
 

 

國 立 交 通 大 學 
 

電機學院與資訊學院 資訊學程 
 

碩 士 論 文 
 
 
 
 

智慧型自主指令記憶體設計 
 

Intelligent Autonomous Instruction Memory Design 
 
 
 
 

研 究 生：王立銘 

指導教授：鍾崇斌  教授 

 

 

 
 
 

中 華 民 國 九 十 五 年 七 月 

 



 

  

智慧型自主指令記憶體設計 
Intelligent Autonomous Instruction Memory Design 

 

 

 
 
 

研 究 生：王立銘          Student：Li-Ming Wang 

指導教授：鍾崇斌          Advisor：Chung-Ping Chung 

 
 
 

國 立 交 通 大 學 
電機學院與資訊學院專班 資訊學程 

碩 士 論 文 
   
 
 
 

A Thesis 

Submitted to Degree Program of Electrical Engineering and Computer Science 

College of Computer Science 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of  

Master of Science 

in 

Computer Science  

July 2006 

 
Hsinchu, Taiwan, Republic of China 

 
 
 

中華民國九十五年七月 



  

智慧型自主指令記憶體設計 

學生：王立銘 

 

指導教授：鍾崇斌 博士 

 

 

國立交通大學 電機學院與資訊學院 資訊學程﹙研究所﹚碩士班 

 
摘 要       

 
智慧型自主指令記憶體的主要概念是將動態分支預測器併入最上層的指令

記憶體使後者具備“程式流程追蹤” 能力。藉著動態分支預測器的協助，指令記

憶體在多數時間可以不需 CPU 核心提供指令位址而知道要到那個位址去擷取下

一道指令。這個概念的目的是要將 CPU 與指令記憶體之間的指令位址傳輸量降

到最低。實作出這樣的概念或許可以比許多已知的指令位址匯流排編碼技術要節

省更多的能源。當動態分支預測器從 CPU 移到指令記憶體，新增輔助硬體與一

套溝通 CPU 與指令記憶體之間有效率的控制匯流排傳輸協定對維持程式流程的

正確性以及原本動態分支預測器的運作是不可或缺的。運用上述概念的一個簡單

設計會先提出來，接著提出配備具有解碼分支指令並計算其分支目標位址能力的

部份指令解碼器的一個強化設計。最後提出的是配備部份指令解碼器與返回堆疊

的更強化設計。實驗結果顯示這三個設計比起傳統的架構分別減少 97.71%， 

98.49% 與 99.99%的指令位址傳輸以及 84.99%，86.54%與 92.01%的總位元變化

量。以上提出的設計都勝過 T0 編碼技術許多。第三個設計略勝 T0 DAT(128 筆)

編碼技術。 
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ABSTRACT 
 
Main concept of Intelligent Autonomous Instruction Memory (iAIM) is to equip 

top-level instruction memory with “program flow tracing” capability by incorporating 

dynamic branch predictor into top-level instruction memory. With help of dynamic branch 

predictor, instruction memory can know where to fetch the next instruction without 

instruction address supplied by CPU most of the time. The purpose of such concept is to 

reduce instruction address traffic between CPU and instruction memory to a minimum. The 

realization of such concept may conserve more energy on instruction address bus than many 

known instruction address bus encoding techniques. While dynamic branch predictor is 

removed from CPU to instruction memory, additional auxiliary hardware and an efficient 

control bus communication protocol between CPU and instruction memory are essential to 

maintain program flow correctness and original dynamic branch predictor operation. A simple 

design of iAIM that makes use of the above concept is proposed first, followed by an 

enhanced design that equips iAIM with a partial instruction decoder capable of calculating 

branch target address by decoding branch instruction. A more enhanced design that equips 

iAIM with a partial instruction decoder and a return stack is proposed finally. The experiment 

results show three proposed designs can reduce instruction address transmission to 97.71%, 

98.49% and 99.99% and reduce total bit transitions to 84.99%, 86.54% and 92.01% compared 

with conventional architecture respectively. All these designs greatly outperform T0 encoding 

technique. The third design outperforms T0 DAT with 128 entries technique slightly. 
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Chapter 1  Introduction 
 

Main concept of Intelligent Autonomous Instruction Memory (iAIM) is based on the 

following arguments : 1. Dynamic branch predictor is smart enough to trace program flow 

with over 90% accuracy. 2. Dynamic branch predictor rarely needs CPU intervention. 3. 

Should dynamic branch predictor be moved from CPU to instruction memory? 

After equipping top-level instruction memory with “program flow tracing” capability by 

incorporating dynamical branch predictor, instruction memory can know where to fetch the 

next instruction without instruction address supplied by CPU most of the time. 

Throughout this thesis, a classic MIPS five-stage pipeline is assumed. The five stages are 

Instruction fetch (IF) stage, Instruction decode/register fetch (ID) stage, Execution/effect 

address (EX) stage, Memory access (MEM) stage and Write-back (WB) stage respectively. 

Figure A.24 in [1] shows the implementation of MIPS data path adopted in this thesis.  

 

1.1  Background 
1.1.1 How bus consumes Power 

The amount of power dissipated due to switch activity is related to the voltage level 

on the bus, the capacitance between the bus and the ground which is called 

self-capacitance and the capacitance between the adjacent bus lines which is called 

coupling-capacitance. The general power consumption equation of bus [2] is shown as 

follows : 

Pcsc = ½ · (SBT + λ CBTr + 4 λ CBTg) · Cs · Vdd
2         

 Cs : self-capacitance 

 Cc : coupling-capacitance 

 λ : Cc / Cs 

 SBT : self-bus bit transitions 

 CBTr : coupling 1-bit transitions 
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 CBTg : coupling bit toggles 

 Vdd : supply voltage 

     There are 2 kinds of bus in computer system : on-chip bus and off-chip bus.  

For off-chip bus system, coupling-capacitance is negligible compared with 

self-capacitance. Power consumed on off-chip bus is nearly power consumed by 

charging and discharging self-capacitances of all individual bus lines. Because 

capacitance driven by I/O nodes is three orders of magnitude larger than that on 

the internal nodes of the processor [3], reducing self-bus bit transitions will 

reduce the same percentage of bus power as well. Off-chip bus occupies 

non-trivial portion of power in a system (power consumption of Intel Celeron 

core at 266 MHz is 16W, while its off-chip bus operating at 133 MHz consumes 

3.3W [4]). 

For on-chip bus system, coupling-capacitance can not be ignored. In very 

deep submicron process, power consumption due to coupling-capacitance 

dominates (the ration of coupling-capacitance to self-capacitance is 2.4 in 130 nm 

process and is 3.4 in 45 nm process). On-chip bus occupies considerable portion 

inside a processor (on-chip buses account for 15% and 30% of total power in 

Alpha 21064 and Intel 80386, respectively [5]). 

 

1.1.2 Characteristics of Program Execution 

Program execution can be classified into 2 categories : 

1. Sequential execution :  

This kind of execution occupies about 85-90% portion of program execution. 

2. Execution of taken branches : 

  This kind of execution occupies about 10-15% portion of program execution. 

Taken branches can be further classified into 2 classes. 

  Fixed target branches : most taken branches are fixed target branches. 
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Dynamic branch predictor like branch target buffer can handle fixed target 

branches with target expressed in immediate field of the instruction. 

  Changing target branches : it includes procedure return, some other special 

uses that load pc from a register other than link register (e.g., function table, 

switch conditional statement). Procedure return can be handled by return stack. 

