
  國 立 交 通 大 學 
 

電機學院 電信學程 

 

碩 士 論 文 

 
 
 

具辨識車輛方向功能之都卜勒雷達收發機 
A Direction Sensitive Doppler Radar Transceiver  

For Vehicle Applications 
 
 
 
 
 

研 究 生：昌任為 

指導教授：鍾世忠  博士 

 
 
 

 

中 華 民 國 九 十 五 年 九 月   

 

                                          



具辨識車輛方向功能之都卜勒雷達收發機 
A Direction Sensitive Doppler Radar Transceiver  

For Vehicle Applications 
 

 

研 究 生：昌任為             Student：Jen-Wei Chang 

指導教授：鍾世忠  博士       Advisor：Dr. Shyh-Jong Chung 

 
 
 

國 立 交 通 大 學 
電機學院 電信學程 

碩 士 論 文 
 
 
 

A Thesis 

Submitted to College of Electrical and Computer Engineering 
National Chiao Tung University 

in Partial Fulfillment of the Requirements 
for the Degree of  
Master of Science 

in 
Communication Engineering  

September 2006 
 

Hsinchu, Taiwan, Republic of China 
 

中華民國九十五年九月 

                                          

http://dpeecs.nctu.edu.tw/professor/p3.html


具辨識車輛方向功能之都卜勒雷達收發機 

 

學生 : 昌任為                      指導教授 : 鍾世忠  博士       

   

 

國 立 交 通 大 學    電 機 學 院    電 信 學 程 碩 士 班 

摘 要       
 

 

        本篇論文提出一個 I/Q 分合混波器的架構且使用單一天線來發射與接收

信號，此 I/Q 分合混波器可提供移動目標物的方向及速度，其功能如下 :  一則

可將本地振盪器的信號傳送到天線端後發射出去 ; 二則可將接收到之反射信號

與本地振盪器信號混波後分成兩個(I/Q)中頻信號。另外，利用 DGS 的特性改善了

振盪器離載波信號 100KHz 遠的相位雜訊大約 10-16dB.   

   本篇論文設計一個 10.5GHz 之都卜勒雷達收發機，包括 5.25GHz 鎖相頻率合成

器、5.25GHz 至 10.5GHz 之頻率乘法器、10.5GHz 帶通濾波器、I/Q 分合混波器、

中頻放大器等，接著使用一個 X-Band 標準天線和數位信號處理來量測此收發機的

特性，量測結果顯示可正確的判斷出目標物是接近或遠離以及目標物的移動速度 

，此收發機可應用於智慧型運輸系統。    
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Degree Program of Electrical and Computer Engineering 

National Chiao Tung University 
 

Abstract 

 

In this thesis, an I/Q hybrid mixer with particular characteristic of passing LO power to 

antenna port is proposed to provide the direction and velocity for a moving target, which 

the transmitted radar signal and  the received echo signal pass through the same antenna 

with no circulator. In addition, the phase noise of oscillator has been reduced by 10-16dB 

at 100KHz offset from carrier using the Defected Ground Structure ( DGS ).    

A 10.5GHz Doppler radar transceiver consists of 5.25GHz PLL frequency synthesizer, 

5.25GHz to 10.5GHz frequency doubler , 10.5GHz band pass filter ( BPF ) ,  I/Q hybrid 

mixers and IF amplifiers which has been designed , fabricated and  integrated for above 

each component. The designed Doppler radar transceiver is then measured using an  

X-band standard horn antenna and Digital Signal Processing(DSP) that shows the validity 

of distinguishing a receding target or an approaching target and the related moving 

velocity for the applications of Intelligent Transportation Systems ( ITS ). 
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Chapter 1 Introduction 

1.1 Motivation and Objective 

With the increase of traffic density and car accident on today’s road, Intelligent 

Transportation Systems (ITS) have been adopted to monitor and manage traffic flow, 

relieve traffic congestion, provide alternate routes to travelers, and improve 

transportation safety and efficiency. An ITS consists of smart roads and routs, smart 

cars, smarts buses, smart trains, smart cargo, smart baggage, and smart travelers all 

working together in a cohesive system. The ITS market areas have been divided into 

nine sections as shown in Fig.1.1 [1]. The sensor in ITS technology is able to sense and 

measure the current state of the traffic on the highway and the status of the 

transportation system as a whole.  

 

1.Traffic
management

8.Incident
management

6.Transit
management

9.Payment
systems

2.Emergency
management

3.Trasportation
planning

4.Traveler
information

5.Commercial
vehicles

7.Intelligent

vehicles

                     
                      Figure 1.1 The ITS market areas 
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Currently there are three kinds of vehicles sensors on markets: circular loop sensors, 

infrared sensors and radar sensors .And radar sensors will replace circular sensors and 

infrared sensors in the future [2]. Radar sensor has two types: continual wave (CW) 

radar sensor and linear frequency modulation continual wave ( LFMCW ) radar sensor. 

CW radar utilizes the theory of measuring speed to detect traffic and speed of moving 

vehicle. LFMCW radar utilizes the theory of measuring distance which is usually used 

when vehicle are static or moving in very slow speed [3].   

A Doppler radar sensor can easily measure both the true ground-speed of vehicles 

and the relative speed between a car and an obstacle so that it can be used to reduce 

reaction times in avoiding accidents or simply to monitor a high density traffic road [4]. 

However, for the applications of traffic monitoring systems, motion sensors and 

automotive Doppler navigation aids, it is of interest to know whether the target is 

approaching or receding. In order to obtain the velocity sign information, an I/Q mixer 

has been adopted and demonstrated using two antennas to transmitting and receiving 

respectively [5].   

   The purpose of this thesis is to design a Doppler radar transceiver which is able 

to provide the direction and speed for a moving target using an I/Q hybrid mixer with 

single antenna. 
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1.2 Radar System 

Radar (Radio Detection And Ranging) detects the presence of objects and locates their 

position in space by transmitting electromagnetic and observing the returned signal. 

 

A.  Simple Doppler Radar [6] 

If the target has a velocity component along the line-of-sight of the radar, the returned 

signal will be shifted in frequency relative to the transmitted frequency, due to doppler 

effect. If the transmitted frequency is , and the radial velocity is , then the doppler 

frequency shift will be  

0f v

                         
c
vf

f d
02

=                                  (1.1) 

where c is the velocity of light. The received frequency is then , where the plus 

sign corresponds to an approaching target and the minus sign corresponds to a receding 

target. Fig. 1.2 shows a basic doppler radar system. The oscillator signal  can be used 

as the transmitted signal, and the oscillator signal can also be used as a local oscillator 

for receiver mixer, because the received echo signal is frequency offset by the doppler 

frequency. The filter following the mixer should have a pass band corresponding to the 

expected minimum and maximum target velocities. It is important that the filter have 

high attenuation at zero frequency, to eliminate the effect of clutter return and transmitter 

leakage at frequency , as these signals would down-convert to zero frequency. This 

type of filter response also helps to reduce the effect of 1/f noise. 

dff ±0

0f

0f

0f

The major drawback of the above radar is, can not distinguish between approaching and 

receding targets, as the sign of  is lost in the detection process.         df
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Figure 1.2 Simple Doppler Radar  

 

 

B.  Direction Sensitive Doppler Radar [7] 
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Figure 1.3 The classic Doppler radar for obtaining the velocity sign information  
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The sign of the doppler frequency, and therefore the direction of target motion, 

may be found by splitting the received signal into two channels as shown in Fig. 1.3. 

