

國 立 交 通 大 學

電機學院與資訊學院 資訊學程

碩 士 論 文

智慧型自主指令記憶體設計

Intelligent Autonomous Instruction Memory Design

研 究 生：王立銘

指導教授：鍾崇斌 教授

中 華 民 國 九 十 五 年 七 月

智慧型自主指令記憶體設計
Intelligent Autonomous Instruction Memory Design

研 究 生：王立銘 Student：Li-Ming Wang

指導教授：鍾崇斌 Advisor：Chung-Ping Chung

國 立 交 通 大 學
電機學院與資訊學院專班 資訊學程

碩 士 論 文

A Thesis

Submitted to Degree Program of Electrical Engineering and Computer Science

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Computer Science

July 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年七月

智慧型自主指令記憶體設計

學生：王立銘

指導教授：鍾崇斌 博士

國立交通大學 電機學院與資訊學院 資訊學程﹙研究所﹚碩士班

摘 要

智慧型自主指令記憶體的主要概念是將動態分支預測器併入最上層的指令

記憶體使後者具備“程式流程追蹤” 能力。藉著動態分支預測器的協助，指令記

憶體在多數時間可以不需 CPU 核心提供指令位址而知道要到那個位址去擷取下

一道指令。這個概念的目的是要將 CPU 與指令記憶體之間的指令位址傳輸量降

到最低。實作出這樣的概念或許可以比許多已知的指令位址匯流排編碼技術要節

省更多的能源。當動態分支預測器從 CPU 移到指令記憶體，新增輔助硬體與一

套溝通 CPU 與指令記憶體之間有效率的控制匯流排傳輸協定對維持程式流程的

正確性以及原本動態分支預測器的運作是不可或缺的。運用上述概念的一個簡單

設計會先提出來，接著提出配備具有解碼分支指令並計算其分支目標位址能力的

部份指令解碼器的一個強化設計。最後提出的是配備部份指令解碼器與返回堆疊

的更強化設計。實驗結果顯示這三個設計比起傳統的架構分別減少 97.71%，

98.49% 與 99.99%的指令位址傳輸以及 84.99%，86.54%與 92.01%的總位元變化

量。以上提出的設計都勝過 T0 編碼技術許多。第三個設計略勝 T0 DAT(128 筆)

編碼技術。

 i

 ii

智慧型自主指令記憶體設計

Intelligent Autonomous Instruction Memory Design

student：Li-Ming Wang

Advisors：Dr. Chung-Ping Chung

Degree Program of Electrical Engineering and Computer Science
National Chiao Tung University

ABSTRACT

Main concept of Intelligent Autonomous Instruction Memory (iAIM) is to equip

top-level instruction memory with “program flow tracing” capability by incorporating

dynamic branch predictor into top-level instruction memory. With help of dynamic branch

predictor, instruction memory can know where to fetch the next instruction without

instruction address supplied by CPU most of the time. The purpose of such concept is to

reduce instruction address traffic between CPU and instruction memory to a minimum. The

realization of such concept may conserve more energy on instruction address bus than many

known instruction address bus encoding techniques. While dynamic branch predictor is

removed from CPU to instruction memory, additional auxiliary hardware and an efficient

control bus communication protocol between CPU and instruction memory are essential to

maintain program flow correctness and original dynamic branch predictor operation. A simple

design of iAIM that makes use of the above concept is proposed first, followed by an

enhanced design that equips iAIM with a partial instruction decoder capable of calculating

branch target address by decoding branch instruction. A more enhanced design that equips

iAIM with a partial instruction decoder and a return stack is proposed finally. The experiment

results show three proposed designs can reduce instruction address transmission to 97.71%,

98.49% and 99.99% and reduce total bit transitions to 84.99%, 86.54% and 92.01% compared

with conventional architecture respectively. All these designs greatly outperform T0 encoding

technique. The third design outperforms T0 DAT with 128 entries technique slightly.

 iii

誌 謝

首先感謝指導教授 鍾崇斌老師在 2002 年某次公司舉辦的教育訓練課程中，讓我

重新拾起對計算機組織與架構方面的學習興趣，以及產生在學習上努力不懈的理念。這

樣的理念促使我 2003 年開始到在職專班修學分，並在 2004 年考取專班資訊組後的修課

與研究過程中獲益匪淺。同時也要感謝實驗室另一位老師 單智君教授過去幾個月對研

究提出的指正與建議。再者感謝口試委員 邱舉明教授與邱日清教授在口試時的寶貴意

見，使論文得以修改得更完整。除此之外，感謝博士班的喬偉豪、翁綜禧學長及楊惠親

學姊在研究過程中所給與的協助。

 就一個在職生來說，我必須感謝公司主管吳國樑副處長、許致榮經理最近一年在工

作上的安排，以及鄭昆霖、林宜賢同事在工作上卓越的表現，使我在最後這一年得以順

利地完成學業。感謝公司主管黃英惠資深處長、第一次修學分班(計算機網路)的授課老

師簡榮宏教授在兩年前要考專班時惠賜推薦書，並感謝交大的在職專班讓我有再一次回

到校園學習的機會。

 過去時常因為考試、作業、研究而無法回高雄善盡照顧家庭的義務，在這裏衷心感

謝家人的體諒與支持。

 王立銘 2006.9.3

Table of Contents

摘 要 ... i
ABSTRACT... ii
誌 謝 ... iii
Table of Contents .. iv
List of Figures .. v
List of Tables .. vi
Chapter 1 Introduction .. 1

1.1 Background ... 1
1.2 Research Motivation ... 7
1.3 Research Objective ... 7
1.4 Organization of this Thesis ... 8

Chapter 2 Design of Proposed Architecture ... 9
2.1 Challenges in Design .. 9
2.2 Key Ideas in Design .. 9
2.3 Proposed Design of iAIM ... 16
2.4 Proposed Design of Enhanced iAIM with Partial Decoder 24
2.5 Proposed Design of Enhanced iAIM with Partial Decoder and Return Stack........ 32
2.6 Design Restriction and Execution Examples .. 41

Chapter 3 Evaluation and Discussion ... 51
3.1 Evaluation Methodology... 51
3.2 Evaluation Metrics .. 52
3.3 Experimental Environment ... 53
3.4 Experimental Benchmark.. 55
3.5 Experimental Results .. 58
3.6 Discussion ... 61

Chapter 4 Conclusion and Future Works.. 65
4.1 Conclusion .. 65
4.2 Future Works... 65

References.. 67
Vita... 68

 iv

List of Figures

Figure 1.1 Diagram of T0 encoding .. 6
Figure 1.2 Diagram of T0 DAT encoding ... 7
Figure 2.1 Block diagram of conventional architecture .. 10
Figure 2.2 Block diagram of iAIM design .. 10
Figure 2.3 Automatic instruction address generator inside iAIM.. 11
Figure 2.4 Control line that iAIM uses to inform CPU ... 11
Figure 2.5 S-Indicate control lines that CPU uses to inform iAIM ... 13
Figure 2.6 Buses between CPU and iAIM... 16
Figure 2.7 Additional circuit in iAIM ... 18
Figure 2.8 Action timing of partial decoder .. 25
Figure 2.9 Additional circuit in enhanced iAIM with partial decoder... 26
Figure 2.10 Action timing and algorithm for procedure call handling .. 32
Figure 2.11 Action timing and algorithm for procedure return handling .. 33
Figure 2.12 Additional circuit in enhanced iAIM with partial decoder and return stack 34
Figure 2.13 Scenario of return stack overflow in a finite depth push-down stack... 40
Figure 3.1 Simulation flowchart.. 54
Figure 3.2 Percentage of reduced instruction address bus active cycles ... 59
Figure 3.3 Percentage of reduced bit transitions ... 60
Figure 3.4 Percentage of bit transitions on address bus and control line(s)... 60
Figure 3.5 Percentage of bit transitions on address bus and control lines S-Indicate, P-Taken 61
Figure 4.1 Unified instruction and data memory system... 66

 v

List of Tables

Table 3.1 Instruction counts and maximum procedure call depth for selected benchmarks..................................57
Table 3.2 Simulation Results ...59

 vi

Chapter 1 Introduction

Main concept of Intelligent Autonomous Instruction Memory (iAIM) is based on the

following arguments : 1. Dynamic branch predictor is smart enough to trace program flow

with over 90% accuracy. 2. Dynamic branch predictor rarely needs CPU intervention. 3.

Should dynamic branch predictor be moved from CPU to instruction memory?

After equipping top-level instruction memory with “program flow tracing” capability by

incorporating dynamical branch predictor, instruction memory can know where to fetch the

next instruction without instruction address supplied by CPU most of the time.

Throughout this thesis, a classic MIPS five-stage pipeline is assumed. The five stages are

Instruction fetch (IF) stage, Instruction decode/register fetch (ID) stage, Execution/effect

address (EX) stage, Memory access (MEM) stage and Write-back (WB) stage respectively.

Figure A.24 in [1] shows the implementation of MIPS data path adopted in this thesis.

