

國 立 交 通 大 學

資訊學院 資訊學程

碩碩碩碩 士士士士 論論論論 文文文文

以視覺化使用者介面建構方法論應用於儲存系統之

人機介面設計及實作

Using Visual-Based User Interface Construction Methodology

for the Man Machine Interface Design and Implementation of

Storage Systems

研 究 生：黃承一

指導教授：陳登吉 博士

中華民國 九十六 年 七 月

以視覺化使用者介面建構方法論應用於儲存系統之

人機介面設計及實作

Using Visual-Based User Interface Construction Methodology

for the Man Machine Interface Design and Implementation of

Storage Systems

研 究 生：黃承一 Student：Cheng-Yi Huang

指導教授：陳登吉 博士 Advisor：Deng-Jyi Chen

國 立 交 通 大 學

資 訊 學 院 資 訊 學 程

碩 士 論 文

A Thesis

Submitted to College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Computer Science

July 2007

Hsinchu, Taiwan, Republic of China

中華民國 九十六 年 七 月

 I

以視覺化使用者介面建構方法以視覺化使用者介面建構方法以視覺化使用者介面建構方法以視覺化使用者介面建構方法論論論論應用於儲存系統之應用於儲存系統之應用於儲存系統之應用於儲存系統之

人機介面設計及實作人機介面設計及實作人機介面設計及實作人機介面設計及實作

學生學生學生學生：：：：黃承一黃承一黃承一黃承一 指導教授指導教授指導教授指導教授：：：：陳登吉陳登吉陳登吉陳登吉 博士博士博士博士

國國國國 立立立立 交交交交 通通通通 大大大大 學學學學 資資資資 訊訊訊訊 學學學學 院院院院 資資資資 訊訊訊訊 學學學學 程程程程 碩碩碩碩 士士士士 班班班班

摘摘摘摘 要要要要

使用傳統的人機介面開發方法，當需求規格改變時，程式設計師必須

更改人機介面相關的程式。因此在開發與維護人機介面的程式，需要花費

大量的時間與人力。

本校資工系的軟體工程實驗室，已經發展出視覺化使用者介面建構方

法論，可以提昇人機介面軟體的生產力、品質及可維護性。本研究將應用

此方法論於儲存系統之人機介面設計及實作上，以克服傳統方法會遇到的

難題。

儲存系統之人機介面有其獨特性與多樣性，我們將設計出適合於儲存

系統之視覺化人機介面開發方法，其中包含視覺化編輯過程以及可用於儲

存系統之通用型人機介面引擎。

為了驗證此開發流程的可行性，我們實作一個軟體框架，內含通用型

人機介面引擎，可操作視覺化編輯工具產生的資料，並與儲存系統之管理

程式庫互動，以控制一個實際的儲存系統裝置介面卡。藉由此系統的建立

亦可驗證視覺化使用者建構方法論的可行性及應用性。

關鍵字關鍵字關鍵字關鍵字：：：：視覺化視覺化視覺化視覺化、、、、使用者介面使用者介面使用者介面使用者介面、、、、人機介面人機介面人機介面人機介面、、、、儲存系統儲存系統儲存系統儲存系統

 II

Using Visual-Based User Interface Construction Methodology

for the Man Machine Interface Design and Implementation of

Storage Systems

Student: Cheng-Yi Haung Advisor: Dr. Deng-Jyi Chen

Degree Program of Computer Science

National Chiao Tung University

Abstract

When the requirements of Man Machine Interface (MMI) are changed, programmers

must change the related programs of MMI if they use the conventional MMI development.

Therefore, they have to take long time to develop and spend much effort to maintain programs

of MMI.

The Software Engineering Laboratory of NCTU had developed Visual-Based User

Interface Construction Methodology. This methodology can improve the productivity, quality,

and maintainability of MMI software. In this thesis, we use this methodology for the MMI

design and implementation of storage systems, and try to conquer UI problems using

conventional MMI development.

For the typical and various Man Machine Interfaces of storage systems, we design the

Visual MMI Development for Storage Systems. It includes Visual Authoring Process and

Generic MMI Engine for storage systems.

In order to demonstrate the feasibility of the Visual MMI Development for Storage

Systems, we implement a software framework with Generic MMI Engine that can manipulate

the output data of Visual Authoring Tool, interact with the Management API of storage

systems, and use this system to control a functional storage adapter. A real application

example using the proposed approach is applied to demonstrate the applicability of the

methodology.

Keywords: Visual-based, UI, MMI, Storage System

 III

誌誌誌誌 謝謝謝謝

在累積工作經驗後，重回母校進修，不僅在研習過程中的想法與目標

更為明確、對學術研究有更深入的理解與啟發，並自我期許能學以致用，

在實務領域有更進一步的助益。

本論文的完成，首先要感謝 陳登吉老師不辭辛勞的指導與教誨，才

得以順利付梓。老師一向認真堅毅的態度，是學生們最好的身教。同時亦

感謝論文口試委員，蕭嘉宏教授、陳振炎教授、黃俊龍教授，提供許多寶

貴的意見及精闢的建議，使得此論文未臻完備之處得以補正。

論文研究期間，承蒙蔡明志學長的勉勵與指教，以及翁浚恩、張正隆

等同學們諸多的協助與相互扶持，還有工作上長官與同事們的分憂解勞，

才能在學業與工作的雙重壓力之下，如期的完成此篇論文。

最後，我必須感謝最親愛的父親、母親與妻子婷婷，在我求學過程中

無限的體諒與支持，是我能完成學業的依靠。有你們對我的期望與鼓勵，

是我不斷向前進步的原動力。

黃承一 謹誌

交通大學 資訊學院 資訊學程碩士班

中華民國九十六年八月

 IV

Contents

Abstract in Chinese ...I

Abstract ...II

Acknowledgement in Chinese ..III

Contents... IV

List of Figures .. VI

List of Tables ...1

Chapter 1 Introduction ..1

1.1 Overview of Storage Systems ...1

1.2 Man Machine Interfaces of Storage Systems ...2

1.3 Motivation and Goal of This Thesis ...5

Chapter 2 Related Work ..7

2.1 Conventional MMI Development ...7

2.2 Visual-Based UI Construction Methodology ...8

2.3 Conventional Software Framework for MMIs of Storage Systems ...13

Chapter 3 System Design and Implementation ..16

3.1 Visual MMI Development for Storage Systems ..16

3.2 Generic Software Framework for the MMI Generation of Storage Systems...20

3.3 Implementation of Visual MMI Development for Storage Systems ..21
3.3.1 Visual Authoring Tool -- Inkscape ...22
3.3.2 SVG Files ...24
3.3.3 SVG Parser ...26
3.3.4 MMI Data ...30
3.3.5 Generic MMI Engine ...37

Chapter 4 Simulation and Application Examples ..41

4.1 Simulation Examples for the Booting Utility of Storage Systems ...41

4.2 Application Examples for the Pre-OS Utility of Storage Systems ...48

 V

Chapter 5 Conclusion and Future Work ...50

5.1 Conclusion of This Thesis ...50

5.2 Future Work ...52

Reference ...53

Appendix A External Storage system ..54

A.1 DAS (Direct Attached Storage)..54

A.2 SAN (Storage Area Network) ..55

A.3 NAS (Network Attached Storage) ...56

A.4 Comparison of DAS / SAN / NAS...57

Appendix B Application Instances of Inkscape..59

B.1 Creating Vector Graphics ...59

B.2 Producing Comics and Maps ..62

B.3 Design of Web Pages ..63

Vita in Chinese...65

 VI

List of Figures

Figure 1. The Classification of Storage Systems..1

Figure 2. Man Machine Interfaces of Storage Systems..3

Figure 3 Various MMIs for Serial Products and Different Customers.......................................6

Figure 4. The Waterfall Model for Software Process...7

Figure 5. The Concept of Conventional MMI Development ...8

Figure 6. The Concept of Visual-Based UI Construction Methodology....................................9

Figure 7. The Framework of Visual-Based UI Construction Methodology.............................10

Figure 8. Comparisons between Conventional and Visual-based UI Construction [7]............12

Figure 9. Conventional Software Framework for MMIs of Storage Systems..........................14

Figure 10. The Concept of Visual MMI Development for Storage Systems16

Figure 11. The Framework of Visual MMI Development for Storage Systems17

Figure 12. Generic Software Framework for the MMI Generation of Storage Systems20

Figure 13. Visual Authoring Process..22

Figure 14. Visual Authoring Tool -- Inkscape ...23

Figure 15. Edit SVG File in the XML Editor of Inkscape ...24

Figure 16. XML in Plain Text ..27

Figure 17. XML DOM ...28

Figure 18. Expat XML Parser...29

Figure 19. MmiData.h – The Output File of SVG Parser...31

Figure 20. The Block Diagram of Generic MMI Engine ...38

Figure 21. MMI Requirement Specification for Simulation and Application Examples.........41

Figure 22. Compose Screen Layout by Inkscape ...42

Figure 23. SVG File in Plain Text..43

Figure 24. Compose the Template SVG File ...44

Figure 25. Compose Menus by Using the layer_MenuTemple..45

Figure 26. Simulation Examples for the Booting Utility of Storage Systems..........................47

Figure 27. Application Examples for the Pre-OS Utility of Storage Systems48

Figure 28. Visual Authoring Process of Visual MMI Development for Storage Systems.......50

Figure 29. Generic MMI Engine for the MMI Generation of Storage Systems.......................51

Figure 30. DAS (Direct Attached Storage) ..54

Figure 31. SAN (Storage Area Network) ...55

Figure 32. NAS (Network Attached Storage) ..56

Figure 33. Comparison DAS / SAN / NAS..57

Figure 34. Complex Vector Graphics...59

Figure 35. Photo-realistic Graphic..60

Figure 36. Advanced Graphic Effects ..61

Figure 37. Producing Comics ...62

Figure 38. Producing Maps ..63

Figure 39. Animated Mechanical Clocks with Moving Gears ...64

 1

List of Tables

Table 1. The Dependences of Storage Systems and Their MMIs ..5

Table 2. Implement MMI Elements by SVG Elements..26

Table 3. SVG Parser Uses Functions of Expat XML Parser ..29

Table 4. Modules of Generic MMI Engine ..38

 1

Chapter 1

Introduction

In this chapter, we introduce and overview storage systems with their typical and

various Man Machine Interfaces. Also, the motivation and goal of this thesis study are

addressed.

1.1 Overview of Storage Systems

In current storage systems, we can classify storage services into 1) closed system and 2)

opened system at first tier [1]. The closed system is one kind of mainframe that provides

storage services for servers that use closed operating system, e.g. IBM AS400 servers. The

opened system is a set of storage servers that use opened operating system, e.g. Microsoft

Windows, Linux, or Unix, etc. Figure 1 illustrates the classification of storage systems.

