-

TR B2

XX

M+ @ X

AR BACAE A & @%#%ﬁ% &AM AT R
AT mERET AR AF

Using Visual-Based User Interface Construction Methodology
for the Man Machine Interface Design and Implementation of

Storage Systems

Bt R OAE D mAR—
FBEHZ I REST HL

FERBE Lt F £ A

DARABIERE N BEET LR RERANET AR
AN @& R B

Using Visual-Based User Interface Construction Methodology
for the Man Machine Interface Design and Implementation of
Storage Systems

B R mAR— Student : Cheng-Yi Huang

FBEHZ RES HL Advisor : Deng-Jyi Chen

\
Py

S

A Thesis
Submitted to College of Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Computer Science
July 2007

Hsinchu, Taiwan, Republic of China

PERE Lt F L A

DARECERAEFNOERT ELREANRGFAGZ
C Vg P8 K

$4 P FA— #EHE BT BT

BYIXBARE FRER TREEHA L -

#H 2

ERARG AN BB TR 0 B F R BER - XK EFLA
REAMNEAAM RN - Bt RAREE AR N BNEN > FRILE
REWGEFHBAS -

ARBIAMBBIEERE CEBREEATILERENBESS
o TRARF AR @ RAMAE £) W BT 4k - AB IR A
W RN A RZ AN BRI AT L RRRME ST %GB 28
$EAE -

AR ABRN @R LHSER S RN > RGN HA
ASRZAEICARN BT R L F A4 REIHBBRE AR AN
FARGZBRABARN @I E -

A TR RZGTATE KRMAEF—ERBIER > NeEAL
AN @I E > THRAERDCHETAEZLENEN TABGFLIHZTHE
RABELY > UEH—BEEROEFLALKKEN O L - Adbhse@Er
IR 7T B sE AL R ACAE A & AR Ty 7R e T AT M R A M

MetE : AEAL-ERAETE - ARNTE -BHELSK

Using Visual-Based User Interface Construction Methodology
for the Man Machine Interface Design and Implementation of

Storage Systems

Student: Cheng-Yi Haung Advisor: Dr. Deng-Jyi Chen

Degree Program of Computer Science

National Chiao Tung University

Abstract

When the requirements of Man Machine' Interface (MMI) are changed, programmers
must change the related programs of MMI if they use the conventional MMI development.
Therefore, they have to take long time to develop and spend much effort to maintain programs
of MML

The Software Engineering Laboratory of NCTU had developed Visual-Based User
Interface Construction Methodology. This methodology can improve the productivity, quality,
and maintainability of MMI software. In this thesis, we use this methodology for the MMI
design and implementation of storage systems, and try to conquer UI problems using
conventional MMI development.

For the typical and various Man Machine Interfaces of storage systems, we design the
Visual MMI Development for Storage Systems. It includes Visual Authoring Process and
Generic MMI Engine for storage systems.

In order to demonstrate the feasibility of the Visual MMI Development for Storage
Systems, we implement a software framework with Generic MMI Engine that can manipulate
the output data of Visual Authoring Tool, interact with the Management API of storage
systems, and use this system to control a functional storage adapter. A real application
example using the proposed approach is applied to demonstrate the applicability of the
methodology.

Keywords: Visual-based, UL, MMI, Storage System

II

%W

R TAR G IR 0 BESAGEYS > REAM BB P KRB AR
P AAE S HEWARA LRANNEBEEE > LA RAFEEUARA
%%%éﬁiﬁi%‘ ii{%—‘—}/;:égﬂﬁf‘é_ .

WXHER > BRBERH BRELTEGARR TS Fau3E > F
IFUBRFATAE o R ARKMEE 0 B2 A MRKIFH G - BT
RABIX ORE R > A EHIR - IR K% ~ mEREMIR > REBEHF ST
BHERREMOENR A LBXRBRBZRFUBE -

WX IR RREZASEROUBEIEH > AAHEE ~RER
F R4 S 01 By A Bk A 0 RATAE L REHE F M RES
FRAZFFRITAFNE TR T p WA ERILE R -

RA& 0 ROLIARGH R LH R TERE £ 74545 > ARKREBE T
RO RA T > ARETRBENHRTE - AHRMERGP LA
RBAEQRTES RS -

AR — #iE
WARE BBl BRPEMBIN
PR B AT SEANA

o<k

III

Contents

ADSLract in ChiNESEcceuuiiireceeiirirecessrrrecessrrnnmnssserrnmssssrrnnmssssssnnmssssssnnmssssssnnmssssssnnmnssnes |
N 1 3 Tt i
Acknowledgement in ChineSeuuueeeeeeusiiisrmmmmmmmmmessiisssrssnsnnnmsssssssss s s snnnnmssssssssssssnnnnnas i
1) 1 1) 1 \")
LiSt Of FiGUI'ES «.euuuiiiririinnnmmmnsssssssssssnnnnmmssssssssssssssnnnnnssssssssssssnnsnnnnssssssssssssnnnnnnnnnssssssnnnns Vi
I35 1) 1.0 1
Chapter 1 INtroductionccceeeeeiiiimmeiiirineeiir e rsn e rsn s sna s s s anm s a s s nmmsssssnnns 1
1.1 OVErview Of StOTAZE SYSIEINISc.cuoueeeeeeceeieeceeeeeceeeeeaeeeeeeeaes e e eaes e eeseasseseeseasssssesessssssesessasasasessasasseseessnnesens 1
1.2 Man Machine Interfaces Of StOrage SYSIEIMS . it v rererereresesrereasassesssasassssesesassssesasassssesesessssssasassssesesasassssens 2
1.3 Motivation and Goal of This ThesiS ...t ..o e e et eeeeeseeeeeeseaeseseseassesesasassesesesssesesasasesasasanansans 5
Chapter 2 Related WOrKcoueeioiiiiee i st sese e sinnsenesssssssmmssssssnmmssssssnnsssssssnnnsssssnnns 7
2.1 Conventional MMI DevVelOPMENt il ittt ettt se e ese s ese s esssessesessese s esansessnsensans 7
2.2 Visual-Based UI Construction MethodOLOogy ... il ettt eree et eases e s s ese s sssennens 8
2.3 Conventional Software Framework for MMIs of Storage SyStemscocooveeeuemioeeeeeeeieeeeeeeeeeeeeeeeeeeeeenes 13
Chapter 3 System Design and Implementation..........ccoumeeeiiimmemmiiimmmesimmmeeses. 16
3.1 Visual MMI Development for StOrage SYSIEIMSccccveveriererieriereiseeriererereeeressessssesesessesesessssessssessesessenes 16
3.2 Generic Software Framework for the MMI Generation of Storage SysStems..............cccoceveeveeeeeeeeeeeeereeeeenes 20
3.3 Implementation of Visual MMI Development for Storage SyStemscooeioeeeeeieeeeeeeeeeeeeeeeeeeeeeeene 21
3.3.1 Visual Authoring Tool -- INKSCAPEccccueurreiririreeisiesiesasssssssasassesesasassssesesassesesassssssssassssesesessssssesases 22

B3 2 SVG FIIES ...ttt e a st as s st s s a et st e s s et et e as et et e s as et esasasars et et asarsesasasassesesasanansasasen 24

3.3.3 SVG PaISEI......ociiuiiieicieiieieeetst et esas s seaasse s s asas s st et as e sesasasassesesesassesesasesansasasesansesasassnsesasasensesasesensnsasasen 26

GG T 1Y 0L 0 O D 1 T 30
3.3.5Generic MMI ENZING.........coou ittt e e e e e e s e e s s easanaseseasannneseanaen 37
Chapter 4 Simulation and Application Examplescccoueiiimmiimmmsnmmmsmmmemessssnns 41
4.1 Simulation Examples for the Booting Utility of Storage SyStemscoooveeveeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeenens 41
4.2 Application Examples for the Pre-OS Utility of Storage SyStemsc.ccoceeveeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 48

I\Y

Chapter 5 Conclusion and Future WorkKu.e..ccimeeciiimmmeiiinnsesnssssssssssses s semssssns 50

5.1 Conclusion Of This TRESISc.cceieueieeeieeeeeeeeeee e eeese e e e ee e e eeseees et eseeseneesensesenseseaseneesensesensessseneaseneans 50
S.2FULUIE WOTK ...ttt ettt e as e s e st e s e et e s e s e s et e s et as et et et asassasesasarsesasasansasnsasenssane 52
S 53 = 1 53
Appendix A External Storage SyStem......cccuuerremusiirmmemssiimmmnmsiimmmnsssimmmsnsssmnsnsssrnnnnss 54
A.1 DAS (Direct Attached STOTAZE).........cooeoiiueieeeeieieeeieeeeeeeeeeeeeeeeeeeseesesseseaseseeseeeseseseseseasensesensesesessnseseaseneans 54
A2 SAN (Storage Area NEIWOTK)cooioiiioeeeeeeeeeee ettt ettt et e e et e s ee s e e enesene et ensesensesenseneaseneans 55
A.3 NAS (Network AttaChed STOTAZE)cc.coveiiiiiiiiiieceeeceee ettt ettt et e et e s eseese s esseseensensensensensensensens 56
A.4 Comparison Of DAS / SAN JINAS ...ttt ettt ettt et s st ess s essstessesansesansessasensans 57
Appendix B Application Instances of InKkscape........cccccceiimmmmmniiimmmmmsiinmmee ... 59
B.1 Creating Vector GIapiCsccccioivieriiiieeresteieteietee ettt ste e ese s st esessessesessesansessnsesssensesensesansesssensans 59
B.2 Producing ComicCs and MapS.............c.cueueusithesteteressssstastafonsessasesesessssesesessssesesasassssesesessssesesessssesasessssesssassssesass 62
B.3 Design of Web Paes ... it et e ettt eae e e n e e e e e ean e nenene 63
Vit in ChiNESE....ieeeuiieceiinceiiiecearatesennebeasissnannnssssmsssasinsssnmssssnmsssnnnssssnnsssnnnsssnnnsssnnnssnnn 65

List of Figures

Figure 1. The Classification of Storage SYStEMS.......cccvieriiiieriiieeriiieenieeeiee e e ereeeenee e 1
Figure 2. Man Machine Interfaces of Storage SyStems.........cccueeevieeiiiieriieennieeiiieeeeeeeeeee 3
Figure 3 Various MMIs for Serial Products and Different Customers............ccceeevveeeereeenneeennee. 6
Figure 4. The Waterfall Model for Software Process...........ccoceeeriiiiiiieniiieniiiiiieeeieeeeeee 7
Figure 5. The Concept of Conventional MMI Developmentccccveeerieeenieeeiieencneeenneeenne 8
Figure 6. The Concept of Visual-Based UI Construction Methodology...........ccecceeerueeenieennee. 9
Figure 7. The Framework of Visual-Based UI Construction Methodology............ccccceeeeuneenne. 10
Figure 8. Comparisons between Conventional and Visual-based UI Construction [7]............ 12
Figure 9. Conventional Software Framework for MMIs of Storage Systems..........ccccceeeenneee. 14
Figure 10. The Concept of Visual MMI Development for Storage Systemscccceeeveeennee 16
Figure 11. The Framework of Visual MMI Development for Storage Systems....................... 17
Figure 12. Generic Software Framework for the MMI Generation of Storage Systems 20
Figure 13. Visual AUthOring PrOCESS.......cccviiiiiiieiiiieeiie ettt ettt saeeesaee e 22
Figure 14. Visual Authoring Tool -- INKSCAPEeeeriiiiiiiiiiiiiiieceeceeeeee e 23
Figure 15. Edit SVG File in the XML Editor of InKSCapeccocvveeviieeniiiiiieeieeeieeeieene 24
Figure 16. XML in PIain TeXtcccuiiiiiiiiiiiiiiiieieeeeee ettt ettt e 27
Figure 17. XIML DOMooiiiiiiiiiieieeeeee ettt ettt sttt et ettt e b sae e 28
Figure 18. EXpat XIML Parser........c..cooiiiiiiiiiiiiieiiieciee ettt sttt 29
Figure 19. MmiData.h — The Output File of sSVGIParser.............ccocceviieiiiniiiiieniecicnieeee, 31
Figure 20. The Block Diagram of Generic MMI ENginecccccevviieiiiiiniieeniieenieenieenne 38
Figure 21. MMI Requirement Specification for Simulation and Application Examples......... 41
Figure 22. Compose Screen Layout by dnkscape «.oic.cocm it iiiiiiiiiieeeeeeeeceeee 42
Figure 23. SVG File in Plain TeXt.. oo .ii i i e eeieeeeieeeteeesveeeiaeeetaeesveeesneee e 43
Figure 24. Compose the Template SVG File smmrmmmn.. i, 44
Figure 25. Compose Menus by Usingthe layer_ MenuTemple..........ccccceovvvevviieniieeniieenienns 45
Figure 26. Simulation Examples for the Booting Utility of Storage Systems.............ccceuueeee. 47
Figure 27. Application Examples for the Pre-OS Utility of Storage Systemscccceeveeenne 48
Figure 28. Visual Authoring Process of Visual MMI Development for Storage Systems....... 50
Figure 29. Generic MMI Engine for the MMI Generation of Storage Systems...........c........... 51
Figure 30. DAS (Direct Attached StOrage)coooueiiriiiiiiieeieeeieeeeee e 54
Figure 31. SAN (Storage Area NEtWOTK)ccccuieriiieiiiiieiiieerieeeeieeeetee e ereeeieeesaeeesaeeees 55
Figure 32. NAS (Network Attached StOrage)cccevoveeeriiiiiiieiiiieeieeeeeeeeeeeee e 56
Figure 33. Comparison DAS / SAN /INAS ...ttt 57
Figure 34. Complex Vector GraphiCs.........c.coviieeriiiiiiieiriieeiiee ettt 59
Figure 35. Photo-1ealiStic GIaphiC..........ccevuiiieiiiieiiieeciie ettt eree e ereeevreesaeeessee e 60
Figure 36. Advanced GraphicC Effectscoooiiiiiiiiiiiiiiiiieceeeceeeeeeee e 61
Figure 37. Producing COMICSccuiieiuiieeiiiieeiieecieeeeieeesteeesteeeseveeeeaeeeaneessseesnsneessseeessseeenns 62
Figure 38. Producing MapPscoouiiiiiiiiiiieeieeeeie ettt ettt sttt et 63
Figure 39. Animated Mechanical Clocks with Moving Gearscceceeevueerierieenieenieeniennen. 64

VI

List of Tables

Table 1. The Dependences of Storage Systems and Their MMIScccocveveviiiniieencieeeieeeee, 5
Table 2. Implement MMI Elements by SVG Elements...........cccoooueeiiiiiiiiiiniiiinieinieenieeee 26
Table 3. SVG Parser Uses Functions of Expat XML Parser.........cccccoooeeviininiiiniiinenienen. 29

Table 4. Modules of Generic MMI Engine

Chapter 1

Introduction

In this chapter, we introduce and overview storage systems with their typical and
various Man Machine Interfaces. Also, the motivation and goal of this thesis study are

addressed.

