Y

17,1

- 28
—3

]

i

i

TR

=

A

K7 IE
A

FIM2 - 73 ﬁfr?“ Java ?*,EL’%S%J R]
FIM2 - A Decentralized JMS System

SRR

TR N

w4 k|

—_

e A B Je o o

FIM2 - & #%3% Java 3t 4 PRF% % 5t

FIM2 - A Decentralized JMS System

g4 RRE Student : Kuo-Jung Su
hERER D RTK Advisor : Shyan-Ming Yuan

B ox 2+ F
TWERET AL TS5

oL owmow

A Thesis
Submitted to Degree Program of Eléctiical- Engineering and Computer Science
College of ComputerScience
National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of

Master of Science
in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

-4

-h_‘\

M
=

¢ ER L3

FIM2 -4 473\ Java 3 4 PRF% % s&

SERS fp AR R,

R22d -8 TREFREFTAE IR TAERE (F3 %) AL

£

R B D FaE 0 2 M S B RE KR E R L E R
4ﬁt%?o%@Jwa%éﬁﬁﬁﬁﬂM$éﬁu%é%@%ﬂf%ﬁﬂﬁﬁ?

MGRERRASNEF ORISR EARER S FREEF LEFREL T AL 2 2
FESEREEY - Bt SRR TR Hvﬁlﬁ poi7EImE age

RO AFT IR P P PIRES S L ERAR P T AR B X R A ¥
Gipdck B 3 RAF ART R ILE T RBRTR

2 2% 2 Fast Java Messaging 2 (FIM2) k%t i 91 # B2 @ F 5 £ o1&
3+ Fast Java Messaging (FJM) $ueec 4%~ - FIM2 & - Hi7en JMS %
SO EHFILE-BE TR H e IMS AR FEAREERY | FIM 2
Fl i & * 1 f F 2t 9 Negative-acknowledgment (NACK)-Oriented Reliable
Multicast (NORM) 2tz > @ 3 £ :}ﬁé? Topic Address Binding ergljr » #1712
FJM2 < Publisher ¥ Subscriber ¥ 34 {7 & lF - & % "% > =4 FIM & /% W3] e
85 ¥ b FIM2 B4 57 7 4% Internet Eid s 4 > X WgFE 7 K AR R
Bl Apfts s ZHE T T R PR AP LR T EET Java fr
Mwmmiﬂ%i%@%$&ﬁﬂﬂGﬁ%ﬁg%ﬁﬁ&%o

A

FIM2 - A Decentralized JMS System

Student : Kuo-Jung Su Advisor - Dr. Shyan-Ming Yuan

Degree Program of Electrical Engineering and Computer Science

National Chiao Tung University

Abstract

With the growth of internet, the requirement for the communication and message
exchanges between programs becomes more and more popular. And the Message-
Oriented Middleware (MOM), such as Java Message Service (JMS), could not only
greatly reduce the technical doorsill ifor. programmers but also has some amazing
characteristics: such as reliable, secured,.and.event-driven. In the traditional Client /
Server model, not only the client -side ‘program has to maintain the resource for
connections and memory management, but also the server side has to send out several
copies of duplicated messages peramount of connected clients, it not only waste the
system resource but also the network envirenment.

A system this thesis develops 18 Fast Java Messaging 2 (FJM2), it’s a resigned of
Fast Java Messaging (FJM) which designed by Chuan-Pao Hung at 2002. FIM2
creates a whole new JMS provider which is distributed, high performance, reliable, and
easy to use and deploy! While compared with FIM, FJM2 adapts a more efficient
communication protocol - Negative-acknowledgment (NACK)-Oriented Reliable
Multicast (NORM), and no longer adapts Topic Addressing, and thus FIM2 could have
Publisher and Subscriber running at the same machine, while FIM could not, and
moreover FIM2 has the ability to work across WAN environment, and thus it extends
the system coverage, and could be adapted for more different application scopes. We
hope that our experience would benefit those who want to create a MOM system based

on Java and multicast protocol.

ii

ACKNOWLEDGEMENTS

AR F g IR R T EER KEAIG) il #H s B
L hg oo AR X «ua,%mfﬁ—}_i’l%w?g;}“ﬁ‘ﬁﬁﬂg lﬁi‘ﬁ—%\i’?‘rg—*}ﬁ ’

RAFE P Ap L AT 2 AR AR B A VR L 0 4 PP g
@%gﬁ’ﬁﬁ Rih F@JTﬁ“wﬂ—ﬂ%%m&i B R
* KRBT Wrﬁ PRS2 R TGRS D B

ﬁzﬂgqmg@o

»

\

iii

CONTENTS

ABSTRACT IN CHINESE......oviiinuiinnniisssnncsssnncssanssssasesssssessssssssssssssssssssssssssssssssnssss I
ABSTRACT IN ENGLISHcucouiiuiinininnnisissnssssississsssssisssssssssssssssssssssssssssssssssssss II
ACKNOWLEDGEMENTS cevceutetcsscsssssnsssssnssnssessssssssssssssssssssssssssesssssssssssssssssssssssssssssns 11
CONTENTSuiiiiiicinsnnsnnssnssissississnsssssssssssssssssssssssstsstsssssssssssssssssssssssssssssssssssosses v
LIST OF FIGUREScuuuiiiiiinnniinnninssnicsssnncsssnsses VII
CHAPTER 1 INTRODUCTIONucoinuiinisunsessessssassessases 1
LT PREFACEcciiiiiitte ettt ettt ettt e sttt e s e e s eesanee s
1.2 MOTIVATIONeeeruiieeeree s i et e i ettt ettt et e e st esbeeesanee s 3
1.3 OVERVIEW ...couiiiinnee S hieee b il b st 07 ettt 4
CHAPTER 2 BACKGROUND & RELATED WORKccccevevieursunsisnisunsesesaenena 5
2.1 MESSAGE ORIENTED MIDDEEWARE (MOM)ooiiiiiiiiiieeeeeeeeceeeeeeeeeeeeeeeeeeeeeee e 5
2.2 JAVA MESSAGE SERVICE (JIMS) ...ttt ettt e et ee e e e e 6
2.3 TP IMIULTICAST ettt ettt ettt ettt ettt et e st e s e e sabae e sabeeesaneeesaneeas 8
2.4 FORWARD ERROR CORRECTION (FEC)coiiiiiiiiiiiiiee e 10
2.5 NEGATIVE-ACKNOWLEDGMENT ORIENTED RELIABLE MULTICAST (NORM) 12
2.3 FASTJAVA MESSAGING (FIM) ... 12
CHAPTER 3 FAST JAVA MESSAGING 2.....ccovevrinrensunsussansassasssssssssssssssassasssssassnses 17
3.1 FIM2 SYSTEM ARCHITECTURE........cceiutttiitteniiieenieeenireeenireesnireesireesireesnseesneeenanes 18
3.1.1 FIM2 ArchiteCtiure OVErVIEWceeecuueeeeeiieeeeeeieeeeeeiieeeeeeissreeeesnseeeens 18
3.1.2 FIM?2 Physical Architecture OVerviewccccoueceeeeceeenieeeenieeennieeesnnnens 19
3.2 FIM2 MESSAGE TRANSMISSION MODELccciiiiiiiiieiiiieniieeniieeeiree e 20

v

3.3 FIM2 MESSAGE PUBLISH PROGRAM FLOWS ...ttt 21

3.4 FIM2 MESSAGE SUBSCRIBE/CONSUME PROGRAM FLOWS.........cccceeviiiniiniinnennn 23
3.5 FIM2 MANAGEMENT PROGRAM FLOWSccccuiiiiiiiiiiiiiiiciieccieceeeceee e 25
3.6 FIM2D SYSTEM ARCHITECTURE.......ccocttettenitieieeniieereenireeteesieeereesieesnseesaeesneennne 27
3.7 FIM2-ADMIN SYSTEM ARCHITECTUREcccouttiiiieeiiteeiieeniieesiteesieeesnee e e 28
CHAPTER 4 FJM2 PROTOCOLcucouinurininnisnsississsssssssssssssssssssssssssssssssssassasssses 30
4.1 FIM2 PROTOCOL LAYERSceeiutttiiiteeniiteeniteeeeiteeeiteeeiteesiteesieeesbeeesneeesaneeesineeens 30
4.2 NORM PROTOCOL — A BRIEF OVERVIEWcccutimuiiriieniienieenieenreesireeneesieeenseennenns 31
4.2.1 NORM Delivery Service MOdel.................ccccoueeecueeeceeeniieenieeenieeenveeennns 32
4.2.2 NORM SCALADILILYoocneeeeeeeieieeeeiee et vea e e e e saraee s 32
4.3 NORM PROTOCOL IN FIM2 i 085 0n e ettt 33
4.3.1 Forward Error Correction Algorithim in FIM?2ccccovvevvvieveincucnnens 33
4.3.1 NACK Algorithm i EIM2 i it 35
CHAPTER 5 FJM2 PERFORMANCE ANALYSES.......cccvcivnsinnnensisnsassessesasasas 36
5.1 TEST ENVIRONMENT ...couttiiiiiiiteniteaiteniteeittesite et site et e sibe et e saee et e satesteesaeeeneesae 36
5.2 UDP PERFORMANCE BENCHMARK ON LOOP-BACK INTERFACE...........ccocuveerueeannne. 37
5.3 UDP PERFORMANCE BENCHMARK ON 100MBPS ETHERNET INTERFACE................ 39
5.4 JMS PERFORMANCE BENCHMARK ON LOOP-BACK INTERFACEccocuveerueenne. 41
5.5 JMS PERFORMANCE BENCHMARK ON 100MBPS ETHERNET INTERFACE 43
5.5.1 One-to-One Benchmark on 100Mbps Ethernet Interface........................... 43
5.5.2 One-to-Two Benchmark on 100Mbps Ethernet Interface 45
5.5.3 I-to-1 Benchmark on 100Mbps Ethernet Interface across WAN 47
5.6 CONCLUSIONciiuttiittatteeite et ettt et e st et e sate et esate e bt e sbbe e bt esabeenbeesabeebeesaseenneenaee 48
CHAPTER 6 FJM2 IMPLEMENTATION ISSUES AND ANALYSES........cc.... 49

