and PXA270 have busy communication, it will affect the performance of 

memory controller portion. 

 
Figure 6: PXA270 block diagram 

 

3.4.3 Bottlenecks 
 

From boot time point of view, we would like to analysis which portion will be 

the bottleneck of each platform. 

OMAP5912 has more flexible bus architecture, but the relationship between TC 

(Traffic Controller) clock and MPU clock, and Flash clock and TC clock will be 

the bottleneck of boot time. Max. TC clock is half of max. MPU clock so max. TC 

clock is 96 MHz. But max. MPU clock is 192MHz. Max. flash clock is 48MHz 

and it is always 1/6 of TC clock. MPU TIPB (TI peripheral bus) (public and 
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private) also has max strobe freq., 48MHz. 

PXA270 use one system bus for many subsystems. So the system bus will be 

bottleneck. It also will be the bottleneck on peripheral bus. There are too many 

peripherals connected to peripheral bus, and these peripherals take more time 

when doing hardware initialization. Its memory controller also uses to connect to 

external ASIC. This will be the bottleneck of memory access when the external 

ASIC and PXA270 have busy communication. 
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Chapter 4 

LINUX BOOT-UP 

 

A computer system is a complex machine [16], and the operating system is an 

elaborate tool that orchestrates hardware complexities to show a simple and 

standardized environment to the end user.  

Currently Linux is the most popular operating system because of its open 

source policy. For embedded systems, Embedded Linux is the cost effective 

operating system which refers to the open source Linux. We’ll introduce the 

normal Linux boot-up steps on PC and embedded systems, then boot factors and 

boot sequence of Embedded Linux will be discussed. 
 

4.1 Overview 
 

The PC is more widespread use than other platforms so Linux boot-up steps on 

the x86 PC will be introduced first. In order to be able to use the computer when 

the power is turned on, the processor begins execution from the system's firmware. 

It is called the Basic Input-Output System (BIOS). BIOS functionalities are 

Power-on Self Test (POST), system configuration set-up and execution code from 

boot device. Then boot-loader located at boot device is loaded by BIOS services. 

The boot-loader’s major features are basic hardware initializations, 

uncompression/execution of the kernel image. After boot-loader transfer control to 

kernel [17], kernel will do the whole system initializations and then execute the 

user space program from the file-systems. Then system is ready for user. 

The embedded system is always resource constrained. There is no any BIOS on 

the embedded system. The BIOS is substituted by power-on strapped pins or 

internal boot ROM of the processor. Because the storage and memory are also 

limited, the boot-loader, kernel subsystems, file-system are modified to suit for 

embedded systems. The Linux boot-up steps on the embedded systems are from 

boot-loader execution, to kernel image copied to ram, uncompressed then 

execution and finally load program from root file-systems at user space. 
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4.2 Boot Sequences 
 

The boot sequence could be divided into four stages: Hardware Initialization, 

Boot-loader, Kernel and User Space (Figure 7). For more detail analysis, each 

stage could be subdivided into more phases: 
 

 

Figure 7: Boot Sequence main stages 

 

4.2.1 Hardware Initialization 

 

  There are two phases in the hardware initialization stages (Figure 8): 

 Phase 1: The time for the MPU reset 
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It is measured from Power-On (Vin stable) to signal MPU_Reset 

de-asserted. 

From the Vin becoming stable (MPU_nReset low) to the signal MPU_nReset 

becoming high. When the power input of the MPU is stable, oscillator input of 

MPU is also stable then MPU exit reset mode. 

 

 Phase 2: The time for the MPU initialization and the Peripheral reset 

It is measured from signal MPU_Reset de-asserted to signal 

MPU_RST_OUT de-asserted. 

From the signal MPU_nReset becoming high to the signal MPU_nRST_OUT 

becoming high. MPU exit reset mode then doing simple hardware configuration 

by reading power-on strap-pins or reading internal boot ROM. After finishing 

the configuration, then the nRST_OUT signal to other peripherals is de-asserted. 

MPU read the 1st instruction. 
 

 

Figure 8: Hardware Initialization 
 

4.2.2 Boot-loader Stage 
 

There are four or five phases in the boot-loader stages (Figure 9). When the 

kernel image is uncompressed at kernel stage, there are only four phases. When 
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the kernel image is uncompressed by the boot-loader, there are five phases in the 

boot-loader stage: 

 

 Phase 3: 

It is measured from the signal MPU_RST_OUT de-asserted to function 

env_relocate_spec() finished. 

From the signal MPU_RST_OUT becoming high and to the last signal of 

Flash_CS for function env_relocate_spec() finished (the last signal Flash_CS rising 

edge before env_relocate_spec() finished). MPU read the 1st instruction to do simple 

hardware initialization then U-boot starts and prepares to execute the first 

function which access flash. Then the environment parameters of U-boot are 

relocated. 

 Phase 4: 

It is measured after the function env_relocate_spec() finished and before the 

kernel image checksum verify starting. 

 

 Phase 5: 

It is measured from the kernel image checksum verify starting to copy 

image to ram finished. 

From the signal RS232_TX of function image checksum verify start to the 

signal RS232_TX of function copy image to ram over. U-boot verifies the 

checksum of kernel image. If the checksum is correct, then U-boot copies the 

kernel image from the flash to system memory. 
 

4.2.2.1 Case 1-Kernel Uncompress Image 
 

 Phase 6: 

It is measured from copy image to ram finished to the function 

cleanup_before_linux() finished. 

From the signal RS232_TX of function copy image to ram over to the signal 

RS232_TX of function cleanup_before_linux() finished. Boot-loader transfers the 

control of system to Linux kernel. 
 

4.2.2.2 Case 2-Boot-loader Uncompress Image 
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 Phase 6’:  

It is measured from copy image to ram finished to uncompress kernel 

image finished. 