1.1 Overview of Storage Systems

In current storage systems, we can classify storage services into 1) closed system and 2)
opened system at first tier [1]. The closed system is one kind of mainframe that provides
storage services for servers that use closed operating system, e.g. IBM AS400 servers. The
opened system 1is a set of storage servers that use opened operating system, e.g. Microsoft

Windows, Linux, or Unix, etc. Figure 1 illustrates the classification of storage systems.

Closed
System A EH
Internal |
Storage | Storage
System ASIC
Opened L
System
DAS
External
Storage 0 SAN
FAS —

NAS

Figure 1. The Classification of Storage Systems

For opened system, we divide storage devices into 1) internal storage and 2) external
storage at second tier by the connections between servers and storage devices.

There are two types of internal storage systems: HBA (Host Bus/Based Adapter) and
ASIC (Application Specific Integrated Circuit). The administrator of servers can insert one or
more standalone HBA adapters into the slots on server board to increase the capability to
connect more hard disk drives. On the other hand, more and more chipsets are integrated with
RAID (Redundant Array of Independent/Inexpensive Disks) controller or storage ASIC so that

they also have the capability to connect many hard disk drives.

For external storage systems, there are also two types: DAS (Direct Attached Storage)
and FAS (Fabric Attached Storage). The DAS devices usually use the SCSI bus as the
external connection to the servers. Most of high-end DAS devices are the subsystems that run

embedded operating system and can handle dozen of hard disk drives.

To describe FAS more clearly, we can separate it into SAN (Storage Area Network)
and NAS (Network Attached Storage). Many.SAN storage systems use fiber channel as the
transfer media, and need a fiber channel switch to connect many devices in the same storage
area network. On the contrary, the NAS storage systems use the popular Ethernet in the same

local area network, and computers can share the NAS storage systems very easily.

About more details of external storage systems, please refer to Appendix A

External Storage system.

1.2 Man Machine Interfaces of Storage Systems

No matter internal or external storage systems, they must have Man Machine
Interfaces (MMI) so that users can configure and manage them. For example, users can get a
list of physical hard disk drives in the storage system, and group up some of them to make up

a disk array in one kind of RAID (Redundant Array of Independent/Inexpensive Disks) level.

After survey the products of storage systems in current market, we sum up them and
generalize five kinds of Man Machine Interfaces for storage systems. They are 1) Booting

Utility, 2) Pre-OS Utility, 3) Web-based Utility, 4) Embedded Utility, and 5) LCD Panel.

Figure 2 illustrates these five kinds of MMI for storage systems and the dependences of

internal and external storage systems on them.

Booting Utility Pre-QS Utility Web-based Utility Embedded Utility LCD Panel
: — _.l" W

In':-

— o 4

T

Internal Storage External Storage

Figure 2. Man Machine Interfaces of .:Storage Systems

We describe these five kinds of MMI for s'tofage systems as below.

1) Booting Utility: Users can use the Booting Utility to configure hard disk drives and
setup bootable drivers before OS is loaded. Usually, this utility is included in the expansion
ROM of BIOS (Basic Input Output System) or EFI (Extensible Firmware Interface) [2] driver
of storage HBA adapters. When system BIOS or EFI firmware boots up system, they will
load the BIOS ROM or EFI driver of the storage HBA adapter into memory and run. The
BIOS ROM or EFI driver will prompt some messages to tell users how to enter the Booting
Utility. After users press a certain combination of hotkeys, they can enter this utility and
manage storage devices. For example, users can select wanted hard disk drives to create a disk
array in RAID (Redundant Array of Independent/Inexpensive Disks) level 1 or 5 with fault
tolerance. The most particular functionality of the Booting Ultility is it can tell system BIOS

that which logical drives in the storage system can become bootable drives. However, this

kind of utility usually provides basic functions of storage systems because of the limitation of

code and data size.

2) Pre-0OS Utility: This kind of utility is used in Pre-OS environments, e.g. DOS (Disk
Operation System), EFI (Extensible Firmware Interface) shell, or Windows PE (Pre-
installation Environment). Many large corporations use Pre-OS environments for the
deployment of workstations and servers. Original Equipment Manufacturers (OEM) also use
these environments to preinstall Windows client operating systems to personal computers or
laptop and notebook computers during manufacturing. The Pre-OS Utility of storage systems
has similar functionalities to the Booting Utility. The advantage of Pre-OS Ultility is that users

can run it at any time without system reboot.

3) Web-based Utility: The Web-based Utility uses web pages as user interfaces. Since
many years ago, almost every operating system provides at least one web browser for network
surfing. The advantage of the Web-based Utility:is that end users can connect to this kind of
utility with web browser conveniently. They. do not'need to install any client application.
Therefore, more and more storage System companies adopt the Web-based Utility for their

products.

4) Embedded Utility: Numerous storage systems apply the architecture of embedded
system, and engineers usually use a serial cable to connect the console of embedded system.
Engineers can use the Embedded Utility to setup advanced configuration or debug internal
problems. This kind of utility is running in the embedded operating system. However, the
serial console of embedded system and the Embedded Utility use the command-based or
menu-based user interfaces. They are not user-friendly. Now, the Embedded Ultility is not a

popular MMI of storage systems for end users.

5) LCD Panel: Some high-end storage systems have the LCD Panel at their faceplate
or front-plane. The maintenance people can use the LCD Panel conveniently to verify new
configuration, because these storage systems are usually in one isolated room for security
reason. The LCD Panel has the related programs that run in the embedded operating system,

too.

We describe the dependences of internal and external storage systems on these five

kinds of MMI for storage systems in Table 1.

Table 1. The Dependences of Storage Systems and Their MMIs

MMI Internal Storage External Storage
Booting Utility Supported None
Pre-OS Utility Supported Supported

Web-based Utility Supported Supported
Embedded Utility Supported Supported
LCD Panel None Supported

Table 1 lists the dependences of storage systems and their Man Machine Interfaces.
For internal storage systems, they have four supported man machine interfaces: 1) Booting
Utility, 2) Pre-OS Utility, 3) Web-based Utility, and 4) Embedded Utility. For external storage
systems, they also have four supported.man machine interfaces: 1) Pre-OS Utility, 2) Web-
based Utility, 3) Embedded Utility, and 4) LCD Panel.

Because internal storage systems.are-one-part of host servers, they do not have the
LCD Panel. On the other hand, external storage systemis do not take the responsibility to boot

up host servers, the Booting Utility is not necessary for them.

1.3 Motivation and Goal of This Thesis

The conventional approach to develop Man Machine Interfaces for storage system has
limited flexibility while the MMI requirement is changed. During development phase,
programmers have to change their handcrafted MMI application code again once the MMI
requirement is changed. This change may occur repeatedly until the MMI requirement under

consideration is satisfied.

For instance, we can study the cases in figure 3. The case on the left side is the MMI
development for serial products, and the case on the right side is the MMI maintenance for

different customers.

Product v1.1 (4 ports)

M1 with Customer A
Basic Funcliions

ﬁ & MMI for Customer &
Product v1.2 (8 ports) '

MMI with . %
Advanoed Funclions :

MMI for Custormner B

Figure 3 Various MMIs for Serial Products and Different Customers

1) For the case on the left side of figure 3: The MMI requirement for product version
1.1 (with 4 ports to connect hard disk drives) only requires basic functions of the storage
system, while the MMI requirement for product version 1.2 (with 8 ports to connect hard disk
drives) requires additional advanced functions, MMI designers have to change the menu size
to support more ports for more hard disk drives, and more advanced functions for the new
serial products. Consequently, MMI programmer must modify their MMI programs to meet

these changes.

2) For the case on the right side of figure 3: Different customers bought the same kind
of product. Customer A wants to change the layout of MMI into layout A, while customer B
wants his layout of MMI in layout B. Since layout A and B are different, the MMI designers
and programmers must maintain various MMI programs for these different customers

eventually.

Unfortunately, the time to market is usually very short and the human resource to
develop and maintain products is very tight, how to shorten the MMI development time and

reduce maintenance effort become a major issue for the market competition.

In this thesis study, we attempt to conquer above problems by using Visual-Based Ul
Construction Methodology to design the Visual MMI Development for Storage Systems. After
the construction of this system, we also demonstrate the feasibility and applicability of the

Visual-Based Ul Construction Methodology.

Chapter 2
Related Work

In this chapter, we describe the related work of conventional MMI development, the
Visual-Based Ul Construction Methodology, and the conventional software framework for

MMIs of storage systems.

2.1 Conventional MMI Development

In a general software process, we follow the principles and models of Software
Engineering [3], e.g. Waterfall Model in figure 4. During a general software life cycle [4], we
compose requirement documents and specifications, plan and design architecture of system
and software framework, implement ;r‘no:duleg_?r_l tq.fg:ét_.platforms, do many tests on units and
system for verification and validation, and malrlltam é_offW‘are for upgrade and optimization.

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Figure 4. The Waterfall Model for Software Process

MMI
Requirement

MMI,
Functional
and Other
Programs

Programmer Compiler

Application I

Menu Tree

Screen Items

Figure S. The Concept of Conventional MMI Development

In the brief illustration of figute 5, the concépt of conventional MMI development [5],
MMI designers have to compose MMI requirérﬁe’nt documents with screen layouts or menu
tree, etc, and system designers éompose_ functional and other requirement documents.
According to these requirement dolc'ume'nt's, programmers implement MMI, functional and
other programs, and compile them together and produce applications. However, these
applications are implemented for specific environments, e.g. Booting Utility in BIOS / EFI
environment, Pre-OS Utility in EFI Shell or Win-PE environments. It is hard to design
reusable programs for all MMI utilities of storage systems. Usually their MMI programs mix
with functional programs and others. Therefore, programmers have to take long time to
modify, or develop new programs when MMI requirements were changed. Also, we need

much effort to maintain these utilities for serial products and various customers.

2.2 Visual-Based UI Construction Methodology

The Software Engineering Laboratory of NCTU had developed Visual-Based User
Interface Construction Methodology [6]. We illustrate the concept of this methodology in
figure 6 briefly.

MMI Designer MMI
Program

MMI
Requirement || visyal Authoring Tool

— e - e Binder & 4>{ Application I
] B : o | Compiler

Functional
Requirement Programmer

Functional
and Other
Programs

Other
Requirement

i

Figure 6. The Concept of Visual-Based UI Construction Methodology

In this methodology, MMI designe.lrsE i;se visual authoring tool to compose MMI
prototype according to MMI requ.irements._ The visual' authoring tool can generate MMI
programs. Programmers implement.'funct'i_dnal aﬁd other programs as API library for MMI
programs. We can bind the related functions to MMI components, and then produce

application utilities very efficiently.

Figure 7 illustrates the detail framework of Visual-Based User Interface Construction
Methodology. This methodology supports the UI Visual Requirement Authoring System for
UI designers to produce GUI-based requirement scenario and specifications. It also supports
the Program Generator to generate the target application system as specified in the visual
requirement representation. The programmer can produce the target application system, base
on the function binding features provided in the program generator to bind each GUI

component with the associated application function.

Component
Constructor

Ul Visual . Generated
MMRCS » Requirement —— RIZeLei::::\::is — (;;:g:ggr — Software
anager Authoring System q Program
Template
Manager . Function
Design libra
framework y
component

Template
Constructor

Figure 7. The Framework of Visual-Based UI Construction Methodology

The main components of this system are described as follows:

1) UI Visual Requirement Authoring Systém: It is a visual-based authoring tool. The
UI designers use the UI Visual Requirement Authoring System to create a prototype of user
look and feel. Then one can edit this prototype by adding more text or buttons. The Ul
designers can preview the prototype and modify it. Once the authoring process is completed,

the UI designer has generated a target Ul system.

2) MRCs Manager: MRC (Multimedia Reusable Components) is the basic component
in visual requirement presentation, contains multimedia data by the object-oriented method. It
has its own attributes, and accepts external signal to trigger actions. The UI designer uses the
existing MRCs to produce the visual Ul prototype via visual Ul authoring tool. If there are no
existing MRCs, the UI designer uses the component constructor to produce new MRCs and

then adds it to the MRCs Manager for further use in the visual Ul authoring tool.

3) Template Manager: It is a database management system for managing Ul templates,
e.g. structure template, layout template, and style template. It provides an interface for adding
or deleting Ul templates as well as for retrieving an existing Ul template. Template
constructor can make new UI templates and then stores them into UI template database

through the Template Manager.

10

4) Program Generator: It is a function binding system that generates the program for
target system based on the binding of a Ul icon to an API function for the underlying device.
When the design of user look and feel is satisfied, the UI designers use the program generator
to produce the source code of application. The program generator produces the source code
according to the visual representation generated by the Visual Ul Authoring System. The
program generator glues the Ul components to the software design framework, and binds
function library component with each Ul component defined in the generated visual

representation.

5) Design Framework: It is used to generate software system architecture for the
target application system. The Program Generator applies the software framework to
generate the source code. A software framework is a platform for representing the visual
representation that is generated by the authoring system. Programmers can instantiate a

software framework from the generic software framework.

6) Function Library Component: It is a set 'of pre-defined library. Programmers
develop associated functions based ‘on API (Application Program Interface) library functions,
and implement them according to the hardware specification. The Program Generator applies

this function library to produce source code for target UI system.

This Ul Visual Requirement Authoring System 1is especially suitable for the Ul
designer. The visual-based authoring system helps the Ul designers to create a prototype of
MMI in an efficiency way. The UI designers can edit and preview this prototype and verify its
functionality on PC. After the design of MMI is frozen, the UI designer can apply this
authoring system to produce the target Ul program without writing any textual code. The
authoring system uses the code generator to translate the visual representation to source code.
The code generator resolves the relationship between the MMI and the application functions
of device drivers. It applies the designed framework and function library in code generation

phase.

The Visual-Based User Interface Construction Methodology can improve the
productivity, quality, and maintainability of MMI software efficiently [7]. This methodology

claims for the following benefits:

11

1) Replace voluminous textual documentations

2) Support rich multimedia Ul components such video, audio, image, and animation

for UI designer to easily and quickly authoring visual UI prototype.

3) Generate visual MMI prototype without writing textual based program

4) Independent work between MMI designer and programmer

5) Provide more natural means of communication to reduce misunderstanding between

MMI designer and programmer

6) Based on the experiment results, it depicts that using this methodology can reduce

the development and maintenance time during the construction of MMI system [7]

7) Elicit an early feedback from user, more expressive in describing user’s demands

8) Based on the experiment results, it depicts that using the proposed methodology can

reduce the development and maintenance time during the construction of UI system

In figure 8, some experimental data in the dissertation, “Generating User Interface for

Mobile Devices Using Visual-Based User,dnterface Construction Methodology” [7], are

recalled here.