6.1 CHOOSING A RIGHT NETWORK ADAPTER ...covvtuunieeeeeeeeeeeeeeeeeeeeeeeeeeenieeeeeeeeeeeenennnns 49

6.2 FAMILIAR WITH YOUR SWITCH AND ROUTERcccccciiiiiiiiiiiiiiiiiiciccicccice 49
6.2.1 Turn off or increase the value for Multicast flow control 49
6.2.2 The processor speed limits the tunnel performance.................ccccoevueeenne.. 50

6.3 MEMORY ALLOCATION REDUCTIONcccueotimiiiiiniieiieteniienieetesirenieeneeieesieenesanens 52

CHAPTER 7 CONCLUSION ...ccoutiniisuicsnnssncssecssissesssncsssssasssessssssassssssssssssssessassssesaes 53
BIBLIOGRAPHYuuciuiiiiieisinsnissnnsisssisss 55

Vi

LIST OF FIGURES

Figure 2-1. JMS Programming Model.........................ccccccveeeuieevcuieaiieeeiieeecieeeneeeennes 6
Figure 2-2. JMS PTP Messaging Model.......................ccccccoovumvuimiiiniiiiieniiaiiesieeen 7
Figure 2-3. JMS Publisher/Subscriber Messaging Model.cccveeveuuenn... 8
Figure 2-4. Systematic FEC Encoding........................cccoooeviimiiiiiiaiieniieieeeieeeee, 11
Figure 2-5. Systematic FEC Decoding.........................ccooocueeeiueeeecuieniieeeiieeneeeenieeenns 11
Figure 2-6. FJM Membership Topologyccoooeeueeeeueeeiiieecieeeieeeeieeeeieeenns 14
Figure 2-7. FJM Publisher Registration FIowcccocoevvieviieeeecieeecieenieeenns 15
Figure 2-8. FJM Subscriber Registration Flow.....................cccccccoocoveviiniinienninaneanne, 15
Figure 3-1. FJM2 Architecture OVerview ‘iii............ccccoouveevcueeiienueanieenienieeneeeieenane 18
Figure 3-2 FJM?2 Physical ArcRitecture..........cc................ccccoovueecuieceinieiieeeeeene, 19
Figure 3-3. FJM2 Message Transmission Modeélcoceueevcveencueencunnn. 20
Figure 3-4. FJM2 Message Publish Program Flowsccccccovveecrveeecnnnnn. 21
Figure 3-5. FJM2 Message Subscribe/Consume Program Flows............................... 23
Figure 3-6. FJM2 Management Model and FIowscccccvueeevvreecreeancrnnn. 25
Figure 3-7. FJM2D Architecture and Operation FIows....................ccccoevveeeeeeencnnnn. 27
Figure 3-8. FJM2-Admin Architecture and operation flowscccccueeue..... 28
Figure 4-1. FJM2 Protocol LAYETS.................cccoueeecueeeseieaiiieeiieeesieesiiaeeeieeesseeenseeenns 30
Figure 4-2 Compact No-Code FEC (''fec_id"' = 0) ''fec_payload_id'' Format........... 33
Figure 5-1. UDP UNICAST Throughput on Loop-back Interface........................... 37
Figure 5-2. UDP MULTICAST Throughput on Loop-back Interface......................... 38
Figure 5-3. 1-tol performance test connection topology...................ccccoecveeveueeneuenn. 39
Figure 5-4. UDP UNICAST Throughput on 100Mbps Ethernet Interface................. 40
Figure 5-5. UDP MULTICAST Throughput on 100Mbps Ethernet Interface............ 40

vii

Figure 5-6. JMS throughput on Loop-back Interface............................cccvvvverveennnnn. 42

Figure 5-7. JMS 1-tol performance test connection topology......................cc............ 43
Figure 5-8. JMS 1-to-1 Throughput on 100Mbps Ethernet.........................cccveeeunenn. 44
Figure 5-9. JMS 1-to-2 performance test connection topology.................................... 45
Figure 5-10. JMS 1-to-2 Throughput on 100Mbps Ethernet...........................ccccu....... 46
Figure 5-11. FJM2 1-to-1 WAN performance test connection topology...................... 47
Figure 5-12. FJM2 WAN Throughput on 100Mbps Ethernet...................................... 48
Figure 6-1. Simplified Ethernet Block Diagram............................cccccueveueeveeniunannnnne. 50
Figure 6-2. Router with only 1 Ethernet MACcoocueeeeveeeeiieeciieeecrieeeiieaenns 51
Figure 6-3. Router with 2 Ethernet MACccoocooeiiiiiiieiiieiieieeeeee e 51

viii

CHAPTER 1 INTRODUCTION

1.1 Preface

The Networking Technology is making a progress at a tremendous step in recent
years. In wired environment, the bandwidth today has already been improved to
1Gbps, and in wireless network, the 802.11n [1] proposes some new physical
transmission technologies, and has improved the transmission rate up-to 300Mbps.
Therefore applications such as Digital Home, Video on Daemon would no longer be

a utopian idea, but a reasonable application to the real world.

With the advancements of the physicaltnetworking technology, more and more
applications are trying to take the advantage of the: network to establish a large-scale
system, however such systent:-would have-athigher technical doorsill, and difficult to
debug and thus violate the Time-to-Market issue, so that some kind of Message-
Oriented Middleware (MOM) architecture has been proposed, MOM is a technology
which could hide the technical complexity from programmers to make it become
much easier and quickly for programmer to create a large-scale, reliable, secured
application. There are many MOM systems today, such as CORBA [11], DCOM
[10], Java Message Service (JMS) [8][9][12]...etc. Today JMS is the most popular

and widely deployed among all of them.

In the traditional Client/Server model, we usually adapt UNICAST transmission,
because it fits human’s instincts much well, and it’s also easier for debugging and

management. However in UNICAST transmission mode, it could only have one

single destination at a time, so that if we want to broadcast a message to everyone
interesting about it, we have to send out several copies of the duplicated messages,
and with the number of receiver grows, it would become an obvious system
overhead for both software application and network environment itself. In contrast
to the UNICAST, there is another technology named MULTICAST, which could
have multiple destinations for a message at a time, and thus reduce the overhead for
such application. However it’s also cause of the multiple destinations capability of
MULTICAST, the management and debugging process would be much more
complicated than UNICAST and it requires much more software efforts, too.
Moreover the routing of MULTICAST protocol is a difficult course to solve, it’s not
only a technical issue but also a policy issue to Internet Services Provider (ISP), and
most of the existing routers and:gateways donot support these MULTICAST routing
features, so that the MULTICAST application: usually constrained into LAN

environment only, and thus the possible.application would be limited, too.

Speaking of the reliable service, the traditional way to provide message reliability is
through positive Acknowledge (ACK), it sends out a positive acknowledge to sender
per received message, however in such architecture, the acknowledgement itself is
the performance bottleneck, it’s the root cause of the relative longer message latency
which constrains the overall system performance. In contrast, there is a technology
called - Negative Acknowledge (NACK) has been proposed, it sends out only the
information about the lost messages to sender, not positive acknowledges to every
received messages to reduce both the number of control message and the
transmission latency. In a network environment with a lower packet loss rate, the
lower the lost rate is, the better performance we could gain through Negative

Acknowledge (NACK). Finally let’s talk about the message management and
2

dispatch, the traditional design uses Centralized Architecture, its topology is much
like an aster, and before every message delivered from one to another, the message
must be sent to the centralized management node for later destination dispatch and
management, and thus the centralized node is the bottleneck of the overall
performance in such system. And we usually applies a fail-over / fault-tolerance
mechanism to provide reliability for such architecture, and in such design, there is
nothing we could do for further network traffic optimization, because the centralized
architecture usually uses UNICAST communication, and several copy of duplicated
message is necessary for transmission, and it’s the one who wastes network
bandwidth, the only way to reduce communication overhead for group transmission
is through MULTICAST, and thus in this paper, I would like to introduce a
decentralized, multicast and negative acknowledge based messaging system — Fast

Java Messaging 2 (FIM2) to-yous.

1.2 Motivation

Java Message Service (JMS) proposed by Sun Microsystems is a set of Java API that
allows applications to easily create, read, write, and deliver messages. JMS is a design
created by Sun Microsystems and several partner companies since 1998. They define
only a common set of application programming interfaces rather than constrain the
way for implementation to create a Java Message Service (JMS) based Message-
Oriented Middleware (MOM) systems. And thus JMS system could be a pure Java
program or a combination of Java and some native languages, which usually have
better performance than Java, but this way would also lose the ability to cross-
platform.

Undoubtedly Java now is an importance software revolution during the recent years, it

plays a more and more essential role in the recently systems, and so does its subset
application — JMS, however there neither no much thesis that discusses the detail
about how to implement a decentralized, multicast and negative acknowledge based
JMS systems, nor such official mature JMS products exists in the market. And thus
we hope that our experience would benefit those who interests on such topic to

establish an efficient, decentralized JMS system.

1.3 Overview

This paper is organized as follow:

Chapter 2 - Background & Related Works, we’ll take a short review of the
background information and related works. We would briefly introduce the concept of
Message-Oriented Middleware (MOM),, Java Message Service (JMS), Negative-
acknowledgment Oriented Reliable Multicast (INORM) [22][23] Protocol, Forward
Error Correction (FEC) [24][25][26][28] and the previous multicast based JMS
implementation: Fast Java Méssage (FIM)-[13].

