%~ 3% Linux ASuf 1842 5 enpF [A 4

A Timing Analysis of Booting Procedures on Embedded

Linux Systems

S ERREAL L E T

gon 3¢ Linux & Suf AR B hpF A 44
A Timing Analysis of Booting Procedures on Embedded

Linux Systems

Boyo4 i FaiEe Student : Chien-Ming Huang
hERR I RTH 2L Advisor : Dr. Yu-Lun Huang

CEEREE RN
TWER TRERER

Y

AThesis
Submitted to College of:Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Electrical and Control Engineering

May 2007

Hsinchu, Taiwan, Republic of China

(X1

PEAREA LS E

o 3¢ Linux & SeR B AR R O R A 4

R PR F TR B

B2~ 8 fTHEm THsmilgaemls

BEPHFE DR NALY odme KGR SR L LA EE LR K
PR AL - o hhgh e B ERNRAR 7 e ik e E
P B o o 3 Linux EEES L GGE MRS S 6 2 44T L B AR M
FIR R B R RSEER e R 2 T R
hA®e? > E4 TIOMAPSII2 it 5 e % T 2 -~ Intel PXA270 5 ¥
SRR L AT L d B Sl S G i R T E > K- g
P % FI R OB RER P EEREAS RN LAETE RS
- FRER AR o F A A ;t/w\%frq'ﬁ% 7 Linux 1T % % sLenf 4
WA A AR ANA LR # R AT BT O AR L PR
Bpe s @ H T RNPEERE D RT K I AT ESE 2 U iR
Proo ¥ qrN g 4 AR s o b o B BES T RE L L s > £
B & FE BT R PR o A1 0 HA BRI L R R T SRR 7R A
o LR FORARTE S e s o d - (AT RS BIRE S
AATIGER I E IR HB B SRR o R Y LR RATEL R
RO EE A RER LGN ST L B R R RIS S
B BB g

A Timing Analysis of Booting Procedures on
Embedded Linux Systems

Student : Chien-Ming Huang Advisors : Dr. Yu-Lun Huang

Degree Program of Electrical and Computer Engineering

National Chiao Tung University

ABSTRACT

Shortening boot time is one.of the major challenges in developing embedded
products. In this thesis, the‘boot times.of various system architectures, including
single-core and dual-core -architectures; running Embedded Linux are analyzed.
To figure out the varieties of ivarious-architectures, TI OMAP5912 and Intel
PXAZ270 are chose for the experimental platforms with dual-core and single-core
processor, respectively. First, the boot-up procedure is analyzed and divided into 4
stages (hardware initialization, boot-loader, kernel and user space) and 12 phases.
Secondly, the oscilloscope, logic analyzer and kernel functions are used to capture
the chipset pins and log timestamps to measure the boot time of each phase.
According to the difference concluded from the comparison of the two
experimental platforms, a series of experiments are designed based on various
combinations of the hardware and software factors. Theoretically, the
experimental results are compared, analyzed and concluded. The conclusion helps
developers in selecting the embedded platforms and improving the boot time by
hardware and software factors.

ﬂidi&ﬁ%mﬁﬁﬁ B TSER AT A ER RE R

2]

ik m;}ﬁgg;i\.,gr ;Mzrgi ; ‘;_d L&q—m"-}m i :L\.“\—i \:F Q &7 v 315 413

v ER A R A g ,ﬁ‘im?’}'f’fﬁﬁﬁ I N ;.’E‘/’K‘“JJ O o

EHTPY S NAR L O F S BB T
SR BB S BEY S mE ke ?’)E‘l ~ BHE &2 s Newlin > &
%\Lﬁuagijpziiélﬁ%% ;o R EA AR B
LT (TR T L A S %’%‘mz*pﬂ’%ffﬂ’wﬁwik 51 8

A FERAf R ERHENEERT O oo B AT 7 ¥
AEFHLpA O EABULAZ BB Y o EN tbéﬁ¢§%,$éh&“é IR
Lo

CONTENTS

i s i
ABSTRACT .ttt bbbttt b et ne et e eere et e i
® - OSSPSR ii
CON T ENT S e e e e e eat e e sae e e e aseeeasseeeaseeeaseeeanns iv
LISE OF FIQUIES ...ttt e st et e e enreeteeneesneenneennenneas vi
LISt OF TADIES ...ttt viii
Chapter 1 INTRODUCTIONc.oooiiiieiie et -1-
Chapter 2 RELATED WORK ...t -3-
2.1 Snapshot Technique for NOR FIash ..., -3-

2.2 Kernel EXeCULE-IN-PlaCE, ...uuuevveieiiieiiiieicsiseee e -5-

2.3 Linux Kernel INitialzation........ciii oo -5-
Chapter 3 MULTIMEDIADEVICE ..o -7 -
3.1 Product SPECITICALION . i ciiiiseneaneeeeeeitineesieesieeeeseesieeeessaesteesaesneesteeseesneesnees -7-

B2 PIatfOrmMS ... i e -8-
3.2 L OM AP ... e e -8-

S22 PXAZ2T0 oottt -9-

KIS I 0o 4o o - 1 10 o OSSR -10-

A ANAIYSIS ..t anes -11-
3.4.1 Processor ArChItECTUNE.........ccviiiiieiieee e -11-

3.4.2 Platform ArchiteCtUIecooveiiiiici e -13-

3.4.3 BOTHIENECKS ...t e -14 -
Chapter 4 LINUX BOOT-UP ..., -16 -
4.1 OVEIVIBW ...ttt ettt ettt se e st e te st e steesbeaneesneenteeneeaneenseens -16 -

4.2 BOOT SEOQUEINCESeeiuiiieiiiiiesiiieesiee sttt ettt e e e eeanees -17 -
4.2.1 Hardware INitializationccoceveiiiiniininineee e, -17 -

4.2.2 BOOt-10A0EY SEAGEcovveeiviiiieiiieieeie et -18-

4.2.2.1 Case 1-Kernel Uncompress Image.........ccoceverererenneinennnn, -19-

4.2.2.2 Case 2-Boot-loader Uncompress Imagecccceevevvereennnnn -19-

4.2.3 KEINEI SLAQE......uieiiiiiece et -21-

4.2.3.1 Case 1-Kernel Uncompress Image........c.ccceeveviververieiennnnns -21-

4.2.3.2 Case 2-Boot-loader Uncompress Imageccccevevveeeennnnn -22-

4.2.4 USEI SPACE STAQE.....eieeeiieiiieiiieeiee ettt e e -23-

4.3 IMPACE FACTOTS......couiiiiieiieieiec e -24 -
4.3.1 Hardware FaCIOrsSccccviiiiiieiesie s -24 -

4.3.2 SOTEWAIE FACLOIS.......eiiiieiiiiieiieic e -25-
Chapter 5 EXPERIENMENTS........coiiieee e, - 27 -
5.1 ENVIFONIMENTS. ...ciiiiitiitiiiesic sttt -27 -
5.1.1 Factors of OMAPS9120SK........cccccvieiiiiiinieienienie e -27 -

5.1.2 FACLOrs Of PXAZT0 ...cueiieiiicieeie ettt -28 -

5.2 Factors for BoOt PRASE.........ccooveiiiiiiieeceeee s -29-

5.3 EXPeriments RESUILSccccoviiieiiie e -30-
5.3.1 OMAPSO9L20SK.......ccuiiierieriiiirieieesieieesiesesies st sieaese e saesessesseseesesnes -30 -

5.3 2 PXAZT0 .ottt -40 -

5.3.3 OthersS.....oouveeee e 8 e -45 -

5.4 ANAlYSIS RESUITS ot v Bl s i et e e e e -48 -
Chapter 6 CONCLUSION ...t i -51 -
Chapter 7 FUTURE WORK i itr e - 53 -
REFERENGCES ... ittt -54 -
APPENDIIX ..o - 56 -
AL INSTFUMENTS ... -56 -
N O 1T || 0ol o] o 1< USSP - 56 -

A.L2 LOGIC ANAIYZEY ..ot -57 -

A2 SYSEEM FUNCLIONS......cciiiicie e - 58 -
A2 LPrINTK TIMES oot e -59 -

A.2.2 initcall-times PatChc.coiiiii e, -59 -
A.2.3TIME STAMP ettt sre e enes - 60 -

A 3 TNACCUTACIES ..ottt sttt - 60 -

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:

Snapshot Management of Snapshot Technique
System Boot-up Memory Map
ARMO926EJ-S block diagram..........cccccvevvviieiveieiie e
XScale block diagram..........cccccveveiiiiiiiiecec e
OMAP5912 block diagramcccceverenieeninieeeseee e
PXA270 block diagramccceoeieninenininieee s

Boot Sequence mMain StAgESccvveverieereeieiee e ere e e

List of Figures

Hardware Initialization...........cccoooeeeeeoeee e

BOOt-102dEr STAQEveovveieeieeee e

KErNel StAgE....c.eiieeiiee e
USEE SPACE STAGE.....ceiivviiiiiie ettt
CPU Frequency modified on OMAP5912c.ccceevvenene
Memory speed modified on OMAP5912c.cccveveneee.
File-systems changed on OMAPS912..............ccccoeveiinnnine
File-systems changed on OMAP5912............cccovvvvevieenenne,
CPU Frequency modified-on OMAP5912ccccevvnnenne.
Memory speed modified on OMAP5912cc.ccoveveneee.
File-systems changed on OMAPS5912..........cccccoeviiiiininnnns
File-systems changed on OMAP5912.........ccccccevvvvveiecnnne,

Compression algorithm of Squashfs changed on OMAP5912...........

Compression algorithm of Squashfs changed on OMAP5912...........

Compression algorithm of Squashfs changed on OMAP5912...........

Kernel version changed on OMAP5912cccccovvvevvenen.
U-boot version changed on OMAP5912cccccoveveneee.
CPU frequency modified on PXA270cccoccevviiniiieiennns
CPU frequency modified on PXA270ccccceveniiincnennn.
System bus speed modified on PXA270.......c.cccccccevveveennnns
File-systems changed on PXA270........c..ccccoeveveiieieeiiecnnnn,
File-systems changed on PXA270........c..ccccocveveiieiveviecnnnn,
Compression algorithm of Squashfs changed on PXA270
Compression algorithm of Squashfs changed on PXA270

Vi

Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:

Caches enable/disable in the boot-loader stage..........ccccceevvvivervenenne.

Caches enable/disable in the kernel and user space stage

CPU/Memory speed ratio on OMAP5912...
CPU/Memory speed ratio on OMAP5912...

Kernel image uncompressed time of different algorithms.................

Compression ratio of different compression algorithms....................

Power-on Sequence captured by OsCIlloSCOPEccceevvevvevvciiciiiennen,

Boot Sequence captured by Logic Analyzer

vii

List of Tables

Table.1 Comparison of ARM926EJ-S and XScaleccccooeviiiiiiiieiieciie e,
Table.2 Comparison of OMAPS5912 and PXA270ccoveveiieiieienieseere e
Table.3 Compression AIGOrithm TeStc.cocveiiiieiiece e

Table.4 Total boot Time Reduction with different factors modification.............

Table.5 MEM: 24 /| FS: JFFS2.
Table.6 CPU: 96 / FS: JFFS2...
Table.7 Different File-systems.
Table.8 MEM: 24 / FS: JFFS2.
Table.9 CPU: 96 / FS: JFFS2...