600
550
500
450

Minutes

400
350
300

—+—Conventional MMI Development
—s—\/isual-Based Ul Construction Methodology

1

4 7 10 13 16 19 22 25 28 31 34 37 40

Student number

Mnutes

200

180
160
140

120

—s—Conventional MMI Development
—=—Visual-Based Ul Construction Methodology

R TR U T 0 U 0 0 0 T U T I T T 0 T 0 T B I 0 0 |

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Student number

Development Comparison

Maintenance Comparison

Figure 8. Comparisons between Conventional and Visual-based UI Construction [7]

In the left chart of figure 8, the experiment results compare the development time

between the Conventional MMI Development and Visual-Based User Interface Construction

Methodology. Based on the collected data, the upper line with circle dots represents the

development time that students use the Conventional MMI Development, and the average time

spent is 420 minutes. The lower line with square dots represents the development time that

students use Visual-Based User Interface Construction Methodology, and the average time

spent is 376 minutes.

In the right chart of figure 8, the experiment results compare the maintenance time
between the Conventional MMI Development and Visual-Based User Interface Construction
Methodology. The upper line with circle dots represents the maintenance time that students
use the Conventional MMI Development, and the average time spent is about 154 minutes.
The lower line with square dots represents the maintenance time that students use Visual-
Based User Interface Construction Methodology, and the average time spent is about 140

minutes.

Both charts in figure 8 reveal the development and maintenance time of Visual-Based

User Interface Construction Methodology are less than the Conventional MMI Development.

2.3 Conventional Software Framework for MMIs of Storage Systems

We analyze conventional software framework for MMIs of storage systems, and
generalize four layers: 1) MMI Program; 2) Management API, 3) Driver Layer, and 4)
Embedded Firmware.

Here is a short example to describe the relationship between these layers. The end-
users use the MMI Program to display the information or configuration of storage systems.
Before MMI Program displays these data, it calls the functions of Management API to get the
particular data, and then it arranges the data into the display screen. Management API is a
function library, and its functions can submit management commands to get the information
or set the configuration of storage systems. These commands will pass to Driver Layer
because this is the software layer to transfer commands to hardware devices. In the internal
side of storage systems, Embedded Firmware handles commands from host side and response

them with particular results.

Figure 9 illustrates the Conventional Software Framework for MMIs of Storage

Systems with these four layers.

13

Booting Br=-08 Web-tae. Embad. LCD
M Spac NI Spec M Spec M Spec M Spac
Booting Br=-08 Web-baze. Embead. LCD
MMI Program 1 MMI NI MM MM MM
PBrogram Paoeram Progmzm Program Paoeram
N]]
[Y Y Y
Mind. Partizl Fully
Management APl < Mngmat Magmnt Magmat
AW ART APRT
|]
i Y Y Y
- BIOS/ EFI Br=-08 05
Driver LE‘_'{ET' 3 Drgiver Dyivar Dyivar
(Y Y
Embed. LCD
App. App,
i]
Embedded Firmware {
Y Y Y Y Y
Frmwas
Cog

Figure 9. Conventional Software Framework for MMIs of Storage Systems

We describe these four layers in the following paragraphs.

1) MMI Program: According to MMI specifications, programmers implement MMI
programs for particular utilities. For instance, they implement the MMI program in assembly
language for Booting Utility, C language for Pre-OS Utility, Java for Web-based Ultility, etc.
These MMI Programs call Management API to get information or change the setting of
storage systems. For Embedded Utility and LCD Panel of storage systems, there are related

applications embedded in firmware side.

2) Management API: Management API is a library with many functions for utilities to
get information, fetch strings, or change the setting of storage systems. For example, function
MngApi_GetCtrlInfo() can get controller information, and function MngApi_GetPdInfo() can

get physical drive information. The other functions can set logical driver’s cache policy, etc.

14

First, the Booting Utility of storage systems includes basic functions only, so it usually uses
minimal Management API. Second, the Pre-OS Utility is similar to Booting Utility, but it
includes some advanced functions, and needs some additional Management API for these
advanced functions. Third, the Web-based Utility includes full functions of storage systems,

and of course, it uses full Management API of storage systems.

3) Driver Layer: Driver provides the capability to submit commands to hardware
devices. Usually Management API submits a set of management commands, or called
IOCTRL (IO Control) commands, to Driver Layer. No matter BIOS / EFI driver, Pre-OS

driver or OS driver will pass these commands to the embedded firmware of storage systems.

4) Embedded Firmware: In the internal side of storage systems, there are embedded
operating system and firmware core running. Firmware core handles commands from host
side, transfer data to the buffer of Management API by DMA (Direct Memory Access), and
return the status of commands to host drivers: For Embedded Utility and LCD Panel of

storage systems, the related applications are running in‘embedded OS also.

Before MMI programs display the /information of storage systems, they must call the
functions of Management API to get the' wanted information. Management API provides
many functions for MMI programs and® submits “management commands to firmware by
passing through the Driver Layer to get data. Driver passes management commands to
firmware and returns the status of commands for Management API. Embedded firmware takes
the responsibility to handle management commands and take the actions for them. For
example, Embedded Firmware collects information of adapter controller or hard disk drives,

or changes the setting of disk array, etc.

15

Chapter 3

System Design and Implementation

In this chapter, we describe the design and implementation of the Visual MMI
Development for Storage Systems, and derive the Generic Software Framework for the MMI

Generation of Storage Systems.

3.1 Visual MMI Development for Storage Systems

In this section, we design the model of Visual MMI Development for Storage
Systems. This model uses similar concept of Visual-Based User Interface Construction
Methodology, MMI designers use visual authoring tool to compose MMIs, and programmers

write functional and other programs §epa'trately,l Figure 10 illustrates this concept.
k- - ! " P L

MMI Designer

MMI
Requirement

Visual Authoring Tool

it Jil

It 7

Maru Tree -
y : - —

|
_nt : 1
““““““ Visual Authoring Process compiler Application
Generic
Functional MMI Engine
Requirement Programmer +
Functional
Other and Other =
Requirement Programs

Figure 10. The Concept of Visual MMI Development for Storage Systems

16

However, the difference between Visual-Based Ul Construction Methodology and

Visual MMI Development for Storage Systems is the output of the Visual Authoring Process.

In the previous methodology, Visual Authoring Tool generates MMI program, and

programmer binds functions from functional library to MMI program and generate MMI

applications.

We change the output of the Visual Authoring Process becomes MMI data, and let

Generic MMI Engine to manipulate this MMI data directly. This change is due to the

consideration on some limitations for MMI utilities of storage systems. With this change, we

can implement the Generic MMI Engine for various environments.

Figure 11 illustrates the framework of Visual MMI Development for Storage Systems.

M
Requirement

Functional
Requirement

M1
Designer

Visual

MMI

FProgrammer

Authoring
Tool

Template
SVG

Files

SVG
Parser

Web
Browser
Preview

MM
Data

Y

Generic
MMI
Engine

Management
API

'

03
Dependent
API

Target MM
Application

Figure 11. The Framework of Visual MMI Development for Storage Systems

17

This framework includes the following major parts:

1) Visual Authoring Tool: MMI designers use the Visual Authoring Tool to compose
wanted MMIs according to MMI requirement documents. During implementation, we choose

Inkscape as this tool. Please refer to section 3.3.1 Visual Authoring Tool -- Inkscape.

2) SVG Files: These files are the output of Visual Authoring Tool. We use the file
format in SVG (Scalable Vector Graphics) that is a standard language to describe two-
dimensional graphics and graphical applications in XML (Extensible Markup Language).
Please refer to section 3.3.2 SVG Files.

3) Template SVG Files: These files are the SVG files with templates of MMI elements.
To speed up the development of MMIs, we can create these files for MMI designers first. All

SVG files can be previewed in some web browsers, e.g. Firefox.

4) SVG Parser: This parser _can parse.the SVG structure, and obtain required
information from SVG files. It invokes some functions of XML parser. Please refer to section

3.3.3 SVG Parser.

5) MMI Data: The output data of SVG Parser is MMI Data. 1t is also the results of
Visual Authoring Process. Generic MMI Engine can manipulate the MMI Data directly.
Please refer to section 3.3.4 MMI Data.

6) Generic MMI Engine: This is the kernel component of Visual MMI Development
for Storage Systems. It needs the Management API and OS Dependent API to accomplish the

functionalities of target MMI application. Please refer to section 3.3.5 Generic MMI Engine.

7) Management API: This API (Application Program Interface) is depended on the
features of storage systems, and it provides functions to manage underlying storage devices.
MMI programmers have to program these functions according to functional requirement

documents, and Generic MMI Engine will invoke these functions.

18

8) OS Dependent API: Generic MMI Engine requires some functional APIs but they
are OS dependent. For instance, it needs Input API to get the input of keyboard or mouse, and
Display API to display the MMIs to the monitor screen of computers. We separate the OS
dependent code to OS Dependent API, and let the implementation of Generic MMI Engine

become more easily for various environments.

9) Target MMI Application: After MMI designers compose MMIs with Visual
Authoring Tool, save them as SVG files, and use SVG Parser to transform SVG files to MMI
data, we can generate target MMI application with MMI data, Generic MMI Engine,

Management API and OS Dependent API.

To use the model of Visual MMI Development for Storage Systems, we describe its

flow in the following steps:

Step 1) MMI designers use Visual Authoring: Tool to compose wanted MMIs according to

MMI requirement documents
Step 2) Save the results of Visula Authoring Tool as SVG Files.

Step 3) To speed up the development of MMIs, we can create Template SVG Files for MMI

designers.
Step 4) For developers or customers, they can preview these SVG Files in web browsers.
Step 5) MMI programmers add additional information in SVG Files.
Step 6) Use SVG Parser to transform SVG Files to MMI Data.

Step 7) MMI programmers program related functions in Management API according to

functional requirement documents.

Step 8) Generate the target MMI applications with MMI Data, Generic MMI Engine,
Management API and OS dependent API.

19

3.2 Generic Software Framework for the MMI Generation of Storage

Systems

The conventional software framework for the MMI generation of storage systems
lacks of the support of a visual authoring system. We therefore incorporate a visual authoring
system into the software framework for MMIs of storage systems. The incorporated Visual
Authoring and MMI Engine are shown in figure 12. We call the new software framework as
Generic Software Framework for the MMI Generation of Storage Systems, since it can be

used to generate Man Machine Interfaces of many storage systems.

Bootins Pr=05 Web-baze. Embed. LCD
NI Spc NI Sp=c MM Spec MM Spec MM Spac

I 1 1 1 1

-
WVisual Authoring Tool
I I I I :> Visual
Authorin
Booting P05 Web-baz, Embed. LCD Bracaus g
MM I M MM MM
Dz Da Da Dsta Dieta
|] |] F
Y Y Y 2
Genaric Genaric Ganaric
-+ Mngmant -+ hngmnt -+ hngmnt " MM
AW AFPT AFPT k
Engine
-
Y | 4]
EIOSEH Pre 5 05 Driver
Diriveer Drrivar Dyivar Layer
Y Y y
Genaric Genaric
MMIEng. MM Eng.
-+ Mnemnt =+ hinemnt
AFT AP
Y Y
Embed LeD Emibedded
,,:pp ' P } Firmware
L Y Y Y Y

Firnmrae
Coga

Figure 12. Generic Software Framework for the MMI Generation of Storage Systems

20

There are also four layers in Generic Software Framework for the MMI Generation of
Storage Systems: 1) Visual Authoring Process, 2) Generic MMI Engine, 3) Driver Layer,

and 4) Embedded Firmware. We introduce the new layers:

1) Visual Authoring Process: MMI designers use Visual Authoring Tool to compose
each MMI according to the MMI requirement specification for particular utility. The
authoring tool is visualized and very user-friendly. After save the results in SVG files and use
SVG Parser to parse these files, we can get the MMI data for Generic MMI Engine at the end
of Visual Authoring Process. For instance, MMI designers use Visual Authoring Tool to
compose the MMIs of Booting Utility and Pre-OS Utility, and then generate the Booting MMI
Data and Pre-OS MMI Data.

2) Generic MMI Engine: Programmers do not need to write any MMI programs, but
they have to program the related functions for MMIs. We design the Generic MMI Engine as
common code, and it invokes these MMI related functions. This engine also cooperates with
the Management API of storage -Systems. The. desigh of Generic MMI Engine is OS
independent, and we separate the OS dependent functions to OS Dependent APIs. This design

is helpful to implement utilities in various environments.

The 3) Driver Layer and 4) Embedded Firmware are the same as the ones in the

conventional software framework for MMIs of storage systems.

After MMI designers finish the Visual Authoring Process and programmers write the
related functions for MMIs, we can come out the particular utility for storage systems with the
MMI Data, Generic MMI Engine, and Management API. This utility still needs Driver Layer

to pass commands to Embedded Firmware of storage systems.

3.3 Implementation of Visual MMI Development for Storage Systems

To implement the Visual MMI Development for Storage Systems, we must consider
five key components: 1) Visual Authoring Tool — Inkscape, 2) SVG Files, 3) SVG Parser, 4)
MMI Data, and 5) Generic MMI Engine.

21

The first phase of Visual MMI Development for Storage Systems is Visual Authoring
Process. We illustrate this procedure in figure 13, and describe the details of this process in

the following sections.

EN SVG
Parser

L i
1
™
wn
h
U
o
—
o

Figure 13. Visual Authoring Process

3.3.1 Visual Authoring Tool -- Inkscape

In our implementation, we choose Inkscape [12] as Visual Authoring Tool. Inkscape is
an open source vector graphics ‘editor, with capabilities similar to Illustrator, Freehand,
CorelDraw, or Xara X using the W3C [13] standard. Scalable Vector Graphics (SVQG) file
format. Supported SVG features include shapes, paths, text, markers, clones, alpha
blending, transforms, gradients, patterns, and grouping. Inkscape also supports Creative
Commons meta-data, node editing, layers, complex path operations, bitmap tracing, text-
on-path, flowed text, direct XML editing, and more. It imports formats such as JPEG, PNG,

TIFF, and others and exports PNG as well as multiple vector-based formats.
The main goal of Inkscape is to create a powerful and convenient drawing tool fully
compliant with XML, SVG, and CSS standards. Therefore, it is very suitable for the Visual

Authoring Process of Visual MMI Development for Storage Systems.

In figure 14, it is a snapshot of the Inkscape usage.