Figure 1. The Classification of Storage Systems

 2

For opened system, we divide storage devices into 1) internal storage and 2) external

storage at second tier by the connections between servers and storage devices.

There are two types of internal storage systems: HBA (Host Bus/Based Adapter) and

ASIC (Application Specific Integrated Circuit). The administrator of servers can insert one or

more standalone HBA adapters into the slots on server board to increase the capability to

connect more hard disk drives. On the other hand, more and more chipsets are integrated with

RAID (Redundant Array of Independent/Inexpensive Disks) controller or storage ASIC so that

they also have the capability to connect many hard disk drives.

For external storage systems, there are also two types: DAS (Direct Attached Storage)

and FAS (Fabric Attached Storage). The DAS devices usually use the SCSI bus as the

external connection to the servers. Most of high-end DAS devices are the subsystems that run

embedded operating system and can handle dozen of hard disk drives.

To describe FAS more clearly, we can separate it into SAN (Storage Area Network)

and NAS (Network Attached Storage). Many SAN storage systems use fiber channel as the

transfer media, and need a fiber channel switch to connect many devices in the same storage

area network. On the contrary, the NAS storage systems use the popular Ethernet in the same

local area network, and computers can share the NAS storage systems very easily.

About more details of external storage systems, please refer to Appendix A

External Storage system.

1.2 Man Machine Interfaces of Storage Systems

No matter internal or external storage systems, they must have Man Machine

Interfaces (MMI) so that users can configure and manage them. For example, users can get a

list of physical hard disk drives in the storage system, and group up some of them to make up

a disk array in one kind of RAID (Redundant Array of Independent/Inexpensive Disks) level.

After survey the products of storage systems in current market, we sum up them and

generalize five kinds of Man Machine Interfaces for storage systems. They are 1) Booting

Utility, 2) Pre-OS Utility, 3) Web-based Utility, 4) Embedded Utility, and 5) LCD Panel.

 3

Figure 2 illustrates these five kinds of MMI for storage systems and the dependences of

internal and external storage systems on them.

Figure 2. Man Machine Interfaces of Storage Systems

We describe these five kinds of MMI for storage systems as below.

1) Booting Utility: Users can use the Booting Utility to configure hard disk drives and

setup bootable drivers before OS is loaded. Usually, this utility is included in the expansion

ROM of BIOS (Basic Input Output System) or EFI (Extensible Firmware Interface) [2] driver

of storage HBA adapters. When system BIOS or EFI firmware boots up system, they will

load the BIOS ROM or EFI driver of the storage HBA adapter into memory and run. The

BIOS ROM or EFI driver will prompt some messages to tell users how to enter the Booting

Utility. After users press a certain combination of hotkeys, they can enter this utility and

manage storage devices. For example, users can select wanted hard disk drives to create a disk

array in RAID (Redundant Array of Independent/Inexpensive Disks) level 1 or 5 with fault

tolerance. The most particular functionality of the Booting Utility is it can tell system BIOS

that which logical drives in the storage system can become bootable drives. However, this

 4

kind of utility usually provides basic functions of storage systems because of the limitation of

code and data size.

2) Pre-OS Utility: This kind of utility is used in Pre-OS environments, e.g. DOS (Disk

Operation System), EFI (Extensible Firmware Interface) shell, or Windows PE (Pre-

installation Environment). Many large corporations use Pre-OS environments for the

deployment of workstations and servers. Original Equipment Manufacturers (OEM) also use

these environments to preinstall Windows client operating systems to personal computers or

laptop and notebook computers during manufacturing. The Pre-OS Utility of storage systems

has similar functionalities to the Booting Utility. The advantage of Pre-OS Utility is that users

can run it at any time without system reboot.

3) Web-based Utility: The Web-based Utility uses web pages as user interfaces. Since

many years ago, almost every operating system provides at least one web browser for network

surfing. The advantage of the Web-based Utility is that end users can connect to this kind of

utility with web browser conveniently. They do not need to install any client application.

Therefore, more and more storage system companies adopt the Web-based Utility for their

products.

4) Embedded Utility: Numerous storage systems apply the architecture of embedded

system, and engineers usually use a serial cable to connect the console of embedded system.

Engineers can use the Embedded Utility to setup advanced configuration or debug internal

problems. This kind of utility is running in the embedded operating system. However, the

serial console of embedded system and the Embedded Utility use the command-based or

menu-based user interfaces. They are not user-friendly. Now, the Embedded Utility is not a

popular MMI of storage systems for end users.

5) LCD Panel: Some high-end storage systems have the LCD Panel at their faceplate

or front-plane. The maintenance people can use the LCD Panel conveniently to verify new

configuration, because these storage systems are usually in one isolated room for security

reason. The LCD Panel has the related programs that run in the embedded operating system,

too.

 5

We describe the dependences of internal and external storage systems on these five

kinds of MMI for storage systems in Table 1.

Table 1. The Dependences of Storage Systems and Their MMIs

MMI Internal Storage External Storage

Booting Utility Supported None

Pre-OS Utility Supported Supported

Web-based Utility Supported Supported

Embedded Utility Supported Supported

LCD Panel None Supported

Table 1 lists the dependences of storage systems and their Man Machine Interfaces.

For internal storage systems, they have four supported man machine interfaces: 1) Booting

Utility, 2) Pre-OS Utility, 3) Web-based Utility, and 4) Embedded Utility. For external storage

systems, they also have four supported man machine interfaces: 1) Pre-OS Utility, 2) Web-

based Utility, 3) Embedded Utility, and 4) LCD Panel.

Because internal storage systems are one part of host servers, they do not have the

LCD Panel. On the other hand, external storage systems do not take the responsibility to boot

up host servers, the Booting Utility is not necessary for them.

1.3 Motivation and Goal of This Thesis

The conventional approach to develop Man Machine Interfaces for storage system has

limited flexibility while the MMI requirement is changed. During development phase,

programmers have to change their handcrafted MMI application code again once the MMI

requirement is changed. This change may occur repeatedly until the MMI requirement under

consideration is satisfied.

For instance, we can study the cases in figure 3. The case on the left side is the MMI

development for serial products, and the case on the right side is the MMI maintenance for

different customers.

 6

Figure 3 Various MMIs for Serial Products and Different Customers

1) For the case on the left side of figure 3: The MMI requirement for product version

1.1 (with 4 ports to connect hard disk drives) only requires basic functions of the storage

system, while the MMI requirement for product version 1.2 (with 8 ports to connect hard disk

drives) requires additional advanced functions. MMI designers have to change the menu size

to support more ports for more hard disk drives, and more advanced functions for the new

serial products. Consequently, MMI programmer must modify their MMI programs to meet

these changes.

2) For the case on the right side of figure 3: Different customers bought the same kind

of product. Customer A wants to change the layout of MMI into layout A, while customer B

wants his layout of MMI in layout B. Since layout A and B are different, the MMI designers

and programmers must maintain various MMI programs for these different customers

eventually.

Unfortunately, the time to market is usually very short and the human resource to

develop and maintain products is very tight, how to shorten the MMI development time and

reduce maintenance effort become a major issue for the market competition.

In this thesis study, we attempt to conquer above problems by using Visual-Based UI

Construction Methodology to design the Visual MMI Development for Storage Systems. After

the construction of this system, we also demonstrate the feasibility and applicability of the

Visual-Based UI Construction Methodology.

 7

Chapter 2

Related Work

In this chapter, we describe the related work of conventional MMI development, the

Visual-Based UI Construction Methodology, and the conventional software framework for

MMIs of storage systems.

2.1 Conventional MMI Development

In a general software process, we follow the principles and models of Software

Engineering [3], e.g. Waterfall Model in figure 4. During a general software life cycle [4], we

compose requirement documents and specifications, plan and design architecture of system

and software framework, implement modules on target platforms, do many tests on units and

system for verification and validation, and maintain software for upgrade and optimization.

Figure 4. The Waterfall Model for Software Process

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

 8

Figure 5. The Concept of Conventional MMI Development

In the brief illustration of figure 5, the concept of conventional MMI development [5],

MMI designers have to compose MMI requirement documents with screen layouts or menu

tree, etc, and system designers compose functional and other requirement documents.

According to these requirement documents, programmers implement MMI, functional and

other programs, and compile them together and produce applications. However, these

applications are implemented for specific environments, e.g. Booting Utility in BIOS / EFI

environment, Pre-OS Utility in EFI Shell or Win-PE environments. It is hard to design

reusable programs for all MMI utilities of storage systems. Usually their MMI programs mix

with functional programs and others. Therefore, programmers have to take long time to

modify, or develop new programs when MMI requirements were changed. Also, we need

much effort to maintain these utilities for serial products and various customers.

2.2 Visual-Based UI Construction Methodology

The Software Engineering Laboratory of NCTU had developed Visual-Based User

Interface Construction Methodology [6]. We illustrate the concept of this methodology in

figure 6 briefly.

 9

Figure 6. The Concept of Visual-Based UI Construction Methodology

In this methodology, MMI designers use visual authoring tool to compose MMI

prototype according to MMI requirements. The visual authoring tool can generate MMI

programs. Programmers implement functional and other programs as API library for MMI

programs. We can bind the related functions to MMI components, and then produce

application utilities very efficiently.

Figure 7 illustrates the detail framework of Visual-Based User Interface Construction

Methodology. This methodology supports the UI Visual Requirement Authoring System for

UI designers to produce GUI-based requirement scenario and specifications. It also supports

the Program Generator to generate the target application system as specified in the visual

requirement representation. The programmer can produce the target application system, base

on the function binding features provided in the program generator to bind each GUI

component with the associated application function.

 10

Figure 7. The Framework of Visual-Based UI Construction Methodology

The main components of this system are described as follows:

1) UI Visual Requirement Authoring System: It is a visual-based authoring tool. The

UI designers use the UI Visual Requirement Authoring System to create a prototype of user

look and feel. Then one can edit this prototype by adding more text or buttons. The UI

designers can preview the prototype and modify it. Once the authoring process is completed,

the UI designer has generated a target UI system.

2) MRCs Manager: MRC (Multimedia Reusable Components) is the basic component

in visual requirement presentation, contains multimedia data by the object-oriented method. It

has its own attributes, and accepts external signal to trigger actions. The UI designer uses the

existing MRCs to produce the visual UI prototype via visual UI authoring tool. If there are no

existing MRCs, the UI designer uses the component constructor to produce new MRCs and

then adds it to the MRCs Manager for further use in the visual UI authoring tool.