 

1.1.3 What is dynamic branch predictor and its operation 

About 15% of instructions in typical programs are branches. Branch instructions 

can reduce the performance of pipelines by interrupting the normal sequence of 

program execution, as known as control hazards. While almost all most modern 

processors use pipelining to achieve high performance, control hazards may cause 

greater and greater performance loss in proportion to the degree of pipelining. 

Dynamic branch predictor is used to help processor resolve the outcome of branch 

early, thus preventing control dependences from causing stalls [1]. The typical case of 

dynamic branch predictor is branch target buffer (BTB) [6]. Branch target buffer is used 

as dynamic branch predictor in this thesis. 

Branch target buffer is a branch prediction cache and is designed to reduce branch 

penalty by predicting the path of the branch and storing information about the branch. 

The major information stored in each entry of branch target buffer consists of : 

1. Valid bit : to tell whether the entry is empty or not. 

2. Branch instruction address (branch tag) : the current program counter (PC) is 

compared to branch instruction address field to determine if there is a “hit”. 

3. Branch target address : If there is a hit and the branch is predicted taken, the 

program counter is loaded with this value and instruction fetching continues 

from this point. 

4. Branch prediction bits (predictor) : 2-bit prediction scheme is most commonly 

used [1]. 

 

For the classic MIPS five-stage pipeline, when the current program counter is sent 

to instruction memory to fetch the current instruction, this current program counter is 

also sent to branch target buffer to see if there is a “hit”. 

If there is a “miss”, that means there is no valid entry whose branch tag equals the 
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program counter, the instruction fetcher in CPU will update the program counter to the 

next sequential PC by adding a word size to the PC. There are 2 scenarios under a 

“miss” : 

1. At the end of the ID stage for the branch instruction, it turns out that this is a 

not-taken branch : 

The branch processing unit in CPU will not enter a new entry into branch target 

buffer for this branch, while the instruction fetcher in CPU will keep fetching the 

subsequent instruction. 

The branch penalty in this case is 0 clock cycle. 

2. At the end of the ID stage for the branch instruction, it turns out that this is a 

taken branch : 

The branch processing unit in CPU will enter a new entry into branch target 

buffer for this branch, while the instruction fetcher in CPU will kill fetched 

instruction at IF pipe stage, and start fetching the calculated branch target address 

at the start of the next clock cycle.  

The branch penalty in this case is 1 clock cycle. 

The detail of entering a new entry into branch target buffer is as follows : 

If the position of the new entry is occupied, some replacement algorithm (e.g., 

Least Recently Used or Random algorithm) is used to discard an existing entry to 

make room for this new one. 

In this new entry, valid bit field is set to 1, branch instruction address (branch tag) 

field is set to the branch instruction address (that is exactly the program counter 1 

clock cycle ago), branch target address field is set to the value calculated at the 

end of ID stage, branch prediction bits field is set to the initialized value 

according to the adopted n-bit prediction scheme. 

         If there is a “hit”, that means there is a valid entry whose branch tag equals the 

program counter. There are 4 scenarios under a “hit” : 

1. Branch prediction bits predicts this branch instruction is a taken branch, and at 

the end of ID stage for the branch instruction, it turns out to be a taken branch : 

At the end of the IF stage, branch target buffer will supply the branch target 

address to update the program counter. At the start of the next clock cycle, this 

corrected PC that is the branch target address is sent to instruction memory. At 

the end of the ID stage for the branch instruction, it turns out that the prediction 1 

clock cycle ago is correct. The branch processing unit in CPU will update branch 

prediction bits in branch target buffer, while the instruction fetcher in CPU will 
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keep fetching the subsequent instruction. 

The branch penalty in this case is reduced to 0 clock cycle. 

2. Branch prediction bits predicts this branch instruction is a taken branch, but at the 

end of ID stage for the branch instruction, it turns out to be a not-taken branch : 

At the end of the IF stage, branch target buffer will supply the branch target 

address to update the program counter. At the start of the next clock cycle, this 

corrected PC that is the branch target address is sent to instruction memory. At 

the end of the ID stage for the branch instruction, it turns out that the prediction 1 

clock cycle ago is incorrect. The branch processing unit in CPU will update 

branch prediction bits of the branch entry in branch target buffer, while the 

instruction fetcher in CPU will kill fetched instruction at IF pipe stage, and start 

fetching the fall-through address after the branch instruction at the start of the 

next clock cycle. 

The branch penalty in this case is 1 clock cycle. 

3. Branch prediction bits predicts this branch instruction is a not-taken branch, and 

at the end of ID stage for the branch instruction, it turns out to be a not-taken 

branch : 

At the end of the IF stage, branch target buffer will do nothing, the instruction 

fetcher in CPU will update the program counter to the next sequential PC by 

adding a word size to the PC. At the end of the ID stage for the branch instruction, 

it turns out that the prediction 1 clock cycle ago is correct. The branch processing 

unit in CPU will update branch prediction bits of the branch entry in branch 

target buffer, while the instruction fetcher in CPU will keep fetching the 

subsequent instruction. 

The branch penalty in this case is 0 clock cycle. 

4. Branch prediction bits predicts this branch instruction is a not-taken branch, and 

at the end of ID stage for the branch instruction, it turns out to be a taken branch : 

At the end of the IF stage, branch target buffer will do nothing, the instruction 

fetcher in CPU will update the program counter to the next sequential PC by 

adding a word size to the PC. At the end of the ID stage for the branch instruction, 

it turns out that the prediction 1 clock cycle ago is incorrect. The branch 

processing unit in CPU will update branch prediction bits of the branch entry in 

branch target buffer, while the instruction fetcher in CPU will kill fetched 

instruction at IF pipe stage, and start fetching the calculated branch target address 

at the start of the next clock cycle. 
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The branch penalty in this case is 1 clock cycle. 

 

Summary for the interrelationship among BTB, instruction memory and CPU : 

1. When an entry is found in branch target buffer and its prediction is taken, 

branch target buffer will update the program counter. 

2. When there is no entry found in branch target buffer or an entry is found but its 

prediction is not-taken, the instruction fetcher in CPU will update the program 

counter to the next sequential PC by adding a word size to the PC. 

When a branch instruction is resolved at the end of ID stage, the branch processing 

unit in CPU will do the following things : updating branch target buffer (including 

entering a new entry or updating an existing entry) if necessary, flushing the instructions 

in the wrong path and updating the program counter when the current path is wrong. 

 

1.1.4 Zero-Transition (T0) Bus Encoding Technique 

T0 encoding technique [7] makes use of the characteristic of program sequential 

execution to reduce switch activity on instruction address bus. T0 adds a control line 

called INC (see Figure 1.1). If the address is consecutive to the previous one, sender 

asserts INC line and freezes the bus. Otherwise, sender de-asserts INC line and address is 

transmitted on the bus. 

 

Figure 1.1 Diagram of T0 encoding 

 

1.1.5 T0 with Discontinuous Address Table Bus Encoding Technique [8] 

This approach is based on T0 encoding technique and adds a discontinuous address 

table in both encoder and decoder to record the address pairs that are sent in sequence 

but with discontinuous values. When two instruction addresses to be transmitted are 

found in DAT table or not found but consecutive, sender asserts INC line and freezes the 
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bus. Otherwise, sender de-asserts INC line and address is transmitted on the bus (see 

Figure 1.2). This approach reduces most of address transmission for taken branch 

execution, but Content-Addressable-Memory (CAM) is required in both encoder and 

decoder. 