From the signal RS232_TX of function copy image to ram over to the signal 

RS232_TX of uncompress kernel image finished. Boot-loader uncompress the 

kernel image. 

 

 Phase 7’:  

It is measured from uncompress kernel image finished to the function 

cleanup_before_linux() finished. 

From the signal RS232_TX of uncompress kernel image finished to the signal 

RS232_TX of function cleanup_before_linux() finished. Boot-loader transfers the 

control of system to uncompressed Linux kernel. 
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Figure 9: Boot-loader stage 

 

4.2.3 Kernel Stage 
 

There are three or four phases in the kernel stages (Figure 10). When the kernel 

image is uncompressed at boot-loader stage, there are only three phases. When the 

kernel image is uncompressed at the kernel stage, there are four phases in the 

kernel stage: 
 

4.2.3.1 Case 1-Kernel Uncompress Image 
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 Phase 7: 

It is measured from the function cleanup_before _linux() finished to before the 

uncompress kernel starting. 

From the signal RS232_TX of function cleanup_ before_linux() finished to the 

signal RS232_TX of function Uncompress kernel start. Linux kernel gets the 

controls and prepares to uncompress kernel. 

 

 Phase 8: 

It is measured from the uncompress kernel starting to the uncompress 

kernel finished. 

From the signal RS232_TX of function Uncompress kernel start to the signal 

RS232_TX of function Uncompress kernel over. Linux kernel image is 

uncompressed and prepare to start the kernel. 
 

4.2.3.2 Case 2-Boot-loader Uncompress Image 
 

 Phase 8’:  

It is measured from the function cleanup_before _linux() finished to before 

start_kernel. 

From the signal RS232_TX of function cleanup_ before_linux() finished to before 

start_kernel. Linux kernel gets the controls and prepares to start the kernel. 

 

 Phase 9:  

It is measured from the uncompress kernel finished to before file-system 

initialization/built. 

From the signal RS232_TX of function Uncompress kernel over to the signal 

RS232_TX of function File-system built/fill super start. Linux kernel 

uncompress and execute routine start_kernel, Linux kernel doesn’t access the 

flash until the routine mount_root. 

 

 Phase 10:  

It is measured from before file-system initialization/built to before Invoke 

/sbin/init. 

From the signal RS232_TX of function File-system built/fill super start to the 
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signal RS232_TX of function File-system built/fill super over. Root File-system 

is built by kernel. 
 

 

Figure 10: Kernel stage 
 

4.2.4 User Space Stage 
 

  There are two phases in the user space stages (Figure 11): 

 

 Phase 11: 

It is measured from Invoke /sbin/init to before RC script start. 

From the signal RS232_TX of function Invoke init to the signal RS232_TX 

of function RC Script start. Linux kernel invokes the sysvinit tool: /sbin/init 

then init_main started for user space and prepares to run RC Script. 
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 Phase 12: 

It is measured from RC script start to shell prompt output finished. 

From the signal RS232_TX of function RC Script start to RC Script starts 

several daemons. Then RC Script is finished and shell prompt is enabled. 
 

 

Figure 11: User Space stage 
 

4.3 Impact Factors 
 

In this thesis we would like to investigate the Embedded Linux boot process 

and find the related factors of reducing boot time. According to the platforms 

comparison and Linux boot procedure analysis , we induce that both hardware 

factors, including processor frequency, memory and I/O access speed, and 

software factors, including OS kernel, drivers, subsystems selection and 

compression algorithms, would affect the boot time. The major factors are as 

following: 
 

4.3.1 Hardware Factors 
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1. Processor frequency: During boot process, there are greatly computing 

power requirements and complexity instruction operations. So faster 

processor frequency will help on the reduction of the boot time. 

2. Internal cache: Increase the cache size will help on instruction operations in 

the processor. Different kinds of internal cache will help on different 

instruction operations. 

3. I/O access speed: With more peripherals, faster I/O access speed will reduce 

the peripherals initialization times. 

4. Memory access speed: During boot process, there are huge mount of data 

access requirements. There will be more reduction of boot time when faster 

memory access speed is adopted. 

5. Board specific hardware: Some board specific hardware will affect the 

boot time. For example: reset timing requirements of different processors, 

reset circuit design. If there are many peripherals supported by the processor, 

then the initialization time of processor will be taken longer. 
 

4.3.2 Software Factors 
 

1. Boot-loaders: Different versions of U-boot have the different CFI drivers, 

different coding structure and different features support. The difference will 

affect the code size, flash access speed, and then will affect the boot time. 

2. File-systems: There are two type file-systems for NOR flash: Read/Write 

and Read Only. The different type of file-systems takes different 

initialization times and built times. 

3. Compression algorithms: Embedded systems are usually memory 

constrained. How to improve and reduced memory usage is more important 

for embedded system designer. Data compression [18] is the major method 

to reduce the flash memory usage. There are many compression techniques 

and which one has best compression ratio and fast decompression speed is 

what system needed. We will have some short review of following 

compression method: Gzip, Bzip2, LZMA. Then we have these algorithms 

test results in Table 1. The experimental environment is on the PC. 

 Gzip: Gzip is short for GNU zip, a GNU free software file compression 

program. It is the most popular compression method of linux. It is not 
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the best compressor, but it has the faster decompressed speed. Linux 

kernel, file-system, and most application support this compressor in 

default. 

 Bzip2: Bzip2 compresses most files more effectively than gzip, but it is 

slower. It is also support by Linux kernel. But it need more memory 

when decompress the data. For most embedded linux don’t support in 

default. 

 LZMA: LZMA provides high compression ratio and very fast 

decompression, so it is very suitable for embedded applications. Its 

compression ratio is higher than bzip2 and much higher than gzip but its 

decompression speed is only higher than bzip2. Many cost-sensitive 

embedded systems would use LZMA. 
 