Table.10 Different File-SYStEMScccuiiiiiieieerere e

Table.11 Compression Algorithm of File-system and CPU clock

Table.12 U-boot: 1.1.3/FS: JF

FSZ.. i

Table.13 Kernel: 2.4.20 / FSadFEF S ... i

Table.14 FS: JFFS2.........5.......
Table.15 CPU: 208/ FS: JFFS2
Table.16 File-system and CRU

ClOCK i e

Table.17 Compression Algorithm.of File-system and CPU clock
Table.18 CPU/Memory speed ratio on OMAPS912cccccvviviiivinieieene e
Table.19 CPU/Memory speed ratio on OMAPS912ccccceeveivevecieieece e,

viii

Chapter 1

INTRODUCTION

With the rapid growth of the embedded computing technologies, boot time
becomes a major challenge in designing embedded systems, especially the
consumer electronics. Currently the most popular consumer electronics is the
multimedia device. There are many fancy features supported inside the
multimedia device while the boot time of the device is taken longer. For better
impression of product, the devices should be available after users turn on the
device. For example, Sony DSC-T50 [25] is a popular digital camera with 7
million pixels CCD. Its boot-up times is about 1.3sec. The newer DSC-T100 is a
digital camera with 8 million pixels CCD. Its boot-up time is about 1.5sec. But the
latest DSC-G1 with 6 million pixels,CCD and extra wireless LAN module inside
take about 4.2 sec when it beots up. More features with more boot times are not
acceptable by end customer:

The findings of the methods are ‘used for reducing the boot time but those
methods mostly focused on_software-side [1]-[2] [3]. The relationship between
boot time, platform architecture‘and:software will be the good reference for future
SoC design, software and product development.

To find the relationship, we divide the boot sequence of embedded system into
12 phases [5] [6] [7] and modify some hardware and software factors [4] [8]
related to the boot times. For application specific, we choose two platforms:
OMAP5912 [9] [10] [11] and PXA270 [12] [13] [15]. To find out what kind of
processor architecture will benefit the system boot time and what factors inside
the processor will affect the boot time. The system bus architectures will also the
factors related to system boot time. The bottlenecks of different platform will be
proposed.

After the architecture analysis, we proposed the experiments with different
factors modified. According to those experiments, the relationship between the
boot time and different kind of hardware and software factors will be proposed.
The experiments will be done at each phase of the boot sequence.

In the reset of this thesis, we will introduce the methods of timing

-1-

measurement first. Then overview of Linux boot, factors related to the boot time
and the boot sequence of embedded Linux are presented in Chapter 4. For
application specific, the analysis of different platforms and bottleneck of
architectures related to boot time are discussed in Chapter 5. After platforms and
architectures analysis, we’ll introduce the experiments designed to find the
relationship between the boot time and hardware and software factors. The
experiments are done on two platforms in Chapter 6. In Chapter 7, the conclusion,
according to the experimental results, will be proposed for platform selection and

methods for boot time reduction by hardware and software side.

Chapter 2

RELATED WORK

There are many exist techniques to improve and analyze the boot procedure of
Linux. They include the technique of quick mounting the file system for flash
storage device [3], the special method to execute kernel [1] and the study of Linux

kernel initialization [16].

2.1 Snapshot Technique for NOR Flash

In embedded computing devices, flash memory has many advantages such as
light-weight, shock-resistance, and low-power consumption. There are two types
of flash memories: NOR and NAND. NOR._flash is usually used for codes stored
because it supports word-unit I/O-and|provides faster read speed than NAND flash.
NAND flash supports only page-based 1/0" (e:g., 512B or 2KB) and provides
faster write speed. It is mostly used for large-scale data storage requirements.

In flash memory, write operations must be preceded by an erase operation, and
the number of erase in a block is limited. In order to hide the erase while ensuring
the wear-leveling property, the flash translation layer (FTL) [26] [27] [28] has
been developed to be able to translate the logical addresses generated by a host
system to physical addresses of flash memory. But the use of FTL is restricted by
international patents. It is known that the performance of FTL can be seriously
reduced if the host file system generates write operations frequently. Therefore,
embedded computing devices directly use flash file systems (e.g., JFFS2 [29] and
YAFFS2 [30]) which are based on a data journaling technique. Unfortunately, the
journaling technique incurs long mounting time for the flash file systems.

The technique providing an instant lookup method for the lastly stored
in-memory file system metadata is the snapshot technique. It stores snapshots to
variable-size areas managed by linked lists and sequentially record the location of
the stored snapshots to prearranged areas by using an ordered tree data structure.

In Figure 1, the first block of flash memory is reserved as a root block which

-3-

stores pointers to snapshot header blocks sequentially. When running the
mount_root operation, the last stored pointer can be found quickly using
sequential or binary search algorithms. The binary searching divides the root
block into two sub-blocks and reads the boundary pointer of these sub-blocks. If
the pointer is null, the searching selects the left sub-block. Otherwise, the other
one is selected. The above procedure is repeated with the selected sub-block, until
the last stored pointer is found. Since the block size (Bsiz) is typically 128KB in
NOR flash and the size of a pointer to block is 2B (Psiz), this search algorithm has
a better time complexity of O(1g(Bsize / Psize)) = O(16).

Each pointer in the root block directs the corresponding header block as shown
in Figure 1. A header block contains several snapshot headers, and a snapshot
header consists of a mounting flag (M), an unmounting flag (U), and a pointer to
the snapshot data block (Pt). Since the snapshot header size (Hsize) is typically 4B,
the maximum number of snapshot headers that can be stored in a header block is
Bsize / Hsize (=215). The searching:algorithms used to find the last stored
snapshot header is the same awvay as;done-by the root block. The pointer stored in
the latest snapshot header is used to access the snapshot data that were last stored.

In summary, this technigque only-reads 1g(Bsize / Psize) X Psize + 19(Bsize / Hsize) X
Hsize (=92) bytes in an average case to fine the location of the last stored snapshot,
providing an instant lookup time.

The source code of the technique is not released, so it is difficult to verify the

performance at our experimental platforms.

Roaot Black DT njojojoj0

[Header Block Header Block '| Header Block
M1 (1 JAL1 L L1110
1. 11
plr

U111

Bt .

.

Snapshot Block Snapshot Block
I \

I

mpshorﬂark | Snapshot Block

BII “‘10 sEe we wss @ \\"p \‘S

Is%z N N I

| Y - /TS

L : Zﬂ &\ || »
|

7
=
%‘_V
”
[

Figure 1: Snapshot Management of Snapshot Technique
-4 -

2.2 Kernel Execute-In-Place

Execute-In-Place (XIP) allows the kernel run from flash memory directly.
Without the copy procedure, it is faster invoked, and it consumes less RAM at run
time. This saves RAM space since the text section of the kernel is not loaded from
flash to RAM. Read-write sections, such as the data section and stack, are still
copied to RAM. The flash address used to link the kernel object files, and for
storing it, is configuration dependent. Therefore, the proper physical address
where to store the kernel image depending on specific flash memory usage must
be known. XIP is consuming more flash memory storage, because XIP kernel

must be flat without any compression.

2.3 Linux Kernel Initialization

The overview of the baoot process of an Intel x86-based personal computer is
how the initialization routine provided by the operating system running. Generally,
there are three stages to the booeting process: When a PC is powered on, the BIOS
(Basic Input-Output System) run first'followed by a boot loader and finally the
operating system initialization routine.

The BIOS is the first code executed by the processor when boot-up. When
power is initially applied to the computer this triggers the RESET pin on the
processor. This causes the processor to read from memory location OXFFFFFFFO
and begin executing the code located there. This address is mapped to the
Read-Only Memory (ROM) containing the BIOS. The BIOS must poll the
hardware and set up an environment capable of booting the operating system.
Once the BIOS load the first sector of the boot device into RAM, the boot loader
begins execution.

After the chosen boot loaders [31] [32] has run, it loads the Linux kernel image
as shown as Figure 2, typically named vmlinuz-[version number] for a
compressed kernel image and vmlinux-[version number] for an uncompressed

image. A compressed kernel image will have the Linux boot loader, found in

-5-

/arch/i386/boot/bootsect.S, located at the very beginning of the image. After the
boot loader execute the assembly code, the code runs assembly level initialization,
like reinitialize all hardware, switches CPU from real mode to protected mode,
fills the bss segment of the kernel with zeros and final jump to assembly function
startup_32(). The code runs high-level initialization till process 1 executing, and

then the Linux kernel initialization is complete.

Resl mode ; Prolecied mode

-

Hie sunl
leones

bootiect 8

Ox 200000 setup. 8

uncempressad

DAROD0D
comprassed {gzipped]

Iiarngl cods R

exacartion localion

- OJEEN

Cxfgned

[LEE L]

GuTens M|

G 1DI0D

Figure 2: System Boot-up Memory Map

Chapter 3

MULTIMEDIA DEVICE

In designing embedded systems, especially the consumer electronics, the boot

time becomes a major challenge. As streaming multimedia applications become

popular in consumer devices, the multimedia device is the application for boot

time analysis.

3.1 Product Specification

There are many multimedia devices on the marked. Before making the decision

of using which platform on the product, the PRD (Product Requirement

Document) from the customer.isithe;.major reference. For the multimedia

application, there are some minimumshardware and software requirements [23]:

1.

Processor Requirement: Processors are the main brain of the product. For
more and more fancy features, powerful processor is necessary. From
software point of view, ARM based processors are more popular and has
more resources. S0 ARM version'5TE (V5TE) architecture, which support
DSP-Enhanced instruction set, is what product needed.

Display Requirement: LCD supported is important for multimedia
requirement. For most popular multimedia format, we at least require
262144 colors (18-bits), 640x480 resolution of LCD module.

Memory Requirement: According to the LCD requirement and related
software features for multimedia device, the product’s minimum system
memory requirement is 64MB and minimum flash memory requirement is
32MB.

Storage Requirement: The most cost effective storage memory card, which
also have small form factor, is MMC/SDIO memory card. So MMC/SDIO
card supported is also required.

Networked Interfaces Requirement: For internet access or remote
multimedia display, the product needs 10 or 10/100 Ethernet port supported
or 802.11b/g WLAN supported.

6. Peripheral Requirement: IrDA and USB are minimum requirements of
peripheral interfaces.

7. Operating System and Other Software Feature Requirements: OS could
be Linux. Other software features are not mainly related to the boot time

analysis, so the features are not listed here.

3.2 Platforms

According to the product specification of multimedia device, there are two
kinds of platform for our selection. One platform is the dual-core architecture.
One main processor is used for normal computing and another DSP core is
specially handle the multimedia data computing. The other platform is the
single-core architecture. It has one powerful processor to handle all data
computing and by software codec with strong computing power to handle the
multimedia data.

According to the two kinds of the platforms, we select two platforms, which
meet the minimum requirement'of multimedia device, for boot time analysis. One
is TI OMAP5912, and the-other ane is Intel PXA270. The platform specifications

of the related evaluation boards are'described below:

3.2.1 OMAPS5912

®Board
— TI1 OMAP59120sk (OMAP Starter Kit) is a highly integrated evaluation
board, designed to meet the application processing needs of
next-generation embedded devices. The dual-core architecture of the
OMAP5912 provides benefits of both DSP and reduced instruction set
computer (RISC) technologies. It is incorporating a TMS320C55x DSP
core and a high-performance ARM926EJ-S ARM core. There are rich
peripherals reserved on the boards which could meet the requirements
of different products.
®Processor
— The DSP core of the OMAPS5912 device is based on the TMS320C55x
DSP generation CPU processor core. The C55x DSP architecture achieves

-8-

high performance and low power through increased parallelism and total
focus on reduction in power dissipation. The CPU supports an internal bus
structure composed of one program bus, three data read buses, two data
write buses, and additional buses dedicated to peripheral and DMA
activity. These buses provide the ability to perform up to three data reads
and two data writes in a single cycle. In parallel, the DMA controller can
perform up to two data transfers per cycle independent of the CPU
activity.

