
國 立 交 通 大 學

電機學院 電機與控制學程

碩 士 論 文

嵌入式 Linux 系統開機程序的時間分析

A Timing Analysis of Booting Procedures on Embedded

Linux Systems

研 究 生：黃建銘

指導教授：黃育綸 博士

中 華 民 國 九 十 六 年 五 月

嵌入式 Linux 系統開機程序的時間分析

A Timing Analysis of Booting Procedures on Embedded

Linux Systems

研 究 生：黃建銘 Student：Chien-Ming Huang

指導教授：黃育綸 博士 Advisor：Dr. Yu-Lun Huang

國 立 交 通 大 學

電機學院 電機與控制學程

碩 士 論 文

A Thesis

Submitted to College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electrical and Control Engineering

May 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年五月

 i

嵌入式 Linux 系統開機程序的時間分析

學生：黃建銘 指導教授：黃育綸 博士

國 立 交 通 大 學 電 機 學 院 電 機 與 控 制 學 程 碩 士 班

摘 要

在蓬勃發展的嵌入式產品中，縮短系統開機時間往往是產業研發人員致

力解決的問題之一。在本篇論文中，我們針對於不同系統架構，雙核心與單

核心等，嵌入式 Linux 作業平台，從硬體跟軟體兩方面去分析系統開機相關

的因素，瞭解這些開機因素對開機時間的影響程度，以及互相之間的關連性。

在本論文中，選擇 TI OMAP5912 作為雙核心實驗平台、Intel PXA270 為單核

心實驗平台，針對平台的差異性，找出各種可能的軟硬體因素，設計一連串

的實驗，得到不同的開機時間，並透過數據分析，歸納出各種因素組合對此

一問題的影響程度。首先，我們先分析嵌入式 Linux 作業系統的開機流程，

將其區分為四大部分、十二階段，包括硬體初始化、開機載入程式、作業系

統核心、使用者應用程式階段等；接下來，利用硬體電路的產生訊號、軟體

核心公用程式產生的時間郵戳，加上示波器與邏輯分析儀等工具的輔助，量

測各階段所耗費的時間。然後，對兩種架構各異的硬體平台架構進行結構分

析，再搭配不同的軟硬體因素與其組合，由一系列的實驗結果、數據整合，

分析並歸納出各因素對開機時間的影響程度。本論文中系列實驗所得之結論

除了有助於開發人員選擇合適的嵌入式平台，並能提供從硬體與軟體等方面

改善開機時間的參考依據。

 ii

A Timing Analysis of Booting Procedures on
Embedded Linux Systems

Student：Chien-Ming Huang Advisors：Dr. Yu-Lun Huang

Degree Program of Electrical and Computer Engineering

National Chiao Tung University

ABSTRACT

 Shortening boot time is one of the major challenges in developing embedded

products. In this thesis, the boot times of various system architectures, including

single-core and dual-core architectures, running Embedded Linux are analyzed.

To figure out the varieties of various architectures, TI OMAP5912 and Intel

PXA270 are chose for the experimental platforms with dual-core and single-core

processor, respectively. First, the boot-up procedure is analyzed and divided into 4

stages (hardware initialization, boot-loader, kernel and user space) and 12 phases.

Secondly, the oscilloscope, logic analyzer and kernel functions are used to capture

the chipset pins and log timestamps to measure the boot time of each phase.

According to the difference concluded from the comparison of the two

experimental platforms, a series of experiments are designed based on various

combinations of the hardware and software factors. Theoretically, the

experimental results are compared, analyzed and concluded. The conclusion helps

developers in selecting the embedded platforms and improving the boot time by

hardware and software factors.

 iii

致 謝

 首先由衷感激我的指導教授 黃育綸老師，在研究生生涯裡，總是熱心而

不厭倦的指導我如何做研究；經由不斷的討論使我從千頭萬緒之中找出方

向；建議我如何將大筆雜亂無章的資料整理歸納、收為己用；其次我也非常

感謝即時嵌入式系統實驗室的同學、學弟妹們：志堅對於我的研究提供了很

多幫助；嘉良、精佑、瀞瑩、欣宜、依文、勁源、恩捷、詠文、Newlin、興

龍、立穎以及培華讓研究生生活不再枯燥乏味；也感謝我的同事蘇國榮，願

意在繁忙的工作壓力下抽空給我許多寶貴的建議與幫助。最後要感謝我親愛

的父母 黃賢忠和 黃李富美以及最親愛的老婆 林怡，感謝他們在背後不斷的

支持鼓勵我，讓我無後顧之憂的專心於研究上，僅以此論文獻給我最愛的家

人。

 iv

CONTENTS

摘 要... i

ABSTRACT .. ii

致 謝... iii

CONTENTS.. iv

List of Figures ... vi

List of Tables...viii

Chapter 1 INTRODUCTION ... - 1 -

Chapter 2 RELATED WORK.. - 3 -
2.1 Snapshot Technique for NOR Flash ..- 3 -

2.2 Kernel Execute-In-Place ...- 5 -

2.3 Linux Kernel Initialization...- 5 -

Chapter 3 MULTIMEDIA DEVICE ... - 7 -

3.1 Product Specification ..- 7 -

3.2 Platforms ..- 8 -

3.2.1 OMAP5912 ...- 8 -

3.2.2 PXA270 ...- 9 -

3.3 Comparison..- 10 -

3.4 Analysis ..- 11 -

3.4.1 Processor Architecture...- 11 -

3.4.2 Platform Architecture ..- 13 -

3.4.3 Bottlenecks ..- 14 -

Chapter 4 LINUX BOOT-UP ... - 16 -

4.1 Overview ..- 16 -

4.2 Boot Sequences ..- 17 -

4.2.1 Hardware Initialization ...- 17 -

4.2.2 Boot-loader Stage ...- 18 -

4.2.2.1 Case 1-Kernel Uncompress Image......................................- 19 -

4.2.2.2 Case 2-Boot-loader Uncompress Image- 19 -

4.2.3 Kernel Stage..- 21 -

 v

4.2.3.1 Case 1-Kernel Uncompress Image......................................- 21 -

4.2.3.2 Case 2-Boot-loader Uncompress Image- 22 -

4.2.4 User Space Stage...- 23 -

4.3 Impact Factors...- 24 -

4.3.1 Hardware Factors ..- 24 -

4.3.2 Software Factors...- 25 -

Chapter 5 EXPERIENMENTS... - 27 -

5.1 Environments...- 27 -

5.1.1 Factors of OMAP5912osk..- 27 -

5.1.2 Factors of PXA270 ...- 28 -

5.2 Factors for Boot Phase..- 29 -

5.3 Experiments Results ...- 30 -

5.3.1 OMAP5912osk..- 30 -

5.3.2 PXA270 ...- 40 -

5.3.3 Others ..- 45 -

5.4 Analysis Results ...- 48 -

Chapter 6 CONCLUSION .. - 51 -

Chapter 7 FUTURE WORK... - 53 -

REFERENCES... - 54 -

APPENDIX ... - 56 -
A.1 Instruments ...- 56 -

A.1.1 Oscilloscope..- 56 -

A.1.2 Logic Analyzer ...- 57 -

A.2 System Functions..- 58 -

A.2.1 Printk Times ..- 59 -

A.2.2 initcall-times patch ..- 59 -

A.2.3 Time Stamp ..- 60 -

A.3 Inaccuracies ..- 60 -

 vi

List of Figures

Figure 1: Snapshot Management of Snapshot Technique......................................- 4 -

Figure 2: System Boot-up Memory Map ...- 6 -

Figure 3: ARM926EJ-S block diagram..- 12 -

Figure 4: XScale block diagram..- 12 -

Figure 5: OMAP5912 block diagram ...- 13 -

Figure 6: PXA270 block diagram ...- 14 -

Figure 7: Boot Sequence main stages ...- 17 -

Figure 8: Hardware Initialization...- 18 -

Figure 9: Boot-loader stage ...- 21 -

Figure 10: Kernel stage..- 23 -

Figure 11: User Space stage...- 24 -

Figure 12: CPU Frequency modified on OMAP5912 ...- 31 -

Figure 13: Memory speed modified on OMAP5912 ...- 32 -

Figure 14: File-systems changed on OMAP5912...- 33 -

Figure 15: File-systems changed on OMAP5912...- 33 -

Figure 16: CPU Frequency modified on OMAP5912 ...- 34 -

Figure 17: Memory speed modified on OMAP5912 ...- 35 -

Figure 18: File-systems changed on OMAP5912...- 36 -

Figure 19: File-systems changed on OMAP5912...- 36 -

Figure 20: Compression algorithm of Squashfs changed on OMAP5912...........- 37 -

Figure 21: Compression algorithm of Squashfs changed on OMAP5912...........- 38 -

Figure 22: Compression algorithm of Squashfs changed on OMAP5912...........- 38 -

Figure 23: Kernel version changed on OMAP5912 ..- 39 -

Figure 24: U-boot version changed on OMAP5912 ..- 40 -

Figure 25: CPU frequency modified on PXA270 ..- 41 -

Figure 26: CPU frequency modified on PXA270 ..- 41 -

Figure 27: System bus speed modified on PXA270 ...- 42 -

Figure 28: File-systems changed on PXA270...- 43 -

Figure 29: File-systems changed on PXA270...- 43 -

Figure 30: Compression algorithm of Squashfs changed on PXA270.................- 44 -

Figure 31: Compression algorithm of Squashfs changed on PXA270.................- 45 -

 vii

Figure 32: Caches enable/disable in the boot-loader stage...................................- 45 -