Chapter 3 - Fast Java Messaging 2, it would briefly introduce the architecture of the
FIM2, and a little bit detail about its sub-components and program flows.

Chapter 4 - FJM2 Protocol, it abstracts the protocols in FIM2, and some minor
modifications in the official NORM protocol.

Chapter 5 — FJM2 Performance Analysis and Discussions, we’ll take some
benchmarks on the existing JMS products and FIM2, and also have a short analysis
on these results.

Chapter 6 — FJM2 Implementation Issues and Discussions, we’ll abstract some
implementation issues and have few analysis of FJM2 at this chapter..

Chapter 7 — Conclusion, in this chapter, we would have a conclusion and propose

some possible future works for FIM2.

CHAPTER 2 BACKGROUND & RELATED WORK

In this chapter, I would like to introduce the background information and related
works to you. We would in turn take a short review on the following technologies:
Message Oriented Middleware (MOM), Java Message Service (JMS), IP Multicast,
Forward Error Correction (FEC), Negative-Acknowledgment Oriented Reliable
Multicast (NORM) Protocol and finally the previous design — Fast Java Messaging

(FIM).

2.1 Message Oriented Middleware (MOM)

Message Oriented Middleware (MOM)risa popular technology among enterprise
computing. Software applications or components can communicate with each other
via messaging. Messages aré.composed-by body and header, and are readable by
receivers. The purpose of messaging'is for one application to inform some specific
events to another application. The responsibility of MOM is to ensure messages are
sent appropriately and hide the network complexity from application programmers.
Besides, most of the MOM support fault tolerant, load balancing, scalability and

transaction to provide a reliable messaging platform.

MOM systems usually define some virtual destinations for message exchange.
Messages are sent to a specific virtual destination, which might be a queue, a topic,
or a specific network address. Applications interested in certain messages could get
messages from some specific mechanisms. Moreover, the communication between

applications is loosely coupled. It means that senders and receivers do not have to be

available at the same time, In other words, they could communicate asynchronously.
The only things those user applications need to know are the message and message

notification interfaces.

2.2 Java Message Service (JMS)

Java Message Service (JMS) proposed by Sun Microsystems is a set of Java API
allows applications to read, write, and deliver messages. It defines only a common set
of application programming interfaces and associated semantics that allow programs
written in Java to communicate with each other via JMS architecture. JMS hides the
network complexity from application programmers to make it become much easier for
programmers to create large-scale, efficient, cross-platform and reliable messaging

applications.

Connection
Factory

l Create

Connection

Create

Create Create
Messagde ProdUCer | s Session — [Message Consumer

Create
Deliver y Receive

Message

b

r

JMS
Application

Figure 2-1. JMS Programming Model

Figure 2-1 above shows the abstract of JMS programming model, JMS application
could play as a Message Producer or Consumer or even both of them at a time. And
no matter which role they are, they must create the Connection and Session object
instance through Connection Factory Object, and once Session object instance is
ready, they could create Message Producer or Consumer object instance through
Session object according to its requirement, and finally create the Message object
instance for delivery and notification. Message Producers usually deliver messages to
a specific Queue or Topic, and the JMS system would monitor such virtual destination
object and notify the registered Message Consumers, and that’s why we call such

mechanism as ‘Message Driven Model’.

There are two different models in JMS.

(1). Point-to-Point (PTP) Messaging Model

Fossible
Receiver 1

Fossible

Sender B \
Possible

Receiver 3

Fossible
Receiver 4

Fossible
Receiver

Figure 2-2. JMS PTP Messaging Model
As we could see from the figure above, sender could send out a message into a
specific message queue, thus one and only one of the possible receivers could get

this message.

(2). Publisher / Subscriber Messaging Model

Subscriber 1

=0 EE — (_Message Topic < Subscriber 2

Subscriber 3

Figure 2-3. JMS Publisher/Subscriber Messaging Model

From the figure above, we could tell that sender could send out a message
destined to a specific message topic, and all of the subscribers could get this

message asynchronously.

2.3 IP Multicast

IP Multicast is a way to delivér a. message into+a group of receivers at a time. In this
protocol we would feed the filed of destination MAC address in Ethernet frame with a
specific broadcast MAC address and the field of destination IP address inside IP
header could be a specific group address (224.XxXX.XXX.XXX ~ 239.XXX.XXX.XXX), the
group address is the ID for message grouping. However because of the nature of
multiple receivers, while compared to UNICAST, it would be much more difficult to
maintain the message synchronization in MULTICAST. In order to avoid some kind
of Broadcast Storm Attack, most routers and gateways would not forward the
MULTICAST traffic to WAN, even if there is already a well-defined multicast
routing protocol in RFC and even when the specific MULTICAST routing daemon
has already implemented on the router / gateway device, the MULTICAST routing

functionality might be disabled by default, and thus MULTICAST usually works only

8

inside LAN environment, it could not communicates with each other across WAN.

So far there are many multicast specific researches:

(1). Multicast Requirements, Performance, Survey and Taxonomy [5][6][7][18]
These papers discuss some critical issues in the MULTICAST domain.

(2). Multicast Transport Protocol [4]
It describes a protocol for reliable transport that utilizes the multicast capability
of applicable lower layer networking architectures

(3). Internet Group Management Protocol (IGMP) [15][16][17]
It’s a protocol to manage the multicast group member-ship.

(4). Protocol Independent Multicast (PIM)[14][21]
It’s a protocol that provide 1-to-1, 1-to-many, many-to-many transmission via
multicast protocol.

(5). Multicast Source Discovery Protocol (MSDP) [19]
It is a computer network protocel in-the Protocol Independent Multicast (PIM)
family of multicast routing protocols.

(6). Source-Specific Multicast (SSM) [20]
It provides a network layer service through "channel", identified by an SSM
destination IP address (G) and a source IP addresses.

(7). Distance Vector Multicast Routing Protocol (DVMRP) [27]
It’s a protocol that defines the way for multicast routing daemons to exchanges
routing information.

(8). Negative-acknowledgment Oriented Reliable Multicast (NORM) Protocol
It’s a protocol that adapts the negative-acknowledgment (NACK) and Forward
Error Correction (FEC) technology to provide an efficient, multicast based,

decentralized, reliable multicast based transmission service.

2.4 Forward Error Correction (FEC)

Forward Error Correction (FEC) is a widely adapted technology in
Telecommunication to control message corruptions, lost and provide a way for
message recovery. It usually appends some parity contents into the source message,
and while receiving enough parity contents, we could successfully recover the original
source message. There are 2 different kinds of FEC mechanism:
(1). Systematic FEC

The original source symbol would appear among the encoded symbols.
(2). Non-Systematic FEC

The original source symbol would not appear among the encoded symbols.

10

Source Block Encoded Block

Symbol 0 Encoded Symbol 0
Symbol 1 Encoded Symbol 1
............ Source Symbol
Symbol K -1 Encoded Symbol K - 1
Parity Symbol
Figure 2-4. Systematic FEC Encoding
Encoded Block Source Block
Encoded Symbol 0 Symbol 0
Encoded Symbol 1 Any K Symbol 1

e

Encoded Symbol K - 1 SymbolK -1

-‘f_; 1:',:-__'-._ i_w'_‘._i,'_;:‘__,._ 7_4:7;;.'
Figure 2-5. ,Systematéc FEC Decoding

TERRANT

Figure 2-4, 2-5 show us the generic Systematic FEC operation model, its basic
concept is: Given a source block divided into any K of equal parts of source symbols,
we could produce N pieces of encoded symbols through a FEC encoder; and given
any K of the encoded symbols, we could re-produce the original source block. There
are many types of FEC codes, but the most important by far is Reed-Solomon coding
because of its widespread use on the Compact disc, the DVD, and in computer hard

drives.

11

2.5 Negative-acknowledgment Oriented Reliable Multicast (NORM)

The major objective of NORM protocol is to provide a one-to-many or many-to-many
reliable, large-scale and robust bulk data transfer via multicast. The NORM protocol
design provides support for distributed multicast session participation with minimal
coordination among senders and receivers. NORM allows senders and receivers to
dynamically join and leave multicast sessions at will with minimal overhead for
control information and timing synchronization among participants. The following are
notable characteristics of NORM protocol:

(1). Providing message synchronization via common message header information.

(2). NORM is designed to be self-adapting to a wide range of dynamic network
conditions with little or no pre-configuration.

(3). The protocol is purposely designed. to’.be tolerant of inaccurate timing
estimations or lossy conditions that might occur in many networks including
mobile and wireless.

(4). The protocol is designed to exhibit'convergence and efficient operation even in

situations of heavy packet loss and large queuing or transmission delays.

2.3 Fast Java Messaging (FJM)

Fast Java Messaging is a former reference design of FIM2. It is a JMS system based
on IP multicast protocol, negative acknowledgement and has a NACK based flow
control. FJM offers only the publisher/subscriber model of JMS and its major

objective is to provide a fast and reliable Java Message Service.

12

There are several key characteristics of FIM architecture:

1).

(2).

3).

It’s a distributed system.

Because FIM is a distributed design, there is no any centralized management
node, such as a message dispatch server, in the entire FIM system. And thus
message dispatch server is no longer the performance bottleneck of the system.
FIM user applications exchange messages via only the JMS topics, which
physically stands for a specific multicast addresses per topic. With benefit of
IP multicast protocol, the number of packet delivery can be suppressed
dramatically.

It adapts negative acknowledgement (NA CK) for message reliability

FIM adapts negative acknowledgement (NACK) rather than positive
acknowledgment (ACK) approach to provide a reliable multicast transmission
mechanism. Under NAEK. approach, subscribers send out NACK to publisher
only when message loss-occurs: And-thus NACK could dramatically decrease
the number of acknowledge packet delivery for message repair process.