 

Figure 1.2 Diagram of T0 DAT encoding 

 

1.2  Research Motivation 
What we observe from BTB operation is as follows : 

1. PC sent to instruction memory is certified by BTB : Branch target or PC+1 word 

size 

2. Action of PC+1 word size is not necessary to be done in CPU 

3. When program has been executed for a while, BTB will become steady. Under 

such “BTB warm up” situation, BTB rarely needs CPU intervention 

That is to say, the useful information that CPU passes on to BTB is the result of 

branch instruction while the useful information that BTB passes on to instruction 

memory is program counter certified by BTB. The former information is much less than 

the latter one which comes up every clock cycle. 

Under such observation, it may be reasonable to move dynamic branch predictor 

from CPU to instruction memory side. Such brand-new instruction memory concept can 

be named “Intelligent Autonomous Instruction Memory” (or called “iAIM” for brevity) 

due to its program flow tracing capability. 
 

1.3  Research Objective 
After applying iAIM concept to conventional computer system design, total 

execution time, BTB accuracy and Reduction in bus traffic (it includes percentage of 

reduced instruction address bus active cycles and percentage of reduced bit transitions) 
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are evaluation metrics on achievement in objective. 

Energy conservation on instruction address bus will be evaluated from “bus active 

cycles” and “bit transitions on bus” metrics indirectly. The evaluation results of 

conventional design with T0 encoding and with T0 DAT encoding technique under the 

same BTB organization are given as contrasts. 
 

1.4  Organization of this Thesis 
The rest of this thesis is organized as follows. Chapter 2 explains the design detail 

of iAIM and two other enhanced designs. Chapter 3 presents evaluation methodology, 

experiment results and discussion. Conclusion and future works are then provided in 

Chapter 4. 
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Chapter 2  Design of Proposed Architecture 
 

The design of Intelligent Autonomous Instruction Memory is discussed in this chapter. 

Section 2.1 and section 2.2 introduce challenges and key ideas in design. Section 2.3 shows 

the detail of proposed design. Section 2.4 and section 2.5 shows two other enhanced designs. 

 

2.1  Challenges in Design 
When branch target buffer is removed from CPU to instruction memory, problems 

of program flow and BTB maintenance are introduced and need to be solved : 

1. How CPU can know branch prediction is correct or not in iAIM. 

     2. How to enter, update BTB entries in iAIM, that means BTB maintenance can not be 

handled in CPU directly. 

3. How iAIM can know when to use self-generated address and when to use the value 

on instruction address bus prepared by CPU due to wrong branch prediction or 

changing target branch. 

4. How iAIM can know to pipeline stall happens and keep fetching the same instruction 

used in previous clock cycle. 

 

2.2  Key Ideas in Design 
In conventional architecture, BTB will update program counter in CPU when a 

predictive taken branch is found. On the contrary, because BTB is inside iAIM, it can 

not update program counter of CPU. Therefore, it is necessary to add at least one 

control signal line that iAIM uses to inform CPU of its branch prediction. Similarly, 

when branch prediction of BTB in iAIM is wrong or some situation like procedure 

return happens, CPU needs at least one control signal line to inform iAIM of actual 

branch result and provide correct PC value so that iAIM can supply correct instruction 

to CPU and do BTB maintenance. Figure 2.1 and Figure 2.2 show block diagrams of 

conventional architecture and iAIM design respectively. 
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Figure 2.1 Block diagram of conventional architecture 

 

 

Figure 2.2 Block diagram of iAIM design 

 

  Key ideas to implement iAIM design are discussed as follows. 

Firstly (Idea 1), iAIM must have instruction address automatic generation 

mechanism. 

Because the philosophy of iAIM is to reduce instruction address traffic 

between CPU and instruction memory to a minimum, iAIM always tries to generate 

the next fetched instruction address by itself.  

With help of BTB inside iAIM, the branch target address is supplied by BTB 

when a branch entry is found in BTB and its prediction is taken; otherwise, current 

used program counter value plus a word size is used at the next coming clock cycle. 

Therefore, a PC incrementer that that adds a word size to the current PC value is 

necessary. Figure 2.3 shows automatic instruction address generator inside iAIM. 
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Figure 2.3 Automatic instruction address generator inside iAIM 

 

Secondly (Idea 2), iAIM needs to inform CPU of branch prediction result. 

In MIPS pipeline, when a branch entry is found in BTB of iAIM and its 

prediction is taken, on the next coming clock cycle, iAIM needs to assert a signal to 

inform CPU that the instruction address used is already replaced by branch target 

address, not the next sequential PC. At the end of the next coming clock cycle, CPU 

will resolve the result of branch and know the prediction is correct or not. If the 

prediction is not correct, CPU needs to take some action to force iAIM to use 

correct instruction address. 

The proposed signal that iAIM uses to inform CPU is one control line called 

“Predict Taken”, or “P-Taken” control line for brevity hereafter : 

When a branch entry is found at current clock cycle, this signal is set to 1 at the 

next coming clock cycle; otherwise, it is set to 0. Figure 2.4 shows this control line 

that iAIM uses to inform CPU. 

 

 
Figure 2.4 Control line that iAIM uses to inform CPU 

 Thirdly (Idea 3), CPU needs to force iAIM to use correct instruction address 
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when iAIM’s branch prediction is wrong. 
In MIPS pipeline, when a branch instruction is resolved at ID stage in CPU, 

CPU will check if iAIM asserts “P-Taken” line to 1 or not at current clock cycle : 

If the prediction is wrong, at the next coming clock cycle CPU will prepare 

correct instruction address on instruction address bus and inform iAIM of “Wrong 

Prediction” situation to indicate that branch prediction 2 clock cycles ago is wrong 

and the instruction address on instruction address bus should be used. 
 

Fourthly (Idea 4), CPU always forces iAIM to use correct instruction address 

after changing target branch is resolved. 

After changing target branch is resolved, CPU will prepare correct instruction 

address on instruction address bus and inform iAIM of “Compulsory” situation to 

indicate iAIM to use the instruction address on instruction address bus at current 

clock cycle. 

 
Fifthly (Idea 5), CPU needs to inform iAIM of the pipeline stall situation. 

When pipeline stall happens in conventional architecture, the same instruction 

address as the one used at last clock cycle will be sent to instruction memory. The 

reason that CPU needs to inform iAIM of “Pipeline Stall” situation is iAIM has its 

own instruction address auto-generation mechanism. Such mechanism should cease 

functioning when pipeline stall happens. 

Sixthly (Idea 6), Idea 3, Idea 4 and Idea 5 deal with the situations that iAIM 

can not use the instruction address generated by its instruction address 

auto-generation mechanism. CPU needs inform iAIM of “Autonomous” situation to 

indicate iAIM to use the instruction address generated by its instruction address 

auto-generation mechanism. This situation also help do BTB maintenance when 

CPU finds branch prediction in iAIM. 

Summarized from idea 3 to idea 6, there are 4 kinds of situations that CPU 

uses to inform iAIM. In situations of Idea 3 and Idea 4, CPU prepares the 

instruction address on instruction address bus, and iAIM is forced to use the 

instruction address on instruction address bus on. In situation of Idea 5, CPU 

freezes instruction address bus and iAIM uses the same the instruction address as 
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the one used at last clock cycle. In situation of Idea 6, CPU freezes instruction 

address bus and iAIM uses the instruction address generated by its instruction 

address auto-generation mechanism. Two control lines (called “Situation 

Indication” or “S-Indicate” control lines for brevity hereafter) can be used for CPU 

to inform iAIM of one of 4 kinds of situations at the beginning of every clock 

cycle : 

00 for “Autonomous” situation, 

01 for “Pipeline Stall” situation, 

10 for “Wrong Prediction” situation, 

11 for “Compulsory” situation. 