22

£ BassClsvg - lakscape
Eie Edit Wiew Layer Object Path Ted Effects Help
[De@a AR 4¢ BAE QGQ DYY H FTEE XD

|aeas agen : : seas |- = dmdc
ey
BE P M PR PR B P Pl o et et 1908

<5 Odipoc narmedviey id="Dage">
oy metadata = metad a1 898"

BIOS Comfiguration Uiility {tm)

ersion 0, 00, 0000, 0]

:\ E b egvy g id="tayer_0_BcuScreen>
\'—l : b <svy g id="layer_1_Manklenu®>
EI b <gvgy d="layer_2_Ctrilnfo">
ﬂ- b <svyg i="layer_2_ PdMeg'>
J . B =5vy g dd="tryer_3_Pdinfa"™>
. = <gvy g id="layer_& MenuTemplate*>
% <svg rect id="rect_MeruShadow'>
o egviy rect id="rect_Meru">

o5 recl d="edge_MeruBorder >
<5 lowRoot d="ttle_MenuTile">
=gy flowRoat id="head_HeadName"3

Graphic
Tools

b
b
b esvy flowRoot id="cont_Contentharms
b vy fiowRoat s="node_Modelame"
b esvg MowRoot id="nea_Narablarng"=

BinsCl svg ;_a'_',fE;’S

o B]
. Manager

= B8 # MenuTemplate
« 8 3 Pdnlo

« B 3 Pdkng

- B 2_Cariirf

- R 1 MairMenu

= 8 ()_BcuScreen

P ¥ & a3 3 -

= Al select under, move selected

Figure 14. Visual Authofing Tool -- Inkscape

MMI designers can use the (.}'raph'i_c' T ools-, Canvas, and Layers Manager of Inkscape
to implement MMIs for storage systems. To simplify and formalize the implementation of
MMIs for storage systems, we use Graphic Tools to create rectangles and texts only, and put
them in the Canvas area. To compose more complex vector graphics, MMI designers can use

the Layer Manager to overlap many layers of graphics.

On the other hand, MMI programmers can use the XML Editor of Inkscape to modify
SVG files conveniently. They can modify the name, attributes of SVG elements, and define
the relationship between lots of SVG elements, or add the related functions in the functional

or other programs into SVG elements.
Figure 15 illustrates one SVG file in plan text and the XML Editor of Inkscape. We

recommend MMI programmers to use the XML Editor of Inkscape to add information in SVG

files.

23

B DAEECS\Thesis\MyWork\BiosCUMMmiData.svg - MylE2 Hew Attributes

ED WHED wA0 RORE Dao B O Yata.sve: XML Editor (Shift+C Added by
@ c Q=2 " W) HedDEECE Thens My odkBix = Programmer
DAECEW.. @ ——— |

</metadatas 7 <5y svy I="BIOS U Atribute Valug

<f inkscape:groupmode ="layer” id="screen_BiosCl =svgdefs id="defs1996%
inkscape:label="screan_BlosCU® stylesopacity: I «sodipodinamedview id="base™> [ched Fa.,erl_z_cmlmo]
sodiptdi:insensitive="trug"> B =svgmetadats id="metadata1999" fung MmniAct_Cirinfa
erect sbyle="lill: @ 0000 be;lill-opacity: 1;stroker id nade_Lirlinfa

[<swgrg id="screen_BiosCLUr>

width: 2995882 75, stroke- linecap:round; strc sodipodidinespacing 100%

B . i = <gwig id="layar_1_MainkMenu™
linefoin:bevelstroke- miterimit:4;stroke- .
dosﬁnav:nnﬁe;stroke-upu-:lmrrls id="rect_t <svgrect id="Tec)_MainMenuClriad :W‘ ;“‘:"3:;‘::;:"’-“"““‘ nofmal fon-
width="640" height="480" x="0" y="0" /> b wgvgited (d="nai_Mainheny™ '
erect style="lill:eii{;fill-opacity:1;stroke: #23 <gvgrect iderecl_MainMenuShadow™ il Epace presene
width:0. 36053586, stroke- linecap:round;strc gvgrect id="recl_MainMenuBody™> ¥ 11001278

linejoin:bevelstroke- opacity: 1;display:inlin
id="ract_ScreenTitle" width="640° height="19"
<text wnl:space ="preserve” style="font-size:16)

<gvgrect id="edge_MainMenuBorder=
[+ <svgted id="title_Mainklenu™

style:normal;font-variantnormal;font-weigl A

stretch:normal; teoct- align:start;line- height:1 P ‘:5\'!}19?:1 id="node_Falng™>
mode:lr- th;text- anchor:startlill: #000000; di b svged id="node_LdMng™>
family:SimSun® «"8" v " 15" " text_Screan b <svgted id="node_DaMng™>

sodipodizinespacing="100%"» egvrtent [d="n At
ctspan sodipadi:role="Tine" ="lSpan2470" k=" E. i °:E—E_° ‘: .
Configuration Utility (tm) Version 0.00.00(f"‘“-e b e i
2/taxts svgrect bd="red_MainMenuClrksg

[+ =svgted id="msg_Mainklenu™
[=sugrg id="ayer_2_Cirlinfa™=
I+ =svgrg id="ayer_2_PdMng™
[r =swgrg id="ayer_3_Pdinfo™>
i Iy «swgog id="ayer_9_MenuTemplate™
SVG File in b «swrg id="Tayer_8_Debug™>

Plain Text

SVGFilein
Inkscape’s
XML Editor

Chick 1o select nodes, drdg 1o rearrange.

Figure 15. Edit SVG Fileiin the XML Editor of Inkscape

To implement man machmc 1nterfaces bry ihsual Authormg Process, MMI designers
or programmers are free to learn the SVG laﬁguageu MMI designers use Inkscape to compose
wanted MMI graphics and save them to the flles in SVG format. When programmers want to
modify the SVG files, they do not need to handcraft the SVG file in plain text. On the
contrary, programmers can use the XML editor of Inkscape to edit SVG file easily and user-

friendly.

3.3.2 SVG Files

SVG (Scalable Vector Graphics) [14] is a language for describing two-dimensional
graphics and graphical applications in XML (Extensible Markup Language) [15]. XML is a
simple, very flexible text format derived from SGML (ISO 8879). Originally designed to
meet the challenges of large-scale electronic publishing, XML is also playing an
increasingly important role in the exchange of a wide variety of data on the Web and

elsewhere.

24

SVG is used in many business areas including Web graphics, animation, user
interfaces, graphics interchange, print and hardcopy output, mobile applications and high-
quality design. It has two parts: an XML-based file format and a programming API for
graphical applications. Key features include shapes, text and embedded raster graphics,
with many different painting styles. It supports scripting through languages such as

ECMAScript and has comprehensive support for animation.

SVG is a royalty-free vendor-neutral open standard developed under the W3C Process.
It has strong industry support; Authors of the SVG specification include Adobe, Agfa, Apple,
Canon, Corel, Ericsson, HP, IBM, Kodak, Macromedia, Microsoft, Nokia, Sharp and Sun
Microsystems. SVG viewers are deployed to over 100 million desktops, and there is a broad

range of support in many authoring tools.

SVG builds upon many other successful standards such as XML (SVG graphics are
text-based and thus easy to create), JPEG and:PNG for image formats, DOM for scripting and
interactivity, SMIL for animation and.CSS for styling.

SVG is interoperable. The "W3C release a test suite and implementation results to
ensure conformance. Applications of 'SV G in industry.are graphics platform for mobile phone,
embedded system and print industry, ‘web applications, design and interchange, GIS

(Geographic Information Systems) and mapping, etc.

We adopt SVG files as the inter-media of Visual Authoring Process because SVG has
above advantages. For example, we can preview the MMI in SVG files by web browser, and
MMI programmers can add more information about MMI programs into SVG files
conveniently. Furthermore, we can apply the functionality of XML parser to implement the

specific SVG Parse very easily for the SVG files of MMIL

To simplify the implementation, we use three SVG elements, Layer, Rect and Text, to
implement the MMI elements for storage systems. Please refer to the relationship between
SVG elements and MMI elements in the following table. Using the same SVG element, we
define one or more MMI elements with different attributes sot that we can manipulate them

very conveniently in Generic MMI Engine.

25

Table 2. Implement MMI Elements by SVG Elements

SVG Elements MMI Elements
Layer Screen, Layer
Rect Rect, Edge
Text Text, Title, Head, Cont, Navi, Msg, Node

1) Using SVG Layer element to implement Screen, Layer MMI elements: The Layer
Manger of Inkscape can control SVG Layer element to display or hide, free-to-modify or
lock-up. We define Screen element to compose the base screen layout, and Layer element to
place one menu and its related components, e.g. some items in this menu, or help messages

for it.

2) Using SVG Rect element to implement Rect, Edige MMI elements: The rectangle
in SVG graphics can be solid or hollow rectangles. We use solid rectangle to define Rect
MMI element that is used for menu’s bodysand:shadow, and hollow rectangle to define Edge

MMI element that is the edge or border of menu’s bbdy.

3) Using SVG Text element to implement Text, Title, Head, Cont, Navi, Msg, Node
MMI elements: The SVG Text element has'many attributes, like font size or color. We use the
same font size for all text MMI elements: Nevertheless, we define many text MMI elements
with different colors. They are used for different purposes: The Text MMI element is a
common string and can be used in base screen layer. The Title MMI element is used for the
title of base screen or menus. The Head MMI element is used for the head of items in menus.
The Cont MMI element is used for the content of items in menus. The Navi MMI element is
used for the string on Navigation Bar. The Navigation Bar is the row between screen title and
canvas and it can show the path of current menus. The Msg MMI element is used for the
string on Message Bar. The Message Bar is the lowest row in screen and it can display the
message for current menu. The latest and important MMI element, Node, can carry the
information to child menu and the related function to take actions, but MMI programmers

must add the child menu and related function for each Node manually.

3.3.3 SVG Parser

26

After using Inkscape to create SVG files, we need a parser to parse SVG structure and
obtain required information from SVG files. We call this parser as SVG Parser. Before
describe the SVG parser, we introduce the concept of XML DOM (Document Object
Model) first.

In the right part of figure 16, it is a simple XML in plain text. This XML describes a

bookstore with a couple of books.

28 hooks.xml:1 - XML Viewer
File Edit Wiew Actions Help

-- % Document
aml wml version="1.0" | Name
Edited wnth XML

= <hookatorex

<hook category="COOEING"=>
<title lang="en"=Everyday Italian</title>
<author>3iada De Laurentiis</author>

+ W price <year>Z005</vear>

W book <pricex30.00</prices>

W book </book>

W book <bock category="CHILDREN'"=
<title lang="en"rHarry Potter</titlex
<author>J K. Rowling</authors=
<yearxZ2005</year>
<pricerZf,99</price>

</book>

Load time: 0.03 secs

Figure 16. XML in Plain Text

Each book has four elements: title, author, year and price. For example, first book’s
title is “Everyday Italian” in English language, because its attribute is lang="en”, author is
“Giada De Laurentiis”, year is 2005, price is 30.00. In the left part of figure 16, there is a tree
to describe the hierarchy of that XML. It is very easy to understand compared with the plain

text format.

Figure 17 illustrates a using example of XML DOM (Document Object Model) for the
above XML of bookstore.

27

Root element:
<hookstores
Farent
Child
Attribute: Element: Attribute:
*lang” <hook= “rategory”
Element: Element: Element: Element:
<titles <authors <years] =
O
Siblings
Text: Text: Text: Tawt:
Everyday Italian Giada De 2005 30,00
Laurentiis

Figure 17: XML DOM

The Document Object Model is a platform= and language-neutral interface that will
allow programs and scripts to dynamically access and update the content, structure and style
of documents. The document can be further processed and the results of that processing can

be incorporated back into the presented page..

Using XML DOM, a XML Parser can traverse the node tree, access the nodes and
their attribute values, insert and delete nodes, and convert the node tree back to XML. In our

implementation, we choose Expat XML Parser [19].

Expat is an XML parser library written in C. It is a stream-oriented parser in which an

application registers handlers for things the parser might find in the XML document (like start
tags).

In figure 18, it is a function reference for Expat XML Parser. Expat provides many

functions for parsing XML.

28

Expat Function Reference
Parser Creation

XML_ParserCreate

XML Parser
XML_ParserCreate{const
¥ML Char*encoding)

Construct a new parser. If encoding
is non-null, it specifies a character
encoding to use for the document.
This overrides the document
encoding declaration. There are
four built-in encodings:

+ US-ASCI
+« UTF-8

+« UTF-16

+ |S0O-8859-1

Any other value will invoke a call to
the UnknownEncodingHandler.

Expat Functions

XML

ErrorString

XML

ExternalEntityParserCreate

XML

GeiBase

XML

GetBuffer

XML

GetCurrentBytelndex

XML

GetCurrentColumnNumber

XML

GetCurrentLineNumber

XML

GetErrorCode

XML

GetSpecifiedAttribute Count

XML

GetlUserData

XML
XML

Parse

ParseBuffer

XML

ParserCreale

XML

ParserCreateNS

XML

ParserFree

XML

SetBase

XML

SetCdataSectionHandler

Figufe 18. Expat XML Parser

Actually, we implement our .$ VG Parser and just invoke the following functions of

Expat XML Parser. They are summarized in Table 3.

Table 3. SVG Parser Uses Functions of Expat XML Parser

Function Name

Description

XML _ParserCreate()

Construct a new parser

XML_SetElementHandler()

Set handlers for start and end tags

XML _SetCharacterDataHandler()

Set a text handler

XML _Parse()

Parse some more of the document in a buffer

In the main function of SVG Parser, we invoke XML _ParserCreate() to construct a

new XML parser, and invoke XML _SetElementHandler() to set handlers for SVG elements

and XML _SetCharacterDataHandler() for element’s text processing. In the body of main

functions, we allocate a buffer, use a loop to read a part of SVG file into this buffer, and

invoke XML _Parser() to parse data repeatedly until the whole SVG file is processed.

29

3.3.4 MMI Data

The output of Visual Authoring Tool is SVG files. We use SVG Parser to get out the
information from SVG files and store as MMI Data format. To simplify the usage of MMI
Data, we implement the format of MMI Data in a C header file, and correspondent macros in

the code of Generic MMI Engine.

To implement MMI elements, we define the following macros:

1) For Screen and Layer MMI elements, we define CREATE_SCREEN(),
END_OF_SCREEN(), CREATE_LAYER(), END_OF_LAYER() macros. Because Screen and
Layer MMI elements can contain other MMI elements, we use CREATE_XXX() and
END_OF_XXX() macros to clip them.

2) For Rect and Edge MMI e¢lements,. we define CREATE_RECT() and
CREATE _EDGE() macros. These-two macros need the attributes: name, X coordinate, Y

coordinate, width, height, color of solid or hollow rectangles.