If the transmitter signal is given by  

                           tEEt 00 cosω=                            (1.2) 

the echo signal from a moving target will be 

                     ])cos[( 001 φωω +±= tEkE dr                       (1.3) 

where  = amplitude of transmitter signal 0E
       = a constant determined from radar equation 1k
      0ω  = angular frequency of transmitter, rad/s 
      dω  = doppler angular frequency shift 
      φ  = a constant phase shift, which depends upon range of initial detection 

 

The received signal and a portion of the transmitter heterodyne in the detector (mixer) 

to yield a difference signal  

                  )cos(02
φω +±= tEkE dA                            (1.4) 

The other channel is similar, except for a 90∘phase delay introduced in the reference 

signal. The output of the channel B mixer is   

                  )
2

cos(02

πφω ++±= tEkE dB                        (1.5) 

If the target is approaching (positive doppler), the outputs from the two channels are 

)cos()( 02
φω +=+ tEkE dA       )

2
cos()( 02

πφω ++=+ tEkE dB           (1.6a) 

On the other hand, if the target is receding ( negative doppler ) , 

)cos()( 02
φω −=− tEkE dA        )

2
cos()( 02

πφω −−=− tEkE dB          (1.6b) 

The sign of dω  and the direction of the target’s motion may be determined according 

to whether the output of channel B leads or lags the output of channel A .   
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1.3 Overview of this Thesis 
 

There are five chapters in this thesis as follows:  

Chapter 1 presents the difference between simple Doppler radar and direction sensitive 

Doppler radar.  

Chapter 2 describes the architecture of the designed 10.5GHz Doppler radar transceiver.   

And presents the basic theory. 

Chapter 3 shows the results of the  simulation and  measurement  for each component      

including the I/Q hybrid mixer, 5.25GHz PLL frequency synthesizer, 5.25GHz 

to 10.5GHz frequency doubler and 10.5GHz band pass filter.  

Chapter 4 shows the measurement results of the designed 10.525GHz Doppler radar 

transceiver for the phase noise and output power, then is measured using an 

X-band standard horn antenna and Digital Signal Processing (DSP) for a 

moving target. 

Chapter 5 describes the conclusion and future study. 
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Chapter 2 Transceiver Architecture and Basic Theory 

2.1 Transceiver Architecture 

In this thesis, an I/Q hybrid mixer with particular characteristic of passing LO power to 

antenna port is proposed to provide the direction and velocity for a moving target, which 

the transmitted radar signal and  the received echo signal pass through the same antenna 

with no circulator.            There are two phase shifts of 45∘  in the I/Q hybrid mixer which are 

located between 90∘ hybrid A and hybrid mixer I , and between hybrid mixer Q and 90∘ 

hybrid B respectively. The designed doppler radar transceiver consists of  5.25GHz PLL 

frequency synthesizer, 5.25GHz to 10.5GHz frequency doubler, 10.5 10.5GHz band pass 

filter (BPF) , I/Q hybrid mixers and IF amplifiers as shown in Figure 2.1.  
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Power Divider x2
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DGS

Frequency 10.5GHz
BPF

fo/2
fo/2 fo

Hybrid
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Shift
Phase

5.25GHz PLL
Frequency Synthesizer

45
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3dB-90

3dB-90

Doubler
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Q A
+

-

I
+

A
-
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+
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dff ±0
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Figure 2.1 Architecture of the designed 10.5GHz Doppler radar transceiver  
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2.2 Hybrid Mixer 
 
 

DC Bias +

L1

R2

L2

R1

+

C3

C2

+

C4

C1

LPF

- +

diode
schottky

IF Output

LO Input To Antenna

                 

Figure 2.2 Schematic of the hybrid mixer 

 
 

Fig.2.2 shows the schematic of the hybrid mixer. It consists of a quadrature hybrid 

and two schottky diodes, which has the symmetrical structure with differential IF output 

to compensate the AM noise. The quadrature hybrid is designed using microstrip branch 

line circuitry in the frequency of 10.5GHz. Since the LO signal is connected to the input 

of the 90° hybrid ,  the schottky diodes are connected to the through port and coupler 

port respectively, and the antenna is connected to isolation port. The quarter-wavelength  

open stubs have been adopted to avoid directly short circuit between the IF output and 

ground with respect to using via holes which act as RF ground to the schottky diodes. 

RF chokes and LC low pass filters with stop frequency of 100 KHz are connected to the 

IF outputs. Another RF choke is connected to the hybrid for DC biasing. The parallel 

resistors of several hundred ohms to ground are required to discharge the static charge 

at IF outputs.         

 8



In operation, the 90∘hybrid splits the LO signal with equal amplitude and phase 

difference of 90∘. These split signals drive the mixer diodes and then reflected from the 

diodes with little attenuation. These reflected signals enter the hybrid again and will 

cancel at the LO port and combine at the antenna port. The insertion loss from LO to 

antenna is the summation of the reflection loss from diodes and twice of the hybrid 

transmission loss. Since the diodes are connected to a virtual short, the reflection loss is 

quite small and the hybrid loss is also negligible. Thus most of the input LO power is 

bypassed to the antenna for transmitting signal. Once the echo signal is received from the 

antenna, it is split and enters the mixer diodes. The IF output of the hybrid mixer is a 

differential format wit phase difference of 180∘which is able to eliminate several noises 

from RF source. The major noise from RF source such as AM noise and flick (1/f ) noise 

will appear in the common mode of the mixer output. This term will be rejected after the 

following differential amplifier. Since the diodes are placed in parallel, DC bias can be 

added to make the mixer work properly when LO power is low. The added DC bias will 

influence the insertion loss and the conversion loss of the mixer. The total loss can be 

calculated as the summation of the insertion loss and conversion loss. Thus, an optimum 

performance can be achieved by fine tuning the bias voltage for various LO power [8].  
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2.3 Defected Ground Structure (DGS) 
 

 

 

aY  

 

bY bY  

 

 

  

 

 

 

 

 

 

Figure 2.3 (a) 3-Dimensinal view of the DGS unit section. (b) Equivalent circuit  

 

Defected Ground Structure (DGS) consists of narrow and wide etched areas in 

backside metallic ground plane as shown in Figure 2.3(a). An etched defect in ground 

plane disturbs the shield current distribution in the ground plane. This disturbance can 

change characteristics of a transmission line such as line capacitance and inductance. 

A DGS unit has a cutoff frequency at a certain frequency due to the increase of the 

effective series inductance of the transmission line. It also has an attenuation pole above 

the cutoff frequency. Thus , the equivalent circuit of  the DGS can be  modeled as a 

parallel  LC  resonant circuit with  a parallel conductance and  include the parallel 

capacitance due to  the relatively large fringing field at the step discontinuity plane on 

metallic ground surface as shown in Figure 2.3(b) . In order to derive the equivalent 

circuit parameters, the S-parameters of a DGS unit cell at the reference plane are 

calculated by EM-simulation. Once the S-parameters are calculated at the cutoff 

frequency, the equivalent circuit parameter can be extracted by using the relation 

between the S-parameters and ABCD-parameters as the following [9]: 

 10



a

b

Y
Y

S
SSSSA +=

+−+
= 1

2
)1)(1(

21

21122211                                 (2.1) 

aYS
SSSSB 1

2
)1)(1(

21

21122211 =
−++

=                                    (2.2) 

a

b
b Y

YY
S

SSSS
Z

C
2

21

21122211

0

2
2

)1)(1(1
+=

−−−
=                           (2.3) 

a

b

Y
Y

S
SSSSD +=

++−
= 1

2
)1)(1(

21

21122211                                (2.4) 

where   series susceptance of the the=aY π -type symmetrical two-port circuit 

=bY parallel susceptance of the theπ -type symmetrical two-port circuit 

Then, the ABCD parameters of theπ -type symmetrical circuit are represented by these 

equivalent circuit parameters. The resulting relations between the equivalent circuit 

parameters of the π -type symmetrical two-port circuit and the equivalent circuit 

parameters of the DGS circuit are given by  

    r
g

a jB
RB

Y +==
11                                              (2.5) 

    p
p

b jB
RB

D
B
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B
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−

=
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=
−

=
11111                        (2.6) 

From these relations, the equivalent circuit parameters of the DGS circuit are given by  
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g
g C

L 2
2

1
ω

=                                                     (2.8) 

1ω
p

p

B
C =                                                       (2.9) 

[ ]a
g Y

R
Re

1
=                                                   (2.10) 

[ ]b
p Y

R
Re

1
=                                                   (2.11) 

where  1ω  = cutoff frequency of the EM-simulated resulted for the unit DGS circuit 
       2ω  = attenuation pole of the EM-simulated resulted for the unit DGS circuit 

        = real parts of    [ ]aYRe aY

  = real parts of  [ ]bYRe bY
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The frequency characteristic of the DGS section can be described by two parameters: 

the etched lattice dimension and gap distance [10]. 