1.1 Background
1.1.1 How bus consumes Power

The amount of power dissipated due to switch activity is related to the voltage level

on the bus, the capacitance between the bus and the ground which is called

self-capacitance and the capacitance between the adjacent bus lines which is called

coupling-capacitance. The general power consumption equation of bus [2] is shown as

follows :

Pcsc = ½ · (SBT + λ CBTr + 4 λ CBTg) · Cs · Vdd
2

 Cs : self-capacitance

 Cc : coupling-capacitance

 λ : Cc / Cs

 SBT : self-bus bit transitions

 CBTr : coupling 1-bit transitions

 1

 CBTg : coupling bit toggles

 Vdd : supply voltage

 There are 2 kinds of bus in computer system : on-chip bus and off-chip bus.

For off-chip bus system, coupling-capacitance is negligible compared with

self-capacitance. Power consumed on off-chip bus is nearly power consumed by

charging and discharging self-capacitances of all individual bus lines. Because

capacitance driven by I/O nodes is three orders of magnitude larger than that on

the internal nodes of the processor [3], reducing self-bus bit transitions will

reduce the same percentage of bus power as well. Off-chip bus occupies

non-trivial portion of power in a system (power consumption of Intel Celeron

core at 266 MHz is 16W, while its off-chip bus operating at 133 MHz consumes

3.3W [4]).

For on-chip bus system, coupling-capacitance can not be ignored. In very

deep submicron process, power consumption due to coupling-capacitance

dominates (the ration of coupling-capacitance to self-capacitance is 2.4 in 130 nm

process and is 3.4 in 45 nm process). On-chip bus occupies considerable portion

inside a processor (on-chip buses account for 15% and 30% of total power in

Alpha 21064 and Intel 80386, respectively [5]).

1.1.2 Characteristics of Program Execution

Program execution can be classified into 2 categories :

1. Sequential execution :

This kind of execution occupies about 85-90% portion of program execution.

2. Execution of taken branches :

 This kind of execution occupies about 10-15% portion of program execution.

Taken branches can be further classified into 2 classes.

 Fixed target branches : most taken branches are fixed target branches.

 2

Dynamic branch predictor like branch target buffer can handle fixed target

branches with target expressed in immediate field of the instruction.

 Changing target branches : it includes procedure return, some other special

uses that load pc from a register other than link register (e.g., function table,

switch conditional statement). Procedure return can be handled by return stack.

1.1.3 What is dynamic branch predictor and its operation

About 15% of instructions in typical programs are branches. Branch instructions

can reduce the performance of pipelines by interrupting the normal sequence of

program execution, as known as control hazards. While almost all most modern

processors use pipelining to achieve high performance, control hazards may cause

greater and greater performance loss in proportion to the degree of pipelining.

Dynamic branch predictor is used to help processor resolve the outcome of branch

early, thus preventing control dependences from causing stalls [1]. The typical case of

dynamic branch predictor is branch target buffer (BTB) [6]. Branch target buffer is used

as dynamic branch predictor in this thesis.

Branch target buffer is a branch prediction cache and is designed to reduce branch

penalty by predicting the path of the branch and storing information about the branch.

The major information stored in each entry of branch target buffer consists of :

1. Valid bit : to tell whether the entry is empty or not.

2. Branch instruction address (branch tag) : the current program counter (PC) is

compared to branch instruction address field to determine if there is a “hit”.

3. Branch target address : If there is a hit and the branch is predicted taken, the

program counter is loaded with this value and instruction fetching continues

from this point.

4. Branch prediction bits (predictor) : 2-bit prediction scheme is most commonly

used [1].

For the classic MIPS five-stage pipeline, when the current program counter is sent

to instruction memory to fetch the current instruction, this current program counter is

also sent to branch target buffer to see if there is a “hit”.

If there is a “miss”, that means there is no valid entry whose branch tag equals the

 3

program counter, the instruction fetcher in CPU will update the program counter to the

next sequential PC by adding a word size to the PC. There are 2 scenarios under a

“miss” :

1. At the end of the ID stage for the branch instruction, it turns out that this is a

not-taken branch :

The branch processing unit in CPU will not enter a new entry into branch target

buffer for this branch, while the instruction fetcher in CPU will keep fetching the

subsequent instruction.

The branch penalty in this case is 0 clock cycle.

2. At the end of the ID stage for the branch instruction, it turns out that this is a

taken branch :

The branch processing unit in CPU will enter a new entry into branch target

buffer for this branch, while the instruction fetcher in CPU will kill fetched

instruction at IF pipe stage, and start fetching the calculated branch target address

at the start of the next clock cycle.

The branch penalty in this case is 1 clock cycle.

The detail of entering a new entry into branch target buffer is as follows :

If the position of the new entry is occupied, some replacement algorithm (e.g.,

Least Recently Used or Random algorithm) is used to discard an existing entry to

make room for this new one.

In this new entry, valid bit field is set to 1, branch instruction address (branch tag)

field is set to the branch instruction address (that is exactly the program counter 1

clock cycle ago), branch target address field is set to the value calculated at the

end of ID stage, branch prediction bits field is set to the initialized value

according to the adopted n-bit prediction scheme.

 If there is a “hit”, that means there is a valid entry whose branch tag equals the

program counter. There are 4 scenarios under a “hit” :

1. Branch prediction bits predicts this branch instruction is a taken branch, and at

the end of ID stage for the branch instruction, it turns out to be a taken branch :

At the end of the IF stage, branch target buffer will supply the branch target

address to update the program counter. At the start of the next clock cycle, this

corrected PC that is the branch target address is sent to instruction memory. At

the end of the ID stage for the branch instruction, it turns out that the prediction 1

clock cycle ago is correct. The branch processing unit in CPU will update branch

prediction bits in branch target buffer, while the instruction fetcher in CPU will

 4

keep fetching the subsequent instruction.

The branch penalty in this case is reduced to 0 clock cycle.

2. Branch prediction bits predicts this branch instruction is a taken branch, but at the

end of ID stage for the branch instruction, it turns out to be a not-taken branch :

At the end of the IF stage, branch target buffer will supply the branch target

address to update the program counter. At the start of the next clock cycle, this

corrected PC that is the branch target address is sent to instruction memory. At

the end of the ID stage for the branch instruction, it turns out that the prediction 1

clock cycle ago is incorrect. The branch processing unit in CPU will update

branch prediction bits of the branch entry in branch target buffer, while the

instruction fetcher in CPU will kill fetched instruction at IF pipe stage, and start

fetching the fall-through address after the branch instruction at the start of the

next clock cycle.

The branch penalty in this case is 1 clock cycle.

3. Branch prediction bits predicts this branch instruction is a not-taken branch, and

at the end of ID stage for the branch instruction, it turns out to be a not-taken

branch :

At the end of the IF stage, branch target buffer will do nothing, the instruction

fetcher in CPU will update the program counter to the next sequential PC by

adding a word size to the PC. At the end of the ID stage for the branch instruction,

it turns out that the prediction 1 clock cycle ago is correct. The branch processing

unit in CPU will update branch prediction bits of the branch entry in branch

target buffer, while the instruction fetcher in CPU will keep fetching the

subsequent instruction.

The branch penalty in this case is 0 clock cycle.

4. Branch prediction bits predicts this branch instruction is a not-taken branch, and

at the end of ID stage for the branch instruction, it turns out to be a taken branch :

At the end of the IF stage, branch target buffer will do nothing, the instruction

fetcher in CPU will update the program counter to the next sequential PC by

adding a word size to the PC. At the end of the ID stage for the branch instruction,

it turns out that the prediction 1 clock cycle ago is incorrect. The branch

processing unit in CPU will update branch prediction bits of the branch entry in

branch target buffer, while the instruction fetcher in CPU will kill fetched

instruction at IF pipe stage, and start fetching the calculated branch target address

at the start of the next clock cycle.

 5

The branch penalty in this case is 1 clock cycle.

Summary for the interrelationship among BTB, instruction memory and CPU :

1. When an entry is found in branch target buffer and its prediction is taken,

branch target buffer will update the program counter.

2. When there is no entry found in branch target buffer or an entry is found but its

prediction is not-taken, the instruction fetcher in CPU will update the program

counter to the next sequential PC by adding a word size to the PC.

When a branch instruction is resolved at the end of ID stage, the branch processing

unit in CPU will do the following things : updating branch target buffer (including

entering a new entry or updating an existing entry) if necessary, flushing the instructions

in the wrong path and updating the program counter when the current path is wrong.

1.1.4 Zero-Transition (T0) Bus Encoding Technique

T0 encoding technique [7] makes use of the characteristic of program sequential

execution to reduce switch activity on instruction address bus. T0 adds a control line

called INC (see Figure 1.1). If the address is consecutive to the previous one, sender

asserts INC line and freezes the bus. Otherwise, sender de-asserts INC line and address is

transmitted on the bus.

Figure 1.1 Diagram of T0 encoding

1.1.5 T0 with Discontinuous Address Table Bus Encoding Technique [8]

This approach is based on T0 encoding technique and adds a discontinuous address

table in both encoder and decoder to record the address pairs that are sent in sequence

but with discontinuous values. When two instruction addresses to be transmitted are

found in DAT table or not found but consecutive, sender asserts INC line and freezes the

 6

bus. Otherwise, sender de-asserts INC line and address is transmitted on the bus (see

Figure 1.2). This approach reduces most of address transmission for taken branch

execution, but Content-Addressable-Memory (CAM) is required in both encoder and

decoder.