The ARMO926EJ-S processor is a member of the ARM9 family of
general-purpose microprocessors. The ARM926EJ-S processor is targeted
at multi-tasking applications where full memory management, high
performance, low die size, and low power are all important. The
ARMO926EJ-S processor supports the 32-bit ARM and 16-bit Thumb
instruction sets, so it provides the user to trade off between high
performance and high code; density. ARM926EJ-S processor implements
ARM architecture version 5TEJ.

3.2.2 PXA270

®Board

The MT Creator PXA270 is a highly integrated evaluation board. It
includes the integrated system-on-a-chip microprocessor for high
performance, dynamic, low-power portable handheld and hand-set
devices as well as embedded platforms. The processor incorporates the
Intel XScale technology. The processor also provides Intel Wireless
MMX media enhancement technology, which supports integer
instructions to accelerate audio and video processing. In addition, it
incorporates Wireless Intel Speedstep Technology, which provides
sophisticated power management capabilities enabling excellent
MIPs/mW performance. There are also rich peripherals reserved on the

boards which could meet the requirements of different products.

®Processor

The Intel XScale core is an ARM V5TE compliant microprocessor. It

has been designed for high performance and low-power; leading the

-9-

industry in mW/MIPs. The core is not intended to be delivered as a
stand alone product but as a building block for an ASSP (Application
Specific Standard Product) with embedded markets such as handheld

devices, networking, storage, remote access servers, etc.

3.3 Comparison

According to the device specifications of OMAP5912 and PXA270, there are
some comparisons of device specification in Table 2 and Table 3.

In Table 1, both processors are all ARM version 5TE (v5TE) architecture
compliant. XScale has large size cache, 7 stage pipeline and higher processor
frequency.

In Table 2, OMAP5912 has additional DSP core for multimedia data, but
PXA270 supports Intel Wireless MMX for additional media instructions.
OMAP5912 support hardware accelerators for cryptographic and PXA270 use
software features to handle. Both platferms support minimum memory
requirements (32MB flash and 64MB SDRAM). Although OMAP5912 use 16-bit
memory bus, but it supports Mobile BDR RAM, which sampling the data at rising
and falling edge of memory-clock then-it'gets the 16-bit data twice per clock cycle.
Other peripherals of both are all' meet-the requirements of product specification of
multimedia device. The difference on network interface is OMAP5912 supported
10Mbps and PXA270 supported 10/100Mbps.

Table.1 Comparison of ARM926EJ-S and XScale

ARMO926EJ-S Core XScale Core
ISA ARM V5TE] ARM V5TE
Pipeline 5 stage pipeline 7 stage pipeline
16 KB i-cache 32 KB i-cache
Cache
8 KB d-cache 32 KB d-cache
Clock/Freq. Max. 192 MHz Max. 520 MHz

-10 -

Table.2 Comparison of OMAP5912 and PXA270

T1 OMAP5912 Intel PXA270
Multimedia TMS320C55x DSP Core Intel Wireless MMX
16-bit Mobile DDR SDRAM 32-bit SDRAM
Memory (max. 64MB) (max. 1GB)
16-bit Flash (max. 256MB) |16-bit Flash (max. 384MB)
USB 1.1 Client USB 1.1 Client
USB
USB 1.1 Host USB 1.1 Host
3 UART 3UART
UART
(2 SIR IrDA) (FIR and SIR IrDA)
LCD 16-/18bit LCD Controller 18-bit LCD Controller
Card Slot SD/MMC SD/MMC/MS
Keypad Keypad I/F Keypad I/F
LAN 10 Mbps 10/100 Mbps
3.4 Analysis

3.4.1 Processor Architecture

Refer to Figure 3 [22] and Figure 4 [15], ARM926EJ-S Core is the 5-stage
pipeline architecture, and XScale Core is the 7-stage super-pipeline architecture.
So XScale Core has the better performance. XScale Core also has larger cache

size and higher clock frequency. So doing the comparison from the processor

architecture, XScale Core has the better performance than ARM926EJ-S.

-11 -

External
COprocessor
interface
CRDOUT CPDIN CRINETR

OADATR
I T e TCM [
Tl interf. Mol
f 1 1 COprocessor [i e
ETM interface | v
interface
'y f 'y f N DEXT >
o | orouTE f— - Wit buffer l— -
L +-
g DCACHE <+
+ =1| Cache -
i":é' i
v
WDATA RDATA |t 7 > MMU Bus
b interface
P > - unit
ARMOIEJ-S FCSE | TLB =
INSTR = 1 > “.f'."'u;: < >
-~
ICACHE L
wOuTE | > 4—|
N > IEXT e
Figure 3:ARM926EJ-S block diagram
IRQ
" BTB
Y l
Core Memory Bus
|nstructi:1n
L |I-Cache & MMU |« 'y >
e ;
Execution | Data Adfress
Coprocessor Core [7 D-Cache & MMU |~
Interface P o
= Lo »|Buffers
Data
lrlini—D Cache & MM
]
CPO
MUL/ACC

Figure 4: XScale block diagram

-12 -

3.4.2 Platform Architecture

OMAP5912 is the dual-core architecture, so there is the multi-level bus
architecture. According to the block diagram of OMAP5912 on Figure 5, there are
many different buses: MPU bus, DSP bus, DMA bus, MPU public/private
peripheral bus and DSP public/private peripheral bus. This architecture could get
the Dbetter performance when each subsystem access different components. A

multi-level bus architecture could reduce the resource conflict and interference

when access the same bus.

OMAPS312

TMS320C55x DSP DSP Public DSP Private Peripherals
32 (Instruction Cache, Peripheral Timers (3}

— 2] SARAM DARAM. DMA. Bus Watchdog Timer
End 1 3
| e | HIW Accelerators) Level 112 Interrupt
16 Handlers

'

15 6 DSF Public (Shared)

DSE

MCSH
MCSIZ

-
I
I
I
I
I
I
I
Iy

==

Interface

MPU MPU Public
3z }32 Peripheral Bus

Bus

3z

Flash
and
SRAM

16

Memaory MPU
Interface Peripheral

Traffic Bridge
Controller
Ty

|

|

|

|

|

|

|

| Peripheral Bus
| 22 Iaz _.l MPU
|

|

|

|

I

1

|

|

|

32 System
" DMA

Controller

dirooo
[~iwo00]

MPU Private
Peripherals

MPU Private
Peripheral Bus Timers (3)

- . Watchdog Timer

[switch | 32 I Level 112

| h MPU Core Interrupt

Switch ARM32EEJ-S . H?nalertg
{Instruction a2 ULPD onfiguration

| Cache, Data Clock and Reset Registers
| Camera IIF Cache, MMU} Management System DMA

32-kHz

Frame ~ + ?
Buffer

| t Watehdos
[osc] [osc] 9
| [TrrcEmumtonte | [Eiwe] L3 osc 05C LCD CONV

°f Hoe Yo T

Clock

Reset

External Clock
Requests

Figure 5:0MAP5912 block diagram

PXA270 is the single-core architecture, so its bus architecture is simpler than
OMAP5912. From Figure 6, it has system bus and peripheral bus. There are six
clients on system bus: the core, the DMA controller, the LCD controller, the USB
host controller, and the two memory controllers (internal and external). Most of

all peripherals are on peripheral bus connected to the DMA controller. Even it

-13 -

>

MPLU/DSF Shared Peripherals
Mailbox
MPUI/DSP Static Shared
8 x GPTIMERS
SP1
UART1.23
1c
MMC/SDIOZ
McBSP2
MPU/DSP Dynamic Shared
GPIO1,2,3,4

32-kHz Synchr'o Counter

——

1

|

MPU Public Peripherals
USBE Controllers

OCP

MICROWIRE IF
RTC
PWT
PWL

Keyboard I/F
HDQ/1-Wire
MMC/SDICA
MPUIC
LPG1,2
FAC
Qs Timer

_I:

support programmable weight on system bus arbitration, the single bus is still the
bottleneck of the architecture.

PXA270’s memory controller could be use to connect external ASIC. When
ASIC and PXA270 have busy communication, it will affect the performance of

memory controller portion.

LCD
RTC / \
0S8 Timers
4 x PWM .f" 'f
Memo
Controller Quick Contratier |l |3
Capture | |Internal|| LCD |[—— | |2
DLEED Interface | | SRAM ||Controller Hiﬁ:rgss =
usim vt
Data 'l
125 3
AC ‘o7 __ _ Variable <
o Standard £ EllLl I B
= UART o DMA Control
D | | Full-Function z Controller = e =
§ BIU’:R;h }é e _ System Bus _ m— r Socket 0
T 5|26 | 2| | Bridge CompactFlash [Ixcvr
& Fast Infrared ; Socket 1
s - 2 Control ——
@ I-C E
@ || USE Client = Intel USB]
(6] Controller w XS Cale® Host D}fnamm SDRAM/
MSL F os' Memory |1
Interface @ Core Controller L Boot
IKeypad s Control ROM
nterface =
MMC/SD/SDIC % Debug
LiEiE: £ | Controller Static +——» RO/
M"I;”t‘:rr}"aite' =3 A Memaory Flash/
USE Power 13 32.768 Control SRAM
On-The-Go Management/ MHz kHz
Clock Control Osc Osc
Primary GPIO J { J
h AN TV w

JTAG I

Figure 6: PXA270 block diagram
3.4.3 Bottlenecks

From boot time point of view, we would like to analysis which portion will be
the bottleneck of each platform.

OMAP5912 has more flexible bus architecture, but the relationship between TC
(Traffic Controller) clock and MPU clock, and Flash clock and TC clock will be
the bottleneck of boot time. Max. TC clock is half of max. MPU clock so max. TC
clock is 96 MHz. But max. MPU clock is 192MHz. Max. flash clock is 48MHz
and it is always 1/6 of TC clock. MPU TIPB (TI peripheral bus) (public and

-14 -

private) also has max strobe freq., 48MHz.

PXA270 use one system bus for many subsystems. So the system bus will be
bottleneck. It also will be the bottleneck on peripheral bus. There are too many
peripherals connected to peripheral bus, and these peripherals take more time
when doing hardware initialization. Its memory controller also uses to connect to
external ASIC. This will be the bottleneck of memory access when the external
ASIC and PXA270 have busy communication.

-15 -

Chapter 4

LINUX BOOT-UP

A computer system is a complex machine [16], and the operating system is an
elaborate tool that orchestrates hardware complexities to show a simple and
standardized environment to the end user.

Currently Linux is the most popular operating system because of its open
source policy. For embedded systems, Embedded Linux is the cost effective
operating system which refers to the open source Linux. We’ll introduce the
normal Linux boot-up steps on PC and embedded systems, then boot factors and

boot sequence of Embedded Linux will be discussed.
4.1 Overview

The PC is more widespread use than other platforms so Linux boot-up steps on
the x86 PC will be introduced first:-In-order to be able to use the computer when
the power is turned on, the processor begins execution from the system's firmware.
It is called the Basic Input-Output System (BIOS). BIOS functionalities are
Power-on Self Test (POST), system configuration set-up and execution code from
boot device. Then boot-loader located at boot device is loaded by BIOS services.
The Dboot-loader’s major features are basic hardware initializations,
uncompression/execution of the kernel image. After boot-loader transfer control to
kernel [17], kernel will do the whole system initializations and then execute the
user space program from the file-systems. Then system is ready for user.

The embedded system is always resource constrained. There is no any BIOS on
the embedded system. The BIOS is substituted by power-on strapped pins or
internal boot ROM of the processor. Because the storage and memory are also
limited, the boot-loader, kernel subsystems, file-system are modified to suit for
embedded systems. The Linux boot-up steps on the embedded systems are from
boot-loader execution, to kernel image copied to ram, uncompressed then

execution and finally load program from root file-systems at user space.