A. Influence of the Square Lattice Dimension 

In order to investigate the influence of the square lattice dimension, the etched 

gap(g) was kept constant to 0.2mm for all three lattice dimension cases: a = b =1.3mm, 

a = b =2.5mm , a = b =4.6mm as shown in Fig. 2.3(a). The substrate with 62-mil thick 

and a dielectric constant of ten was used for all simulations. The simulation results are 

illustrated in Fig. 2.4. There are attenuation poles in simulation results on the etched 

unit lattices. These attenuation poles can be explained by parallel capacitance with the 

series inductance. These capacitance values depend on the etched gap below the 

conductor line, which are identical for all cases due to the identical gap distance. As the 

etched area of the unit lattice is increased, the effective series inductance increases, and 

increasing the series inductance gives rise to a lower cutoff frequency and a lower 

attenuation pole as seen in Fig. 2.4. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Three DGS unit lattices simulation for varying the square lattice dimension 
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B. Influence of the Gap Distance 

       The lattice dimension a×b was kept constant to 2.5 mm×2.5 mm for all three 

gap distance cases : g = 0.2mm , g = 0.4 mm , g = 0.6 mm. The simulation results are 

shown in Fig. 2.5. The effective series inductances are constant due to the constant 

lattice dimensions. Unlike the influence of lattice dimension, there is no change in 

cutoff frequency despite the variation of the gap distance. This means that the gap 

distance does not affect the effective series inductance of a microstrip line. Variation of   

the effective capacitance only affects the attenuation pole location. As the etched gap 

distance increases, the effective capacitance decreases so that the attenuation pole 

location moves up to higher frequency as seen in Fig.2.5.     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Three DGS unit lattices simulation for varying the gap distance 
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2.4 Fundamental of Oscillators 

2.4.1 Feedback Oscillators [11] 
 

 

   

 

 

                       

+
+

 

)( ωβ j

)( ωjAv

fv  

fid vvv +=
ov

iv  

Figure 2.6 The basic feedback circuit. 

 

Fig.2.6 shows a basic feedback oscillator. The amplifier’s voltage gain is )( ωjAv , 

and the voltage feedback network is described by the transfer function )( ωβ j .Positive 

feedback occurs when the feedback signal ( ) adds from input signal ( ). The phase 

of  determined if adds or subtracts from and is determined by the closed-loop 

circuit in Fig.2.6. For positive feedback the total phase shift associated with the closed 

loop must be 0∘or a multiple of 360∘. The closed-loop voltage gain can be 

found to be 

fv iv

fv fv iv

)( ωjAvf

              
)()(1

)(
)(

ωωβ
ω

ω
jAj

jA
v
v

v

v

i

ojAvf −
==                   (2.12) 

For oscillations to occur, an output signal must exist with no input signal applied. 

With =0 in equation (2.12), it follows that a finite  is possible only when 

denominator is zero. That is, when  

iv 0v

        0)()(1 =− ωωβ jAj v    or     1)()( =ωωβ jAj v                (2.13) 

Equation (2.13) expresses the fact that for oscillator to occur, the loop gain 

[ )()( ωωβ jAj v ] must be unity. This relation is known as the Barkhausen criterion.  
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With vov AjA =)( ω   and letting     )()()( ωβωβωβ ir jj +=  

where )(ωβ r and )(ωβ i  are the real and imaginary parts of )( ωβ j , then (2.13) can be 

rewritten as     1)()( =+ voivor AjA ωβωβ  

Equating the real and imaginary parts on both sides of the equation gives  

           1)( =vor Aωβ      ⇒       
)(

1
ωβ r

voA =                    (2.14) 

and 

          0)( =voi Aωβ       ⇒       0)( =ωβ i                      (2.15) 

since . The condition (2.14) is known as the gain condition, and (2.15) as the 

frequency of oscillation condition.  The frequency of oscillation condition gives the 

frequency at which  the phase shift around the closed loop is 0° or a multiple of 360° . 

0≠voA

From the circuit theory we know that oscillation occurs when a network has a pair of 

complex conjugate poles on the imaginary axis. Most importantly, the gain condition 

should be modified to be vor A)(ωβ >1 to put the transfer-function pole in the right half 

plane, to allow the oscillation to commence. Then, as the oscillation builds, the amplifier 

saturates, the gain decreases, and the oscillation stabilizes at 1)( =vor Aωβ . 

      In a feedback oscillator, it is relatively easy to avoid spurious resonance, which 

could cause the oscillator to oscillate at an undesired frequency. As long as the resonator 

has transmission only at resonant frequency, the oscillator can oscillate only at the 

desired frequency. Unfortunately feedback oscillator can be difficult to design at high 

frequencies due to the phase shift in the long connection from the amplifier output to 

the resonator, so high-frequency oscillators are usually designed by means of a 

negative-resistance theory. 
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2.4.2 Negative Impedance Oscillators [12] 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 The classical model of a negative-resistanc

 

An oscillator is an energy conversion device that tran

power.  A microwave oscillator can be modeled as a one-port 

the port impedance is negative as shown in Fig.2.7. The load im

but the source impedance ),( 0 ωIZS (the output impedance of the

of , the magnitude of the fundamental frequency componen

The real part of  is negative and decrease with an increase 

 in Fig.2.7 provides a perturbation necessary to start osc

circuit. In practical circuits it represents noise, an injection-locki

transient of the circuit.  

0I

SZ

)(tv

Kurokawa proved that the conditions for oscillation ar

0)(),( 0 =+ ωω LS ZIZ          

i(t) 

),( 0 ωIZS

)(tv  

)(ωLZ  

that is, the real parts of the impedances cancel and the imaginary

an infinitesimal perturbation exists, the magnitude of the

exponentially with time and becomes sinusoidal at some frequen

)(tv

                      )}(Im{)}(Im{ PLPS ZZ ωω −=  

 16
e oscillator  

sforms dc power into ac 

in which the real part of 

pedance )(ωLZ is linear, 

 oscillator) is a function 

t of the output current. 

in .The voltage source 

illation in the unstable 

ng signal, or the turn-on 

0I

e  

             (2.16) 

 parts resonant. Then, if 

 response increases 

cy 

)(ti

pω  where  



The source could also be described by a nonlinear conductance ),( 0 ωVYS ; then, 

the oscillation condition is  

0)(),( 0 =+ ωω LS YVY                           (2.17) 

This is the case of a parallel resonance having a total negative conductance, in which 

the transient perturbation comes from a shunt small-signal current source, and  is 

the magnitude of the shunt voltage. The oscillation begins when real part of the shunt 

conductance is negative and Re{Y

0V

S} decreases as the oscillation increases until (2.17) is 

satisfied. If a transistor oscillator circuit includes a high-Q resonator, the high-Q 

resonator will dominate in establishing the frequency. In a high-Q resonator, Im{YL} 

varies rapidly with frequency close to resonance, so changes in Im{YS} do not cause 

much frequency deviation. 