Figure 1.2 Diagram of T0 DAT encoding

1.2 Research Motivation
What we observe from BTB operation is as follows :

1. PC sent to instruction memory is certified by BTB : Branch target or PC+1 word

size

2. Action of PC+1 word size is not necessary to be done in CPU

3. When program has been executed for a while, BTB will become steady. Under

such “BTB warm up” situation, BTB rarely needs CPU intervention

That is to say, the useful information that CPU passes on to BTB is the result of

branch instruction while the useful information that BTB passes on to instruction

memory is program counter certified by BTB. The former information is much less than

the latter one which comes up every clock cycle.

Under such observation, it may be reasonable to move dynamic branch predictor

from CPU to instruction memory side. Such brand-new instruction memory concept can

be named “Intelligent Autonomous Instruction Memory” (or called “iAIM” for brevity)

due to its program flow tracing capability.

1.3 Research Objective
After applying iAIM concept to conventional computer system design, total

execution time, BTB accuracy and Reduction in bus traffic (it includes percentage of

reduced instruction address bus active cycles and percentage of reduced bit transitions)

 7

are evaluation metrics on achievement in objective.

Energy conservation on instruction address bus will be evaluated from “bus active

cycles” and “bit transitions on bus” metrics indirectly. The evaluation results of

conventional design with T0 encoding and with T0 DAT encoding technique under the

same BTB organization are given as contrasts.

1.4 Organization of this Thesis
The rest of this thesis is organized as follows. Chapter 2 explains the design detail

of iAIM and two other enhanced designs. Chapter 3 presents evaluation methodology,

experiment results and discussion. Conclusion and future works are then provided in

Chapter 4.

 8

Chapter 2 Design of Proposed Architecture

The design of Intelligent Autonomous Instruction Memory is discussed in this chapter.

Section 2.1 and section 2.2 introduce challenges and key ideas in design. Section 2.3 shows

the detail of proposed design. Section 2.4 and section 2.5 shows two other enhanced designs.

2.1 Challenges in Design
When branch target buffer is removed from CPU to instruction memory, problems

of program flow and BTB maintenance are introduced and need to be solved :

1. How CPU can know branch prediction is correct or not in iAIM.

 2. How to enter, update BTB entries in iAIM, that means BTB maintenance can not be

handled in CPU directly.

3. How iAIM can know when to use self-generated address and when to use the value

on instruction address bus prepared by CPU due to wrong branch prediction or

changing target branch.

4. How iAIM can know to pipeline stall happens and keep fetching the same instruction

used in previous clock cycle.

2.2 Key Ideas in Design
In conventional architecture, BTB will update program counter in CPU when a

predictive taken branch is found. On the contrary, because BTB is inside iAIM, it can

not update program counter of CPU. Therefore, it is necessary to add at least one

control signal line that iAIM uses to inform CPU of its branch prediction. Similarly,

when branch prediction of BTB in iAIM is wrong or some situation like procedure

return happens, CPU needs at least one control signal line to inform iAIM of actual

branch result and provide correct PC value so that iAIM can supply correct instruction

to CPU and do BTB maintenance. Figure 2.1 and Figure 2.2 show block diagrams of

conventional architecture and iAIM design respectively.

 9

Figure 2.1 Block diagram of conventional architecture

Figure 2.2 Block diagram of iAIM design

 Key ideas to implement iAIM design are discussed as follows.

Firstly (Idea 1), iAIM must have instruction address automatic generation

mechanism.

Because the philosophy of iAIM is to reduce instruction address traffic

between CPU and instruction memory to a minimum, iAIM always tries to generate

the next fetched instruction address by itself.

With help of BTB inside iAIM, the branch target address is supplied by BTB

when a branch entry is found in BTB and its prediction is taken; otherwise, current

used program counter value plus a word size is used at the next coming clock cycle.

Therefore, a PC incrementer that that adds a word size to the current PC value is

necessary. Figure 2.3 shows automatic instruction address generator inside iAIM.

 10

Figure 2.3 Automatic instruction address generator inside iAIM

Secondly (Idea 2), iAIM needs to inform CPU of branch prediction result.

In MIPS pipeline, when a branch entry is found in BTB of iAIM and its

prediction is taken, on the next coming clock cycle, iAIM needs to assert a signal to

inform CPU that the instruction address used is already replaced by branch target

address, not the next sequential PC. At the end of the next coming clock cycle, CPU

will resolve the result of branch and know the prediction is correct or not. If the

prediction is not correct, CPU needs to take some action to force iAIM to use

correct instruction address.

The proposed signal that iAIM uses to inform CPU is one control line called

“Predict Taken”, or “P-Taken” control line for brevity hereafter :

When a branch entry is found at current clock cycle, this signal is set to 1 at the

next coming clock cycle; otherwise, it is set to 0. Figure 2.4 shows this control line

that iAIM uses to inform CPU.

Figure 2.4 Control line that iAIM uses to inform CPU

 Thirdly (Idea 3), CPU needs to force iAIM to use correct instruction address

 11

when iAIM’s branch prediction is wrong.
In MIPS pipeline, when a branch instruction is resolved at ID stage in CPU,

CPU will check if iAIM asserts “P-Taken” line to 1 or not at current clock cycle :

If the prediction is wrong, at the next coming clock cycle CPU will prepare

correct instruction address on instruction address bus and inform iAIM of “Wrong

Prediction” situation to indicate that branch prediction 2 clock cycles ago is wrong

and the instruction address on instruction address bus should be used.

Fourthly (Idea 4), CPU always forces iAIM to use correct instruction address

after changing target branch is resolved.

After changing target branch is resolved, CPU will prepare correct instruction

address on instruction address bus and inform iAIM of “Compulsory” situation to

indicate iAIM to use the instruction address on instruction address bus at current

clock cycle.

Fifthly (Idea 5), CPU needs to inform iAIM of the pipeline stall situation.

When pipeline stall happens in conventional architecture, the same instruction

address as the one used at last clock cycle will be sent to instruction memory. The

reason that CPU needs to inform iAIM of “Pipeline Stall” situation is iAIM has its

own instruction address auto-generation mechanism. Such mechanism should cease

functioning when pipeline stall happens.

Sixthly (Idea 6), Idea 3, Idea 4 and Idea 5 deal with the situations that iAIM

can not use the instruction address generated by its instruction address

auto-generation mechanism. CPU needs inform iAIM of “Autonomous” situation to

indicate iAIM to use the instruction address generated by its instruction address

auto-generation mechanism. This situation also help do BTB maintenance when

CPU finds branch prediction in iAIM.

Summarized from idea 3 to idea 6, there are 4 kinds of situations that CPU

uses to inform iAIM. In situations of Idea 3 and Idea 4, CPU prepares the

instruction address on instruction address bus, and iAIM is forced to use the

instruction address on instruction address bus on. In situation of Idea 5, CPU

freezes instruction address bus and iAIM uses the same the instruction address as

 12

the one used at last clock cycle. In situation of Idea 6, CPU freezes instruction

address bus and iAIM uses the instruction address generated by its instruction

address auto-generation mechanism. Two control lines (called “Situation

Indication” or “S-Indicate” control lines for brevity hereafter) can be used for CPU

to inform iAIM of one of 4 kinds of situations at the beginning of every clock

cycle :

00 for “Autonomous” situation,

01 for “Pipeline Stall” situation,

10 for “Wrong Prediction” situation,

11 for “Compulsory” situation.

Figure 2.5 shows S-Indicate control lines that CPU uses to inform iAIM.

Figure 2.5 S-Indicate control lines that CPU uses to inform iAIM

Seventhly (Idea 7), in order to maintain original BTB operation, two additional

34-bit registers organized as FIFO are necessary :

1. First 34-bit register that store information in iAIM 1 colck cycle ago consists

of the following fields :

 32-bit field that stores PC used 1 clock cycles ago (called “PCt-1” for

brevity),

1bit field that stores branch entry found in BTB or not 1 clock cycle ago

(called “InBTBt-1” for brevity),

1bit field that stores taken branch predicted by BTB or not 1 clock cycle ago

(called “PTakent-1” for brevity).

 13

2. Second 34-bit register that store information in iAIM 2 colck cycle ago

consists of the following fields :

32-bit field that stores PC used 2 clock cycles ago (called “PCt-2” for

brevity),

1bit field that stores branch entry found in BTB or not 2 clock cycle ago

(called “InBTBt-2” for brevity),

1bit field that stores taken branch predicted by BTB or not 2 clock cycle ago

(called “PTakent-2” for brevity).

If a branch instruction enters IF stage at the first clock, CPU will inform iAIM

of either “Autonomous” or “Wrong Prediction” situation at the third clock cycle.

BTB operation in iAIM is the same as the description of section 1.1.3 in Chapter 1 :

When CPU informs iAIM of “Wrong Prediction” situation at the third clock

cycle, there are 2 cases :

Case 1 : InBTBt-2 is 1,

 Use PCt-2 as index to do searching in BTB and update its “predictor”

field according to PTakent-2 :

 If PTakent-2 is 1, update this field toward not-taken direction.