-16 -

4.2 Boot Sequences

The boot sequence could be divided into four stages: Hardware Initialization,
Boot-loader, Kernel and User Space (Figure 7). For more detail analysis, each

stage could be subdivided into more phases:

Hardware
Initialization

'

Boot-loader
Stage

v

Kernel
Stage

v

User Space
Stage

Shell Prompt

Figure 7:Boot Sequence main stages

4.2.1 Hardware Initialization

There are two phases in the hardware initialization stages (Figure 8):
®Phase 1: The time for the MPU reset

-17 -

It is measured from Power-On (Vin stable) to signal MPU_Reset
de-asserted.

From the Vin becoming stable (MPU_nReset low) to the signal MPU_nReset
becoming high. When the power input of the MPU is stable, oscillator input of
MPU is also stable then MPU exit reset mode.

®Phase 2: The time for the MPU initialization and the Peripheral reset

It is measured from signal MPU_Reset de-asserted to signal
MPU_RST_OUT de-asserted.

From the signal MPU_nReset becoming high to the signal MPU_nRST_OUT
becoming high. MPU exit reset mode then doing simple hardware configuration
by reading power-on strap-pins or reading internal boot ROM. After finishing
the configuration, then the nRST_OUT signal to other peripherals is de-asserted.
MPU read the 1st instruction.

Power On

v

MPU
Reset

v

Peripheral
Reset

(Phase 1)

(Phase 2)

Figure 8: Hardware Initialization
4.2.2 Boot-loader Stage
There are four or five phases in the boot-loader stages (Figure 9). When the

kernel image is uncompressed at kernel stage, there are only four phases. When
-18 -

the kernel image is uncompressed by the boot-loader, there are five phases in the

boot-loader stage:

®Phase 3:

It is measured from the signal MPU_RST_OUT de-asserted to function
ew_relocate_yee() finished.

From the signal MPU_RST_OUT becoming high and to the last signal of
Flash_CS for function ew_selacate_spec() finished (the last signal Flash_CS rising
edge before ew_selocate_spec() finished). MPU read the 1% instruction to do simple
hardware initialization then U-boot starts and prepares to execute the first
function which access flash. Then the environment parameters of U-boot are
relocated.

®Phase 4:
It is measured after the function ew_selacate_spec() finished and before the

kernel image checksum verify starting.

®Phase 5:
It is measured from the kernel image checksum verify starting to copy
image to ram finished.
From the signal RS232_TX of function image checksum verify start to the
signal RS232_TX of function copy image to ram over. U-boot verifies the
checksum of kernel image. If the checksum is correct, then U-boot copies the

kernel image from the flash to system memory.
4.2.2.1 Case 1-Kernel Uncompress Image

®Phase 6:

It is measured from copy image to ram finished to the function

earup_before_Limnr() finished.
From the signal RS232_TX of function copy image to ram over to the signal

RS232_TX of function cleasup_before_Limux() finished. Boot-loader transfers the

control of system to Linux kernel.

4.2.2.2 Case 2-Boot-loader Uncompress Image
-19-

®Phase 6°:
It is measured from copy image to ram finished to uncompress kernel
image finished.
From the signal RS232_TX of function copy image to ram over to the signal
RS232_TX of uncompress kernel image finished. Boot-loader uncompress the

kernel image.

®Phase 7’:

It is measured from uncompress kernel image finished to the function
earap_before_Linux() Tinished.

From the signal RS232_TX of uncompress kernel image finished to the signal
RS232_TX of function cleamup_lefore_Limx() finished. Boot-loader transfers the

control of system to uncompressed Linux kernel.

-20 -

Phase 6'

x\x

“~__| Uncompress

Kernel
.

Phase 7'

\-\.

4.2.3 Kernel Stage

Peripheral
Reset
N
l Phase 3
env_relocate ,
_spec ()
i Phase 4
Image /
Checksum
Verify \\x
Phase 5
Y
| Copy Image
to Ram

]

{C'ase 2

L Case lj

!

Transter
Control to
Kemel

Transfer
Control to
Kernel

Figure 9: Boot-loader stage

Phase 6

There are three or four phases in the kernel stages (Figure 10). When the kernel

image is uncompressed at boot-loader stage, there are only three phases. When the

kernel image is uncompressed at the kernel stage, there are four phases in the

kernel stage:

4.2.3.1 Case 1-Kernel Uncompress Image

-21 -

®Phase 7:
It is measured from the function clessup_lefore _Limnr() finished to before the
uncompress kernel starting.
From the signal RS232_TX of function cleamup_ lefore_timnr() finished to the
signal RS232_TX of function Uncompress kernel start. Linux kernel gets the

controls and prepares to uncompress kernel.

®Phase 8:
It is measured from the uncompress kernel starting to the uncompress
kernel finished.
From the signal RS232_TX of function Uncompress kernel start to the signal
RS232_TX of function Uncompress kernel over. Linux kernel image is

uncompressed and prepare to start the kernel.

4.2.3.2 Case 2-Boot-loader Uncompress 1mage

®Phase 8’:
It is measured from=the function clessup lefere Laux() finished to before
it _lrnel.
From the signal RS232_TX" of function cleamup_ before_Linux() finished to before

aat_lemnel. Linux kKernel gets the controls and prepares to start the kernel.

®Phase 9:
It is measured from the uncompress kernel finished to before file-system
initialization/built.
From the signal RS232_TX of function Uncompress kernel over to the signal
RS232_TX of function File-system built/fill super start. Linux kernel
uncompress and execute routine start_kernel, Linux kernel doesn’t access the

flash until the routine mount_root.

®Phase 10:
It is measured from before file-system initialization/built to before Invoke
/sbin/init.

From the signal RS232_TX of function File-system built/fill super start to the
=22 -

signal RS232_TX of function File-system built/fill super over. Root File-system
is built by kernel.

Case 2 Case |
Transfer
Control to
Kernel \\
¥ Phase 7
Transfer y /
Control to Uncompress |
Kernel Kernel __
[;
Phase 8' Y v Phase 8
~_ | St |
Kernel '
Phase 9
h 4 L
File-system .
Build/Initial
Phase 10
¥ L
run_init_
process()

Figure 10: Kernel stage

4.2.4 User Space Stage

There are two phases in the user space stages (Figure 11):

®Phase 11:

It is measured from Invoke /sbin/init to before RC script start.
From the signal RS232_TX of function Invoke init to the signal RS232_TX
of function RC Script start. Linux kernel invokes the sysvinit tool: /sbin/init

then init_main started for user space and prepares to run RC Script.

-23-

®Phase 12:
It is measured from RC script start to shell prompt output finished.
From the signal RS232_TX of function RC Script start to RC Script starts

several daemons. Then RC Script is finished and shell prompt is enabled.

run_init
process()
' Phase 11
Run RC]
Script ‘
Phase 12
Shell Prompt

Figure 11: User Space stage

4.3 Impact Factors

In this thesis we would like to investigate the Embedded Linux boot process
and find the related factors of reducing boot time. According to the platforms
comparison and Linux boot procedure analysis , we induce that both hardware
factors, including processor frequency, memory and 1/O access speed, and
software factors, including OS Kkernel, drivers, subsystems selection and
compression algorithms, would affect the boot time. The major factors are as

following:

4.3.1 Hardware Factors

=24 -

1. Processor frequency: During boot process, there are greatly computing
power requirements and complexity instruction operations. So faster
processor frequency will help on the reduction of the boot time.

2. Internal cache: Increase the cache size will help on instruction operations in
the processor. Different kinds of internal cache will help on different
instruction operations.

3. 1/0 access speed: With more peripherals, faster 1/0 access speed will reduce
the peripherals initialization times.

4. Memory access speed: During boot process, there are huge mount of data
access requirements. There will be more reduction of boot time when faster
memory access speed is adopted.

5. Board specific hardware: Some board specific hardware will affect the
boot time. For example: reset timing requirements of different processors,
reset circuit design. If there are many peripherals supported by the processor,

then the initialization time of.processor will be taken longer.

4.3.2 Software Factors

1. Boot-loaders: Different versions of U-bgot have the different CFI drivers,
different coding structure and different features support. The difference will
affect the code size, flash access speed, and then will affect the boot time.

2. File-systems: There are two type file-systems for NOR flash: Read/Write
and Read Only. The different type of file-systems takes different
initialization times and built times.

3. Compression algorithms: Embedded systems are usually memory
constrained. How to improve and reduced memory usage is more important
for embedded system designer. Data compression [18] is the major method
to reduce the flash memory usage. There are many compression techniques
and which one has best compression ratio and fast decompression speed is
what system needed. We will have some short review of following
compression method: Gzip, Bzip2, LZMA. Then we have these algorithms
test results in Table 1. The experimental environment is on the PC.
® Gzip: Gzip is short for GNU zip, a GNU free software file compression

program. It is the most popular compression method of linux. It is not

-25-

the best compressor, but it has the faster decompressed speed. Linux
kernel, file-system, and most application support this compressor in
default.

® Bzip2: Bzip2 compresses most files more effectively than gzip, but it is
slower. It is also support by Linux kernel. But it need more memory
when decompress the data. For most embedded linux don’t support in
default.

® LZMA: LZMA provides high compression ratio and very fast
decompression, so it is very suitable for embedded applications. Its
compression ratio is higher than bzip2 and much higher than gzip but its
decompression speed is only higher than bzip2. Many cost-sensitive

embedded systems would use LZMA.

Table.3 Compression Algorithm Test

2 L g

29 2% | 22| F8

S 2 g ° 8 > 3

D G Y = C —~ =

S 8 o B & 3 3 2

N’ O N—r N ~ 6.

S S

GZIP 63:59% 117460 74694 5586
(-9) 52.96% 1902 1007 ol
Bzip2 70.84% 117460 83210 24854
(--best) 56.33% 1902 1071 354
LZMA 84.69% 117460 99473 8826
-7) 64.66% 1902 1230 193

4. Kernel version: There are two versions of Linux kernel: 2.4.xx and 2.6.xx.
The image size changed from 2.4 to 2.6 is increased. There are many new

features supported in version 2.6.xx.

- 26 -

Chapter 5

EXPERIENMENTS

In this chapter we discuss the experimental environments and how to design the
experiments for boot time analysis. Then the experimental results of each boot
phase are provided. At the end of this chapter is the analysis of the experimental

results.
5.1 Environments

The two platforms are used for the experiments. One is OMAP59120sk and
the other one is MT Creator PXA270. Because some factors of the boot time are

platform related, the factors of each platform are described below:
5.1.1 Factors of OMAP59120sk

In OMAP59120sk platform, laccording-to the design of chipset and software
supporting, the factors could be modified for boot time experiments are:
®Hardware factor

— CPU clock frequency: the range we used is 24, 48, 96, 192 MHz. The
maximum frequency is 192 MHz.

— Memory bus clock frequency: the range we used is 24, and 96MHz. Because
the chipset limitation, the maximum frequency is 96 MHz. The flash access
speed is fixed to 1/8 of memory clock frequency.

— Peripheral and LCD clock frequency: the range we used is 24, and 48MHz.
Because the chipset limitation, the maximum frequency is 48 MHz.

— Cache on/off: the internal I-cache and D-cache of OMAP5912 could be turn
on/off by software.

@ Software factor

— Boot-loader: U-boot 1.1.1 and U-boot 1.1.3 could be wused on

OMAP59120sk. Version 1.1.1 only could be used for kernel version 2.4.xx

and Version 1.1.3 could be used for kernel version 2.6.xx.