It provides a NACK based flow control

FIM also provides a NACK based flow control. A NACK message may
indicate some states of subscribers immediately, such as system busy or buffer
under-run etc. When publisher receives NAK from subscribers, it can slow
down the message transmission rate, to let subscriber catch up with it. If
publisher has not yet received any NAK message for a period of time, it may
speed-up the transmission rate to gain a better throughput. With the help of
NAK-based flow control scheme, FJM can provide a reasonable solution to the

message exchange rate diversity between publishers and subscribers.

13

(4). Membership Management and Multicast-based Leader Election Protocol

& Guard

& Topic Manager (M)
& Publisher (P)

& Subscriber (S)

Figure 2-6. FJM Membership Topology

From figure above, we.could tell that there are four roles in membership
protocol: Guard, Topi¢ Manager, Publisher, and Subscriber. Guard can be
taken as a centralized manager..While'there 1s a new publisher/subscriber wants
to join the system, it must first: contact with the Guard daemon for system
information. And Guard is not dedicated to any participant. A Guard could be
chosen from all the existing Topic Managers through the Guard election
protocol. Finally let’s take two simple examples to see how FJM process the

publisher and subscriber registration procedures:

14

Figure 2-7. FJM Publisher Registration Flow

Publisher

Figure 2-8. FJM Subscriber Registration Flow

(5). Topic Address Binding
Traditional JMS systems usually dispatch the Topic messages by the message
header or content via a single data link. In FJIM we propose a way to bind up

the topic by a specific multicast group address to reduce software overhead.

15

However there are some incorrect view points in FJM, and they are the reasons

those make me to propose a brand new design — Fast Java Messaging 2 (FIM?2):

(1). The performance of FJM is not good enough while adapting into 100Mbps
network environment, because it requires at least 50 million seconds delay in
inter message gap, or the system would crash immediately, and it’s the root
cause of the poor performance.

(2). User application must be aware of the limitation described in (1), and a
reasonable delay must be applied into every message publish routine, or FIM
would encounter a serious system fault and goes crash.

(3). While member-ship changes, the FIM program would hang up and consume
the entire system resource. (CPU utilization is almost 100%)

(4). Topic address binding weuld never benefit from the hardware dispatch for
(Address, Port) binding, it’s a misunderstanding in the assumption. Because
most of the Ethernet Adapters-in-the-world could only handle layer two (MAC
Layer) protocol, while IP address sits-inside layer three, and port number is in
layer four, and even in the recently system-on-a-chip (SoC) router design, layer
four switching functionality is rarely available and never be implemented in a
full specification. Beside this, Topic address binding is really a painful
characteristic that make management, configuration become much more
complicated and also make it difficult to implement and maintain a FIM tunnel

daemon to provide WAN traversal ability.

16

CHAPTER 3 Fast Java Messaging 2

In this chapter, I would like to introduce a de-centralized Java Message Service
System to you. Its name is Fast Java Messaging 2 (FJM2), it’s a pure Java design
and thus has a cross-platform characteristic in natural, and its major objective is to
provide a de-centralized, reliable, efficient, multicast based Java Message Service
(JMS) with minimal configuration overhead. And in order to provide the WAN
traversal ability for this multicast based system, here we also propose a micro
multicast tunnel design - Fast Java Message 2 Daemon (FJM2D), and we also
introduce a small web based administration program - FIM2Admin, which provides
FIM2D node list exchange service to them; and thus FIM2D could automatically
communicates with each other across the world. to-provide a large-scale coverage for

this multicast based JMS system —+EFJM2.

17

3.1 FJM2 System Architecture

3.1.1 FJM2 Architecture Overview

Java

Java Application At

Event-driven
communication

Java Message Service API (JMS API)
Fast Java Messaging 2 based on NORM
(FIM2)

Java Virtue Machine (JVIM)

Solaris Others

Figure 3-1. F JM?2 Architecture Overview

From figure 3-1 above, we could tell that Fast Java Messaging 2 (FIM2) is a
Message Oriented Middleware (MOM) that abstracts the complexity of network
programming to shorten the time for a robust network application development. The
only thing that application developers need to know is the set of JMS API, all the
underlying technology hides in a black-box called JMS from programmers, it they
want, programmers could even change the underlying products to gain better
performance or stability, and only a few program modification needs to be done. In
other words FIM2 provides not only the solution for the Time-to-Market issue, but
also an opportunity to developer for all the benefits come from the cross-platform

characteristic.

18

3.1.2 FJM2 Physical Architecture Overview

———

LANZ ——

i Publisher
192.168.1 0f24ﬁ -
168.95.1.100 - -
\:l ﬁ@ B i —— E Router +
FIM2D
- 140.113.23.101
FIM2-Admin
(WEB) ~ V140.113.23.102
Z Router +
FIM2D
172.16.202.0/24 LAN1

AL rm2 Ll e
Consumer ljl Consumer

Figure 3-2 FJM2 Physical Architecture

In figure 3-2, we could have a rough abstraction of the entire FIM2 physical

architecture, and the following characteristics could also be noticed:

(1). FIM2-Admin Daemon MUST have a public IP address to make every FIM2D
be able to locate and communicate with it.

(2). FIM2D usually runs at the router which might has some firewall functionalities,
in such case, we might need to do some specific firewall configuration to make
the communications between FIM2D and FIM2-Admin become valid.

(3). FIM2D MUST locate on the edge gateway, so that they could forward the
FIM2 specific multicast traffic onto a specific FIM2D endpoint across WAN.

19

3.2 FJM2 Message Transmission Model

FIM2 FIM2 FIM2 FIM2
Publisher Consumer Publisher Consumer
; ‘ FJM2-Admin J ;
10 | | 1
A A <
IP Multicast (239.0.0.100) IP Multicast (239.0.0.100)
NORM HTTTP NORM
Protocol v Protocol
FIM2D <?::$> © <=——">[Fam2D
. UbP |
LAN1 (192.168.0.0/24) LANZ (10.0.0.0/24)

Figure 3-3-FJM2 Message Transmission Model

From figure 3-3, we could realize:

(1).

(2).

3.

.

(5).

There is no necessary to have a centralized daemon to help FIM2 Publishers
and Consumers to communicate with each others inside LAN environment

We MUST install a FIM2D on the edge gateway of the local network to make it
possible to forward the FIM2 message to another FIM2D across WAN for us.
FIM2-Admin serves only FJM2D, it would never communicate with FJM2
daemons directly, so that the configuration requirement could be minimized.
The communicate protocol between FJM2 daemons (Publishers and/or
Subscribers) is a NORM protocol based on IP multicast and NACK.

The communicate protocol between FIM2 and FIM2D is a NORM protocol

based on IP multicast and NACK.

20

(6).

delivered by UNICAST.

(7).

The communicate protocol between FIM2D daemons is a NORM message

The communicate protocol between FJM2-Admin and FIM2D daemons are

UNICAST UDP (FIM2D List Advertisement) and HTTP protocol (Registration

and Query Procedures).

(8).

The local network behinds FIM2D could be a different subnet.

3.3 FJM2 Message Publish Program Flows

Application Thread

RSVD Buffer + <Create . De-queue
Data Content
-

Message
3. Segmentation| markup

4. Lopy the data segmelt

Segment
and build NORM header

‘ NormDataMessage

5. en-queue|the packet

per priprity,
and also send 3 copy to cache

‘7. Send out the packet‘

Tx Th rejad Tx Th recjad
High Prigrity Low Prigrity
DatagramPacket|| |DatagramPacket

[+)]

. De-queue ‘%nd re-assemable with 4atagram Pagket

TxQ xQ
High Low
4 =

Figure 3-4. FJM2 Message Publish Program Flows

From figure 3-4, we could realize how it flows in FIM2 software components while

publishing messages, this figure does not include the procedure of message repair

process, and thus it is merely a general program flow upon message publishing.

21

There is no necessary to determine a multicast leader (Guide) as what we’ve done in
previous FIM design, the FIM2 daemon could immediately enter normal message
handling procedures after startup, and while membership changes, only a little
redundant, incomplete message cache would be occupied in consumer/subscriber’s
memory for a period of time, it would be free upon cache expire. So the entire
system overhead is much lower than the previous FJM, and thus it would be much

easier for FIM2 to develop a stable messaging service than FJIM. Now let’s take a

look at the flows:

(1). Publisher creates a Message object instance and fills in the data into its body.

(2). Publisher de-queue a NormDataMessage object instance from the message pool,
this object instance is the container for the message.

(3). Segmenting the message to-fit in the message payload that best fits in current
network environment, however the scgmentation here generates only the marks
about how the fragments should be taken.

(4). Copying the segmented message into'the NormDataMessage object instance
which de-queued from the pool in step (2), and finally build up the header for it.

(5). En-queue the prepared NormDataMessage object instance into the proper
transmission queue according to its message priority, and finally make a copy
of the message into the MessageCaches for a possible message repair process
that might be initialized later.

(6). Each transmission queue has a dedicated stand-alone monitoring thread that has
a proper thread priority that fits to the queue priority, while the queue is not
empty, and the thread would de-queue a message from it and process a generic
transmission routine, and once queue becomes empty, the thread would be
placed into the wait pool of its monitoring queue and enter idle state until

someone notifies it.

22

(7). Once the transmission thread de-queue a message from the queue successfully,

it could send it out through the socket library.

3.4 FJM2 Message Subscribe/Consume Program Flows

1 lReceive

Application Thread

3. No cache, poll out an

instance from pool

2. Checkif WEu‘have acache

6.|/Capy into
the cache

Received
Message

Cache

))

5. Get|cache

4. Put the instance into cache

7. Check message status

8.YES,
onMess

NormDataMessage

tlaim

invoke
age(...)

initiali

Repair Thread

imgm

JACK Holdof
State

.t

14. Enter[holdoff

13. Send NACK

12. NAC% is required

ACK Backoff
State

1. NACK is not necessary

'

Figure 3-5. FJM2 Message Subscribe/Consume Program Flows

From figure 3-5, we could realize how it flows in FIM2 software components while

subscribing/consuming messages, this figure also includes the procedure of message

repair process. There is no necessary to determine a multicast leader (Guide) and the

registration processes those are necessary in previous FIM, the FIM2 daemon could

entering normal message handling procedures immediately after startup, and while

membership changes, only a little

redundant, incomplete message cache would be

occupied in consumer/subscriber’s memory for a period of time, it would be free

upon cache expire. So the entire system overhead is lower than FJM, and thus it

23

would be much easier for FJM2 to develop a stable messaging service than FJM.