Figure 33: Caches enable/disable in the kernel and user space stage- 46 -

Figure 34: CPU/Memory speed ratio on OMAP5912 ...- 47 -

Figure 35: CPU/Memory speed ratio on OMAP5912 ...- 47 -

Figure 36: Kernel image uncompressed time of different algorithms.................- 48 -

Figure 37: Compression ratio of different compression algorithms....................- 48 -

Figure 38: Power-on Sequence captured by Oscilloscope- 57 -

Figure 39: Boot Sequence captured by Logic Analyzer..- 58 -

 viii

List of Tables

Table.1 Comparison of ARM926EJ-S and XScale ..- 10 -

Table.2 Comparison of OMAP5912 and PXA270 ...- 11 -

Table.3 Compression Algorithm Test ...- 26 -

Table.4 Total boot Time Reduction with different factors modification- 29 -

Table.5 MEM: 24 / FS: JFFS2...- 31 -

Table.6 CPU: 96 / FS: JFFS2...- 31 -

Table.7 Different File-systems ...- 32 -

Table.8 MEM: 24 / FS: JFFS2...- 34 -

Table.9 CPU: 96 / FS: JFFS2...- 35 -

Table.10 Different File-systems ...- 35 -

Table.11 Compression Algorithm of File-system and CPU clock- 37 -

Table.12 U-boot: 1.1.3 / FS: JFFS2 ...- 39 -

Table.13 Kernel: 2.4.20 / FS: JFFS2 ...- 39 -

Table.14 FS: JFFS2 ..- 40 -

Table.15 CPU: 208/ FS: JFFS2..- 42 -

Table.16 File-system and CPU clock ..- 42 -

Table.17 Compression Algorithm of File-system and CPU clock- 44 -

Table.18 CPU/Memory speed ratio on OMAP5912 ..- 46 -

Table.19 CPU/Memory speed ratio on OMAP5912 ..- 46 -

 - 1 -

Chapter 1

INTRODUCTION

 With the rapid growth of the embedded computing technologies, boot time

becomes a major challenge in designing embedded systems, especially the

consumer electronics. Currently the most popular consumer electronics is the

multimedia device. There are many fancy features supported inside the

multimedia device while the boot time of the device is taken longer. For better

impression of product, the devices should be available after users turn on the

device. For example, Sony DSC-T50 [25] is a popular digital camera with 7

million pixels CCD. Its boot-up times is about 1.3sec. The newer DSC-T100 is a

digital camera with 8 million pixels CCD. Its boot-up time is about 1.5sec. But the

latest DSC-G1 with 6 million pixels CCD and extra wireless LAN module inside

take about 4.2 sec when it boots up. More features with more boot times are not

acceptable by end customer.

The findings of the methods are used for reducing the boot time but those

methods mostly focused on software side [1] [2] [3]. The relationship between

boot time, platform architecture and software will be the good reference for future

SoC design, software and product development.

 To find the relationship, we divide the boot sequence of embedded system into

12 phases [5] [6] [7] and modify some hardware and software factors [4] [8]

related to the boot times. For application specific, we choose two platforms:

OMAP5912 [9] [10] [11] and PXA270 [12] [13] [15]. To find out what kind of

processor architecture will benefit the system boot time and what factors inside

the processor will affect the boot time. The system bus architectures will also the

factors related to system boot time. The bottlenecks of different platform will be

proposed.

 After the architecture analysis, we proposed the experiments with different

factors modified. According to those experiments, the relationship between the

boot time and different kind of hardware and software factors will be proposed.

The experiments will be done at each phase of the boot sequence.

 In the reset of this thesis, we will introduce the methods of timing

 - 2 -

measurement first. Then overview of Linux boot, factors related to the boot time

and the boot sequence of embedded Linux are presented in Chapter 4. For

application specific, the analysis of different platforms and bottleneck of

architectures related to boot time are discussed in Chapter 5. After platforms and

architectures analysis, we’ll introduce the experiments designed to find the

relationship between the boot time and hardware and software factors. The

experiments are done on two platforms in Chapter 6. In Chapter 7, the conclusion,

according to the experimental results, will be proposed for platform selection and

methods for boot time reduction by hardware and software side.

 - 3 -

Chapter 2

RELATED WORK

There are many exist techniques to improve and analyze the boot procedure of

Linux. They include the technique of quick mounting the file system for flash

storage device [3], the special method to execute kernel [1] and the study of Linux

kernel initialization [16].

2.1 Snapshot Technique for NOR Flash

In embedded computing devices, flash memory has many advantages such as

light-weight, shock-resistance, and low-power consumption. There are two types

of flash memories: NOR and NAND. NOR flash is usually used for codes stored

because it supports word-unit I/O and provides faster read speed than NAND flash.

NAND flash supports only page-based I/O (e.g., 512B or 2KB) and provides

faster write speed. It is mostly used for large-scale data storage requirements.

In flash memory, write operations must be preceded by an erase operation, and

the number of erase in a block is limited. In order to hide the erase while ensuring

the wear-leveling property, the flash translation layer (FTL) [26] [27] [28] has

been developed to be able to translate the logical addresses generated by a host

system to physical addresses of flash memory. But the use of FTL is restricted by

international patents. It is known that the performance of FTL can be seriously

reduced if the host file system generates write operations frequently. Therefore,

embedded computing devices directly use flash file systems (e.g., JFFS2 [29] and

YAFFS2 [30]) which are based on a data journaling technique. Unfortunately, the

journaling technique incurs long mounting time for the flash file systems.

The technique providing an instant lookup method for the lastly stored

in-memory file system metadata is the snapshot technique. It stores snapshots to

variable-size areas managed by linked lists and sequentially record the location of

the stored snapshots to prearranged areas by using an ordered tree data structure.

In Figure 1, the first block of flash memory is reserved as a root block which

 - 4 -

stores pointers to snapshot header blocks sequentially. When running the

mount_root operation, the last stored pointer can be found quickly using

sequential or binary search algorithms. The binary searching divides the root

block into two sub-blocks and reads the boundary pointer of these sub-blocks. If

the pointer is null, the searching selects the left sub-block. Otherwise, the other

one is selected. The above procedure is repeated with the selected sub-block, until

the last stored pointer is found. Since the block size (Bsize) is typically 128KB in

NOR flash and the size of a pointer to block is 2B (Psize), this search algorithm has

a better time complexity of O(lg(Bsize / Psize)) = O(16).

Each pointer in the root block directs the corresponding header block as shown

in Figure 1. A header block contains several snapshot headers, and a snapshot

header consists of a mounting flag (M), an unmounting flag (U), and a pointer to

the snapshot data block (Pt). Since the snapshot header size (Hsize) is typically 4B,

the maximum number of snapshot headers that can be stored in a header block is

Bsize / Hsize (=215). The searching algorithms used to find the last stored

snapshot header is the same way as done by the root block. The pointer stored in

the latest snapshot header is used to access the snapshot data that were last stored.

In summary, this technique only reads lg(Bsize / Psize) x Psize + lg(Bsize / Hsize) x

Hsize (=92) bytes in an average case to fine the location of the last stored snapshot,

providing an instant lookup time.

The source code of the technique is not released, so it is difficult to verify the

performance at our experimental platforms.

Figure 1: Snapshot Management of Snapshot Technique

 - 5 -

2.2 Kernel Execute-In-Place

Execute-In-Place (XIP) allows the kernel run from flash memory directly.

Without the copy procedure, it is faster invoked, and it consumes less RAM at run

time. This saves RAM space since the text section of the kernel is not loaded from

flash to RAM. Read-write sections, such as the data section and stack, are still

copied to RAM. The flash address used to link the kernel object files, and for

storing it, is configuration dependent. Therefore, the proper physical address

where to store the kernel image depending on specific flash memory usage must

be known. XIP is consuming more flash memory storage, because XIP kernel

must be flat without any compression.

2.3 Linux Kernel Initialization

The overview of the boot process of an Intel x86-based personal computer is

how the initialization routine provided by the operating system running. Generally,

there are three stages to the booting process. When a PC is powered on, the BIOS

(Basic Input-Output System) run first followed by a boot loader and finally the

operating system initialization routine.

The BIOS is the first code executed by the processor when boot-up. When

power is initially applied to the computer this triggers the RESET pin on the

processor. This causes the processor to read from memory location 0xFFFFFFF0

and begin executing the code located there. This address is mapped to the

Read-Only Memory (ROM) containing the BIOS. The BIOS must poll the

hardware and set up an environment capable of booting the operating system.

Once the BIOS load the first sector of the boot device into RAM, the boot loader

begins execution.

After the chosen boot loaders [31] [32] has run, it loads the Linux kernel image

as shown as Figure 2, typically named vmlinuz-[version number] for a

compressed kernel image and vmlinux-[version number] for an uncompressed

image. A compressed kernel image will have the Linux boot loader, found in

 - 6 -

/arch/i386/boot/bootsect.S, located at the very beginning of the image. After the

boot loader execute the assembly code, the code runs assembly level initialization,

like reinitialize all hardware, switches CPU from real mode to protected mode,

fills the bss segment of the kernel with zeros and final jump to assembly function

startup_32(). The code runs high-level initialization till process 1 executing, and

then the Linux kernel initialization is complete.

Figure 2: System Boot-up Memory Map

 - 7 -

Chapter 3

MULTIMEDIA DEVICE

In designing embedded systems, especially the consumer electronics, the boot

time becomes a major challenge. As streaming multimedia applications become

popular in consumer devices, the multimedia device is the application for boot

time analysis.