3) For Text-like MMI elements, we define CREATE_TEXT(), CREATE_TITLE(),
CREATE_HEAD(), CREATE_CONT(), CREATE_NAVI(), CREATE_MSG(),
CREATE_NODE() macros. For Text, Title, Head, Cont, Navi, Msg MMI elements, they need
the attributes: name, X coordinate, Y coordinate, color and string. Besides the previous ones,
Node MMI element needs two additional attributes: child menu, related function. The
attribute, child menu, tells Generic MMI Engine which menu layer is combined to this node.
And the attribute, related function, invokes the functions in Generic MMI Engine to take the
related actions for this node. The scenario is when users press this node, the related function

will be invoked to do something and then the child menu will be popped up.

Figure 19 demonstrates a partial MMI Data in the output file of SVG Parser --
MmiData.h.

30

& MmniEng Project - Sounrce Insight - [MmiData.h (mmieng)] =l Bl X

[File Edit Search Project Options View Window Help - 8 x

D HEQ & YXB2E 90 66 @ 05«38 6400

/¥ MmiData.h - Generated by SVG Parser. Don't edit this file directly! */

CREATE_SCREEN(screen_BiosCU)

CREATE_RECT(rect ClearScreen, 0, 0, §40, 480, COLOR_BLUE)

CREATE_RECT(rect_ScreenTitle, 0, 0, 40, 13, COLOR_B_WHITE)

CREATE_TEXT(text_ScreenTitle, g, 15, COLOR_BLACK, "BIOS Configuration Utility {tm) Version 0.00.0000.01")
CREATE_RECT(rect_NaviBar, 0, 15, 640, 19, COLOR_GRAY)

CREATE_RECT(rect_Canvas, 0, 38, 640, 418, COLOR_WHITE)

CREATE_EDGE(edge_CanvasBorder, 4, 41, €33, 411, COLOR_BLACK)

CREATE_RECT(rect_MsgBar, 0, 45§, 640, 15, COLOR_ELUE)

END_OF_SCREEN(screen_BiosCU_end)

CREATE_LAYER(layer_1_MainMenu, 1)

CREATE_RECT(rect_MainMenuClrMawi, 0, 19, 103, 15, COLOR_B_BLUE)

CREATE_NAVI(navi_MainMenu, &, 35, COLOR_B_WHITE, "= Main Menu")

CREATE_RECT(rect MainMenuShadow, zg, 85, 285, 154, COLOR_BLACK)

CREATE_RECT(rect MainMenuBody, 17, €3, 288, 153, COLOR_BLUE)

CREATE_EDGE(edge_MainMenuBorder, 20, &7, 281, 154, COLOR_E_WHITE)

CREATE_TITLE(title_MainMenu, 21, 51, COLOR_B_WHITE, "[Main Menu ")

CREATE_NODE(node_CtrlInfo, 33, 110, COLOR_YELLOW, layer_2_CtrlInfo, MmiAct_CtrlInfo, "Controller Information™)
CREATE_NODE(node_PdMng, 33, 128, COLOR_YELLOW, layer_2_PdMng, MmiAct_PdMnag, "Physical Drive Management™)
CREATE_NODE(node_LdMng, 33, 147, COLOR_YELLOW, layer_1_MainMenu, MmiAct_Null, "Logical Drive Management")
CREATE_NODE(node_DaMng, 33, 187, COLOR_YELLOW, layer_1_MainMenu, MmiAct_Null, "Disk Array Managment")
CREATE_NODE(node_BgAct, 33, 185, COLOR_YELLOW, layer_1_MainMenu, MmiAct_Null, "Background Activity")
CREATE_NODE(node_EventLog, 33, 204, COLOR_YELLOW, layer_1_MainMenu, MmiAct_Null, "Event Log")
CREATE_RECT(rect_MainMenuClrMsg, 0, 455, €38, 13, COLOR_BLUE)

CREATE_MSG(msg_MainMenu, 5, 470, COLOR_B_WHITE, "ARROW:Nawvigate, ENTER.:Enter, SPACE: Select, ESC:Back, F10:
END_OF_LAYER(layer_1_MainMenu_end)

1 1l | »

LR EaliD IS

Figure 19. MmiDa:ta;li e Thf OutputF ile of SVG Parser
In this example, we know t_hat the .s.'f.:.recijl_—'scrgzgh_BiosCU contains MMI elements:
rect_ClearScreen, rect_ScreenTifl:e, _-...:.Ite)_ct__fS'creenYI."itle, rect_NaviBar, rect_Canvas,
edge_CanvasBorder, rect_MsgBar. Thé }'ect_Cle;arScreen is the first rectangle to clear the
whole screen. The rect_ScreenTitle is the background of screen title, and the
text_ScreenTitle is the string of screen title. The rect_NaviBar is the background of
Navigation Bar. The rect_Canvas and edge_CanvasBorder form the area of canvas to place

menus. The rect_MsgBar is the background of Message Bar.

About the display order of SVG elements, Inkscape draws the leading element first,
and then draws the following elements in sequence. Therefore, the following elements overlap
on the previous ones. In our implementation of Generic MMI Engine, we also use the same
display order for MMI elements. Hence, the MMI element fext_ScreenTitle is displayed over

the rect_ScreenTitle.

On the other hand, the display order of graphic layers, Inkscape draws the lowest layer

first, and then draws the upper layers one bye one. So, the upper layers overlap on the lowest

31

one. Generic MMI Engine also displays layers for MMI elements in the same order. Thus, the

layer_1_MainMenu is displayed over the scree_BiosCU.

In the bottom half of figure 19, the menu layer layer_I_MainMenu contains MMI
elements: rect_MainMenuClrNavi, navi_MainMenu, rect_MainMenuShadow,
rect_MainMenuBody, edge_MainMenuBorder, title_MainMenu, node_CtrlInfo, node_PdMng,
node_LdMng, node_DaMng, node_BgAct, node_EventLog, rect_MainMenuClrMsg,
msg_MainMenu. The rect_MainMenuClrNavi is the background of navi_MainMenu. The
navi_MainMenu is the string on Navi Bar for main menu. The rect_MainMenuShadow is
the shadow of main menu’s body. The rect_MainMenuBody is the body of main menu. The
edge_MainMenuBorder is the border of main menu’s body. The title_MainMenu is the title
of main menu. The node_CtrlInfo is the first node of main menu, and its child menu is
layer_2_Ctrlinfo and related function is MmiAct_Ctrlinfo(). The node_PdMng is the second
node of main menu, and its child menu is layer_2_PdMng and related function is
MmiAct_PdMng(). The node_LdMng, node .DaMng, node_BgAct, and node_EventLog are
not functional nodes, so their child.'menu.is layer_l_MainMenu and related function is
MmiAct_Null(). The rect_MainMenuClrMsg is the background of msg_MainMenu. The

msg_MainMenu is the string on Msg Bar for main menu.

For the MMI Data in the format of MmiData.h, we write the macros for each MMI

elements. The details of these macros are revealed in the following description:

1) For Screen MMI element, we use CREATE_SCREEN() and END_OF_SCREEN ()
macros. The Screen MMI element can contain Rect, Edge, and Text MMI elements. Because
of this, we can see CREATE _RECT(), CREATE_EDGE(), and CREATE_TEXT() macros
between CREATE_SCREEN() and END_OF_SCREEN() macros.

#define CREATE_SCREEN (name) \

mmi_screen_t name = \
{ \

mmi_elem_screen, \
Yoo\

#define END_OF_SCREEN (name) \
Ul6 name = mmi_elem_ screen_end;

32

2) For Layer MMI element, we use CREATE_LAYER() and END_OF_LAYER ()
macros. The Layer MMI element can contain Rect, Edge, Text, Title, Head, Cont, Navi, Msg
and Node MMI elements. Because of this, we can see CREATE_RECT(), CREATE_EDGE(),
CREATE_TEXT, CREATE_TITLE, CREATE_HEAD, CREATE_CONT, CREATE_NAVI,
CREATE_MSG and CREATE_NODE() macros between CREATE LAYER() and
END_OF_LAYER() macros.

#define CREATE_LAYER (name, level) \

mmi_layer_t name = \
{ \
mmi_elem_layer, \
level, \
Fiooo\

#define END_OF_LAYER (name) \
Ul6 name = mmi_elem_ layer_end;

3) For Rect and Edge MMI elements, we use CREATE_RECT() and CREATE_EDGE
() macros. They need the same parameters: name of MMI element, coordinate X, coordinate
Y, width, height, and color.

#define CREATE_RECT (name, coordX, coordY, width, height, color) \

mmi_rect_t name = B

{ \
mmi_elem_rect,
coordX,
coordy,
width,
height,
color,

biooN

P

#define CREATE_EDGE (name, coordX, coordY, width, height, color) \
mmi_edge_t name = \

{ \
mmi_elem_edge,
coordX,
coordy,
width,
height,
color,

b\

P

3) For Text-like MMI elements, we use CREATE TEXT(), CREATE TITLE(),
CREATE _HEAD(), CREATE_CONT(), CREATE_NAVI(), and CREATE_MSG() macros.
They need the same parameters: name of MMI element, coordinate X, coordinate Y, color,
and string.

33

#define CREATE_TEXT (name, coordX, coordY, color, str)
mmi_text_t name = \

{

i

\

mmi_elem text, \
coordX, \
coordy, \
color, \
str, \

\

#define CREATE_TITLE (name, coordX, coordY, color, str)
mmi_title_t name = \

{

i

\

mmi_elem _title, \
coordX, \
coordy, \
color, \
str, \

\

#define CREATE_HEAD (name, coordX, coordY, color, str)
mmi_head_t name = \

{

bi

\

mmi_elem_head, \
coordX, \
coordy, Y
color, 3
str, N

\

#define CREATE_CONT(namé} coordX, coordY, color, str)
mmi_cont_t name = \

{

bi

\
mmi_elem_cont,
coordX,
coordy,

color,

str,

\

s s

#define CREATE_NAVI (name, coordX, coordY, color, str)
mmi_navi_t name = \

{

i

\
mmi_elem_navi,
coordX,
coordy,

color,

str,

\

s

#define CREATE_MSG (name, coordX, coordY, color, str) \

mmi_msg_t name = \
{ \
mmi_elem_msg, \
coordX, \
coordy, \

34

\

\

\

\

color, \
str, \
Fioo\

4) For Node MMI elements, we use CREATE_NODE() macro. This macro needs the
parameters: name of MMI element, coordinate X, coordinate Y, color, child layer, related
function name, and string.

#define CREATE_NODE (name, coordX, coordY, color, child, func, str) \
mmi_layer_t child; \

mmi_node_t name = \

{ \
mmi_elem_node,
coordX,
coordy,
color,

&child,
func,
str,

b\

PP

To distinguish MMI elements more easily, we implement macros and data structures
for each MMI elements. These macros put_the “attributes of MMI elements into the
correspondent data structures so that Generic MMI Engine can manipulate MMI data very

easily.

We define constants for MMI elements, and these constants are used in previous

macros. The enumerated type collects these constants as below:

typedef enum mmi_elem_e

{

mmi_elem_start = 0xEQ,

mmi_elem_ screen, /* main screen */
mmi_elem_screen_end,

mmi_elem_layer, /* layer with following elements */
mmi_elem_layer_end,

mmi_elem rect, /* solid rectangle */
mmi_elem_edge, /* hollow rectangle */
mmi_elem text, /* text on screen */
mmi_elem title, /* text of menu title */
mmi_elem_ head, /* head of item */
mmi_elem_ cont, /* content of item */
mmi_elem_navi, /* text on navi bar */
mmi_elem_msg, /* text on msg bar */
mmi_elem_ node, /* node to other layer */

35

mmi_elem_end
} mmi_elem t;

We also define the data structures for MMI elements. They are:

1) For Screen MMI element, we use the data structure mmi_screen_s.

typedef struct mmi_screen_s

{
Ul6 mmi_elem type;
} mmi_screen_t;

2) For Layer MMI clement, we use the data structure mmi_layer_s. It has the level

field to indicate the level of this layer.

typedef struct mmi_layer_s

{
Ul6 mmi_elem type;
Ule level;

} mmi_layer_t;

3) For Rect and Edge MMI-elements, we use the same data structure mmi_rect_s. For
the mmi_elem_type field, CREATE_RECT{(") macro places the value of mmi_elem_rect for
Rect MMI element, and CREATE_EDGE() macro places the value of mmi_elem_edge for
Edge MMI element.

typedef struct mmi_rect_s

{
Ul6 mmi_elem type;
516 coordX;
516 coordY;
S16 width;
316 height;
516 color;
} mmi_rect_t;

typedef mmi_rect_t mmi_edge_t;

4) For Text-like MMI elements, we use the same data structure mmi_text_s. For the
mmi_elem_type field, CREATE_TEXT() macro places the value of mmi_elem_text for Text
MMI element, and CREATE_TITLE() macro places the value of mmi_elem_title for Title
MMI element, etc.

36

typedef struct mmi_text_s

{
Ul6 mmi_elem_type;
S16 coordX;
516 coordY;
516 color;
pU8 str;
} mmi_text_t;

typedef mmi_text_t mmi_title_t;
typedef mmi_text_t mmi_head_t;
typedef mmi_text_t mmi_cont_t;
typedef mmi_text_t mmi_navi_t;
typedef mmi_text_t mmi_msg_t;

5) For Node MMI element, we use the data structure mmi_node_s. CREATE_NODE()
macro places the address of child layer into child field, and the related function address in
func field for Node MMI element.

typedef struct mmi_node_s
{
Ul mmi_elem_type;
516 coordX;
516 coordY;
S16 color;
pU8 child;
MmiAct_func_t func;
pU8 str;
} mmi_node_t;

In summary, the Rect and Edge MMI elements use the same data structure mmi_rect_s.
The Text, Title, Head, Cont, Navi, Msg MMI elements use the same data structure
mmi_text_s. The data structure for Node MMI element is mmi_node_s, and it has two

additional fields, i.e. child and func.

3.3.5 Generic MMI Engine

The kernel component of the Visual MMI Development for Storage Systems is Generic
MMI Engine. This engine can manipulate the data from Visual Authoring Process. Figure

20 illustrates the block diagram of Generic MMI Engine.

37

BIOS/EFI, App, etc

InputApi I DispApi Ios Dependent

v
MmiMain |

MmiDisp

Read & Write I — -

MngApi I

MmiAct %
—

Generic MMI Engine

Figure 20. The B_l'dck Diagf%lm of Gei;_eric MMI Engine

We design and implement five modules of Ge_n:eric MMI Engine. They take different

responsibilities. Table 4 summarizes these mo_du-le's., and we describe the details design of

these different modules in the following paragraphs.

Table 4. Modules of Generic MMI Engine

Module Name Description
MmiMain Main functions of MMI engine
MmiData MMI data from visual authoring
MmiDisp MMI display functions
MmiAct Interface between MmiMain and MmiData
MmiSub

Interface between MmiMain and MngApi

1) MmiMain Module: This module contains main functions of Generic MMI Engine.