Now let’s take a look at the flows:

(1).

(2).

(3).

.

(5).

(6).
(7).

(8).

9).

Application receives a packet (symbol) from the network, and then put it into
the packet buffer.

Build a key for message cache from the header of the received packet, and the
use for the cache lookup, if there is a corresponding cache to this key, then the
program flows to step (5), else flows into step (3).

Poll out a message container from the message pool, and the message pool
would be selected according to the total message size recorded in its common
header information.

Put the message container instance into the message cache.

Treat the object which is:just fetch from. message cache or polled from the
message pool as a NormDataMessage.object.

Copy the data inside the-packet'butferinto the NormDataMessage object.

Let’s check if the message is ¢omplete-Or not, if it’s true then flows into step (8),
else flows into step (10).

If the message is already a complete one, invoke onMessage(...) of all the
registered subscriber applications.

When onMessage(...) returns, reclaim the message object to the pool.

(10).If the message is not yet complete, it would try to initialize NACK process, and

if the NACK process is really necessary it then flows into step (12), if it isn’t

then flows to step (11)

(11).Although the message is incomplete, the NACK process is still not yet

necessary in this case, so terminate this receive event handle.

(12).If the message is incomplete and it’s time for NACK process, initializes NACK

process and enters NACK back-off state.
24

(13).During NACK back-off state, the subscriber would monitor the NACK appears
on the network, and if it match the one recorded in its own NACK items, it
suppress the NACK for that item. When back-off timeout occurs, the program
would enter NACK transmission state.

(14).In NACK transmission state, the program would send out the NACK message
through socket library, and then enter hold-off state.

(15). The hold-off state is the way to avoid repeated NACK message in a given delay
timeout.

(16). While hold-off timeout occurs, the program would flows back to NACK

decision state to determine the next step is (11) or (12).

3.5 FJM2 Management

1. Control Message 7 . 7 :'"":V'""""'"""'"'""""""""""""""""E

1 2. dond
Tx Thread
Message Parsing NACK Low Priority
Type
‘DatagramPacket
2. send 1. de-gueue

Update GR sDatagramPacket

pire, try data flus
3. TxQ isn't empty

Figure 3-6. FJM2 Management Model and Flows

Thread

Finish

25

In figure 3-6, there are 4 threads involved in FIM2 management / control process:

(1). Control Thread

(2).

3).

It’s responsible for two different functions in FIM2, the first is message repair

functionality and the other one is Greatest Round-Trip Time (GRTT)

calculation. The program flows of this thread are :

1. Receive control message from FIM2 subscriber/consumer

2. Dispatch the message handle routine by its message type

3. [If this control message is a NACK message, let’s parse the NACK message
to get NACK item list.

4. En-queue the NACK item list generated from step (3) into the repair queue,
and goes to step (6) to terminate this operation.

5. If this is a ACK message, update the Greatest Round-Trip Time (GRTT).

Repair Thread

This thread would monitor the repair.queue; if it’s not empty then de-queue a

message and send it out, other-wise put-itself into the wait pool of the repair

queue and enter idle state until someone notifies it.

Timer Thread

This thread would periodically activates registered routines, and right now

there are two different timer-based routines:

1.

2.

GRTT
The objective of this routine is to gather and generate the greatest round-
trip time (GRTT) from all the existing FIM2 subscribers.

FLUSH
The objective of this routine is to tell all the existing FIM2 subscribers

that this transmission is finished while transmission queue is empty.

26

(4). Transmission Thread with Low Priority
This thread is same as the one we discussed in session 3-3. FJM2 Message

Publish Program Flows.

3.6 FJM2D System Architecture

Lﬂ Buffer 0F— Buffer 1 |- Buffer N-1|J

FLEr s ML 3. Notify

Packet Ring Buffer == Wait Pool

2. advance,thié)r@ference

| ;
|
1.\receive

Rx Thread

3. Natify

Figure 3-7. FJM2D Architecture and Operation Flows

Figure 3-7 gives us a rough picture of FIM2D architecture, it consists two threads:

Rx Thread (It’s also the main thread), Tx Thread. Here let’s take a look at how it

works:

(1). FIM2D receives messages from FJM2 daemons, and place the data into the
packet ring buffer

(2). FIM2D advances the free pointer which points to the packet ring buffer

27

(3). FIM2D notify the thread which is inside the wait pool of packet ring buffer.

(4). FIM2D transmission thread is back to the running state, and then send out
packet which referenced by the occupied pointer.

(5). FIM2D transmission thread advance the occupied pointer

(6). FIM2D transmission found that there is no more packet waiting for transmit, it

would then goes back to the wait pool.

3.7 FJM2-Admin System Architecture

FJM2D

| WAN: 168.113.23.101|
| LAN: 172.16.202.0/24 |

1. Send oyt FJM2D
Registratioh (HTTP)

2. Response with '
registration status : FJM2D

_ HTTP) |
FJMZ-Admin | +—— EWANZ 210.113.23.101:
—Petiodically Advertise FJM2 i LAN: 192.168.0.0/24

List Last Updated Timestamps % e |

(UE_)P)) . If last Update timestamp is newer,
5. Response with FJM2D List Request for the FJM2D List
(HTTP) (HTTP)

FJM2D

| WAN: 140.113.23.101,
| LAN: 10.0.0.0/24 |

Figure 3-8. FJM2-Admin Architecture and operation flows

FIM2-Admin is a Web Application aRchive (WAR) defined in Java 2 Enterprise
Edition (J2EE), it’s only a plug-in for Java Application Server, and of course, all the

stability and robustness the application could offer comes from the Java Application

28

Server. As we could see in Figure 3-3, there are 2 different protocol used in the

communication between FIM2D and FIM2-Admin: UDP and HTTP. UDP stands for

the management information advertisement, while HTTP stands for the general data

link for FIM2D and FIM2-Admin. Finally let’s take look on the operation flows:

(1). While startup, FIM2D would initializes a registration process via HTTP.

(2). FIM2-Admin returns a registration response to FJM2D via HTTP.

(3). FIM2-Admin would periodically advertise the last modified timestamps of the
active FJM2D list to all the registered FIM2D via UDP protocol.

(4). FIM2D would send out a query for the latest FJM2D list if it found that its own
list is out-of-date.

(5). While receiving the query request, FJM2-Admid would give FIM2D a reply to

inform it the latest FIM2D.list.

Through the operation describes aboves-the-FIM2D nodes could communicate with

each others cross the world automatically, and the only thing that we have to

configure manually is the address of the FIM2-Admin.

29

CHAPTER 4 FJM2 Protocol

In this research, we propose a distributed JMS provider architecture named FIM2.
FIM2 is based on NORM protocol has the improved performance than the previous
FIM and included new features, such as WAN traversal capability and automatically
FIM2D self-configuration. FJM2 is a JMS implementation which is implemented in
pure java to provide the best portability. It offers only publish /subscriber messaging
model through multicast protocol. Due to the distributed architecture of FIM2, load
balance can be achieved, and the message server is no longer the bottleneck of the
system, so now it could reach a much better performance than all of the server based

designs over the world while subscriber number.increases.

4.1 FJM2 protocol layers

Header
Overhead:
90+ Bytes

Ethernet Header 14 Bytes
IP Header 20 Bytes (IPv4)
UDP Header 20 Bytes (IPv4)
NORM Header 32 Bytes (FEC = 0)
FJM2 JMS Header 4 Bytes Aftribute + Topic name

Figure 4-1. FJM?2 Protocol Layers

In figure 4-1 at last page, we could tell that the minimum FIM2 header overhead is
90+ bytes per packet, in other words, the maximum transfer unit (MTU) in the local
network must be larger than this value minus the size of Ethernet Header (14), while
compared to the general UNICAST packet, we lost around 2.7% performance in
case of MTU = 1500 with 1-to-1 transmission.
Beside general TCP/IP header overhead, we still have two header overheads for two
different protocols:
(1). NORM Protocol
This is the multicast based transport protocol that we adapts as the underlying
protocol for FIM2. It provides the reliability, distributed, large-scale
messaging architecture for FIM2 to form a Java Message Service (JMS)
Provider.
(2). FJM2-JMS Protocol
It is an additional header for EJM2-to.adapt alone with the header of NORM to

build up a JMS compatible message object.

4.2 NORM protocol — A brief overview

Negative-acknowledgment (NACK) Oriented Reliable Multicast (NORM) Protocol
is defined in RFC 3940, 3941. It’s designed to provide a reliable transport of data
from one or more senders to a group of receivers over an IP multicast network. Its
major objective is to provide an efficient, scalable, and robust bulk data transfer over
multicast network. It also support for distributed multicast session participation with

minimal coordination among senders and receivers.

31

4.2.1 NORM Delivery Service Model

A NORM protocol instance (NormSession) is defined within the context of
participants communicating connectionless packets over a network using pre-
determined addresses and host port numbers. Generally, the participants exchange
packets using an IP multicast group address, but UNICAST transport may also be
established or applied as an adjunct to multicast delivery. In the case of multicast,
the participating NormNodes will communicate using a common IP multicast group
address and port number that has been chosen via means outside the context of the
given NormSession.