3.1 Product Specification

There are many multimedia devices on the marked. Before making the decision

of using which platform on the product, the PRD (Product Requirement

Document) from the customer is the major reference. For the multimedia

application, there are some minimum hardware and software requirements [23]:

1. Processor Requirement: Processors are the main brain of the product. For

more and more fancy features, powerful processor is necessary. From

software point of view, ARM based processors are more popular and has

more resources. So ARM version 5TE (v5TE) architecture, which support

DSP-Enhanced instruction set, is what product needed.

2. Display Requirement: LCD supported is important for multimedia

requirement. For most popular multimedia format, we at least require

262144 colors (18-bits), 640x480 resolution of LCD module.

3. Memory Requirement: According to the LCD requirement and related

software features for multimedia device, the product’s minimum system

memory requirement is 64MB and minimum flash memory requirement is

32MB.

4. Storage Requirement: The most cost effective storage memory card, which

also have small form factor, is MMC/SDIO memory card. So MMC/SDIO

card supported is also required.

5. Networked Interfaces Requirement: For internet access or remote

multimedia display, the product needs 10 or 10/100 Ethernet port supported

or 802.11b/g WLAN supported.

 - 8 -

6. Peripheral Requirement: IrDA and USB are minimum requirements of

peripheral interfaces.

7. Operating System and Other Software Feature Requirements: OS could

be Linux. Other software features are not mainly related to the boot time

analysis, so the features are not listed here.

3.2 Platforms

According to the product specification of multimedia device, there are two

kinds of platform for our selection. One platform is the dual-core architecture.

One main processor is used for normal computing and another DSP core is

specially handle the multimedia data computing. The other platform is the

single-core architecture. It has one powerful processor to handle all data

computing and by software codec with strong computing power to handle the

multimedia data.

According to the two kinds of the platforms, we select two platforms, which

meet the minimum requirement of multimedia device, for boot time analysis. One

is TI OMAP5912, and the other one is Intel PXA270. The platform specifications

of the related evaluation boards are described below:

3.2.1 OMAP5912

 Board

– TI OMAP5912osk (OMAP Starter Kit) is a highly integrated evaluation

board, designed to meet the application processing needs of

next-generation embedded devices. The dual-core architecture of the

OMAP5912 provides benefits of both DSP and reduced instruction set

computer (RISC) technologies. It is incorporating a TMS320C55x DSP

core and a high-performance ARM926EJ-S ARM core. There are rich

peripherals reserved on the boards which could meet the requirements

of different products.

 Processor

– The DSP core of the OMAP5912 device is based on the TMS320C55x

DSP generation CPU processor core. The C55x DSP architecture achieves

 - 9 -

high performance and low power through increased parallelism and total

focus on reduction in power dissipation. The CPU supports an internal bus

structure composed of one program bus, three data read buses, two data

write buses, and additional buses dedicated to peripheral and DMA

activity. These buses provide the ability to perform up to three data reads

and two data writes in a single cycle. In parallel, the DMA controller can

perform up to two data transfers per cycle independent of the CPU

activity.

– The ARM926EJ-S processor is a member of the ARM9 family of

general-purpose microprocessors. The ARM926EJ-S processor is targeted

at multi-tasking applications where full memory management, high

performance, low die size, and low power are all important. The

ARM926EJ-S processor supports the 32-bit ARM and 16-bit Thumb

instruction sets, so it provides the user to trade off between high

performance and high code density. ARM926EJ-S processor implements

ARM architecture version 5TEJ.

3.2.2 PXA270

 Board

– The MT Creator PXA270 is a highly integrated evaluation board. It

includes the integrated system-on-a-chip microprocessor for high

performance, dynamic, low-power portable handheld and hand-set

devices as well as embedded platforms. The processor incorporates the

Intel XScale technology. The processor also provides Intel Wireless

MMX media enhancement technology, which supports integer

instructions to accelerate audio and video processing. In addition, it

incorporates Wireless Intel Speedstep Technology, which provides

sophisticated power management capabilities enabling excellent

MIPs/mW performance. There are also rich peripherals reserved on the

boards which could meet the requirements of different products.

 Processor

– The Intel XScale core is an ARM V5TE compliant microprocessor. It

has been designed for high performance and low-power; leading the

 - 10 -

industry in mW/MIPs. The core is not intended to be delivered as a

stand alone product but as a building block for an ASSP (Application

Specific Standard Product) with embedded markets such as handheld

devices, networking, storage, remote access servers, etc.

3.3 Comparison

According to the device specifications of OMAP5912 and PXA270, there are

some comparisons of device specification in Table 2 and Table 3.

In Table 1, both processors are all ARM version 5TE (v5TE) architecture

compliant. XScale has large size cache, 7 stage pipeline and higher processor

frequency.

In Table 2, OMAP5912 has additional DSP core for multimedia data, but

PXA270 supports Intel Wireless MMX for additional media instructions.

OMAP5912 support hardware accelerators for cryptographic and PXA270 use

software features to handle. Both platforms support minimum memory

requirements (32MB flash and 64MB SDRAM). Although OMAP5912 use 16-bit

memory bus, but it supports Mobile DDR RAM, which sampling the data at rising

and falling edge of memory clock then it gets the 16-bit data twice per clock cycle.

Other peripherals of both are all meet the requirements of product specification of

multimedia device. The difference on network interface is OMAP5912 supported

10Mbps and PXA270 supported 10/100Mbps.

Table.1 Comparison of ARM926EJ-S and XScale

 ARM926EJ-S Core XScale Core

ISA ARM V5TEJ ARM V5TE

Pipeline 5 stage pipeline 7 stage pipeline

16 KB i-cache 32 KB i-cache
Cache

8 KB d-cache 32 KB d-cache

Clock/Freq. Max. 192 MHz Max. 520 MHz

 - 11 -

Table.2 Comparison of OMAP5912 and PXA270

 TI OMAP5912 Intel PXA270

Multimedia TMS320C55x DSP Core Intel Wireless MMX

16-bit Mobile DDR SDRAM

(max. 64MB)

32-bit SDRAM

(max. 1GB) Memory

16-bit Flash (max. 256MB) 16-bit Flash (max. 384MB)

USB 1.1 Client USB 1.1 Client
USB

USB 1.1 Host USB 1.1 Host

UART
3 UART

(2 SIR IrDA)

3 UART

(FIR and SIR IrDA)

LCD 16-/18bit LCD Controller 18-bit LCD Controller

Card Slot SD/MMC SD/MMC/MS

Keypad Keypad I/F Keypad I/F

LAN 10 Mbps 10/100 Mbps

3.4 Analysis

3.4.1 Processor Architecture

Refer to Figure 3 [22] and Figure 4 [15], ARM926EJ-S Core is the 5-stage

pipeline architecture, and XScale Core is the 7-stage super-pipeline architecture.

So XScale Core has the better performance. XScale Core also has larger cache

size and higher clock frequency. So doing the comparison from the processor

architecture, XScale Core has the better performance than ARM926EJ-S.

 - 12 -

Figure 3: ARM926EJ-S block diagram

Figure 4: XScale block diagram

 - 13 -

3.4.2 Platform Architecture

OMAP5912 is the dual-core architecture, so there is the multi-level bus

architecture. According to the block diagram of OMAP5912 on Figure 5, there are

many different buses: MPU bus, DSP bus, DMA bus, MPU public/private

peripheral bus and DSP public/private peripheral bus. This architecture could get

the better performance when each subsystem access different components. A

multi-level bus architecture could reduce the resource conflict and interference

when access the same bus.

Figure 5:OMAP5912 block diagram

PXA270 is the single-core architecture, so its bus architecture is simpler than

OMAP5912. From Figure 6, it has system bus and peripheral bus. There are six

clients on system bus: the core, the DMA controller, the LCD controller, the USB

host controller, and the two memory controllers (internal and external). Most of

all peripherals are on peripheral bus connected to the DMA controller. Even it

 - 14 -

support programmable weight on system bus arbitration, the single bus is still the

bottleneck of the architecture.

PXA270’s memory controller could be use to connect external ASIC. When

ASIC and PXA270 have busy communication, it will affect the performance of

memory controller portion.

Figure 6: PXA270 block diagram

3.4.3 Bottlenecks

From boot time point of view, we would like to analysis which portion will be

the bottleneck of each platform.

OMAP5912 has more flexible bus architecture, but the relationship between TC

(Traffic Controller) clock and MPU clock, and Flash clock and TC clock will be

the bottleneck of boot time. Max. TC clock is half of max. MPU clock so max. TC

clock is 96 MHz. But max. MPU clock is 192MHz. Max. flash clock is 48MHz

and it is always 1/6 of TC clock. MPU TIPB (TI peripheral bus) (public and

 - 15 -

private) also has max strobe freq., 48MHz.

PXA270 use one system bus for many subsystems. So the system bus will be

bottleneck. It also will be the bottleneck on peripheral bus. There are too many

peripherals connected to peripheral bus, and these peripherals take more time

when doing hardware initialization. Its memory controller also uses to connect to

external ASIC. This will be the bottleneck of memory access when the external

ASIC and PXA270 have busy communication.

 - 16 -

Chapter 4

LINUX BOOT-UP

A computer system is a complex machine [16], and the operating system is an

elaborate tool that orchestrates hardware complexities to show a simple and

standardized environment to the end user.