 If PTakent-2 is 0, update this field toward taken direction.

Case 2 : InBTBt-2 is 0,

 It means no such entry exists in BTB. Enter a new entry into BTB

with its initial values listed as below :

“valid bit” field is set to 1,

“branch instruction address” field is set to PCt-2,

“branch target address” field is set to the value on instruction address

bus,

“predictor” field is set to the initialized value according to adopted

n-bit prediction scheme (it may be weakly-taken in 2 bit prediction

scheme).

When CPU informs iAIM of “Autonomous” situation at the third clock cycle,

there are 2 cases :

Case 1 : InBTBt-2 is 1,

 14

 Use PCt-2 as index to do searching in BTB and update its “predictor”

field according to PTakent-2 :

 If PTakent-2 is 1, update this field toward taken direction.

 If PTakent-2 is 0, update this field toward not-taken direction.

Case 2 : InBTBt-2 is 0,

 Do nothing in BTB. Because a not-taken branch will not be entered

into BTB if it does not exits before.

 15

2.3 Proposed Design of iAIM
 On the basis of key ideas discussed in 2.2, the minimum indispensable elements of

Intelligent Autonomous Instruction Memory Design can be derived.

1. Additional control bus between CPU and iAIM

1) One control line for iAIM to inform CPU of predicting taken(called “Predict

Taken” or “P-Taken” control line)

2) Two control lines for CPU to inform iAIM of one of 4 kinds of situations(called

“Situation Indication” or “S-Indiacte” control lines) :

00 for “Autonomous” situation,

01 for “Pipeline Stall” situation,

10 for “Wrong Prediction” situation,

11 for “Compulsory” situation.

Figure 2.6 shows buses between CPU and iAIM.

Figure 2.6 Buses between CPU and iAIM

2. Additional circuit in iAIM

1) A incrementer called “PC Incrementer” that add PC used at last clock cycle by a

word size is used to generate next sequential instruction address.

2) A multiplexer called “PC MUX” is used to select one of 4 kinds of instruction

address sources :

i. Last PC plus a word size for sequential execution,

ii. Branch target address for BTB’s taken branch prediction,

 16

iii. Last PC for pipeline stall,

iv. Compulsory PC address sent from CPU.

3) Two 34-bit Registers are organized as FIFO as follows :

i. First 34-bit register that store information in iAIM 1 colck cycle ago consists

of the following fields :

 32-bit field that stores PC used 1 clock cycles ago (called “PCt-1” for

brevity),

 1bit field that stores branch entry found in BTB or not 1 clock cycle ago

(called “InBTBt-1” for brevity),

1bit field that stores taken branch predicted by BTB or not 1 clock cycle ago

(called “PTakent-1” for brevity).

ii. Second 34-bit register that store information in iAIM 2 colck cycle ago

consists of the following fields :

32-bit field that stores PC used 2 clock cycles ago (called “PCt-2” for

brevity),

 1bit field that stores branch entry found in BTB or not 2 clock cycle ago

(called “InBTBt-2” for brevity),

1bit field that stores taken branch predicted by BTB or not 2 clock cycle ago

(called “PTakent-2” for brevity).

Figure 2.7 shows additional circuit in iAIM.

 17

Figure 2.7 Additional circuit in iAIM

3. Control signal description

1) From iAIM to CPU :

There is a “P-Taken” control line used to inform CPU of taken branch

prediction in iAIM.

The algorithm of its sending timing is described as below.

 18

2) Form CPU to iAIM :

There are 4 kinds of situations “Autonomous”, “Pipeline Stall”, “Wrong

Prediction”, “Compulsory” used to inform iAIM of various situations detected

in CPU.

 19

 20

4. Action algorithm of CPU

 21

5. Action algorithm of iAIM

 22

 23

2.4 Proposed Design of Enhanced iAIM with Partial Decoder
 In design proposed in section 2.3, when CPU finds branch prediction in iAIM is

wrong, it needs to prepare corrected address on instruction address bus at the next clock

cycle. This does increase bit transitions on instruction address bus and can be avoided if

the design proposed in section 2.3 is further enhanced with a partial decoder.

 The design idea of partial decoder is described as below :

 Partial decoder is capable of identifying branch instruction (including J, JAL) and

calculating its branch target address and fall-through address by associating simple

logics.

 When iAIM is instructed by CPU with “S-Indicate” control lines equaling 0b10

(“Wrong Prediction”), it will check PTakent-2 value :

If PTakent-2 equals 0b1, iAIM uses fall-through address calculated 2 clock cycles

ago. Otherwise, it uses branch target address calculated 2 clock cycles ago.

1. Additional circuit in enhanced iAIM with partial decoder

1) A partial decoder (called “PD” for brevity): After instruction is fetched by

instruction memory, this instruction is not only sent to instruction data bus bus

also sent to PD. PD is capable of identifying branch instruction (including J,

JAL) and calculating its branch target address and fall-through address by

associating simple logics before the end of clock cycle.

2) Two registers are required to stores calculated branch target address and

fall-through address as follows :

i. A register stores branch target address (called “Target” for brevity),

ii. A register stores fall-through address (called “FallThru” for brevity).

Figure 2.8 shows action timing of partial decoder.

 24

Figure 2.8 Action timing of partial decoder

3) A multiplexer called “PC MUX” is augmented to select additional 2 kinds of

instruction address sources :

v. Target,

vi. FallThru.

Figure 2.9 shows additional circuit in enhanced iAIM with partial decoder

 25

Figure 2.9 Additional circuit in enhanced iAIM with partial decoder

2. Control signal description

1) From iAIM to CPU :

The same as the one in section 2.3.

2) Form CPU to iAIM :

The same as the one in section 2.3 except underscored words in case 4.

 26

3. Action algorithm of CPU

The same as the one in section 2.3 except underscored words.

 27

 28

4. Action algorithm of iAIM

The same as the one in section 2.3 except underscored words.

 29

 30

 31

2.5 Proposed Design of Enhanced iAIM with Partial Decoder and Return
Stack

 The design proposed in section 2.4 can be further enhanced by implementing return

stack inside iAIM. The purpose of equipping iAIM with return stack is to eliminate

target address traffic due to procedure return instructions which occupy most portion of

changing target branches.

 The design idea of return stack is described as below :

 Partial decoder is augmented to be capable of identifying procedure call instructions

(JAL and JALR) and procedure return instructions (JR to r31).

 When a procedure call instruction is resolved in partial decoder, the instruction

address following the procedure call instruction is pushed into return stack.

 When a procedure return instruction is resolved in partial decoder, the instruction

address used at the next clock cycle is popped from return stack.

The following design has an assumption that the size of return stack is big enough

to accommodate the maximum depth of procedure call for all applications running on it.

 In reality, return stack can not be infinite. In the end of this section, one of a workable

mechanism to deal with finite return stack will be proposed.

 Figure 2.10 shows action timing and algorithm for procedure call handling. Figure

2.11 shows action timing and algorithm for procedure return handling.

Figure 2.10 Action timing and algorithm for procedure call handling

 32

Figure 2.11 Action timing and algorithm for procedure return handling

1. Additional circuit in enhanced iAIM with partial decoder and return stack

1) A return stack (called “RS” for brevity)

2) A partial decoder (called “PD” for brevity) described in section 2.4 is enhanced :

After instruction is fetch by instruction memory, this instruction is sent to PD.

PD is capable of identifying procedure call instructions (JAL and JALR) and

procedure return instructions (JR to r31) . When a procedure call instruction is

resolved, PD pushes the instruction address following the procedure call

instruction into RS. When a procedure return instruction is resolved, the

instruction address used at the next clock cycle is popped from RS.

3) A multiplexer called “PC MUX” is augmented to select additional 1 kind of

instruction address source :

vii. top entry of RS

Figure 2.12 shows additional circuit in enhanced iAIM with partial decoder and return

stack.

 33

Figure 2.12 Additional circuit in enhanced iAIM with partial decoder and return stack

 34

2. Control signal description

1) From iAIM to CPU :

The same as the one in section 2.3.

2) Form CPU to iAIM :

The same as the one in section 2.4 except underscored words in case 2.

3. Action algorithm of CPU

The same as the one in section 2.4 except underscored words.

 35

 36

4. Action algorithm of iAIM

The same as the one in section 2.4 except underscored words.

 37

 38

 For research purpose, the above design assumes return stack is big enough to

accommodate the maximum procedure depth of applications running on the processor. In

reality, return stack has limited entries, more procedure calls than return stack entries can

 39

corrupt return stack, which may be implemented as a finite depth push-down stack.

Figure 2.13 shows scenario of return stack overflow in a finite depth push-down stack.

Thereafter, corresponding procedure returns cause underflow by popping empty stack

(see [9]). Some researches have proposed the backup storage solution to augment limited

return stack size to very large number. And some research (in [9]) has proposed the

protection mechanism to prevent “underflow” problem either in return stack and backup

storage.

