Bl 1 A

RN

FEAR L4 4 AR

Intelligent Autonomous Instruction Memory Design

i o] T E

FEA D A 4 Ryt

Intelligent Autonomous Instruction Memory Design

LI S A Ry Student : Li-Ming Wang
hERR I HIR Advisor : Chung-Ping Chung

A Thesis

Submitted to Degree Program of Electrical Engineering and Computer Science

College of Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Computer Science

July 2006

Hsinchu, Taiwan, Republic of China

F24 13124 ERER AR gL
M2l + 8 FHEREFTAER TS (77 %) ML

2
#

JERERRAY X B E R RS

-\

f

AR 1 B R RS AR B A °%¥ﬁﬁ¢i% R
AT 13 3 CPU 7w fhfidnd, mak @ 4oif & FI70 B a4 35T
it @ BIRA P L CPUBEHRS e A 2 I ey £ g B 95 B 7
FlE i o F IF DRI APRA NIFE I SF L8 Sreimy £ iy R Al BRE &
FL S itk e F B A L FER BACCPU B 2l £ ot o ATH e Rl -

AW CPU $4p 4 etz B 5 s i onf | i @ 10 R4 v d st i de o

e
A
e
™
)
>_
s
;3}
)2
P
#
3
IR
¥
(15§
=
f*ﬂ
N
3
p]
E\;—-
9
(15§
-
ford
E
»
9
)
=
)
]

aygiﬁm%’ﬁ¥ﬁmﬁ%£$é%éiﬁ€j?§ﬂ¢iﬁﬁaﬁﬁ¥ﬁ
g4 B Eh- PRt R e B NNAF RN 4 2B ELE Wy
agﬁﬂf%o?%%%@ﬁégﬁaﬁwiémm A BlE Y 97.71% >
98.49% £ 99.99% ity £ imnk G112 84.99% > 86.54%47 92.01% ik i A 1t
B oo r2 b4 AR AL R TO $afS HATE 5 o B 2 B3R5 2% TO DAT(128 4)
S B B o

AEA P L dp 4 e
Intelligent Autonomous Instruction Memory Design

student : Li-Ming Wang Advisors - Dr. Chung-Ping Chung

Degree Program of Electrical Engineering and Computer Science
National Chiao Tung University

ABSTRACT

Main concept of Intelligent Autenomous_Instruection Memory (1AIM) is to equip
top-level instruction memory with “program:flow tracing” capability by incorporating
dynamic branch predictor into top-level instruction memory. With help of dynamic branch
predictor, instruction memory can know. where-'to fetch the next instruction without
instruction address supplied by CPU most of the time. The purpose of such concept is to
reduce instruction address traffic between CPU and instruction memory to a minimum. The
realization of such concept may conserve more energy on instruction address bus than many
known instruction address bus encoding techniques. While dynamic branch predictor is
removed from CPU to instruction memory, additional auxiliary hardware and an efficient
control bus communication protocol between CPU and instruction memory are essential to
maintain program flow correctness and original dynamic branch predictor operation. A simple
design of iAIM that makes use of the above concept is proposed first, followed by an
enhanced design that equips 1AIM with a partial instruction decoder capable of calculating
branch target address by decoding branch instruction. A more enhanced design that equips
1AIM with a partial instruction decoder and a return stack is proposed finally. The experiment
results show three proposed designs can reduce instruction address transmission to 97.71%,
98.49% and 99.99% and reduce total bit transitions to 84.99%, 86.54% and 92.01% compared
with conventional architecture respectively. All these designs greatly outperform TO encoding

technique. The third design outperforms TO DAT with 128 entries technique slightly.

il

AR B R A @ A 2002 F RSP BEREORT PHGREY 0 RA
AT A E e ﬁ”wwﬂﬁ”ﬁ*&’”ﬁﬁ“pﬁ“ F¥ A IRPIRE o T
ﬁwuﬂﬁixA2%3ﬁﬁwpJP%%53%§Q,zE2W4E%%éI£‘ﬂﬂahnﬁ%
BT EERR PP LRMT SRV - R HFL RREE BB B
{ﬁu-#ﬁzza EHRHMrELR RSB gRg P i%%ﬂfﬁﬁ%%%i

R me EugF R fgox,%l}l‘if’l‘ R EHE L FTeng l&’?\ 'A\“%?-ﬁﬁ“’\g{*;
5?41; T iEARY AT e Es o

ﬁ—%&%i%i’ﬂ/ﬁ@ﬁé 3EE RRRIARL CFRESEET- E A
Ereng > U2 A fofhE TRE AL SARPAR - RA G- &EF R
FlF 2L FE - RBH AL EREFRT I F s ~ % - TIBFLAFIGHE PR Tkt
FFEZRRAD EDETBIIFARIES PR HL S PAREITREA G L - v

RS ERET

USRS S SRS NS SNy

N

ESEREIE S ANET
PR e L g o

D

!

2 =4 2006.9.3

il

Table of Contents

1k ettt b ettt b ettt h et sae bt et et he et st e bt ere i
ABSTRACT ...ttt sttt sttt et b bttt s bttt e sae et et sae e il
i BBttt a et et b ettt st he e 111
Table Of CONENLScveitiiiiieiiiieeee ettt st et v
LISt OF FIGUIES ...ttt ettt et e e e et et e et e esabeenbeesnneeneeas v
LISt OF TADIES ...ttt ettt ettt st vi
Chapter 1 INtrOAUCTION c...oueiiiiiiiiiiiteieet ettt sttt ettt 1
L1 BacK@rOUNooiiiiiiiiie ettt ettt et st 1
1.2 Research MOtIVATIONccuevuiiiiiiiiiiiriteieeit ettt s 7
1.3 ReSEAICh ODBJECLIVE ...cuveiuiiiiiiiiiiiitcit ettt st 7
1.4 Organization of this THESIScccueriiriiiiiiiirieieeee e 8
Chapter 2 Design of Proposed ArchiteCturecoccevueriiriiiiiniinieienicneceeeeseeeeee e 9
2.1 Challenges 1N DESINcc.eeiiriiiriiiiiiieieeteet ettt 9
2.2 Key Ideas in Designcceevereee st Bt v 9
2.3 Proposed Design of 1AIM ..o s, i 16
2.4 Proposed Design of Enhanced 1AIM with Partial Decodercccoeeeniinenne. 24
2.5 Proposed Design of Enhanced iATM with Partial Decoder and Return Stack........ 32
2.6 Design Restriction and Execution EXamples.... oot 41
Chapter 3 Evaluation and DiSCUSSIONfu ieiueeee e riiifaensereereneenienteneententesieeseeseesseenaennens 51
3.1 Evaluation MethodOlOZYcocuiiiiiiiiiiiieiiee et 51
3.2 Evaluation MEtIICSccuiruiiiiiiiiieieeierit ettt st 52
3.3 Experimental ENVITONMENTccueeiiiiiiiiiiiiiieiie et 53
3.4 Experimental Benchmark.............cocccoiiiiiiiiiiiiii e 55
3.5 Experimental RESUILSccooiiiiiiiiiiiiiee e 58
3.6 DISCUSSION ..ottt ettt ettt ettt sb et et sb et et sb et e it saee bt et e sbeenneenees 61
Chapter 4 Conclusion and Future Works.........c.ccoceeiiriininiiniiiiineceecseceeecseeie s 65
4.1 CONCIUSION w.ntintiiiiiiteteete ettt ettt ettt et ettt et et sbe et sbeenaeeanes 65
4.2 FULUTE WOTKS...c.eiiiiiiiiiiieieeit ettt sttt ettt 65
RETETEINCES ...ttt sttt ettt ettt 67
VIt h ettt b e bbbt et et eaeenaeeaees 68

v

List of Figures

Figure 1.1 Diagram of TO @NCOMINGc..eetiiiiiiiiiiiieeteee ettt ettt be et e e e eenbe e 6
Figure 1.2 Diagram of TO DAT €NCOGINGceveriiriiriiriieiieieieterteet ettt ettt sttt seenbe e 7
Figure 2.1 Block diagram of conventional archit@Ctureccoevieieierienininineeiieteee et 10
Figure 2.2 Block diagram of TAIM deSIZNc..couiiiiiiiiiiiiieieiese ettt 10
Figure 2.3 Automatic instruction address generator inside TAIM...........cceiirininiiiiiiinee e 11
Figure 2.4 Control line that iAIM uses to inform CPUcccooiiiiiiiiiii e 11
Figure 2.5 S-Indicate control lines that CPU uses to inform 1AIMcccooeririnininiinieienenesereeeeeee e 13
Figure 2.6 Buses between CPU and TAIM........coiiiiiiiiiiieeienesere ettt sttt ettt 16
Figure 2.7 Additional circuit N TAIMcoooiiiiiiiiiieeee ettt b e sttt et 18
Figure 2.8 Action timing of partial dECOARTcccveriieriieiieieciereete et be e e e saeense s 25
Figure 2.9 Additional circuit in enhanced iAIM with partial decoder..........c.cooiviririiieieninneeeeee 26
Figure 2.10 Action timing and algorithm for procedure call handlingcocoooevieiiieiininineeeeee 32
Figure 2.11 Action timing and algorithm for proeeduremreturn handlingcccceceeievieiinininininieeeeee 33
Figure 2.12 Additional circuit in enhanced1AIM with partial decoder and return stackccccevevencrencnncne. 34
Figure 2.13 Scenario of return stack overflow in-a-finite depth push-down stack............ccccovevververiienienierieenns 40
Figure 3.1 Simulation fIOWChATT.......... o e ettt sttt 54
Figure 3.2 Percentage of reduced instruction addreSSTHUSTACIVE CYCIESovviriiriiriieiiiieieiereeceee e 59
Figure 3.3 Percentage of reduced bit transSitionsififis il eueniiieieieeeses et e 60
Figure 3.4 Percentage of bit transitions on address bus and control line(s)...........ceceeeereeriereninenenieieienenenene 60
Figure 3.5 Percentage of bit transitions on address bus and control lines S-Indicate, P-Takenc.ccccceeneeee. 61
Figure 4.1 Unified instruction and data MemMOTY SYStEM........c.cccuereerieeriieieiiesiesieesieeseeresaesieesseessesnsesseesseenseenns 66

List of Tables

Table 3.1 Instruction counts and maximum procedure call depth for selected benchmarks

Table 3.2 SIMUlation RESUILSvviiiiiiiiiiieie et

vi

Chapter 1 Introduction

Main concept of Intelligent Autonomous Instruction Memory (iIAIM) is based on the
following arguments : 1. Dynamic branch predictor is smart enough to trace program flow
with over 90% accuracy. 2. Dynamic branch predictor rarely needs CPU intervention. 3.

Should dynamic branch predictor be moved from CPU to instruction memory?

After equipping top-level instruction memory with “program flow tracing” capability by
incorporating dynamical branch predictor, instruction memory can know where to fetch the

next instruction without instruction address supplied by CPU most of the time.

Throughout this thesis, a classic MIPS five-stage pipeline is assumed. The five stages are
Instruction fetch (IF) stage, Instruction decode/register fetch (ID) stage, Execution/effect
address (EX) stage, Memory access (MEM) stage and Write-back (WB) stage respectively.
Figure A.24 in [1] shows the implementation of MIPS data path adopted in this thesis.

1.1 Background

1.1.1 How bus consumes Power

The amount of power dissipated due to switch activity is related to the voltage level
on the bus, the capacitance between the bus and the ground which is called
self-capacitance and the capacitance between the adjacent bus lines which is called
coupling-capacitance. The general power consumption equation of bus [2] is shown as

follows :
Pese =" (SBT + A CBTr+4 A CBTg) - Cs - Vg’
» Cs: self-capacitance
» Cc : coupling-capacitance
» L:Cc/Cs
» SBT : self-bus bit transitions

» CBTr : coupling 1-bit transitions

1.1.2

» CBTyg: coupling bit toggles
» Vgq: supply voltage
There are 2 kinds of bus in computer system : on-chip bus and off-chip bus.

For off-chip bus system, coupling-capacitance is negligible compared with
self-capacitance. Power consumed on off-chip bus is nearly power consumed by
charging and discharging self-capacitances of all individual bus lines. Because
capacitance driven by I/O nodes is three orders of magnitude larger than that on
the internal nodes of the processor [3], reducing self-bus bit transitions will
reduce the same percentage of bus power as well. Off-chip bus occupies
non-trivial portion of power in a system (power consumption of Intel Celeron
core at 266 MHz is 16W, while its off-chip bus operating at 133 MHz consumes
3.3W [4)).

For on-chip bus system, coupling-¢apacitance can not be ignored. In very
deep submicron process,.power ‘consumption due to coupling-capacitance
dominates (the ration of coupling-capacitance to, self-capacitance is 2.4 in 130 nm
process and is 3.4 in 45 nm process). On-chip bus occupies considerable portion
inside a processor (on-chip’buses account for 15% and 30% of total power in

Alpha 21064 and Intel 80386, respectively [5]).