Currently Linux is the most popular operating system because of its open

source policy. For embedded systems, Embedded Linux is the cost effective

operating system which refers to the open source Linux. We’ll introduce the

normal Linux boot-up steps on PC and embedded systems, then boot factors and

boot sequence of Embedded Linux will be discussed.

4.1 Overview

The PC is more widespread use than other platforms so Linux boot-up steps on

the x86 PC will be introduced first. In order to be able to use the computer when

the power is turned on, the processor begins execution from the system's firmware.

It is called the Basic Input-Output System (BIOS). BIOS functionalities are

Power-on Self Test (POST), system configuration set-up and execution code from

boot device. Then boot-loader located at boot device is loaded by BIOS services.

The boot-loader’s major features are basic hardware initializations,

uncompression/execution of the kernel image. After boot-loader transfer control to

kernel [17], kernel will do the whole system initializations and then execute the

user space program from the file-systems. Then system is ready for user.

The embedded system is always resource constrained. There is no any BIOS on

the embedded system. The BIOS is substituted by power-on strapped pins or

internal boot ROM of the processor. Because the storage and memory are also

limited, the boot-loader, kernel subsystems, file-system are modified to suit for

embedded systems. The Linux boot-up steps on the embedded systems are from

boot-loader execution, to kernel image copied to ram, uncompressed then

execution and finally load program from root file-systems at user space.

 - 17 -

4.2 Boot Sequences

The boot sequence could be divided into four stages: Hardware Initialization,

Boot-loader, Kernel and User Space (Figure 7). For more detail analysis, each

stage could be subdivided into more phases:

Figure 7: Boot Sequence main stages

4.2.1 Hardware Initialization

 There are two phases in the hardware initialization stages (Figure 8):

 Phase 1: The time for the MPU reset

 - 18 -

It is measured from Power-On (Vin stable) to signal MPU_Reset

de-asserted.

From the Vin becoming stable (MPU_nReset low) to the signal MPU_nReset

becoming high. When the power input of the MPU is stable, oscillator input of

MPU is also stable then MPU exit reset mode.

 Phase 2: The time for the MPU initialization and the Peripheral reset

It is measured from signal MPU_Reset de-asserted to signal

MPU_RST_OUT de-asserted.

From the signal MPU_nReset becoming high to the signal MPU_nRST_OUT

becoming high. MPU exit reset mode then doing simple hardware configuration

by reading power-on strap-pins or reading internal boot ROM. After finishing

the configuration, then the nRST_OUT signal to other peripherals is de-asserted.

MPU read the 1st instruction.

Figure 8: Hardware Initialization

4.2.2 Boot-loader Stage

There are four or five phases in the boot-loader stages (Figure 9). When the

kernel image is uncompressed at kernel stage, there are only four phases. When

 - 19 -

the kernel image is uncompressed by the boot-loader, there are five phases in the

boot-loader stage:

 Phase 3:

It is measured from the signal MPU_RST_OUT de-asserted to function

env_relocate_spec() finished.

From the signal MPU_RST_OUT becoming high and to the last signal of

Flash_CS for function env_relocate_spec() finished (the last signal Flash_CS rising

edge before env_relocate_spec() finished). MPU read the 1st instruction to do simple

hardware initialization then U-boot starts and prepares to execute the first

function which access flash. Then the environment parameters of U-boot are

relocated.

 Phase 4:

It is measured after the function env_relocate_spec() finished and before the

kernel image checksum verify starting.

 Phase 5:

It is measured from the kernel image checksum verify starting to copy

image to ram finished.

From the signal RS232_TX of function image checksum verify start to the

signal RS232_TX of function copy image to ram over. U-boot verifies the

checksum of kernel image. If the checksum is correct, then U-boot copies the

kernel image from the flash to system memory.

4.2.2.1 Case 1-Kernel Uncompress Image

 Phase 6:

It is measured from copy image to ram finished to the function

cleanup_before_linux() finished.

From the signal RS232_TX of function copy image to ram over to the signal

RS232_TX of function cleanup_before_linux() finished. Boot-loader transfers the

control of system to Linux kernel.

4.2.2.2 Case 2-Boot-loader Uncompress Image

 - 20 -

 Phase 6’:

It is measured from copy image to ram finished to uncompress kernel

image finished.

From the signal RS232_TX of function copy image to ram over to the signal

RS232_TX of uncompress kernel image finished. Boot-loader uncompress the

kernel image.

 Phase 7’:

It is measured from uncompress kernel image finished to the function

cleanup_before_linux() finished.

From the signal RS232_TX of uncompress kernel image finished to the signal

RS232_TX of function cleanup_before_linux() finished. Boot-loader transfers the

control of system to uncompressed Linux kernel.

 - 21 -

Figure 9: Boot-loader stage

4.2.3 Kernel Stage

There are three or four phases in the kernel stages (Figure 10). When the kernel

image is uncompressed at boot-loader stage, there are only three phases. When the

kernel image is uncompressed at the kernel stage, there are four phases in the

kernel stage:

4.2.3.1 Case 1-Kernel Uncompress Image

 - 22 -

 Phase 7:

It is measured from the function cleanup_before _linux() finished to before the

uncompress kernel starting.

From the signal RS232_TX of function cleanup_ before_linux() finished to the

signal RS232_TX of function Uncompress kernel start. Linux kernel gets the

controls and prepares to uncompress kernel.

 Phase 8:

It is measured from the uncompress kernel starting to the uncompress

kernel finished.

From the signal RS232_TX of function Uncompress kernel start to the signal

RS232_TX of function Uncompress kernel over. Linux kernel image is

uncompressed and prepare to start the kernel.

4.2.3.2 Case 2-Boot-loader Uncompress Image

 Phase 8’:

It is measured from the function cleanup_before _linux() finished to before

start_kernel.

From the signal RS232_TX of function cleanup_ before_linux() finished to before

start_kernel. Linux kernel gets the controls and prepares to start the kernel.

 Phase 9:

It is measured from the uncompress kernel finished to before file-system

initialization/built.

From the signal RS232_TX of function Uncompress kernel over to the signal

RS232_TX of function File-system built/fill super start. Linux kernel

uncompress and execute routine start_kernel, Linux kernel doesn’t access the

flash until the routine mount_root.

 Phase 10:

It is measured from before file-system initialization/built to before Invoke

/sbin/init.

From the signal RS232_TX of function File-system built/fill super start to the

 - 23 -

signal RS232_TX of function File-system built/fill super over. Root File-system

is built by kernel.

Figure 10: Kernel stage

4.2.4 User Space Stage

 There are two phases in the user space stages (Figure 11):

 Phase 11:

It is measured from Invoke /sbin/init to before RC script start.

From the signal RS232_TX of function Invoke init to the signal RS232_TX

of function RC Script start. Linux kernel invokes the sysvinit tool: /sbin/init

then init_main started for user space and prepares to run RC Script.

 - 24 -

 Phase 12:

It is measured from RC script start to shell prompt output finished.

From the signal RS232_TX of function RC Script start to RC Script starts

several daemons. Then RC Script is finished and shell prompt is enabled.

Figure 11: User Space stage

4.3 Impact Factors

In this thesis we would like to investigate the Embedded Linux boot process

and find the related factors of reducing boot time. According to the platforms

comparison and Linux boot procedure analysis , we induce that both hardware

factors, including processor frequency, memory and I/O access speed, and

software factors, including OS kernel, drivers, subsystems selection and

compression algorithms, would affect the boot time. The major factors are as

following:

4.3.1 Hardware Factors

 - 25 -

1. Processor frequency: During boot process, there are greatly computing

power requirements and complexity instruction operations. So faster

processor frequency will help on the reduction of the boot time.

2. Internal cache: Increase the cache size will help on instruction operations in

the processor. Different kinds of internal cache will help on different

instruction operations.

3. I/O access speed: With more peripherals, faster I/O access speed will reduce

the peripherals initialization times.

4. Memory access speed: During boot process, there are huge mount of data

access requirements. There will be more reduction of boot time when faster

memory access speed is adopted.

5. Board specific hardware: Some board specific hardware will affect the

boot time. For example: reset timing requirements of different processors,

reset circuit design. If there are many peripherals supported by the processor,

then the initialization time of processor will be taken longer.

4.3.2 Software Factors

1. Boot-loaders: Different versions of U-boot have the different CFI drivers,

different coding structure and different features support. The difference will

affect the code size, flash access speed, and then will affect the boot time.

2. File-systems: There are two type file-systems for NOR flash: Read/Write

and Read Only. The different type of file-systems takes different

initialization times and built times.

3. Compression algorithms: Embedded systems are usually memory

constrained. How to improve and reduced memory usage is more important

for embedded system designer. Data compression [18] is the major method

to reduce the flash memory usage. There are many compression techniques

and which one has best compression ratio and fast decompression speed is

what system needed. We will have some short review of following

compression method: Gzip, Bzip2, LZMA. Then we have these algorithms

test results in Table 1. The experimental environment is on the PC.

 Gzip: Gzip is short for GNU zip, a GNU free software file compression

program. It is the most popular compression method of linux. It is not

 - 26 -

the best compressor, but it has the faster decompressed speed. Linux

kernel, file-system, and most application support this compressor in

default.

 Bzip2: Bzip2 compresses most files more effectively than gzip, but it is

slower. It is also support by Linux kernel. But it need more memory

when decompress the data. For most embedded linux don’t support in

default.

 LZMA: LZMA provides high compression ratio and very fast

decompression, so it is very suitable for embedded applications. Its

compression ratio is higher than bzip2 and much higher than gzip but its

decompression speed is only higher than bzip2. Many cost-sensitive

embedded systems would use LZMA.