Figure 2.5 shows S-Indicate control lines that CPU uses to inform iAIM. 

 

 

Figure 2.5 S-Indicate control lines that CPU uses to inform iAIM 

 

Seventhly (Idea 7), in order to maintain original BTB operation, two additional 

34-bit registers organized as FIFO are necessary : 

1. First 34-bit register that store information in iAIM 1 colck cycle ago consists 

of the following fields : 

 32-bit field that stores PC used 1 clock cycles ago (called “PCt-1” for 

brevity),  

1bit field that stores branch entry found in BTB or not 1 clock cycle ago 

(called “InBTBt-1” for brevity), 

1bit field that stores taken branch predicted by BTB or not 1 clock cycle ago 

(called “PTakent-1” for brevity). 
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2. Second 34-bit register that store information in iAIM 2 colck cycle ago 

consists of the following fields : 

32-bit field that stores PC used 2 clock cycles ago (called “PCt-2” for 

brevity), 

1bit field that stores branch entry found in BTB or not 2 clock cycle ago 

(called “InBTBt-2” for brevity), 

1bit field that stores taken branch predicted by BTB or not 2 clock cycle ago 

(called “PTakent-2” for brevity). 

If a branch instruction enters IF stage at the first clock, CPU will inform iAIM 

of either “Autonomous” or “Wrong Prediction” situation at the third clock cycle. 

BTB operation in iAIM is the same as the description of section 1.1.3 in Chapter 1 : 

When CPU informs iAIM of “Wrong Prediction” situation at the third clock 

cycle, there are 2 cases : 

Case 1 : InBTBt-2 is 1, 

       Use PCt-2 as index to do searching in BTB and update its “predictor” 

field according to PTakent-2 : 

       If PTakent-2 is 1, update this field toward not-taken direction. 

       If PTakent-2 is 0, update this field toward taken direction. 

Case 2 : InBTBt-2 is 0, 

       It means no such entry exists in BTB. Enter a new entry into BTB 

with its initial values listed as below : 

“valid bit” field is set to 1, 

“branch instruction address” field is set to PCt-2,  

“branch target address” field is set to the value on instruction address 

bus, 

“predictor” field is set to the initialized value according to adopted 

n-bit prediction scheme (it may be weakly-taken in 2 bit prediction 

scheme). 

When CPU informs iAIM of “Autonomous” situation at the third clock cycle, 

there are 2 cases : 

Case 1 : InBTBt-2 is 1, 
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       Use PCt-2 as index to do searching in BTB and update its “predictor” 

field according to PTakent-2 : 

       If PTakent-2 is 1, update this field toward taken direction. 

       If PTakent-2 is 0, update this field toward not-taken direction. 

Case 2 : InBTBt-2 is 0, 

       Do nothing in BTB. Because a not-taken branch will not be entered  

into BTB if it does not exits before. 
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2.3  Proposed Design of iAIM 
        On the basis of key ideas discussed in 2.2, the minimum indispensable elements of 

Intelligent Autonomous Instruction Memory Design can be derived. 

1. Additional control bus between CPU and iAIM 

1) One control line for iAIM to inform CPU of predicting taken(called “Predict 

Taken” or “P-Taken” control line) 

2) Two control lines for CPU to inform iAIM of one of 4 kinds of situations(called 

“Situation Indication” or “S-Indiacte” control lines) : 

00 for “Autonomous” situation, 

01 for “Pipeline Stall” situation, 

10 for “Wrong Prediction” situation, 

11 for “Compulsory” situation. 

Figure 2.6 shows buses between CPU and iAIM. 

 

Figure 2.6 Buses between CPU and iAIM 

 

2. Additional circuit in iAIM 

1) A incrementer called “PC Incrementer” that add PC used at last clock cycle by a 

word size is used to generate next sequential instruction address. 

2) A multiplexer called “PC MUX” is used to select one of 4 kinds of instruction 

address sources :  

i. Last PC plus a word size for sequential execution,  

ii. Branch target address for BTB’s taken branch prediction,  
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iii. Last PC for pipeline stall,  

iv. Compulsory PC address sent from CPU. 

3) Two 34-bit Registers are organized as FIFO as follows : 

i. First 34-bit register that store information in iAIM 1 colck cycle ago consists 

of the following fields : 

  32-bit field that stores PC used 1 clock cycles ago (called “PCt-1” for 

brevity), 

 1bit field that stores branch entry found in BTB or not 1 clock cycle ago 

(called “InBTBt-1” for brevity), 

1bit field that stores taken branch predicted by BTB or not 1 clock cycle ago 

(called “PTakent-1” for brevity). 

ii. Second 34-bit register that store information in iAIM 2 colck cycle ago 

consists of the following fields : 

32-bit field that stores PC used 2 clock cycles ago (called “PCt-2” for 

brevity), 

 1bit field that stores branch entry found in BTB or not 2 clock cycle ago 

(called “InBTBt-2” for brevity), 

1bit field that stores taken branch predicted by BTB or not 2 clock cycle ago 

(called “PTakent-2” for brevity). 

Figure 2.7 shows additional circuit in iAIM. 
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Figure 2.7 Additional circuit in iAIM 

 

 

 

 

 

 

3. Control signal description 

1) From iAIM to CPU :  

There is a “P-Taken” control line used to inform CPU of taken branch 

prediction in iAIM. 

The algorithm of its sending timing is described as below. 
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2) Form CPU to iAIM : 

There are 4 kinds of situations “Autonomous”, “Pipeline Stall”, “Wrong 

Prediction”, “Compulsory” used to inform iAIM of various situations detected 

in CPU. 
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4. Action algorithm of CPU 
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5. Action algorithm of iAIM 
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2.4  Proposed Design of Enhanced iAIM with Partial Decoder 
        In design proposed in section 2.3, when CPU finds branch prediction in iAIM is 

wrong, it needs to prepare corrected address on instruction address bus at the next clock 

cycle. This does increase bit transitions on instruction address bus and can be avoided if 

the design proposed in section 2.3 is further enhanced with a partial decoder. 

        The design idea of partial decoder is described as below : 

 Partial decoder is capable of identifying branch instruction (including J, JAL) and 

calculating its branch target address and fall-through address by associating simple 

logics. 

 When iAIM is instructed by CPU with “S-Indicate” control lines equaling 0b10 

(“Wrong Prediction”), it will check PTakent-2 value : 

If PTakent-2 equals 0b1, iAIM uses fall-through address calculated 2 clock cycles 

ago. Otherwise, it uses branch target address calculated 2 clock cycles ago. 

 

1. Additional circuit in enhanced iAIM with partial decoder 

1) A partial decoder (called “PD” for brevity): After instruction is fetched by 

instruction memory, this instruction is not only sent to instruction data bus bus 

also sent to PD. PD is capable of identifying branch instruction (including J, 

JAL) and calculating its branch target address and fall-through address by 

associating simple logics before the end of clock cycle. 

2) Two registers are required to stores calculated branch target address and 

fall-through address as follows : 

i. A register stores branch target address (called “Target” for brevity),  

ii. A register stores fall-through address (called “FallThru” for brevity). 