3) Template Manager: It is a database management system for managing UI templates,

e.g. structure template, layout template, and style template. It provides an interface for adding

or deleting UI templates as well as for retrieving an existing UI template. Template

constructor can make new UI templates and then stores them into UI template database

through the Template Manager.

 11

4) Program Generator: It is a function binding system that generates the program for

target system based on the binding of a UI icon to an API function for the underlying device.

When the design of user look and feel is satisfied, the UI designers use the program generator

to produce the source code of application. The program generator produces the source code

according to the visual representation generated by the Visual UI Authoring System. The

program generator glues the UI components to the software design framework, and binds

function library component with each UI component defined in the generated visual

representation.

5) Design Framework: It is used to generate software system architecture for the

target application system. The Program Generator applies the software framework to

generate the source code. A software framework is a platform for representing the visual

representation that is generated by the authoring system. Programmers can instantiate a

software framework from the generic software framework.

6) Function Library Component: It is a set of pre-defined library. Programmers

develop associated functions based on API (Application Program Interface) library functions,

and implement them according to the hardware specification. The Program Generator applies

this function library to produce source code for target UI system.

This UI Visual Requirement Authoring System is especially suitable for the UI

designer. The visual-based authoring system helps the UI designers to create a prototype of

MMI in an efficiency way. The UI designers can edit and preview this prototype and verify its

functionality on PC. After the design of MMI is frozen, the UI designer can apply this

authoring system to produce the target UI program without writing any textual code. The

authoring system uses the code generator to translate the visual representation to source code.

The code generator resolves the relationship between the MMI and the application functions

of device drivers. It applies the designed framework and function library in code generation

phase.

The Visual-Based User Interface Construction Methodology can improve the

productivity, quality, and maintainability of MMI software efficiently [7]. This methodology

claims for the following benefits:

 12

1) Replace voluminous textual documentations

2) Support rich multimedia UI components such video, audio, image, and animation

for UI designer to easily and quickly authoring visual UI prototype.

3) Generate visual MMI prototype without writing textual based program

4) Independent work between MMI designer and programmer

5) Provide more natural means of communication to reduce misunderstanding between

MMI designer and programmer

6) Based on the experiment results, it depicts that using this methodology can reduce

the development and maintenance time during the construction of MMI system [7]

7) Elicit an early feedback from user, more expressive in describing user’s demands

8) Based on the experiment results, it depicts that using the proposed methodology can

reduce the development and maintenance time during the construction of UI system

In figure 8, some experimental data in the dissertation, “Generating User Interface for

Mobile Devices Using Visual-Based User Interface Construction Methodology” [7], are

recalled here.

Figure 8. Comparisons between Conventional and Visual-based UI Construction [7]

In the left chart of figure 8, the experiment results compare the development time

between the Conventional MMI Development and Visual-Based User Interface Construction

Methodology. Based on the collected data, the upper line with circle dots represents the

development time that students use the Conventional MMI Development, and the average time

spent is 420 minutes. The lower line with square dots represents the development time that

 13

students use Visual-Based User Interface Construction Methodology, and the average time

spent is 376 minutes.

In the right chart of figure 8, the experiment results compare the maintenance time

between the Conventional MMI Development and Visual-Based User Interface Construction

Methodology. The upper line with circle dots represents the maintenance time that students

use the Conventional MMI Development, and the average time spent is about 154 minutes.

The lower line with square dots represents the maintenance time that students use Visual-

Based User Interface Construction Methodology, and the average time spent is about 140

minutes.

Both charts in figure 8 reveal the development and maintenance time of Visual-Based

User Interface Construction Methodology are less than the Conventional MMI Development.

2.3 Conventional Software Framework for MMIs of Storage Systems

We analyze conventional software framework for MMIs of storage systems, and

generalize four layers: 1) MMI Program, 2) Management API, 3) Driver Layer, and 4)

Embedded Firmware.

Here is a short example to describe the relationship between these layers. The end-

users use the MMI Program to display the information or configuration of storage systems.

Before MMI Program displays these data, it calls the functions of Management API to get the

particular data, and then it arranges the data into the display screen. Management API is a

function library, and its functions can submit management commands to get the information

or set the configuration of storage systems. These commands will pass to Driver Layer

because this is the software layer to transfer commands to hardware devices. In the internal

side of storage systems, Embedded Firmware handles commands from host side and response

them with particular results.

Figure 9 illustrates the Conventional Software Framework for MMIs of Storage

Systems with these four layers.

 14

Figure 9. Conventional Software Framework for MMIs of Storage Systems

We describe these four layers in the following paragraphs.

1) MMI Program: According to MMI specifications, programmers implement MMI

programs for particular utilities. For instance, they implement the MMI program in assembly

language for Booting Utility, C language for Pre-OS Utility, Java for Web-based Utility, etc.

These MMI Programs call Management API to get information or change the setting of

storage systems. For Embedded Utility and LCD Panel of storage systems, there are related

applications embedded in firmware side.

2) Management API: Management API is a library with many functions for utilities to

get information, fetch strings, or change the setting of storage systems. For example, function

MngApi_GetCtrlInfo() can get controller information, and function MngApi_GetPdInfo() can

get physical drive information. The other functions can set logical driver’s cache policy, etc.

 15

First, the Booting Utility of storage systems includes basic functions only, so it usually uses

minimal Management API. Second, the Pre-OS Utility is similar to Booting Utility, but it

includes some advanced functions, and needs some additional Management API for these

advanced functions. Third, the Web-based Utility includes full functions of storage systems,

and of course, it uses full Management API of storage systems.

3) Driver Layer: Driver provides the capability to submit commands to hardware

devices. Usually Management API submits a set of management commands, or called

IOCTRL (IO Control) commands, to Driver Layer. No matter BIOS / EFI driver, Pre-OS

driver or OS driver will pass these commands to the embedded firmware of storage systems.

4) Embedded Firmware: In the internal side of storage systems, there are embedded

operating system and firmware core running. Firmware core handles commands from host

side, transfer data to the buffer of Management API by DMA (Direct Memory Access), and

return the status of commands to host drivers. For Embedded Utility and LCD Panel of

storage systems, the related applications are running in embedded OS also.

Before MMI programs display the information of storage systems, they must call the

functions of Management API to get the wanted information. Management API provides

many functions for MMI programs and submits management commands to firmware by

passing through the Driver Layer to get data. Driver passes management commands to

firmware and returns the status of commands for Management API. Embedded firmware takes

the responsibility to handle management commands and take the actions for them. For

example, Embedded Firmware collects information of adapter controller or hard disk drives,

or changes the setting of disk array, etc.

 16

Chapter 3

System Design and Implementation

In this chapter, we describe the design and implementation of the Visual MMI

Development for Storage Systems, and derive the Generic Software Framework for the MMI

Generation of Storage Systems.

3.1 Visual MMI Development for Storage Systems

In this section, we design the model of Visual MMI Development for Storage

Systems. This model uses similar concept of Visual-Based User Interface Construction

Methodology, MMI designers use visual authoring tool to compose MMIs, and programmers

write functional and other programs separately. Figure 10 illustrates this concept.

Figure 10. The Concept of Visual MMI Development for Storage Systems

 17

However, the difference between Visual-Based UI Construction Methodology and

Visual MMI Development for Storage Systems is the output of the Visual Authoring Process.

In the previous methodology, Visual Authoring Tool generates MMI program, and

programmer binds functions from functional library to MMI program and generate MMI

applications.

We change the output of the Visual Authoring Process becomes MMI data, and let

Generic MMI Engine to manipulate this MMI data directly. This change is due to the

consideration on some limitations for MMI utilities of storage systems. With this change, we

can implement the Generic MMI Engine for various environments.

Figure 11 illustrates the framework of Visual MMI Development for Storage Systems.

Figure 11. The Framework of Visual MMI Development for Storage Systems

 18

This framework includes the following major parts:

1) Visual Authoring Tool: MMI designers use the Visual Authoring Tool to compose

wanted MMIs according to MMI requirement documents. During implementation, we choose

Inkscape as this tool. Please refer to section 3.3.1 Visual Authoring Tool -- Inkscape.

2) SVG Files: These files are the output of Visual Authoring Tool. We use the file

format in SVG (Scalable Vector Graphics) that is a standard language to describe two-

dimensional graphics and graphical applications in XML (Extensible Markup Language).

Please refer to section 3.3.2 SVG Files.

3) Template SVG Files: These files are the SVG files with templates of MMI elements.

To speed up the development of MMIs, we can create these files for MMI designers first. All

SVG files can be previewed in some web browsers, e.g. Firefox.

4) SVG Parser: This parser can parse the SVG structure, and obtain required

information from SVG files. It invokes some functions of XML parser. Please refer to section

3.3.3 SVG Parser.

5) MMI Data: The output data of SVG Parser is MMI Data. It is also the results of

Visual Authoring Process. Generic MMI Engine can manipulate the MMI Data directly.

Please refer to section 3.3.4 MMI Data.

6) Generic MMI Engine: This is the kernel component of Visual MMI Development

for Storage Systems. It needs the Management API and OS Dependent API to accomplish the

functionalities of target MMI application. Please refer to section 3.3.5 Generic MMI Engine.

7) Management API: This API (Application Program Interface) is depended on the

features of storage systems, and it provides functions to manage underlying storage devices.

MMI programmers have to program these functions according to functional requirement

documents, and Generic MMI Engine will invoke these functions.

 19

8) OS Dependent API: Generic MMI Engine requires some functional APIs but they

are OS dependent. For instance, it needs Input API to get the input of keyboard or mouse, and

Display API to display the MMIs to the monitor screen of computers. We separate the OS

dependent code to OS Dependent API, and let the implementation of Generic MMI Engine

become more easily for various environments.

9) Target MMI Application: After MMI designers compose MMIs with Visual

Authoring Tool, save them as SVG files, and use SVG Parser to transform SVG files to MMI

data, we can generate target MMI application with MMI data, Generic MMI Engine,

Management API and OS Dependent API.

To use the model of Visual MMI Development for Storage Systems, we describe its

flow in the following steps:

Step 1) MMI designers use Visual Authoring Tool to compose wanted MMIs according to

MMI requirement documents

Step 2) Save the results of Visula Authoring Tool as SVG Files.

Step 3) To speed up the development of MMIs, we can create Template SVG Files for MMI

designers.

Step 4) For developers or customers, they can preview these SVG Files in web browsers.

Step 5) MMI programmers add additional information in SVG Files.

Step 6) Use SVG Parser to transform SVG Files to MMI Data.