Table.3 Compression Algorithm Test

 C
om

pression

R
atio (%

)

O
riginal

Size (kB
)

R
educe

Size (kB
)

D
ecom

pression

Tim
e (m

s)

63.59% 117460 74694 5586 GZIP

(-9) 52.96% 1902 1007 61

70.84% 117460 83210 24854 Bzip2

(--best) 56.33% 1902 1071 354

84.69% 117460 99473 8826 LZMA

(-7) 64.66% 1902 1230 193

4. Kernel version: There are two versions of Linux kernel: 2.4.xx and 2.6.xx.

The image size changed from 2.4 to 2.6 is increased. There are many new

features supported in version 2.6.xx.

 - 27 -

Chapter 5

EXPERIENMENTS

In this chapter we discuss the experimental environments and how to design the

experiments for boot time analysis. Then the experimental results of each boot

phase are provided. At the end of this chapter is the analysis of the experimental

results.

5.1 Environments

 The two platforms are used for the experiments. One is OMAP5912osk and

the other one is MT Creator PXA270. Because some factors of the boot time are

platform related, the factors of each platform are described below:

5.1.1 Factors of OMAP5912osk

In OMAP5912osk platform, according to the design of chipset and software

supporting, the factors could be modified for boot time experiments are:

 Hardware factor

– CPU clock frequency: the range we used is 24, 48, 96, 192 MHz. The

maximum frequency is 192 MHz.

– Memory bus clock frequency: the range we used is 24, and 96MHz. Because

the chipset limitation, the maximum frequency is 96 MHz. The flash access

speed is fixed to 1/8 of memory clock frequency.

– Peripheral and LCD clock frequency: the range we used is 24, and 48MHz.

Because the chipset limitation, the maximum frequency is 48 MHz.

– Cache on/off: the internal I-cache and D-cache of OMAP5912 could be turn

on/off by software.

 Software factor

– Boot-loader: U-boot 1.1.1 and U-boot 1.1.3 could be used on

OMAP5912osk. Version 1.1.1 only could be used for kernel version 2.4.xx

and Version 1.1.3 could be used for kernel version 2.6.xx.

 - 28 -

– Kernel: Linux kernel version 2.4.20 and 2.6.15 are used for boot time

analysis.

– File-system: The file-systems used for root-fs of Linux are JFFS2, Cramfs

and Squashfs. JFFS2 is Read/Write file-system. Cramfs and Squashfs are

Read only file-system.

– Compression algorithm: Zlib and LZMA are different compression methods

used for Squashfs. But LZMA for Squashfs are only supported in the kernel

2.6.xx.

5.1.2 Factors of PXA270

In PXA270 platform, according to the design of chipset and software

supporting, the factors could be modified for boot time experiments are:

 Hardware factor

– CPU clock frequency: the range we used is 52, 104, 156, 208… and 520

MHz. The maximum frequency is 520 MHz.

– System bus clock frequency: the range we used is 52, 104 and 208MHz.

Because the chipset limitation, the maximum frequency is 208 MHz.

– Memory clock frequency: the range we used is 52, and 104MHz. The

memory access speed is fixed to 1/1 or 1/2 of system bus clock frequency.

– Peripheral and LCD clock frequency: the range we used is 26, and 104MHz.

Because the chipset limitation, the maximum frequency is 104 MHz.

 Software factor

– Boot-loader: U-boot 1.1.2 and U-boot 1.1.3 could be used on PXA270.

– Kernel: Linux kernel version 2.6.15 is used for boot time analysis.

– File-system: The file-systems used for root-fs of Linux are JFFS2, Cramfs

and Squashfs. JFFS2 is Read/Write file-system. Cramfs and Squashfs are

Read only file-system.

– Compression algorithm: Zlib and LZMA are different compression methods

used for Squashfs. But LZMA for Squashfs are only supported in the kernel

2.6.xx. Zlib, Bzip2 and LZMA could be used for kernel image compressed

and de-compressed by U-boot.

 - 29 -

5.2 Factors for Boot Phase

 According to the Table 4, we know different factors changed could lead to

obvious boot time changed. But more important is how these factors change affect

the time of each phase.

Table.4 Total boot Time Reduction with different factors modification

 OMAP5912 PXA270

Factors Boot time (ms) Boot time (ms)

CPU Frequency
24/96

(MHz) 43000/28967
52/208
(MHz) 24981/18630

Memory Speed
24/96

(MHz) 28886/10567
52/208
(MHz) 18630/13000

RW FS/RO FS 10567/5475 13000/9017

Zlib/LZMA 5475/8015 9017/10141

 According to the view of chapter 3 and analysis of chapter 4, the factors for

each phase of boot time on both platforms could be assumed below:

 Phase 1: The time for the MPU reset. It is related to the chipset reset time

requirement and related hardware reset circuit design on each platform.

 Phase 2: The time for the MPU to reset boot device and peripherals. It is only

related to chipset specification. How long reset signal will be asserted by the

reset_out pin of MPU.

 Phase 3: The time for U-boot doing simple hardware initialization and

environments parameters relocated. It is related to MPU clock frequency,

memory clock frequency, internal cache on/off and boot-loader version.

 Phase 4: It is related to the memory clock frequency and internal cache on/off.

 Phase 5: It is related to the MPU clock frequency, memory clock frequency,

internal-cache on/off, boot-loader version, kernel version, which file-system is

supported and which compression algorithm is used.

 Phase 6: It is related to memory clock frequency and internal cache on/off.

 Phase 7: It is only related to memory clock frequency

 Phase 8: It is related to the MPU clock frequency, memory clock frequency,

kernel version, which file-system is supported and which compression algorithm

 - 30 -

is used.

 Phase 6’: In PXA270 platform, if the kernel will be decompressed by U-boot,

then it is related to MPU clock frequency, memory clock frequency, which

file-system is supported and which compression algorithm is used.

 Phase 7’: In PXA270 platform, if the kernel will be decompressed by U-boot,

then it is only related to memory clock frequency.

 Phase 8’: In PXA270 platform, if the kernel will be decompressed by U-boot,

then it is only related to system bus clock frequency.

 Phase 9: It is related to system bus/memory clock frequency, internal cache

on/off and kernel version.

 Phase 10: It is related to the MPU clock frequency, system bus/memory clock

frequency, internal-cache on/off, kernel version, which file-system is supported

and which compression algorithm is used.

 Phase 11: It is related to the MPU clock frequency, memory clock frequency,

internal-cache on/off, kernel version, which file-system is supported and which

compression algorithm is used.

 Phase 12: It is related to the MPU clock frequency, memory clock frequency,

internal-cache on/off, kernel version, which file-system is supported and which

compression algorithm is used.

5.3 Experiments Results

According to the factors in 5.1, there are many experiments done by different

factors modifications. According to the experiments, the major factors related to

boot time of each platform is as following:

5.3.1 OMAP5912osk

 Firstly the experiments are done under the environment of U-boot 1.1.1 and

Kernel 2.4.20.

Refer to Table 5 and Figure 12, time period of phase 3, 5, 8, 10, 11, and 12 are

become much shorter with higher CPU clock frequency. These phases need more

computing power than other phases.

 - 31 -

Table.5 MEM: 24 / FS: JFFS2

Factor Time (ms)

CPU Freq. P 3 P 5 P 8

96 297.14 2208.49 1802.29

24 487.03 2976.77 4741.45

CPU Freq. P 10 P 11 P 12

96 696.26 2262.68 461.62

24 1304.75 5602.75 1155.35

Figure 12: CPU Frequency modified on OMAP5912

Refer to Table 6 and Figure 13, time period of phase 3, 4, 5, 6, 7, 8, 9, 10, 11,

and 12 are all became much shorter with higher memory clock frequency. Except

the phase 1 and 2 are related to board specific hardware, the other phases are

related to functions execution. So increasing the memory clock frequency could

decrease the time of those phases.

Table.6 CPU: 96 / FS: JFFS2

Factor Time (ms)

MEM P 3 P 4 P 5 P 6 P 7

96 123.66 94.43 744.34 3.26 12.59

24 297.15 300.4 2208.79 9.81 50.15

 - 32 -

MEM P 8 P 9 P 10 P 11 P 12

96 1188.9 462.65 220.95 895.01 180.18

24 1802.16 742.72 696.2 2274.66 461.7

Figure 13: Memory speed modified on OMAP5912

Refer to Table 7 and Figure 14 and 15, time period of phase 10, 11, and 12 are

much shorter when change from JFFS2 to Cramfs and Squashfs. The initialization

and built time of Read only file-system is much fast than the time of Read/Write

file-system. The memory clock frequency has much more influence than CPU

clock frequency. Because initialization and built of file-system need to access

memory bus more frequently.

Table.7 Different File-systems

Factor Time (ms)

CPU/MEM FS type P 10 P 11 P 12

JFFS2 220.99 895.06 180.27

Cramfs 9.43 630.83 167.92 96/96

Squashfs 7.3 661.98 79.34

JFFS2 696.2 2274.66 461.7

Cramfs 32.52 1621.2 432.48
96/24

Squashfs 24.28 1836.34 217.62

 - 33 -

Figure 14: File-systems changed on OMAP5912

Figure 15: File-systems changed on OMAP5912

 - 34 -

Secondly the experiments are done under the environment of U-boot 1.1.3 and

Kernel 2.6.15.