MmiMain_Entry() is the entry function of engine and it invokes three sub-functions:

mmiMain_Initialization(), mmiMain_NormalMode(), and mmiMain_Finalization(). All

38

initialization will be done in the mmiMain_Initialization(). In this function, we init the
data pointer to MMI Data, set active layer and node, and initialize MmiDisp and MmiSub
modules. The mmiMain_NormalMode() function is the core of Generic MMI Engine. It
invoke functions of MmiDisp module to display screen and menus, and functions of
InputApi to get input from users repeatedly. After get any input, it dispatch tasks to take
correspondent actions. In the mmiMain_Finalization() function, we finalize something

before leaving, e.g. finalize MmiSub module and restore the display mode, etc.

2) MmiData Module: The MmiData.h is the output of SVG Parser. During
compilation phase, we use SVG Parser to read the wanted SVG file and elicit MmiData.h
automatically. In Generic MMI Engine, it reads and writes the data structures in MmiData

module by MmiAct and MmiSub modules, but read only by MmiDisp module.

3) MmiDisp Module: This module contains functions for display. For instance, the
MmiDisp_DrawScreen() draws the Screen MMI element, and the MmiDisp_DrawLayer()
function draws the Layer MMI element. These. functions of MmiDisp module need low-
level functions support, i.e. they invoke the functions of Display API (DispApi). We
separate the display functions with OS dependence to Display APL

4) MmiAct Module: This module contains functions for the Node MMI elements.
MMI programmers must add the related functions into MmiAct module, and edit the SVG
file to add the related function name into Node MMI elements, e.g. the MmiAct_Ctrlnfo()
function for node_Ctrlinfo, and the MmiAct_PdMng() function for node_PdMng, etc.

5) MmiSub Module: Functions in this module are sub-functions for MmiMain and
MmiAct modules. These functions cooperate with Management API (MngApi) to get
information from Embedded Firmware. For example, the MmiSub_PdEnum() function
gets the ID of physical hard disk drives and enumerate all of them in the storage system.
The MmiSub_FillPdInfo() function gets the information of physical hard disk drives from
Management API (MngApi) and fill the strings for MmiAct module.

Besides above modules, there are some API libraries will cooperate with Generic

MMI Engine. They are:

39

1) Input API (InputApi): Input API provides functions to get input from users, e.g.
what key is pressed, or the coordinates of mouse cursor, etc. This APIis OS dependent. For
the Booting Ultility of storage systems, we write assembly sub-routines or invoke software

interrupts of system BIOS.

2) Display API (DispApi): This API provides functions to display MMI elements.
Using more powerful Display API, we can implement more functional Generic MMI
Engine to display complex SVG graphics. For instance, the DispApi_GetDisplayMode()
function gets current display mode, and the DispApi_CursorDisable() function can hide

cursor. Of course, this API is also OS dependent.

3) Management API (MngApi): The Management API is the library has capability to
communicate with the Embedded Firmware of storage systems. It allocates a private data
buffer to get information from firmware, and provides related functions to fetch items in
that buffer. E.g. the MngApi_GetPdInfo(:),function gets the information of assigned
physical hard disk drive into data buffer, and. the MngApi_FetchPdld() function fetches
the ID of that physical hard disk drive from data buffer. The Management API is dependent

on storage systems.

40

Chapter 4

Simulation and Application Examples

In chapter 3, we describe the design and implementation of Visual MMI Development
for Storage Systems. In this chapter, we will demonstrate simulation examples for the Booting
Utility and application examples for the Pre-OS Utility of storage systems. We will follow the
framework of Visual MMI Development for Storage Systems, and implement these examples

step by step.

4.1 Simulation Examples for the Booting Ultility of Storage Systems

Before implement the simulation ‘anc

application examples, we define the MMI
requirement specification for them Figure Z simply define four menus to

demonstrate the basic functions for M

[MBin Menmnm]
Controller Information [Controller Information]
Phy=ical Drive Management : AR

Logiecal Drive Management =
Disgk Array Management
Background Activity
Event Log

Retnrn to Previons Menn

[Phy=ical Drive Management]
ID | Model Hame | Capacity | Statos
| ¥¥Z SAS 40CGB HDD | 40 GB | OF

|

I [Phy=sical Drive Information]

I Physical Drive ID : AR 0 Y
I Model Hame

I Serial NHumber

| Firmware V i

Capacity

Statns

Retnrn to Previons

Retnrn to Previons Menm

Figure 21. MMI Requirement Specification for Simulation and Application Examples

41

The usage scenario of this system is as below description. The first menu is main

menu that contains some nodes, but only two nodes are functional. They are the node

“Controller Information” and “Physical Drive Management”. When users press the node

“Controller Information”, it will pop up the menu “Controller Information™ that displays the

information of adapter controller. When users press the node “Physical Drive Management”,

it will pop up the menu “Physical Drive Management” that has a table lists present physical

hard disk drives. When users want to read the information

of certain physical hard disk drive,

they can press it and the menu “Physical Drive Information” will pop up.

To implement this simulation example for the Boo

ting Utility of storage systems, we

follow the steps in section 3.1 Visual MMI Development for Storage Systems.

Step 1) MMI designers use Visual Authoring

according to MMI requirement documents. We compose

Tool to compose wanted MMIs
wanted MMIs in Visual Authoring

Tool -- Inkscape. In figure 22, we compose thesscreen layout first, because it is the root layer.

Lawer Oopect Path Ted Effects Haip

jDe@e Ak 9¢ HxbD QG DEaE <H FTOE XD
e saen : : :
T O O U o PP O o gD PO M w8 O T PO e L O W

sion 0, 00, 0600, 0]

T RIS Configuration |

WL PRELOLODL A

x|
= Mo objects selecled. Click, Shfl-glick. of drdg ansund objects { =

= MmiData.swg: XML Editor {Shale#Crrl+2X)

HES &

= <meg Vg W="ER0E CU™>
v dals ide"defs 19967

[=scdipodi namedesw id="tase ™

[v maladals id="metpaata 1099

- i g i3z REneen_BiasCLUrs
iyl rdl b= "Fedl_CléarSonisn™s
<gvgred id="red_ScreenTie™>
s tad id="tes]_SoeenTile™
<gegred id=rec_NawBar>
g red ke rect_Camas™
<Ep TRl bl pdp_CavaiBonder e

< g el d="rel_WagBar-
B g Ba="Tadr_1_Mankiseu™
B advgeg e3="Raver_2_Cxlinfo™>
[sy b= Rayer_2_Pdling>
b sswgrgeaayer_3_Poinko>
[<svgrpidsayer_§_MeruTemplate™
[< ideayer_§_Debug™

CHCK 12 saled nogdes. drag b reaTange

“ Layers (Shalt+#Cul+L)
UimiData svy
o, lapes_8_Debug

o layer_8_MenuTemplale

= B layer_3_Pdnio

- layee_2_Falleg

@ B laper_2_Cirinky

- by _1_Usinblenu RUUt

® & geresn_BiosCl layer is
screen

layout

Figure 22. Compose Screen Layout

)

by Inkscape

The first row of the screen layout is the screen title, and the second row in dark gray
background color is Navigation Bar (NaviBar). In this bar, we can display the hierarchy of
active menus, e.g. “Main Menu > Physical Drive Management > Physical Drive Information”.
The bottom row of screen is Message Bar (MsgBar). In this bar, we can display messages, e.g.
the brief hint of hot keys. The rows between NaviBar and MsgBar are the canvas that we can

place menus.

Step 2) Save the results of Visula Authoring Tool as SVG Files. In default setting,
Inkscape saves files in SVG format. Figure 23 illustrates a partial SVG file in plain text.

DAEECS\Thesis\MyWork\BiosCUMmiData.svg - MyIE2 =0, X
BRE HEE RO HSEEw 3o BEc 8@ s O #E 0 | ©~ B8 L2
O-O-H@E@ et [@] file #/DJEECS/ThesisMyWork/BiosCUMmiData v g ~|E~

</g= &

- =g inkscape:groupmode="layer" id="layer_1_MainMenu" inkscape:label="layer_1_MainMenu"
style="opacity:1;display:inline" sodipodi:insensitive="true"=
<rect style="opacity:1;fill:#0000ff;fill-opacity:1;stroke: #0000ff;stroke-
width:0.13687097;stroke-linecap:round;stroke-linejoin:bevel;stroke-
opacity:1;display:inline" id="rect_MainMenuClrNavi" width="103.10428" height="19.202335"
x="0.10116722" yv="19.098831" />
- ztext xml:space="preserve" style="font-size:16px;font-style:normal;font-variant:normal;font-
weight:normal;font-stretch:normal;text-align:start;line-height:100%;writing-mode:lr-
th;text-anchor:start;opacity: 1;fill: #ffffff;display:inline;font-family:SimSun" »="8" yv="35"
id="navi_MainMenu" sodipodi:linespacing="100%":>
<tspan sodipodi:role="line" id="tspan2487" x="8" y="35"=> Main Menu</tspan=
<ftext>
<rect style="fill:#000000fill-opacity:1;stroke:none;stroke-width:2;stroke-
linecap:round;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-
opacity:1" id="rect_MainMenuShadow" width="285" height="154.98857" x="28" y="85" />
zrect style="fill:#0000be;fill-opacity:1;stroke:#330000;stroke-width:0.72795069;stroke-
linecap:round;stroke-linejoin:bevel;stroke-opacity:1;display:inline" id="rect_MainMenuBody"
width="286.59174" height="159.99493" x="17.998451" yv="63.969749" /=
<rect style="fill:none;fill-opacity:1;stroke: #ffffff;stroke-width:1.52985263;stroke-
linecap:round;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-
opacity:1" id="edge_MainMenuBorder" width="281" height="154.97208" x="20.767126"
y="67.060951" transform="matrix(0.9999906,-4.326438%e-3,0,1,0,0)" />
- ztext xml:space="preserve" style="font-size:16px;font-style:normal;font-variant:normal;font-
weight:normal;font-stretch:normal;text-align:start;line-height:100%;writing-mode:Ir-
th;text-anchor:start;fill: #ffffff;fill-opacity:1;display:inline;font-family:SimSun" x="31.464752" -
4 [0} | 3

#1815 548 o S[Fsn> 192168013 L6

[m|

Figure 23. SVG File in Plain Text

Step 3) To speed up the development of MMIs, we can create Template SVG Files
Jor MMI designers. We compose the Template SVG File in figure 24 with Menu Template

(layer_MenuTemplate) that has key elements for each layer of menu.

43

©_MmiDats svg - [skscaps =Bl

R A S S CR O * MmiDatsswe: XML Editor (ShiftsCuleX)
|DeEs A ¢ DR Q@f.‘n u@-.a .s:& CTOE XD |06 @ Q S
|aen< uaEn : : : : GGG

T T l>-=—q;|d I.'|¢|'|I.l:|nIJur|u |

= = s i it
| O S U Ul ol U L T TP el O PR Y R T R T O et L O O ool b smpg = layer_2_Chilndy>

BIOS Configuration Utilivy (um) Yersion (.I_ L'I.II_IHZ{II'I.III I =gvgeq idelayer_2_Pdling™
L il oo MMI Elements:
: g d="re Hi screen, layer,
A B stvg e id="ndn oM aiEs
rect, edge,

gy red id="re '|_"-c||:|—!:~'|:lrllnr|u
wggred id="red_SolidRedOMlenuBiod) i
cpared id="sdge_HulloaRecOMlanug] text, title,

- - b cpigin ideBa_Tea0RenuTite™ head, cont,
[String of menu title] i e i
b e e | TSI

String of head : String of content

i _TaniOR e nocle,
S Clearl SR

b stvgted id="mag_TedOnllsgBars
b-:-q:ld Tayer_9_Dwbisg ™

Chick to seled nodes, drag to reamrange.

String of node * Laysrs (ShifueCrrleL)
Lrilrata S

lapid_B_Dubug

laper_B_HenuTempiale

3_Paniy

lapt
lapesi_2_Pang
2_Cirlind

lape

laper_1_Mainklanu

= = = B B B B

L SO R S SR ¢

soeen_EwsCL

w | N objeds seleched Chck, Shilteclick qaa;x:\.n:lctmdmf

Figure 24. Qonipose.the Template SVG File

These key elements are Navi _Bar',_:Menu, Node, énd Msg Bar. Navi Bar is a row for
navigation, and it displays the hierarchy of active menu.s. Menus include menu title, heads of
items, contents of items, and nodes. Nodes aré special text elements with the ability to
combine the function and child menu together. If users select one node in the running time, it
will take the related function and then pop up its child menu. Msg Bar is a row to display

messages or hints for users. For example, we can list hot keys for active menu particularly.

Using the layer of Menu Template (layer_MenuTemple) in the Template SVG file,
MMI designers can compose the wanted menus quickly. Figure 25 illustrates three menus
were been composed by using the layer_MenuTemple: Main Menu (layer_I_MainMenu),
Physical Drive Management Menu (layer_2_PdMng), and Physical Drive Information Menu
(layer_3_PdInfo), and other menu layers are hidden: Controller Information Menu
(layer_2_CtrlInfo), Menu Template (layer_9_MenuTemplate), and Debug Layer
(layer_9_Debug). In the right bottom corner of figure 25, the Layer Manger of Inkscape can

control these layers.

44

" MmiData.svg - Inkscape
File Edit View Layer 0Object Path Texdt Effects Help

e e

" MmiData.svg: XML Editor (Shift+Ctrl+X)

LeEds BNk 9¢ BdbD Q@G TEE @8 FTEHE X8
LN EY : ; . : EEEE

500] 500
|‘II.\.I.|‘I.I. Iv.l.l.l.l

.I.|60.JI‘I

|j| Ll 1 1 |‘ 1 I 1 1 .
u < BIOS Configuration Utility (tm) Version 0.00.0000. 01

lrc B al Drive Information
D i [Main Menu]
oy Controller Information
O = || Py
(E? 5 Log || [Physical Drive Management]
- Dis ID | Model Name | Capacity | Status
@ = Bac || 123 | 12345678901234567890 | 1234567890 | 12345
Z@ 8- Evel|l - |- | - |-
Eg, : [Physical Drive Information]
¢ Physical Drive ID : String of cont_Pdid..............
l@_’] Model Name : String of cont_PdModel........
AI g_' Serial Number : String of cont_PdSn.............
i Firmware Version : String of cont_PdFwVer........
5% o Capacity : String of cont_PdCap
] Status : String of PdStatus
nj i 9
n/ §__ Return to Previous Menu

Bl

= =gyg:svg id="BIOS CU™> o
=gvg.defs id="defs 1006
[» =sodipodi:namedview id="hase™>
[» <svg:metadata id="metadata1999"=
[» =svg:gid="screen_BiosCU"
[» =svg:gid="layer_1_WainMenu™=
[» =svg:gid="layer_2_Ctrinfo™=
[» =svg:gid="layer_2_PdMng™
||~ <svggid="layer 3 Pdinfo> |
=gvg.rect id="rect_PdInfoClrMavi"=
[» =svgtext id="navi_Pdinfo"=
=gvg.rect id="rect_PdIinfoShadow™
=gvg.rect id="rect_PdInfoBody™=
=gvg.rect id="edge_PdInfoBorder
[» =svgtext id="title_Pdinfo"=
[» =svgtextid="head_Pdld"
[» =svgtextid="head_PdModel™=
[» =svgtextid="head_PdSn"=
I =svotextid="head PdFwVer= 54
Click to select nodes, drag to rearrange.