Characteristics of Program Execution
Program execution can be classified into 2 categories :
1. Sequential execution :
This kind of execution occupies about 85-90% portion of program execution.
2. Execution of taken branches :

This kind of execution occupies about 10-15% portion of program execution.

Taken branches can be further classified into 2 classes.

Fixed target branches : most taken branches are fixed target branches.

Dynamic branch predictor like branch target buffer can handle fixed target

branches with target expressed in immediate field of the instruction.

Changing target branches : it includes procedure return, some other special
uses that load pc from a register other than link register (e.g., function table,

switch conditional statement). Procedure return can be handled by return stack.

1.1.3 What is dynamic branch predictor and its operation

About 15% of instructions in typical programs are branches. Branch instructions
can reduce the performance of pipelines by interrupting the normal sequence of
program execution, as known as control hazards. While almost all most modern
processors use pipelining to achieve high performance, control hazards may cause

greater and greater performance loss in proportion to the degree of pipelining.

Dynamic branch predictor is used to_help processor resolve the outcome of branch
early, thus preventing control dependences from causing stalls [1]. The typical case of
dynamic branch predictor is branch target buffer:(BTB) [6]. Branch target buffer is used
as dynamic branch predictor in this thesis.

Branch target buffer is a ‘branch prediction cache and is designed to reduce branch
penalty by predicting the path of the branch and storing information about the branch.
The major information stored in each entry of branch target buffer consists of :

1. Valid bit : to tell whether the entry is empty or not.

2. Branch instruction address (branch tag) : the current program counter (PC) is

compared to branch instruction address field to determine if there is a “hit”.

3. Branch target address : If there is a hit and the branch is predicted taken, the

program counter is loaded with this value and instruction fetching continues
from this point.

4. Branch prediction bits (predictor) : 2-bit prediction scheme is most commonly

used [1].

For the classic MIPS five-stage pipeline, when the current program counter is sent
to instruction memory to fetch the current instruction, this current program counter is
also sent to branch target buffer to see if there is a “hit”.

If there is a “miss”, that means there is no valid entry whose branch tag equals the

3

program counter, the instruction fetcher in CPU will update the program counter to the

next sequential PC by adding a word size to the PC. There are 2 scenarios under a

“miss” :

1.

At the end of the ID stage for the branch instruction, it turns out that this is a
not-taken branch :

The branch processing unit in CPU will not enter a new entry into branch target
buffer for this branch, while the instruction fetcher in CPU will keep fetching the
subsequent instruction.

The branch penalty in this case is 0 clock cycle.

At the end of the ID stage for the branch instruction, it turns out that this is a
taken branch :

The branch processing unit in CPU will enter a new entry into branch target
buffer for this branch, while the instruction fetcher in CPU will kill fetched
instruction at IF pipe stage, and start fetching the calculated branch target address
at the start of the next clock cycle.

The branch penalty in this case is 1 clock cycle.

The detail of entering a new entry into-branch target buffer is as follows :

If the position of the new entry is occupied, some replacement algorithm (e.g.,
Least Recently Used or Random algorithm) is uised to discard an existing entry to
make room for this new one.

In this new entry, valid bit field is set to 1, branch instruction address (branch tag)
field is set to the branch instruction address (that is exactly the program counter 1
clock cycle ago), branch target address field is set to the value calculated at the
end of ID stage, branch prediction bits field is set to the initialized value
according to the adopted n-bit prediction scheme.

If there is a “hit”, that means there is a valid entry whose branch tag equals the

program counter. There are 4 scenarios under a “hit” :

1.

Branch prediction bits predicts this branch instruction is a taken branch, and at
the end of ID stage for the branch instruction, it turns out to be a taken branch :

At the end of the IF stage, branch target buffer will supply the branch target
address to update the program counter. At the start of the next clock cycle, this
corrected PC that is the branch target address is sent to instruction memory. At
the end of the ID stage for the branch instruction, it turns out that the prediction 1
clock cycle ago is correct. The branch processing unit in CPU will update branch

prediction bits in branch target buffer, while the instruction fetcher in CPU will

4

keep fetching the subsequent instruction.

The branch penalty in this case is reduced to 0 clock cycle.

. Branch prediction bits predicts this branch instruction is a taken branch, but at the
end of ID stage for the branch instruction, it turns out to be a not-taken branch :
At the end of the IF stage, branch target buffer will supply the branch target
address to update the program counter. At the start of the next clock cycle, this
corrected PC that is the branch target address is sent to instruction memory. At
the end of the ID stage for the branch instruction, it turns out that the prediction 1
clock cycle ago is incorrect. The branch processing unit in CPU will update
branch prediction bits of the branch entry in branch target buffer, while the
instruction fetcher in CPU will kill fetched instruction at IF pipe stage, and start
fetching the fall-through address after the branch instruction at the start of the
next clock cycle.

The branch penalty in this case is 1 clock cycle.

. Branch prediction bits predicts. this branch instruction is a not-taken branch, and
at the end of ID stage:-for the branchinstruction, it turns out to be a not-taken
branch :

At the end of the IF stage, branch target-buffer will do nothing, the instruction
fetcher in CPU will“update the ‘programi counter to the next sequential PC by
adding a word size to the PC. At the end of the ID stage for the branch instruction,
it turns out that the prediction 1 clock cycle ago is correct. The branch processing
unit in CPU will update branch prediction bits of the branch entry in branch
target buffer, while the instruction fetcher in CPU will keep fetching the
subsequent instruction.

The branch penalty in this case is 0 clock cycle.

. Branch prediction bits predicts this branch instruction is a not-taken branch, and
at the end of ID stage for the branch instruction, it turns out to be a taken branch :
At the end of the IF stage, branch target buffer will do nothing, the instruction
fetcher in CPU will update the program counter to the next sequential PC by
adding a word size to the PC. At the end of the ID stage for the branch instruction,
it turns out that the prediction 1 clock cycle ago is incorrect. The branch
processing unit in CPU will update branch prediction bits of the branch entry in
branch target buffer, while the instruction fetcher in CPU will kill fetched
instruction at IF pipe stage, and start fetching the calculated branch target address

at the start of the next clock cycle.

5

The branch penalty in this case is 1 clock cycle.

Summary for the interrelationship among BTB, instruction memory and CPU :

1. When an entry is found in branch target buffer and its prediction is taken,
branch target buffer will update the program counter.

2. When there is no entry found in branch target buffer or an entry is found but its
prediction is not-taken, the instruction fetcher in CPU will update the program
counter to the next sequential PC by adding a word size to the PC.

When a branch instruction is resolved at the end of ID stage, the branch processing

unit in CPU will do the following things : updating branch target buffer (including
entering a new entry or updating an existing entry) if necessary, flushing the instructions

in the wrong path and updating the program counter when the current path is wrong.

1.1.4 Zero-Transition (T0) Bus Encoding Technique

TO encoding technique [7] makes use of the characteristic of program sequential
execution to reduce switch activity ‘on instruction address bus. TO adds a control line
called INC (see Figure 1.1). If the addressyisiconsecutive to the previous one, sender
asserts INC line and freezes the bus."Otherwise, sender de-asserts INC line and address is

transmitted on the bus.

Bus

encoder INC decoder

Figure 1.1 Diagram of TO encoding

1.1.5 TO with Discontinuous Address Table Bus Encoding Technique [8]

This approach is based on TO encoding technique and adds a discontinuous address
table in both encoder and decoder to record the address pairs that are sent in sequence
but with discontinuous values. When two instruction addresses to be transmitted are

found in DAT table or not found but consecutive, sender asserts INC line and freezes the

bus. Otherwise, sender de-asserts INC line and address is transmitted on the bus (see
Figure 1.2). This approach reduces most of address transmission for taken branch

execution, but Content-Addressable-Memory (CAM) is required in both encoder and

decoder.
Bus Discontinuous Address Table
encoder decoder Source address | Target address
DAT INC DAT <—"—F¢,1 1

Figure 1.2 Diagram of TO DAT encoding

1.2 Research Motivation
What we observe from BB operationig.as follows :
1. PC sent to instruction memory |is, certified by BTB : Branch target or PC+1 word
size
2. Action of PC+1 word sizedsmotnecessary to be done in CPU
3. When program has been executed for'a while, BTB will become steady. Under
such “BTB warm up” situation, BTB rarely needs CPU intervention
That is to say, the useful information that CPU passes on to BTB is the result of
branch instruction while the useful information that BTB passes on to instruction
memory is program counter certified by BTB. The former information is much less than
the latter one which comes up every clock cycle.
Under such observation, it may be reasonable to move dynamic branch predictor
from CPU to instruction memory side. Such brand-new instruction memory concept can
be named “Intelligent Autonomous Instruction Memory” (or called “iAIM” for brevity)

due to its program flow tracing capability.

1.3 Research Objective
After applying 1AIM concept to conventional computer system design, total
execution time, BTB accuracy and Reduction in bus traffic (it includes percentage of

reduced instruction address bus active cycles and percentage of reduced bit transitions)

1.4

are evaluation metrics on achievement in objective.

Energy conservation on instruction address bus will be evaluated from “bus active
cycles” and “bit transitions on bus” metrics indirectly. The evaluation results of
conventional design with TO encoding and with TO DAT encoding technique under the

same BTB organization are given as contrasts.

Organization of this Thesis
The rest of this thesis is organized as follows. Chapter 2 explains the design detail
of iAIM and two other enhanced designs. Chapter 3 presents evaluation methodology,

experiment results and discussion. Conclusion and future works are then provided in

Chapter 4.

Chapter 2 Design of Proposed Architecture

The design of Intelligent Autonomous Instruction Memory is discussed in this chapter.
Section 2.1 and section 2.2 introduce challenges and key ideas in design. Section 2.3 shows

the detail of proposed design. Section 2.4 and section 2.5 shows two other enhanced designs.

2.1 Challenges in Design
When branch target buffer is removed from CPU to instruction memory, problems

of program flow and BTB maintenance are introduced and need to be solved :
1. How CPU can know branch prediction is correct or not in 1AIM.

2. How to enter, update BTB entries in iAIM, that means BTB maintenance can not be
handled in CPU directly.

3. How iAIM can know when to use self-generated address and when to use the value
on instruction address bus prepated by CPU due to wrong branch prediction or

changing target branch.

4. How iAIM can know to:pipeline’stall happens and keep fetching the same instruction

used in previous clock cyéle.

2.2 Key ldeas in Design

In conventional architecture, BTB will update program counter in CPU when a
predictive taken branch is found. On the contrary, because BTB is inside iAIM, it can
not update program counter of CPU. Therefore, it is necessary to add at least one
control signal line that iAIM uses to inform CPU of its branch prediction. Similarly,
when branch prediction of BTB in iAIM is wrong or some situation like procedure
return happens, CPU needs at least one control signal line to inform iAIM of actual
branch result and provide correct PC value so that iAIM can supply correct instruction
to CPU and do BTB maintenance. Figure 2.1 and Figure 2.2 show block diagrams of

conventional architecture and iAIM design respectively.

CPU Control Bus > Instruction
Memory
Instruction Address Bus
BTB @tmctiou Data Bus
Figure 2.1 Block diagram of conventional architecture
Additional Control Bus 1
——-
Additional Control Bus 2
|
1 T -
CPU Control Bus > Instruction
Memory
Instruction Address Bus
|
Qt1110t1011 Data Bus BTB

Figure 2.2°Block diagram of iAIM design

Key ideas to implement iAIM design are discussed as follows.

Firstly (Idea 1), iAIM must have instruction address automatic generation
mechanism.

Because the philosophy of iAIM is to reduce instruction address traffic
between CPU and instruction memory to a minimum, iAIM always tries to generate
the next fetched instruction address by itself.

With help of BTB inside iAIM, the branch target address is supplied by BTB
when a branch entry is found in BTB and its prediction is taken; otherwise, current
used program counter value plus a word size is used at the next coming clock cycle.
Therefore, a PC incrementer that that adds a word size to the current PC value is

necessary. Figure 2.3 shows automatic instruction address generator inside iAIM.

10

Predict

Taken
Branch Target
BTB Address l
—>
PC PC+4 | 0
Incrementer

Figure 2.3 Automatic instruction address generator inside iAIM

Secondly (Idea 2), iAIM needs to inform CPU of branch prediction result.

In MIPS pipeline, when a branch entry is found in BTB of iAIM and its
prediction is taken, on the next coming ¢clock cycle, iAIM needs to assert a signal to
inform CPU that the instruction address used is already replaced by branch target
address, not the next sequential PC. ‘At the end of the next coming clock cycle, CPU
will resolve the result.of branch and know the prediction is correct or not. If the
prediction is not correct; CPU needs_ to take some action to force iAIM to use
correct instruction address.

The proposed signal that iAIM uses to inform CPU is one control line called
“Predict Taken”, or “P-Taken” control line for brevity hereafter :

When a branch entry is found at current clock cycle, this signal is set to 1 at the
next coming clock cycle; otherwise, it is set to 0. Figure 2.4 shows this control line

that 1AIM uses to inform CPU.