Table.3 Compression Algorithm Test 

  C
om

pression 

R
atio (%

) 

O
riginal 

Size (kB
) 

R
educe 

Size (kB
) 

D
ecom

pression 

Tim
e (m

s) 

63.59% 117460 74694 5586 GZIP 

(-9) 52.96% 1902 1007 61 

70.84% 117460 83210 24854 Bzip2 

(--best) 56.33% 1902 1071 354 

84.69% 117460 99473 8826 LZMA 

(-7) 64.66% 1902 1230 193 

 

4. Kernel version: There are two versions of Linux kernel: 2.4.xx and 2.6.xx. 

The image size changed from 2.4 to 2.6 is increased. There are many new 

features supported in version 2.6.xx. 
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Chapter 5 

EXPERIENMENTS 

 

In this chapter we discuss the experimental environments and how to design the 

experiments for boot time analysis. Then the experimental results of each boot 

phase are provided. At the end of this chapter is the analysis of the experimental 

results. 
 

5.1 Environments 
 

  The two platforms are used for the experiments. One is OMAP5912osk and 

the other one is MT Creator PXA270. Because some factors of the boot time are 

platform related, the factors of each platform are described below: 
 

5.1.1 Factors of OMAP5912osk 
 

In OMAP5912osk platform, according to the design of chipset and software 

supporting, the factors could be modified for boot time experiments are: 

 Hardware factor 

– CPU clock frequency: the range we used is 24, 48, 96, 192 MHz. The 

maximum frequency is 192 MHz. 

– Memory bus clock frequency: the range we used is 24, and 96MHz. Because 

the chipset limitation, the maximum frequency is 96 MHz. The flash access 

speed is fixed to 1/8 of memory clock frequency. 

– Peripheral and LCD clock frequency: the range we used is 24, and 48MHz. 

Because the chipset limitation, the maximum frequency is 48 MHz. 

– Cache on/off: the internal I-cache and D-cache of OMAP5912 could be turn 

on/off by software. 

 Software factor 

– Boot-loader: U-boot 1.1.1 and U-boot 1.1.3 could be used on 

OMAP5912osk. Version 1.1.1 only could be used for kernel version 2.4.xx 

and Version 1.1.3 could be used for kernel version 2.6.xx. 
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– Kernel: Linux kernel version 2.4.20 and 2.6.15 are used for boot time 

analysis. 

– File-system: The file-systems used for root-fs of Linux are JFFS2, Cramfs 

and Squashfs. JFFS2 is Read/Write file-system. Cramfs and Squashfs are 

Read only file-system. 

– Compression algorithm: Zlib and LZMA are different compression methods 

used for Squashfs. But LZMA for Squashfs are only supported in the kernel 

2.6.xx. 
 

5.1.2 Factors of PXA270 

 

In PXA270 platform, according to the design of chipset and software 

supporting, the factors could be modified for boot time experiments are: 

 Hardware factor 

– CPU clock frequency: the range we used is 52, 104, 156, 208… and 520 

MHz. The maximum frequency is 520 MHz. 

– System bus clock frequency: the range we used is 52, 104 and 208MHz. 

Because the chipset limitation, the maximum frequency is 208 MHz. 

– Memory clock frequency: the range we used is 52, and 104MHz. The 

memory access speed is fixed to 1/1 or 1/2 of system bus clock frequency. 

– Peripheral and LCD clock frequency: the range we used is 26, and 104MHz. 

Because the chipset limitation, the maximum frequency is 104 MHz. 

 

 Software factor 

– Boot-loader: U-boot 1.1.2 and U-boot 1.1.3 could be used on PXA270. 

– Kernel: Linux kernel version 2.6.15 is used for boot time analysis. 

– File-system: The file-systems used for root-fs of Linux are JFFS2, Cramfs 

and Squashfs. JFFS2 is Read/Write file-system. Cramfs and Squashfs are 

Read only file-system. 

– Compression algorithm: Zlib and LZMA are different compression methods 

used for Squashfs. But LZMA for Squashfs are only supported in the kernel 

2.6.xx. Zlib, Bzip2 and LZMA could be used for kernel image compressed 

and de-compressed by U-boot. 
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5.2 Factors for Boot Phase 
 

 According to the Table 4, we know different factors changed could lead to 

obvious boot time changed. But more important is how these factors change affect 

the time of each phase. 
 

Table.4 Total boot Time Reduction with different factors modification 

 OMAP5912 PXA270 

Factors Boot time (ms) Boot time (ms) 

CPU Frequency 
24/96 

(MHz) 43000/28967 
52/208
(MHz) 24981/18630 

Memory Speed 
24/96 

(MHz) 28886/10567 
52/208
(MHz) 18630/13000 

RW FS/RO FS 10567/5475 13000/9017 

Zlib/LZMA 5475/8015 9017/10141 
 

 

  According to the view of chapter 3 and analysis of chapter 4, the factors for 

each phase of boot time on both platforms could be assumed below: 

 Phase 1: The time for the MPU reset. It is related to the chipset reset time 

requirement and related hardware reset circuit design on each platform. 

 Phase 2: The time for the MPU to reset boot device and peripherals. It is only 

related to chipset specification. How long reset signal will be asserted by the 

reset_out pin of MPU. 

 Phase 3: The time for U-boot doing simple hardware initialization and 

environments parameters relocated. It is related to MPU clock frequency, 

memory clock frequency, internal cache on/off and boot-loader version. 

 Phase 4: It is related to the memory clock frequency and internal cache on/off. 

 Phase 5: It is related to the MPU clock frequency, memory clock frequency, 

internal-cache on/off, boot-loader version, kernel version, which file-system is 

supported and which compression algorithm is used. 

 Phase 6: It is related to memory clock frequency and internal cache on/off. 

 Phase 7: It is only related to memory clock frequency 

 Phase 8: It is related to the MPU clock frequency, memory clock frequency, 

kernel version, which file-system is supported and which compression algorithm 
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is used. 