 A simple proposed solution to deal with “underflow” in proposed design of section

2.5 with finite return stack size is described as below :

 1. iAIM needs to inform CPU by some control signal when a procedure return

instruction is resolved but the return stack is empty. “P-Taken” control line can be

used because branch instruction and procedure return instruction are mutually

exclusive. When return stack underflow happens, iAIM asserts “P-Taken” control line

to 1 at the next clock cycle.

 2. When CPU finds iAIM asserts “P-Taken” control line to 1 and at the same clock cycle

a procedure return instruction is resolved, CPU will set “S-Indicate” control lines to

indicate “Compulsory” situation and prepare the return address on instruction address

at the beginning of the next clock cycle.

 3. iAIM will use the return address on instruction address when CPU sets “S-Indicate”

control lines to indicate “Compulsory” situation.

Figure 2.13 Scenario of return stack overflow in a finite depth push-down stack

 40

2.6 Design Restriction and Execution Examples
 Top-level instruction memory in proposed designs is assumed to have the same

clock rate with CPU. Although not all sorts of memory are clock-aware, all self-managed

multi-power mode memories are now equipped with clock signals. For example,

DRAMs are clocked always. The only restriction in iAIM design is how to synchronize

memory clock with CPU’s.

 In order to illustrate the validity of iAIM design, a representative scenario of

instruction execution is taken as an example :

 There are a part of instructions in a program which comprise 2 branch instructions

B1, B2 and other instructions S1, S2, S3, … In this execution scenario, B1 is not taken

and B2 is taken.

 B1 (address : 0x80000400, branch target : 0x80000a00, not-taken in this scenario)

 B2 (address : 0x80000404, branch target : 0x80000800, taken in this scenario)

 S1 (address : 0x80000408)

 …

 S2 (address : 0x80000800)

S3 (address : 0x80000804)

…

S4 (address : 0x80000a00)
 …

 There are 4 possible cases of instruction execution flow in iAIM design depending
on BTB’s prediction :

1. B1 is predicted not-taken, B2 is predicted taken :

In this case, both B1 and B2 are correctly predicted by BTB in iAIM.

2. B1 is predicted not-taken, B2 is predicted not-taken :

In this case, B1 is correctly predicted but B2 is incorrectly predicted by BTB in
iAIM. Penalty of 1 clock cycles is incurred.

3. B1 is predicted taken, B2 is predicted taken :

In this case, B1 is incorrectly predicted but B2 is correctly predicted by BTB in
iAIM. Penalty of 1 clock cycles is incurred.

 41

4. B1 is predicted taken, B2 is predicted not-taken :

In this case, B1 and B2 are all incorrectly predicted by BTB in iAIM. Penalty of
2 clock cycles is incurred.

 Execution detail of iAIM design in the first case (B1 is predicted not-taken, B2 is
predicted taken) is shown below :

Actions taken in CPU Clock

Cycle
PC used

In CPU
PC used

in iAIM
Control

Signal

S-

Indicate

Control

Signal

P-

Taken

Actions taken in iAIM

1) Before the end of clock cycle, CPU resolves the

instruction(address 0x800003FC) is not a branch

instruction, CPU will set S-Indicate to 0b00 at next

clock cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

X 0x80000400 0x80000400 0 0 0

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current

PC is a not taken branch. iAIM will set P-Taken to 0

at next clock cycle.

3) Next self-generated PC in iAIM will be current PC

plus 4.

1) Before the end of clock cycle, CPU resolves the

instruction(address 0x80000400) is a not-taken

branch. Because iAIM doesn’t set P-Taken to 1 at

current clock cycle, CPU finds BTB prediction in

iAIM at last clock cycle was correct. CPU will set

S-Indicate to 0b00 at next clock cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

X+1 0x80000404 0x80000404 0 0 0

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current

PC is a taken branch. iAIM will set P-Taken to 1 at

next clock cycle.

3) Next self-generated PC in iAIM will be branch

target address.

 42

1) Before the end of clock cycle, CPU resolves the

instruction(address 0x80000404) is a taken branch.

Because iAIM sets P-Taken to 1 at current clock

cycle, CPU finds BTB prediction in iAIM at last

clock cycle was correct. CPU will set S-Indicate to

0b00 at next clock cycle.

2) Next PC used in CPU will be updated to branch

target address plus 4.

X+2 0x80000408 0x80000800 0 0 1

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) iAIM updates an entry in BTB when a not-taken

branch was found in BTB 2 clock cycles ago :

source is PC used in iAIM 2 clock cycles ago, target

is address on instruction address bus, direction is

not-taken.

3) Before the end of clock cycle, BTB predicts current

PC is not a branch. iAIM will set P-Taken to 0 at

next clock cycle.

4) Next self-generated PC in iAIM will be current PC

plus 4.

1) Before the end of clock cycle, CPU resolves the

instruction(address 0x80000800) is not a branch.

CPU will set S-Indicate to 0b00 at next clock cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

X+3 0x80000804 0x80000804 0 0 0

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) iAIM updates an entry in BTB : source is PC used in

iAIM 2 clock cycles ago, target is address on

instruction address bus, direction is taken.

3) Before the end of clock cycle, BTB finds current

PC is not a branch. iAIM will set P-Taken to 0 at

next clock cycle.

4) Next self-generated PC in iAIM will be current PC

plus 4.

Execution detail of iAIM design in the second case (B1 is predicted not-taken, B2 is
predicted not-taken) is shown below :

 43

Actions taken in CPU Clock

Cycle
PC used

In CPU
PC used

in iAIM
Control

Signal

S-

Indicate

Control

Signal

P-

Taken

Actions taken in iAIM

1) Before the end of clock cycle, CPU resolves the

instruction(address 0x800003FC) is not a branch

instruction, CPU will set S-Indicate to 0b00 at next

clock cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

X 0x80000400 0x80000400 0 0 0

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current

PC is a not taken branch. iAIM will set P-Taken to 0

at next clock cycle.

3) Next self-generated PC in iAIM will be current PC

plus 4.

1) Before the end of clock cycle, CPU resolves the

instruction(address 0x80000400) is a not-taken

branch. Because iAIM doesn’t set P-Taken to 1 at

current clock cycle, CPU finds BTB prediction in

iAIM at last clock cycle was correct. CPU will set

S-Indicate to 0b00 at next clock cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

X+1 0x80000404 0x80000404 0 0 0

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current

PC is a not-taken branch. iAIM will set P-Taken to 0

at next clock cycle.

3) Next self-generated PC in iAIM will be current PC

plus 4.

X+2 0x80000408 0x80000408 0 0 0 1) Before the end of clock cycle, CPU resolves the

instruction(address 0x80000404) is a not-taken

branch. Because iAIM doesn’t set P-Taken to 1 at

current clock cycle, CPU finds BTB prediction in

iAIM at last clock cycle was incorrect. CPU will set

S-Indicate to 0b10 at next clock cycle.

 44

2) Next PC used in CPU will be updated to branch

target address.

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) iAIM updates an entry in BTB when a not-taken

branch was found in BTB 2 clock cycles ago :

source is PC used in iAIM 2 clock cycles ago, target

is address on instruction address bus, direction is

not-taken.

3) Before the end of clock cycle, BTB predicts current

PC is not branch. iAIM will set P-Taken to 0 at next

clock cycle.

4) Next self-generated PC in iAIM will be current PC

plus 4.

1) iAIM starts fetching correct address at current cycle,

there is no instruction to be decoded in ID stage of

CPU. CPU will set S-Indicate to 0b00 at next clock

cycle.

2) Next PC used in CPU will be updated to current PC

plus address plus 4.

X+3 0x80000800 0x80000800 1 0 0

1) Because S-Indicate is set to 0b10, iAIM uses address

on instruction address bus as its PC.

2) iAIM inserts an entry into BTB when PC used in

iAIM 2 clock cycles ago was not found in BTB,

updates a entry in BTB otherwise : source is PC used

in iAIM 2 clock cycles ago, target is address on

instruction address bus, direction is taken.

3) Before the end of clock cycle, BTB predicts current

PC is not a branch. iAIM will set P-Taken to 0 at

next clock cycle.

4) Next self-generated PC in iAIM will be current PC

plus 4.

X+4 0x80000804 0x80000804 0 0 0 1) Before the end of clock cycle, CPU resolves the

instruction(address 0x80000800) is not a branch.

CPU will set S-Indicate to 0b00 at next clock cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

 45

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) Before the end of clock cycle, BTB finds current

PC is not a branch. iAIM will set P-Taken to 0 at

next clock cycle.

3) Next self-generated PC in iAIM will be current PC

plus 4.

Execution detail of iAIM design in the third case (B1 is predicted taken, B2 is
predicted taken) is shown below :

Actions taken in CPU Clock

Cycle
PC used

In CPU
PC used

in iAIM
Control

Signal

S-

Indicate

Control

Signal

P-

Taken

Actions taken in iAIM

1) Before the end of clock cycle, CPU resolves the

instruction(address 0x800003FC) is not a branch

instruction, CPU will set S-Indicate to 0b00 at next

clock cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

X 0x80000400 0x80000400 0 0 0

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current

PC is a taken branch. iAIM will set P-Taken to 1 at

next clock cycle.

3) Next self-generated PC in iAIM will be branch

target address.