P-Taken control line
CPU L predictive taken branch was found at IAIM

last clock cycle

0 : otherwise

Figure 2.4 Control line that iAIM uses to inform CPU

Thirdly (Idea 3), CPU needs to force iAIM to use correct instruction address

11

when 1AIM’s branch prediction is wrong.

In MIPS pipeline, when a branch instruction is resolved at ID stage in CPU,
CPU will check if iAIM asserts “P-Taken” line to 1 or not at current clock cycle :

If the prediction is wrong, at the next coming clock cycle CPU will prepare
correct instruction address on instruction address bus and inform 1AIM of “Wrong
Prediction” situation to indicate that branch prediction 2 clock cycles ago is wrong

and the instruction address on instruction address bus should be used.

Fourthly (Idea 4), CPU always forces 1AIM to use correct instruction address

after changing target branch is resolved.

After changing target branch is resolved, CPU will prepare correct instruction
address on instruction address bus and inform iAIM of “Compulsory” situation to
indicate iAIM to use the instruction address on instruction address bus at current

clock cycle.

Fifthly (Idea 5), CPU needs to inform tAIM of the pipeline stall situation.

When pipeline stall happens ifni-conventional architecture, the same instruction
address as the one used at last’clock cycle will be sent to instruction memory. The
reason that CPU needs to inform iAIM of “Pipeline Stall” situation is 1AIM has its
own instruction address auto-generation mechanism. Such mechanism should cease

functioning when pipeline stall happens.

Sixthly (Idea 6), Idea 3, Idea 4 and Idea 5 deal with the situations that iAIM
can not use the instruction address generated by its instruction address
auto-generation mechanism. CPU needs inform iAIM of “Autonomous” situation to
indicate iAIM to use the instruction address generated by its instruction address

auto-generation mechanism. This situation also help do BTB maintenance when

CPU finds branch prediction in iAIM.

Summarized from idea 3 to idea 6, there are 4 kinds of situations that CPU
uses to inform iAIM. In situations of Idea 3 and Idea 4, CPU prepares the
instruction address on instruction address bus, and iAIM is forced to use the
instruction address on instruction address bus on. In situation of Idea 5, CPU

freezes instruction address bus and iAIM uses the same the instruction address as

12

the one used at last clock cycle. In situation of Idea 6, CPU freezes instruction
address bus and iAIM uses the instruction address generated by its instruction
address auto-generation mechanism. Two control lines (called “Situation
Indication” or “S-Indicate” control lines for brevity hereafter) can be used for CPU
to inform iAIM of one of 4 kinds of situations at the beginning of every clock

cycle :
00 for “Autonomous” situation,
01 for “Pipeline Stall” situation,
10 for “Wrong Prediction” situation,
11 for “Compulsory” situation.

Figure 2.5 shows S-Indicate control lines that CPU uses to inform iAIM.

S-Indicate
control lines

Y

h 4

CPU iATM

00 : “Autonomous™ situation
01 : “Pipeline Stall” situation

10 : “Wrong Prediction™ situation

11 : “Compulsory” situation

Figure 2.5 S-Indicate control lines that CPU uses to inform iAIM

Seventhly (Idea 7), in order to maintain original BTB operation, two additional

34-bit registers organized as FIFO are necessary :

1. First 34-bit register that store information in iAIM 1 colck cycle ago consists

of the following fields :

32-bit field that stores PC used 1 clock cycles ago (called “PCt-1" for
brevity),

1bit field that stores branch entry found in BTB or not 1 clock cycle ago
(called “InBTBt-1” for brevity),

1bit field that stores taken branch predicted by BTB or not 1 clock cycle ago
(called “PTakent-1" for brevity).

13

2. Second 34-bit register that store information in iAIM 2 colck cycle ago

consists of the following fields :

32-bit field that stores PC used 2 clock cycles ago (called “PCt-2” for
brevity),

1bit field that stores branch entry found in BTB or not 2 clock cycle ago
(called “InBTBt-2” for brevity),

1bit field that stores taken branch predicted by BTB or not 2 clock cycle ago
(called “PTakent-2” for brevity).

If a branch instruction enters IF stage at the first clock, CPU will inform iAIM
of either “Autonomous” or “Wrong Prediction” situation at the third clock cycle.

BTB operation in iAIM is the same as the description of section 1.1.3 in Chapter 1 :

When CPU informs iAIM of “Wrong Prediction” situation at the third clock

cycle, there are 2 cases :
Case 1 : InBTBt-2is 1,

Use PCt-2 as index to do searching-in BTB and update its “predictor”
field accordingto PTakent-2 :

If PTakent-2 is 1, update this field toward not-taken direction.
If PTakent-2 is 0, update this ficld toward taken direction.

Case 2 : InBTBt-2 is 0,

It means no such entry exists in BTB. Enter a new entry into BTB

with its initial values listed as below :

“valid bit” field is set to 1,

“branch instruction address” field is set to PCt-2,

“branch target address” field is set to the value on instruction address
bus,

“predictor” field is set to the initialized value according to adopted
n-bit prediction scheme (it may be weakly-taken in 2 bit prediction
scheme).

When CPU informs iAIM of “Autonomous” situation at the third clock cycle,

there are 2 cases :

Case 1 : InBTBt-2is 1,

14

Use PCt-2 as index to do searching in BTB and update its “predictor”
field according to PTakent-2 :

If PTakent-2 is 1, update this field toward taken direction.
If PTakent-2 is 0, update this field toward not-taken direction.
Case 2 : InBTBt-2 is 0,
Do nothing in BTB. Because a not-taken branch will not be entered

into BTB if it does not exits before.

15

2.3 Proposed Design of iIAIM

On the basis of key ideas discussed in 2.2, the minimum indispensable elements of

Intelligent Autonomous Instruction Memory Design can be derived.

1. Additional control bus between CPU and iAIM

1) One control line for iAIM to inform CPU of predicting taken(called “Predict
Taken” or “P-Taken” control line)

2) Two control lines for CPU to inform iAIM of one of 4 kinds of situations(called

“Situation Indication” or “S-Indiacte” control lines) :
00 for “Autonomous” situation,

01 for “Pipeline Stall” situation,

10 for “Wrong Prediction” situation,

11 for “Compulsory” situation.

Figure 2.6 shows buses between CPU and iAIM.

S-Indicate control lines

Yy

< P-Taken control line

CPU

IAIM
Control Bus

Instruction Address Bus

|
Q‘mlctiou Data Bus

Figure 2.6 Buses between CPU and iAIM

2. Additional circuit in 1AIM

1) A incrementer called “PC Incrementer” that add PC used at last clock cycle by a

word size is used to generate next sequential instruction address.

2) A multiplexer called “PC MUX” is used to select one of 4 kinds of instruction
address sources :

1. Last PC plus a word size for sequential execution,

i1. Branch target address for BTB’s taken branch prediction,

16

1ii. Last PC for pipeline stall,
iv. Compulsory PC address sent from CPU.
3) Two 34-bit Registers are organized as FIFO as follows :

1. First 34-bit register that store information in iAIM 1 colck cycle ago consists

of the following fields :

32-bit field that stores PC used 1 clock cycles ago (called “PCt-1" for
brevity),

1bit field that stores branch entry found in BTB or not 1 clock cycle ago
(called “InBTBt-1" for brevity),

1bit field that stores taken branch predicted by BTB or not 1 clock cycle ago
(called “PTakent-1” for brevity).

ii. Second 34-bit register that store information in iAIM 2 colck cycle ago

consists of the following fields :

32-bit field that stores PC used-2 clock cycles ago (called “PCt-2” for
brevity),

1bit field that Stores branch entry found in BTB or not 2 clock cycle ago
(called “InBTBt=2” for'brevity),

1bit field that stores taken'branch predicted by BTB or not 2 clock cycle ago
(called “PTakent-2” for brevity).

Figure 2.7 shows additional circuit in iAIM.

17

PCtl | | PCt2
| mBmBtl | | mBmB:2
Instruction
. PTakent-1 N PTakent-2 Memory
Last PC N >
BTB
LastPC -4
Address from CPU
S

Figure 2,7 Additional Gircuit in iAIM

3. Control signal description
1) From iAIM to CPU :

There is a “P-Taken” control line used to inform CPU of taken branch

prediction in iAIM.

The algorithm of its sending timing is described as below.

18

P-Taken sending algorithm {
unsigned int IAIM_PC = PC used in 1AIM at current clock cycle, P-Taken;
Use 1AIM_PC as index to do searching in BTB of 1AIM;
if (branch entry 1s found) {
if (predictor field predicts taken) {
P-Taken = Obl at next clock cycle;

}else {
P-Taken = 0b0 at next clock cycle;
b
} else {
P-Taken = 0b0 at next clock cycle;

2) Form CPU to iAIM :

There are 4 kinds of situations “Autonomous”, “Pipeline Stall”, “Wrong

Prediction”, “Compulsory” used to inform iAIM of various situations detected
in CPU.

19

S-Indicate sending algorithm {
unsigned int force PC = PC value used at current clock cycle, S-Indicate;
unsigned int target = target address resolved at current clock cycle;
unsigned int fall through = fall-through address resolved at current clock cycle:
unsigned int P-Taken = value of P-Taken control line at current clock cycle;
CPU detects the following situations :
Case 1 : when changing target branch is resolved in ID stage
S-Indicate = 0b11 (“Compulsory”) at next clock cycle;
Instruction address bus at current clock cycle = force PC;
Case 2 : when jump instruction(except J, JAL) is resolved in ID stage
S-Indicate = 0b11 (“Compulsory”) at next clock cycle;
Instruction address bus at next clock cycle = target;
Case 3 : when CPU detects pipeline stall
S-Indicate = 0b01 (“Pipeline Stall”) at current clock cycle;
Instruction address bus is frozen at current clock cycle;
Case 4 : when branch instruction(including J, JAL) 1s resolved in ID stage
if (the result 1s a taken branch) {
if (P-Taken = Ob1 at the start of current clock cycle) {
S-Indicate = 0b00 (“Autonomous”) at next clock cycle;
Instruction address bus is frozen at next clock cycle;
} else {
S-Indicate = 0b10 (“Wrong Prediction”) at next clock cycle;
Instruction address bus at next clock cycle = target;
b
} else {
if (P-Taken = 0b1 at the start of current clock cycle) {
S-Indicate = 0b10 (“Wrong Prediction”) at next clock cycle:
Instruction address bus at next clock cycle = fall through;
} else {
S-Indicate = 0b00 (“Autonomous”) at next clock cycle;
Instruction address bus is frozen at next clock cycle;

b
Case 5 : when CPU can not detect any one of the above situations

S-Indicate = 0b00 (“Autonomous”) at next clock cycle;

Instruction address bus is frozen at next clock cycle:

[e—

20

4. Action algorithm of CPU

CPU action algorithm {

unsigned int force PC = PC value used at current clock cycle;
unsigned int target = target address resolved at current clock cycle;
unsigned int fall through = fall-through address resolved at current clock cycle:
unsigned int S-Indicate; /* value on S-Indicate control line */
unsigned int P-Taken = value on P-Taken control line at current clock cycle;
if (pipeline stall is detected) {

S-Indicate = 0b01 (“Pipeline Stall”) at current clock cycle

Instruction address bus is frozen at current clock cycle;

—

} else if (changing target branch is resolved in ID stage) {
S-Indicate = Obl1 (“Compulsory”) at next clock cycle;

Instruction address bus at current clock cycle = force PC;

[e—

else if (when jump instruction(except J, JAL) is resolved in ID stage) {
S-Indicate = Obl1 (“Compulsory”) at next clock cycle;
Instruction address bus at next clock cycle = target;

—

} else if (when branch instruction(including J, JAL) is resolved in ID stage) {
if (the result is a taken branch) {
if (P-Taken = 0b1 at the start of current clock cycle) {
S-Indicate = 0b00 (“Autonomous”) at next clock cycle;
Instruction address bus is frozen at next clock cycle;
}else {
S-Indicate = 0b10 (“Wrong Prediction”) at next clock cycle;
Instruction address bus at next clock cycle = target;

if (P-Taken = Obl at the start of current clock cycle) {
S-Indicate = 0b10 (“Wrong Prediction”) at next clock cycle;
Instruction address bus at next clock cycle = fall through;
}else {
S-Indicate = 0b00 (“Autonomous”) at next clock cycle;

Instruction address bus is frozen at next clock cycle;

L]

I
¥
}else {
S-Indicate = 0b00 (“Autonomous”) at next clock cycle;

Instruction address bus is frozen at next clock cycle;

e

L]