Step 7) MMI programmers program related functions in Management API according to

functional requirement documents.

Step 8) Generate the target MMI applications with MMI Data, Generic MMI Engine,

Management API and OS dependent API.

 20

3.2 Generic Software Framework for the MMI Generation of Storage

Systems

The conventional software framework for the MMI generation of storage systems

lacks of the support of a visual authoring system. We therefore incorporate a visual authoring

system into the software framework for MMIs of storage systems. The incorporated Visual

Authoring and MMI Engine are shown in figure 12. We call the new software framework as

Generic Software Framework for the MMI Generation of Storage Systems, since it can be

used to generate Man Machine Interfaces of many storage systems.

Figure 12. Generic Software Framework for the MMI Generation of Storage Systems

 21

There are also four layers in Generic Software Framework for the MMI Generation of

Storage Systems: 1) Visual Authoring Process, 2) Generic MMI Engine, 3) Driver Layer,

and 4) Embedded Firmware. We introduce the new layers:

1) Visual Authoring Process: MMI designers use Visual Authoring Tool to compose

each MMI according to the MMI requirement specification for particular utility. The

authoring tool is visualized and very user-friendly. After save the results in SVG files and use

SVG Parser to parse these files, we can get the MMI data for Generic MMI Engine at the end

of Visual Authoring Process. For instance, MMI designers use Visual Authoring Tool to

compose the MMIs of Booting Utility and Pre-OS Utility, and then generate the Booting MMI

Data and Pre-OS MMI Data.

2) Generic MMI Engine: Programmers do not need to write any MMI programs, but

they have to program the related functions for MMIs. We design the Generic MMI Engine as

common code, and it invokes these MMI related functions. This engine also cooperates with

the Management API of storage systems. The design of Generic MMI Engine is OS

independent, and we separate the OS dependent functions to OS Dependent APIs. This design

is helpful to implement utilities in various environments.

The 3) Driver Layer and 4) Embedded Firmware are the same as the ones in the

conventional software framework for MMIs of storage systems.

After MMI designers finish the Visual Authoring Process and programmers write the

related functions for MMIs, we can come out the particular utility for storage systems with the

MMI Data, Generic MMI Engine, and Management API. This utility still needs Driver Layer

to pass commands to Embedded Firmware of storage systems.

3.3 Implementation of Visual MMI Development for Storage Systems

To implement the Visual MMI Development for Storage Systems, we must consider

five key components: 1) Visual Authoring Tool – Inkscape, 2) SVG Files, 3) SVG Parser, 4)

MMI Data, and 5) Generic MMI Engine.

 22

The first phase of Visual MMI Development for Storage Systems is Visual Authoring

Process. We illustrate this procedure in figure 13, and describe the details of this process in

the following sections.

Figure 13. Visual Authoring Process

3.3.1 Visual Authoring Tool -- Inkscape

In our implementation, we choose Inkscape [12] as Visual Authoring Tool. Inkscape is

an open source vector graphics editor, with capabilities similar to Illustrator, Freehand,

CorelDraw, or Xara X using the W3C [13] standard Scalable Vector Graphics (SVG) file

format. Supported SVG features include shapes, paths, text, markers, clones, alpha

blending, transforms, gradients, patterns, and grouping. Inkscape also supports Creative

Commons meta-data, node editing, layers, complex path operations, bitmap tracing, text-

on-path, flowed text, direct XML editing, and more. It imports formats such as JPEG, PNG,

TIFF, and others and exports PNG as well as multiple vector-based formats.

The main goal of Inkscape is to create a powerful and convenient drawing tool fully

compliant with XML, SVG, and CSS standards. Therefore, it is very suitable for the Visual

Authoring Process of Visual MMI Development for Storage Systems.

In figure 14, it is a snapshot of the Inkscape usage.

 23

Figure 14. Visual Authoring Tool -- Inkscape

MMI designers can use the Graphic Tools, Canvas, and Layers Manager of Inkscape

to implement MMIs for storage systems. To simplify and formalize the implementation of

MMIs for storage systems, we use Graphic Tools to create rectangles and texts only, and put

them in the Canvas area. To compose more complex vector graphics, MMI designers can use

the Layer Manager to overlap many layers of graphics.

On the other hand, MMI programmers can use the XML Editor of Inkscape to modify

SVG files conveniently. They can modify the name, attributes of SVG elements, and define

the relationship between lots of SVG elements, or add the related functions in the functional

or other programs into SVG elements.

Figure 15 illustrates one SVG file in plan text and the XML Editor of Inkscape. We

recommend MMI programmers to use the XML Editor of Inkscape to add information in SVG

files.

 24

Figure 15. Edit SVG File in the XML Editor of Inkscape

To implement man machine interfaces by Visual Authoring Process, MMI designers

or programmers are free to learn the SVG language. MMI designers use Inkscape to compose

wanted MMI graphics and save them to the files in SVG format. When programmers want to

modify the SVG files, they do not need to handcraft the SVG file in plain text. On the

contrary, programmers can use the XML editor of Inkscape to edit SVG file easily and user-

friendly.

3.3.2 SVG Files

SVG (Scalable Vector Graphics) [14] is a language for describing two-dimensional

graphics and graphical applications in XML (Extensible Markup Language) [15]. XML is a

simple, very flexible text format derived from SGML (ISO 8879). Originally designed to

meet the challenges of large-scale electronic publishing, XML is also playing an

increasingly important role in the exchange of a wide variety of data on the Web and

elsewhere.

 25

SVG is used in many business areas including Web graphics, animation, user

interfaces, graphics interchange, print and hardcopy output, mobile applications and high-

quality design. It has two parts: an XML-based file format and a programming API for

graphical applications. Key features include shapes, text and embedded raster graphics,

with many different painting styles. It supports scripting through languages such as

ECMAScript and has comprehensive support for animation.

SVG is a royalty-free vendor-neutral open standard developed under the W3C Process.

It has strong industry support; Authors of the SVG specification include Adobe, Agfa, Apple,

Canon, Corel, Ericsson, HP, IBM, Kodak, Macromedia, Microsoft, Nokia, Sharp and Sun

Microsystems. SVG viewers are deployed to over 100 million desktops, and there is a broad

range of support in many authoring tools.

SVG builds upon many other successful standards such as XML (SVG graphics are

text-based and thus easy to create), JPEG and PNG for image formats, DOM for scripting and

interactivity, SMIL for animation and CSS for styling.

SVG is interoperable. The W3C release a test suite and implementation results to

ensure conformance. Applications of SVG in industry are graphics platform for mobile phone,

embedded system and print industry, web applications, design and interchange, GIS

(Geographic Information Systems) and mapping, etc.

We adopt SVG files as the inter-media of Visual Authoring Process because SVG has

above advantages. For example, we can preview the MMI in SVG files by web browser, and

MMI programmers can add more information about MMI programs into SVG files

conveniently. Furthermore, we can apply the functionality of XML parser to implement the

specific SVG Parse very easily for the SVG files of MMI.

To simplify the implementation, we use three SVG elements, Layer, Rect and Text, to

implement the MMI elements for storage systems. Please refer to the relationship between

SVG elements and MMI elements in the following table. Using the same SVG element, we

define one or more MMI elements with different attributes sot that we can manipulate them

very conveniently in Generic MMI Engine.

 26

Table 2. Implement MMI Elements by SVG Elements

SVG Elements MMI Elements

Layer Screen, Layer

Rect Rect, Edge

Text Text, Title, Head, Cont, Navi, Msg, Node

1) Using SVG Layer element to implement Screen, Layer MMI elements: The Layer

Manger of Inkscape can control SVG Layer element to display or hide, free-to-modify or

lock-up. We define Screen element to compose the base screen layout, and Layer element to

place one menu and its related components, e.g. some items in this menu, or help messages

for it.

2) Using SVG Rect element to implement Rect, Edige MMI elements: The rectangle

in SVG graphics can be solid or hollow rectangles. We use solid rectangle to define Rect

MMI element that is used for menu’s body and shadow, and hollow rectangle to define Edge

MMI element that is the edge or border of menu’s body.

3) Using SVG Text element to implement Text, Title, Head, Cont, Navi, Msg, Node

MMI elements: The SVG Text element has many attributes, like font size or color. We use the

same font size for all text MMI elements. Nevertheless, we define many text MMI elements

with different colors. They are used for different purposes: The Text MMI element is a

common string and can be used in base screen layer. The Title MMI element is used for the

title of base screen or menus. The Head MMI element is used for the head of items in menus.

The Cont MMI element is used for the content of items in menus. The Navi MMI element is

used for the string on Navigation Bar. The Navigation Bar is the row between screen title and

canvas and it can show the path of current menus. The Msg MMI element is used for the

string on Message Bar. The Message Bar is the lowest row in screen and it can display the

message for current menu. The latest and important MMI element, Node, can carry the

information to child menu and the related function to take actions, but MMI programmers

must add the child menu and related function for each Node manually.

3.3.3 SVG Parser

 27

After using Inkscape to create SVG files, we need a parser to parse SVG structure and

obtain required information from SVG files. We call this parser as SVG Parser. Before

describe the SVG parser, we introduce the concept of XML DOM (Document Object

Model) first.

In the right part of figure 16, it is a simple XML in plain text. This XML describes a

bookstore with a couple of books.

Figure 16. XML in Plain Text

Each book has four elements: title, author, year and price. For example, first book’s

title is “Everyday Italian” in English language, because its attribute is lang=”en”, author is

“Giada De Laurentiis”, year is 2005, price is 30.00. In the left part of figure 16, there is a tree

to describe the hierarchy of that XML. It is very easy to understand compared with the plain

text format.

Figure 17 illustrates a using example of XML DOM (Document Object Model) for the

above XML of bookstore.

 28

Figure 17. XML DOM

The Document Object Model is a platform- and language-neutral interface that will

allow programs and scripts to dynamically access and update the content, structure and style

of documents. The document can be further processed and the results of that processing can

be incorporated back into the presented page..

Using XML DOM, a XML Parser can traverse the node tree, access the nodes and

their attribute values, insert and delete nodes, and convert the node tree back to XML. In our

implementation, we choose Expat XML Parser [19].

Expat is an XML parser library written in C. It is a stream-oriented parser in which an

application registers handlers for things the parser might find in the XML document (like start

tags).

In figure 18, it is a function reference for Expat XML Parser. Expat provides many

functions for parsing XML.

 29

Figure 18. Expat XML Parser

Actually, we implement our SVG Parser and just invoke the following functions of

Expat XML Parser. They are summarized in Table 3.