Refer to Table 8 and Figure 16, time period of phase 3, 5, 8, 10, 11, and 12 are

become much shorter with higher CPU clock frequency. These phases need more

computing power than other phases.

Table.8 MEM: 24 / FS: JFFS2

Factor Time (ms)

CPU Freq. P 3 P 5 P 8

96 243.01 2650.52 2745

24 432.64 3803.02 7500.4

CPU Freq. P 10 P 11 P 12

96 13137.3 3853.2 304.2

24 18105.4 5799.9 442.4

Figure 16: CPU Frequency modified on OMAP5912

Refer to Table 9 and Figure 17, time period of phase 3, 4, 5, 6, 7, 8, 9, 10, 11,

and 12 are all become much shorter with higher memory clock frequency. Except

the phase 1 and 2 are related to board specific hardware, the other phases are

related to functions execution. So increasing the memory clock frequency could

decrease the time of those phases.

 - 35 -

Table.9 CPU: 96 / FS: JFFS2

Factor Time (ms)

MEM P 3 P 4 P 5 P 6 P 7

96 110.12 94.13 950.82 3.26 11.33

24 243 299.59 2650.4 9.84 44.98

MEM P 8 P 9 P 10 P 11 P 12

96 1878.35 1654.19 4458.2 1280.1 91.3

24 2686.5 5644.3 13138 3851.9 304.6

Figure 17: Memory speed modified on OMAP5912

Refer to Table 10 and Figure 18 and 19, time period of phase 10 and 11 are

much shorter when change from JFFS2 to Cramfs and Squashfs. The initialization

and built time of Read only file-system is much fast than the time of Read/Write

file-system. The memory clock frequency has much more influence than CPU

clock frequency. Because initialization and built of file-system need to access

memory bus more frequently.

Table.10 Different File-systems

Factor Time (ms)

CPU/MEM FS type P 10 P 11

JFFS2 4457.3 1280.45

Cramfs 12.4 863.8 96/96

Squashfs 10.17 737.86

 - 36 -

JFFS2 13137.9 3851.9

Cramfs 48.8 2866.6
96/24

Squashfs 41.95 2374.15

Figure 18: File-systems changed on OMAP5912

Figure 19: File-systems changed on OMAP5912

 - 37 -

Refer to Table 11 and Figure 20, 21 and 22, time period of phase 10 and 11 are

much longer when changes compression algorithm of Squashfs from zlib to lzma.

But with more fast CPU clock and memory clock frequency, the time would

become shorter.

Table.11 Compression Algorithm of File-system and CPU clock

Factor Time (ms)

CPU/MEM FS type P 10 P 11

Squashfs(zlib) 10.17 737.86
96/96

Squashfs(lzma) 24.01 3242.1

Squashfs(zlib) 41.95 2374.2
96/24

Squashfs(lzma) 63.55 4545.4

Squashfs(zlib) 7.9 516.91
196/96

Squashfs(lzma) 15.63 1752.37

Figure 20: Compression algorithm of Squashfs changed on OMAP5912

 - 38 -

Figure 21: Compression algorithm of Squashfs changed on OMAP5912

Figure 22: Compression algorithm of Squashfs changed on OMAP5912

 The effects of different version of U-boot and kernel are list in Table 12, Figure

23 and Table 13, Figure 24.

 Refer to Table 12, the new version of Linux kernel need more time at phase 5, 8,

9, 10, and 11. The version 2.6.xx support more new features than 2.4.xx. Even the

same application is also changed to new revision. So kernel image size will much

 - 39 -

bigger than 2.4.xx. Then the time of kernel decompression take much longer. New

driver support, or more features of device s initialization also take more time. But

at phase 12 2.6.xx kernel take shorter time to run the same RC script and enable

the same shell than 2.4.xx kernel.

Table.12 U-boot: 1.1.3 / FS: JFFS2

Factor Time (ms)

CPU/MEM Kernel P 5 P 8 P 9

2.4.20 632.71 1188.89 462.61
96/96

2.6.15 950.82 1878.35 1654.19

CPU/MEM Kernel P 10 P 11 P 12

2.4.20 187.78 838.47 175.85
96/96

2.6.15 4458.19 1280.05 91.3

Figure 23: Kernel version changed on OMAP5912

Refer to Table 13, the new version of U-boot shorten the time of phase 3, 5, and

10. The version 1.1.3 optimization the initialization of U-boot and improve the

image verification and movement methods.

Table.13 Kernel: 2.4.20 / FS: JFFS2

Factor Time (ms)

CPU/MEM U-boot P 3 P 5 P 10

1.1.1 124.56 744.32 220.99
96/96

1.1.3 110.93 632.64 187.62

 - 40 -

1.1.1 90.8 612.08 176.36
192/96

1.1.3 77.22 500.57 141.86

Figure 24: U-boot version changed on OMAP5912

5.3.2 PXA270

In the PXA270 platform, the experiments are done under the environment of

U-boot 1.1.3 and Kernel 2.6.15.

Refer to Table 14 and Figure 25 and 26, time period of phase 8, and 11 are

become much shorter with higher CPU clock frequency. These phases need more

computing power than other phases.

Table.14 FS: JFFS2

Factor Time (ms)

SysBus/MEM CPU Freq. P 8 P 11

520 673.20 524.70
208/104

208 1324.75 779.85

208 1600.4 1288.1
52/52

52 4879.9 2578.75

 - 41 -

Figure 25: CPU frequency modified on PXA270

Figure 26: CPU frequency modified on PXA270

 - 42 -

Refer to Table 15 and Figure 27, time period of phase 9, 10, 11, and 12 are all

become much shorter with higher memory clock frequency. Although most phases

need frequently memory access, only these phases have much improvement by

higher system bus clock frequency.

Table.15 CPU: 208/ FS: JFFS2

Factor Time (ms)

SysBus./Mem P 9 P 10 P 11 P 12

208/104 1980.6 3736.25 779.85 115.95

52/52 2710.75 7802.05 1288.1 163.2

Figure 27: System bus speed modified on PXA270

Refer to Table 16 and Figure 28 and 29; time period of phase 10 is much shorter

when changing from JFFS2 to Cramfs and Squashfs. The initialization and built

time of Read only file-system is much fast than the time of Read/Write file-system.

The CPU and memory clock frequency have only few influence on phase 10 with

different file-system type.

Table.16 File-system and CPU clock

Factor Time (ms)

CPU/SysBus FS type P 10

JFFS2 3736.25
Cramfs 16.78 208/208

Squashfs 6.46

 - 43 -

JFFS2 3618.55
Cramfs 15.6 520/208

Squashfs 5.24

JFFS2 3836.05
Cramfs 17.54 520/104

Squashfs 6.38

Figure 28: File-systems changed on PXA270

Figure 29: File-systems changed on PXA270

 - 44 -

Refer to Table 17 and Figure 30 and 31, time period of phase 10 and 11 are

much longer when changes compression algorithm of Squashfs from zlib to lzma.

But with more fast CPU clock and memory clock frequency, the time would

become much shorter. Fast CPU clock frequency will let LZMA algorithm more

faster and more similar to zlib and Cramfs.

Table.17 Compression Algorithm of File-system and CPU clock

Factor Time (ms)

CPU/SysBus FS type P 10 P 11

Squashfs(zlib) 6.46 623.33
208/208

Squashfs(lzma) 13.46 1724.35

Squashfs(zlib) 5.24 499.75
520/208

Squashfs(lzma) 8.28 906.45

Squashfs(zlib) 6.38 577.07
520/104

Squashfs(lzma) 13.46 960.09

Figure 30: Compression algorithm of Squashfs changed on PXA270

 - 45 -

Figure 31: Compression algorithm of Squashfs changed on PXA270

5.3.3 Others

 From first instruction in the boot-loader to the end of shell prompt output, all

the function executions need to using internal caches of processor. In these

platforms, only on OMAP5912 it supports enable/disable the internal I-cache or

D-cache by software configurations. So referring to Figure 32 and 33, in the

U-boot stage only I-cache enabled would reduce the boot time of the boot-loader

stages. In the kernel and user space stage, I-cache or D-cache enabled could

reduce the boot time of these two stages, but D-cache affect the boot time more

than I-cache. Both caches enabled could reduce most boot time.

Figure 32: Caches enable/disable in the boot-loader stage

 - 46 -

Figure 33: Caches enable/disable in the kernel and user space stage

 According to the CPU/memory speed modification on OMAP5912, there is an

optimization CPU/memory speed ratio for the boot time reduction. Refer to Table

18, 19 and Figure 34, 35, the CPU/memory speed ratio kept 4:1 could lead to most

influence of the boot time reduce.

Table.18 CPU/Memory speed ratio on OMAP5912

CPU/MEM Ratio P3 P4 P5 P6 P8 P9 P10 P11 P12 Total

24/24 -> 48/24 1-->2 30.4% 14.7% 20.9% 23.3% 44.2% 9.3% 18.3% 25.4% 21.6% 22.8%

48/24 -> 96/24 2-->4 19.3% 6.1% 11.9% 5.6% 34.4% 3.3% 11.1% 11.0% 12.3% 12.8%

96/24->192/24 4-->8 4.9% 0.5% 7.3% 2.5% 20.0% 1.4% 5.0% 5.5% 7.7% 5.9%

Table.19 CPU/Memory speed ratio on OMAP5912

CPU/MEM Ratio P3 P4 P5 P6 P8 P9 P10 P11 P12 Total

24/24 -> 48/24 1-->2 30.4% 14.7% 20.9% 23.3% 44.2% 9.3% 18.3% 25.4% 21.6% 22.8%

24/24 -> 96/24 1-->4 43.8% 19.9% 30.3% 27.5% 63.4% 12.2% 27.4% 36.6% 31.2% 32.6%

24/24->192/24 1-->8 46.6% 20.3% 35.4% 29.4% 70.7% 13.5% 31.1% 37.2% 36.5% 36.6%

 - 47 -

Figure 34: CPU/Memory speed ratio on OMAP5912

Figure 35: CPU/Memory speed ratio on OMAP5912

 On PXA270 platform, kernel image uncompressed could be done by the U-boot.