NORM provides for three types of bulk data content objects (NormObjects) to be
reliably transported. These types include:

(1). Static computer memory data content (NORM_OBJECT_DATA)

(2). Computer storage files (NORM_OBJECT.FH_E)

(3). Non-finite streams of continuous-data-content (NORM_OBJECT_STREAM).
The distinction between NORM_OBJECT DATA and NORM_OBIJECT FILE is
simply to provide a "hint" to receivers in NormSessions serving multiple types of
content as to what type of storage should be allocated for received content (i.e.,

memory or file storage).

4.2.2 NORM Scalability

Group communication scalability requirements lead to adaptation of negative
acknowledgment (NACK) based protocol schemes when feedback for reliability is
required. NORM is a protocol centered around the use of selective NACKs to
request repairs of missing data. NORM provides for the use of packet-level forward
error correction (FEC) techniques for efficient multicast repair and optional

proactive transmission robustness. FEC-based repair can be used to greatly reduce

32

the quantity of reliable multicast repair requests and repair transmissions in a
NACK:-oriented protocol. The principal factor in NORM scalability is the volume of
feedback traffic generated by the receiver set to facilitate reliability and congestion
control. NORM uses probabilistic suppression of redundant feedback based on
exponentially distributed random back-off timers. NORM dynamically measures the
group's roundtrip timing status to set its suppression and other protocol timers. This
allows NORM to scale well while maintaining reliable data delivery transport with

low latency relative to the network topology over which it is operating.

4.3 NORM Protocol in FJM2

4.3.1 Forward Error Correction Algorithm in FJM2

In FIM2, we adapts Compact No-Code FEC ‘scheme in the low level transport
protocol — NORM Protocols It’s a Fully-Specified FEC scheme corresponding to
FEC Encoding ID 0. And it"does ‘not require FEC encoding or decoding. Instead,
each encoding symbol consists of consecutive bytes of a source block of the object.
The FEC Payload ID consists of two fields, the 16-bit Source Block Number and the

16-bit Encoding Symbol ID.

1 2 3 4
Object Transport ID

Source Block Length

Figure 4-2 Compact No-Code FEC (''fec_id"' = 0) ''fec_payload_id'' Format
Figure above is the fec_payload_id format used for Compact No-Code FEC in FIM2,
it is one word smaller than Small Block, Systematic (“fec_id”=129).

33

The reason why I choose Compact No-Code FEC is due to performance
consideration. Generic FEC Encode/Decode is really a time consume process. Please
refer to the test below for detail:

(1). Testing Environment

Item Description

CPU Intel Pentium M 740 (1.73 GHz)
SDRAM 1 Giga-Bytes
Java Runtime Sun Microsystems 1.4.2_04

Java FEC Library =~ Onion Networks Java FEC Library v1.0.3 [29]

(2). Performance Matrix

Symbol 512 Bytes 1024 Bytes 1440 Bytes

Source Data

1 Kbytes 0 ms 0 ms 0 ms
2 Kbytes 0 ms 0 ms 0 ms
4 Kbytes 0 ms 0 ms 0 ms
8 Kbytes 0 ms 0 ms 0 ms
16 Kbytes 1 ms 0 ms 0 ms
32 Kbytes 6 ms 2 ms 1 ms
64 Kbytes 35 ms 11 ms 7 ms

Therefore in best case, Java FEC library could encode (1000 / 7 = 142.8) 64Kbytes
Message per second, while 100 Mbps = (100 / 8 * 1024 / 64 = 200) 64Kbytes
Message per second. And thus we could have a conclusion that while Java FEC is

adapted, the overall system would never exceed 100 * (142.8 / 200) = 71.4 Mbps

34

4.3.1 NACK Algorithm in FJM2

The NACK Algorithm used in FJM?2 is almost exactly the same as the one described
in NORM protocol, except the sender NACK process. Because in FIM2 we adapt
Compact No-Code FEC scheme as the symbol algorithm, so that sender NACK
suppress is meaningless to FIM2, and thus the sender NACK algorithm in FIM2 is
merely sending out a repair symbol as soon as possible when the it got NACK
message and it still has the message symbol cache for this lost message, and there is

no any timer used in sender NACK process.

35

CHAPTER S FJM2 PERFORMANCE ANALYSES

In this chapter, I’'ll show you the network performance benchmark of Java V.S C.
And we will how fast it could be, could it meet our requirement, and what’s the root
cause here. And does MULTICAST run as fast as UNICAST in 1-to-1 transmission?
Finally we will have a throughput benchmark on FIM2, SonicMQ [30], Fiorano [31]

and iBus [32].

5.1 Test Environment

(1). Hardware Equipment

ID Processor RAM Operation System

PC1 Pentium M 740 1.73GHz 1 GB WINXP Home SP2

PC2 Pentium 4-M 1.80GHz 512 MB WINXP Professional SP2
PC3 Pentium(R) 4 1.80GHz 256 MB WIN2000 Professional SP4
PC4 Pentium M 740 1.73GHz 1 GB Mandrake 9.2 (Linux 2.4.22)
PC5 Pentium 4-M 1.80GHz 512 MB Mandrake 9.2 (Linux 2.4.22)

(2). Java Runtime Version
Windows: IBM Java(TM) 2 Runtime Environment "1.4.2"
Linux: IBM Java(TM) 2 Runtime Environment "1.5.0"
(3). Tool-chain Information
Windows: lcc-win32

Linux: gecc 3.3.1

36

5.2 UDP Performance Benchmark on Loop-back Interface

This is a throughput benchmark of 1-to-1 transmission on loop-back interface, and

here we would also try to figure out what’s the performance difference between Java

and C on Windows XP.

(1). Test Scenario

1. Launch the test program, and then follow the parameters to generate a

fixed-size message buffer with a randomly generated content.

2. The sender program would try its best to send out the whole message in a

single socket function — sendto(...)

3. The receiver program would enter a infinite loop and use a single socket

function — recvfrom(...)_ to,receive message, and then calculate the

performance value without message verification.

(2). Test Objective

This test would show us how. fast“it-could be while we have an unlimited

network bandwidth, and how much difference between C and Java.

(3). Test Benchmark Figures

5000
4000
3000
2000
1000

0

Throughput (Mbps)

UDP Unicast Brute-Force Throughput (Loopback)

j

Ly 1 g e P 1 1 1 I I e |

>

I T S S N S L S
AU 2NN AN M IS

9
& «f

Message Size (Bytes)

—— C (WIN32)

—=— Java (WIN32)
C (Linux)
Java (Linux)

Figure 5-1. UDP UNICAST Throughput on Loop-back Interface

37

Throughput (Mbps)

Multicast Brute-Force Throughput (Loopback)

2500
2000 ——(C (WIN32)
1500 — —=— Java (WIN32)
1000 C (Linux)
500) Java (Linux)
0 I N W L ! ! ! ! ! !
FF P PP FSFIEES

Message Size (Bytes)

Figure 5-2. UDP MULTICAST Throughput on Loop-back Interface

(4). Test Analysis

1.

2.

Linux obviously outperforms Windows platform.

UNICAST always a little bitjroutperforms MULTICAST in a 1-to-1
transmission pair.

When message size is 1éss than 32-Kbytes, Java could run as fast as Native C
program in low level socket operations.

In UNICAST transmission, while message size exceeds 8 Kbytes, the Java
(Linux) would hang up.

In MULTICAST transmission, while message size exceeds 32 Kbytes, the
performance of Java (Linux) and Native C (WIN32) would start to descend.
Throughput grows with message size.

No matter in program written in C or Java, it could easily fulfill the

performance requirement of 100Mbps Ethernet.

38

5.3 UDP Performance Benchmark on 100Mbps Ethernet Interface

SEND
. 100Mbps RECV
Ethernet Switch

PC1/PC4 PC2/PCS

Figure 5-3. 1-tol performance test connection topology

Figure 5-3 shows us the connection topology in this test, and here we would do
some benchmark to figure out what’s the difference between Java and C on
Windows XP.

(1). Test Scenario

1. Launch the test program, and then follow the parameters to generate a
fixed-size message buffer with a randomly generated content.

2. The sender program would try its best to send out the whole message in a
single socket function —sendto =)

1. The receiver program would entef a infinite loop and use a single socket
function — recvfrom(...) to receive message, and then calculate the
performance value without message verification.

(2). Test Objective
This test would show us how fast it could be under a 100Mbps Ethernet

environment, and how much difference between C and Java.

39

(3). Test Benchmark Figures

UDP 1-to-1 Unicast Brute-Force Throughput (100 Mbps Ethernet)

~ 100 e \

—§ 80 //' S —— S Y

é 60 / —=— Java (WIN32)

e 40 | C (Linux)

o .

E 28 './“é Java (Linux)
R A I U Sl

Message Size (Bytes)

Figure 5-4. UDP UNICAST Throughput on 100Mbps Ethernet Interface

Multicast 1-to-1 Brute-Force Throughput (100Mbps Ethernet)

100
80 /// —— - | - (C(WI\3)
60

—=— Java (WIN32)
40 / C (Linux)
20

= Java (Linux)

Throughput (Mbps)

O |
N TR SI: U SO, SRS

Message Size (Bytes)

Figure 5-5. UDP MULTICAST Throughput on 100Mbps Ethernet Interface

(4). Test Analysis
1. Java program could run almost as good as native C program under
100Mbps Ethernet network.
2. Java (WIN32) is a little bit slower than the others while message size is
smaller then 1024 bytes.

3. The throughput grows very fast in the range from 256 to 1024 Kbytes.

40

4.

5.

The system reaches the peak performance around the range from 1024 to
2048 Kbytes, and the margin is not noticeable.

The actual peak throughput under 100Mbps Ethernet is ~90Mbps.

5.4 JMS Performance Benchmark on Loop-back Interface

This is a throughput test of 1-to-1 transmission on loop-back interface, and there are

four JMS systems would be tested: FioranoMQ 2006, SonicMQ v7.0,

iBus//MessageBus 5.0, and our FIM2. FioranoMQ and SonicMQ are server and TCP

based products, while iBus and FIM2 are multicast and UDP based designs.