The oscillation is stable if the sinusoidal voltage or current returns to its steady-state 

value after it is perturbed. Kurokawa derived a condition for stable oscillation; in terms 

of impedance, the condition is  

                        ωω ∂
∂

∂
∂

−
∂
∂

∂
∂ LSLS R

I
XX

I
R

 > 0               (2.18) 

 where  RS = Re{ZS} , XS = Im{ZS} , RL = Re{ZL} , XL = Im{ZL} , and the derivatives 

are evaluated at I=I0 and Pωω= . In a simple case where XS is independent of I and the 

load is a simple series RL or RC circuit, (2.18) is always satisfied. 
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2.5 PLL Frequency Synthesizer  
    
 

fxtal

PFD/CP
Kpd

LOOP 
FILTER
Zf (s) 

VCO 
Kvco

MAIN DIV
N

REF. DIV 
R fref ,θref

fdiv ,θdiv

 
 
 
 
 

Fout 
 
 
 

Figure 2.8 Block diagram of a single-loop PLL frequency synthesizer 

 

A phase-locked loop (PLL) is used primarily in communication system. The 

architecture of a single-loop integer-N PLL is shown in Fig.2.8 which consists of a 

voltage-controlled oscillator (VCO), a programmable frequency divider with a divider 

N, a phase-frequency detector/charge pump combination (PFD/CP) and a loop filter. In 

addition, the architecture also comprises a reference crystal oscillator and a reference 

frequency divider of ratio R. When the loop is locked the phase of the divided output 

signal  accurately tracks the phase of the reference signal . The phase-lock 

process forces the frequencies of  and  to be equal.  

divf reff

divf reff

Relating  to and  can be obtained as  outF divf reff

                           
R

fNfNF xtal
refout •• ==                       (2.19) 

If the division ratio N is programmable in steps of 1, then  can be stepped with a 

minimum step size equal to . 

outF

reff

In the basic PLL configuration of Fig. 2.8, the frequency range of the VCO must be 
covering the total tuning range of the intended application [13]. 
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.2.5.1 Phase-Frequency Detector / Charge-Pump 
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fdiv

PFD
CP

outI

ICP

CPI

up

down

reset

 
 

Figure 2.9 Sequential phase-frequency detector combined with single-ended charge-pump 

 
 

 The block diagram of a common implementation of the phase-frequency detector 

is presented in Fig. 2.9.It consists of two D-type flip-flops (D-FF)which have their D 

inputs connected to the active level. The upper D-FF, which is clocked by , 

generates the up signal. The lower D-FF, which is clocked by , generates the down 

signal. The AND gate monitors the up and down signals and generate the reset signal 

for the D-FFs at the moment both outputs become active. The up and down signals are 

used to switch the current sources in the charge-pump CP. When up is active, a current 

with magnitude of  is sourced by the charge-pump; conversely, when down is 

active, current is sunk into the charge-pump. When both up and down are inactive, no 

current flows into or out the output node of the charge-pump. The output is a high 

impedance node, under all circumstances. 

reff

divf

CPI
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2.5.2 Loop Filter 

 
LF1 LF2 

 

Parameter LF1 LF2

 R1 ( C1 + C2 )       R1C1
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Figure 2.10 Two common passive loop filter topologies and corresponding relationships 
design parameters and component values. 

 

The loop filter provides the current-to-voltage conversion from the charge-pump signal 

to the tuning voltage input of the VCO. The purity of the tuning voltage determines to a 

great extent the spectral components of the VCO output signal. The trans-impedance 

transfer function of the loop filter as  

                      
bs

s
s
k

s
s

s
ksZ f /1

1
1
1)(

2

2

3

2

τ
τ

τ
τ

+
+

=
+
+

=                     (2.20) 

where  is a gain factor which depends on the specific configuration of the loop 
filter , 

k

2τ  is the time constant of the “stabilizing” zero, 3τ  is the time constant of  the 
pole which is used to attenuate the reference frequency and its harmonics and b is the 
ratio of the time constants 32 /ττ  . 
Two passive loop filter configurations which comply to (2.20) are shown in Fig. 2.10. 

The trans-impedance transfer functions and  for loop filters LF1 and LF2 

respectively, are given as follows:  

)(1 sZ f )(2 sZ f

                           
)1(
))((1)(

211

211
1 CsRsC

CCRssZ f +
++

=                  (2.21) 

                           
)(1)((

)(1)(

21

21
121

11
2

CC
CCsRCCs

CRssZ f

+
++

+
=           (2.22) 

The purpose of the capacitor (C2) is to decrease the loop filter trans-impedance at 
high frequencies, and therefore to decrease the magnitude of the voltage ripple of a 
given value of DC leakage current.                  
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2.6 Active Frequency Multiplier 
 
 
 
 
 
 
 
 
 
 
 

                  Figure 2.11 Circuit of an ideal FET frequency multiplier 

 

The circuit of a frequency multiplier with an ideal FET is as shown in Fig.2.11. The 

output resonator is tuned to the nth harmonic of the excitation frequency, so it short 

circuits the FET’s drain at all other frequencies, especially the excitation frequency, Pω . 

The gate-bias voltage in an efficient FET multiplier must be equal to or less than (more 

negative than) the threshold voltage . Thus, the FET’s channel conducts only during 

the positive half of the excitation cycle, and the drain conducts in pulses; the shape of 

the pulses is approximately a rectified cosine. The duty cycle of the pulses varies with 

the dc gate voltage:  if V

tV

gg = Vt , the duty cycle is 50% ,  but if Vgg < Vt , the FET is 

turned off over most of the excitation cycle. The duty cycle then is less than 50% [14].      

 Fig.2.12 shows the voltage and current waveforms of an ideal FET used as a frequency 

doubler. Due to the output resonator eliminates all voltage components except the one at 

the nth harmonic, the drain voltage Vd (t) is a sinusoid at radian frequency pnω . For 

best efficiency and output power, the drain voltage must vary between  and .          maxV minV

The drain current peaks at the value Imax , and the current pulses have the time duration 

t0; t0 < T/2, where T is the period of the excitation.     

 21



      

 

 

 

 

 

 
 

Figure 2.12 Voltage and current waveforms in an ideal FET frequency multiplier  

 

Assuming that the current is maximum at t=0, the Fourier-series representation of 

the current has only cosine components:  

                 .....)2cos()cos()( 210 +++= tItIItI ppd ωω                 (2.23) 

When n 1 , the coefficients are  ≥

                   2
0

00
max )/2(1

)/cos(4
Ttn

Ttn
T
tIIn ⋅−

⋅
⋅
⋅

=
π

π                     (2.24) 

and when n = 0 ,  

                            T
tIIn ⋅
⋅

= π
0

max
2

                         (2.25) 

 When t0 / T = 0.5 / n , n 0 , (2.24) is indeterminate. Then, I≠ n is        

                            T
tIIn
0

max=                           (2.26) 

Equation (2.24) shows that the FET multiplier has only means to maximize In , namely 

adjusting t0 / T for achieving maximum output power and efficiency. Fig.2.13 shows a 

plot of In / Imax as a function of t0 / T when n = 2 through n = 4; each of these curves has 

a clear maximum below t0 / T = 0.5. It appears that, in order to achieve the optimum 

value of In , Vgg can be adjusted so that has the desired period of conduction, t)(tI d 0 . 
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Figure 2.13 Harmonic drain-current components as a function of t0 / T when the 
drain-current waveform is a half-sinusoidal pulse train 

 

If the gate voltage varies between Vg, max and the peak reverse voltage Vg, min , the phase 

angle tθ  , over which Vg (t) > Vt is  

                    )
2

cos(2
min.max,

min,max,

gg

ggt
t VV

VVV
a

−

−−
=θ           (2.27) 

The bias voltage that achieves this value of tθ  is  

                       2
min,max, gg

gg
VV

V
+

=                   (2.28) 

tθ  is sometimes called the conduction angle of the device.  