Table 3. SVG Parser Uses Functions of Expat XML Parser

Function Name Description

XML_ParserCreate() Construct a new parser

XML_SetElementHandler() Set handlers for start and end tags

XML_SetCharacterDataHandler() Set a text handler

XML_Parse() Parse some more of the document in a buffer

In the main function of SVG Parser, we invoke XML_ParserCreate() to construct a

new XML parser, and invoke XML_SetElementHandler() to set handlers for SVG elements

and XML_SetCharacterDataHandler() for element’s text processing. In the body of main

functions, we allocate a buffer, use a loop to read a part of SVG file into this buffer, and

invoke XML_Parser() to parse data repeatedly until the whole SVG file is processed.

 30

3.3.4 MMI Data

The output of Visual Authoring Tool is SVG files. We use SVG Parser to get out the

information from SVG files and store as MMI Data format. To simplify the usage of MMI

Data, we implement the format of MMI Data in a C header file, and correspondent macros in

the code of Generic MMI Engine.

To implement MMI elements, we define the following macros:

1) For Screen and Layer MMI elements, we define CREATE_SCREEN(),

END_OF_SCREEN(), CREATE_LAYER(), END_OF_LAYER() macros. Because Screen and

Layer MMI elements can contain other MMI elements, we use CREATE_XXX() and

END_OF_XXX() macros to clip them.

2) For Rect and Edge MMI elements, we define CREATE_RECT() and

CREATE_EDGE() macros. These two macros need the attributes: name, X coordinate, Y

coordinate, width, height, color of solid or hollow rectangles.

3) For Text-like MMI elements, we define CREATE_TEXT(), CREATE_TITLE(),

CREATE_HEAD(), CREATE_CONT(), CREATE_NAVI(), CREATE_MSG(),

CREATE_NODE() macros. For Text, Title, Head, Cont, Navi, Msg MMI elements, they need

the attributes: name, X coordinate, Y coordinate, color and string. Besides the previous ones,

Node MMI element needs two additional attributes: child menu, related function. The

attribute, child menu, tells Generic MMI Engine which menu layer is combined to this node.

And the attribute, related function, invokes the functions in Generic MMI Engine to take the

related actions for this node. The scenario is when users press this node, the related function

will be invoked to do something and then the child menu will be popped up.

Figure 19 demonstrates a partial MMI Data in the output file of SVG Parser --

MmiData.h.

 31

Figure 19. MmiData.h – The Output File of SVG Parser

In this example, we know that the screen screen_BiosCU contains MMI elements:

rect_ClearScreen, rect_ScreenTitle, text_ScreenTitle, rect_NaviBar, rect_Canvas,

edge_CanvasBorder, rect_MsgBar. The rect_ClearScreen is the first rectangle to clear the

whole screen. The rect_ScreenTitle is the background of screen title, and the

text_ScreenTitle is the string of screen title. The rect_NaviBar is the background of

Navigation Bar. The rect_Canvas and edge_CanvasBorder form the area of canvas to place

menus. The rect_MsgBar is the background of Message Bar.

About the display order of SVG elements, Inkscape draws the leading element first,

and then draws the following elements in sequence. Therefore, the following elements overlap

on the previous ones. In our implementation of Generic MMI Engine, we also use the same

display order for MMI elements. Hence, the MMI element text_ScreenTitle is displayed over

the rect_ScreenTitle.

On the other hand, the display order of graphic layers, Inkscape draws the lowest layer

first, and then draws the upper layers one bye one. So, the upper layers overlap on the lowest

 32

one. Generic MMI Engine also displays layers for MMI elements in the same order. Thus, the

layer_1_MainMenu is displayed over the scree_BiosCU.

In the bottom half of figure 19, the menu layer layer_1_MainMenu contains MMI

elements: rect_MainMenuClrNavi, navi_MainMenu, rect_MainMenuShadow,

rect_MainMenuBody, edge_MainMenuBorder, title_MainMenu, node_CtrlInfo, node_PdMng,

node_LdMng, node_DaMng, node_BgAct, node_EventLog, rect_MainMenuClrMsg,

msg_MainMenu. The rect_MainMenuClrNavi is the background of navi_MainMenu. The

navi_MainMenu is the string on Navi Bar for main menu. The rect_MainMenuShadow is

the shadow of main menu’s body. The rect_MainMenuBody is the body of main menu. The

edge_MainMenuBorder is the border of main menu’s body. The title_MainMenu is the title

of main menu. The node_CtrlInfo is the first node of main menu, and its child menu is

layer_2_CtrlInfo and related function is MmiAct_CtrlInfo(). The node_PdMng is the second

node of main menu, and its child menu is layer_2_PdMng and related function is

MmiAct_PdMng(). The node_LdMng, node_DaMng, node_BgAct, and node_EventLog are

not functional nodes, so their child menu is layer_1_MainMenu and related function is

MmiAct_Null(). The rect_MainMenuClrMsg is the background of msg_MainMenu. The

msg_MainMenu is the string on Msg Bar for main menu.

For the MMI Data in the format of MmiData.h, we write the macros for each MMI

elements. The details of these macros are revealed in the following description:

1) For Screen MMI element, we use CREATE_SCREEN() and END_OF_SCREEN ()

macros. The Screen MMI element can contain Rect, Edge, and Text MMI elements. Because

of this, we can see CREATE_RECT(), CREATE_EDGE(), and CREATE_TEXT() macros

between CREATE_SCREEN() and END_OF_SCREEN() macros.

#define CREATE_SCREEN(name) \

 mmi_screen_t name = \

 { \

 mmi_elem_screen, \

 }; \

#define END_OF_SCREEN(name) \

 U16 name = mmi_elem_screen_end;

 33

2) For Layer MMI element, we use CREATE_LAYER() and END_OF_LAYER ()

macros. The Layer MMI element can contain Rect, Edge, Text, Title, Head, Cont, Navi, Msg

and Node MMI elements. Because of this, we can see CREATE_RECT(), CREATE_EDGE(),

CREATE_TEXT, CREATE_TITLE, CREATE_HEAD, CREATE_CONT, CREATE_NAVI,

CREATE_MSG and CREATE_NODE() macros between CREATE_LAYER() and

END_OF_LAYER() macros.

#define CREATE_LAYER(name, level) \

 mmi_layer_t name = \

 { \

 mmi_elem_layer, \

 level, \

 }; \

#define END_OF_LAYER(name) \

 U16 name = mmi_elem_layer_end;

3) For Rect and Edge MMI elements, we use CREATE_RECT() and CREATE_EDGE

() macros. They need the same parameters: name of MMI element, coordinate X, coordinate

Y, width, height, and color.

#define CREATE_RECT(name, coordX, coordY, width, height, color) \

 mmi_rect_t name = \

 { \

 mmi_elem_rect, \

 coordX, \

 coordY, \

 width, \

 height, \

 color, \

 }; \

#define CREATE_EDGE(name, coordX, coordY, width, height, color) \

 mmi_edge_t name = \

 { \

 mmi_elem_edge, \

 coordX, \

 coordY, \

 width, \

 height, \

 color, \

 }; \

3) For Text-like MMI elements, we use CREATE_TEXT(), CREATE_TITLE(),

CREATE_HEAD(), CREATE_CONT(), CREATE_NAVI(), and CREATE_MSG() macros.

They need the same parameters: name of MMI element, coordinate X, coordinate Y, color,

and string.

 34

#define CREATE_TEXT(name, coordX, coordY, color, str) \

 mmi_text_t name = \

 { \

 mmi_elem_text, \

 coordX, \

 coordY, \

 color, \

 str, \

 }; \

#define CREATE_TITLE(name, coordX, coordY, color, str) \

 mmi_title_t name = \

 { \

 mmi_elem_title, \

 coordX, \

 coordY, \

 color, \

 str, \

 }; \

#define CREATE_HEAD(name, coordX, coordY, color, str) \

 mmi_head_t name = \

 { \

 mmi_elem_head, \

 coordX, \

 coordY, \

 color, \

 str, \

 }; \

#define CREATE_CONT(name, coordX, coordY, color, str) \

 mmi_cont_t name = \

 { \

 mmi_elem_cont, \

 coordX, \

 coordY, \

 color, \

 str, \

 }; \

#define CREATE_NAVI(name, coordX, coordY, color, str) \

 mmi_navi_t name = \

 { \

 mmi_elem_navi, \

 coordX, \

 coordY, \

 color, \

 str, \

 }; \

#define CREATE_MSG(name, coordX, coordY, color, str) \

 mmi_msg_t name = \

 { \

 mmi_elem_msg, \

 coordX, \

 coordY, \

 35

 color, \

 str, \

 }; \

4) For Node MMI elements, we use CREATE_NODE() macro. This macro needs the

parameters: name of MMI element, coordinate X, coordinate Y, color, child layer, related

function name, and string.

#define CREATE_NODE(name, coordX, coordY, color, child, func, str) \

 mmi_layer_t child; \

 mmi_node_t name = \

 { \

 mmi_elem_node, \

 coordX, \

 coordY, \

 color, \

 &child, \

 func, \

 str, \

 }; \

To distinguish MMI elements more easily, we implement macros and data structures

for each MMI elements. These macros put the attributes of MMI elements into the

correspondent data structures so that Generic MMI Engine can manipulate MMI data very

easily.

We define constants for MMI elements, and these constants are used in previous

macros. The enumerated type collects these constants as below:

typedef enum mmi_elem_e

{

 mmi_elem_start = 0xE0,

 mmi_elem_screen, /* main screen */

 mmi_elem_screen_end,

 mmi_elem_layer, /* layer with following elements */

 mmi_elem_layer_end,

 mmi_elem_rect, /* solid rectangle */

 mmi_elem_edge, /* hollow rectangle */

 mmi_elem_text, /* text on screen */

 mmi_elem_title, /* text of menu title */

 mmi_elem_head, /* head of item */

 mmi_elem_cont, /* content of item */

 mmi_elem_navi, /* text on navi bar */

 mmi_elem_msg, /* text on msg bar */

 mmi_elem_node, /* node to other layer */

 36

 mmi_elem_end

} mmi_elem_t;

We also define the data structures for MMI elements. They are:

1) For Screen MMI element, we use the data structure mmi_screen_s.

typedef struct mmi_screen_s

{

 U16 mmi_elem_type;

} mmi_screen_t;

2) For Layer MMI element, we use the data structure mmi_layer_s. It has the level

field to indicate the level of this layer.

typedef struct mmi_layer_s

{

 U16 mmi_elem_type;

 U16 level;

} mmi_layer_t;

3) For Rect and Edge MMI elements, we use the same data structure mmi_rect_s. For

the mmi_elem_type field, CREATE_RECT() macro places the value of mmi_elem_rect for

Rect MMI element, and CREATE_EDGE() macro places the value of mmi_elem_edge for

Edge MMI element.

typedef struct mmi_rect_s

{

 U16 mmi_elem_type;

 S16 coordX;

 S16 coordY;

 S16 width;

 S16 height;

 S16 color;

} mmi_rect_t;

typedef mmi_rect_t mmi_edge_t;

4) For Text-like MMI elements, we use the same data structure mmi_text_s. For the

mmi_elem_type field, CREATE_TEXT() macro places the value of mmi_elem_text for Text

MMI element, and CREATE_TITLE() macro places the value of mmi_elem_title for Title

MMI element, etc.