(1). Test Scenario

1.

2.

This is a throughput test of 1-to-1 transmission on loop-back interface.

We would benchmark four JMS system, two of them (Fiorano, SonicMQ)
are server based, and others (iBus, FIM2) are multicast based.

Launch the test program,. and-then follow the parameters to generate a
fixed-size message buffer with ‘a randomly generated content.

The sender program would try its best to send out the whole message in a
single JMS function — publish(...)

The receiver program would be notified through the JMS callback
function — onMessage(...) to receive message, and then calculate the

performance value without message verification.

(2). Test Objective

This test would show us how fast these JMS system could be under a perfect

network environment with a unlimited bandwidth and no any message lost.

41

(3). Test Benchmark Figure

Throughput (Mbps)

JMS Brute-Force Throughput (Loopback)

B FioranoMQ 2006

3 SonicMQ v7.0 (WIN32)

™ iBus//MessageBus
FIM2 (WIN32)

S SonicMQ v7.0 (Linux)

—*— FEJM2 (Linux)

X © P © M
A NS

Message Size(Bytes)

Figure 5-6. JMS throughput on Loop-back Interface

(4). Test Analysis

1.

IBM Java Runtime,Enyironmenticould get much better performance in
Windows than in Linux platform:

FIM?2 outperforms“all the, other'systéms while message size is less than
8Kbytes, however its peak performance is only around 170 Mbps, while
Fiorano is 202 Mbps and SonicMQ could run up-to 257 Mbps.

FIM2 could almost reach its peak throughput while message size equals 4
Kbytes.

SonicMQ could get better performance as long as the message grows.
FIM2 obviously outperforms iBus//MessageBus which is also a multicast,
UDP based design.

SonicMQ has the best performance in loop-back test.

42

5.5 JMS Performance Benchmark on 100Mbps Ethernet Interface

5.5.1 One-to-One Benchmark on 100Mbps Ethernet Interface

Fublish [
100Mbps Subscribe

Ethernet Switch
PC1/PC4 PC2 / PC5

Figure 5-7. JMS 1-tol performance test connection topology
Figure above shows us the connection topology in this test, and there are four IMS
systems would be tested: FioranoMQ 2006, SonicMQ v7.0, iBus//MessageBus 5.0,
and our FIM2. FioranoMQ and SonicMQ are server based products, while iBus and
FIM2 are multicast based.
(1). Test Scenario

1. Launch the test program, and then follow the parameters to generate a
fixed-size message-buffer with a randomly generated content.

2. The sender program would-try-its-best to send out the whole message in a
single JMS function - publish(...)

3. The receiver program would be notified through the JMS callback
function — onMessage(...) to receive message, and then calculate the
performance value without message verification.

(2). Test Objective
This test would show us how fast these JMS system could be under a 100Mbps
Ethernet network environment for 1-to-2 transmission, and also the

performance matrix between several JMS products.

43

(3). Test Benchmark Figure

B FioranoMQ 2006 (Server
JMS 1-to-1 Brute-Force Throughut and Publish on the same
(100Mbps Ethernet) machine)
3 FioranoMQ 2006 (Server
100 and Publish on different
00 F machine)
80 | Bl SonicMQ (Server and
Publish on the same
z 70 | machine, WIN32)
§ 60 3 SonicMQ (Server and
=i | Publish on different
a 50 .
< machine)
5 40 F 1Bus//MessageBus
=30 |
20
Z FIM2 (WIN32)
10 I Ii
O L
A S SO R S-S S| PR N 8 —*— SonicMQ (Server and
AU N \® %@ Ny %\0) \63% q;ﬁ\‘o @Q® Publish on the same
\ Size (B machine, Linux)
essage Size (Bytes) e FIM2 (Linux)
Figure 5-8. JMS 1-to~I Throughput on 100Mbps Ethernet
(4). Test Analysis
1. The average throughput of FIM2 (Linux) outperforms all the other products.
2. The performance of FioranoMQ would vary with the relative location between
publisher program and the server.
3. FIM2 (WIN32) runs almost as good as FioranoMQ (WIN32) while publisher
and server deployed at the same machine.
4. There is a serious problem on memory management in iBus//MessageBus, if

user application do not limit itself not to send the message too fast, the system

would crash while message equals or larger than 4 Kbytes.

44

5.5.2 One-to-Two Benchmark on 100Mbps Ethernet Interface

Su fibe

L4

Publish
100Mbps
Ethernet Switch
PC1 Subséri g

PC3

Figure 5-9. JMS 1-to-2 performance test connection topology
Figure above tells us the connection topology in this test, and there are four JMS
systems would be tested: FioranoMQ 2006, SonicMQ v7.0, iBus//MessageBus 5.0,
and our FIM2. FioranoMQ and SehicMQ afe server based products, while iBus and
FIM2 are multicast based.
(1). Test Scenario

1. Launch the test program, and then follow the parameters to generate a
fixed-size message buffer with a randomly generated content.

2. The sender program would try its best to send out the whole message in a
single JMS function - publish(...)

3. The receiver program would be notified through the JMS callback
function - onMessage(...) to receive message, and then calculate the
performance value without message verification.

(2). Test Objective
This test would show us how fast these JMS system could be under a 100Mbps
Ethernet network environment for 1-to-2 transmission, and also the

performance matrix between several JMS products.

45

3).

Test Benchmark Figure

JMS 1-to-2 Brute-Force Throughput (100Mbps Ethernet)

’é 200

g 150 £ B Fiorano

s @ SonicMQ

a 100)

e i iBus/MessageBus
= 50 il

= FIM2

Mo

= 0

™
Wc’@’@@oo@g

Message Size (Bytes)

4.

Figure 5-10. JMS 1-to-2 Throughput on 100Mbps Ethernet

Test Analysis

FIM2 obviously outperforms all the-other JMS system while message size
equals or larger than 512 byteés;and-mere subscribers the difference grows.
SonicMQ outperforms all the other JMS systems while message size less than
512 bytes.

Although iBus//MessageBus is the only one multicast based JMS system except

FIM2, it has a poor performance and serious problem on memory management.

46

5.5.3 1-to-1 Benchmark on 100Mbps Ethernet Interface across WAN

100Mbps . VAN R 100Mbps
Ethernet Router Ethernet Router
Pulish | . Subscribe
PCH1 PC2
NAT1 NAT?Z2

Figure 5-11. FJM?2 1-to-1 WAN performance test connection topology

Figure above tells us the connection topology. in this test, and here we are going to

verify the WAN traversal ability of FIM2 system.

1).

1.

2.

(2).

Test Scenario

Embedded FIM2D into firmware of the router, and launch it.

Launch the test program, and then follow the parameters to generate a fixed-
size message buffer with a randomly generated content.

The sender program would try its best to send out the whole message in a
single JMS function - publish(...)

The receiver program would be notified through the JMS callback function —
onMessage(...) to receive messages, and then calculate the performance value
without message verification.

Test Objective

This test would show us how fast these JMS system could be under a 100Mbps
Ethernet network environment for 1-to-1 transmission across WAN.

47

(3). Test Benchmark Figure

FIM?2 Brute-Force Throughput on 100Mbps Ethernet across WAN

/ ¥ —— FJM2 (1 msec packet delay)
/ —=— FEJ]M?2 (No packet delay)

Throughput (Mbps)
O — N WA O

S 0 O AN O AN v D
O (@] ¥} — N <t [ON) (@) o0 \O o
— (@] v (e} (e} () — on ~ (=]
— [@\] <+ [o’e) O o ')
— on \O

Message Size (Bytes)

Figure 5-12. FJM2 WAN Throughput on 100Mbps Ethernet

(4). Test Analysis

1. The performance of FIM2 across"WAN, is very poor, we still have many things
need to do to improve the performance

2. Obviously now the Ethérnet-switch“on the router now is being overshot, and
thus the performance is so poor.

3. In order to tune the performance well, we have to implement a flow control

mechanism in FIM2

5.6 Conclusion

FIM2 is a successful multicast based JMS system which shows how much benefits
we could gain while the number of receiver grows, and it also acts almost as good as
the server based products even in a 1-to-1 transmission, however it still lacks of a
flow control to avoid packet over-shoot which leads to the poor performance across
WAN.

48

CHAPTER 6 FJM2 Implementation Issues and Analyses

In this chapter, we would discuss some issues discovered in the development process

and what’s the major factor that limits the system performance.

6.1 Choosing a Right Network Adapter

During performance test, I have found that some entry level Ethernet adapter has a
bad implementation for multicast in Windows NDIS Driver (Ex: Realtek RTL8651
Fast Family), these driver would consume almost the entire processor resource even
when the platform does not join the multicast destination group address, and thus it’s
impossible to have a good performance test result on these platforms. Therefore
before processing any performance benchmark; please make sure that you have a
right platform and a right network adapter-by doing some basic multicast or UDP

UNICAST performance test.

6.2 Familiar with your Switch and Router

6.2.1 Turn off or increase the value for Multicast flow control

Some Ethernet Switches have the capability to apply bandwidth flow control for
multicast, and some of them would turn on this function by default for security
considerations. Therefore while deploying multicast based systems, such as FIM2, it
would be better to turn off or increase the value of the bandwidth flow control for
multicast on the Ethernet Switch, however the way to configure the hardware would
differ from vendor to vendor, it it’s necessary you might have to contact with

hardware vendor for detail.

49

6.2.2 The processor speed limits the tunnel performance
FIM2 provides not only the LAN-to-LAN multicast service, it also provides the
capability for WAN traversal ability through the help of FIM2D. However in order
to make it works, the FIM2D must be deployed on the edge gateway which usually
is a embedded system with a limited system resource. And there are at least two
factors would limit the WAN traversal performance.
(1). Hardware Circuit Design

Before further discussion, we first take a look at a simplified functional block

of a Ethernet adapter.