Equation (2.27) shows that a large negative value of Vg, min decreases the conduction 

angle. It also shows that decreasing Vg, max has the same effect.  
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Chapter 3 Design and Measurement of Components 

3.1 Design and Measurement of the I/Q Hybrid Mixer  
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+
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+

+
D3 D4

LPF

Q(t)
A

Q

+

-
Q

Hybrid A

II

diode
schottky

A
diode-

+I(t)
schottky

Hybrid Mixer I

Hybrid Mixer Q

3dB-90

Hybrid B
3dB-90

45

3

4

5

6

1

2

7

8

phase shift

To Antenna

LO Input

- +

+-
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Figure 3.1 Schematic of the I/Q hybrid mixer using the MA4E2054-1141T 

 

The I/Q hybrid mixer consists of two 90∘ hybrids, two hybrid mixers and two phase 

shifts of 45∘ in which are located between 90∘hybrid A and hybrid mixer I ,and between 

hybrid mixer Q and 90∘hybrid B respectively as shown in Fig.3.1. There are four 90∘ 

hybrids designed in the I/Q hybrid mixer using microstrip branch line circuitry in the 

frequency of 10.5GHz.M/A-COM MA4E2054-1141T schottky diode is used on the I/Q 

hybrid mixer and its configuration, spice model and circuit model are shown in Fig.3.2. 

The amplification of IF amplifiers is assumed to be 1000 using ADI OP213. 
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 Let LO input voltage be a cosine wave of frequency : 0f
)2cos()( 0tfVtv LOLO ⋅= π                      (3.1) 

 In operation, the I/Q hybrid mixer can be analyzed by transmitting signal path and 

receiving signal path as follows: 

(1) Transmitting signal path 

 Since LO signal is connected to the input of the 90° hybrid A , the hybrid A will split 

LO signal into two equal amplitude with phase difference of 90∘between point ○1  

and point ○2  , and will be phase difference of 45° between point ○3  and point ○4  

due to the phase shift of 45∘as    

  point ○3  :                    (3.2) )452cos()( 10 φπ +−⋅= otfVtv LOILOI

           point ○4  :                   (3.3) )902cos()( 10 φπ +−⋅= otfVtv LOQLOQ

, then pass through I/Q hybrid mixers with little attenuation and will be phase difference 

of 90° between point ○7  and point ○8  due to the phase shift of 45∘as    

           point ○7  :                    (3.4) )452cos()( 20 φπ +−⋅= otfVtv LOILOI

           point ○8  :                  (3.5) )1352cos()( 20 φπ +−⋅= otfVtv LOQLOQ

Finally these two LO signals will be combined in-phase at the output of the hybrid B 
(antenna port) for radiation as   

)2cos()( 300 φπ +⋅= tfVtvt                      (3.6) 
 
 

(2)  Receiving signal path 

If the transmitter signal is given by (3.6)                             

the echo signal from a moving target will be   

                     ])(2cos[()( 001 φπ +±= tffVktv dr                  (3.7) 
where  = amplitude of transmitter signal 0V
       = a constant determined from radar equation 1k
       = transmitter frequency, Hz 0f
       = doppler frequency shift, Hz df

      φ  = a constant phase shift, which depends upon range of initial detection 
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Once the echo signal is received from the antenna , the hybrid B will split the echo  

signal into two equal amplitude with phase difference of  90∘between point ○7  and 

point ○8  , and will be phase difference of 45∘between point ○5  and point ○6  due to 

the phase shift of 45∘as 

           point ○5  :            (3.8) ]90)(2cos[()( 40 φπ +−±= otffVtv dRFIRFI

 point ○6  :           (3.9) ]45)(2cos[()( 40 φπ +−±= otffVtv dRFQRFQ

 

The received echo signal ( dff ±0 ) and the transmitter signal ( ) heterodyne in the 

schottky diode to yield a difference signal and using differential amplifiers to produce  

I/Q channels respectively as 

0f

                 )2cos()( 5φπ +⋅±= tfVtI dIFI                             (3.10) 

                                        (3.11) )902cos()( 5φπ ++⋅±= otfVtQ dIFQ

 

If the target is approaching (positive doppler), the outputs from I/Q channels are 

)2cos()( 5φπ +⋅=+ tfVtI dIFI                    (3.12) )902cos()( 5φπ ++⋅=+ otfVtQ dIFQ

It means I channel lag to Q channel for an approaching target. 

 

If the target is receding (negative doppler), the outputs from I/Q channels are 

)2cos()( 5φπ −⋅=− tfVtI dIFI                    (3.13) )902cos()( 5φπ −−⋅=− otfVtQ dIFQ

It means I channel lead to Q channel for a receding target 
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       ( a ) 
 

                                    ( b )                             ( c ) 

Figure 3.2 M/A-COM MA4E2054-1141T schottky diode for (a) configuration    

(b) spice model (c) circuit model  

 
 

The MA4E2054-1141T schottky diode using spice model and circuit model is used 

on the simulation circuit of the I/Q hybrid mixer as shown in Fig.3.3. The simulation 

result of the insertion loss for the I/Q hybrid mixer is shown in Fig.3.4 that LO signal 

was set as frequency of 10.525GHz with power of 0dBm. Fig.3.5 shows the simulation 

result of the conversion loss for the I/Q hybrid mixer that RF, LO and relative IF signal 

was set as 10.535GHz with power of -30dBm , 10.525GHz with power of 0dBm and 

10MHz respectively. The simulated conversion loss is the single-ended output from one 

of the IF outputs. 

The measurement results of the insertion loss and conversion loss for various 

LO power are shown in Table 3.1 and Fig.3.6. The total loss has been calculated as the 

summation of the insertion loss and conversion loss. The measured conditions of the 

insertion loss and conversion loss are the same as the simulation conditions except that 

the LO power is variable from -4dBm to 14dBm. For measurement convenience, the 

measured conversion loss is the single-ended output from one of the IF outputs. The IF 

differential output has a theoretically 3dB improvement in the conversion loss.  
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Figure 3.3 Simulation circuit of the I/Q Hy
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Schottky diode 
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brid Mixer 



 
Figure 3.4 Simulation result of the insertion loss for the I/Q hybrid mixer with LO 

power of 0dBm 

 

 

Figure 3.5 Simulation result of the conversion loss for the I/Q hybrid mixer with LO 
power of 0dBm 
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Table 3.1 Measurement results of the I/Q hybrid mixer for various LO power  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 