-27 -

— Kernel: Linux kernel version 2.4.20 and 2.6.15 are used for boot time
analysis.

— File-system: The file-systems used for root-fs of Linux are JFFS2, Cramfs
and Squashfs. JFFS2 is Read/Write file-system. Cramfs and Squashfs are
Read only file-system.

— Compression algorithm: Zlib and LZMA are different compression methods
used for Squashfs. But LZMA for Squashfs are only supported in the kernel
2.6.XX.

5.1.2 Factors of PXA270

In PXA270 platform, according to the design of chipset and software
supporting, the factors could be modified for boot time experiments are:
®Hardware factor

— CPU clock frequency: the range we used is 52, 104, 156, 208... and 520
MHz. The maximum frequency is 520 MHz.

— System bus clock frequency: the'range we used is 52, 104 and 208MHz.
Because the chipset limitation, the maximum frequency is 208 MHz.

— Memory clock frequency: the-range we used is 52, and 104MHz. The
memory access speed is fixedto-1/1 or 1/2 of system bus clock frequency.

— Peripheral and LCD clock frequency: the range we used is 26, and 104MHz.
Because the chipset limitation, the maximum frequency is 104 MHz.

@ Software factor

— Boot-loader: U-boot 1.1.2 and U-boot 1.1.3 could be used on PXA270.

— Kernel: Linux kernel version 2.6.15 is used for boot time analysis.

— File-system: The file-systems used for root-fs of Linux are JFFS2, Cramfs
and Squashfs. JFFS2 is Read/Write file-system. Cramfs and Squashfs are
Read only file-system.

— Compression algorithm: Zlib and LZMA are different compression methods
used for Squashfs. But LZMA for Squashfs are only supported in the kernel
2.6.xx. Zlib, Bzip2 and LZMA could be used for kernel image compressed

and de-compressed by U-boot.

-28 -

5.2 Factors for Boot Phase

According to the Table 4, we know different factors changed could lead to
obvious boot time changed. But more important is how these factors change affect

the time of each phase.

Table.4 Total boot Time Reduction with different factors modification

[] OMAP5912 " PXA270
Factors Boot time (ms) Boot time (ms)
CPU Frequency (ﬁﬁ% 43000/28967 (5|\2/{2HOZE; 24981/18630
Memory Speed (ﬁﬁ% 28886/10567 Z\Z/FHOZ% 18630/13000
RW FS/RO FS 10567/5475 13000/9017
ZIib/LZMA 5475/8015 9017/10141

According to the view of:chapter 3 and analysis of chapter 4, the factors for

each phase of boot time on:both platforms could-be assumed below:

®Phase 1: The time for the. MPU reset. It is related to the chipset reset time
requirement and related hardware reset-circuit design on each platform.

®Phase 2: The time for the MPU to reset boot device and peripherals. It is only
related to chipset specification. How long reset signal will be asserted by the
reset_out pin of MPU.

®Phase 3: The time for U-boot doing simple hardware initialization and
environments parameters relocated. It is related to MPU clock frequency,
memory clock frequency, internal cache on/off and boot-loader version.

®Phase 4: It is related to the memory clock frequency and internal cache on/off.

®Phase 5: It is related to the MPU clock frequency, memory clock frequency,
internal-cache on/off, boot-loader version, kernel version, which file-system is
supported and which compression algorithm is used.

®Phase 6: It is related to memory clock frequency and internal cache on/off.

®Phase 7: It is only related to memory clock frequency

®Phase 8: It is related to the MPU clock frequency, memory clock frequency,

kernel version, which file-system is supported and which compression algorithm

-29-

is used.

®Phase 6°: In PXA270 platform, if the kernel will be decompressed by U-boot,
then it is related to MPU clock frequency, memory clock frequency, which
file-system is supported and which compression algorithm is used.

®Phase 7°: In PXA270 platform, if the kernel will be decompressed by U-boot,
then it is only related to memory clock frequency.

®Phase 8’: In PXA270 platform, if the kernel will be decompressed by U-boot,
then it is only related to system bus clock frequency.

®Phase 9: It is related to system bus/memory clock frequency, internal cache
on/off and kernel version.

®Phase 10: It is related to the MPU clock frequency, system bus/memory clock
frequency, internal-cache on/off, kernel version, which file-system is supported
and which compression algorithm is used.

®Phase 11: It is related to the MPU clock frequency, memory clock frequency,
internal-cache on/off, kernel version; which file-system is supported and which
compression algorithm is used.

®Phase 12: It is related to the MPU ‘clock frequency, memory clock frequency,
internal-cache on/off, kernel version, which file-system is supported and which

compression algorithm is Gsed.

5.3 Experiments Results

According to the factors in 5.1, there are many experiments done by different
factors modifications. According to the experiments, the major factors related to

boot time of each platform is as following:

5.3.1 OMAP59120sk

Firstly the experiments are done under the environment of U-boot 1.1.1 and
Kernel 2.4.20.

Refer to Table 5 and Figure 12, time period of phase 3, 5, 8, 10, 11, and 12 are
become much shorter with higher CPU clock frequency. These phases need more

computing power than other phases.

-30 -

Table.5 MEM: 24 / FS: JFFS2

Factor Time (ms)
CPU Freq. P3 P5 P8
96 297.14 2208.49 1802.29
24 487.03 2976.77 4741.45
CPU Freq. P10 P11 P12
96 696.26 2262.68 461.62
24 1304.75 5602.75 1155.35

OMAP5912 (U-boot 1.1.1 ; Kernel 2.4.20 ; Mem 24MHz ; JFFS2)

6000
5602.75
5000 A4S B CPU: 24 MHz [—
= 4000 W CPU 96 MHz |
g 2976.77
T 3000
= 2208.49 1802 25 2262.68
2000 1304.75 1155.35
487,03 —1696.26 =
1000
297.14 - 461.62
0 ’—- I ! ! ! !
P3 Ps P8 P10 P11 P12
Figure 12: CPU Frequency modified on OMAP5912

Refer to Table 6 and Figure 13, time period of phase 3, 4, 5, 6, 7, 8, 9, 10, 11,
and 12 are all became much shorter with higher memory clock frequency. Except
the phase 1 and 2 are related to board specific hardware, the other phases are

related to functions execution. So increasing the memory clock frequency could
decrease the time of those phases.

Table.6 CPU: 96 / FS: JFFS2

Factor Time (ms)

MEM P3 P4 P5 P6 P7
96 123.66 94.43 744.34 3.26 12.59
24 297.15 300.4 | 2208.79 9.81 50.15

-31-

MEM P8 P9 P10 P11 P12
96 1188.9 | 462.65 | 220.95 895.01 | 180.18
24 1802.16 | 742.72 696.2 2274.66 | 461.7

OMAP35912 (U-boot 1.1.1 ; Kernel 2.4.20 ; CPU 96MHz ; JFFS2)

2400
2000
w 1600
: 1200

Time(ms)
=
= =
= = =

220879 74 66
|| OMem: 24 MHz ||
B Mem: 96 MEHz I8LE.L6
744 34 895.01
29715 3004 4617
E23.66’_E,_43 281 206 50.1512.59 180,
P3 P4 P5 P6 P7 P8 P9 P10 P11 Pi2
Figure 13: Memory speed modified on OMAP5912

Refer to Table 7 and Figure 14 and 15, time period of phase 10, 11, and 12 are

much shorter when change from JFES2.to.Cramfs and Squashfs. The initialization

and built time of Read only file-system is much fast than the time of Read/Write

file-system. The memory ‘clock frequency has-much more influence than CPU

clock frequency. Because initialization and built of file-system need to access

memory bus more frequently.

Table.7 Different File-systems

Factor Time (ms)

CPU/MEM FS type P 10 P11 P12
JFFS2 220.99 895.06 180.27

96/96 Cramfs 9.43 630.83 | 167.92
Squashfs 7.3 661.98 79.34

96/24 JFFS2 696.2 2274.66 461.7
Cramfs 32.52 1621.2 432.48

Squashfs 24.28 1836.34 | 217.62

-32-

e

OMAP3912 (U-boot 1.1.1 ; Kernel
2.4.20 ; CPU 96MHz ; Mem 24MHz)

2500 bf'-:'h
O JFF=2 A
1000 L B Cramnfs | 7 M, nmcﬂr")b(
= O Squashfs iy
—_ By
o
= 1500
il
z
o= 1000 5
f= o0
300 —
a¥ %
S
n}ﬁv Bes
{} ﬁp 1]
P10 P11 P12
Figure 14: . File-systems changed on OMAP5912
OMAPS5912 (U-boot 1.1.1 ; Kernel
2.4.20 . CPU 96MHz . Mem 96MHz)
1000 &
O JFFE2 o
300 H W Cramnfs i e
O Squashfs oo
— o ©
= 600
el
z
ﬁ 400 5 ~
> @QTP d&ﬁp x
200 a ﬁ?}”_;
e
il I
O 1'*'." | 1
P10 P11 P12

Figure 15: File-systems changed on OMAP5912

-33-

Secondly the experiments are done under the environment of U-boot 1.1.3 and
Kernel 2.6.15.

Refer to Table 8 and Figure 16, time period of phase 3, 5, 8, 10, 11, and 12 are
become much shorter with higher CPU clock frequency. These phases need more

computing power than other phases.

Table.8 MEM: 24 / FS: JFFS2

Factor Time (ms)
CPU Freg. P3 P5 P8
96 243.01 2650.52 2745
24 432.64 3803.02 7500.4
CPU Freq. P10 P11 P12
96 13137.3 3853.2 304.2
24 18105.4 5799.9 442 .4

OMAP3912 (U-boot 1.1.3 ; Kernel 2.6.15 ; Mem 24MHz ; JFFS2)

21000
18105.4

18000 O CPU: 24 WHz [
fglﬁooo 131054 B CPU: 96 MHz [
= 12000
=
= 9000
i 6000 a4 5799.9

3

3803.02 2650.52 2745 3853.2
3000 f‘ ===
o 432.64 3410} . . . 4424 304.2
P3 |) P8 P10 P11 P12

Figure 16: CPU Frequency modified on OMAP5912

Refer to Table 9 and Figure 17, time period of phase 3, 4, 5, 6, 7, 8, 9, 10, 11,
and 12 are all become much shorter with higher memory clock frequency. Except
the phase 1 and 2 are related to board specific hardware, the other phases are
related to functions execution. So increasing the memory clock frequency could
decrease the time of those phases.

-34-

Table.9 CPU: 96 / FS: JFFS2

Factor Time (ms)

MEM P3 P4 P5 P6 P7
96 110.12 94.13 950.82 3.26 11.33
24 243 299.59 2650.4 9.84 44.98

MEM P8 P9 P 10 P11 P12
96 1878.35 1654.19 4458.2 1280.1 91.3
24 2686.5 5644.3 13138 3851.9 304.6

OMAP5912 (U-boot 1.1.3 ; Kernel 2.6.15 . CPU 96MHz ;, JFFS2)

14000
12000

)

—
=]
[=]
(=]
(=]

3000
6000
4000
2000

Time(ms

| B Mem: 24 MLz]
|| B Mem: 96 MHz
56443
] 44582
38519
S Zﬁpﬁzn_ 2Pis7e4 1654 12801
i0g . coey | %306, 13 N | Ml POES
P3 P4 Ps P6 P7 P8 P9 P10 P11 P12
Figure 17: 'Memory speed modified on OMAP5912

Refer to Table 10 and Figure 18 and 19, time period of phase 10 and 11 are

much shorter when change from JFFS2 to Cramfs and Squashfs. The initialization

and built time of Read only file-system is much fast than the time of Read/Write

file-system. The memory clock frequency has much more influence than CPU

clock frequency. Because initialization and built of file-system need to access

memory bus more frequently.