 Phase 6’: In PXA270 platform, if the kernel will be decompressed by U-boot, 

then it is related to MPU clock frequency, memory clock frequency, which 

file-system is supported and which compression algorithm is used. 

 Phase 7’: In PXA270 platform, if the kernel will be decompressed by U-boot, 

then it is only related to memory clock frequency. 

 Phase 8’: In PXA270 platform, if the kernel will be decompressed by U-boot, 

then it is only related to system bus clock frequency. 

 Phase 9: It is related to system bus/memory clock frequency, internal cache 

on/off and kernel version. 

 Phase 10: It is related to the MPU clock frequency, system bus/memory clock 

frequency, internal-cache on/off, kernel version, which file-system is supported 

and which compression algorithm is used. 

 Phase 11: It is related to the MPU clock frequency, memory clock frequency, 

internal-cache on/off, kernel version, which file-system is supported and which 

compression algorithm is used. 

 Phase 12: It is related to the MPU clock frequency, memory clock frequency, 

internal-cache on/off, kernel version, which file-system is supported and which 

compression algorithm is used. 

 

5.3 Experiments Results 
 

According to the factors in 5.1, there are many experiments done by different 

factors modifications. According to the experiments, the major factors related to 

boot time of each platform is as following: 

 

5.3.1 OMAP5912osk 
 

  Firstly the experiments are done under the environment of U-boot 1.1.1 and 

Kernel 2.4.20.  

Refer to Table 5 and Figure 12, time period of phase 3, 5, 8, 10, 11, and 12 are 

become much shorter with higher CPU clock frequency. These phases need more 

computing power than other phases. 
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Table.5 MEM: 24 / FS: JFFS2 

Factor Time (ms) 

CPU Freq.  P 3 P 5 P 8 

96 297.14 2208.49 1802.29 

24 487.03 2976.77 4741.45 

CPU Freq.  P 10 P 11 P 12 

96 696.26 2262.68 461.62 

24 1304.75 5602.75 1155.35 
 

 

Figure 12: CPU Frequency modified on OMAP5912 

 

Refer to Table 6 and Figure 13, time period of phase 3, 4, 5, 6, 7, 8, 9, 10, 11, 

and 12 are all became much shorter with higher memory clock frequency. Except 

the phase 1 and 2 are related to board specific hardware, the other phases are 

related to functions execution. So increasing the memory clock frequency could 

decrease the time of those phases. 
 

Table.6 CPU: 96 / FS: JFFS2 

Factor Time (ms) 

MEM P 3 P 4 P 5 P 6 P 7 

96 123.66 94.43 744.34 3.26 12.59 

24 297.15 300.4 2208.79 9.81 50.15 
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MEM P 8 P 9 P 10 P 11 P 12 

96 1188.9 462.65 220.95 895.01 180.18 

24 1802.16 742.72 696.2 2274.66 461.7 
 

 
Figure 13: Memory speed modified on OMAP5912 

 

Refer to Table 7 and Figure 14 and 15, time period of phase 10, 11, and 12 are 

much shorter when change from JFFS2 to Cramfs and Squashfs. The initialization 

and built time of Read only file-system is much fast than the time of Read/Write 

file-system. The memory clock frequency has much more influence than CPU 

clock frequency. Because initialization and built of file-system need to access 

memory bus more frequently. 

 

Table.7 Different File-systems 

Factor Time (ms) 

CPU/MEM FS type P 10 P 11 P 12 

JFFS2 220.99 895.06 180.27 

Cramfs 9.43 630.83 167.92 96/96 

Squashfs 7.3 661.98 79.34 

JFFS2 696.2 2274.66 461.7 

Cramfs 32.52 1621.2 432.48 
96/24 

Squashfs 24.28 1836.34 217.62 
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Figure 14: File-systems changed on OMAP5912 

 

 
Figure 15: File-systems changed on OMAP5912 
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Secondly the experiments are done under the environment of U-boot 1.1.3 and 

Kernel 2.6.15. 

Refer to Table 8 and Figure 16, time period of phase 3, 5, 8, 10, 11, and 12 are 

become much shorter with higher CPU clock frequency. These phases need more 

computing power than other phases. 

 

Table.8 MEM: 24 / FS: JFFS2 

Factor Time (ms) 

CPU Freq. P 3 P 5 P 8 

96 243.01 2650.52 2745 

24 432.64 3803.02 7500.4 

CPU Freq. P 10 P 11 P 12 

96 13137.3 3853.2 304.2 

24 18105.4 5799.9 442.4 

 

 
Figure 16: CPU Frequency modified on OMAP5912 

 

Refer to Table 9 and Figure 17, time period of phase 3, 4, 5, 6, 7, 8, 9, 10, 11, 

and 12 are all become much shorter with higher memory clock frequency. Except 

the phase 1 and 2 are related to board specific hardware, the other phases are 

related to functions execution. So increasing the memory clock frequency could 

decrease the time of those phases. 
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Table.9 CPU: 96 / FS: JFFS2 

Factor Time (ms) 

MEM P 3 P 4 P 5 P 6 P 7 

96 110.12 94.13 950.82 3.26 11.33 

24 243 299.59 2650.4 9.84 44.98 

MEM P 8 P 9 P 10 P 11 P 12 

96 1878.35 1654.19 4458.2 1280.1 91.3 

24 2686.5 5644.3 13138 3851.9 304.6 

 

 
Figure 17: Memory speed modified on OMAP5912 

 

Refer to Table 10 and Figure 18 and 19, time period of phase 10 and 11 are 

much shorter when change from JFFS2 to Cramfs and Squashfs. The initialization 

and built time of Read only file-system is much fast than the time of Read/Write 

file-system. The memory clock frequency has much more influence than CPU 

clock frequency. Because initialization and built of file-system need to access 

memory bus more frequently. 