 37

typedef struct mmi_text_s

{

 U16 mmi_elem_type;

 S16 coordX;

 S16 coordY;

 S16 color;

 pU8 str;

} mmi_text_t;

typedef mmi_text_t mmi_title_t;

typedef mmi_text_t mmi_head_t;

typedef mmi_text_t mmi_cont_t;

typedef mmi_text_t mmi_navi_t;

typedef mmi_text_t mmi_msg_t;

5) For Node MMI element, we use the data structure mmi_node_s. CREATE_NODE()

macro places the address of child layer into child field, and the related function address in

func field for Node MMI element.

typedef struct mmi_node_s

{

 U16 mmi_elem_type;

 S16 coordX;

 S16 coordY;

 S16 color;

 pU8 child;

 MmiAct_func_t func;

 pU8 str;

} mmi_node_t;

In summary, the Rect and Edge MMI elements use the same data structure mmi_rect_s.

The Text, Title, Head, Cont, Navi, Msg MMI elements use the same data structure

mmi_text_s. The data structure for Node MMI element is mmi_node_s, and it has two

additional fields, i.e. child and func.

3.3.5 Generic MMI Engine

The kernel component of the Visual MMI Development for Storage Systems is Generic

MMI Engine. This engine can manipulate the data from Visual Authoring Process. Figure

20 illustrates the block diagram of Generic MMI Engine.

 38

Figure 20. The Block Diagram of Generic MMI Engine

We design and implement five modules of Generic MMI Engine. They take different

responsibilities. Table 4 summarizes these modules, and we describe the details design of

these different modules in the following paragraphs.

Table 4. Modules of Generic MMI Engine

Module Name Description

MmiMain Main functions of MMI engine

MmiData MMI data from visual authoring

MmiDisp MMI display functions

MmiAct Interface between MmiMain and MmiData

MmiSub Interface between MmiMain and MngApi

1) MmiMain Module: This module contains main functions of Generic MMI Engine.

MmiMain_Entry() is the entry function of engine and it invokes three sub-functions:

mmiMain_Initialization(), mmiMain_NormalMode(), and mmiMain_Finalization(). All

 39

initialization will be done in the mmiMain_Initialization(). In this function, we init the

data pointer to MMI Data, set active layer and node, and initialize MmiDisp and MmiSub

modules. The mmiMain_NormalMode() function is the core of Generic MMI Engine. It

invoke functions of MmiDisp module to display screen and menus, and functions of

InputApi to get input from users repeatedly. After get any input, it dispatch tasks to take

correspondent actions. In the mmiMain_Finalization() function, we finalize something

before leaving, e.g. finalize MmiSub module and restore the display mode, etc.

2) MmiData Module: The MmiData.h is the output of SVG Parser. During

compilation phase, we use SVG Parser to read the wanted SVG file and elicit MmiData.h

automatically. In Generic MMI Engine, it reads and writes the data structures in MmiData

module by MmiAct and MmiSub modules, but read only by MmiDisp module.

3) MmiDisp Module: This module contains functions for display. For instance, the

MmiDisp_DrawScreen() draws the Screen MMI element, and the MmiDisp_DrawLayer()

function draws the Layer MMI element. These functions of MmiDisp module need low-

level functions support, i.e. they invoke the functions of Display API (DispApi). We

separate the display functions with OS dependence to Display API.

4) MmiAct Module: This module contains functions for the Node MMI elements.

MMI programmers must add the related functions into MmiAct module, and edit the SVG

file to add the related function name into Node MMI elements, e.g. the MmiAct_CtrlInfo()

function for node_CtrlInfo, and the MmiAct_PdMng() function for node_PdMng, etc.

5) MmiSub Module: Functions in this module are sub-functions for MmiMain and

MmiAct modules. These functions cooperate with Management API (MngApi) to get

information from Embedded Firmware. For example, the MmiSub_PdEnum() function

gets the ID of physical hard disk drives and enumerate all of them in the storage system.

The MmiSub_FillPdInfo() function gets the information of physical hard disk drives from

Management API (MngApi) and fill the strings for MmiAct module.

Besides above modules, there are some API libraries will cooperate with Generic

MMI Engine. They are:

 40

1) Input API (InputApi): Input API provides functions to get input from users, e.g.

what key is pressed, or the coordinates of mouse cursor, etc. This API is OS dependent. For

the Booting Utility of storage systems, we write assembly sub-routines or invoke software

interrupts of system BIOS.

2) Display API (DispApi): This API provides functions to display MMI elements.

Using more powerful Display API, we can implement more functional Generic MMI

Engine to display complex SVG graphics. For instance, the DispApi_GetDisplayMode()

function gets current display mode, and the DispApi_CursorDisable() function can hide

cursor. Of course, this API is also OS dependent.

3) Management API (MngApi): The Management API is the library has capability to

communicate with the Embedded Firmware of storage systems. It allocates a private data

buffer to get information from firmware, and provides related functions to fetch items in

that buffer. E.g. the MngApi_GetPdInfo() function gets the information of assigned

physical hard disk drive into data buffer, and the MngApi_FetchPdId() function fetches

the ID of that physical hard disk drive from data buffer. The Management API is dependent

on storage systems.

 41

Chapter 4

Simulation and Application Examples

In chapter 3, we describe the design and implementation of Visual MMI Development

for Storage Systems. In this chapter, we will demonstrate simulation examples for the Booting

Utility and application examples for the Pre-OS Utility of storage systems. We will follow the

framework of Visual MMI Development for Storage Systems, and implement these examples

step by step.

4.1 Simulation Examples for the Booting Utility of Storage Systems

 Before implement the simulation and application examples, we define the MMI

requirement specification for them in Figure 21. We simply define four menus to

demonstrate the basic functions for MMIs of storage systems.

Figure 21. MMI Requirement Specification for Simulation and Application Examples

 42

The usage scenario of this system is as below description. The first menu is main

menu that contains some nodes, but only two nodes are functional. They are the node

“Controller Information” and “Physical Drive Management”. When users press the node

“Controller Information”, it will pop up the menu “Controller Information” that displays the

information of adapter controller. When users press the node “Physical Drive Management”,

it will pop up the menu “Physical Drive Management” that has a table lists present physical

hard disk drives. When users want to read the information of certain physical hard disk drive,

they can press it and the menu “Physical Drive Information” will pop up.

To implement this simulation example for the Booting Utility of storage systems, we

follow the steps in section 3.1 Visual MMI Development for Storage Systems.

Step 1) MMI designers use Visual Authoring Tool to compose wanted MMIs

according to MMI requirement documents. We compose wanted MMIs in Visual Authoring

Tool -- Inkscape. In figure 22, we compose the screen layout first, because it is the root layer.

Figure 22. Compose Screen Layout by Inkscape

 43

The first row of the screen layout is the screen title, and the second row in dark gray

background color is Navigation Bar (NaviBar). In this bar, we can display the hierarchy of

active menus, e.g. “Main Menu > Physical Drive Management > Physical Drive Information”.

The bottom row of screen is Message Bar (MsgBar). In this bar, we can display messages, e.g.

the brief hint of hot keys. The rows between NaviBar and MsgBar are the canvas that we can

place menus.

Step 2) Save the results of Visula Authoring Tool as SVG Files. In default setting,

Inkscape saves files in SVG format. Figure 23 illustrates a partial SVG file in plain text.

Figure 23. SVG File in Plain Text

Step 3) To speed up the development of MMIs, we can create Template SVG Files

for MMI designers. We compose the Template SVG File in figure 24 with Menu Template

(layer_MenuTemplate) that has key elements for each layer of menu.

 44

Figure 24. Compose the Template SVG File

These key elements are Navi Bar, Menu, Node, and Msg Bar. Navi Bar is a row for

navigation, and it displays the hierarchy of active menus. Menus include menu title, heads of

items, contents of items, and nodes. Nodes are special text elements with the ability to

combine the function and child menu together. If users select one node in the running time, it

will take the related function and then pop up its child menu. Msg Bar is a row to display

messages or hints for users. For example, we can list hot keys for active menu particularly.

Using the layer of Menu Template (layer_MenuTemple) in the Template SVG file,

MMI designers can compose the wanted menus quickly. Figure 25 illustrates three menus

were been composed by using the layer_MenuTemple: Main Menu (layer_1_MainMenu),

Physical Drive Management Menu (layer_2_PdMng), and Physical Drive Information Menu

(layer_3_PdInfo), and other menu layers are hidden: Controller Information Menu

(layer_2_CtrlInfo), Menu Template (layer_9_MenuTemplate), and Debug Layer

(layer_9_Debug). In the right bottom corner of figure 25, the Layer Manger of Inkscape can

control these layers.

[String of menu title]
String of head : String of content

String of node

 45

Figure 25. Compose Menus by Using the layer_MenuTemple

Step 4) For developers or customers, they can preview these SVG Files in web

browsers. During the Visual Authoring Process, we can use web browser to preview SVG

files. In order to let web browser displays texts in SVG files correctly, we have to set texts as

Unflow. In Inkscape, select wanted texts and choose the function: Text > Unflow.

Step 5) MMI programmers add additional information in SVG Files. We use the

XML Editor of Inkscape to edit the SVG elements, and give the meaningful names and

attributes for MMI elements in Menu Template (layer_MenuTemplate). For instance, we give

layer_1_MainMenu as the name of main menu layer, and the attribute of layer_2_CtrlInfo as

the child menu for node node_CtrlInfo. This means that users press the node of node_CtrlInfo,

and Generic MMI Engine will display the MMI elements in layer_2_CtrlInfo.

[Physical Drive Information]
Physical Drive ID : String of cont_PdId…………..
Model Name : String of cont_PdModel……..
Serial Number : String of cont_PdSn………….
Firmware Version : String of cont_PdFwVer……..
Capacity : String of cont_PdCap………..
Status : String of PdStatus…………….