" Layers (Shift+Ctrl+L)
MmiData.svg
=) layer_8_Debug

m

layer_8_MenuTemplate
layer_3_Pdinfo
layer_2_PdMng
layer_2_Ctrlinfo
layer_1_Mainhenu

screen_BiosCU

£ (&) (8] 2] |=

c B

*
E
o~
-

- Inkscape

i

: & CLWL T 1752

CH

Figure 25. Compose Menus by Using the layer_MenuTemple

Step 4) For developers or customers, they can preview these SVG Files in web

browsers. During the Visual Authoring Process, we can use web browser to preview SVG

files. In order to let web browser displays texts in SVG files correctly, we have to set texts as

Unflow. In Inkscape, select wanted texts and choose the function: Text > Unflow.

Step 5) MMI programmers add additional information in SVG Files. We use the

XML Editor of Inkscape to edit the SVG elements, and give the meaningful names and

attributes for MMI elements in Menu Template (layer_MenuTemplate). For instance, we give

layer_1_MainMenu as the name of main menu layer, and the attribute of layer_2_Ctrlinfo as

the child menu for node node_CtrlInfo. This means that users press the node of node_Ctrlinfo,

and Generic MMI Engine will display the MMI elements in layer_2_CtrlInfo.

45

Step 6) Use SVG Parser to transform SVG Files to MMI Data. After we save the
results in SVG files, we can use SVG Parser to generate MMI Data for Generic MMI Engine
automatically. The output of SVG Parser is MmiData.h, and the following example is a

partial code of MmiData.h.

/* MmiData.h - Generated by SVG Parser. Don't edit this file directly! */

CREATE_SCREEN (screen_BiosCU)

CREATE_RECT (rect_ClearScreen, 0, 0, 640, 480, COLOR_BLUE)

CREATE_RECT (rect_ScreenTitle, 0, 0, 640, 19, COLOR_B_WHITE)

CREATE_TEXT (text_ScreenTitle, 8, 15, COLOR_BLACK, "BIOS Configuration
Utility (tm) Version 0.00.0000.01")

CREATE_RECT (rect_NaviBar, 0, 19, 640, 19, COLOR_GRAY)

CREATE_RECT (rect_Canvas, 0, 38, 640, 418, COLOR_WHITE)

CREATE_EDGE (edge_CanvasBorder, 4, 41, 633, 411, COLOR_BLACK)

CREATE_RECT (rect_MsgBar, 0, 456, 640, 19, COLOR_BLUE)

END_OF_SCREEN (screen_BiosCU_end)

CREATE_LAYER (layer_1_MainMenu, 1)

CREATE_RECT (rect_MainMenuClrNavi, 0, 19, 103, 19, COLOR_B_BLUE)

CREATE_NAVI (navi_MainMenu, 8, 35, COLOR_B_WHITE, "> Main Menu")

CREATE_RECT (rect_MainMenuShadow, 28, 85, 285, 154, COLOR_BLACK)

CREATE_RECT (rect_MainMenuBody, 17,+%63, 286, 159, COLOR_BLUE)

CREATE_EDGE (edge_MainMenuBorder, 20, 67, 281, 154, COLOR_B_WHITE)

CREATE_TITLE(title_MainMenu, 31, 91, COLOR B_WHITE, "[Main Menu]")

CREATE_NODE (node_CtrlInfo, 335 110, COLOR.YELLOW, layer_2_CtrlInfo,
MmiAct_CtrlInfo, "Controller Information")

CREATE_NODE (node_PdMng, 33, 128, COLOR_YELLOW, layer_2_PdMng, MmiAct_PdMng,
"Physical Drive Management")

CREATE_NODE (node_LdMng, 33, 147, COLOR_YELLOW, layer_1_MainMenu,
MmiAct_Null, "Logical Drive®Management™)

CREATE_NODE (node_DaMng, 33, 167, COLOR_YELLOW, layer_1_MainMenu,
MmiAct_Null, "Disk Array Managment")

CREATE_NODE (node_BgAct, 33, 185, COLOR_YELLOW, layer_1_MainMenu,
MmiAct_Null, "Background Activity")

CREATE_NODE (node_EventLog, 33, 204, COLOR_YELLOW, layer_1_MainMenu,
MmiAct_Null, "Event Log")

CREATE_RECT (rect_MainMenuClrMsg, 0, 456, 638, 19, COLOR_BLUE)

CREATE_MSG (msg_MainMenu, 5, 470, COLOR_B_WHITE, "ARROW:Navigate,
ENTER:Enter, SPACE:Select, ESC:Back, F10:Exit")

END_OF_LAYER (layer_1_MainMenu_end)

Step 7) MMI programmers program related functions in Management API
according to functional requirement documents. We write the related functions for MMIs.
For each Node MMI element, MMI programmers have to add the related functions into
MmiAct and MmiSub modules of Generic MMI Engine. For example, we write the
MmiAct_CtrlInfo() function to get information of controller for node_Ctrlinfo, and the

MmiAct_PdMng() function to get a list of physical hard disk drives for node_PdMng, etc.

46

Step 8) Generate the target MMI applications with MMI Data, Generic MMI
Engine, Management APl and OS dependent API. To simplify the complexity of
demonstrations, we use two definitions to configure Generic MMI Engine. First, define
USE_MNG_API to indicate if it needs to invoke Management API or not. Second, define
DRIVER_SIMULATOR to indicate if it simulates the reactions of driver by itself or not.

If we set USE_MNG_API to OFF, Generic MMI Engine displays MMI Data directly.
All the messages and texts are the same as the ones in Visual Authoring Tool. If we set
USE_MNG_API to ON, Generic MMI Engine invokes the functions of Management API, and

these functions submit related commands to driver directly.

If we set DRIVER_SIMULATOR to ON, the code of Driver Simulator in Generic
MMI Engine takes actions to simulate reactions of real driver. If we set
DRIVER_SIMULATOR to OFF, the real driver is required to pass commands to Embedded

Firmware of storage systems.

= MmiEngine - run ngﬂ

BIOS Configuration Utility {tm} Uersion H.0H.HHAHA.H1
» Main Menu > Physical Drive Management > Physical Drive Information

[Main Menu 1

Controller Information

Phyzic

Logica|[Physical Drive Management

Diszk R
Backgr
Event

—
=

Model Mame Capacity Status
HYZ S5A5% 4AGE HDD 48 GB 0k
HYZ 5A5 4AGE HDD 168 GB 0k

[Physical Drive Information 1

Physical Drive ID = 1

Model Hame : BYZ S5A% 48GE HDD
Serial Humher = 1234-5678-8765-4321
Firmware Uersion : 12.34.%6

Capacity : 48 GB

Status = Ok

| T T Y (I

Return to Previous Menu

ARROY :Havigate, ENTER:Enter,. SPACE:Select, ESC:Back. F1H:Exit

Figure 26. Simulation Examples for the Booting Utility of Storage Systems

47

In the case one of simulation examples, we set USE_MNG_API to OFF and
DRIVER_SIMULATOR to ON. The utility will display MMI Data directly.

In the case two of simulation examples, we set USE_MNG_API to ON and
DRIVER_SIMULATOR to ON. The utility will display imitative information from the Driver
Simulator in Generic MMI Engine.

4.2 Application Examples for the Pre-OS Utility of Storage Systems

Before the demonstration of application examples, we have to setup a platform with an
internal storage system. We use a HBA (Host Bus/Based Adapter) adapter and attach two
hard disk drives. One hard disk drive is SATA (Serial ATA) drive and the other one is SAS
(Serial Attached SCSI) drive.

~lo|]

BI10S Bonf::urat;nn Ut;l;t {tn) Uersion @. 36 . 9888 . B1
> Main Menuw > Physical Drive Management > Physical Drive Information

[Main Menu 1]
Cuntlollet Information

'-}: SAS 40GB HDD

Hackgt i
HY¥YZ SAS 48GB HDD

Event

IIIIIINI—-

Return to Previous HMenu

Figure 27. Application Examples for the Pre-OS Utility of Storage Systems

48

In order to get the real information from embedded firmware of storage system, we
compile Generic MMI Engine with the Management API of storage system. The functions of
the Management API have to allocate data buffer and submit management commands to
driver. The driver will pass these commands to embedded firmware. After the embedded
firmware handles management commands and gets the wanted results, it will transfer data by

DMA (Direct Memory Access) to the data buffer of the Management API.

The MmiSub module of Generic MMI Engine uses the functions of Management API
to fetch particular items in the data buffer, and copy them into MMI data of Generic MMI
Engine.

In the application examples, we demonstrate the Pre-OS Ultility of storage systems in
the Pre-OS environment, e.g. pure DOS (Disk Operating System). Of course, we must set the
configuration USE_MNG_API to ON and DRIVER_SIMULATOR to OFF.

For the case one of application examples, . we execute this utility and enter the menu
“Controller Information“ to get the information of adapter controller, enter the menu
“Physical Drive Management” to get a list'of present physical hard disk drives, and the menu
“Physical Drive Information” to get the information of assigned physical hard disk driver. To
verify the correction, we can compare the information with the results displayed by the

Embedded Utility of storage systems.

For the case two of application examples, we plug off some hard disk drives and check
the list of present physical hard disk drives in the menu “Physical Drive Management” and
“Physical Drive Information”. Then, we plug in some hard disk drives and enter the above

menus to check again.

49

Chapter 5

Conclusion and Future Work

In this chapter, we draw out the conclusion of this thesis to see the design and
implementation can meet the motivation and goal or not, and then we point out the future

work for Visual MMI Development for Storage Systems.

5.1 Conclusion of This Thesis

In this thesis, we design and implement the Visual MMI Development for Storage
Systems, and derive the Generic Software Framework for the MMI Generation of Storage
Systems. Figure 28 highlights the Visual Authoring Process of Visual MMI Development for

Storage Systems.

MM
Requirement

Functional
Requirement

MMI \ MM /
Designer Programmer /[
Visual
; SvG SVG MM
Authoring | Files Parser . Data
Tool
 § h 4
v v Management
AP
Template Web Generic
SVG Browser MMI
Files Preview Engine 0s
Dependent
l AP
Target MMI
Application

Figure 28. Visual Authoring Process of Visual MMI Development for Storage Systems

50

In the Visual Authoring Process, we use Visual Authoring Tool -- Inkscape, SVG Files,
SVG Parser, and MMI Data. The benefits of Visual Authoring Process are:

1) MMI designers, e.g. art designer, or product’s customer, use Visual Authoring Tool
-- Inkscape to compose MMIs directly. Reduce any misunderstanding and the gap of

knowledge between MMI designers and programmers.

2) Programmers can add related attributes in SVG Files directly, and use SVG Parser
to generate MMI Data automatically. Therefore, MMI Data is seamless with the MMI

requirements, and the time to program MMI elements is also saved.

Figure 29 highlights the Generic MMI Engine in the Visual MMI Development for

Storage Systems.

MM
Requirement

Functional
Requirement

/

MMI MM
Designer Programmer
Visual
Authoring | Psa:;‘ir = gf:f;
Tool
h 4
M anagement
] AP
Template Web Generic
SVG Browser MMI
Files Preview Engine Qs
Dependent
l AP
Target MMI
Application

Figure 29. Generic MMI Engine for the MMI Generation of Storage Systems

51

To apply the Generic Software Framework for the MMI Generation of Storage
Systems, we implement Generic MMI Engine that manipulates MMI Data, i.e. the output of
Visual Authoring Process, and cooperates with Management API. The Benefits of Generic

Software Framework for the MMI Generation of Storage Systems are:

1) Generic MMI Engine is a common code, and can manipulate multiple MMI Data.
Therefore, programmers can maintain MMI programs easily for serial products and different

customers.

2) The design of Generic MMI Engine is OS independent, and the OS dependent
functions are separated to OS Dependent APIs. Therefore, we can implement it for various OS

environments easily.

After the design and implementation of Visual MMI Development for Storage Systems
and Generic Software Framework for the MML Generation of Storage Systems, we also
demonstrate the feasibility and applicability..of Visual-Based User Interface Construction

Methodology.

5.2 Future Work

In the design and implementation of Visual MMI Development for Storage Systems,
we choose Inkscape as the Visual Authoring Tool. 1t is an open source software and powerful

graphic editor, but we can improve it with the following features:

1) Support Replay Feature: MMI designers compose wanted MMIs in Inkscape, but
they are static graphics. If Inkscape can support replay feature to demonstrate the relationship

between nodes and their child menus, we can get an interactive prototype more conveniently.

2) Provide Function Binder: Currently MMI programmers use XML Editor of
Inkscape to add the related functions for MMI elements. If Inkscape can provide the function
binder to select the wanted function in API library and bind it to the related MMI element,

this is more user-friendly for MMI programmers.