 

Table.10 Different File-systems  

Factor Time (ms) 

CPU/MEM FS type P 10 P 11 

JFFS2 4457.3 1280.45 

Cramfs 12.4 863.8 96/96 

Squashfs 10.17 737.86 
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JFFS2 13137.9 3851.9 

Cramfs 48.8 2866.6 
96/24 

Squashfs 41.95 2374.15 

 

 
Figure 18: File-systems changed on OMAP5912 

 
Figure 19: File-systems changed on OMAP5912 
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Refer to Table 11 and Figure 20, 21 and 22, time period of phase 10 and 11 are 

much longer when changes compression algorithm of Squashfs from zlib to lzma. 

But with more fast CPU clock and memory clock frequency, the time would 

become shorter. 

 

Table.11 Compression Algorithm of File-system and CPU clock 

Factor Time (ms) 

CPU/MEM FS type P 10 P 11 

Squashfs(zlib) 10.17 737.86 
96/96 

Squashfs(lzma) 24.01 3242.1 

Squashfs(zlib) 41.95 2374.2 
96/24 

Squashfs(lzma) 63.55 4545.4 

Squashfs(zlib) 7.9 516.91 
196/96 

Squashfs(lzma) 15.63 1752.37 

 

 

 
Figure 20: Compression algorithm of Squashfs changed on OMAP5912 
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Figure 21: Compression algorithm of Squashfs changed on OMAP5912 

 

 
Figure 22: Compression algorithm of Squashfs changed on OMAP5912 

 

  The effects of different version of U-boot and kernel are list in Table 12, Figure 

23 and Table 13, Figure 24. 

  Refer to Table 12, the new version of Linux kernel need more time at phase 5, 8, 

9, 10, and 11. The version 2.6.xx support more new features than 2.4.xx. Even the 

same application is also changed to new revision. So kernel image size will much 
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bigger than 2.4.xx. Then the time of kernel decompression take much longer. New 

driver support, or more features of device s initialization also take more time. But 

at phase 12 2.6.xx kernel take shorter time to run the same RC script and enable 

the same shell than 2.4.xx kernel. 

 

Table.12 U-boot: 1.1.3 / FS: JFFS2 

Factor Time (ms) 

CPU/MEM Kernel P 5 P 8 P 9 

2.4.20 632.71 1188.89 462.61 
96/96 

2.6.15 950.82 1878.35 1654.19 

CPU/MEM Kernel P 10 P 11 P 12 

2.4.20 187.78 838.47 175.85 
96/96 

2.6.15 4458.19 1280.05 91.3 

 

 
Figure 23: Kernel version changed on OMAP5912 

 

Refer to Table 13, the new version of U-boot shorten the time of phase 3, 5, and 

10. The version 1.1.3 optimization the initialization of U-boot and improve the 

image verification and movement methods.  

Table.13 Kernel: 2.4.20 / FS: JFFS2 

Factor Time (ms) 

CPU/MEM U-boot P 3 P 5 P 10 

1.1.1 124.56 744.32 220.99 
96/96 

1.1.3 110.93 632.64 187.62 
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1.1.1 90.8 612.08 176.36 
192/96 

1.1.3 77.22 500.57 141.86 

 

 

Figure 24: U-boot version changed on OMAP5912 
 

5.3.2 PXA270 

 

In the PXA270 platform, the experiments are done under the environment of 

U-boot 1.1.3 and Kernel 2.6.15. 

Refer to Table 14 and Figure 25 and 26, time period of phase 8, and 11 are 

become much shorter with higher CPU clock frequency. These phases need more 

computing power than other phases. 

 

Table.14 FS: JFFS2 

Factor Time (ms) 

SysBus/MEM CPU Freq. P 8 P 11 

520 673.20 524.70 
208/104 

208 1324.75 779.85 

208 1600.4 1288.1 
52/52 

52 4879.9 2578.75 
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Figure 25: CPU frequency modified on PXA270 

 

 
Figure 26: CPU frequency modified on PXA270 
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Refer to Table 15 and Figure 27, time period of phase 9, 10, 11, and 12 are all 

become much shorter with higher memory clock frequency. Although most phases 

need frequently memory access, only these phases have much improvement by 

higher system bus clock frequency. 
 

Table.15 CPU: 208/ FS: JFFS2 

Factor Time (ms) 

SysBus./Mem P 9 P 10 P 11 P 12 

208/104 1980.6 3736.25 779.85 115.95 

52/52 2710.75 7802.05 1288.1 163.2 
 

 
Figure 27: System bus speed modified on PXA270 

 

Refer to Table 16 and Figure 28 and 29; time period of phase 10 is much shorter 

when changing from JFFS2 to Cramfs and Squashfs. The initialization and built 

time of Read only file-system is much fast than the time of Read/Write file-system. 

The CPU and memory clock frequency have only few influence on phase 10 with 

different file-system type. 

 

Table.16 File-system and CPU clock 

Factor Time (ms) 

CPU/SysBus FS type P 10 

JFFS2 3736.25 
Cramfs 16.78 208/208 

Squashfs 6.46 
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JFFS2 3618.55 
Cramfs 15.6 520/208 

Squashfs 5.24 

JFFS2 3836.05 
Cramfs 17.54 520/104 

Squashfs 6.38 
 

 
Figure 28: File-systems changed on PXA270 

 

 
Figure 29: File-systems changed on PXA270 



 - 44 -

Refer to Table 17 and Figure 30 and 31, time period of phase 10 and 11 are 

much longer when changes compression algorithm of Squashfs from zlib to lzma. 

But with more fast CPU clock and memory clock frequency, the time would 

become much shorter. Fast CPU clock frequency will let LZMA algorithm more 

faster and more similar to zlib and Cramfs. 