Return to Previous Menu

[Physical Drive Management]
ID | Model Name | Capacity | Status
123 | 12345678901234567890 | 1234567890 | 12345
- | - | - | -
-
-
-
-
-
-

Re

[Main Menu]
Controller Information
Phy
Log
Dis
Bac
Eve

 46

Step 6) Use SVG Parser to transform SVG Files to MMI Data. After we save the

results in SVG files, we can use SVG Parser to generate MMI Data for Generic MMI Engine

automatically. The output of SVG Parser is MmiData.h, and the following example is a

partial code of MmiData.h.

/* MmiData.h - Generated by SVG Parser. Don't edit this file directly! */

CREATE_SCREEN(screen_BiosCU)

CREATE_RECT(rect_ClearScreen, 0, 0, 640, 480, COLOR_BLUE)

CREATE_RECT(rect_ScreenTitle, 0, 0, 640, 19, COLOR_B_WHITE)

CREATE_TEXT(text_ScreenTitle, 8, 15, COLOR_BLACK, "BIOS Configuration

Utility (tm) Version 0.00.0000.01")

CREATE_RECT(rect_NaviBar, 0, 19, 640, 19, COLOR_GRAY)

CREATE_RECT(rect_Canvas, 0, 38, 640, 418, COLOR_WHITE)

CREATE_EDGE(edge_CanvasBorder, 4, 41, 633, 411, COLOR_BLACK)

CREATE_RECT(rect_MsgBar, 0, 456, 640, 19, COLOR_BLUE)

END_OF_SCREEN(screen_BiosCU_end)

CREATE_LAYER(layer_1_MainMenu, 1)

CREATE_RECT(rect_MainMenuClrNavi, 0, 19, 103, 19, COLOR_B_BLUE)

CREATE_NAVI(navi_MainMenu, 8, 35, COLOR_B_WHITE, "> Main Menu")

CREATE_RECT(rect_MainMenuShadow, 28, 85, 285, 154, COLOR_BLACK)

CREATE_RECT(rect_MainMenuBody, 17, 63, 286, 159, COLOR_BLUE)

CREATE_EDGE(edge_MainMenuBorder, 20, 67, 281, 154, COLOR_B_WHITE)

CREATE_TITLE(title_MainMenu, 31, 91, COLOR_B_WHITE, "[Main Menu]")

CREATE_NODE(node_CtrlInfo, 33, 110, COLOR_YELLOW, layer_2_CtrlInfo,

MmiAct_CtrlInfo, "Controller Information")

CREATE_NODE(node_PdMng, 33, 128, COLOR_YELLOW, layer_2_PdMng, MmiAct_PdMng,

"Physical Drive Management")

CREATE_NODE(node_LdMng, 33, 147, COLOR_YELLOW, layer_1_MainMenu,

MmiAct_Null, "Logical Drive Management")

CREATE_NODE(node_DaMng, 33, 167, COLOR_YELLOW, layer_1_MainMenu,

MmiAct_Null, "Disk Array Managment")

CREATE_NODE(node_BgAct, 33, 185, COLOR_YELLOW, layer_1_MainMenu,

MmiAct_Null, "Background Activity")

CREATE_NODE(node_EventLog, 33, 204, COLOR_YELLOW, layer_1_MainMenu,

MmiAct_Null, "Event Log")

CREATE_RECT(rect_MainMenuClrMsg, 0, 456, 638, 19, COLOR_BLUE)

CREATE_MSG(msg_MainMenu, 5, 470, COLOR_B_WHITE, "ARROW:Navigate,

ENTER:Enter, SPACE:Select, ESC:Back, F10:Exit")

END_OF_LAYER(layer_1_MainMenu_end)

Step 7) MMI programmers program related functions in Management API

according to functional requirement documents. We write the related functions for MMIs.

For each Node MMI element, MMI programmers have to add the related functions into

MmiAct and MmiSub modules of Generic MMI Engine. For example, we write the

MmiAct_CtrlInfo() function to get information of controller for node_CtrlInfo, and the

MmiAct_PdMng() function to get a list of physical hard disk drives for node_PdMng, etc.

 47

Step 8) Generate the target MMI applications with MMI Data, Generic MMI

Engine, Management API and OS dependent API. To simplify the complexity of

demonstrations, we use two definitions to configure Generic MMI Engine. First, define

USE_MNG_API to indicate if it needs to invoke Management API or not. Second, define

DRIVER_SIMULATOR to indicate if it simulates the reactions of driver by itself or not.

If we set USE_MNG_API to OFF, Generic MMI Engine displays MMI Data directly.

All the messages and texts are the same as the ones in Visual Authoring Tool. If we set

USE_MNG_API to ON, Generic MMI Engine invokes the functions of Management API, and

these functions submit related commands to driver directly.

If we set DRIVER_SIMULATOR to ON, the code of Driver Simulator in Generic

MMI Engine takes actions to simulate reactions of real driver. If we set

DRIVER_SIMULATOR to OFF, the real driver is required to pass commands to Embedded

Firmware of storage systems.

In the simulation example, figure 26 demonstrates the Booting Utility of storage

systems in the DOS Prompt of Windows OS.

Figure 26. Simulation Examples for the Booting Utility of Storage Systems

 48

In the case one of simulation examples, we set USE_MNG_API to OFF and

DRIVER_SIMULATOR to ON. The utility will display MMI Data directly.

In the case two of simulation examples, we set USE_MNG_API to ON and

DRIVER_SIMULATOR to ON. The utility will display imitative information from the Driver

Simulator in Generic MMI Engine.

4.2 Application Examples for the Pre-OS Utility of Storage Systems

Before the demonstration of application examples, we have to setup a platform with an

internal storage system. We use a HBA (Host Bus/Based Adapter) adapter and attach two

hard disk drives. One hard disk drive is SATA (Serial ATA) drive and the other one is SAS

(Serial Attached SCSI) drive.

Figure 27. Application Examples for the Pre-OS Utility of Storage Systems

 49

In order to get the real information from embedded firmware of storage system, we

compile Generic MMI Engine with the Management API of storage system. The functions of

the Management API have to allocate data buffer and submit management commands to

driver. The driver will pass these commands to embedded firmware. After the embedded

firmware handles management commands and gets the wanted results, it will transfer data by

DMA (Direct Memory Access) to the data buffer of the Management API.

The MmiSub module of Generic MMI Engine uses the functions of Management API

to fetch particular items in the data buffer, and copy them into MMI data of Generic MMI

Engine.

In the application examples, we demonstrate the Pre-OS Utility of storage systems in

the Pre-OS environment, e.g. pure DOS (Disk Operating System). Of course, we must set the

configuration USE_MNG_API to ON and DRIVER_SIMULATOR to OFF.

For the case one of application examples, we execute this utility and enter the menu

“Controller Information“ to get the information of adapter controller, enter the menu

“Physical Drive Management” to get a list of present physical hard disk drives, and the menu

“Physical Drive Information” to get the information of assigned physical hard disk driver. To

verify the correction, we can compare the information with the results displayed by the

Embedded Utility of storage systems.

For the case two of application examples, we plug off some hard disk drives and check

the list of present physical hard disk drives in the menu “Physical Drive Management” and

“Physical Drive Information”. Then, we plug in some hard disk drives and enter the above

menus to check again.

 50

Chapter 5

Conclusion and Future Work

In this chapter, we draw out the conclusion of this thesis to see the design and

implementation can meet the motivation and goal or not, and then we point out the future

work for Visual MMI Development for Storage Systems.

5.1 Conclusion of This Thesis

In this thesis, we design and implement the Visual MMI Development for Storage

Systems, and derive the Generic Software Framework for the MMI Generation of Storage

Systems. Figure 28 highlights the Visual Authoring Process of Visual MMI Development for

Storage Systems.

Figure 28. Visual Authoring Process of Visual MMI Development for Storage Systems

 51

In the Visual Authoring Process, we use Visual Authoring Tool -- Inkscape, SVG Files,

SVG Parser, and MMI Data. The benefits of Visual Authoring Process are:

1) MMI designers, e.g. art designer, or product’s customer, use Visual Authoring Tool

-- Inkscape to compose MMIs directly. Reduce any misunderstanding and the gap of

knowledge between MMI designers and programmers.

2) Programmers can add related attributes in SVG Files directly, and use SVG Parser

to generate MMI Data automatically. Therefore, MMI Data is seamless with the MMI

requirements, and the time to program MMI elements is also saved.

Figure 29 highlights the Generic MMI Engine in the Visual MMI Development for

Storage Systems.

Figure 29. Generic MMI Engine for the MMI Generation of Storage Systems

 52

To apply the Generic Software Framework for the MMI Generation of Storage

Systems, we implement Generic MMI Engine that manipulates MMI Data, i.e. the output of

Visual Authoring Process, and cooperates with Management API. The Benefits of Generic

Software Framework for the MMI Generation of Storage Systems are:

1) Generic MMI Engine is a common code, and can manipulate multiple MMI Data.

Therefore, programmers can maintain MMI programs easily for serial products and different

customers.

2) The design of Generic MMI Engine is OS independent, and the OS dependent

functions are separated to OS Dependent APIs. Therefore, we can implement it for various OS

environments easily.

After the design and implementation of Visual MMI Development for Storage Systems

and Generic Software Framework for the MMI Generation of Storage Systems, we also

demonstrate the feasibility and applicability of Visual-Based User Interface Construction

Methodology.

5.2 Future Work

In the design and implementation of Visual MMI Development for Storage Systems,

we choose Inkscape as the Visual Authoring Tool. It is an open source software and powerful

graphic editor, but we can improve it with the following features:

1) Support Replay Feature: MMI designers compose wanted MMIs in Inkscape, but

they are static graphics. If Inkscape can support replay feature to demonstrate the relationship

between nodes and their child menus, we can get an interactive prototype more conveniently.

2) Provide Function Binder: Currently MMI programmers use XML Editor of

Inkscape to add the related functions for MMI elements. If Inkscape can provide the function

binder to select the wanted function in API library and bind it to the related MMI element,

this is more user-friendly for MMI programmers.

 53

Reference

[1] DoSTOR 存儲入門：圖文闡釋 DAS、NAS、SAN

http://www.dostor.com/i/basic/2006-09-22/0006129755.shtml

[2] EFI (Extensible Firmware Interface) http://www.intel.com/technology/efi/

[3] Ian Sommerville, Software Engineering, 6th edition, Addison-Wesley, 2001

[4] Chwan-Hung Wang, “On the Enhancement of an Multimedia Authoring tool for the

Visual-Based User Interface Requirement Representation”, N.C.T.U. Taiwan, Master

Thesis, 2002

[5] Jai-Chen Dai, “Visual-Based User Interface Generator”, N.C.T.U. Taiwan, Master Thesis,

2002

[6] Shang-Ting Yang, “User look & Feel Design for Handset Devices Based on Visual

Requirement Authoring and Program Generation Methodology”, N.C.T.U. Taiwan,

Master Thesis, 2004

[7] Ming-Jyh Tsai, “Generating User Interface for Mobile Devices Using Visual-Based User

Interface Construction Methodology”, N.C.T.U. Taiwan, Doctor Thesis, 2007

[8] Chien-Chung Lin, “A Generic DSC Software Framework in Handset Device” , N.C.T.U.