Insertion Loss

Conversion Loss

Total Loss

Insertion Loss

Conversion Loss

Total Loss

Insertion Loss

Conversion Loss

Total Loss

Insertion Loss

Conversion Loss

Total Loss

Insertion Loss

Conversion Loss

Total Loss

Insertion Loss

Conversion Loss

Total Loss

Insertion Loss

Conversion Loss

Total Loss

Insertion Loss

Conversion Loss

Total Loss

Insertion Loss

Conversion Loss

Total Loss

Insertion Loss

Conversion Loss

Total Loss

-4

-2

8

4

6

2

10

12

14

0

2.15 2.83 3.7 3.12 2.6 2.28 2.1 1.93 1.83 1.76 1.77

54.5 21 17.67 18.5 22.17 26.83 31.17 34.83 38.33 40.83 43.67

56.65 23.83 21.37 21.62 24.77 29.11 33.27 36.76 40.16 42.59 45.44

2.18 2.93 3.67 3.26 2.66 2.31 2.12 1.94 1.83 1.76 1.76

44 20 17.17 17.33 19.33 23.5 27.83 31.83 35.17 38.17 40.83

46.18 22.93 20.84 20.59 21.99 25.81 29.95 33.77 37 39.93 42.59

2.25 3.03 3.64 3.37 2.78 2.37 2.16 2.09 1.85 1.79 1.82

32.33 19.17 17 16.83 17.5 20 23.83 28 31.83 34.83 37.67

34.58 22.2 20.64 20.2 20.28 22.37 25.99 30.09 33.68 36.62 39.49

2.39 3.14 3.61 3.51 2.96 2.48 2.23 2.12 1.89 1.81 1.84

24.5 18.67 17 16.83 16.5 17.5 19.67 23.33 27.5 31 34.67

26.89 21.81 20.61 20.34 19.46 19.98 21.9 25.45 29.39 32.81 36.51

2.58 3.23 3.59 3.59 3.17 2.65 2.35 2.18 1.93 1.83 1.82

21.17 18.17 17.17 16.83 16.33 16.33 17.17 18.83 22 25.67 29.5

23.75 21.4 20.76 20.42 19.5 18.98 19.52 21.01 23.93 27.5 31.32

2.8 3.29 3.56 3.63 3.36 2.88 2.55 2.29 2.05 1.9 1.87

19.67 18 17 16.83 16.33 16.17 16.5 16.67 17.83 19.83 23

22.47 21.29 20.56 20.46 19.69 19.05 19.05 18.96 19.88 21.73 24.87

2.97 3.34 3.55 3.63 3.54 3.1 2.77 2.5 2.23 2.05 2

19 17.83 17 16.83 16.5 16.17 16.17 16.17 16.33 16.83 18

21.97 21.17 20.55 20.46 20.04 19.27 18.94 18.67 18.56 18.88 20

3.12 3.39 3.53 3.64 3.54 3.3 3.03 2.75 2.48 2.26 2.18

18.5 17.67 17 16.83 16.67 16.33 16.17 16.17 16.17 16 16.33

21.62 21.06 20.53 20.47 20.21 19.63 19.2 18.92 18.65 18.26 18.51

3.21 3.41 3.51 3.63 3.59 3.42 3.25 3.03 2.78 2.54 2.45

18.17 17.67 17.17 17 16.67 16.5 16.33 16.17 16.17 16 16

21.38 21.08 20.68 20.63 20.26 19.92 19.58 19.2 18.95 18.54 18.45

3.27 3.4 3.48 3.58 3.61 3.48 3.38 3.23 3.04 2.84 2.76

18 17.67 17.17 17.17 16.83 16.67 16.5 16.5 16.33 16.17 16

21.27 21.07 20.65 20.75 20.44 20.15 19.88 19.73 19.37 19.01 18.76

The Summary of I/Q Hybrid Mixer measurement results
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Figure 3.6 Measurement results of the I/Q hybrid mixer for various LO power  
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Figure 3.6( continued ) 

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DC Bias (Volts)

d
B

Insertion Loss Conversion Loss Total Loss

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DC Bias (Volts)

dB

Insertion Loss Conversion Loss Total Loss

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DC Bias (Volts)

dB

Insertion Loss Conversion Loss Total Loss

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DC Bias (Volts)
d
B

Insertion Loss Conversion Loss Total Loss

( h ) LO = 10dBm ( g ) LO = 8dBm 

( f ) LO = 6dBm ( e ) LO = 4dBm 

 32



 
 

 

Table 3.2 The optimized results of the I/Q hybrid mixer for various LO power 

 
 
The optimal performance can be obtained by minimizing the total loss for the hybrid 

Q mixer. Table3.2 shows the optimized result of the I/Q hybrid mixer for various LO 

 

(dBm)
DC bias

(volts)
loss (dB) loss (dB) (dB)

-4 0.5 17.7 3.49 21.19

-2 0.6 17.33 3.26 20.59

0 0.7 17 3.05 20.05

2 0.8 16.5 2.96 19.46

4 1 16.33 2.65 18.98

6 1.3 16.33 2.38 18.71

8 1.5 16.17 2.34 18.51

10 1.8 16 2.26 18.26

12 1.9 15.83 2.83 18.66

14 2 16 2.76 18.76

Figure 3.6( continued ) 
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(a) Positive Doppler frequency           (b) Negative Doppler frequency 

Figure 3.7 Measurement results of I/Q channels  

    

                

 
gnal ) was set as 

0.525GHz with power of 0 dBm , RF signal (

` 

  Figure 3.8 Photograph of the I/Q hybrid mixer  

0f  

dff ±0  

Q-channel I-channel I-channel Q-channel 

Q-channel I-channe

Q- 

I- 
I+ 

Q+ 

( 0fIn order to manifest the performance of I/Q channels , LO si
1 dff ±0 ) was set as 10.525GHz +/- 3KHz 
with power of -50 dBm and DC bias was 0.4 volts. Fig.3.7 shows the measurement results 
of I/Q channels. It appears that Q channel lead to I channel for positive Doppler shift ( an 
approaching target ) ; conversely, I channel lead to Q channel for negative Doppler shift 
(a receding target ) . Fig.3.8 shows the photograph of the I/Q hybrid mixer. 
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3.2 5.25GHz PLL Frequency Synthesizer with and without DGS 

   
                           (b) without DGS 

              

 

Defected Ground Structure (DGS) has been proposed and demonstrated to reduce 

the phase noise of oscillators [15]. Fig.

for the one-section, two-section and three-s

 

 
            (a) with DGS

Figure 3.9 Schematic of 5.25GHz PLL Frequency Synthesizer  

3.9 shows the schematic of 5.25GHz PLL 

frequency synthesizer with and without DGS which both of them have been fabricated 

and measured simultaneously to verify the performance of the DGS. The 5.25GHz PLL 

frequency synthesizer consists of a Voltage Controlled Oscillator (VCO), an unequal 

power divider, a low pass filter (LPF), a synthesizer IC and a loop filter. The ADF4106 

integer-N frequency synthesizer is the form of current output and is controlled by 

3-wire serial interface. The loop bandwidth of the loop filter is assumed to be 2.5 KHz. 

Section 3.2.1 shows the photographs and the results of simulation and measurement 

ection DGS respectively that the 3dB cut-off 

frequency is designed as around 5.2GHz. In this thesis, two-section DGS has been 

adopted to reduce the phase noise of oscillator that is a compromise between the electric 

performance and the circuit size. 
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3.2.1 Simulation and Meas
 

urement of the DGS 

 ; W=1.15mm 

A. One-section DGS  
 

S11
S21

 
a=b=3.5mm ; g=0.2mm

RO4003 38.3=rε  ;  h=0.508mm 

 

 

 

 

           h 

a 

b 

a 

b 
g 

w 

w 

                (a)

; (b) result 

 

 

                                    (b) 

Figure 3.10 EM-simulation of the one-section DGS (a) 3-D view

 

` 

S21

S11

 

 

 

 

       (a) Top side 

 

 

 

                                   Figure 3.11 Measurement result of the one-section DGS 

         (b) Bottom side                        

 Figure 3.12 Photograph of the one-section DGS 
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B. Two-section DGS 
 
 
a=b=3mm ; g=0.2mm ; W=1.15mm 
d=6mm ; h=0.508mm 

RO4003 38.3=rε  

 

 

 

 

 

(a)                                      (b)  

Figure 3 ; (b) result 

 

 

 3.14 Measurement result of the two-section DGS 

Figure 3.1  

S21 S11
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b 
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W 

.13 EM-simulation of the two-section DGS (a) 3-D view

 

 

 

 

 

 

 

(a) Top side  

 

                                 

                             Figure

S21 S11

(b) Bottom side                  

5 Photograph of the two-section DGS
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C. Three-section DGS 

 
 
a=b=3.5mm ; g=0.2mm ; W=1.15mm 
d=6mm ; h=0.508mm 
RO4003 38.3=rε  
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  (a)                                   (b)  

Figure iew; (b) result 

 

op side 

 

 three-section DGS 

3.16 EM-simulation of the three-section DGS (a) 3-D v

 

 

 

 

 

         

(a) T

 

 

  Figure 3.17 Measurement result of the three-section DGS                                  

S21 

S11

       (b) Bottom side 

Figure 3.18 Photograph of the
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       The method of modeling the DGS had been presented in section 2.3. Following 

up this method, the equivalent circuit of the two-section DGS can be modeled as the 

π -type symmetrical two-port circuit as shown in Fig.3.19.  