 

Table.17 Compression Algorithm of File-system and CPU clock 

Factor Time (ms) 

CPU/SysBus FS type P 10 P 11 

Squashfs(zlib) 6.46 623.33 
208/208 

Squashfs(lzma) 13.46 1724.35 

Squashfs(zlib) 5.24 499.75 
520/208 

Squashfs(lzma) 8.28 906.45 

Squashfs(zlib) 6.38 577.07 
520/104 

Squashfs(lzma) 13.46 960.09 
 

 

 

 

Figure 30: Compression algorithm of Squashfs changed on PXA270 
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Figure 31: Compression algorithm of Squashfs changed on PXA270 
 

5.3.3 Others 
 

  From first instruction in the boot-loader to the end of shell prompt output, all 

the function executions need to using internal caches of processor. In these 

platforms, only on OMAP5912 it supports enable/disable the internal I-cache or 

D-cache by software configurations. So referring to Figure 32 and 33, in the 

U-boot stage only I-cache enabled would reduce the boot time of the boot-loader 

stages. In the kernel and user space stage, I-cache or D-cache enabled could 

reduce the boot time of these two stages, but D-cache affect the boot time more 

than I-cache. Both caches enabled could reduce most boot time. 
 

 
Figure 32: Caches enable/disable in the boot-loader stage 
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Figure 33: Caches enable/disable in the kernel and user space stage 
 

  According to the CPU/memory speed modification on OMAP5912, there is an 

optimization CPU/memory speed ratio for the boot time reduction. Refer to Table 

18, 19 and Figure 34, 35, the CPU/memory speed ratio kept 4:1 could lead to most 

influence of the boot time reduce. 
 

 

Table.18 CPU/Memory speed ratio on OMAP5912 

CPU/MEM Ratio P3 P4 P5 P6 P8 P9 P10 P11 P12 Total

24/24 -> 48/24 1-->2 30.4% 14.7% 20.9% 23.3% 44.2% 9.3% 18.3% 25.4% 21.6% 22.8%

48/24 -> 96/24 2-->4 19.3% 6.1% 11.9% 5.6% 34.4% 3.3% 11.1% 11.0% 12.3% 12.8%

96/24->192/24 4-->8 4.9% 0.5% 7.3% 2.5% 20.0% 1.4% 5.0% 5.5% 7.7% 5.9%

 

 

 

Table.19 CPU/Memory speed ratio on OMAP5912 

CPU/MEM Ratio P3 P4 P5 P6 P8 P9 P10 P11 P12 Total

24/24 -> 48/24 1-->2 30.4% 14.7% 20.9% 23.3% 44.2% 9.3% 18.3% 25.4% 21.6% 22.8%

24/24 -> 96/24 1-->4 43.8% 19.9% 30.3% 27.5% 63.4% 12.2% 27.4% 36.6% 31.2% 32.6%

24/24->192/24 1-->8 46.6% 20.3% 35.4% 29.4% 70.7% 13.5% 31.1% 37.2% 36.5% 36.6%
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Figure 34: CPU/Memory speed ratio on OMAP5912 
 

 

Figure 35: CPU/Memory speed ratio on OMAP5912 
 

  On PXA270 platform, kernel image uncompressed could be done by the U-boot. 

Refer to Figure 36 and 37, the z-lib uncompressed at the kernel stage is more fast 

than other uncompressed algorithm at the U-boot stage. But LZMA algorithm has 

the highest compression ratio. If the system has the storage limitation, LZMA is a 

better choice for the kernel compression algorithm. 
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Figure 36: Kernel image uncompressed time of different algorithms 
 

 

Figure 37: Compression ratio of different compression algorithms 
 

 

5.4 Analysis Results 
 

  The factors, no mater hardware or software, all have influence on some phases 

in the boot times. But at some phases some factors only have minor influence. 

With those changes can’t have many improvement of boot time reduction. So 

according to the section 5.3, there are some major factors which lead to great 

improvements at some phases. 

  The experiments are done on OMAP5912osk and PXA270 platforms. Both 

platforms have different architectures. 

OMAP5912 have great improvement in boot time when modify the CPU and 

memory clock frequency. But PXA270 only have improvement at fewer phases 

when modify the CPU and memory clock frequency. 
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  Different file-system types only major affect the phase 10, 11, and 12 of boot 

time in both platforms. When it is using kernel 2.6.15, the time phase 12 don’t 

affect by different file-system types. But kernel 2.4.20 will. Because the 

architectures are different, the higher CPU and memory clock frequency could get 

great improvement in phase 10, 11, and 12 with different file-systems type on 

OMAP5912 platform. But on PXA270 platform those two factors modifications 

don’t affect such more times of phase10, 11, and 12 when using JFFS2, Cramfs 

and Squashfs. 

  Compression algorithm could be change at both the kernel image and 

file-systems. But the kernel image with different compression algorithm only 

could be used at U-boot on PXA270 platforms. The decompression speed is very 

slow under U-boot stage. When using LZMA compression algorithm for the 

Squashfs, the times will be longer than original one using zlib. But when the 

system has the powerful processor, the Squashfs with LZMA algorithm could 

almost reach the same time as original with zlib algorithm. 

Because only OMAP5912 could switch the internal cache on/off, the results of 

experiments are that only I-cache affects the time of U-boot and both I-cache and 

D-cache affect the time of the Kernel.  

  When changing to the new version kernel and U-boot on OMAP5912 platform, 

the new version kernel need more time for boot-up and new version U-boot need 

less time for boot-up. The kernel version 2.6.15 support more features by default 

and enhance the features from old version 2.4.20. So the large size of image also 

affect the boot time of the boot-loader. The U-boot version 1.1.3 optimizes the 

initialization process of U-boot and improves the methods of verification and 

movement of kernel image. 