52

Reference

[1] DoSTOR #F£&AFT : B X ¥ DAS ~ NAS ~ SAN
http://www.dostor.com/i/basic/2006-09-22/0006129755.shtml

[2] EFI (Extensible Firmware Interface) http://www.intel.com/technology/efi/

[3] Ian Sommerville, Software Engineering, 6th edition, Addison-Wesley, 2001

[4] Chwan-Hung Wang, “On the Enhancement of an Multimedia Authoring tool for the
Visual-Based User Interface Requirement Representation”, N.C.T.U. Taiwan, Master
Thesis, 2002

[S] Jai-Chen Dai, “Visual-Based User Interface Generator”, N.C.T.U. Taiwan, Master Thesis,
2002

[6] Shang-Ting Yang, “User look & Feel Design for Handset Devices Based on Visual
Requirement Authoring and Program Generation Methodology”, N.C.T.U. Taiwan,
Master Thesis, 2004

[7] Ming-Jyh Tsai, “Generating User Interface for Mobile Devices Using Visual-Based User
Interface Construction Methodology”, N.C.T.U. Taiwan, Doctor Thesis, 2007

[8] Chien-Chung Lin, “A Generic DSC Software Framework in Handset Device” , N.C.T.U.
Taiwan, Master Thesis, 2005

[9] Meng-Xi Zhuang, “XMMI — Extensible Man Machine Interface System”, N.C.T.U.
Taiwan, Master Thesis, 2004

[10] Ming-Chao Huang, “Extensible MMI system for mobile device and it’s rapidly
prototyping”, N.C.T.U. Taiwan, Master Thesis, 2005

[11] Po-Chang Liu, “A Generic Software Framework for the Software System Architecture
Design and Implementation of Handset Devices”, N.C.T.U. Taiwan, Master Thesis, 2005

[12] Inkscape — Open Source SVG Editor http://www.inkscape.org/

[13] World Wide Web Consortium (W3C) http://www.w3.org/

[14] Scalable Vector Graphics (SVG) http://www.w3.org/Graphics/SVG/

[15] Extensible Markup Language (XML) http://www.w3.org/ XML/

[16] XML Document Object Model (DOM) http://www.w3.org/DOM/

[17] W3C Schools — Online Tutorials http://www.w3schools.com/default.asp

[18] XML Parser http://www.w3schools.com/xml/xml_parser.asp

[19] Expat XML Parser http://expat.sourceforge.net/

[20] Compare SANSs to Alternate Technologies
http://www.brocade.com/san/evaluate/compare_san.jsp

[21] Barkakati, The Waite Group’s Turbo C Bible, 2287 £ 3%, 2 F, 4 b, 1992

[22] Robert Lafore, C Programming Using Turbo C++, #2879 £ 3%, &2, 4 b, 1992

[23] % mx 4%, 80x86 MASM 6.x 484353 B #, #AZ, 64k, 1996

53

Appendix A

External Storage system

In section 1.1 Overview of Storage Systems, we have introduced the overview of
storage system. In this appendix, we explain the details of DAS (Direct Attached Storage),
SAN (Storage Area Network), NAS (Network Attached Storage), and compare the difference
between them. [20]

A.1 DAS (Direct Attached Storage)

WINDOWS

Application
Server

LAN

Figure 30. DAS (Direct Attached Storage)

Historically, the standard way of connecting hosts to storage devices has been direct,
one-to-one SCSI attachments. As more and more storage and servers are added to meet

demands, a DAS environment can cause a proliferation of server and storage islands, creating

54

a huge management burden for administrators, as well as inefficient utilization of resources.

Data sharing in these environments is also severely limited.

A.2 SAN (Storage Area Network)

3 MEDIA BACKUP SERVERS

; v Application
MNETWARE S p——
- UMIX File System
LAN e
MASTER BACKUP UNIX
SERVER
SCSl

| FC Switch
RAID TAPE

Figure 31. SAN (Storage Area Network)

The limitations and challenges of DAS are the reason many organizations today have
chosen SAN or a combination of SAN and NAS solutions. The most effective SANs provide
a wide range of benefits and advantages over DAS, including:

B More effective utilization of storage resources through centralized access

B Simplified, centralized management of storage, reducing administrative workload to
save time and money
Increased flexibility and scalability through any-to-any storage and server connectivity
Improved throughput performance to shorten data backup and recovery time

Reduced LAN congestion due to removal of backups from production network

Higher data availability for business continuance through a resilient network design

55

B Excellent scalability and investment protection allowing you to easily add more
storage as your business needs demand

B Superior security for storage environments
Non-disruptive business operations when you add or re-deploy storage resources

B Proven short- and long-term return on investment (ROI)

A.3 NAS (Network Attached Storage)

NAS
APPLIANCE

WINDOWS NT
WORKSTATIONS

N
vl

WORKSTATIONS

Figure 32. NAS (Network Attached Storage)

Unlike SANSs that utilize a network of fiber channel switches, most NAS connections
reside between workstation clients and the NAS file-sharing facility. These connections rely
on the underlying corporate network infrastructure to function properly, which can lead to
network congestion, particularly for larger data transfers. NAS solutions are typically
configured as file-serving appliances accessed by workstations and servers through a network
protocol such as TCP/IP and applications such as Network File System (NFS) or Common
Internet File System (CIFS) for file access.

56

NAS storage scalability is often limited by the size of the self-contained NAS
appliance enclosure. Adding another appliance is relatively easy, but sharing the combined
contents is not. Because of these constraints, data backups in NAS environments typically are
not centralized, and therefore are limited to direct attached devices (such as dedicated tape
drives or libraries) or a network-based strategy where the appliance data is backed up to
facilities over a corporate or dedicated LAN. Increasingly, NAS appliances are using SANSs to

solve problems associated with storage expansion, as well as data backup and recovery.
NAS does work well for organizations needing to deliver file data to multiple clients

over a network. Because most NAS requests are for smaller amounts of data, data can be

transferred over long distances efficiently.

A.4 Comparison of DAS / SAN / NAS

[DAs —_— SAN] (NAS)

Application Application

Server Server Application
Server
File System File System

! FC Switch Ethernet

;;1:._9 Sritches

FC : Fiber Channel

JBOD : Just a Bunch Of Disks/Drives
RAID : Redundant Array of Independent/Inexpensive Disks

Figure 33. Comparison DAS / SAN / NAS

The major difference between DAS and SAN is the connection from application

server to those storage systems. DAS usually use SCSI or fiber channel to connect to one

57

server, but SAN storage system utilizes the fiber channel switch to connect many servers at

one. These servers can share the same storage system in Storage Area Network.

For the administrators of application servers that use DAS or SAN, the external
storage system just like a logical drive under file system of operating system. They can

partition the logical drive as a normal hard drive.

However, the operations on NAS storage system are not the same as DAS or SAN.
The administrators of application servers that use NAS must mount the remote partition on
the NAS storage system on network. This is because the NAS devices provide the servers of
NFS (Network File System) or something like that. All servers in the same LAN can mount it

with the same protocol very easily.

58

Appendix B

Application Instances of Inkscape

In section 3.2.1, we have introduced Inkscape graphic editor. In this appendix, we
enumerate three kinds of application instances for Inkscape. First is using Inkscape to create
vector graphics, and second is composing comics and maps. Finally, design web pages with
static and dynamic graphics. After these instances, you can understand the power and

important functionalities of the wonderful graphic editor.

B.1 Creating Vector Graphics

First instance is to create vector graphics. This is the basic functionality of Inkscape.

Most people and I think that vector _graphics_ should be-the combination of simple geometric
. ¥ ! ..-' .' ‘ .

figures. After view the art works by the creative users of Inkscape, I realize the power of

Inkscape and SVG language. : \ ==

A Tiger.svg - Inkscape
File Edit View Layer Object Path Text Effects Help

IDpEE PR 9¢ B4P Q@@ UEE 9% FTEE XD
BTy CREE 2 2 : :

b

=y

A

PRRLESCOPOOL

s

F A = - : X 1293.33
4] = rect) = | All: select under, move selected -

Z| 6% |

Figure 34. Complex Vector Graphics

59

You can view the famous tiger head in figure 34 and download its SVG file from
internet. Use Inkscape to open it, and you will find that each part of this tiger head is one kind
of SVG element. Inkscape provides plentiful graphic tools to draw basic shapes, freehand

lines, Bezier curves and straight lines, calligraphic lines, etc.

Therefore, the users with art talent can create many beautiful two-dimension graphics
and save them in SVG files. On the other hand, some web browsers, like Firefox, support

SVG files. They can draw SVG files directly in web pages.

Besides artificial vector graphics, some people create photo realistic graphics by
Inkscape. These graphics have the advantage of vector graphics — no distortion when their

sizes were changed.

The Gaussian Blur filter support in,Inkscape made possible some extremely photo-
realistic art. The Lamborghini Gallardo suppr car 1n figure 35, was created by Michael
Grosberg based on a photo and he uses blurs: bxtenswely for soft shadows and halos around
bright reflections. The SVG file is avallable in Inkscape distribution. The screenshot also
shows a second window with an Outhne v1?ofthe same file (green outlines are clipping

paths).

Be Po0 dew e Oged Bud [ed BTegn pep

e o o P o e e e N [—-

b §dd Yow Lo Dhed Pah Tod O

VT - C el |

Figure 35. Photo-realistic Graphic

60

Inkscape includes many advanced graphic effects. For example, color effects can

colors of graphics to be brighter, darker, more saturated, etc.

A group of extensions in the Color submenu of the Effects menu allows you to adjust
all colors of a selection at once. These commands affect both fill and stroke colors, including
gradients (but not bitmaps). The commands work recursively on groups. The only problem is
that, being Python extensions, these commands may be quite slow on complex documents.

Figure 36 demonstrate all color effects of Inkscape.

Bz Edt Mew Layer Object Path ek Effcgls Heg
lteas dapn]

. |
LR

¥, !':-'hﬁ*é‘ﬁ?:@ﬁ'i}l:lﬁ

a

e e v Tl
i
vt v Rl

Figure 36. Advanced Graphic Effects

61

B.2 Producing Comics and Maps

Inkscape has layer manager that can hide or display layers and protect or unlock layers.

This functionality can be used to compose comics and maps in the easy way.

A comic author, John Bintz, draw the graphic in figure 37 to demonstrate his use of
Inkscape for producing comics. He scanned the original penciled pages and import them into
Inkscape as the root layer. He created a new layer called “inks” and ink the drawing with the
calligraphy tool. Then he used the node tool and select tool to clean up the drawing,
reconnecting lines and smoothing or straightening paths as necessary. After that, he created a
new layer under “inks” called “colors” and used Bezier tool to draw colored polygons for
each area to be colored. Above “inks” layer, he created “balloons” layer and typed out the text,

draw an ellipse around each text block.

P 2%, i - W hREa = ._

t Futh Tet [Hagty belc
A o@ BADE SQGd W UTep SPEED

5 : iy LP 1Y DL L LS TRAT [oM
- 0 | =4 = | gl WORK, T EREATED THE
R T RN LS TRATHM ML
BET A, WIS LIS TN THE
SARE E TS L TORT ..

COMICS IN
IKKSCAPE
845 WITH
T BT Z,

IT FLACES ALL
OF THE IMFOR TANT
ILLUSTRATION TOOLS
THODE, BEZER, ETC) AND ALL
0F THE COMMON EDTT
CFERATIDNS (RABEALTWER,
THL CRIGNAL PENCILED WEEKS A " ymcnmFreReRCE. ETC
PAGLE TH USHNG THE GMF LIMOER THE LEFT HAK,
AND TMPORT THE BCAN LEAVING MY RIGHT HAND

= A

AN

A hE'W LAYER CALLLD

e < c| ANDS
girtiis N0 JﬁlC '1 el

TINES" ARG LIGE M
WALDM TRILET T

SHE'S

TO TULIP KICK, S0 1
KNOW SHE'LL GO NUTS
OVER IT IF T GET IT
FOR HER,

o — —~ IIEAT W Bl
THLILLIPSL ToA e ']]
_ = e I ThEM UE
PATH A E THE - e 2 o wnass pATH SopcFy
MGGL TEOL T80 S0AUASH r_ % PRLCELE TO CuT QuT
THL BALLOGHE, L LS 1 CRLATL A KiW LeTS OF UNSED MADES,
BTH THL NGOL TOOL LAYER UMOLE “[RES (SEE THE 245 SELEACE
A0 THL BLOLR ToOL T3 s HOTES ON HOW TO
CiRANy AR PRLE DR THL BLIIER TOOL, L EMABLE THIS Miw

TELS FRGM RALLODMNS, DEALY COLCRLD POLYONS 3 1
Fort EAcH Aitn T [TE T SIFPLFY MOCE.
B COLCRLD, T MARE THL TOOL ARG SELECT TOOL
AFTER THAT, COLGR PALLTTLS FOR Ter CLEAR P ThE CELMWING,
ARQVE TS T CRESTE CHARACTIRD ANTI AF St CT TG LIMES Al
A TRaL L OO LATER, QTHLE QATLCTS SPDOTHMNG 02 STRATGITEMTMNG
FIPST T TPE QT THE IM THL GFP, PATI MECESS Aty .,
TEAT, AMD THEN I BRaw b= S AT A T

AN ELLTRSE AoLMG
FACH TEXT BLOCK,

s —————— -_—T——————l

o 8l & |riemen F | 0 obqeins sebeined. Chok, Sledhii o e 210 objeis o sekl e B

Figure 37. Producing Comics

02

In figure 38, the map of Lithuania was created by Andrius Ramanauskas. He used
Inkscape’s layer manager where we can view the layers of his drawing, as well as lock/unlock
and hide/unhide them. Inkscape's layers can be hierarchical, so this dialog is not just a list but

a tree whose branches can be expanded or collapsed.

@I Labels

| LabakLT-rirses
[wa Laberut

@ P LabekEn
=2 cerlses
1@n Spots

| @ Rl Labwls

|®® Sea

@ LT Chies

-illi DistriciCenters
:'nh HunicipaityCantats

=

] ."'ﬁ" Layer-Borders
X Hirer

| %:z .,

T Waber
@3 b Lakes
@0 Canats
@@ b samoglia rivers
@ P Lbwaenrda rednor rvers
@@ b Nemunas+
| @8 Bakorusia fivers
D Suwall rivers
Dauguva+
®3 Dyt
Latvia rivers
Huzhat
SWaTpS
: Eilﬂl" Highs
Highs- 280320
Highs-2an-z20
Highs-200.240

. ; 2 i A1 Hghs-160-300
o # o : S Highs-120-160
=y £ i |

i::;a | Miner rers |_v~ Tt [arial Ealkc. 2 00 pxl i layer Minor fvars, Cick selction o toggke scakymiation hardes.

Figure 38. Producing Maps

B.3 Design of Web Pages

Currently some web browsers can draw SVG files directly, so we can use Inkscape to
design web pages. Although the graphics created by Inkscape are static, we can add scripts in

SVG files to let them become dynamic graphics in web pages.

63

Some interesting SVG files with scripts can create dynamic graphics. Please connect

to the web page http://tavmjong.free.fr/INKSCAPE/ and open “Animated Mechanical Clocks

with moving gears” by Firefox web browser. Clock.svg and Clock2.svg demonstrate the date

and time of your system by graphic gears and these gears have hands to point the exact ones.

64

R

% A& — (Cheng-Yi Huang) Dec. 1st, 1973

< TAR&E >

2003.10 ~ 324 &k & 3 (Promise Technology)
BATEEALN S RBERTAZEG » § &8 RHESBERI TSR

PR BReE iz X FE TAF > B AT TN R & 43 3R Abma sk i 7] 2 A% 00 3

Mo AN EBAABRAXETE S LEN BRG] A E A

BB T A% -

1999.06 ~ 2003.10 &7 % #t % (Silicon Integrated Systems)

BlERE TG 228 REBENEIRRYAKBGEZST HN
WhBh &b B AR o HAhIE 4t BIOS A S MK P BT L ag % 3% - BAR] S
P EBATENMERE HAREZLETHRMERGEE A ELRAAY
AR B E SRERE A ERY TS T RNEHR -

65