Figure 2.8 shows action timing of partial decoder. 
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Figure 2.8 Action timing of partial decoder 

 

3) A multiplexer called “PC MUX” is augmented to select additional 2 kinds of 

instruction address sources :  

v. Target,  

vi. FallThru.  

Figure 2.9 shows additional circuit in enhanced iAIM with partial decoder 
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Figure 2.9 Additional circuit in enhanced iAIM with partial decoder 
 

 

 

 

 

2. Control signal description 

1) From iAIM to CPU :  

The same as the one in section 2.3. 

2) Form CPU to iAIM : 

The same as the one in section 2.3 except underscored words in case 4. 
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3. Action algorithm of CPU 

The same as the one in section 2.3 except underscored words. 
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4. Action algorithm of iAIM 

The same as the one in section 2.3 except underscored words. 
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2.5  Proposed Design of Enhanced iAIM with Partial Decoder and Return 
Stack 

        The design proposed in section 2.4 can be further enhanced by implementing return 

stack inside iAIM. The purpose of equipping iAIM with return stack is to eliminate 

target address traffic due to procedure return instructions which occupy most portion of 

changing target branches. 

        The design idea of return stack is described as below : 

 Partial decoder is augmented to be capable of identifying procedure call instructions 

(JAL and JALR) and procedure return instructions (JR to r31). 

 When a procedure call instruction is resolved in partial decoder, the instruction 

address following the procedure call instruction is pushed into return stack. 

 When a procedure return instruction is resolved in partial decoder, the instruction 

address used at the next clock cycle is popped from return stack. 

The following design has an assumption that the size of return stack is big enough 

to accommodate the maximum depth of procedure call for all applications running on it. 

    In reality, return stack can not be infinite. In the end of this section, one of a workable 

mechanism to deal with finite return stack will be proposed. 

        Figure 2.10 shows action timing and algorithm for procedure call handling. Figure 

2.11 shows action timing and algorithm for procedure return handling. 

 

 

Figure 2.10 Action timing and algorithm for procedure call handling 
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Figure 2.11 Action timing and algorithm for procedure return handling 

 

 

1. Additional circuit in enhanced iAIM with partial decoder and return stack 

1) A return stack (called “RS” for brevity) 

2) A partial decoder (called “PD” for brevity) described in section 2.4 is enhanced : 

After instruction is fetch by instruction memory, this instruction is sent to PD. 

PD is capable of identifying procedure call instructions (JAL and JALR) and 

procedure return instructions (JR to r31) . When a procedure call instruction is 

resolved, PD pushes the instruction address following the procedure call 

instruction into RS. When a procedure return instruction is resolved, the 

instruction address used at the next clock cycle is popped from RS. 

3) A multiplexer called “PC MUX” is augmented to select additional 1 kind of 

instruction address source : 

vii. top entry of RS  

Figure 2.12 shows additional circuit in enhanced iAIM with partial decoder and return 

stack. 
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Figure 2.12 Additional circuit in enhanced iAIM with partial decoder and return stack 
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2. Control signal description 

1) From iAIM to CPU :  

The same as the one in section 2.3. 

2) Form CPU to iAIM : 

The same as the one in section 2.4 except underscored words in case 2. 

 

 

 

 

 

 

 

 

 

 

 

 

3. Action algorithm of CPU 

The same as the one in section 2.4 except underscored words. 
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4. Action algorithm of iAIM 

The same as the one in section 2.4 except underscored words. 
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        For research purpose, the above design assumes return stack is big enough to 

accommodate the maximum procedure depth of applications running on the processor. In 

reality, return stack has limited entries, more procedure calls than return stack entries can 
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corrupt return stack, which may be implemented as a finite depth push-down stack. 

Figure 2.13 shows scenario of return stack overflow in a finite depth push-down stack. 

Thereafter, corresponding procedure returns cause underflow by popping empty stack 

(see [9]). Some researches have proposed the backup storage solution to augment limited 

return stack size to very large number. And some research (in [9]) has proposed the 

protection mechanism to prevent “underflow” problem either in return stack and backup 

storage. 

        A simple proposed solution to deal with “underflow” in proposed design of section 

2.5 with finite return stack size is described as below : 

    1. iAIM needs to inform CPU by some control signal when a procedure return 

instruction is resolved but the return stack is empty. “P-Taken” control line can be 

used because branch instruction and procedure return instruction are mutually 

exclusive. When return stack underflow happens, iAIM asserts “P-Taken” control line 

to 1 at the next clock cycle. 

    2. When CPU finds iAIM asserts “P-Taken” control line to 1 and at the same clock cycle 

a procedure return instruction is resolved, CPU will set “S-Indicate” control lines to 

indicate “Compulsory” situation and prepare the return address on instruction address 

at the beginning of the next clock cycle. 

    3. iAIM will use the return address on instruction address when CPU sets “S-Indicate” 

control lines to indicate “Compulsory” situation. 

 

 

Figure 2.13 Scenario of return stack overflow in a finite depth push-down stack 
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2.6  Design Restriction and Execution Examples 
        Top-level instruction memory in proposed designs is assumed to have the same 

clock rate with CPU. Although not all sorts of memory are clock-aware, all self-managed 

multi-power mode memories are now equipped with clock signals. For example, 

DRAMs are clocked always. The only restriction in iAIM design is how to synchronize 

memory clock with CPU’s. 

        In order to illustrate the validity of iAIM design, a representative scenario of 

instruction execution is taken as an example : 

        There are a part of instructions in a program which comprise 2 branch instructions 

B1, B2 and other instructions S1, S2, S3, … In this execution scenario, B1 is not taken 

and B2 is taken. 

        B1 (address : 0x80000400, branch target : 0x80000a00, not-taken in this scenario) 

        B2 (address : 0x80000404, branch target : 0x80000800, taken in this scenario) 

        S1 (address : 0x80000408) 

        … 

        S2 (address : 0x80000800) 

S3 (address : 0x80000804) 

… 

S4 (address : 0x80000a00) 
        … 

        There are 4 possible cases of instruction execution flow in iAIM design depending 
on BTB’s prediction : 

1. B1 is predicted not-taken, B2 is predicted taken :  

In this case, both B1 and B2 are correctly predicted by BTB in iAIM. 

2. B1 is predicted not-taken, B2 is predicted not-taken : 

In this case, B1 is correctly predicted but B2 is incorrectly predicted by BTB in 
iAIM. Penalty of 1 clock cycles is incurred. 

3. B1 is predicted taken, B2 is predicted taken : 

In this case, B1 is incorrectly predicted but B2 is correctly predicted by BTB in 
iAIM. Penalty of 1 clock cycles is incurred. 
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4. B1 is predicted taken, B2 is predicted not-taken : 

In this case, B1 and B2 are all incorrectly predicted by BTB in iAIM. Penalty of 
2 clock cycles is incurred. 

        Execution detail of iAIM design in the first case (B1 is predicted not-taken, B2 is 
predicted taken) is shown below : 

Actions taken in CPU Clock 

Cycle 
PC used  

In CPU 
PC used  

in iAIM 
Control 

Signal 

S- 

Indicate

Control 

Signal 

P- 

Taken 

Actions taken in iAIM 

1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x800003FC) is not a branch 

instruction, CPU will set S-Indicate to 0b00 at next 

clock cycle. 

2) Next PC used in CPU will be updated to current PC 

plus 4. 