Refer to Figure 36 and 37, the z-lib uncompressed at the kernel stage is more fast

than other uncompressed algorithm at the U-boot stage. But LZMA algorithm has

the highest compression ratio. If the system has the storage limitation, LZMA is a

better choice for the kernel compression algorithm.

 - 48 -

Figure 36: Kernel image uncompressed time of different algorithms

Figure 37: Compression ratio of different compression algorithms

5.4 Analysis Results

 The factors, no mater hardware or software, all have influence on some phases

in the boot times. But at some phases some factors only have minor influence.

With those changes can’t have many improvement of boot time reduction. So

according to the section 5.3, there are some major factors which lead to great

improvements at some phases.

 The experiments are done on OMAP5912osk and PXA270 platforms. Both

platforms have different architectures.

OMAP5912 have great improvement in boot time when modify the CPU and

memory clock frequency. But PXA270 only have improvement at fewer phases

when modify the CPU and memory clock frequency.

 - 49 -

 Different file-system types only major affect the phase 10, 11, and 12 of boot

time in both platforms. When it is using kernel 2.6.15, the time phase 12 don’t

affect by different file-system types. But kernel 2.4.20 will. Because the

architectures are different, the higher CPU and memory clock frequency could get

great improvement in phase 10, 11, and 12 with different file-systems type on

OMAP5912 platform. But on PXA270 platform those two factors modifications

don’t affect such more times of phase10, 11, and 12 when using JFFS2, Cramfs

and Squashfs.

 Compression algorithm could be change at both the kernel image and

file-systems. But the kernel image with different compression algorithm only

could be used at U-boot on PXA270 platforms. The decompression speed is very

slow under U-boot stage. When using LZMA compression algorithm for the

Squashfs, the times will be longer than original one using zlib. But when the

system has the powerful processor, the Squashfs with LZMA algorithm could

almost reach the same time as original with zlib algorithm.

Because only OMAP5912 could switch the internal cache on/off, the results of

experiments are that only I-cache affects the time of U-boot and both I-cache and

D-cache affect the time of the Kernel.

 When changing to the new version kernel and U-boot on OMAP5912 platform,

the new version kernel need more time for boot-up and new version U-boot need

less time for boot-up. The kernel version 2.6.15 support more features by default

and enhance the features from old version 2.4.20. So the large size of image also

affect the boot time of the boot-loader. The U-boot version 1.1.3 optimizes the

initialization process of U-boot and improves the methods of verification and

movement of kernel image.

 Boot time is related to the system architecture, software factors, hardware

factors and related peripherals. So according to the analysis at section 5.4.3 and

experiments results of section 6.3, there are some conclusions of this chapter:

OMAP5912, with Dual-core architecture, have more flexible bus architectures

so the faster CPU and memory clock frequency could have great improvement in

boot time. But after the frequency ratio of the CPU and the memory bus over 4:1,

the improvement will slow down. Because of the flexible bus architectures, when

using different type of file-systems, the modification of CPU and memory still

could improve the boot time. Dual-core architecture also separates the peripherals

 - 50 -

into two groups and this will reduce the initialization of boot time.

PXA270, with single-core architecture, major use system bus for all

communication between processor and peripherals. So even using higher CPU

and memory clock frequency, the improvements are limited. When it is at the

phase needing frequently peripherals access, the boot-up speed is bounded by the

bus architecture. Even using powerful single-core processor, there are many

peripherals needed to be initialized by the processor. So it needs more time for

booting up the system.

The kernel image configurations of these two platforms are all using the default

configuration of the Linux kernel. But these two platforms supporting different

peripherals and default inserted different device drivers. So the kernel

initialization time at the kernel stage will much different of these two platforms.

Therefore in the thesis it is more focused on the factors related to each phases.

 - 51 -

Chapter 6

CONCLUSION

 More and more multimedia device are developed. The trend is using open

source Linux kernel as system operating system. The boot time of such device are

become longer and longer. So in this thesis we use two platforms, OMAP5912

and PXA270, to analysis the Linux system boot time. Because Linux is not a

real-time OS, it needs extra DSP core or one more powerful processor to handle

many real-time applications. We choose one Dual-core platform and on powerful

single-core platform as our experimental platforms. Then we modify the hardware

and software factors of boot time to see which factors play a major role in the boot

time and the relationship between hardware and software factors.

 According to the architecture analysis and the experimental results, we found

that Dual-core architecture has benefits to reduce the boot time of systems.

Dual-core has more flexible bus architectures and separates the peripherals into

two groups to reduce the initialization time of boot-up. The hardware factors

improvements in Dual-core platform have better impact on software factors

change.

 According to the boot procedures analysis and experimental results, we could

know that the boot procedures are most related to the memory device access.

Because all hardware related assembly code, software functions and device

drivers are needed to execute between the main processor and memory devices.

The total boot times of the embedded Linux system are most bounded by the

memory bus. However the platform selection is usually restricted, so how to

achieve the boot time optimization under limited environments is more important.

 In the thesis we point out which factor has major influence on which phase.

When you have a different embedded Linux system for your application, but some

factors are fixed. For example CPU frequency is not higher, memory size is

limited, or new kernel version is chosen, we could focus on the phases which is

major bounded by these factors, such as to lower the CPU usage, to choose the

higher compression ratio but fast compression algorithm, or remove the unused

 - 52 -

functions in the new kernel version to achieve the boot time optimization.

 - 53 -

Chapter 7

Future Work

We already know some factors are the major factors of the boot times. But the

experiments of these factors are also limited by the platforms we chosen. Except

these factors, we’ll try to analysis the influence of the MMU supported and

different compiler modes.

The boot procedures should be also related to the MMU supported or not. The

MMU supported should have the better memory utilization and easier software

programming. But if the systems boot up phases need less memory requirements

or not bounded by the memory, MMU supported or not should not serious affect

the boot times. When the systems boot up need large memory requirements, the

MMU supported should benefit the boot time of memory bounded phases.

Using different compiler modes to supports the 32-bit ARM or 16-bit Thumb

instruction sets, it could provide the user to trade off between high performance

and high code density so it will also affect the boot time of the systems. It could

reduce the code size of user application program if supporting Thumb instruction

in the kernel. But these modifications may affect the existing software module

execution and let special 3rd party applications unstable.

 - 54 -

REFERENCES

[1] The Consumer Electronics Linux Forum, “Kernel Execute-In-Place,”

http://tree.celinuxforum.org/CelfPubWiki/KernelXIP

[2] Jimmy Wennlund, “Next Generation Init System – InitNG,”

http://www.initng.org/

[3] Keun Soo Yim, Jihong Kim, and Kern Koh, “A Fast Start-Up Technique for

Flash Memory Based Computing Systems,” Proceedings of the ACM

Symposium on Applied Computing, 2005

[4] Tim R. Bird, “Methods to Improve Boot Time in Linux,” Proceedings of the

Ottawa Linux Symposium, Sony Electronics, 2004

[5] Linus Torvalds, “The Linux Kernel Archives,” http://www.kernel.org/

[6] Wolfgang Denk, “Das U-Boot - Universal Bootloader,“

 http://sourceforge.net/projects/u-boot/

[7] Rob Landley, “BusyBox - The Swiss Army Knife of Embedded Linux,”

http://www.busybox.net/

[8] Alessandro Rubini, Jonathan Corbet, “Linux Device Drivers, Second

Edition,” O'Reilly Media, Inc., 2001

[9] Texas Instruments, “OMAP5912 Applications Processor (Rev. E),”

http://www-s.ti.com/sc/ds/omap5912.pdf

[10] Texas Instruments, “OMAP5912 Multimedia Processor OMAP3.2 Subsystem

Reference Guide (Rev. B),”

http://www-s.ti.com/sc/psheets/spru749b/spru749b.pdf

[11] Texas Instruments, “OMAP5912 Applications Processor Silicon Errata (Rev.