  Boot time is related to the system architecture, software factors, hardware 

factors and related peripherals. So according to the analysis at section 5.4.3 and 

experiments results of section 6.3, there are some conclusions of this chapter: 

OMAP5912, with Dual-core architecture, have more flexible bus architectures 

so the faster CPU and memory clock frequency could have great improvement in 

boot time. But after the frequency ratio of the CPU and the memory bus over 4:1, 

the improvement will slow down. Because of the flexible bus architectures, when 

using different type of file-systems, the modification of CPU and memory still 

could improve the boot time. Dual-core architecture also separates the peripherals 
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into two groups and this will reduce the initialization of boot time. 

PXA270, with single-core architecture, major use system bus for all 

communication between processor and peripherals. So even using higher CPU 

and memory clock frequency, the improvements are limited. When it is at the 

phase needing frequently peripherals access, the boot-up speed is bounded by the 

bus architecture. Even using powerful single-core processor, there are many 

peripherals needed to be initialized by the processor. So it needs more time for 

booting up the system. 

The kernel image configurations of these two platforms are all using the default 

configuration of the Linux kernel. But these two platforms supporting different 

peripherals and default inserted different device drivers. So the kernel 

initialization time at the kernel stage will much different of these two platforms. 

Therefore in the thesis it is more focused on the factors related to each phases. 
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Chapter 6 

CONCLUSION 

 

  More and more multimedia device are developed. The trend is using open 

source Linux kernel as system operating system. The boot time of such device are 

become longer and longer. So in this thesis we use two platforms, OMAP5912 

and PXA270, to analysis the Linux system boot time. Because Linux is not a 

real-time OS, it needs extra DSP core or one more powerful processor to handle 

many real-time applications. We choose one Dual-core platform and on powerful 

single-core platform as our experimental platforms. Then we modify the hardware 

and software factors of boot time to see which factors play a major role in the boot 

time and the relationship between hardware and software factors. 

  According to the architecture analysis and the experimental results, we found 

that Dual-core architecture has benefits to reduce the boot time of systems. 

Dual-core has more flexible bus architectures and separates the peripherals into 

two groups to reduce the initialization time of boot-up. The hardware factors 

improvements in Dual-core platform have better impact on software factors 

change. 

  According to the boot procedures analysis and experimental results, we could 

know that the boot procedures are most related to the memory device access. 

Because all hardware related assembly code, software functions and device 

drivers are needed to execute between the main processor and memory devices. 

The total boot times of the embedded Linux system are most bounded by the 

memory bus. However the platform selection is usually restricted, so how to 

achieve the boot time optimization under limited environments is more important. 

 In the thesis we point out which factor has major influence on which phase. 

When you have a different embedded Linux system for your application, but some 

factors are fixed. For example CPU frequency is not higher, memory size is 

limited, or new kernel version is chosen, we could focus on the phases which is 

major bounded by these factors, such as to lower the CPU usage, to choose the 

higher compression ratio but fast compression algorithm, or remove the unused 
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functions in the new kernel version to achieve the boot time optimization. 
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Chapter 7 

Future Work 

 

We already know some factors are the major factors of the boot times. But the 

experiments of these factors are also limited by the platforms we chosen. Except 

these factors, we’ll try to analysis the influence of the MMU supported and 

different compiler modes.  

The boot procedures should be also related to the MMU supported or not. The 

MMU supported should have the better memory utilization and easier software 

programming. But if the systems boot up phases need less memory requirements 

or not bounded by the memory, MMU supported or not should not serious affect 

the boot times. When the systems boot up need large memory requirements, the 

MMU supported should benefit the boot time of memory bounded phases. 

Using different compiler modes to supports the 32-bit ARM or 16-bit Thumb 

instruction sets, it could provide the user to trade off between high performance 

and high code density so it will also affect the boot time of the systems. It could 

reduce the code size of user application program if supporting Thumb instruction 

in the kernel. But these modifications may affect the existing software module 

execution and let special 3rd party applications unstable.  
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APPENDIX 

TIMING MEASUREMENT 

 

In the embedded system, it is difficult to measure the timing of the system operation. 

Most of features are supported by the SoC in the system, but the SoC just like a black 

box for the detail timing measurements. There are two kinds of methods to measure the 

time of embedded system operations. One method is by hardware instruments, and the 

other method is by software functions. 
 

A.1 Instruments 
 

 The latest SoC, included more and more features, is difficult to know how it work 

inside the chipset by external measurement methods. But according to the signals 

between the processor and related peripherals and the software operation flow, we could 

find the operations of system boot-up. The oscilloscope and the logic analyzer are two 

hardware instruments to measure the external signals between chipsets. 
 

A.1.1 Oscilloscope 
 

The oscilloscope is used to measure the analog signal and the transition state of 

signals. For better accuracy, the sampling rate of the oscilloscope should be four times 

the frequency of the signal or the system bus. However the oscilloscope will be 

interfered by some random glitches, so the digital signals are not measured by 

oscilloscope. 

The voltage level is the major item to decide the start point of boot time. Generally 

the voltage level would be measured by oscilloscope because the trigger point is at the 

transition state. We use Agilent DSO 54831B, which bandwidth is 600MHz and its 

sample rate is up to 4 GSa/s, to measure the first period of boot time. 

The system power-on behavior is related to measure the first period of boot time, so 

the signal pins of chipsets related to system power-on are described below and will be 

captured by oscilloscope: 

1. Vin point on the board: The voltage of system reach the minimum 
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requirement of reset circuit, then reset circuit will assert the reset signal to the 

MPU. 

2. nReset pin of MPU: After the nReset pin is de-asserted (From low to high in 

most cases), then the MPU will start to do the hardware initialization. 

3. RS232_TX pin on the board: After console portion in the MPU is initialized, 

then 1st mark will be sent out. 

The Figure 38 shows the signals of Vin, nReset, and RS232_TX captured by 

Oscilloscope 54831B. 