21

5. Action algorithm of iAIM

1AIM action algorithm {
unsigned it force_PC = PC value on instruction address bus used at current clock cycle;
unsigned int btb_target = target address found in BTB 1 clock cycle ago;
unsigned int S-Indicate = value on S-Indicate control lines at current clock cycle:
unsigned it P-Taken: /* value on P-Taken control line */
unsigned it IAIM_PC; /* PC used in iAIM at current clock cycle */
/* PC used 1 clock cycle ago, 2 clock cycles ago */
unsigned mt PCt-1, PCt-2;
/* branch entry found in BTB or not 1 clock cycle ago, 2 clock cycles ago*/
unsigned int InBTBt-1, InBTBt-2;
/* taken branch predicted by BTB or not 1 clock cycle ago, 2 clock cycles ago */
unsigned it PTakent-1, PTakent-2;
if (S-Indicate = 0b01 (“Pipeline Stall”)) {
1AIM_PC = PCt-1;
} else if (S-Indicate = 0b11 (“Compulsory™)) {
1AIM_PC = force PC:;
} else 1f (S-Indicate = 0b10 (“Wrong Prediction™)) {
1AIM_PC = force PC;
If InBTBt-2 =0bl) {
Update the predictor field of entry in BTB where branch address is PCt-2:
If (PTakent-2 = 0b1)
Update predictor toward not-taken;
Else
Update predictor toward taken;
} else {
Enter an entry into BTB :
branch address = PCt-2:
branch target address = force PC:
Other fields are set to default values;

/* To be continued on next page */

[e—

22

1AIM action algorithm (continued) {
if (IB1 =0bl) {
1AIM_PC =Dbtb_target;
)
else {
1AIM_PC = PCt-1 + 4;
)
if (InBTBt-2 =0bl) {
Update the predictor field of entry in BTB where branch address is PCt-2:
If (PTakent-2 = 0bl) {
Update predictor toward taken;
)
Else {
Update predictor toward not-taken;

f——

L

1
J

if (S-Indicate = 0b01 (“Pipeline Stall’”))
{
PCt-2, InBTBt-2, PTakent-2 remain unchanged;
}else {
PCt-2 = PCt-1; InBTBt-2 = InBTBt-1; PTakent-2 = PTakent-1;
)
PCt-1 =1AIM_PC:
Using 1IAIM_PC as index to do searching in BTB;
if (branch entry 1s found) {
if (predictor field predicts taken) {
P-Taken = Obl at next clock cycle: InBTBt-1 = 0bl; PTakent-1 = 0bl;
}else {
P-Taken = 0b0 at next clock cycle; InBTBt-1 = 0bl; PTakent-1 = 0b0;

1
s
} else {
InBTBt-1 = 0b0; PTakent-1 = 0b0:;

P-Taken = 0bO0 at next clock cycle;

L]

L]

23

2.4 Proposed Design of Enhanced iAIM with Partial Decoder
In design proposed in section 2.3, when CPU finds branch prediction in iAIM is
wrong, it needs to prepare corrected address on instruction address bus at the next clock
cycle. This does increase bit transitions on instruction address bus and can be avoided if

the design proposed in section 2.3 is further enhanced with a partial decoder.
The design idea of partial decoder is described as below :

® Partial decoder is capable of identifying branch instruction (including J, JAL) and
calculating its branch target address and fall-through address by associating simple

logics.

® When iAIM is instructed by CPU with “S-Indicate” control lines equaling 0b10
(“Wrong Prediction”), it will check PTakent-2 value :

If PTakent-2 equals Obl, iAIM uses fall-through address calculated 2 clock cycles

ago. Otherwise, it uses branch target address calculated 2 clock cycles ago.

1. Additional circuit in enhanced iAIM with pattial decoder

1) A partial decoder (called *“PD” for ‘brevity): After instruction is fetched by
instruction memory, this-instruction-is-noet only sent to instruction data bus bus
also sent to PD. PD is capable of identifying branch instruction (including J,
JAL) and calculating its branch target address and fall-through address by

associating simple logics before the end of clock cycle.

2) Two registers are required to stores calculated branch target address and

fall-through address as follows :
1. A register stores branch target address (called “Target” for brevity),
ii. A register stores fall-through address (called “FallThru” for brevity).

Figure 2.8 shows action timing of partial decoder.

24

L Clock Period (during Cycle X)

h A

PC sent to Instruction retrieving Instruction sent to CPU
istruction (including bus setup time) Partial Decoder decodes
memory struction

Clock Period (during Cycle X+1)

A

h 4

Partial Decoder associates simple branch target address and

logics to calculate branch target fall-through address are saved

address and fall-through address to Target and FallThru registers
respectively

Figure 2.8 Action timing of partial decoder

3) A multiplexer called “PC!MUX”sis augmented to select additional 2 kinds of

instruction address sources.;
v. Target,
vi. FallThru.

Figure 2.9 shows additional cireuitn enhanced iAIM with partial decoder

25

—

A

> PCt-1 .| PCt-2
o| mBTBt1 .| mBTBt2
i Instruction
Last PC p| Plakentl | | PTakent2 Memory
LastPC+4 -
g " BTB
Branch Target .| <
Ll :) .
2 -
Address from CPU | _
gl = Partial Decoder
Address from Target
Target
Address from FallThru Fetched
Last PC + 4 elchne
—*| FallThru _ .
] mstruction
VAR
\k
To CPU

F)?oadiug traffic on Address from CPU \

-

Figure 2.9 Additional circuit in enhanced iAIM with partial decoder

2. Control signal description

1) FromiAIM to CPU :

The same as the one in section 2.3.

2) Form CPU to iAIM :

The same as the one in section 2.3 except underscored words in case 4.

26

Case 4 : when branch instruction(including J, JAL) 1s resolved in ID stage
if (the result 1s a taken branch) {
if (P-Taken = 0b1 at the start of current clock cycle) {
S-Indicate = 0b00 (“Autonomous”) at next clock cycle;
Instruction address bus is frozen at next clock cycle;
} else {
S-Indicate = 0b10 (“Wrong Prediction”) at next clock cycle;
Instruction address bus is frozen at current clock cvcle;
}
1 else {
if (P-Taken = Ob1 at the start of current clock cycle) {
S-Indicate = 0b10 (“Wrong Prediction™) at next clock cycle;
Instruction address bus is frozen at current clock cvcle;
} else {

S-Indicate = 0b00 (““Autonomous’) at next clock cycle;

Instruction address bus is frozen at next clock cycle;

3. Action algorithm of CPU

The same as the one in section 2.3 except underscored words.

27

CPU action algorithm {
unsigned int force PC = PC value used at current clock cycle;
unsigned int target = target address resolved at current clock cycle;
unsigned int fall through = fall-through address resolved at current clock cycle:
unsigned int S-Indicate; /* value on S-Indicate control line */
unsigned int P-Taken = value on P-Taken control line at current clock cycle;
if (pipeline stall 1s detected) {

S-Indicate = 0b01 (“Pipeline Stall”) at current clock cycle

Instruction address bus is frozen at current clock cycle;

o~

} else if (changing target branch is resolved in ID stage) {
S-Indicate = 0bl1 (“Compulsory”) at next clock cycle:

Instruction address bus at current clock cycle = force PC;

o~

} else if (when jump instruction(except J, JAL) is resolved in ID stage) {
S-Indicate = 0bl1 (“Compulsory”) at next clock cycle;
Instruction address bus at next clock cycle = target;

L

- else 1f (when branch mstruction(including J, JAL) is resolved in ID stage) {
if (the result is a taken branch) {
if (P-Taken = Ob1 at the start of current clock cycle) {
S-Indicate = 0b00 (“Autonomous”) at next clock cycle;
Instruction address bus is frozen at next clock cycle;
}else {
S-Indicate = 0b10 (“Wrong Prediction™) at next clock cycle;

Instruction address bus is frozen at next clock cvcle:

if (P-Taken = Ob1 at the start of current clock cycle) {
S-Indicate = 0b10 (“Wrong Prediction™) at next clock cycle:

Instruction address bus is frozen at next clock cvcle:

}else {
S-Indicate = 0b00 (““Autonomous”) at next clock cycle;

Instruction address bus is frozen at next clock cycle;

LS

1
J

}else {
S-Indicate = 0b00 (“Autonomous”) at next clock cycle:

Instruction address bus is frozen at next clock cycle;

[
L]

28

4. Action algorithm of iAIM

The same as the one in section 2.3 except underscored words.

1AIM action algorithm {
unsigned int fOI‘CE;PC = PC value on instruction address bus used at current clock cycle:
unsigned int btb_target = target address found in BTB 1 clock cycle ago:
unsigned int S-Indicate = value on S-Indicate control lines at current clock cycle:
unsigned int P-Taken; /* value on P-Taken control line */
unsigned int IAIM_PC: /* PC used in iAIM at current clock cycle */
/* PC used 1 clock cycle ago, 2 clock cycles ago */
unsigned int PCt-1, PCt-2;
/* branch entry found in BTB or not 1 clock cycle ago. 2 clock cycles ago*/
unsigned int InBTBt-1, InBTBt-2;
/* taken branch predicted by BTB or not 1 clock cycle ago. 2 clock cycles ago */
unsigned int PTakent-1, PTakent-2;
/* branch target address calculated in 1AIM */

unsigned int Target;

/* fall-through address calculated in 1ATM*/
unsigned int FallThru;
if (S-Indicate = 0b01 (“*Pipeline Stall™)) {
1AIM PC = PCt-1;
} else if (S-Indicate = 0b11 (“Compulsory™)) {
1AIM_PC = force PC:
} else if (S-Indicate = 0b10 (“Wrong Prediction™)) {
If (PTakent-2 = 0b1) {
iATM PC = FallThru;
; else {
IAIM PC = Target;

H
If InBTBt-2 = 0bl) {

Update the predictor field of entry in BTB where branch address is PCt-2:
If (PTakent-2 = 0bl)
Update predictor toward not-taken:
Else
Update predictor toward taken;
} else {
Enter an entry into BTB :
branch address = PCt-2;
branch target address = Target;

Other fields are set to default values;

1
5
} else {

/* To be continued on next page */

L)

29

1AIM action algorithm (continued) {
if (InBTBt-1=0b1) {
1AIM_PC =btb_target;

}

else {
1IAIM PC =PCt-1 + 4;

}

if (InBTBt-2 =0b1) {
Update the predictor field of entry in BTB where branch address is PCt-2:
If (PTakent-2 = 0bl) {

Update predictor toward taken;
1
5
Else {

Update predictor toward not-taken:

S

Nt

)
if (S-Indicate = 0b01 (“Pipeline Stall”))
{
PCt-2. InBTBt-2, PTakent-2 remain unchanged:
} else {
PCt-2 = PCt-1; InBTBt-2 = InBTBt-1; PTakent-2 = PTakent-1:

1,
s

PCt-1 =1AIM_PC:
Using 1AIM_PC as index to do searching in BTB:
if (branch entry is found) {
if (predictor field predicts taken) {
P-Taken = 0b1 at next clock cycle; InBTBt-1 = 0bl; PTakent-1 = 0bl;
} else {
P-Taken = 0bO0 at next clock cycle; InBTBt-1 = 0bl; PTakent-1 = 0b0;

1
J

| else {
InBTBt-1 = 0b0; PTakent-1 = 0bO0:
P-Taken = 0bO0 at next clock cycle;
1
s

/* To be continued on next page */

(S

30

1AIM action algorithm (continued) {

Use partial decoder PD to decode fetched instruction from instruction memory:

if (fetched instruction is branch instruction(including J. JAL)) {

/* The following actions will be completed before the end of next clock cvcle */

Target = branch target address calculated in iAIM:
FallThru = fall-through address calculated in iAIM:

31

2.5 Proposed Design of Enhanced iAIM with Partial Decoder and Return
Stack

The design proposed in section 2.4 can be further enhanced by implementing return
stack inside iAIM. The purpose of equipping 1AIM with return stack is to eliminate
target address traffic due to procedure return instructions which occupy most portion of

changing target branches.
The design idea of return stack is described as below :

® Partial decoder is augmented to be capable of identifying procedure call instructions

(JAL and JALR) and procedure return instructions (JR to r31).

® When a procedure call instruction is resolved in partial decoder, the instruction

address following the procedure call instruction is pushed into return stack.

® When a procedure return instruction is resolved in partial decoder, the instruction

address used at the next clock cycle is popped from return stack.

The following design has an assumption that the size of return stack is big enough

to accommodate the maximum depth of procedure ¢all for all applications running on it.

In reality, return stack can not be mnfinite. In the-end of this section, one of a workable

mechanism to deal with finite return stack will be proposed.