Table.10 Different File-systems

Factor Time (ms)
CPU/MEM FS type P 10 P11
JFFS2 4457.3 1280.45
96/96 Cramfs 124 863.8
Squashfs 10.17 737.86

-35-

)

Time(ms

Time(ms)

96/24

JFFS2 13137.9 3851.9
Cramfs 48.8 2866.6
Squashfs 41.95 2374.15

OMAP5912 (U-boot 1.1.3 ; Kernel

2.6.15 . CPU 96MHz . Mem 2 4NHz)
14000 5
) &”?. OJFFEZ
12000 N W Cramfs [
10000 O Seuashis
8000 =
“ G
i et W
1000 — o
2000 H = —.—'k o s
oo N Gor .9
{:} b%j b’}. 1 1 ﬁl}_il
F10 F11 P12
Figure 18: "File-systems changed on OMAP5912
OMAP35912 (U-boot 1.1.3 ; Kernel
2.6.15 . CPU 96MHz ;| Mem 96NHz)
5000 g
b o JFFS2
MW Cramnfs
4000 O Squashfs [|
3000 —
2000 #}?‘9
"‘:"’ b aé:'
IS
1000 [—
B W e L
F10 F11 P12

Figure 19:

File-systems changed on OMAP5912

-36 -

Refer to Table 11 and Figure 20, 21 and 22, time period of phase 10 and 11 are
much longer when changes compression algorithm of Squashfs from zlib to 1zma.
But with more fast CPU clock and memory clock frequency, the time would

become shorter.

Table.11 Compression Algorithm of File-system and CPU clock

Factor Time (ms)
CPU/MEM FS type P10 P11

Squashfs(zlib) 10.17 | 737.86
96/96

Squashfs(lzma) | 24.01 | 3242.1

Squashfs(zlib) 41.95 | 2374.2
96/24

Squashfs(lzma) | 63.55 | 4545.4

Squashfs(zlib) 7.9 516.91
196/96

Squashfs(lzma) | 15.63 | 1752.37

OMAPS912 (U-boot 1.1.3 ; Kernel
2.6.15 ; CPU 96MHz ; Mem 2 4MHz)

At _ 4545 4
E Zlib(Squashfs)
4000 = B LZMA(Squashfs)
A
o
= 3000
‘g 23742
- 2000
H
1000
6395
0 41.95 ,
P10 F11

Figure 20: Compression algorithm of Squashfs changed on OMAP5912

-37 -

OMAPS5912 (U-boot 1.1.3 ; Kernel
2.6.15 ; CPU 96MHz ; Mem 96MHz)

3500

32421
3000 - O Zlib(Bquashfs)
- 2500 M B LZMA(Squashis)
E 2000
=¥
£ 1500
H
1000 737 56
200 24.01
0 10.17 =™ ,
P10 P11

Figure 21: Compression algorithm of Squashfs changed on OMAP5912

OMAPS912 (U-boot 1.1.3 ; Kernel
2.6.15 ; CPU 196MHz ; Mem 96MHz)

2000
M Z1ib(Squashfs) 1752 37

1500 H BLZMA(Equashis)
2
b]
=
P
E 1000
a z 5216.91

500

15 63
0 7.9 |
P10 P11

Figure 22: Compression algorithm of Squashfs changed on OMAP5912

The effects of different version of U-boot and kernel are list in Table 12, Figure
23 and Table 13, Figure 24.

Refer to Table 12, the new version of Linux kernel need more time at phase 5, 8,
9, 10, and 11. The version 2.6.xx support more new features than 2.4.xx. Even the
same application is also changed to new revision. So kernel image size will much

- 38 -

bigger than 2.4.xx. Then the time of kernel decompression take much longer. New
driver support, or more features of device s initialization also take more time. But
at phase 12 2.6.xx kernel take shorter time to run the same RC script and enable
the same shell than 2.4.xx kernel.

Table.12 U-boot: 1.1.3/ FS: JFFS2
Factor Time (ms)
CPU/MEM | Kernel P5 P8 P9
2420 | 632.71 | 1188.89 | 462.61
2.6.15 | 950.82 | 1878.35 | 1654.19
CPU/MEM | Kernel P10 P11 P12
24.20 | 187.78 838.47 175.85
2.6.15 | 4458.19 | 1280.05 91.3

96/96

96/96

OMAPS5912 (U-boot 1.1.3 ; CPU 96MHz ; Mem 96MHz; JFFS2)
5000

. 445519

4000 O Kernel: 24.20 |
— 3500 W Eernel: 2.6.15 —
5’3000
E 2000 1878.35
.= 2000 : IEE N e e

1500 1arall

000 950,52 11868 838.47

EEA) A6261 (57 73
%00 : TFas G
1}] 1 1 1 1 1 .
Ps Ps PO P10 P11 ri2

Figure 23: Kernel version changed on OMAP5912

Refer to Table 13, the new version of U-boot shorten the time of phase 3, 5, and
10. The version 1.1.3 optimization the initialization of U-boot and improve the
image verification and movement methods.

Table.13 Kernel: 2.4.20 / FS: JFFS2

Factor Time (ms)

CPU/MEM | U-boot P3 P5 P10
111 124.56 744.32 220.99
1.1.3 110.93 632.64 187.62

96/96

-39-

111 90.8 612.08 176.36
113 77.22 500.57 141.86

192/96

OMAPS212 (Kemel 2.4.20 ; CPU 96MHz ; Mem 960MHz:; JFFS2)

&00 7432
700 32 fid E-boot: 111

EJ-boot:1.13

=
[
=

]
=

-
=

Time(1ns)
LIPS R A
=
=

220.99 18762

AUl T3 56 110,03

—
]
=

=

P3 PS P10
Figure 24: U-boot version changed on OMAP5912

5.3.2 PXA270

In the PXA270 platform, the experiments are done under the environment of
U-boot 1.1.3 and Kernel 2.6.15.

Refer to Table 14 and Figure 25.and 26, time period of phase 8, and 11 are
become much shorter with higher CPU clock frequency. These phases need more

computing power than other phases.

Table.14 FS: JFFS2

Factor Time (ms)
SysBus/MEM | CPU Freq. P8 P11
520 673.20 524.70
208/104
208 1324.75 779.85
208 1600.4 1288.1
52/52
52 4879.9 2578.75

=40 -

PXA270 (U-boot 1.1.3 ; Kemel 2.6.15 ;
Sysbus/Mem 208/104 WMHz ; JFFS2)

1500
132475 ECPU: 208 MHz

- 1200 W CP1: 520 MHz
[* 0]
=
% 0 R 143.85
E S0 L2477
-

400

I:I |

| P11

Figure 25: CPU frequency modified on PXA270

PXA270 (U-boot 1.1.3 ; Kemel 2.6.15 ;
Sysbus/Mem 52/52 MHz . JFFS2)

0 b m CPIT: 52 M-
i =

4500 R
_ W CPU: 202 MHz
£ 3600
-, 2578 75
; 2700
= 16004
B~ 1300 1785 1

I:I |
PS P11

Figure 26: CPU frequency modified on PXA270

-41 -

Refer to Table 15 and Figure 27, time period of phase 9, 10, 11, and 12 are all

become much shorter with higher memory clock frequency. Although most phases

need frequently memory access, only these phases have much improvement by

higher system bus clock frequency.

Table.15 CPU: 208/ FS: JFFS2

Factor Time (ms)
SysBus./Mem P9 P10 P11 P12
208/104 1980.6 | 3736.25 | 779.85 | 115.95
52/52 2710.75 | 7802.05 | 1288.1 | 163.2

PXA270 (U-boot 1.1.3 ; Kernel 2.6.15 ; CPU 208 MHz ; JFFS2)

9000

7802.05

8000 | maysBus: 52 MHz

7000 H B 2ysBus: 208 MHz

2 6000

= 5000
T

R
1
b
e
13
L

£ 4000

= 3000
2000 1600.4

1000

1288.1
17798

P7 P8

04 11980.6
132075
575 .
0 285 , ,

P10 P11

Figure 27: System bus speed modified on PXA270

g
- - 163.2 115.95

P12

Refer to Table 16 and Figure 28 and 29; time period of phase 10 is much shorter

when changing from JFFS2 to Cramfs and Squashfs. The initialization and built

time of Read only file-system is much fast than the time of Read/Write file-system.

The CPU and memory clock frequency have only few influence on phase 10 with

different file-system type.

Table.16 File-system and CPU clock

Factor Time (ms)
CPU/SysBus FS type P10
JFFS2 3736.25
208/208 Cramfs 16.78
Squashfs 6.46

-42 -

JFFS2 3618.55
520/208 Cramfs 15.6
Squashfs 5.24

JFFS2 3836.05
520/104 Cramfs 17.54
Squashfs 6.38

PXA270 (U-boot 1.1.3 ; Kernel 2.6.15 ;,
CPU 208MHz ; Sysbus/Mem 208/104NHz)

4000 h.-,;j
cnn LR mIFFS2 | |
3500 B MW Crarnfs
3000 O Squashfs |
S 2500 —
T A ||
= 2000
= 1500
= 0P oD
1000 AR
Q 4 e
500 [e Sl
0 B [N o = —
P10 F11 P12
Figure 28: " File-systems changed on PXA270
PXA270 (U-boot 1.1.3 ; Kemnel 2.6.15;,
CPU 520MHz ; Sysbus/Mem 208/104MHz)
4000 &
con L— 4 mIFFE2 |
3300 N B Cramfs
3000 O Squashfs |
S 2500 —
E ,-'lzl'{}{) —
= 1500 =
ooy B
1{}{}{} | T e l:}}
- ara @ o nlo
:"‘:”j | ‘jru \q: Q.’:\' ‘;I:-_-,ID;}
{) \ ‘_“ﬁP | | D} C}
P10 P11 P12
Figure 29: File-systems changed on PXA270

-43-

Refer to Table 17 and Figure 30 and 31, time period of phase 10 and 11 are
much longer when changes compression algorithm of Squashfs from zlib to Izma.
But with more fast CPU clock and memory clock frequency, the time would
become much shorter. Fast CPU clock frequency will let LZMA algorithm more

faster and more similar to zlib and Cramfs.

Table.17 Compression Algorithm of File-system and CPU clock

Factor Time (ms)
CPU/SysBus FS type P 10 P11

Squashfs(zlib) 6.46 | 623.33

208/208
Squashfs(lzma) | 13.46 | 1724.35
Squashfs(zlib) 5.24 | 499.75

520/208
Squashfs(lzma) 8.28 | 906.45
Squashfs(zlib) 6.38 | 577.07

520/104
Squashfs(lzma) 13.46 | 960.09

PXA270 (U-boot 1.1.3 ; Kernel 2.6.15 ;
CPU 208NMHz ; Svsbus/Mem 208/104NHz)

2000
B Zlib(Bquashfs) 1724.35

1500 — BLZIMA(Squashis)
Ea
2]
=
'
E 1000
;' £23.33

500

1348
0 ©.46
P10 P11

Figure 30: Compression algorithm of Squashfs changed on PXA270

-44 -

PXA270 (U-boot 1.1.3 ; Kernel 2.6.15 ;
CPU 520NMHz ; Sysbus/Mem 208/104MHz)

1200
1000 E Zlib(Squashis) 05000
B LZMLASquashis)

’:TE-? 800
Y a7 O
ﬁE-‘ 600
= 400

200

13468
. 6.38 ,
F10 P11

Figure 31: Compression algorithm of Squashfs changed on PXA270

5.3.3 Others

From first instruction in-the boot-loader to the end of shell prompt output, all
the function executions need to-using_internal caches of processor. In these
platforms, only on OMAPS5912. it supports-enable/disable the internal I-cache or
D-cache by software configurations. So referring to Figure 32 and 33, in the
U-boot stage only I-cache enabled would reduce the boot time of the boot-loader
stages. In the kernel and user space stage, I-cache or D-cache enabled could
reduce the boot time of these two stages, but D-cache affect the boot time more

than I-cache. Both caches enabled could reduce most boot time.