  Fig.3.20 shows the simulation result for the equivalen  t circuit of the two-section 

      

 
 

         

DGS that is very similar to EM-simulation result as shown in Fig. 3.13(b). 

 

Figure 3.19 The equivalent circuit of the two-section DGS 
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Figure 3.20 Simulation result for the equivalent circuit of the two-section DGS 
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3.2.2 r 

 

            (a) 

                                                   (b)  

Figure 3.21 Simulation of 5.25GHz unequal power divider (a) schematic; (b) result               

 

 

  

     

 3.23 Measurement result of 5.25GHz 

 

An unequal power divider can be designed using the factor -output power ratio [16]. 

In this thesis, the output power ratio of ed to 

be 3:1.  The simulation and measurement results of the S-parameters , of show 

as 1.78dB, 6.25dB and 2.12dB, 7.01dB as shown in Fig.3.21 and Fig3.23 respectively. 

 Simulation and Measurement of 5.25GHz Unequal Power Divide
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Figure 3.22 Photograph of 5.25GHz

unequal power divider    
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3.2.3 Simulation and Measurement of 5.25GHz Low Pass Filter 

PCB : 

RO4003 38.3=rε  with  

 thickne

a)                                 (b)  

) result 

 

Figure 3.26 Measurement result of 5.25GHz LPF 

 

5.25GHz Low Pass Filter (LPF) using microstrip line circuitry was used in order 

to obt

0.508 mm ss 

            

 

 

 

 

                

                (

Figure 3.24 EM-simulation of 5.25GHz LPF  (a) 3-D view; (b

 

 

 

 

 

 

 

 Figure 3.25 Photograph of 5.25GHz LPF   

S11
S21 

S21 

S11

       

ain a pure signal at the RF input of ADF4106. The results of EM-simulation and 

measurement for 5.25GHz LPF are shown in Fig.3.24 and Fig.3.26 respectively. 
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3.2.4  Simulation and Measurement of 5.25GHz VCO with and without DGS   

         

          Figure 3.27 Schematic of the negative-impedance using the BFG425W 

  A. Simulation of the negative-impedance circuit       
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             Figure 3.28 Simulation result of the negative-impedance circui

The bipolar transistor BFG425W (Philips) is used to act as the active device on the 

cir

t 

 

cuit of 5.25GHz VCO.A short stub was connected to the emitter of the BFG425W in 

order to obtain a negative real part of input impedance as shown in Fig.3.27. Simulation 

result of the negative-impedance circuit is shown in Fig.3.28. 

 42



B. Simulations of the resonator with and without DGS 
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Figure 3.29 Schematic of the resonator (a) with DGS (b) without DGS 
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Figure 3.30 Simulation results of the 

TOSHIBA

show

resonator with and without DGS 

 1SV285 varactor diode is used on the resonator of 5.25GHz VCO as 

n in Fig.3.29 In the circuit of the resonator with DGS, the S2P file of the 

two-section DGS is extracted from EM-simulation. Fig.3.30 shows the simulation 

results of the resonator with and without DGS that the imaginary part of the resonator 

with DGS has higher slope than the imaginary part of the resonator without DGS. It 

implies that the resonator with DGS has a higher quality factor. 
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C. Measurement result of 5.25GHz VCO with DGS 

 

Table 3.3 Measurement result of 5.25GHz VCO with DGS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.31 The curve of Frequency vs. Tuning Voltage for 5.25GHz VCO with DGS  

 

The performance of 5.25GHz VCO with DGS has been measured as shown in 

Table3.3. Fig.3.31 shows the curve of Frequency vs. Tuning Voltage for 5.25GHz VCO 

with DGS. 

Vt (V) f0 (MHz) outptu power(dBm)
0 5181 5.5

0.5 5204 5.5

1 5225 5.5

1.5 5248 5.67

2 5272 5.67

2.5 5297 5.67

3 5326 5.83

3.5 5357 6

4 5390 6.33

4.5 5423 6.5

5 5449 6.67

Sensitivity(MHz/V)
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D. Measurement result of 5.25GHz VCO without DGS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32 The curve of Frequency vs. Tuning Voltage for 5.25GHz VCO without DGS 

 

The performance of 5.25GHz VCO without DGS has been measured as shown in 

Table3.4. Fig.3.32 shows the curve of Frequency vs. Tuning Voltage for 5.25GHz VCO 

without DGS. 

 

Table 3.4 Measurement result of 5.25GHz VCO without DGS 

Vt (V) f0 (MHz) outptu power(dBm)
0 5189 5

0.5 5205 5.33

1 5220 5.33

1.5 5235 5.33

2 5250 5.5

2.5 5266 5.5

3 5283 5.5

3.5 5302 5.5

4 5322 5.5

4.5 5344 5.67

5 5362 5.67

Sensitivity(MHz/V)
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3.2.5  Measurement of 5.25GHz PLL Frequency Synthesizer with and without DGS 

 Measurement results of 5.25GHz PLL Frequency Synthesizer with DGS  

 

 

 

 

 

 

 

 

 

          ( a ) f0 = 5200MHz                      ( b ) f0 = 5250MHz 

 

 

 

 

 

 

 

 

 

 

 

          ( c ) f0 = 5300MHz                    ( d ) f0 = 5350MHz 

Figure 3.33 Measurement results of the phase noise with DGS 

 

A.
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    ( a)

Figure 3.34 Measurement results with DGS ( a )tuning range; ( b ) spectrum  

 

 

 ( a) Top side                           ( b ) Bottom side 

Figure 3.35 Photograph of 5.25GHz PLL frequency synthesizer with DGS 

 

 

 

 

 

 

 

 

 

 

                                   ( b )  
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B. Measurement results of 5.25GHz PLL Frequency Synthesizer without DGS 
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  ( a ) f0 = 5200MHz                      ( b ) f0 = 5250MHz 

 

 

 

 

 

 

 

 

 c ) f0 = 5300MHz                    ( d ) f0 = 5350MHz 

Figure 3.36 Measurement results of the phase noise without DGS 
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             ( a )                                    (

Figure 3.37 Measurement results without 

 

 

Figu  DGS 

 

 

 

 

 

 

 

 b ) 

DGS ( a )tuning range ; ( b ) spectrum 

 

 

 

 

 

 

 

 

 

 

 

( a) Top side                           ( b ) Bottom side

re 3.38 Photograph of 5.25GHz PLL frequency synthesizer without
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Table 3.5 Summary of the measured phase noise with and without DGS 

 

 

 

 

ection 3.2.5 shows measurement results of the phase noise, tuning range and 

Fig.3.38 show the photographs of 5.25GHz PL

DGS respectively.  

able 3.5 shows a summary of the measured phase noise for 5.25GHz PLL 

frequency synthesizer with and without DGS. It appears that using the two-section DGS 

can reduced the phase noise by 10-16dB at 100 KHz offset from carrier. Thus, a higher 

quality factor can be obtained using the two-section DGS.  