X+1 0x80000404 0x80000a00 0 0 1 1) Before the end of clock cycle, CPU resolves the

instruction(address 0x80000400) is a not-taken

branch. Because iAIM sets P-Taken to 1 at current

clock cycle, CPU finds BTB prediction in iAIM at

last clock cycle was incorrect. CPU will set

S-Indicate to 0b10 at next clock cycle.

2) Next PC used in CPU will be the same with current

PC.

 46

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current

PC is not a branch. iAIM will set P-Taken to 0 at

next clock cycle.

3) Next self-generated PC in iAIM will be current PC

plus 4.

1) iAIM starts fetching correct address at current cycle,

there is no instruction to be decoded in ID stage of

CPU. CPU will set S-Indicate to 0b00 at next clock

cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

X+2 0x80000404 0x80000404 1 0 0

1) Because S-Indicate is set to 0b10, iAIM uses

address on instruction address bus as its PC.

2) iAIM updates an entry in BTB : source is PC used in

iAIM 2 clock cycles ago, target is address on

instruction address bus, direction is not-taken.

3) Before the end of clock cycle, BTB predicts current

PC is a taken branch. iAIM will set P-Taken to 1 at

next clock cycle.

4) Next self-generated PC in iAIM will be branch

target address.

1) Before the end of clock cycle, CPU resolves the

instruction(address 0x80000404) is a taken branch.

Because iAIM does set P-Taken to 1 at current clock

cycle, CPU finds BTB prediction in iAIM at last

clock cycle was correct. CPU will set S-Indicate to

0b00 at next clock cycle.

2) Next PC used in CPU will be updated to branch

target address plus 4.

X+3 0x80000408 0x80000800 0 0 1

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current

PC is not a branch. iAIM will set P-Taken to 0 at

next clock cycle.

3) Next self-generated PC in iAIM will be current PC

plus 4.

 47

1) Before the end of clock cycle, CPU resolves the

instruction(address 0x80000800) is not a branch.

CPU will set S-Indicate to 0b00 at next clock cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

X+4 0x80000804 0x80000804 0 0 0

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) iAIM updates an entry in BTB : source is PC used in

iAIM 2 clock cycles ago, target is address on

instruction address bus, direction is taken.

3) Before the end of clock cycle, BTB finds current

PC is not a branch. iAIM will set P-Taken to 0 at

next clock cycle.

4) Next self-generated PC in iAIM will be current PC

plus 4.

Execution detail of iAIM design in the fourth case (B1 is predicted taken, B2 is
predicted not-taken) is shown below :

Actions taken in CPU Clock

Cycle
PC used

In CPU
PC used

in iAIM
Control

Signal

S-

Indicate

Control

Signal

P-

Taken

Actions taken in iAIM

1) Before the end of clock cycle, CPU resolves the

instruction(address 0x800003FC) is not a branch

instruction, CPU will set S-Indicate to 0b00 at next

clock cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

X 0x80000400 0x80000400 0 0 0

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current

PC is a taken branch. iAIM will set P-Taken to 1 at

next clock cycle.

3) Next self-generated PC in iAIM will be branch

target address.

X+1 0x80000404 0x80000a00 0 0 1 1) Before the end of clock cycle, CPU resolves the

instruction(address 0x80000400) is a not-taken

branch. Because iAIM sets P-Taken to 1 at current

 48

clock cycle, CPU finds BTB prediction in iAIM at

last clock cycle was incorrect. CPU will set

S-Indicate to 0b10 at next clock cycle.

2) Next PC used in CPU will be the same with current

PC.

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current

PC is not a branch. iAIM will set P-Taken to 0 at

next clock cycle.

3) Next self-generated PC in iAIM will be current PC

plus 4.

1) iAIM starts fetching correct address at current cycle,

there is no instruction to be decoded in ID stage of

CPU. CPU will set S-Indicate to 0b00 at next clock

cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

X+2 0x80000404 0x80000404 1 0 0

1) Because S-Indicate is set to 0b10, iAIM uses

address on instruction address bus as its PC.

2) iAIM updates an entry in BTB : source is PC used in

iAIM 2 clock cycles ago, target is address on

instruction address bus, direction is not-taken.

3) Before the end of clock cycle, BTB predicts current

PC is a not-taken branch. iAIM will set P-Taken to 0

at next clock cycle.

4) Next self-generated PC in iAIM will be current PC

plus 4.

X+3 0x80000408 0x80000408 0 0 0 1) Before the end of clock cycle, CPU resolves the

instruction(address 0x80000404) is a taken branch.

Because iAIM doesn’t set P-Taken to 1 at current

clock cycle, CPU finds BTB prediction in iAIM at

last clock cycle was incorrect. CPU will set

S-Indicate to 0b10 at next clock cycle.

2) Next PC used in CPU will be updated to branch

target address.

 49

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) Before the end of clock cycle, BTB predicts current

PC is not a branch. iAIM will set P-Taken to 0 at

next clock cycle.

3) Next self-generated PC in iAIM will be current PC

plus 4.

1) iAIM starts fetching correct address at current cycle,

there is no instruction to be decoded in ID stage of

CPU. CPU will set S-Indicate to 0b00 at next clock

cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

X+4 0x80000800 0x80000800 1 0 0

1) Because S-Indicate is set to 0b10, iAIM uses address

on instruction address bus as its PC.

2) iAIM inserts an entry into BTB when PC used in

iAIM 2 clock cycles ago was not found in BTB,

updates a entry in BTB otherwise : source is PC used

in iAIM 2 clock cycles ago, target is address on

instruction address bus, direction is taken.

3) Before the end of clock cycle, BTB predicts current

PC is not a branch. iAIM will set P-Taken to 0 at

next clock cycle.

4) Next self-generated PC in iAIM will be current PC

plus 4.

1) Before the end of clock cycle, CPU resolves the

instruction(address 0x80000800) is not a branch.

CPU will set S-Indicate to 0b00 at next clock cycle.

2) Next PC used in CPU will be updated to current PC

plus 4.

X+5 0x80000804 0x80000804 0 0 0

1) Because S-Indicate is set to 0b00, iAIM uses

self-generated address as its PC.

2) Before the end of clock cycle, BTB finds current

PC is not a branch. iAIM will set P-Taken to 0 at

next clock cycle.

3) Next self-generated PC in iAIM will be current PC

plus 4.

 50

Chapter 3 Evaluation and Discussion

Proposed designs in Chapter 2 are evaluated by trace-driven simulator. The benchmark

suit is a subset of MiBench [10], which is a benchmark suite for embedded programs. The

results are evaluated by four metrics : total execution cycles, BTB accuracy, percentage of

reduced instruction address bus active cycles, percentage of reduced bit transitions.

3.1 Evaluation Methodology
Since proposed designs in Chapter 2 are system-level innovation in computer

architecture, behavioral simulation like trace-driven simulator can be a suitable approach to

prove how many benefits such innovation gains compared with conventional architecture.

Proposed designs are evaluated by a trace-driven simulator. Since proposed designs in

this thesis are based on classic MIPS five-stage pipeline, my simulator uses MIPS I

instruction trace as key input.

My trace-driven simulator accepts the following parameters as its input :

1. Architecture : conventional architecture, conventional architecture plus T0 encoding,

proposed design of iAIM, proposed design of enhanced iAIM with

partial decoder, and proposed design of enhanced iAIM with partial

decoder and return stack.

2. BTB configuration : Perfect BTB (it consists of 2 properties. First, after a taken branch

is first allocated into BTB, its prediction afterwards will be always

correct. Second, any allocated entry in BTB will never be replaced.),

2048/4way/LRU (it means 2048 entries in 4-way set-associative BTB

with Least Recently Used replacement algorithm), and 32/4way/LRU

(it means 32 entries in 4-way set-associative BTB with Least Recently

Used replacement algorithm).

 3. MIPS I instruction trace of benchmark program.

 My trace-driven simulator will records bit transitions for every line of instruction address

bus and addition control lines (conventional architecture has no additional control line;

 51

conventional architecture plus T0-encoding and conventional architecture plus T0-DAT

encoding have one additional control line, our 3 proposed designs of iAIM has 3 addition

control lines) at every clock cycle during MIPS I instruction trace is being fed.

After finishes execution, my simulator will output the following data :

1. Total execution cycles

2. BTB accuracy

3. Instruction address bus active cycles.

 4. Total bit transitions on instruction address bus and control line(s).

 5. Total bit transitions on instruction address bus.

6. Total bit transitions on control line(s).

 After collecting all statistics of selected benchmark programs, we have enough data to do

evaluation on proposed designs. The evaluation metrics are listed in next section.

3.2 Evaluation Metrics
 In this thesis, the following metrics are used to evaluate proposed designs of iAIM:

 Total execution cycles

This metric is used to indicate whether proposed designs suffer performance loss

due to longer execution time compared with conventional architecture.

 BTB accuracy

This metric is used to indicate whether proposed designs suffer loss in branch

prediction accuracy due to poorer BTB accuracy compared with conventional

architecture.