OMAP5912 (U-boot 1.1.3 ; CPU 196 MHz ; Mem 96MHz ; JFFS2)

3500 3192.22

3000 O Cache I orfAll off ——
,;\3500 B CacheTon/allon —
& 2000
[-F]
£ 1500
= 930.96

1000 ==¢66.22

500

X _loos ET s . 1655 s
P3 P4 P5 Pe

Figure 32: Caches enable/disable in the boot-loader stage

- 45 -

OMAPS5912 (Kernel 2.6.15 ; CPU 196 MHz

. Mem 96MHz ; JFFS2)

o 5,
30000 &
25000 A BAloff MIon ||
OD on OAll on
’E‘fzoooo 5
‘9515000
= 10000
S q‘b('l B,
5000 3 .
0 . . T L& &8s
P10 P11 P12
Figure 33: Caches enable/disable in the kernel and user space stage

According to the CPU/memory speed modification on OMAP5912, there is an
optimization CPU/memory speed ratio for the boot time reduction. Refer to Table
18, 19 and Figure 34, 35, the CPU/memory speed ratio kept 4:1 could lead to most
influence of the boot time reduce.

Table.18 CPU/Memaory-speed ratio on OMAP5912

CPU/MEM

Ratio

P3

P4

P5 P6

P8

P9

P10 P11 P12

Total

24/24 -> 48/24

1-->2

30.4%

14.7%

20.9% | 23.3%

44.2%

9.3%

18.3% | 25.4% | 21.6%

22.8%

48/24 -> 96/24

2-->4

19.3%

6.1%

11.9%1-5.6%

34.4%

3.3%

11.1% | 11.0% | 12.3%

12.8%

96/24->192/24

4-->8

4.9%

0.5%

7.3% | 2.5%

20.0%

1.4%

50% | 55% | 7.7%

5.9%

Table.19 CPU/Memory speed ratio on OMAP5912

CPU/MEM

Ratio

P3

P4

P5 P6

P8

P9

P10 P11 P12

Total

24/24 -> 48/24

1-->2

30.4%

14.7%

20.9% | 23.3%

44.2%

9.3%

18.3% | 25.4% | 21.6%

22.8%

24/24 -> 96/24

1-->4

43.8%

19.9%

30.3% | 27.5%

63.4%

12.2%

27.4% | 36.6% | 31.2%

32.6%

24/24->192/24

1-->8

46.6%

20.3%

35.4% | 29.4%

70.7%

13.5%

31.1% | 37.2% | 36.5%

36.6%

- 46 -

OMAPS59212 (U-boot 1.1.3 ; Kernel 2.6.15 ; JFFS2)
50%

453, —p—CFUTem: 1 -= 2
~—=CPUMem: 2 -> 4 ﬂ
- 0% CPU/Tlem: 4 -= & / \
s 35% F\
g a0 / \
&
S % T
E 15% \/ / i\ Vd
10% \ .p'.‘\ / ._.'__'_—.__'_.
T S N
0% L L ! ! ! ! L L !
P3 P4 Ps Po Ps PY P10 P11 P12 Total
Figure 34: CPU/Memory speed ratio on OMAP5912
OMAP5912 (U-boot 1.1.3 ; Kemel 2.6.15 ; JFFS2)
o —p—CPUTlem: 1 -> 2
T0% | m—CPUMem 1> 4
= 6% CPUMem: 1 -> 8 /’\
@ 50%
i -
&
2 s _ ‘ \\ //L ‘\I——’—‘.
L]
& oo . o
10% /
0% : : : : :

P3 P4 PS5 P66 PS PO P10 PIl P12 Total
Figure 35: CPU/Memory speed ratio on OMAP5912

On PXA270 platform, kernel image uncompressed could be done by the U-boot.
Refer to Figure 36 and 37, the z-lib uncompressed at the kernel stage is more fast
than other uncompressed algorithm at the U-boot stage. But LZMA algorithm has
the highest compression ratio. If the system has the storage limitation, LZMA is a

better choice for the kernel compression algorithm.

-47 -

PXA270 (U-boot 1.1.3 ; Kernel 2.6.15 ; CPU 520MHz ; Sysbus/NMem 208/104MHz)

120000 T
| | ETIncompress

e Kernel Image
’—é? 80000
‘g 60000
40000 Ao

20000 10343
2140
0 | —— |
Zlib(Kernel) Zlib(U-boot) Bzip2(U-boot) Lzma(U-boot)
Figure 36: Kernel image uncompressed time of different algorithms

70.00
60.00
50.00
40.00
30.00
20.00
10.00

0.00

Compression Ratio (%)

Figure 37:

PXA270 (U-boot 1.1.3 ; Kernel 2.6.15 ; CPU 520MHz ; Sysbug/Mem 208/104MHz)

53.01

53.42

56.82

65.17

Zlib(Kernel)

5.4 Analysis Results

Zlib(U-boot)

Bzip2(U-boot) Lzma(U-boot)

Compression ratio of different compression algorithms

The factors, no mater hardware or software, all have influence on some phases

in the boot times. But at some phases some factors only have minor influence.

With those changes can’t have many improvement of boot time reduction. So

according to the section 5.3, there are some major factors which lead to great

improvements at some phases.

The experiments are done on OMAP59120sk and PXA270 platforms. Both
platforms have different architectures.

OMAP5912 have great improvement in boot time when modify the CPU and

memory clock frequency. But PXA270 only have improvement at fewer phases

when modify the CPU and memory clock frequency.

-48 -

Different file-system types only major affect the phase 10, 11, and 12 of boot
time in both platforms. When it is using kernel 2.6.15, the time phase 12 don’t
affect by different file-system types. But kernel 2.4.20 will. Because the
architectures are different, the higher CPU and memory clock frequency could get
great improvement in phase 10, 11, and 12 with different file-systems type on
OMAP5912 platform. But on PXA270 platform those two factors modifications
don’t affect such more times of phasel0, 11, and 12 when using JFFS2, Cramfs
and Squashfs.

Compression algorithm could be change at both the kernel image and
file-systems. But the kernel image with different compression algorithm only
could be used at U-boot on PXA270 platforms. The decompression speed is very
slow under U-boot stage. When using LZMA compression algorithm for the
Squashfs, the times will be longer than original one using zlib. But when the
system has the powerful processor, the Squashfs with LZMA algorithm could
almost reach the same time as original with zlib algorithm.

Because only OMAP5912 could switch. the-internal cache on/off, the results of
experiments are that only I-cache affects.the time of U-boot and both I-cache and
D-cache affect the time of the Kernel.

When changing to the new version Kernel-and U-boot on OMAP5912 platform,
the new version kernel need more time for boot-up and new version U-boot need
less time for boot-up. The kernel version 2.6.15 support more features by default
and enhance the features from old version 2.4.20. So the large size of image also
affect the boot time of the boot-loader. The U-boot version 1.1.3 optimizes the
initialization process of U-boot and improves the methods of verification and
movement of kernel image.

Boot time is related to the system architecture, software factors, hardware
factors and related peripherals. So according to the analysis at section 5.4.3 and
experiments results of section 6.3, there are some conclusions of this chapter:

OMAP5912, with Dual-core architecture, have more flexible bus architectures
so the faster CPU and memory clock frequency could have great improvement in
boot time. But after the frequency ratio of the CPU and the memory bus over 4:1,
the improvement will slow down. Because of the flexible bus architectures, when
using different type of file-systems, the modification of CPU and memory still

could improve the boot time. Dual-core architecture also separates the peripherals
=49 -

into two groups and this will reduce the initialization of boot time.

PXA270, with single-core architecture, major use system bus for all
communication between processor and peripherals. So even using higher CPU
and memory clock frequency, the improvements are limited. When it is at the
phase needing frequently peripherals access, the boot-up speed is bounded by the
bus architecture. Even using powerful single-core processor, there are many
peripherals needed to be initialized by the processor. So it needs more time for
booting up the system.

The kernel image configurations of these two platforms are all using the default
configuration of the Linux kernel. But these two platforms supporting different
peripherals and default inserted different device drivers. So the Kkernel
initialization time at the kernel stage will much different of these two platforms.
Therefore in the thesis it is more focused on the factors related to each phases.

-50 -

Chapter 6

CONCLUSION

More and more multimedia device are developed. The trend is using open
source Linux kernel as system operating system. The boot time of such device are
become longer and longer. So in this thesis we use two platforms, OMAP5912
and PXA270, to analysis the Linux system boot time. Because Linux is not a
real-time OS, it needs extra DSP core or one more powerful processor to handle
many real-time applications. We choose one Dual-core platform and on powerful
single-core platform as our experimental platforms. Then we modify the hardware
and software factors of boot time to see which factors play a major role in the boot
time and the relationship between hardware and software factors.

According to the architecture analysis‘and the experimental results, we found
that Dual-core architecture has benefits to ‘reduce the boot time of systems.
Dual-core has more flexible bus architectures and separates the peripherals into
two groups to reduce the-initializationttime: of boot-up. The hardware factors
improvements in Dual-core platform have" better impact on software factors
change.

According to the boot procedures analysis and experimental results, we could
know that the boot procedures are most related to the memory device access.
Because all hardware related assembly code, software functions and device
drivers are needed to execute between the main processor and memory devices.
The total boot times of the embedded Linux system are most bounded by the
memory bus. However the platform selection is usually restricted, so how to
achieve the boot time optimization under limited environments is more important.

In the thesis we point out which factor has major influence on which phase.
When you have a different embedded Linux system for your application, but some
factors are fixed. For example CPU frequency is not higher, memory size is
limited, or new kernel version is chosen, we could focus on the phases which is
major bounded by these factors, such as to lower the CPU usage, to choose the

higher compression ratio but fast compression algorithm, or remove the unused

-51-

functions in the new kernel version to achieve the boot time optimization.

-52 -

Chapter 7

Future Work

We already know some factors are the major factors of the boot times. But the
experiments of these factors are also limited by the platforms we chosen. Except
these factors, we’ll try to analysis the influence of the MMU supported and
different compiler modes.

The boot procedures should be also related to the MMU supported or not. The
MMU supported should have the better memory utilization and easier software
programming. But if the systems boot up phases need less memory requirements
or not bounded by the memory, MMU supported or not should not serious affect
the boot times. When the systems boot up need large memory requirements, the
MMU supported should benefit:the boot time.of memory bounded phases.

Using different compiler-modes to supports the 32-bit ARM or 16-bit Thumb
instruction sets, it could provide the user to trade off between high performance
and high code density so it-will also affect the boot time of the systems. It could
reduce the code size of user application program if supporting Thumb instruction
in the kernel. But these modifications may affect the existing software module

execution and let special 3" party applications unstable.