X 0x80000400 0x80000400 0 0 0 

1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) Before the end of clock cycle, BTB predicts current 

PC is a not taken branch. iAIM will set P-Taken to 0 

at next clock cycle. 

3) Next self-generated PC in iAIM will be current PC 

plus 4. 

1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x80000400) is a not-taken 

branch. Because iAIM doesn’t set P-Taken to 1 at 

current clock cycle, CPU finds BTB prediction in 

iAIM at last clock cycle was correct. CPU will set 

S-Indicate to 0b00 at next clock cycle. 

2) Next PC used in CPU will be updated to current PC 

plus 4. 

X+1 0x80000404 0x80000404 0 0 0 

1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) Before the end of clock cycle, BTB predicts current 

PC is a taken branch. iAIM will set P-Taken to 1 at 

next clock cycle. 

3) Next self-generated PC in iAIM will be branch 

target address. 
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1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x80000404) is a taken branch. 

Because iAIM sets P-Taken to 1 at current clock 

cycle, CPU finds BTB prediction in iAIM at last 

clock cycle was correct. CPU will set S-Indicate to 

0b00 at next clock cycle. 

2) Next PC used in CPU will be updated to branch 

target address plus 4. 

X+2 0x80000408 0x80000800 0 0 1 

1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) iAIM updates an entry in BTB when a not-taken 

branch was found in BTB 2 clock cycles ago : 

source is PC used in iAIM 2 clock cycles ago, target 

is address on instruction address bus, direction is 

not-taken. 

3) Before the end of clock cycle, BTB predicts current 

PC is not a branch. iAIM will set P-Taken to 0 at 

next clock cycle. 

4) Next self-generated PC in iAIM will be current PC 

plus 4. 

1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x80000800) is not a branch. 

CPU will set S-Indicate to 0b00 at next clock cycle. 

2) Next PC used in CPU will be updated to current PC 

plus 4. 

X+3 0x80000804 0x80000804 0 0 0 

1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) iAIM updates an entry in BTB : source is PC used in 

iAIM 2 clock cycles ago, target is address on 

instruction address bus, direction is taken. 

3) Before the end of clock cycle, BTB finds current  

PC is not a branch. iAIM will set P-Taken to 0 at 

next clock cycle. 

4) Next self-generated PC in iAIM will be current PC 

plus 4. 
 

Execution detail of iAIM design in the second case (B1 is predicted not-taken, B2 is 
predicted not-taken) is shown below : 
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Actions taken in CPU Clock 

Cycle 
PC used  

In CPU 
PC used  

in iAIM 
Control 

Signal 

S- 

Indicate

Control 

Signal 

P- 

Taken 

Actions taken in iAIM 

1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x800003FC) is not a branch 

instruction, CPU will set S-Indicate to 0b00 at next 

clock cycle. 

2) Next PC used in CPU will be updated to current PC 

plus 4. 

X 0x80000400 0x80000400 0 0 0 

1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) Before the end of clock cycle, BTB predicts current 

PC is a not taken branch. iAIM will set P-Taken to 0 

at next clock cycle. 

3) Next self-generated PC in iAIM will be current PC 

plus 4. 

1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x80000400) is a not-taken 

branch. Because iAIM doesn’t set P-Taken to 1 at 

current clock cycle, CPU finds BTB prediction in 

iAIM at last clock cycle was correct. CPU will set 

S-Indicate to 0b00 at next clock cycle. 

2) Next PC used in CPU will be updated to current PC 

plus 4. 

X+1 0x80000404 0x80000404 0 0 0 

1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) Before the end of clock cycle, BTB predicts current 

PC is a not-taken branch. iAIM will set P-Taken to 0 

at next clock cycle. 

3) Next self-generated PC in iAIM will be current PC 

plus 4. 

X+2 0x80000408 0x80000408 0 0 0 1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x80000404) is a not-taken 

branch. Because iAIM doesn’t set P-Taken to 1 at 

current clock cycle, CPU finds BTB prediction in 

iAIM at last clock cycle was incorrect. CPU will set 

S-Indicate to 0b10 at next clock cycle. 
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2) Next PC used in CPU will be updated to branch 

target address. 

1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) iAIM updates an entry in BTB when a not-taken 

branch was found in BTB 2 clock cycles ago : 

source is PC used in iAIM 2 clock cycles ago, target 

is address on instruction address bus, direction is 

not-taken. 

3) Before the end of clock cycle, BTB predicts current 

PC is not branch. iAIM will set P-Taken to 0 at next 

clock cycle. 

4) Next self-generated PC in iAIM will be current PC 

plus 4. 

1) iAIM starts fetching correct address at current cycle, 

there is no instruction to be decoded in ID stage of 

CPU. CPU will set S-Indicate to 0b00 at next clock 

cycle. 

2) Next PC used in CPU will be updated to current PC 

plus address plus 4. 

X+3 0x80000800 0x80000800 1 0 0 

1) Because S-Indicate is set to 0b10, iAIM uses address 

on instruction address bus as its PC. 

2) iAIM inserts an entry into BTB when PC used in 

iAIM 2 clock cycles ago was not found in BTB, 

updates a entry in BTB otherwise : source is PC used 

in iAIM 2 clock cycles ago, target is address on 

instruction address bus, direction is taken. 

3) Before the end of clock cycle, BTB predicts current 

PC is not a branch. iAIM will set P-Taken to 0 at 

next clock cycle. 

4) Next self-generated PC in iAIM will be current PC 

plus 4. 

X+4 0x80000804 0x80000804 0 0 0 1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x80000800) is not a branch. 

CPU will set S-Indicate to 0b00 at next clock cycle. 

2) Next PC used in CPU will be updated to current PC 

plus 4. 
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1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) Before the end of clock cycle, BTB finds current  

PC is not a branch. iAIM will set P-Taken to 0 at 

next clock cycle. 

3) Next self-generated PC in iAIM will be current PC 

plus 4. 
 

Execution detail of iAIM design in the third case (B1 is predicted taken, B2 is 
predicted taken) is shown below : 

Actions taken in CPU Clock 

Cycle 
PC used  

In CPU 
PC used  

in iAIM 
Control 

Signal 

S- 

Indicate

Control 

Signal 

P- 

Taken 

Actions taken in iAIM 

1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x800003FC) is not a branch 

instruction, CPU will set S-Indicate to 0b00 at next 

clock cycle. 

2) Next PC used in CPU will be updated to current PC 

plus 4. 

X 0x80000400 0x80000400 0 0 0 

1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) Before the end of clock cycle, BTB predicts current 

PC is a taken branch. iAIM will set P-Taken to 1 at 

next clock cycle. 

3) Next self-generated PC in iAIM will be branch 

target address. 

X+1 0x80000404 0x80000a00 0 0 1 1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x80000400) is a not-taken 

branch. Because iAIM sets P-Taken to 1 at current 

clock cycle, CPU finds BTB prediction in iAIM at 

last clock cycle was incorrect. CPU will set 

S-Indicate to 0b10 at next clock cycle. 

2) Next PC used in CPU will be the same with current 

PC. 
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1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) Before the end of clock cycle, BTB predicts current 

PC is not a branch. iAIM will set P-Taken to 0 at 

next clock cycle. 

3) Next self-generated PC in iAIM will be current PC 

plus 4. 

1) iAIM starts fetching correct address at current cycle, 

there is no instruction to be decoded in ID stage of 

CPU. CPU will set S-Indicate to 0b00 at next clock 

cycle. 

2) Next PC used in CPU will be updated to current PC 

plus 4. 