 

 

 

 

 

 

 

 

 

 

Frequency

(M z)

@10KHz offset

(dBc/Hz)

@100KHz offset

(dBc/Hz)

@10KHz offset

(dBc/Hz)

@100KHz offset

(dBc/Hz)

5200 -78.17 -110.17 -67.5 -93.67

5250 -81.67 -109.67 -66.5 -95.5

-92.83

The phase noise

With DGS

The phase noise

Without DGS

H

5300 -79.0 -109.5 -67.17

5350 -77.83 -105.17 -66.67 -94.83

S

spectrum for 5.25GHz PLL frequency synthesizer with and without DGS. Fig.3.35 and 

L frequency synthesizer with and without 

T
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3.3 Simulation and Measurement of the Frequency Doubler 
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hort stub that can minimize the required circuit size with a simple 

bias c

urement result is better than 

the simulation result about 5.9dB at input power of 4dBm.The photograph of 5.25GHz 

to 10.5GHz frequency doubler is shown in Fig.3.42. The conversion gain of 5.25GHz 

to 10.5GHz frequency doubler has been measured for various input power as shown in 

Table3.6. Fig.3.43 shows the conversion gain and output power vs. input power curve 

for 5.25GHz to 10.5GHz frequency doubler. 

Short stub 

FHX35LG

Figure 3.39 Schematic of the frequency doubler using the FHX35LG 

The FHX35LG is used on the circuit of 5.25GHz to 10.5GHz frequency doubler to act 

as the active device as shown in Fig.3.39. The gate voltage is set as zero volts by 

means of using a s

ondition, namely no requirement for RF choke and negative voltage at the gate 

terminal. The results of the simulation and measurement for 5.25GHz to 10.5GHz 

frequency doubler with input power of 4dBm are shown in Fig.3.40 and Fig.3.41 

respectively. It appears that the conversion gain of the meas
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( a ) Flatness                         ( b ) Spectrum 

Figure 3.41 Measurement results of the frequency doubler with input power of 4dBm 

 
 

h of 5.25GH 5GHz Frequency Doubler 

 

 

Figure 3.42 Photograp z to 10.
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Table 3.6 Measurement results of the frequency doubler with various input power 
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Figure 3.43 The conversion Gain vs. input power curve for the Frequency Doubler   
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3     

. 10.5GHz

CB : 

O4003 

.4 Simulation and Measurement of 10.5GHz Band Pass Filter

A  Hairpin Band Pass Filter with N=5 

P

R 38.3=rε  with  

 

 

 

 

 

  

              (a)            

Figure 3.44 EM-simulation of 10.5

  

 

 

 

 

 

 

 

Figu

    

 
 

0.508-mm thickness 

                            

 

re 3.45 Photograph of 10.5GHz BPF

                             

26.5mm 

 

                     (b) 

GHz Hairpin BPF (N=5) (a) 3-D view; (b) result 

(N=5)     

             

S11

S21 

(N=5) 

       Figure 3.46 Measurement result of 10.5GHz BPF

S11

S21 
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B. 10.5GHz Hairpin Band Pass Filter with N=3 

PCB : 

RO4003 38.3=rε  with  
0.508-mm thickness 

              (a)                 

                                  

 

 

 

 

 

 

 

Fi

                                    

 

Section 3.4 shows the results of simu

It 

esis, 10.5GHz hairpin BPF with N=3 had

 

 

 

 

 

 

 

Figure 3.47 EM-simulation of 10.5GHz Ha

gure 3.48 Photograph of 10.5GHz BPF(N=3) 

15mm 

     

BPF with N=3 and N=5 respectively.  

BPF with N=5 was deeper than 10.5GHz 

th

 

                (b) 

F (N=3) (a) 3- ) result 

   

F(N=3) 

lation and measurement for 10.5GHz hairpin 

appears that the rejection of 10.5GHz hairpin 

 been adopted due to its small size. 

irpin BP D view; (b

S11

S21 

S11

S21 

Figure 3.49 Measurement result of 10.5GHz BP

hairpin BPF with N=3 obviously. But in this 
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Chapter 4 Integration and Measurement of the Transceiver 

tic of the designed Doppler radar transceiver 

ponent had been demonstrated in the chapter 3, 

schem  
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Figure 4.1 Schema

 

Since the performance of each com

these components are then integrated as a Doppler radar transceiver. Fig.4.1 shows the 

atic of  the designed 10.5GHz Doppler radar transceiver  which consists of 

5.25GHz PLL frequency synthesizer with DGS, 5.25GHz to 10.5GHz frequency 

doubler, 10.5GHz Band Pass Filter (BPF), I/Q hybrid mixers, IF amplifiers and voltage 

regulators.  
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The designed Doppler radar transceiver has been integrated and fabricated as shown 

in Fig.4.2. The measurement results of the designed transceiver for the output power of 

6dBm and 0dBm are shown in Fig.4.3 and Fig.4.4 respectively. Figure 4.3 (c) shows the 

output frequency range is from 10.4GHz to 10.8GHz.  

 

Figure 4.2 Photograph of the designed Doppler radar transceiver 

 

 
                        (a) Phase noise 

Figure 4.3 Measurement results of the designed transceiver with output power of 6 dBm 
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                         (b) Spectrum 

                      

 

 
  (c) Flatness 

 
                         Figure 4.3 ( continued ) 
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                    (b) spectrum 

igure 4.4 Measurement results of the designed transceiver with output power of 0 dBm   

 
                  (a)  phase noise 
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Figure 4.5 Photograph of the Doppler radar sensor 

The Doppler radar sensor consists of the designed transceiver, an X-Band standard 

horn antenna, NI DAQCard-6062E with Digital Signal Processing (DSP) and a battery 

as shown in Fig.4.5 which has been measured for an approaching vehicle at the velocity 

of 60km ing vehicle at the velocity of 45km/hr respectively. The sample 

rate is assumed to be 50k samples/sec. Fig.4.6 shows Q channel lead to I channel for an 

approaching vehicle at the velocity of 60km/hr. Fig.4.7 shows Q channel lag to I channel 

for a receding vehicle at the velocity of 45km/hr. Fig.4.8 shows the Doppler frequency 

shift is about 1172Hz and the image rejection is about 29dB for an approaching vehicle 

at the ve oppler frequency shift is about -878Hz 

 

X-Band standard horn antenna 

The designed transceiver Battery 

NI DAQCard-6062E 

/hr and a reced

locity of 60km/hr. Fig.4.9 shows the D

and the image rejection is about 25dB for a receding vehicle at the velocity of 45km/hr. 
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Figure 4.6 Measurement result of I/Q channels for an approaching vehicle at the 
velocity of 60km/hr 
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Image                   Signal 
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Figur

igure 4.8 Measurement result of the Doppler spectrum (image rejection) for an 
pproaching vehicle at
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e 4.9 Measurement result of the Doppler spectrum (image rejection) for a 
receding vehicle at the velocity of 45km/hr 



Chapter 5 Conclusion and Future Study 

 

An I/Q hybrid mixer is proposed  and  demonstrated in this thesis which the 

transmitted signal and  the received echo signal pass through the same antenna with no 

circulator. In addition, the phase noise of oscillator can be reduced by 10-16dB at 

100KHz offset from carrier using the DGS. Finally, the designed Doppler radar 

transceiver has been measured using an X-band standard horn antenna and NI 

DAQCard-6062E with Digital Signal Processing (DSP) for an approaching vehicle and 

a receding vehicle.   The measurement result shows the validity of distinguishing an 

approaching vehicle or a receding vehicle and the related velocity. 

Due to the 400MHz tunable synthesizing frequency, the designed transceiver 

be used with on of multi-path sensors. 

transceiver is its big circuit size. It is necessary to 

igned transceiver 

with Digital Signal Processing (DSP) can be realized in the MMIC to minimize the 

circuit size. 

 

 

 

 

 

 

 

 

can 

the frequency-scanning antenna for the applicati

The drawback of the designed 

reduce the circuit size. In the future, it is worth considering that the des
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