-53-

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

REFERENCES

The Consumer Electronics Linux Forum, “Kernel Execute-In-Place,”
http://tree.celinuxforum.org/CelfPubWiki/Kernel X1P

Jimmy Wennlund, “Next Generation Init System — InitNG,”

http://www.initng.org/

Keun Soo Yim, Jihong Kim, and Kern Koh, “A Fast Start-Up Technique for
Flash Memory Based Computing Systems,” Proceedings of the ACM
Symposium on Applied Computing, 2005

Tim R. Bird, “Methods to Improve Boot Time in Linux,” Proceedings of the
Ottawa Linux Symposium, Sony Electronics, 2004

Linus Torvalds, “The Linux Kernel Archives,” http://www.kernel.org/

Wolfgang Denk, “Das U-Boot - Universal Bootloader,*
http://sourceforge.net/projects/u-boot/

Rob Landley, “BusyBox - The!Swiss Army-Knife of Embedded Linux,”
http://www.busybox.net/

Alessandro Rubini, Jonathan Corbet;““Linux Device Drivers, Second
Edition,” O'Reilly Media; In¢., 2001

Texas Instruments, “OMAP5912 Applications Processor (Rev. E),”
http://www-s.ti.com/sc/ds/omap5912.pdf

[10] Texas Instruments, “OMAP5912 Multimedia Processor OMAP3.2 Subsystem

Reference Guide (Rev. B),”
http://www-s.ti.com/sc/psheets/spru749b/spru749b.pdf

[11] Texas Instruments, “OMAP5912 Applications Processor Silicon Errata (Rev.

1),” http://focus.ti.com/lit/er/sprz209i/sprz209i.pdf

[12] Intel, “PXA27x Processor Family Developer's Manual,”
[13] Intel, “PXA27x Processor Family EMTS,”
[14] Intel, “Intel XScale Core Developer's Manual,”

[15] Intel, “PXA27x Processor Family Specification Update,”

[16] Catherine Dodge, Cynthia Irvine, and Thuy Nguyen, “A Study of

Initialization in Linux and OpenBSD,” ACM SIGOPS Operating Systems
Review, Vol. 39, Issue 2, pp. 79-93, April 2005

-54-

[17] Alessandro Rubini, “Kernel Korner: Booting the Kernel,” Linux Journal
\Volume 1997, Issue 38es

[18] Kingsley Morse Jr., “Compression Tools Compared,” Linux Journal Volume
2005, Issue 137

[19] The Consumer Electronics Linux Forum, “Kernel Function Trace,”

http://tree.celinuxforum.org/CelfPubWiki/KernelFunctionTrace

[20] The Consumer Electronics Linux Forum, “Printk Times,”
http://tree.celinuxforum.org/CelfPubWiki/Printk Times

[21] Don Libes, “Exploring Expect,” O'Reilly Media, Inc., 1994

[22] ARM Limited., “ARMOYEJ-S Revision r1p2 Technical Reference Manual,”
http://www.arm.com/pdfs/DDI10222B_9EJS rip2.pdf

[23] Palm Inc., “Palm Tungsten E2 Datasheet,”

http://www.palm.com/us/products/handhelds/tungsten-e2/tungsten-e2_ds.pdf
[24] Chih-Chien Yang, “An Empirical Analysis of Embedded Linux Kernel 2.6.14 to
Achieve Faster Boot Time,” Master: Thesis, National Chiao-Tung University, 2006

[25] Sony, “Sony Cyber-shot:series BSC product specification,”
http://www.sonystyle.com.tw/intershoproot/eCS/Store/en/html/spec/dsc_spec.html

[26] L.-P. Chang and T.-W.-Kuo, *An Efficient Management Scheme for Large-Scale
Flash-Memory Storage Systems,” In Proc.-of the ACM Sym. on Applied
Computing (SAC), pp. 862-868, 2004

[27] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A Space-Efficient Flash
Translation Layer for CompactFlash Systems,” IEEE Trans. on Consumer
Electronics, Vol. 48, No. 2, pp.366-375, 2002

[28] M. Wu and W. Zwaenepoel, “eNVy: A Non-Volatile, Main Memory Storage
System,” In Proc. of the ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLQOS), pp. 86-97, 1994.

[29] D. Woodhouse, “JFFS: The Journaling Flash File System,” In Proc. of the Ottawa
Linux Symposium (OLS), RedHat Inc., 2001

[30] Aleph One Company, “The Yet Another Flash Filing System (YAFFS),”
http://www.aleph1l.co.uk/yaffs/

[31] LILO (The Linux Loader), http://freshmeat.net/projects/lilo/

[32] GRUB (Grand Unified Boot Loader), http://www.gnu.org/software/grub/

-55-

APPENDIX

TIMING MEASUREMENT

In the embedded system, it is difficult to measure the timing of the system operation.
Most of features are supported by the SoC in the system, but the SoC just like a black
box for the detail timing measurements. There are two kinds of methods to measure the
time of embedded system operations. One method is by hardware instruments, and the

other method is by software functions.

A.l Instruments

The latest SoC, included more and more features, is difficult to know how it work
inside the chipset by external measurement methods. But according to the signals
between the processor and related peripherals.and the software operation flow, we could
find the operations of systém boot-up.-The oscilloscope and the logic analyzer are two

hardware instruments to measure the external signals between chipsets.

A.1.1 Oscilloscope

The oscilloscope is used to measure the analog signal and the transition state of
signals. For better accuracy, the sampling rate of the oscilloscope should be four times
the frequency of the signal or the system bus. However the oscilloscope will be
interfered by some random glitches, so the digital signals are not measured by
oscilloscope.

The voltage level is the major item to decide the start point of boot time. Generally
the voltage level would be measured by oscilloscope because the trigger point is at the
transition state. We use Agilent DSO 54831B, which bandwidth is 600MHz and its
sample rate is up to 4 GSa/s, to measure the first period of boot time.

The system power-on behavior is related to measure the first period of boot time, so
the signal pins of chipsets related to system power-on are described below and will be
captured by oscilloscope:

1. Vin point on the board: The voltage of system reach the minimum

56

requirement of reset circuit, then reset circuit will assert the reset signal to the
MPU.

2. nReset pin of MPU: After the nReset pin is de-asserted (From low to high in
most cases), then the MPU will start to do the hardware initialization.

3. RS232_TX pin on the board: After console portion in the MPU is initialized,
then 1st mark will be sent out.

The Figure 38 shows the signals of Vin, nReset, and RS232_TX captured by
Oscilloscope 54831B.

LO0 kSads 1.00 Mptz

Figure 38: Power-on Sequence captured by Oscilloscope

A.1.2 Logic Analyzer

The Logic Analyzer is used for digital signals measurements. It only could detect
logic high and low level. The transition state of signal can’t be detected by it, but it also
can reduce the interference of random glitches. Logic Analyzer could use to measure the
long period the timing. But the length of the time depends on the number of signals you
measured, the sampling rate used, and the memory depth of Logic Analyzer.

We use Tektronix TLA5202, which has 68 channels, 2GHz conventional timing rate

and 512KB memory depth, for boot time measurement. For measuring the period of

57

boot time, the related signal pins captured by Logic Analyzer are described below:

1.

nReset pin of MPU: After the nReset pin is de-asserted (From low to high in
most cases), then the MPU will start to the do hardware initialization.
NRST_OUT pin of MPU: When MPU start to do hardware initialization,
nNRST_OUT to external peripherals is still asserted. After MPU initialization is
finished, NnRST_OUT is de-asserted and then MPU read 1% instruction from
the boot device.

SDRAM_CLK pin of MPU: Used for checking when SDRAM Controller is
ready.

nFlash_CSx pin of MPU: Used for checking when to access Flash.
LCD_PCLK pin of MPU: Used for checking when LCD controller is ready.
RS232_TX pin on the board: After console portion in the MPU is initialized,
then console marks will be send out. Use these marks to measure the boot time

of different boot phases.

The Figure 39 shows the signals:of the boot sequence of OMAP59120sk captured by
Logic Analyzer TLA5202.

Sample

rResst

Sdram_CLE

nF5_C53

R5232_Tx

LCO_PCLE

Figure 39: Boot Sequence captured by Logic Analyzer

A.2 System Functions

There are many software methods to measure the boot times: Kernel Function Trace
(KFT) [18], Printk-times [19], initcall-times, expect [20]. For the best accuracy and the

least influence on the boot time, Printk-times and initcall-times are used for boot time

measurement in this thesis.

Printk-times and initcall-times only could be used for kernel stage timing

58

measurement and are not supported at Linux kernel version 2.4.xx. By modifying the
source code to output function names or marks on console and cooperating with

oscilloscope and logic analyzer is another method to measure the boot time.

A.2.1 Printk Times

Printk-times is a simple technology which adds some code to the standard kernel
printk routine, to output timing data with each message. While a crude status, this can
be used to get an overview of the areas of kernel initialization which take a relatively
long time. This feature is used to identify areas of the Linux kernel requiring work. This
feature was incorporated into the mainline Linux kernel as of version 2.6.11. Before this
version need additional patch to support this feature in kernel. But for version 2.4.xx,
there is no patch to support this feature in kernel at ARM based architecture.

With Printk-times turned on, the system emits the timing data as a floating point
number of seconds (to microsecond resolution) for the time at which the printk started.
The utility program shows the:time between calls, or it can show the times relative to a
specific message. This makes it easier to see the timing for specific segments of kernel
code during boot.

For least influence on the boot time, this feature must be used dynamically. It could
be done by putting the parameter-“‘time”-on‘the command line to enable it. After using
Printk-times dynamically, we observe that not all kernel messages have the timestamp

until the kernel commands have passed to kernel.

A.2.2 initcall-times patch

Matt Mackall provided an initcall-times [13] patch which measures times for the
initialization of each driver during do_initcalls. This is a special tool to look at the time
of initialization of buses and drivers. It times just the initcalls and is enabled by putting
the parameter “initcall_debug” on the command line. The records of device
initializations can be read by dmesg after boot and use grep to find time-consuming
initializations

The default value of CONFIG_LOG_BUF_SHIFT is 14, so the kernel ring buffer
size is 214B = 16 KB [16]. This is not sufficient to save all the messages with the
additional information of initcall-times patch. The kernel ring buffer size must be

59

modified to 128 KB by setting to CONFIG_LOG_BUF_SHIFT to 17 to fit with the

requirement of initcall-times patch.

A.2.3 Time Stamp

In order to measure further detailed time periods of the specific functions, modifying
the source code to output function names or marks on console and hiding the other
messages on the console are other methods for boot time measurement [24].

® Boot-loader: In the source code of U-Boot, we use puts to output U-Boot

function names.

® Linux Kernel: In the source code of Linux Kkernel, we use

printk(KERN_EMERG “) to output kernel function names.

® User Space: In the source code of BusyBox, we use fprintf(stderr, “) to output

user space function names.

A.3 Inaccuracies

When we modify the source code and add some extra marks to output on console,
there are some inaccuracies.by the method:

Additional output console ‘messages will* make boot time longer. More messages
output on console, then more time MPU need to take to handle these processes.

When the baud rate of console setting is 115200 bps, then 1 bit data sent by console is
taken about 8.68 us. The logic analyzer enabling all memory depth could capture data
about 5 sec at 10us sampling rate, about 10 sec at 20us sampling rate, and about 52sec
at 100us sampling rate. When the boot time is taken longer, slower sampling rate will be
used. But this will increase the inaccuracy of the sampling data. There are some
methods to increase accuracy:

® During the time measurement of boot time, skipping the time of output console

message will reduce the influence of boot times.

® When the baud rate of console setting is 9600 bps, then 1 bit data sent by

console is taken about 104.16 us. Then we could use slower sampling rate for
boot time measurement. But baud rate setting at 9600 bps will let output console
messages taken long time. This boot time longer. When console print out more

messages then boot time will become more longer.

60

® Set the trigger point of logic analyzer more flexibly. Then we could separate the
boot time measurement into many segments. But at some situation the time
length of one segment is still too long that using normal sampling rate couldn’t
capture all data.

For better accuracy of boot time measurement, we disable all extra console outputs

and use hardware signals and least software modification to measure the boot time.

61