X+2 0x80000404 0x80000404 1 0 0 

1) Because S-Indicate is set to 0b10, iAIM uses  

address on instruction address bus as its PC. 

2) iAIM updates an entry in BTB : source is PC used in 

iAIM 2 clock cycles ago, target is address on 

instruction address bus, direction is not-taken. 

3) Before the end of clock cycle, BTB predicts current 

PC is a taken branch. iAIM will set P-Taken to 1 at 

next clock cycle. 

4) Next self-generated PC in iAIM will be branch 

target address. 

1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x80000404) is a taken branch. 

Because iAIM does set P-Taken to 1 at current clock 

cycle, CPU finds BTB prediction in iAIM at last 

clock cycle was correct. CPU will set S-Indicate to 

0b00 at next clock cycle. 

2) Next PC used in CPU will be updated to branch 

target address plus 4. 

X+3 0x80000408 0x80000800 0 0 1 

1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) Before the end of clock cycle, BTB predicts current 

PC is not a branch. iAIM will set P-Taken to 0 at 

next clock cycle. 

3) Next self-generated PC in iAIM will be current PC 

plus 4. 
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1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x80000800) is not a branch. 

CPU will set S-Indicate to 0b00 at next clock cycle. 

2) Next PC used in CPU will be updated to current PC 

plus 4. 

X+4 0x80000804 0x80000804 0 0 0 

1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) iAIM updates an entry in BTB : source is PC used in 

iAIM 2 clock cycles ago, target is address on 

instruction address bus, direction is taken. 

3) Before the end of clock cycle, BTB finds current  

PC is not a branch. iAIM will set P-Taken to 0 at 

next clock cycle. 

4) Next self-generated PC in iAIM will be current PC 

plus 4. 
 

Execution detail of iAIM design in the fourth case (B1 is predicted taken, B2 is 
predicted not-taken) is shown below : 

Actions taken in CPU Clock 

Cycle 
PC used  

In CPU 
PC used  

in iAIM 
Control 

Signal 

S- 

Indicate

Control 

Signal 

P- 

Taken 

Actions taken in iAIM 

1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x800003FC) is not a branch 

instruction, CPU will set S-Indicate to 0b00 at next 

clock cycle. 

2) Next PC used in CPU will be updated to current PC 

plus 4. 

X 0x80000400 0x80000400 0 0 0 

1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) Before the end of clock cycle, BTB predicts current 

PC is a taken branch. iAIM will set P-Taken to 1 at 

next clock cycle. 

3) Next self-generated PC in iAIM will be branch 

target address. 

X+1 0x80000404 0x80000a00 0 0 1 1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x80000400) is a not-taken 

branch. Because iAIM sets P-Taken to 1 at current 
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clock cycle, CPU finds BTB prediction in iAIM at 

last clock cycle was incorrect. CPU will set 

S-Indicate to 0b10 at next clock cycle. 

2) Next PC used in CPU will be the same with current 

PC. 

1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) Before the end of clock cycle, BTB predicts current 

PC is not a branch. iAIM will set P-Taken to 0 at 

next clock cycle. 

3) Next self-generated PC in iAIM will be current PC 

plus 4. 

1) iAIM starts fetching correct address at current cycle, 

there is no instruction to be decoded in ID stage of 

CPU. CPU will set S-Indicate to 0b00 at next clock 

cycle. 

2) Next PC used in CPU will be updated to current PC 

plus 4. 

X+2 0x80000404 0x80000404 1 0 0 

1) Because S-Indicate is set to 0b10, iAIM uses  

address on instruction address bus as its PC. 

2) iAIM updates an entry in BTB : source is PC used in 

iAIM 2 clock cycles ago, target is address on 

instruction address bus, direction is not-taken. 

3) Before the end of clock cycle, BTB predicts current 

PC is a not-taken branch. iAIM will set P-Taken to 0 

at next clock cycle. 

4) Next self-generated PC in iAIM will be current PC 

plus 4. 

X+3 0x80000408 0x80000408 0 0 0 1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x80000404) is a taken branch. 

Because iAIM doesn’t set P-Taken to 1 at current 

clock cycle, CPU finds BTB prediction in iAIM at 

last clock cycle was incorrect. CPU will set 

S-Indicate to 0b10 at next clock cycle. 

2) Next PC used in CPU will be updated to branch 

target address. 
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1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) Before the end of clock cycle, BTB predicts current 

PC is not a branch. iAIM will set P-Taken to 0 at 

next clock cycle. 

3) Next self-generated PC in iAIM will be current PC 

plus 4. 

1) iAIM starts fetching correct address at current cycle, 

there is no instruction to be decoded in ID stage of 

CPU. CPU will set S-Indicate to 0b00 at next clock 

cycle. 

2) Next PC used in CPU will be updated to current PC 

plus 4. 

X+4 0x80000800 0x80000800 1 0 0 

1) Because S-Indicate is set to 0b10, iAIM uses address 

on instruction address bus as its PC. 

2) iAIM inserts an entry into BTB when PC used in 

iAIM 2 clock cycles ago was not found in BTB, 

updates a entry in BTB otherwise : source is PC used 

in iAIM 2 clock cycles ago, target is address on 

instruction address bus, direction is taken. 

3) Before the end of clock cycle, BTB predicts current 

PC is not a branch. iAIM will set P-Taken to 0 at 

next clock cycle. 

4) Next self-generated PC in iAIM will be current PC 

plus 4. 

1) Before the end of clock cycle, CPU resolves the 

instruction(address 0x80000800) is not a branch. 

CPU will set S-Indicate to 0b00 at next clock cycle. 

2) Next PC used in CPU will be updated to current PC 

plus 4. 

X+5 0x80000804 0x80000804 0 0 0 

1) Because S-Indicate is set to 0b00, iAIM uses 

self-generated address as its PC. 

2) Before the end of clock cycle, BTB finds current  

PC is not a branch. iAIM will set P-Taken to 0 at 

next clock cycle. 

3) Next self-generated PC in iAIM will be current PC 

plus 4. 
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Chapter 3  Evaluation and Discussion 
 

Proposed designs in Chapter 2 are evaluated by trace-driven simulator. The benchmark 

suit is a subset of MiBench [10], which is a benchmark suite for embedded programs. The 

results are evaluated by four metrics : total execution cycles, BTB accuracy, percentage of 

reduced instruction address bus active cycles, percentage of reduced bit transitions. 

 

3.1  Evaluation Methodology 
Since proposed designs in Chapter 2 are system-level innovation in computer 

architecture, behavioral simulation like trace-driven simulator can be a suitable approach to 

prove how many benefits such innovation gains compared with conventional architecture. 

Proposed designs are evaluated by a trace-driven simulator. Since proposed designs in 

this thesis are based on classic MIPS five-stage pipeline, my simulator uses MIPS I 

instruction trace as key input. 

My trace-driven simulator accepts the following parameters as its input : 

1. Architecture : conventional architecture, conventional architecture plus T0 encoding, 

proposed design of iAIM, proposed design of enhanced iAIM with 

partial decoder, and proposed design of enhanced iAIM with partial 

decoder and return stack. 

2. BTB configuration : Perfect BTB (it consists of 2 properties. First, after a taken branch 

is first allocated into BTB, its prediction afterwards will be always 

correct. Second, any allocated entry in BTB will never be replaced.), 

2048/4way/LRU (it means 2048 entries in 4-way set-associative BTB 

with Least Recently Used replacement algorithm), and 32/4way/LRU 

(it means 32 entries in 4-way set-associative BTB with Least Recently 

Used replacement algorithm). 