Taiwan, Master Thesis, 2005

[9] Meng-Xi Zhuang, “XMMI – Extensible Man Machine Interface System”, N.C.T.U.

Taiwan, Master Thesis, 2004

[10] Ming-Chao Huang, “Extensible MMI system for mobile device and it’s rapidly

prototyping”, N.C.T.U. Taiwan, Master Thesis, 2005

[11] Po-Chang Liu, “A Generic Software Framework for the Software System Architecture

Design and Implementation of Handset Devices”, N.C.T.U. Taiwan, Master Thesis, 2005

[12] Inkscape – Open Source SVG Editor http://www.inkscape.org/

[13] World Wide Web Consortium (W3C) http://www.w3.org/

[14] Scalable Vector Graphics (SVG) http://www.w3.org/Graphics/SVG/

[15] Extensible Markup Language (XML) http://www.w3.org/XML/

[16] XML Document Object Model (DOM) http://www.w3.org/DOM/

[17] W3C Schools – Online Tutorials http://www.w3schools.com/default.asp

[18] XML Parser http://www.w3schools.com/xml/xml_parser.asp

[19] Expat XML Parser http://expat.sourceforge.net/

[20] Compare SANs to Alternate Technologies

http://www.brocade.com/san/evaluate/compare_san.jsp

[21] Barkakati, The Waite Group’s Turbo C Bible, 蔡明志譯, 松岡, 台北, 1992

[22] Robert Lafore, C Programming Using Turbo C++, 蔡明志譯, 松岡, 台北, 1992

[23] 施威銘, 80x86 MASM 6.x 組合語言實務, 旗標, 台北, 1996

 54

Appendix A

External Storage system

In section 1.1 Overview of Storage Systems, we have introduced the overview of

storage system. In this appendix, we explain the details of DAS (Direct Attached Storage),

SAN (Storage Area Network), NAS (Network Attached Storage), and compare the difference

between them. [20]

A.1 DAS (Direct Attached Storage)

Figure 30. DAS (Direct Attached Storage)

Historically, the standard way of connecting hosts to storage devices has been direct,

one-to-one SCSI attachments. As more and more storage and servers are added to meet

demands, a DAS environment can cause a proliferation of server and storage islands, creating

 55

a huge management burden for administrators, as well as inefficient utilization of resources.

Data sharing in these environments is also severely limited.

A.2 SAN (Storage Area Network)

Figure 31. SAN (Storage Area Network)

The limitations and challenges of DAS are the reason many organizations today have

chosen SAN or a combination of SAN and NAS solutions. The most effective SANs provide

a wide range of benefits and advantages over DAS, including:

� More effective utilization of storage resources through centralized access

� Simplified, centralized management of storage, reducing administrative workload to

save time and money

� Increased flexibility and scalability through any-to-any storage and server connectivity

� Improved throughput performance to shorten data backup and recovery time

� Reduced LAN congestion due to removal of backups from production network

� Higher data availability for business continuance through a resilient network design

 56

� Excellent scalability and investment protection allowing you to easily add more

storage as your business needs demand

� Superior security for storage environments

� Non-disruptive business operations when you add or re-deploy storage resources

� Proven short- and long-term return on investment (ROI)

A.3 NAS (Network Attached Storage)

Figure 32. NAS (Network Attached Storage)

Unlike SANs that utilize a network of fiber channel switches, most NAS connections

reside between workstation clients and the NAS file-sharing facility. These connections rely

on the underlying corporate network infrastructure to function properly, which can lead to

network congestion, particularly for larger data transfers. NAS solutions are typically

configured as file-serving appliances accessed by workstations and servers through a network

protocol such as TCP/IP and applications such as Network File System (NFS) or Common

Internet File System (CIFS) for file access.

 57

NAS storage scalability is often limited by the size of the self-contained NAS

appliance enclosure. Adding another appliance is relatively easy, but sharing the combined

contents is not. Because of these constraints, data backups in NAS environments typically are

not centralized, and therefore are limited to direct attached devices (such as dedicated tape

drives or libraries) or a network-based strategy where the appliance data is backed up to

facilities over a corporate or dedicated LAN. Increasingly, NAS appliances are using SANs to

solve problems associated with storage expansion, as well as data backup and recovery.

NAS does work well for organizations needing to deliver file data to multiple clients

over a network. Because most NAS requests are for smaller amounts of data, data can be

transferred over long distances efficiently.

A.4 Comparison of DAS / SAN / NAS

Figure 33. Comparison DAS / SAN / NAS

The major difference between DAS and SAN is the connection from application

server to those storage systems. DAS usually use SCSI or fiber channel to connect to one

 58

server, but SAN storage system utilizes the fiber channel switch to connect many servers at

one. These servers can share the same storage system in Storage Area Network.

For the administrators of application servers that use DAS or SAN, the external

storage system just like a logical drive under file system of operating system. They can

partition the logical drive as a normal hard drive.

However, the operations on NAS storage system are not the same as DAS or SAN.

The administrators of application servers that use NAS must mount the remote partition on

the NAS storage system on network. This is because the NAS devices provide the servers of

NFS (Network File System) or something like that. All servers in the same LAN can mount it

with the same protocol very easily.

 59

Appendix B

Application Instances of Inkscape

In section 3.2.1, we have introduced Inkscape graphic editor. In this appendix, we

enumerate three kinds of application instances for Inkscape. First is using Inkscape to create

vector graphics, and second is composing comics and maps. Finally, design web pages with

static and dynamic graphics. After these instances, you can understand the power and

important functionalities of the wonderful graphic editor.

B.1 Creating Vector Graphics

First instance is to create vector graphics. This is the basic functionality of Inkscape.

Most people and I think that vector graphics should be the combination of simple geometric

figures. After view the art works by the creative users of Inkscape, I realize the power of

Inkscape and SVG language.

Figure 34. Complex Vector Graphics

 60

You can view the famous tiger head in figure 34 and download its SVG file from

internet. Use Inkscape to open it, and you will find that each part of this tiger head is one kind

of SVG element. Inkscape provides plentiful graphic tools to draw basic shapes, freehand

lines, Bezier curves and straight lines, calligraphic lines, etc.

Therefore, the users with art talent can create many beautiful two-dimension graphics

and save them in SVG files. On the other hand, some web browsers, like Firefox, support

SVG files. They can draw SVG files directly in web pages.

Besides artificial vector graphics, some people create photo realistic graphics by

Inkscape. These graphics have the advantage of vector graphics – no distortion when their

sizes were changed.

The Gaussian Blur filter support in Inkscape made possible some extremely photo-

realistic art. The Lamborghini Gallardo, super car in figure 35, was created by Michael

Grosberg based on a photo and he uses blurs extensively for soft shadows and halos around

bright reflections. The SVG file is available in Inkscape distribution. The screenshot also

shows a second window with an Outline view of the same file (green outlines are clipping

paths).

Figure 35. Photo-realistic Graphic

 61

Inkscape includes many advanced graphic effects. For example, color effects can

colors of graphics to be brighter, darker, more saturated, etc.

A group of extensions in the Color submenu of the Effects menu allows you to adjust

all colors of a selection at once. These commands affect both fill and stroke colors, including

gradients (but not bitmaps). The commands work recursively on groups. The only problem is

that, being Python extensions, these commands may be quite slow on complex documents.

Figure 36 demonstrate all color effects of Inkscape.

Figure 36. Advanced Graphic Effects

 62

B.2 Producing Comics and Maps

Inkscape has layer manager that can hide or display layers and protect or unlock layers.

This functionality can be used to compose comics and maps in the easy way.

A comic author, John Bintz, draw the graphic in figure 37 to demonstrate his use of

Inkscape for producing comics. He scanned the original penciled pages and import them into

Inkscape as the root layer. He created a new layer called “inks” and ink the drawing with the

calligraphy tool. Then he used the node tool and select tool to clean up the drawing,

reconnecting lines and smoothing or straightening paths as necessary. After that, he created a

new layer under “inks” called “colors” and used Bezier tool to draw colored polygons for

each area to be colored. Above “inks” layer, he created “balloons” layer and typed out the text,

draw an ellipse around each text block.

Figure 37. Producing Comics

 63

In figure 38, the map of Lithuania was created by Andrius Ramanauskas. He used

Inkscape’s layer manager where we can view the layers of his drawing, as well as lock/unlock

and hide/unhide them. Inkscape's layers can be hierarchical, so this dialog is not just a list but

a tree whose branches can be expanded or collapsed.

Figure 38. Producing Maps

B.3 Design of Web Pages

Currently some web browsers can draw SVG files directly, so we can use Inkscape to

design web pages. Although the graphics created by Inkscape are static, we can add scripts in

SVG files to let them become dynamic graphics in web pages.

 64

Some interesting SVG files with scripts can create dynamic graphics. Please connect

to the web page http://tavmjong.free.fr/INKSCAPE/ and open “Animated Mechanical Clocks

with moving gears” by Firefox web browser. Clock.svg and Clock2.svg demonstrate the date

and time of your system by graphic gears and these gears have hands to point the exact ones.

Figure 39. Animated Mechanical Clocks with Moving Gears

 65

簡簡簡簡 歷歷歷歷

黃黃黃黃 承承承承 一一一一 (Cheng-Yi Huang) Dec. 1st, 1973

< 工作經歷 >

2003.10 ~ 迄今 喬鼎資訊 (Promise Technology)

 目前擔任本公司軟體資深工程師，曾負責開發磁碟陣列卡之啟動程

序與裝置驅動程式等工作，目前工作內容是維護並強化磁碟陣列之核心技

術，以應用於各類型嵌入式儲存產品，包括內置型磁碟陣列卡及外置型磁

碟陣列子系統。

1999.06 ~ 2003.10矽統科技 (Silicon Integrated Systems)

 擔任軟體工程師，主要負責撰寫各式主機板的系統啟動程序，對內

協助晶片組的研發，對外提供 BIOS 公司與客戶技術上的支援。期間參與

多項產品完整的開發流程，對資訊產業電腦硬體架構的演進，有更深入的

瞭解；並於產品驗證偵錯的過程中，累積許多寶貴的經驗。