Figure 2.10 shows action timing and algorithm for procedure call handling. Figure

2.11 shows action timing and algorithm for'procedure return handling.

| Clock Period (during Cycle X)

A
v

| |
I . .. | :
PC sent to Instruction retrieving Instruction sent to CPU

mstruction (including bus setup time) Partial Decoder finds it is
memory procedure call and PC+4 is

pushed into Return Stack

Clock Period (during Cycle X+1)

<
-

Y

CPU informs 1AIM of the following situations :

“Wrong Prediction” and “Compulory” :
Top entry on Return Stack is popped out due to procedure call

fetched at Cycle X was on the wrong program flow path

Figure 2.10 Action timing and algorithm for procedure call handling

32

Clock Period (during Cycle Y)

a
-

[
-

| < ot
~ - /l ~
PC sent to Instruction retrieving Instruction sent to CPU
instruction (including bus setup time) Partial Decoder finds it
memory is procedure return

|4
-

Clock Period (during Cycle Y+1)

A 4

If CPU informs 1AIM of the following situation :

“Autonomous” :

Top entry on Return Stack is used as current PC to fetch instruction
of return address. then this entry is popped out of Return Stack

Figure 2.11 Action timing and algorithm for procedure return handling

1. Additional circuit in enhanced iAIM with partial decoder and return stack

1) A return stack (called “RS” for brévity)

2) A partial decoder (called “PD” for brevity) described in section 2.4 is enhanced :
After instruction is-fetch. by-instruction-memory, this instruction is sent to PD.
PD is capable of identifying procedure call instructions (JAL and JALR) and
procedure return instructions (JR to r31) . When a procedure call instruction is
resolved, PD pushes the instruction address following the procedure call
instruction into RS. When a procedure return instruction is resolved, the

instruction address used at the next clock cycle is popped from RS.

3) A multiplexer called “PC MUX” is augmented to select additional 1 kind of

instruction address source :

vii. top entry of RS

Figure 2.12 shows additional circuit in enhanced iAIM with partial decoder and return

stack.

33

o o PCt2
.| mBTBt-1 .| mBTBt2
d Instruction
Last PC y| PTakentl | | PTakent2 Memory
LastPC+4 .
g g BTB
Branch Target > §
2 ' g
Address from CPU O _
gl T Partial Decoder [©
Address from RS
> Target
Address from Target
Last PC 1’
Address from FallThru FallThru
/ w Fetched
= instruction

Offloading traffic on Address from CPU ‘

Return Stack (RS)

To CPU

v

Figure 2.12 Additional circuit in enhanced iAIM with partial decoder and return stack

34

2. Control signal description
1) From iAIM to CPU :
The same as the one in section 2.3.
2) Form CPU to iAIM :

The same as the one in section 2.4 except underscored words in case 2.

Case 2 : when jump instruction(except J. JAL) is resolved in ID stage

if (jump instruction is JR to 131) {

S-Indicate = 0b00 (“Autonomous™) at next clock cvcle;

Instruction address bus is frozen at next clock cycle:

{ else {
S-Indicate = 0b11 (“Compulsory”) at next clock cycle;

Instruction address bus at next clock cycle = target;

3. Action algorithm of CPU

The same as the one in section 2.4 except underscored words.

35

CPU action algorithm {
unsigned int force PC = PC value used at current clock cycle;
unsigned int target = target address resolved at current clock cycle;
unsigned int fall through = fall-through address resolved at current clock cycle:
unsigned int S-Indicate; /* value on S-Indicate control line */
unsigned int P-Taken = value on P-Taken control line at current clock cycle:
if (pipeline stall is detected) {
S-Indicate = 0b01 (““Pipeline Stall”) at current clock cycle
Instruction address bus is frozen at current clock cycle;
} else if (changing target branch is resolved in ID stage) {
S-Indicate = 0b11 (“Compulsory™) at next clock cycle;
Instruction address bus at current clock cycle = force PC:

} else if (when jump instruction(except J. JAL) is resolved in ID stage) {

if (jump instruction is JR to r31) §

S-Indicate = 0b00 (*Autonomous’) at next clock cvcle;

Instruction address bus is frozen at next clock cvcle:
¢ else {

S-Indicate = 0b11 (“Compulsory”™) at next clock cycle;

Instruction address bus at next clock cycle = target;

H

} else if (when branch instruction(including J, JAL) is resolved in ID stage) {

if (the result is a taken branch) {
if (P-Taken = Ob1 at the start of current clock cycle) {
S-Indicate = 0b00 (“Autonomous”) at next clock cycle:
Instruction address bus is frozen at next clock cycle:
} else {
S-Indicate = 0b10 (“Wrong Prediction™) at next clock cycle;
Instruction address bus is frozen at next clock cycle:
3
} else {
if (P-Taken = Ob1 at the start of current clock cycle) {
S-Indicate = 0b10 (“Wrong Prediction™) at next clock cycle;
Instruction address bus is frozen at next clock cycle:
} else {
S-Indicate = 0b00 (“Autonomous”) at next clock cycle;

Instruction address bus is frozen at next clock cycle:

[

1
¥
} else {
S-Indicate = 0b00 (““Autonomous™) at next clock cycle;

Instruction address bus 1s frozen at next clock cycle:

[—
[—

36

4. Action algorithm of iAIM

The same as the one in section 2.4 except underscored words.

1AIM action algorithm {
unsigned int fOI‘CELPC = PC value on instruction address bus used at current clock cycle:
unsigned int btb_target = target address found in BTB 1 clock cycle ago:;
unsigned int S-Indicate = value on S-Indicate control lines at current clock cycle:
unsigned int P-Taken; /* value on P-Taken control line */
unsigned int IAIM_PC: /* PC used in iAIM at current clock cycle */
/* PC used 1 clock cycle ago. 2 clock cycles ago */
unsigned int PCt-1, PCt-2;
/* branch entry found in BTB or not 1 clock cycle ago. 2 clock cycles ago™®/
unsigned int InBTBt-1, InBTBt-2:
/* taken branch predicted by BTB or not 1 clock cycle ago, 2 clock cycles ago */
unsigned int PTakent-1, PTakent-2;
/* branch target address calculated in 1AIM */
unsigned int Target;
/* fall-through address calculated in iATM*/
unsigned int FallThru;
if (S-Indicate = 0b01 (“*Pipeline Stall™)) {
1AIM PC =PCt-1;
} else if (S-Indicate = 0b11 (*Compulsory™)) {
1IAIM_PC = force PC;
} else if (S-Indicate = 0b10 (*“Wrong Prediction™)) {
If (PTakent-2 = 0b1) {
1AIM_PC = FallThru;
}else {
1AIM_PC = Target;
}
If InBTBt-2 =0bl) {
Update the predictor field of entry in BTB where branch address is PCt-2:
If (PTakent-2 = 0bl)
Update predictor toward not-taken;
Else
Update predictor toward taken;
} else {
Enter an entry into BTB :
branch address = PCt-2;
branch target address = Target:

Other fields are set to default values:

1
5
} else {

/* To be continued on next page */

L)

37

1AIM action algorithm (continued) {

if (procedure return instruction (JR to 1r31) was resolved in partial

decoder PD at last clock cvcle) {

iATM PC = return address popped from return stack RS:
pelse
if (InBTBt-1 =0bl) {
1AIM_PC =btb_target;
}
else {
1AIM_PC =PCt-1 +4;
}
if (InBTBt-2 =0bl1) {
Update the predictor field of entry in BTB where branch address is PCt-2:
If (PTakent-2 = 0bl) {
Update predictor toward taken;
}
Else {
Update predictor toward not-taken;

if (S-Indicate = 0b10 (*Wrong Prediction™) or S-Indicate = 0bl1l (*Compulsory™)) {
if (procedure call instruction (JAL, JALR) was resolved in partial

decoder PD at last clock cvele) {

/* due to wrong branch prediction or changing target branch */

Popped a return address out of return stack RS:

H
H

/* To be continued on next page */

38

1AIM action algorithm (continued) {
if (S-Indicate = 0bO1 (“*Pipeline Stall”))
{
PCt-2, nBTBt-2, PTakent-2 remain unchanged;
} else {
PCt-2 = PCt-1;: InBTBt-2 = InBTBt-1; PTakent-2 = PTakent-1;

1
!

PC1 =1AIM_PC;
Using 1IAIM_PC as index to do searching in BTB;
if (branch entry 1s found) {
if (predictor field predicts taken) {
P-Taken = Obl at next clock cycle; InBTBt-1 = 0bl; PTakent-1 = 0bl:
} else {
P-Taken = 0bO0 at next clock cycle; InBTBt-1 = 0bl; PTakent-1 = 0b0:

1
s

} else {
InBTBt-1 = 0b0; PTakent-1 = 0b0:

P-Taken = 0bO0 at next clock cycle;
)

Use partial decoder PD to decode fetched instruction from instruction memory;

if (fetched instruction is branch instruction(including J, JAL)) {
/* The following actions will be completed before the end of next clock cycle */
Target = branch target address calculated in 1AIM;:
FallThru = fall-through address calculated in 1AIM;

b

if (fetched instruction is procedure call instruction(JAL, JALR)) {
(IAIM PC +4) is pushed into return stack RS:

{ else if (fetched instruction is procedure return instruction(JR to r31)) {

return address will be popped from return stack RS at next clock cvele:

L]

For research purpose, the above design assumes return stack is big enough to
accommodate the maximum procedure depth of applications running on the processor. In

reality, return stack has limited entries, more procedure calls than return stack entries can

39

corrupt return stack, which may be implemented as a finite depth push-down stack.
Figure 2.13 shows scenario of return stack overflow in a finite depth push-down stack.
Thereafter, corresponding procedure returns cause underflow by popping empty stack
(see [9]). Some researches have proposed the backup storage solution to augment limited
return stack size to very large number. And some research (in [9]) has proposed the
protection mechanism to prevent “underflow” problem either in return stack and backup

storage.

A simple proposed solution to deal with “underflow” in proposed design of section

2.5 with finite return stack size is described as below :

1. iAIM needs to inform CPU by some control signal when a procedure return
instruction is resolved but the return stack is empty. “P-Taken” control line can be
used because branch instruction and procedure return instruction are mutually
exclusive. When return stack underflow happens, iAIM asserts “P-Taken” control line

to 1 at the next clock cycle.

2. When CPU finds iAIM asserts “P-Taken” control line to 1 and at the same clock cycle
a procedure return instruction is resolved, CPU will set “S-Indicate” control lines to
indicate “Compulsory” situation and prepare the return address on instruction address

at the beginning of the next clock cycle:

3. 1AIM will use the return address on‘instruction address when CPU sets “S-Indicate”

control lines to indicate “Compulsory” situation.

Stack is empty Stack is full Stack is overflow

Current Depth =0 Current Depth =4 Current Depth =4

Return (Call 4) Return (Call 5)
Return (Call 3) Return (Call 4)
Return (Call 2) Return (Call 3)
Return (Call 1) Return (Call 2)

Return of Call 1 is dropped !

Figure 2.13 Scenario of return stack overflow in a finite depth push-down stack

40

2.6 Design Restriction and Execution Examples
Top-level instruction memory in proposed designs is assumed to have the same
clock rate with CPU. Although not all sorts of memory are clock-aware, all self-managed
multi-power mode memories are now equipped with clock signals. For example,
DRAMs are clocked always. The only restriction in iAIM design is how to synchronize

memory clock with CPU’s.

In order to illustrate the validity of iAIM design, a representative scenario of

instruction execution is taken as an example :

There are a part of instructions in a program which comprise 2 branch instructions
B1, B2 and other instructions S1, S2, S3, ... In this execution scenario, Bl is not taken

and B2 is taken.
B1 (address : 0x80000400, branch target : 0x80000a00, not-taken in this scenario)
B2 (address : 0x80000404, branch target : 0x80000800, taken in this scenario)

S1 (address : 0x80000408)

S2 (address : 0x80000800)
S3 (address : 0x80000804)

S4 (address : 0x80000a00)

There are 4 possible cases of instruction execution flow in iAIM design depending
on BTB’s prediction :

1. BI is predicted not-taken, B2 is predicted taken :
In this case, both B1 and B2 are correctly predicted by BTB in iAIM.
2. Bl is predicted not-taken, B2 is predicted not-taken :

In this case, B1 is correctly predicted but B2 is incorrectly predicted by BTB in
1AIM. Penalty of 1 clock cycles is incurred.

3. Bl is predicted taken, B2 is predicted taken :

In this case, B1 is incorrectly predicted but B2 is correctly predicted by BTB in
1AIM. Penalty of 1 clock cycles is incurred.

41

4. Bl is predicted taken, B2 is predicted not-taken :

In this case, B1 and B2 are all incorrectly predicted by BTB in iAIM. Penalty of
2 clock cycles is incurred.

Execution detail of iAIM design in the first case (B1 is predicted not-taken, B2 is
predicted taken) is shown below :

Clock
Cycle

PC used
In CPU

PC used
in iIAIM

Control
Signal
S-

Indicate

Control
Signal
P-
Taken

Actions taken in CPU

Actions taken in iAIM

0x80000400

0x80000400

00

0

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x800003FC) is not a branch
instruction, CPU will set S-Indicate to O0b00 at next
clock cycle.

2) Next PC used in CPU will be updated to current PC
plus 4.

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current
PC is:a not taken branch. iAIM will set P-Taken to 0
at next clock cycle.

3)Next self-generated PC in iAIM will be current PC
plus 4.

X+1

0x80000404

0x80000404

00

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x80000400) is a not-taken
branch. Because iAIM doesn’t set P-Taken to 1 at
current clock cycle, CPU finds BTB prediction in
1AIM at last clock cycle was correct. CPU will set
S-Indicate to 0b0O0 at next clock cycle.

2) Next PC used in CPU will be updated to current PC
plus 4.