 Percentage of reduced instruction address bus active cycles

This value is defined as :

 52

(Total execution cycles－Instruction address bus active cycles) / Total execution

cycles

If this value is high, it means instruction address bus is frozen most of the time. This

metric can effectively be used to evaluate bus power consumption indirectly due to

coupling capacitance.

 Percentage of reduced bit transitions

This value is defined as :

(Total bit transitions in conventional architecture with the same BTB configuration
－Total bit transitions) / (Total bit transitions in conventional architecture with the

same BTB configuration)

If this value is high, it means number of total bit transitions is small. This metric can

effectively be used to evaluate bus power consumption indirectly due to

self-capacitance.

3.3 Experimental Environment
 The experimental toolset MIPS SDE / MIPS FGT 5.02.02 [11] is used to generate

MIPS I instruction trace for benchmark programs :

 Install MIPS SDE / MIPS FGT 5.02.02.

 Use command “sde-make SBD=GSIM1B” to build MIPS I code (benchmark_ram)

of benchmark program for GNU simulator platform.

 Use command “sde-run --trace-insn=on --trace-file trace_filename benchmark_ram”

to generate MIPS I instruction trace file.

Since delay branch slot is always applied in GNU simulator platform, the generated

trace file needs to be modified to remove delay branch slot for all branch and jump

instructions.

The modified trace file is then fed into trace simulator by specifying various

parameters like BTB configuration (perfect BTB or not, the number of

entries/set-associativity/replacement algorithm of BTB), return stack configuration

(return stack is used or not), and selected design (conventional architecture, conventional

 53

architecture with T0 encoding, conventional architecture with T0-DAT encoding,

proposed design of iAIM, proposed design of iAIM with partial decoder and proposed

design of iAIM with partial decoder and return stack). Figure 3.1 shows the flowchart of

simulation.

Figure 3.1 Simulation flowchart

 54

3.4 Experimental Benchmark
 The benchmark programs selected are a subset of MiBench [10], which is a

benchmark suite consisting of commercially representative embedded programs.

MiBench consists of 6 categories including Automotive and Industrial Control, Network,

Security, Consumer Devices, Office Automation, and Telecommunications. In each

category, at least one benchmark is chosen as experimental benchmark. All chosen

benchmarks are listed as below :

 In the category of Automotive and Industrial Control

basicmath : it performs simple mathematical calculations that often don’t have

dedicated hardware support in embedded processors.

bitcount : it tests the bit manipulation abilities of a processor by counting the

number of bits in an array of integers.

 In the category of Network

dijkstra : it constructs a large graph in an adjacency matrix representation and then

calculates the shortest path between every pair of nodes using

repeated applications of Dijkstra’s algorithm.

 In the category of Security

sha : it is the secure hash algorithm that produces a 160-bit message digest for a

given input. It is often used in the secure exchange of cryptographic

keys and for generating digital signatures.

rijndael encrypt/decrypt : Rijndael was selected as the National Institute of

Standards and Technologies Advanced Encryption Standard (AES). It

is a block cipher with the option of 128-, 192-, and 256-bit keys and

blocks.

 In the category of Consumer Devices

jpeg encode/decode : JPEG is a standard, lossy compression image format. It is a

representative algorithm for image compression and decompression

and is commonly used to view images embedded in documents.

lame : it is a GPL'ed MP3 encoder that supports constant, average and variable

bit-rate encoding. It uses small and large wave files for its data inputs.

 In the category of Office Automation

 55

stringsearch : it searches for given words in phrases using a case insensitive

comparison algorithm.

 In the category of Telecommunications

FFT/IFFT : it performs a Fast Fourier Transform and its inverse transform on an

array of data. Fourier transforms are used in digital signal processing

to find the frequencies contained in a given input signal.

ADPCM encode/decode : Adaptive Differential Pulse Code Modulation (ADPCM)

is a variation of the well-known standard Pulse Code Modulation

(PCM). A common implementation takes 16-bit linear PCM samples

and converts them to 4-bit samples, yielding a compression rate of

4:1.

CRC32 : it performs a 32-bit Cyclic Redundancy Check (CRC) on a file. CRC

checks are often used to detect errors in data transmission.

 Table 3.1 shows the instruction counts and maximum procedure call depth for

selected benchmarks.

 56

Table 3.1 Instruction counts and maximum procedure call depth for selected benchmarks

 57

3.5 Experimental Results
 Table 3.2 shows simulation results. The abbreviations on table 3.2 are listed as

below.

There are 6 kinds of designs :

 Original : stands for conventional architecture that BTB is in CPU.

 T0 : means conventional architecture with T0 encoded instruction address bus.

 T0 DAT128 : means conventional architecture with T0 with Discontinuous Address

Table of 128 entry encoded instruction address bus.

 Proposed I : stands for design of iAIM proposed in section 2.3.

 Proposed II : stands for design of iAIM with partial decoder proposed in

section 2.4.

 Proposed III : stands for design of iAIM with partial decoder and return stack

proposed in section 2.5.

There are 3 kinds of BTB configurations:

 Perfect BTB : it consists of 2 properties. First, after a taken branch is first allocated

into BTB, its prediction afterwards will be always correct. Second, any allocated

entry in BTB will never be replaced.

 2048 (4way, LRU) : means 2048 entries in 4-way set-associative BTB with Least

Recently Used replacement algorithm.

 32 (4way, LRU) : means 32 entries in 4-way set-associative BTB with Least

Recently Used replacement algorithm.

 58

Table 3.2 Simulation Results

 Figure 3.2 and Figure 3.3 show reduction ratios in instruction address bus active

cycles and bit transitions for 5 different designs respectively.

Figure 3.2 Percentage of reduced instruction address bus active cycles

 59

Figure 3.3 Percentage of reduced bit transitions

 Figure 3.4 shows percentage of bit transitions on instruction address bus and control

line(s) for 5 different designs. Figure 3.5 shows percentage of bit transitions on

instruction address bus and control lines S-Indicate, P-Taken for proposed iAIM designs.

Figure 3.4 Percentage of bit transitions on address bus and control line(s)

 60

Figure 3.5 Percentage of bit transitions on address bus and control lines S-Indicate, P-Taken

3.6 Discussion
 3.6.1 Experimental Results for Five Evaluation Metrics

Simulation results for five evaluation metrics are summarized as below :

 Total execution cycles in conventional architecture, conventional architecture with

T0 encoded instruction address bus, proposed design I and II of iAIM are exactly

the same. Total execution cycles in proposed design III of iAIM is slightly less than

in all other designs because return stack reduces penalty for procedure return

instructions.

 BTB accuracy for the same BTB configuration in conventional architecture,

conventional architecture with T0 encoded instruction address bus, proposed design

I and III of iAIM are exactly the same. Although iAIMs update BTB one cycle later

than conventional architecture does, such one cycle delay does not harm BTB

accuracy.

 T0 encoded instruction address bus reduces 91.43 % of instruction address bus

active cycles and 73.14 % of bit transitions on instruction address bus and one

control line (“INC” [7]) on average.

 61

 Bit transitions on control line occupy about 33 % of total bit transitions.

 T0 DAT with 128 entries encoded instruction address bus reduces 96.41 % of

instruction address bus active cycles and 90.89 % of bit transitions on instruction

address bus and one control line (“INC” [8]) on average.

Bit transitions on control line occupy about 29 % of total bit transitions.

 iAIM proposed in section 2.3 reduces 97.59 % of instruction address bus active

cycles and 84.75 % of bit transitions on instruction address bus and three control

lines (“P-Taken” and “S-Indicate”) on average.

 Bit transitions on control lines occupy about 71 % of total bit transitions.

 iAIM with partial decoder proposed in section 2.4 reduces 98.50 % of instruction

address bus active cycles and 86.55 % of bit transitions on instruction address bus

and three control lines (“P-Taken” and “S-Indicate”) on average.

 Bit transitions on control lines occupy about 79 % of total bit transitions.

 iAIM with partial decoder and return stack proposed in section 2.5 reduces 99.99 %

of instruction address bus active cycles and 92.02 % of bit transitions on instruction

address bus and three control lines (“P-Taken” and “S-Indicate”) on average.

 Bit transitions on control lines occupy about 99 % of total bit transitions.

 3.6.2 Comparisons among Bus Encoding Techniques and 3 iAIM Designs

Although basic design philosophies are different, bus encoding techniques (like T0

encoding) and iAIM have the same purpose – reducing bus traffic on instruction address

bus. The cause that iAIM can reduce much more bus traffic is it equips instruction

memory with program flow tracing capability. With program flow tracing capability,

iAIM is capable of eliminating the need for bus to transfer instruction addresses most of

the time. Such capability makes iAIM more intelligent and autonomous than bus

encoding techniques.

T0 DAT encoding is a special bus encoding technique that makes use of not only

the characteristic of program sequential execution but also the characteristic of taken

branch execution. Only the third proposed iAIM design can outperform it slightly in all 2

metrics of bus traffic reduction. Since Content-Addressable-Memory (CAM) is required

in both encoder and decoder in T0 DAT, it adds additional time to the existing delay

time due to CPU to memory latency. Such an increase affects the clock rate and then

 62

harms the performance of processor accordingly.