 

Figure 38: Power-on Sequence captured by Oscilloscope 

A.1.2 Logic Analyzer 
 

The Logic Analyzer is used for digital signals measurements. It only could detect 

logic high and low level. The transition state of signal can’t be detected by it, but it also 

can reduce the interference of random glitches. Logic Analyzer could use to measure the 

long period the timing. But the length of the time depends on the number of signals you 

measured, the sampling rate used, and the memory depth of Logic Analyzer.  

We use Tektronix TLA5202, which has 68 channels, 2GHz conventional timing rate 

and 512KB memory depth, for boot time measurement. For measuring the period of 



 58

boot time, the related signal pins captured by Logic Analyzer are described below: 

1. nReset pin of MPU: After the nReset pin is de-asserted (From low to high in 

most cases), then the MPU will start to the do hardware initialization. 

2. nRST_OUT pin of MPU: When MPU start to do hardware initialization, 

nRST_OUT to external peripherals is still asserted. After MPU initialization is 

finished, nRST_OUT is de-asserted and then MPU read 1st instruction from 

the boot device. 

3. SDRAM_CLK pin of MPU: Used for checking when SDRAM Controller is 

ready. 

4. nFlash_CSx pin of MPU: Used for checking when to access Flash. 

5. LCD_PCLK pin of MPU: Used for checking when LCD controller is ready. 

6. RS232_TX pin on the board: After console portion in the MPU is initialized, 

then console marks will be send out. Use these marks to measure the boot time 

of different boot phases. 

The Figure 39 shows the signals of the boot sequence of OMAP5912osk captured by 

Logic Analyzer TLA5202. 

 

Figure 39: Boot Sequence captured by Logic Analyzer 

 

A.2 System Functions 
 

There are many software methods to measure the boot times: Kernel Function Trace 

(KFT) [18], Printk-times [19], initcall-times, expect [20]. For the best accuracy and the 

least influence on the boot time, Printk-times and initcall-times are used for boot time 

measurement in this thesis. 

Printk-times and initcall-times only could be used for kernel stage timing 
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measurement and are not supported at Linux kernel version 2.4.xx. By modifying the 

source code to output function names or marks on console and cooperating with 

oscilloscope and logic analyzer is another method to measure the boot time. 
 

A.2.1 Printk Times 
 

Printk-times is a simple technology which adds some code to the standard kernel 

printk routine, to output timing data with each message. While a crude status, this can 

be used to get an overview of the areas of kernel initialization which take a relatively 

long time. This feature is used to identify areas of the Linux kernel requiring work. This 

feature was incorporated into the mainline Linux kernel as of version 2.6.11. Before this 

version need additional patch to support this feature in kernel. But for version 2.4.xx, 

there is no patch to support this feature in kernel at ARM based architecture. 

With Printk-times turned on, the system emits the timing data as a floating point 

number of seconds (to microsecond resolution) for the time at which the printk started. 

The utility program shows the time between calls, or it can show the times relative to a 

specific message. This makes it easier to see the timing for specific segments of kernel 

code during boot. 

For least influence on the boot time, this feature must be used dynamically. It could 

be done by putting the parameter “time” on the command line to enable it. After using 

Printk-times dynamically, we observe that not all kernel messages have the timestamp 

until the kernel commands have passed to kernel. 
 

A.2.2 initcall-times patch 
 

Matt Mackall provided an initcall-times [13] patch which measures times for the 

initialization of each driver during do_initcalls. This is a special tool to look at the time 

of initialization of buses and drivers. It times just the initcalls and is enabled by putting 

the parameter “initcall_debug” on the command line. The records of device 

initializations can be read by dmesg after boot and use grep to find time-consuming 

initializations 

 The default value of CONFIG_LOG_BUF_SHIFT is 14, so the kernel ring buffer 

size is 214B = 16 KB [16]. This is not sufficient to save all the messages with the 

additional information of initcall-times patch. The kernel ring buffer size must be 
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modified to 128 KB by setting to CONFIG_LOG_BUF_SHIFT to 17 to fit with the 

requirement of initcall-times patch. 
 

A.2.3 Time Stamp 
 

In order to measure further detailed time periods of the specific functions, modifying 

the source code to output function names or marks on console and hiding the other 

messages on the console are other methods for boot time measurement [24]. 

 Boot-loader: In the source code of U-Boot, we use puts to output U-Boot 

function names.  

 Linux Kernel: In the source code of Linux kernel, we use 

printk(KERN_EMERG “ ”) to output kernel function names. 

 User Space: In the source code of BusyBox, we use fprintf(stderr, “ ”) to output 

user space function names. 
 

A.3 Inaccuracies 
 

When we modify the source code and add some extra marks to output on console, 

there are some inaccuracies by the method. 

Additional output console messages will make boot time longer. More messages 

output on console, then more time MPU need to take to handle these processes. 

When the baud rate of console setting is 115200 bps, then 1 bit data sent by console is 

taken about 8.68 us. The logic analyzer enabling all memory depth could capture data 

about 5 sec at 10us sampling rate, about 10 sec at 20us sampling rate, and about 52sec 

at 100us sampling rate. When the boot time is taken longer, slower sampling rate will be 

used. But this will increase the inaccuracy of the sampling data. There are some 

methods to increase accuracy: 

 During the time measurement of boot time, skipping the time of output console 

message will reduce the influence of boot times. 

 When the baud rate of console setting is 9600 bps, then 1 bit data sent by 

console is taken about 104.16 us. Then we could use slower sampling rate for 

boot time measurement. But baud rate setting at 9600 bps will let output console 

messages taken long time. This boot time longer. When console print out more 

messages then boot time will become more longer. 
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 Set the trigger point of logic analyzer more flexibly. Then we could separate the 

boot time measurement into many segments. But at some situation the time 

length of one segment is still too long that using normal sampling rate couldn’t 

capture all data. 

For better accuracy of boot time measurement, we disable all extra console outputs 

and use hardware signals and least software modification to measure the boot time. 
 

 