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current
PC is a taken branch. iAIM will set P-Taken to 1 at
next clock cycle.

3) Next self-generated PC in iAIM will be branch

target address.

42

X+2

0x80000408

0x80000800

00

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x80000404) is a taken branch.
Because iAIM sets P-Taken to 1 at current clock
cycle, CPU finds BTB prediction in iAIM at last
clock cycle was correct. CPU will set S-Indicate to
0b00 at next clock cycle.

2) Next PC used in CPU will be updated to branch

target address plus 4.

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) iAIM updates an entry in BTB when a not-taken
branch was found in BTB 2 clock cycles ago :
source is PC used in iAIM 2 clock cycles ago, target
is address on instruction address bus, direction is
not-taken.

3) Before the end of clock cycle, BTB predicts current
PC is not a branch. iAIM will set P-Taken to 0 at
next clock cycle.

4) Next self-generated PC in iAIM will be current PC
‘plus 4.

X+3

0x80000804

0x80000804

00

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x80000800) is not a branch.
CPU will set S-Indicate to 0b00 at next clock cycle.

2) Next PC used in CPU will be updated to current PC
plus 4.

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) iAIM updates an entry in BTB : source is PC used in
iAIM 2 clock cycles ago, target is address on
instruction address bus, direction is taken.

3) Before the end of clock cycle, BTB finds current
PC is not a branch. iAIM will set P-Taken to 0 at
next clock cycle.

4) Next self-generated PC in iAIM will be current PC

plus 4.

Execution detail of iAIM design in the second case (B1 is predicted not-taken, B2 is

predicted not-taken) is shown below :

Clock
Cycle

PC used
In CPU

PC used
in iAIM

Control
Signal
S-

Indicate

Control
Signal
P-
Taken

Actions taken in CPU

Actions taken in iAIM

0x80000400

0x80000400

00

0

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x800003FC) is not a branch
instruction, CPU will set S-Indicate to O0b0O at next
clock cycle.

2) Next PC used in CPU will be updated to current PC
plus 4.

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current
PC is a not taken branch. iAIM will set P-Taken to 0
at next clock cycle.

3) Next self-generated PC in iAIM will be current PC
plus 4.

X+1

0x80000404

0x80000404

00

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x80000400) is a not-taken
branch. Because iAIM doesn’t set P-Taken to 1 at
current clock cycle, CPU finds BTB prediction in
1AIM at last clock cycle was correct. CPU will set
S-Indicate to 0b00 at next clock cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current
PC is a not-taken branch. iAIM will set P-Taken to 0
at next clock cycle.

3) Next self-generated PC in iAIM will be current PC
plus 4.

X+2

0x80000408

0x80000408

00

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x80000404) is a not-taken
branch. Because iAIM doesn’t set P-Taken to 1 at
current clock cycle, CPU finds BTB prediction in
1AIM at last clock cycle was incorrect. CPU will set

S-Indicate to 0b10 at next clock cycle.

44

2) Next PC used in CPU will be updated to branch

target address.

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) iAIM updates an entry in BTB when a not-taken
branch was found in BTB 2 clock cycles ago :
source is PC used in iAIM 2 clock cycles ago, target
is address on instruction address bus, direction is
not-taken.

3) Before the end of clock cycle, BTB predicts current
PC is not branch. iAIM will set P-Taken to 0 at next
clock cycle.

4) Next self-generated PC in iAIM will be current PC

plus 4.

X+3

0x80000800

0x80000800

10

1) iAIM starts fetching correct address at current cycle,
there is no instruction to be decoded in ID stage of
CPU. CPU will set S-Indicate to 0b00 at next clock
cycle.

2) Next PC used in CPU will be updated to current PC
‘ plus address plus 4.

1) Because S-Indicate is set to 0b10, iAIM uses address
on instruction address bus as its PC.

2) iAIM inserts an entry into BTB when PC used in
iAIM 2 clock cycles ago was not found in BTB,
updates a entry in BTB otherwise : source is PC used
in iAIM 2 clock cycles ago, target is address on
instruction address bus, direction is taken.

3) Before the end of clock cycle, BTB predicts current
PC is not a branch. iAIM will set P-Taken to 0 at
next clock cycle.

4) Next self-generated PC in iAIM will be current PC
plus 4.

X+4

0x80000804

0x80000804

00

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x80000800) is not a branch.
CPU will set S-Indicate to 0b00 at next clock cycle.

2) Next PC used in CPU will be updated to current PC
plus 4.

45

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) Before the end of clock cycle, BTB finds current
PC is not a branch. iAIM will set P-Taken to 0 at
next clock cycle.

3) Next self-generated PC in iAIM will be current PC
plus 4.

Execution detail of iAIM design in the third case (Bl is predicted taken, B2 is
predicted taken) is shown below :

Clock
Cycle

PC used
In CPU

PC used
in iAIM

Control
Signal
S-

Indicate

Control
Signal
P-
Taken

Actions taken in CPU

Actions taken in iAIM

0x80000400

0x80000400

00

0

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x800003FC) is not a branch
instruction, CPU will set S-Indicate to Ob00 at next
cloek cycle.

2) Next PC used in CPU will be updated to current PC
plus 4.

1)-Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current
PC is a taken branch. iAIM will set P-Taken to 1 at
next clock cycle.

3) Next self-generated PC in iAIM will be branch

target address.

X+1

0x80000404

0x80000a00

00

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x80000400) is a not-taken
branch. Because iAIM sets P-Taken to 1 at current
clock cycle, CPU finds BTB prediction in iAIM at
last clock cycle was incorrect. CPU will set
S-Indicate to 0b10 at next clock cycle.

2) Next PC used in CPU will be the same with current
PC.

46

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current
PC is not a branch. iAIM will set P-Taken to 0 at
next clock cycle.

3) Next self-generated PC in iAIM will be current PC
plus 4.

X+2

0x80000404

0x80000404

10

1) iAIM starts fetching correct address at current cycle,
there is no instruction to be decoded in ID stage of
CPU. CPU will set S-Indicate to 0b00 at next clock
cycle.

2) Next PC used in CPU will be updated to current PC
plus 4.

1) Because S-Indicate is set to 0b10, iAIM uses
address on instruction address bus as its PC.

2) iAIM updates an entry in BTB : source is PC used in
1AIM 2 clock cycles ago, target is address on
instruction address bus, direction is not-taken.

3) Before the end of clock cycle, BTB predicts current
'PC is a taken branch. iAIM will set P-Taken to 1 at
next clock cycle.

4) Next self-generated PC in iAIM will be branch

target address.

X+3

0x80000408

0x80000800

00

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x80000404) is a taken branch.
Because iAIM does set P-Taken to 1 at current clock
cycle, CPU finds BTB prediction in iAIM at last
clock cycle was correct. CPU will set S-Indicate to
0b00 at next clock cycle.

2) Next PC used in CPU will be updated to branch

target address plus 4.

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current
PC is not a branch. iAIM will set P-Taken to 0 at
next clock cycle.

3) Next self-generated PC in iAIM will be current PC

plus 4.

47

X+4

0x80000804

0x80000804

00

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x80000800) is not a branch.
CPU will set S-Indicate to 0b00 at next clock cycle.

2) Next PC used in CPU will be updated to current PC
plus 4.

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) iAIM updates an entry in BTB : source is PC used in
1AIM 2 clock cycles ago, target is address on
instruction address bus, direction is taken.

3) Before the end of clock cycle, BTB finds current
PC is not a branch. iAIM will set P-Taken to 0 at
next clock cycle.

4) Next self-generated PC in iAIM will be current PC
plus 4.

predicted not-taken) is shown below :

Execution detail of iAIM designtin the fourth case (B1 is predicted taken, B2 is

Clock
Cycle

PC used
In CPU

PC used
in iAIM

Control
Signal
S-

Indicate

Control

Signal

Taken

Actions taken in CPU

Actions taken in iIAIM

0x80000400

0x80000400

00

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x800003FC) is not a branch
instruction, CPU will set S-Indicate to Ob00 at next
clock cycle.

2) Next PC used in CPU will be updated to current PC
plus 4.

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current
PC is a taken branch. iAIM will set P-Taken to 1 at
next clock cycle.

3) Next self-generated PC in iAIM will be branch

target address.

X+1

0x80000404

0x80000a00

00

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x80000400) is a not-taken

branch. Because iAIM sets P-Taken to 1 at current

48

clock cycle, CPU finds BTB prediction in iAIM at
last clock cycle was incorrect. CPU will set
S-Indicate to 0b10 at next clock cycle.

2) Next PC used in CPU will be the same with current
PC.

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current
PC is not a branch. iAIM will set P-Taken to 0 at
next clock cycle.

3) Next self-generated PC in iAIM will be current PC
plus 4.

X+2

0x80000404

0x80000404

10

1) iAIM starts fetching correct address at current cycle,
there is no instruction to be decoded in ID stage of
CPU. CPU will set S-Indicate to 0b00 at next clock
cycle.

2) Next PC used in CPU will be updated to current PC
plus 4.

1) Because S-Indicate is set to 0b10, iAIM uses
‘address on instruction address bus as its PC.

2) iAIM updates an entry in BTB : source is PC used in
iAIM 2 clock cycles ago, target is address on
instruction address bus, direction is not-taken.

3) Before the end of clock cycle, BTB predicts current
PC is a not-taken branch. iAIM will set P-Taken to 0
at next clock cycle.

4) Next self-generated PC in iAIM will be current PC
plus 4.

X+3

0x80000408

0x80000408

00

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x80000404) is a taken branch.
Because iAIM doesn’t set P-Taken to 1 at current
clock cycle, CPU finds BTB prediction in iAIM at
last clock cycle was incorrect. CPU will set
S-Indicate to 0b10 at next clock cycle.

2) Next PC used in CPU will be updated to branch

target address.

49

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current
PC is not a branch. iAIM will set P-Taken to 0 at
next clock cycle.

3) Next self-generated PC in iAIM will be current PC
plus 4.

X+4

0x80000800

0x80000800

10

1) iAIM starts fetching correct address at current cycle,
there is no instruction to be decoded in ID stage of
CPU. CPU will set S-Indicate to 0b00 at next clock
cycle.

2) Next PC used in CPU will be updated to current PC
plus 4.

1) Because S-Indicate is set to 0b10, iAIM uses address
on instruction address bus as its PC.

2) iAIM inserts an entry into BTB when PC used in
1AIM 2 clock cycles ago was not found in BTB,
updates a entry in BTB otherwise : source is PC used
i iAIM 2 clock cycles ago, target is address on
instruction address bus, direction is taken.

3) Before the end of clock cycle, BTB predicts current
PC is not a branch. iAIM will set P-Taken to 0 at
next clock cycle.

4) Next self-generated PC in iAIM will be current PC
plus 4.

X+5

0x80000804

0x80000804

00

1) Before the end of clock cycle, CPU resolves the
instruction(address 0x80000800) is not a branch.
CPU will set S-Indicate to 0b00 at next clock cycle.

2) Next PC used in CPU will be updated to current PC
plus 4.

1) Because S-Indicate is set to 0b00, iAIM uses
self-generated address as its PC.

2) Before the end of clock cycle, BTB finds current
PC is not a branch. iAIM will set P-Taken to 0 at
next clock cycle.

3) Next self-generated PC in iAIM will be current PC

plus 4.

50

Chapter 3 Evaluation and Discussion

Proposed designs in Chapter 2 are evaluated by trace-driven simulator. The benchmark
suit is a subset of MiBench [10], which is a benchmark suite for embedded programs. The
results are evaluated by four metrics : total execution cycles, BTB accuracy, percentage of

reduced instruction address bus active cycles, percentage of reduced bit transitions.

3.1 Evaluation Methodology
Since proposed designs in Chapter 2 are system-level innovation in computer
architecture, behavioral simulation like trace-driven simulator can be a suitable approach to

prove how many benefits such innovation gains compared with conventional architecture.

Proposed designs are evaluated by a trace-driven simulator. Since proposed designs in
this thesis are based on classic MIPS ! five-stage pipeline, my simulator uses MIPS 1

instruction trace as key input.
My trace-driven simulator accepts the following parameters as its input :

1. Architecture : conventional architecture, conventional architecture plus TO encoding,
proposed design ‘of 1AIM, proposed design of enhanced iAIM with
partial decoder, and proposed design of enhanced iAIM with partial

decoder and return stack.

2. BTB configuration : Perfect BTB (it consists of 2 properties. First, after a taken branch
is first allocated into BTB, its prediction afterwards will be always
correct. Second, any allocated entry in BTB will never be replaced.),
2048/4way/LRU (it means 2048 entries in 4-way set-associative BTB
with Least Recently Used replacement algorithm), and 32/4way/LRU
(it means 32 entries in 4-way set-associative BTB with Least Recently

Used replacement algorithm).
3. MIPS I instruction trace of benchmark program.