As the constituents of bit transitions are considered, bit transitions on instruction

address bus hold the greater part in both T0 and T0 DAT encoding technique while bit

transitions on control lines occupy the most majority in iAIM designs. This fact reveals

the proportion of bit transitions on instruction address bus in iAIM is insignificant. In

other words, the true overhead for iAIM is bit transitions on control lines. Therefore, a

communication protocol that uses least control lines to convey minimum control signals

between CPU and iAIM is necessary.

Among 3 proposed iAIM designs, performances of Proposed II and Proposed III are

more insensitive to BTB prediction accuracy than Proposed I. The cause of this

phenomenon is Proposed II/III record information of recently resolved branch instruction

so that branch recovery becomes easy.

3.6.3 Benefits and Drawbacks in iAIM Designs

 The benefits in iAIM are listed as below :

1. Reduction in bus traffic to spare bandwidth :

This can be proved from the above experiment results.

2. Reduction in power consumption :

For off-chip application, it can be deduced indirectly from experiment results

since most traffic on instruction is reduced.

3. Reduction in delay time due to possible high CPU to memory latency

Since iAIM can reduce delay time when instruction address is self-generated,

total instruction fetch time can be shortened if two address generation

mechanisms (from bus or iAIM internal) can take different cycles.

The drawbacks in iAIM are listed as below :

1. Although BTB is merely removed from CPU to instruction memory side and

only some simple logic like partial decoder is added into instruction memory, it

does incur addition overhead in conventional computer architecture.

2. Although iAIM reduces almost all traffic on instruction address bus, there are

more additional bus traffic appearing on the additional internal buses needed in

iAIM. These additional internal buses make on-chip iAIM application less

 63

useful.

3.6.4 iAIM Application in Real Computer System Environments

 The effects of applying iAIM concept to real computer system environments are

discussed as follows :

 CPU and top-level Instruction Memory reside on different Chips

Under this environment, instruction address bus between CPU and top-level

instruction memory is external bus.

As mentioned in section 1.1.1, power consumed on external bus due to relatively

high self-capacitance is several order larger than energy than internal bus insides

CPU or instruction memory. Though BTB power in different chip is different due to

different process and iAIM incurs more internal buses and additional logics, it still

conserves more power than conventional architecture does.

 CPU and top-level Instruction Memory reside on the same Chip

 Under this environment, Instruction address bus between CPU and top-level

instruction memory is internal bus.

 Power consumed on internal bus is dominant by coupling capacitance. iAIM can

greatly reduce power of coupling capacitance on instruction address bus since it

freezes bus most of the time.

 If internal buses added by iAIM are not dedicate buses, iAIM also gains benefit in

this environment. Otherwise, iAIM is useless.

 64

Chapter 4 Conclusion and Future Works

4.1 Conclusion
 The meaning that BTB is placed inside CPU in conventional architecture needs to

be rethought because it incurs too much unnecessary traffic on instruction address bus.

Proposed designs in Chapter 2 prove iAIM concept not only feasible but also effective.

Some functions in CPU costs little and can be duplicated in iAIM by using extremely

few logics (e.g., partial decoder). The mechanism that how dynamic branch predictor

like BTB predicts branch instruction has already been mature for a long time and is not

invented by us. What we do is only to move dynamic branch predictor to instruction

memory side. The choice of depth of return stack proposed in section 2.4 can be based

on simulate application programs on simulator to define a proper value.

 The underlying design philosophy for three iAIM designs proposed in this thesis is

to equip top-level instruction memory with program flow tracing capability. Such design

philosophy is an innovation in computer architecture. Such computer architecture change

looks promising in simulation results. And the increase on additional circuit cost seems a

small amount since most function blocks are merely moved from CPU to instruction

memory.

4.2 Future Works
 In this thesis, BTB, partial decoder and return stack are incorporated into instruction

memory one after another to form iAIM designs of Proposed I, II and III respectively.

There are still several works in such design philosophy.

 Does there exist a similar design philosophy that is also applicable to data memory?

That means an intelligent autonomous data memory design may be another

practicable research direction.

 iAIM design does require additional internal buses inside instruction memory

module. For application environments with off-chip instruction memory system,

power consumption due to additional internal buses inside iAIM is negligible

compared with power saved on external instruction address bus. Nonetheless, for

application environments with on-chip instruction memory system, if additional

 65

internal buses inside iAIM are dedicated to iAIM, power consumed on additional

internal buses inside iAIM may cancel out power saved on external instruction

address bus. Because iAIM can relieve address traffic on instruction address bus

greatly, many systems that use unified instruction and data memory (see Figure 3.6)

may benefit by iAIM concept. When iAIM design is applied to the mixed

instruction/data address bus in unified memory system, one additional control line

to distinguish instruction address stream and data address stream is enough. When

this control line indicates data address stream occupies the address bus at current

clock cycle, iAIM’s instruction address handling mechanism inside unified memory

may treat it as “Pipeline Stall” situation while CPU can make use of “S-Indicate”

control lines to apply one of data address bus encoding techniques (like BI [12],

T0_BI [13], T0_BI_1 [14], …) to reduce bus power. This future work is practicable

and deserves elaborate design and extensive evaluation.

Figure 4.1 Unified instruction and data memory system

 66

References

[1] J. L. Hennessy and D. A. Patterson, “Computer Architecture - A Quantitative Approach”,
3rd ed. Morgan Kaufmann Publishers, 2003.

[2] P. Petrov, A. Orailoglu, “Low-power Instruction Bus Encoding for Embedded
Processors,” in IEEE Transactions on VLSI (TVLSI), July, 2004.

[3] H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI, Addison-Wesley,
1990.

[4] K. Basu, A. Choudhary, and M. Kandemir, “Power protocol : reducing power
dissipation on off-chip data buses”, In Proc. the 35th Annual International Symposium
on Microarchitecture, Istanbul, Turkey, November 2002.

[5] Edwin Naroska, Shanq-Jang Ruan, and Feipei Lai, “On Optimizing Power and Crosstalk
for Bus Coupling Capacitance Using Genetic Algorithm”, IEEE International
Symposium on Circuits and Systems, Bangkok, Thailand, May 2003

[6] C. H. Perleberg and A. J. Smith, “Branch target buffer design and optimization,” IEEE
Transactions on Computers, 42(4), 1993.

[7] L. Benini, G. De Micheli, E. Marcii, D. Sciuto and C. Silvano. “Asymptotic
Zero-Transition Activity Encoding for Address Busses in Low-Power
Microprocessor-Based Systems,” GLS-VLSI-97 : IEEE 7th Great Lakes Symposium on
VLSI, pp. 77-82, Urbanana-Champaign, IL, March 1997.

[8] Tsung-His Weng, “Low-Power Address Bus Encoding,” Master’s Thesis, Department of
Computer Science and Information Engineering, Nation Chiao Tung University, Taiwan,
R.O.C., June 2005.

[9] Y. Park and Gyungho Lee, “Return Address Stack Management for Protection from
Buffer Overflow Attacks,” Proc. the ACM Frontiers of Computing, Ischia, Italy, Apr.
2004.

[10] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown, “MiBench:
A Free, Commercially Representative Embedded Benchmark Suite,” Proceedings of the
4th International Workshop on Workload Characterization, 2001, pp. 3–14.

[11] MIPS Technologies, Inc., “MIPS SDE / MIPS FGT 5.02.02 Programmers’Guide,”
February 17, 2003.

[12] M.R Stan and W.P Burleson, “Bus Invert Coding for Low Power I/O,” IEEE
Transactions VLSI systems, pp 49-58, March 1995.

[13] L. Benini, G. DeMicheli, E. Macii, D. Sciuto, and C. Silvano, “Address bus encoding
techniques for system-level power optimization,” DATE-98: IEEE Design Automation
and Test in Europe. Paris, France, February 1998, pages 861-866.

[14] Tsung-Hsi Weng, Wei-Hao Chiao, Jean Jyh-Jiun Shann, and Chung-Ping Chung,
Jimmy Lu, “Low-Power Data Address Bus Encoding Method,” 2005 International
Conference on Computer Design (CDES’05).

 67

Vita

Li-Ming Wang (王立銘)

A. Personal History

Birth place : Kaohsiung City, Taiwan Birth date : April 4, 1973
Residence : Hsinchu or Kaohsiung City, Taiwan
E-mail address : livius@ms56.hinet.net

B. Educational History
 1. Kaohsiung Senior High School, Kaohsiung, Taiwan, 1991 (高雄中學)
 2. National Cheng Kung University, Tainan, Taiwan

Degree: Bachelor of Electrical Engineering, 1995 (成功大學電機系 84 級)
3. National Chiao Tung University, Hsinchu, Taiwan

Degree: Degree Program of Electrical Engineering and Computer Science College of Computer Science
in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science,

2006 (交通大學電資學院在職專班資訊學程碩士 2006)

C. Professional Positions
 1. Associate Engineer in Process Control Computer Section of China Steel Aluminum

Corp. (中鋼鋁業) from Sep 1997 to Jun 2002
 2. Engineer, Senior Engineer, Associate Project Manager in System Development Div.

of D-Link Corp. (友訊科技) and Alpha Networks Inc. (明泰科技) from Jun 2002

 68