I),” http://focus.ti.com/lit/er/sprz209i/sprz209i.pdf

[12] Intel, “PXA27x Processor Family Developer's Manual,”

[13] Intel, “PXA27x Processor Family EMTS,”

[14] Intel, “Intel XScale Core Developer's Manual,”

[15] Intel, “PXA27x Processor Family Specification Update,”

[16] Catherine Dodge, Cynthia Irvine, and Thuy Nguyen, “A Study of

Initialization in Linux and OpenBSD,” ACM SIGOPS Operating Systems

Review, Vol. 39, Issue 2, pp. 79-93, April 2005

 - 55 -

[17] Alessandro Rubini, “Kernel Korner: Booting the Kernel,” Linux Journal

Volume 1997, Issue 38es

[18] Kingsley Morse Jr., “Compression Tools Compared,” Linux Journal Volume

2005, Issue 137

[19] The Consumer Electronics Linux Forum, “Kernel Function Trace,”

 http://tree.celinuxforum.org/CelfPubWiki/KernelFunctionTrace

[20] The Consumer Electronics Linux Forum, “Printk Times,”

 http://tree.celinuxforum.org/CelfPubWiki/PrintkTimes

[21] Don Libes, “Exploring Expect,” O'Reilly Media, Inc., 1994

[22] ARM Limited., “ARM9EJ-S Revision r1p2 Technical Reference Manual,”

http://www.arm.com/pdfs/DDI0222B_9EJS_r1p2.pdf

[23] Palm Inc., “Palm Tungsten E2 Datasheet,”

http://www.palm.com/us/products/handhelds/tungsten-e2/tungsten-e2_ds.pdf

[24] Chih-Chien Yang, “An Empirical Analysis of Embedded Linux Kernel 2.6.14 to

Achieve Faster Boot Time,” Master Thesis, National Chiao-Tung University, 2006

[25] Sony, “Sony Cyber-shot series DSC product specification,”

http://www.sonystyle.com.tw/intershoproot/eCS/Store/en/html/spec/dsc_spec.html

[26] L.-P. Chang and T.-W. Kuo, “An Efficient Management Scheme for Large-Scale

Flash-Memory Storage Systems,” In Proc. of the ACM Sym. on Applied

Computing (SAC), pp. 862-868, 2004

[27] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A Space-Efficient Flash

Translation Layer for CompactFlash Systems,” IEEE Trans. on Consumer

Electronics, Vol. 48, No. 2, pp.366-375, 2002

[28] M. Wu and W. Zwaenepoel, “eNVy: A Non-Volatile, Main Memory Storage

System,” In Proc. of the ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), pp. 86-97, 1994.

[29] D. Woodhouse, “JFFS: The Journaling Flash File System,” In Proc. of the Ottawa

Linux Symposium (OLS), RedHat Inc., 2001

[30] Aleph One Company, “The Yet Another Flash Filing System (YAFFS),”

http://www.aleph1.co.uk/yaffs/

[31] LILO (The Linux Loader), http://freshmeat.net/projects/lilo/

[32] GRUB (Grand Unified Boot Loader), http://www.gnu.org/software/grub/

 56

APPENDIX

TIMING MEASUREMENT

In the embedded system, it is difficult to measure the timing of the system operation.

Most of features are supported by the SoC in the system, but the SoC just like a black

box for the detail timing measurements. There are two kinds of methods to measure the

time of embedded system operations. One method is by hardware instruments, and the

other method is by software functions.

A.1 Instruments

 The latest SoC, included more and more features, is difficult to know how it work

inside the chipset by external measurement methods. But according to the signals

between the processor and related peripherals and the software operation flow, we could

find the operations of system boot-up. The oscilloscope and the logic analyzer are two

hardware instruments to measure the external signals between chipsets.

A.1.1 Oscilloscope

The oscilloscope is used to measure the analog signal and the transition state of

signals. For better accuracy, the sampling rate of the oscilloscope should be four times

the frequency of the signal or the system bus. However the oscilloscope will be

interfered by some random glitches, so the digital signals are not measured by

oscilloscope.

The voltage level is the major item to decide the start point of boot time. Generally

the voltage level would be measured by oscilloscope because the trigger point is at the

transition state. We use Agilent DSO 54831B, which bandwidth is 600MHz and its

sample rate is up to 4 GSa/s, to measure the first period of boot time.

The system power-on behavior is related to measure the first period of boot time, so

the signal pins of chipsets related to system power-on are described below and will be

captured by oscilloscope:

1. Vin point on the board: The voltage of system reach the minimum

 57

requirement of reset circuit, then reset circuit will assert the reset signal to the

MPU.

2. nReset pin of MPU: After the nReset pin is de-asserted (From low to high in

most cases), then the MPU will start to do the hardware initialization.

3. RS232_TX pin on the board: After console portion in the MPU is initialized,

then 1st mark will be sent out.

The Figure 38 shows the signals of Vin, nReset, and RS232_TX captured by

Oscilloscope 54831B.

Figure 38: Power-on Sequence captured by Oscilloscope

A.1.2 Logic Analyzer

The Logic Analyzer is used for digital signals measurements. It only could detect

logic high and low level. The transition state of signal can’t be detected by it, but it also

can reduce the interference of random glitches. Logic Analyzer could use to measure the

long period the timing. But the length of the time depends on the number of signals you

measured, the sampling rate used, and the memory depth of Logic Analyzer.

We use Tektronix TLA5202, which has 68 channels, 2GHz conventional timing rate

and 512KB memory depth, for boot time measurement. For measuring the period of

 58

boot time, the related signal pins captured by Logic Analyzer are described below:

1. nReset pin of MPU: After the nReset pin is de-asserted (From low to high in

most cases), then the MPU will start to the do hardware initialization.

2. nRST_OUT pin of MPU: When MPU start to do hardware initialization,

nRST_OUT to external peripherals is still asserted. After MPU initialization is

finished, nRST_OUT is de-asserted and then MPU read 1st instruction from

the boot device.

3. SDRAM_CLK pin of MPU: Used for checking when SDRAM Controller is

ready.

4. nFlash_CSx pin of MPU: Used for checking when to access Flash.

5. LCD_PCLK pin of MPU: Used for checking when LCD controller is ready.

6. RS232_TX pin on the board: After console portion in the MPU is initialized,

then console marks will be send out. Use these marks to measure the boot time

of different boot phases.

The Figure 39 shows the signals of the boot sequence of OMAP5912osk captured by

Logic Analyzer TLA5202.

Figure 39: Boot Sequence captured by Logic Analyzer

A.2 System Functions

There are many software methods to measure the boot times: Kernel Function Trace

(KFT) [18], Printk-times [19], initcall-times, expect [20]. For the best accuracy and the

least influence on the boot time, Printk-times and initcall-times are used for boot time

measurement in this thesis.

Printk-times and initcall-times only could be used for kernel stage timing

 59

measurement and are not supported at Linux kernel version 2.4.xx. By modifying the

source code to output function names or marks on console and cooperating with

oscilloscope and logic analyzer is another method to measure the boot time.

A.2.1 Printk Times

Printk-times is a simple technology which adds some code to the standard kernel

printk routine, to output timing data with each message. While a crude status, this can

be used to get an overview of the areas of kernel initialization which take a relatively

long time. This feature is used to identify areas of the Linux kernel requiring work. This

feature was incorporated into the mainline Linux kernel as of version 2.6.11. Before this

version need additional patch to support this feature in kernel. But for version 2.4.xx,

there is no patch to support this feature in kernel at ARM based architecture.

With Printk-times turned on, the system emits the timing data as a floating point

number of seconds (to microsecond resolution) for the time at which the printk started.

The utility program shows the time between calls, or it can show the times relative to a

specific message. This makes it easier to see the timing for specific segments of kernel

code during boot.

For least influence on the boot time, this feature must be used dynamically. It could

be done by putting the parameter “time” on the command line to enable it. After using

Printk-times dynamically, we observe that not all kernel messages have the timestamp

until the kernel commands have passed to kernel.

A.2.2 initcall-times patch

Matt Mackall provided an initcall-times [13] patch which measures times for the

initialization of each driver during do_initcalls. This is a special tool to look at the time

of initialization of buses and drivers. It times just the initcalls and is enabled by putting

the parameter “initcall_debug” on the command line. The records of device

initializations can be read by dmesg after boot and use grep to find time-consuming

initializations

 The default value of CONFIG_LOG_BUF_SHIFT is 14, so the kernel ring buffer

size is 214B = 16 KB [16]. This is not sufficient to save all the messages with the

additional information of initcall-times patch. The kernel ring buffer size must be

 60

modified to 128 KB by setting to CONFIG_LOG_BUF_SHIFT to 17 to fit with the

requirement of initcall-times patch.

A.2.3 Time Stamp

In order to measure further detailed time periods of the specific functions, modifying

the source code to output function names or marks on console and hiding the other

messages on the console are other methods for boot time measurement [24].

 Boot-loader: In the source code of U-Boot, we use puts to output U-Boot

function names.

 Linux Kernel: In the source code of Linux kernel, we use

printk(KERN_EMERG “ ”) to output kernel function names.

 User Space: In the source code of BusyBox, we use fprintf(stderr, “ ”) to output

user space function names.

A.3 Inaccuracies

When we modify the source code and add some extra marks to output on console,

there are some inaccuracies by the method.

Additional output console messages will make boot time longer. More messages

output on console, then more time MPU need to take to handle these processes.

When the baud rate of console setting is 115200 bps, then 1 bit data sent by console is

taken about 8.68 us. The logic analyzer enabling all memory depth could capture data

about 5 sec at 10us sampling rate, about 10 sec at 20us sampling rate, and about 52sec

at 100us sampling rate. When the boot time is taken longer, slower sampling rate will be

used. But this will increase the inaccuracy of the sampling data. There are some

methods to increase accuracy:

 During the time measurement of boot time, skipping the time of output console

message will reduce the influence of boot times.

 When the baud rate of console setting is 9600 bps, then 1 bit data sent by

console is taken about 104.16 us. Then we could use slower sampling rate for

boot time measurement. But baud rate setting at 9600 bps will let output console

messages taken long time. This boot time longer. When console print out more

messages then boot time will become more longer.

 61

 Set the trigger point of logic analyzer more flexibly. Then we could separate the

boot time measurement into many segments. But at some situation the time

length of one segment is still too long that using normal sampling rate couldn’t

capture all data.

For better accuracy of boot time measurement, we disable all extra console outputs

and use hardware signals and least software modification to measure the boot time.