My trace-driven simulator will records bit transitions for every line of instruction address

bus and addition control lines (conventional architecture has no additional control line;

51

conventional architecture plus TO-encoding and conventional architecture plus TO-DAT
encoding have one additional control line, our 3 proposed designs of iAIM has 3 addition

control lines) at every clock cycle during MIPS I instruction trace is being fed.
After finishes execution, my simulator will output the following data :
1. Total execution cycles
2. BTB accuracy
3. Instruction address bus active cycles.
4. Total bit transitions on instruction address bus and control line(s).
5. Total bit transitions on instruction address bus.
6. Total bit transitions on control line(s).

After collecting all statistics of selectéd benchmark programs, we have enough data to do

evaluation on proposed designs. The evaluation metrics.are listed in next section.

3.2 Evaluation Metrics

In this thesis, the following metrics are used to evaluate proposed designs of 1AIM:
® Total execution cycles

This metric is used to indicate whether proposed designs suffer performance loss

due to longer execution time compared with conventional architecture.
® BTB accuracy

This metric is used to indicate whether proposed designs suffer loss in branch
prediction accuracy due to poorer BTB accuracy compared with conventional

architecture.
® Percentage of reduced instruction address bus active cycles

This value is defined as :

52

(Total execution cycles — Instruction address bus active cycles) / Total execution

cycles

If this value is high, it means instruction address bus is frozen most of the time. This
metric can effectively be used to evaluate bus power consumption indirectly due to

coupling capacitance.
® Percentage of reduced bit transitions
This value is defined as :

(Total bit transitions in conventional architecture with the same BTB configuration

— Total bit transitions) / (Total bit transitions in conventional architecture with the

same BTB configuration)

If this value is high, it means number of total bit transitions is small. This metric can
effectively be used to evaluate, bus power consumption indirectly due to

self-capacitance.

3.3 Experimental Environment
The experimental toolset MIPS.SDE"/*MIPS FGT 5.02.02 [11] is used to generate

MIPS I instruction trace for benchmark programs :
® Install MIPS SDE / MIPS FGT 5.02.02.

® Use command “sde-make SBD=GSIMI1B” to build MIPS I code (benchmark_ram)

of benchmark program for GNU simulator platform.

® Use command “sde-run --trace-insn=on --trace-file trace_filename benchmark_ram”

to generate MIPS I instruction trace file.

Since delay branch slot is always applied in GNU simulator platform, the generated
trace file needs to be modified to remove delay branch slot for all branch and jump

instructions.

The modified trace file is then fed into trace simulator by specifying various
parameters like BTB configuration (perfect BTB or not, the number of
entries/set-associativity/replacement algorithm of BTB), return stack configuration

(return stack is used or not), and selected design (conventional architecture, conventional

53

architecture with TO encoding, conventional architecture with TO-DAT encoding,
proposed design of iAIM, proposed design of iAIM with partial decoder and proposed
design of iAIM with partial decoder and return stack). Figure 3.1 shows the flowchart of

simulation.

Benchmark Program

Use MIPS SDE /~ MIPS
FGT 5.02.02 to build
MIPS I code for GNU

simulator platform

Use GNU simulator ef
MIPS SDE / MIPS FGT
5.02.02 to produce

instruction trace file

Remove delay branch slot in

instruction trace file

Trace simulator

Result

Figure 3.1 Simulation flowchart

54

3.4 Experimental Benchmark
The benchmark programs selected are a subset of MiBench [10], which is a
benchmark suite consisting of commercially representative embedded programs.
MiBench consists of 6 categories including Automotive and Industrial Control, Network,
Security, Consumer Devices, Office Automation, and Telecommunications. In each
category, at least one benchmark is chosen as experimental benchmark. All chosen

benchmarks are listed as below :
® In the category of Automotive and Industrial Control

basicmath : it performs simple mathematical calculations that often don’t have

dedicated hardware support in embedded processors.

bitcount : it tests the bit manipulation abilities of a processor by counting the

number of bits in an array of integers.
® In the category of Network

dijkstra : it constructs a large.graph.in an adjacency matrix representation and then
calculates .the shortest. path between every pair of nodes using

repeated applications of Dijkstra’s algorithm.
® [n the category of Security

sha : it is the secure hash algorithm that produces a 160-bit message digest for a
given input. It is often used in the secure exchange of cryptographic

keys and for generating digital signatures.

rijndael encrypt/decrypt : Rijndael was selected as the National Institute of
Standards and Technologies Advanced Encryption Standard (AES). It
is a block cipher with the option of 128-, 192-, and 256-bit keys and
blocks.

® In the category of Consumer Devices

jpeg encode/decode : JPEG is a standard, lossy compression image format. It is a
representative algorithm for image compression and decompression

and is commonly used to view images embedded in documents.

lame : it is a GPL'ed MP3 encoder that supports constant, average and variable

bit-rate encoding. It uses small and large wave files for its data inputs.

® In the category of Office Automation

55

stringsearch : it searches for given words in phrases using a case insensitive

comparison algorithm.
® In the category of Telecommunications

FET/IFFT : it performs a Fast Fourier Transform and its inverse transform on an
array of data. Fourier transforms are used in digital signal processing

to find the frequencies contained in a given input signal.

ADPCM encode/decode : Adaptive Differential Pulse Code Modulation (ADPCM)
is a variation of the well-known standard Pulse Code Modulation
(PCM). A common implementation takes 16-bit linear PCM samples
and converts them to 4-bit samples, yielding a compression rate of
4:1.

CRC32 : it performs a 32-bit Cyclic Redundancy Check (CRC) on a file. CRC

checks are often used to detect errors in data transmission.

Table 3.1 shows the instruction_countstand maximum procedure call depth for

selected benchmarks.

56

Benchmark

Number of total

Number of

Number of executed

Maximum

(13.4578 %)

(5.9547 %)

executed executed branch procedure return procedure call
mstructions instructions mstructions depth

basicmath 59,681,183 8,022,682 1,179,026 17
(13.4426 %) (1.9755 %)

bitcount 46,804,277 4,816,087 1,050,913 17
(10.2898 %) (2.2453 %)

dijkstra 72,216,243 11,012,478 621,782 26
(15.2493 %) (0.8610 %)

sha 11,402,685 258,052 11,156 17
(2.2631 %) (0.0978 %)

rijndael 35,905,204 1,047,215 206,351 17
encrypt 2.9166 %) (0.5747 %)

rijndael 35,723,715 1.045.648 205,997 17
decrypt (2.9270 %) (0.5766 %)

jpeg encode 34,746,120 4,070,029 66,230 17
(11.7136 %) (0.1906 %)

jpeg decode 8.471.825 373.111 13,078 17
(4.4041 %) (0.1544 %)

lame 191,301,926 14,830,125 1,224,409 17
(7.7522 %) (0.6401 %)

stringsearch 211.681 35.075 2,892 17
(16.5697 %) (1.3662 %)

FFT 18.571.659 2,215,564 209,462 17
(11.9298 %) (1.6125 %)

IFFT 16,056,034 1,913,372 272,061 17
(11.9168 %) (1.6944 %)

ADPCM 36,515,266 7.614.881 23,512 17
encode (20.8540 %) (0.0644 %)

ADPCM 29,296,742 6,587,106 23,495 17
decode (22.4841 %) (0.0802 %)

CRC32 92.343.488 12,427,418 5,498,790 17

Table 3.1 Instruction counts and maximum procedure call depth for selected benchmarks

57

3.5 Experimental Results
Table 3.2 shows simulation results. The abbreviations on table 3.2 are listed as

below.
There are 6 kinds of designs :
® Original : stands for conventional architecture that BTB is in CPU.
® TO : means conventional architecture with TO encoded instruction address bus.

® TO0 DATI128 : means conventional architecture with TO with Discontinuous Address

Table of 128 entry encoded instruction address bus.
® Proposed I : stands for design of iAIM proposed in section 2.3.

® Proposed II : stands for design of iAIM with partial decoder proposed in

section 2.4.

® Proposed III : stands for design of 1AIM with partial decoder and return stack

proposed in section 2.5.
There are 3 kinds of BTB configurations:

® Perfect BTB : it consists of 2'properties. First, after a taken branch is first allocated
into BTB, its prediction afterwards will be always correct. Second, any allocated

entry in BTB will never be replaced:

® 2048 (4way, LRU) : means 2048 entries in 4-way set-associative BTB with Least

Recently Used replacement algorithm.

® 32 (4way, LRU) : means 32 entries in 4-way set-associative BTB with Least

Recently Used replacement algorithm.

58

BTB Design Total Address Bus % of Total Bit Transitions % of Bit Transitions on Bit Transitions on | Bit Transitions | Bit Transitions on

Entries Execution Active Cycles | Address | onAddressBusand | Reduced Bit Address Bus Control line(s) | on Control lines Control line
Cycles Bus additional Control | Transitions S-Indicate P-Taken
Accuracy Frozen Line(s) compared
Cyeles with Original
Original 700,787,910 | 700,608,868 | 0.0255 | 1,541,728,133 01]1,541,728,133 - -
Perfect | TO 700,787.910 | 55,756,114 | 92.0438 | 402,288,302 | 73.9007 | 269,057,737 | 133,230,565 -

BTB TODATI128 | 700,787,910 | 18,983,157 | 97.2912 | 118,672,679 | 92.3026 82,351,940 | 36,320,739 -

Proposed I | 700,787,910 | 10,671,756 | 98.4772 | 199,721,333 | 87.0456 43,428,773 | 156,292,560 | 45,780,724 | 110,511,836
99.99% | Proposed I | 700,787,910 | 10,661,282 | 98.4787 | 199,667,193 | 87.0491 43,374,633 | 156,292,560 | 45,780,724 | 110,511,836
Proposed IIT | 690,088,666 80,068 | 99.9883 | 114,530,005 | 92.5713 1,034,481 | 113,495,584 | 2,983,748 | 110,511,836

Original 707,266,049 | 707,087,007 | 0.0253 | 1,558,928,091 1,558,928,091 - -
2048 T0 707,266,049 | 63,322,107 | 91.0469 | 427284280 | 725911 | 287.714,443 | 139,569,837 -
(4way, LRU) | TODAT128 | 707,260,049 | 25,462,209 | 96.3999 | 138,944,871 | 91.0872 98,308,542 | 40,636,329 -
ProposedI | 707,266,049 | 16,970,558 | 97.6005 | 240,765,665 | 84.5557 69,851,873 | 170,913,792 58,737,002 | 112,176,790
91.49% | Proposed I | 707,266,049 | 10,661.282 | 98.4926 | 214288 425 | 86.2541 43,374,633 | 170,913,792 | 58,737,002 | 112,176,790

=

Proposed Il | 696,566,805 80,668 | 99.9884 | 129,151,297 | 91.7154 1,034,481 | 128,116,816 | 15,940,026 | 112,176,790
Original 713,879,097 | 713,700,055 | 0.0251 | 1,569.816,155 0] 1,569.816,155 - -
32 T0 713,879,097 | 62,862,831 | 91.1942 | 424,843.478 | 72.9367 | 285,907,171 | 138,936,307 -

(4way. LRU) | TODAT128 | 713,879,097 | 31,880,727 | 955342 | 168,259,225 | 89.2816 | 121,421,584 | 46,837,641 -

ProposedI | 713,879,097 | 23,631,314 | 96.6807 | 272,600,469 | 82.6349 | 101,872,745 | 170,727,724 | 71,963,098 | 98,764,626
82.82% | ProposedIl | 713,879,097 | 10,661,282 | 98.5066 | 214,102,357 | 86.3613 43,374,633 | 170,727,724 1 71,963,098 | 98,764,626
Proposed IIT | 703,179,853 80,008 | 99.9885| 128,965,229 | 91.7847 1,034,481 | 127.930,748 | 29,166,122 | 98,764,626

Table 3.2 Simulation Results

Figure 3.2 and Figure 3.3 show teduction ratios in instruction address bus active

cycles and bit transitions for 5 different designs respectively.

E Perfect BTB M 2048/4way/LRU BTB [!32/4way/LRU BTB

92% T B

90% P

Percentage of Reduced Address Bus Active Cycles

TO TO DATI128 Proposed I Proposed II Proposed III

Figure 3.2 Percentage of reduced instruction address bus active cycles

59

O Perfect BTB M 2048/4way/LRU BTB LI32/4way/LRU BTB

100%

95%

90% e

85%

Percentage of Reduced Bit Transitions

TO TO DATI128 Proposed I Proposed II Proposed III

Figure 3.3 Percentage,of reduced bit transitions

Elsan
Figure 3.4 shows percentage-of'bit transitions on instruction address bus and control
line(s) for 5 different designs.‘:Figure 3.5shows percentage of bit transitions on

instruction address bus and control Tines ‘S-Indicate,‘ ‘P-Taken for proposed iAIM designs.

Percentage of Bit Transitions

[instruction address bus B control signal line(s)

100%

90%

80%

0%

60%

50%

40%

30%

20%
109%
0%
Perfect 2K 32 Perfect 2K 32 Perfect 2K 32 Perfect 2K 32 Perfect 2K 32
TO TO DATI28 Proposed I Proposed II Proposed IIT

Figure 3.4 Percentage of bit transitions on address bus and control line(s)

60

O instruction address bus M S-Indicate control lines [l P-Taken control line

100%

0% T P

80% P

0% T B

60% B

0% T]

40% o

30% - i

Percentage of Bit Transitions

20%

10% !