Ethernet Adapter

F

" MAC

-
!

\ PCI / CARDBUS / PCMCIA Interface \

Figure 6-1. Simplified Ethernet Block Diagram
The one whom the host driver communicates with is MAC (Media Access
Controller) component, and data path between MAC and host driver could be
PCI or CARDBUS or PCMCIA or any other proper peripheral interface, in the
world of embedded system, everything is a SoC (system-on-a-chip), it means
that the processor would contains not only the processor core but also some
component, such as Ethernet MAC, and thus the cost reduction could be easily

archived and the circuit would be simpler and more efficient.

50

Port 1~4: LAN
Port 5: CPU Port Processor
Port 6. WAN MAC

‘MAC'] MACZ2MAC3MACA

Router

PHY1 PHY2Z2 PHY3 PHY4 PHY5 PHY6

| 1]

RJ45 |Interfaces

Figure 6-2.Routerwith-only 1 Ethernet MAC

Port 1~4: LAN
Port 5: CPU Port Processor
Port 6;: WAN MAC1IMAC?
MAC 1MAC2MAC3MAC4
Router !

PHY1 PHY2 PHY3 PHY4 PHYS5 PHY®6

| L]

RJ45 Interfaces

Figure 6-3. Router with 2 Ethernet MAC

51

Figure 6-2 and 6-3 show us two possible hardware design for a Ethernet router. In
figure 6-1, we have only 1 Ethernet MAC inside the router SoC, and the way to
distinguish WAN and LAN traffic is through 802.1Q (Tagged VLAN), in other
words, internally the host would always receiver and transmit tagged VLAN packets
rather than normal Ethernet frame, and it is transparent to all the users connected
with it. However since we have only one data path here, in case of 100Mbps
Ethernet, performance benchmark could never exceed 100 / 2 = 50 Mbps, actually it
would even be a little bit slower than 50 Mbps. In figure 6-2, we have 2 separate
Ethernet MAC dedicated for LAN and WAN access, we don’t need 802.1Q here to
distinguish LAN and WAN traffic and thus the software overhead is much lower,
and the performance would never be half of bandwidth of the transmission media.
(2). Processor Speed

FIM2D usually would be deployed on the router, and this platform usually has
limited processor power and-resources--Adthough FJM2D does not consume much
memory, the processor speed would-dramatically affect the performance of FIM2D,

so choosing a good processor is important.

6.3 Memory Allocation Reduction

In Java, since everything is object, and thus we need a lot of object allocation in the
entire system, however the object allocation and de-allocation is very expensive, and
many of them could be reused, so that FIM2 would pre-allocated a lot of objects and
insert the poll for later use when system startup, every time FIM2 request or reclaim
a object from a poll, it just de-queue / en-queue a object from a poll, no any memory
allocation / de-allocation would occur, and thus we could get a better system

performance.

52

CHAPTER7 CONCLUSION

Publisher/Subscriber Model is a popular communication model in the world. And
most of existing JMS products adapt centralized rather than a distributed
architecture and most of them does not use pure Java implementation, they usually
deploys a native program for the critical section for performance reason and thus
lost the ability of cross-platform. Here we introduction a possible method to

implement a de-centralized JMS system base on NORM protocol by pure Java.

From the benchmarks in this paper, we could tell that FJM2 is a successful design
that has took a great advantage from multicast to have a dramatic performance
improvement when the number' of receivers, grows, and while compared with
centralized design, FIM2 could be even.better than centralized products for several
times, and it also has a good"performance ‘value in 1-to-1 transmission. While
compared to the existing multicast based JMS system — iBus, FIM2 is very stable
and every publisher or subscriber could dynamically join or leave the topic and the
action would not system to waste too much resource. However in iBus, it has not
only a memory management issue on rapidly message publishing, it would even

crash the topic publisher while any one of the subscribers leaves.

In FIM2, there are still some interesting topics for further improvements:

(1). Persistent Messaging and Transaction
FIM2 aims to design a NACK based messaging system, however it’s
impossible for NACK to detect some system failures. Such as system offline, in

such case, positive acknowledge is necessary, although FIM2 based on NACK,
53

(2).

3).

4.

().

it still needs positive acknowledge to archive persistent messaging and fulfill
the JMS specification.

NORM Flow Control

In current FIM2, we do not apply any flow control algorithm, and thus the
performance curve is not very smooth, the publisher might overshoot
frequently and leads to a poor performance across WAN. In order to reduce the
number of overshoot, a mature flow control is necessary.

Fast FEC Algorithm

FIM2 now uses Compact No-Code FEC algorithm rather than a general FEC
algorithm with parity symbols to suppress the number of repair messages and
efficiently rewind the repair position. The reason why we Compact No-Code
FEC dues to performance: consideration;. if you could found any fast FEC
algorithm, it would be much better if you could put it into FIM2.

Quality of Service

The message priority provided. in FJM? merely depends on the threading
algorithm of the operating system. It would be much better if we could
introduce 802.1p [2][3], Type of Service, or Class of Service into the
implementation.

FJM2 Node Management

This paper has introduced a administration model for all the nodes in FIM2
system, if necessary you may extends the ability of it to control any you want,

such as system resource monitor, daemon startup / shutdownetc.

Finally I hope this paper would benefits those who interesting about decentralized,

multicast based Java Message System. And if it’s necessary, you're welcome to

contact with for further discussions. And again thanks for your reading.

54

BIBLIOGRAPHY

1.

The Institute of Electrical and Electronics Engineers, Inc., “IEEE
P802.11n./D1.0 Draft Amendment to STANDARD [FOR] Information
Technology-Telecommunications and information exchange between systems-
Local and Metropolitan networks-Specific requirements-Part11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) specifications:
Enhancements for Higher Throughput”, March 2006

The Institute of Electrical and Electronics Engineers, Inc., "802.1D Media

Access Control (MAC) Bridges", June 2004

. The Institute of Electrical.tand Electronics Engineers, Inc., "802.1Q Virtual

Bridged Local Area Networks"; May 2003

S. Armstrong, A. Freier, and K."Marzullo, "Multicast Transport Protocol," RFC
1301, February 1992.

R. Braudes, S. Zabele, "Requirements for Multicast Protocols", RFC 1458, May
1993.

B. Whetten, T. Montgomery, and S. Kaplan, "A High Performance Totally
Ordered Multicast Protocol," Proc. of Int'l1 Workshop on Theory and Practice in
Distributed Systems, pp.33-57, 1995.

K. Obraczka, "Multicast Transport Protocols: A Survey and Taxonomy," IEEE
Communication Magazine, January 1998

Sun Microsystems, “Java Message Service”, Version 1.0.2, November 1999.

Sun Microsystems. “Java Message Service”, Version 1.1, April 2002.

10. Ash Rofail, Yasser Shohoud, "Mastering COM and COM+," SYBEX, 1999.

55

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Object Management Group, "CORBA: Common Object Request Broker
Architecture and Specification," Revision 2.4, October 2000.

Sun Microsystems, Java 2 Platform, Enterprise Edition (J2EE)

Chuan-Pao Hung, Hsin-Ta Chiao, Yue-Shan Chang, Tsun-Yu Hsiao, Tzu-Han
Kao, Shyan-Ming Yuan, “FIM: A Fast Java Message Delivery Mechanism based
on IP-Multicast”, Third International Conference on Communications in
Computing 2002

D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V.
Jacobson, C. Lium, P. Sharma, L. Wei, "Protocol Independent Multicast-Sparse
Mode (PIM-SM): Protocol Specification", RFC 2362, June 1998

S. Deering, "Host Extensions for IP Multicasting", RFC 1112, August 1989

W. Fenner, "Internet Group Management. Protocol, Version 2", RFC 2236,
November 1997

B. Cain, S. Deering, I. Kouvelas,-B--Fenner,” A. Thyagarajan, "Internet Group
Management Protocol, Version 3", REC3376, October 2002

B. Quinn, K. Almeroth, "IP Multicast Applications: Challenges and Solutions",
RFC 3170, September 2001

B. Fenner, Ed., D. Meyer, Ed., "Multicast Source Discovery Protocol (MSDP)",
RFC 3618, October 2003

S. Bhattacharyya, Ed., "An Overview of Source-Specific Multicast (SSM)", RFC
3569, July 2003

A. Adams, J. Nicholas, W. Siadak, "Protocol Independent Multicast - Dense
Mode (PIM-DM): Protocol Specification (Revised)", RFC 3973, January 2005
B. Adamson, C. Bormann, M. Handley, and J. Macker, "Negative-
acknowledgment (NACK)-Oriented Reliable Multicast (NORM) Protocol", RFC

3940, November 2004
56

23

24.

25.

26.

27.

28.

29.

30.

31.

32.

.B. Adamson, C. Bormann, M. Handley, and J. Macker, "Negative-
Acknowledgment (NACK)-Oriented Reliable Multicast (NORM) Building
Blocks", RFC 3941, November 2004

M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, J. Crowcroft,
"Forward Error Correction (FEC) Building Block", RFC 3452, December 2002
M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, J. Crowcroft, "The
Use of Forward Error Correction (FEC) in Reliable Multicast", RFC 3453,
December 2002

M. Luby, L. Vicisano, "Compact Forward Error Correction (FEC) Schemes",
RFC 3695, February 2004

D. Waitzman, C. Partridge, S. Deering, “Distance Vector Multicast Routing
Protocol”, RFC 1075, November 1988

Irving S. Reed, Gustave Solomon, ‘Polynomial Codes over Certain Finite
Fields", 1960

Java FEC Library, http://onionnetworks:com/developers

SonicMQ, http://www.sonicsoftware.com

FioranoMQ, http://www.fiorano.com

Softwired iBus, http://www.softwired-inc.com

57