0% T T T T T T T T T T
Perfect 2K 32 Perfect 2K 32 Perfect 2K 32
Proposed 1 Proposed 11 Proposed 111

Figure 3.5 Percentage of bit transitions on address bus and control lines S-Indicate, P-Taken

3.6 Discussion

3.6.1 Experimental Results for Five Evaluation Metrics
Simulation results for five evaluation metrics are summarized as below :

® Total execution cycles in conventional architecture, conventional architecture with
TO encoded instruction address bus, proposed design I and II of 1AIM are exactly
the same. Total execution cycles in proposed design III of iAIM is slightly less than
in all other designs because return stack reduces penalty for procedure return

instructions.

® BTB accuracy for the same BTB configuration in conventional architecture,
conventional architecture with TO encoded instruction address bus, proposed design
I and III of 1AIM are exactly the same. Although iAIMs update BTB one cycle later
than conventional architecture does, such one cycle delay does not harm BTB

accuracy.

® TO encoded instruction address bus reduces 91.43 % of instruction address bus
active cycles and 73.14 % of bit transitions on instruction address bus and one

control line (“INC” [7]) on average.

61

Bit transitions on control line occupy about 33 % of total bit transitions.

® TO0 DAT with 128 entries encoded instruction address bus reduces 96.41 % of
instruction address bus active cycles and 90.89 % of bit transitions on instruction

address bus and one control line (“INC” [8]) on average.
Bit transitions on control line occupy about 29 % of total bit transitions.

® AIM proposed in section 2.3 reduces 97.59 % of instruction address bus active
cycles and 84.75 % of bit transitions on instruction address bus and three control

lines (“P-Taken” and “S-Indicate”) on average.
Bit transitions on control lines occupy about 71 % of total bit transitions.

® AIM with partial decoder proposed in section 2.4 reduces 98.50 % of instruction
address bus active cycles and 86.55 % of bit transitions on instruction address bus

and three control lines (“P-Taken” and “S-Indicate”) on average.
Bit transitions on control lines occupy about 79 % of total bit transitions.

® 1AIM with partial decoder and return stack proposed in section 2.5 reduces 99.99 %
of instruction address bus active ¢ycles and 92.02 % of bit transitions on instruction

address bus and three control lines (“P-Taken” and “S-Indicate’) on average.

Bit transitions on control lines occupy about 99 % of total bit transitions.

3.6.2 Comparisons among Bus Encoding Techniques and 3 1AIM Designs

Although basic design philosophies are different, bus encoding techniques (like TO
encoding) and iAIM have the same purpose — reducing bus traffic on instruction address
bus. The cause that iAIM can reduce much more bus traffic is it equips instruction
memory with program flow tracing capability. With program flow tracing capability,
1AIM is capable of eliminating the need for bus to transfer instruction addresses most of
the time. Such capability makes iAIM more intelligent and autonomous than bus

encoding techniques.

TO DAT encoding is a special bus encoding technique that makes use of not only
the characteristic of program sequential execution but also the characteristic of taken
branch execution. Only the third proposed iAIM design can outperform it slightly in all 2
metrics of bus traffic reduction. Since Content-Addressable-Memory (CAM) is required
in both encoder and decoder in TO DAT, it adds additional time to the existing delay

time due to CPU to memory latency. Such an increase affects the clock rate and then

62

harms the performance of processor accordingly.

As the constituents of bit transitions are considered, bit transitions on instruction
address bus hold the greater part in both TO and TO DAT encoding technique while bit
transitions on control lines occupy the most majority in iAIM designs. This fact reveals
the proportion of bit transitions on instruction address bus in iAIM is insignificant. In
other words, the true overhead for iAIM is bit transitions on control lines. Therefore, a
communication protocol that uses least control lines to convey minimum control signals

between CPU and iAIM is necessary.

Among 3 proposed iAIM designs, performances of Proposed II and Proposed III are
more insensitive to BTB prediction accuracy than Proposed I. The cause of this
phenomenon is Proposed II/III record information of recently resolved branch instruction

so that branch recovery becomes easy.

3.6.3 Benefits and Drawbacks in iAIM Designs
The benefits in iAIM are:listed as;below :
1. Reduction in bus traffic to spare-bandwidth :
This can be provedfrom the-aboverexperiment results.
2. Reduction in power consumption

For off-chip application, it can be deduced indirectly from experiment results

since most traffic on instruction is reduced.
3. Reduction in delay time due to possible high CPU to memory latency

Since 1AIM can reduce delay time when instruction address is self-generated,
total instruction fetch time can be shortened if two address generation

mechanisms (from bus or iAIM internal) can take different cycles.
The drawbacks in iAIM are listed as below :

1. Although BTB is merely removed from CPU to instruction memory side and
only some simple logic like partial decoder is added into instruction memory, it

does incur addition overhead in conventional computer architecture.

2. Although iAIM reduces almost all traffic on instruction address bus, there are
more additional bus traffic appearing on the additional internal buses needed in

iAIM. These additional internal buses make on-chip iAIM application less

63

useful.

3.6.4 1AIM Application in Real Computer System Environments

The effects of applying iAIM concept to real computer system environments are

discussed as follows :
® CPU and top-level Instruction Memory reside on different Chips

Under this environment, instruction address bus between CPU and top-level

instruction memory is external bus.

As mentioned in section 1.1.1, power consumed on external bus due to relatively
high self-capacitance is several order larger than energy than internal bus insides
CPU or instruction memory. Though BTB power in different chip is different due to
different process and iAIM incurs more internal buses and additional logics, it still

conserves more power than conventional architecture does.
® CPU and top-level Instruction Mémory reside on the same Chip

Under this environment, Instruction-addtess bus between CPU and top-level

instruction memory is internal bus.

Power consumed on internal“bus"is ‘dominant by coupling capacitance. iAIM can
greatly reduce power of coupling'capacitance on instruction address bus since it

freezes bus most of the time.

If internal buses added by 1AIM are not dedicate buses, iAIM also gains benefit in

this environment. Otherwise, 1AIM is useless.

64

4.1

4.2

Chapter 4 Conclusion and Future Works

Conclusion

The meaning that BTB is placed inside CPU in conventional architecture needs to
be rethought because it incurs too much unnecessary traffic on instruction address bus.
Proposed designs in Chapter 2 prove iAIM concept not only feasible but also effective.
Some functions in CPU costs little and can be duplicated in iAIM by using extremely
few logics (e.g., partial decoder). The mechanism that how dynamic branch predictor
like BTB predicts branch instruction has already been mature for a long time and is not
invented by us. What we do is only to move dynamic branch predictor to instruction
memory side. The choice of depth of return stack proposed in section 2.4 can be based

on simulate application programs on simulator to define a proper value.

The underlying design philosophy for three iAIM designs proposed in this thesis is
to equip top-level instruction memory with program flow tracing capability. Such design
philosophy is an innovation inscomputer architecture. Such computer architecture change
looks promising in simulation results.-And the increase on additional circuit cost seems a
small amount since most function blocks are merely moved from CPU to instruction

memory.

Future Works
In this thesis, BTB, partial decoder and return stack are incorporated into instruction
memory one after another to form iAIM designs of Proposed I, II and III respectively.

There are still several works in such design philosophy.

® Does there exist a similar design philosophy that is also applicable to data memory?
That means an intelligent autonomous data memory design may be another

practicable research direction.

® iAIM design does require additional internal buses inside instruction memory
module. For application environments with off-chip instruction memory system,
power consumption due to additional internal buses inside 1AIM is negligible
compared with power saved on external instruction address bus. Nonetheless, for

application environments with on-chip instruction memory system, if additional

65

internal buses inside iAIM are dedicated to 1AIM, power consumed on additional
internal buses inside iAIM may cancel out power saved on external instruction
address bus. Because iAIM can relieve address traffic on instruction address bus
greatly, many systems that use unified instruction and data memory (see Figure 3.6)
may benefit by 1AIM concept. When iAIM design is applied to the mixed
instruction/data address bus in unified memory system, one additional control line
to distinguish instruction address stream and data address stream is enough. When
this control line indicates data address stream occupies the address bus at current
clock cycle, iAIM’s instruction address handling mechanism inside unified memory
may treat it as “Pipeline Stall” situation while CPU can make use of “S-Indicate”
control lines to apply one of data address bus encoding techniques (like BI [12],
TO BI[13], TO BI 1 [14], ...) to reduce bus power. This future work is practicable

and deserves elaborate design and extensive evaluation.

Instruction/Data Address Bus

-

CPU Memory

Instruction/Data Data Bus

—

Figure 4.1 Unified instruction and data memory system

66

References

[1] J.L.Hennessy and D. A. Patterson, “Computer Architecture - A Quantitative Approach”,
3rd ed. Morgan Kaufmann Publishers, 2003.

[2] P. Petrov, A. Orailoglu, “Low-power Instruction Bus Encoding for Embedded
Processors,” in IEEE Transactions on VLSI (TVLSI), July, 2004.

[3] H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI, Addison-Wesley,
1990.

[4] K. Basu, A. Choudhary, and M. Kandemir, “Power protocol : reducing power
dissipation on off-chip data buses”, In Proc. the 35th Annual International Symposium
on Microarchitecture, Istanbul, Turkey, November 2002.

[5] Edwin Naroska, Shang-Jang Ruan, and Feipei Lai, “On Optimizing Power and Crosstalk
for Bus Coupling Capacitance Using Genetic Algorithm”, IEEE International
Symposium on Circuits and Systems, Bangkok, Thailand, May 2003

[6] C.H. Perleberg and A. J. Smith, “Branch target buffer design and optimization,” IEEE
Transactions on Computers, 42(4), 1993.

[7] L. Benini, G. De Micheli, E. Marcii, D. Sciuto and C. Silvano. “Asymptotic
Zero-Transition Activity .Encoding for. Address Busses in Low-Power
Microprocessor-Based Systems,? GLS-VLSI-97:: IEEE 7" Great Lakes Symposium on
VLSI, pp. 77-82, Urbanana-Champaign, 1L, March 1997.

[8] Tsung-His Weng, “Low-Power Address-Bus Encoding,” Master’s Thesis, Department of
Computer Science and Information Engineering, Nation Chiao Tung University, Taiwan,
R.O.C., June 2005.

[9]1 Y. Park and Gyungho Lee, “Return Address Stack Management for Protection from
Buffer Overflow Attacks,” Proc. the ACM Frontiers of Computing, Ischia, Italy, Apr.
2004.

[10] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown, “MiBench:
A Free, Commercially Representative Embedded Benchmark Suite,” Proceedings of the
4th International Workshop on Workload Characterization, 2001, pp. 3—14.

[11] MIPS Technologies, Inc., “MIPS SDE / MIPS FGT 5.02.02 Programmers’Guide,”
February 17, 2003.

[12] M.R Stan and W.P Burleson, “Bus Invert Coding for Low Power 1/O,” IEEE
Transactions VLSI systems, pp 49-58, March 1995.

[13] L. Benini, G. DeMicheli, E. Macii, D. Sciuto, and C. Silvano, “Address bus encoding
techniques for system-level power optimization,” DATE-98: IEEE Design Automation
and Test in Europe. Paris, France, February 1998, pages 861-866.

[14] Tsung-Hsi Weng, Wei-Hao Chiao, Jean Jyh-Jiun Shann, and Chung-Ping Chung,
Jimmy Lu, “Low-Power Data Address Bus Encoding Method,” 2005 International
Conference on Computer Design (CDES’05).

67

Vita

Li-Ming Wang (= %ﬁ)

Personal History
Birth place : Kaohsiung City, Taiwan Birth date : April 4, 1973
Residence : Hsinchu or Kaohsiung City, Taiwan

E-mail address : livius@ms56.hinet.net

Educational History
1. Kaohsiung Senior High School, Kaohsiung, Taiwan, 1991 (ﬁ,'JL;%H 128)
2. National Cheng Kung University, Tainan, Taiwan
Degree: Bachelor of Electrical Engineering, 1995 (5% ﬁﬁk%&?‘?ﬁ%—? 84 7k)
3. National Chiao Tung University, Hsinchu, Taiwan
Degree: Degree Program of Electrical Engineering and Computer Science College of Computer Science

in Partial Fulfillment of the Requirements; for the Degree of Master of Science in Computer Science,

2006 (iﬂifﬁéiﬁﬁi‘a&?ﬁ%%??*ﬁﬁﬂ 2006)

Professional Positions
1. Associate Engineer in Process Control-Computer Section of China Steel Aluminum
Corp. (fl l%ﬁﬁ%ﬂi’) from Sep 1997 to Jun 2002

2. Engineer, Senior Engineer, Associate Project Manager in System Development Div.
of D-Link Corp. (> 7#%[4%) and Alpha Networks Inc. (F'EJ%‘T A[$) from Jun 2002

68