    3. MIPS I instruction trace of benchmark program. 

    My trace-driven simulator will records bit transitions for every line of instruction address 

bus and addition control lines (conventional architecture has no additional control line; 
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conventional architecture plus T0-encoding and conventional architecture plus T0-DAT 

encoding have one additional control line, our 3 proposed designs of iAIM has 3 addition 

control lines) at every clock cycle during MIPS I instruction trace is being fed.  

After finishes execution, my simulator will output the following data : 

1. Total execution cycles 

2. BTB accuracy 

3. Instruction address bus active cycles. 

    4. Total bit transitions on instruction address bus and control line(s). 

    5. Total bit transitions on instruction address bus. 

6. Total bit transitions on control line(s). 

    After collecting all statistics of selected benchmark programs, we have enough data to do 

evaluation on proposed designs. The evaluation metrics are listed in next section. 

 

3.2  Evaluation Metrics 
    In this thesis, the following metrics are used to evaluate proposed designs of iAIM: 

 Total execution cycles 

This metric is used to indicate whether proposed designs suffer performance loss 

due to longer execution time compared with conventional architecture. 

 BTB accuracy 

This metric is used to indicate whether proposed designs suffer loss in branch 

prediction accuracy due to poorer BTB accuracy compared with conventional 

architecture. 

 Percentage of reduced instruction address bus active cycles 

This value is defined as :  
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(Total execution cycles－Instruction address bus active cycles) / Total execution 

cycles 

If this value is high, it means instruction address bus is frozen most of the time. This 

metric can effectively be used to evaluate bus power consumption indirectly due to 

coupling capacitance. 

 Percentage of reduced bit transitions 

This value is defined as :  

(Total bit transitions in conventional architecture with the same BTB configuration
－Total bit transitions) / (Total bit transitions in conventional architecture with the 

same BTB configuration) 

If this value is high, it means number of total bit transitions is small. This metric can 

effectively be used to evaluate bus power consumption indirectly due to 

self-capacitance. 

     

3.3  Experimental Environment 
        The experimental toolset MIPS SDE / MIPS FGT 5.02.02 [11] is used to generate 

MIPS I instruction trace for benchmark programs : 

 Install MIPS SDE / MIPS FGT 5.02.02. 

 Use command “sde-make SBD=GSIM1B” to build MIPS I code (benchmark_ram) 

of benchmark program for GNU simulator platform. 

 Use command “sde-run --trace-insn=on --trace-file trace_filename benchmark_ram” 

to generate MIPS I instruction trace file. 

Since delay branch slot is always applied in GNU simulator platform, the generated 

trace file needs to be modified to remove delay branch slot for all branch and jump 

instructions. 

The modified trace file is then fed into trace simulator by specifying various 

parameters like BTB configuration (perfect BTB or not, the number of 

entries/set-associativity/replacement algorithm of BTB), return stack configuration 

(return stack is used or not), and selected design (conventional architecture, conventional 
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architecture with T0 encoding, conventional architecture with T0-DAT encoding, 

proposed design of iAIM, proposed design of iAIM with partial decoder and proposed 

design of iAIM with partial decoder and return stack). Figure 3.1 shows the flowchart of 

simulation. 

 

Figure 3.1 Simulation flowchart 
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3.4  Experimental Benchmark 
        The benchmark programs selected are a subset of MiBench [10], which is a 

benchmark suite consisting of commercially representative embedded programs. 

MiBench consists of 6 categories including Automotive and Industrial Control, Network, 

Security, Consumer Devices, Office Automation, and Telecommunications. In each 

category, at least one benchmark is chosen as experimental benchmark. All chosen 

benchmarks are listed as below : 

 In the category of Automotive and Industrial Control 

basicmath : it performs simple mathematical calculations that often don’t have 

dedicated hardware support in embedded processors. 

bitcount : it tests the bit manipulation abilities of a processor by counting the 

number of bits in an array of integers. 

 In the category of Network 

dijkstra : it constructs a large graph in an adjacency matrix representation and then 

calculates the shortest path between every pair of nodes using 

repeated applications of Dijkstra’s algorithm. 

 In the category of Security 

sha : it is the secure hash algorithm that produces a 160-bit message digest for a 

given input. It is often used in the secure exchange of cryptographic 

keys and for generating digital signatures. 

rijndael encrypt/decrypt : Rijndael was selected as the National Institute of 

Standards and Technologies Advanced Encryption Standard (AES). It 

is a block cipher with the option of 128-, 192-, and 256-bit keys and 

blocks. 

 In the category of Consumer Devices 

jpeg encode/decode : JPEG is a standard, lossy compression image format. It is a 

representative algorithm for image compression and decompression 

and is commonly used to view images embedded in documents. 

lame : it is a GPL'ed MP3 encoder that supports constant, average and variable 

bit-rate encoding. It uses small and large wave files for its data inputs. 

 In the category of Office Automation 
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stringsearch : it searches for given words in phrases using a case insensitive 

comparison algorithm. 

 In the category of Telecommunications 

FFT/IFFT : it performs a Fast Fourier Transform and its inverse transform on an 

array of data. Fourier transforms are used in digital signal processing 

to find the frequencies contained in a given input signal. 

ADPCM encode/decode : Adaptive Differential Pulse Code Modulation (ADPCM) 

is a variation of the well-known standard Pulse Code Modulation 

(PCM). A common implementation takes 16-bit linear PCM samples 

and converts them to 4-bit samples, yielding a compression rate of 

4:1. 

CRC32 : it performs a 32-bit Cyclic Redundancy Check (CRC) on a file. CRC 

checks are often used to detect errors in data transmission. 

        Table 3.1 shows the instruction counts and maximum procedure call depth for 

selected benchmarks. 
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Table 3.1 Instruction counts and maximum procedure call depth for selected benchmarks 
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3.5  Experimental Results 
        Table 3.2 shows simulation results. The abbreviations on table 3.2 are listed as 

below. 

There are 6 kinds of designs :  

 Original : stands for conventional architecture that BTB is in CPU. 

 T0 : means conventional architecture with T0 encoded instruction address bus. 

 T0 DAT128 : means conventional architecture with T0 with Discontinuous Address 

Table of 128 entry encoded instruction address bus. 

 Proposed I : stands for design of iAIM proposed in section 2.3. 

 Proposed II : stands for design of iAIM with partial decoder proposed in              

section 2.4. 

 Proposed III : stands for design of iAIM with partial decoder and return stack 

proposed in section 2.5. 

There are 3 kinds of BTB configurations:  

 Perfect BTB : it consists of 2 properties. First, after a taken branch is first allocated 

into BTB, its prediction afterwards will be always correct. Second, any allocated 

entry in BTB will never be replaced. 

 2048 (4way, LRU) : means 2048 entries in 4-way set-associative BTB with Least 

Recently Used replacement algorithm. 

 32 (4way, LRU) : means 32 entries in 4-way set-associative BTB with Least 

Recently Used replacement algorithm. 
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Table 3.2 Simulation Results 

 

        Figure 3.2 and Figure 3.3 show reduction ratios in instruction address bus active 

cycles and bit transitions for 5 different designs respectively. 

 

Figure 3.2 Percentage of reduced instruction address bus active cycles 
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Figure 3.3 Percentage of reduced bit transitions 

 

        Figure 3.4 shows percentage of bit transitions on instruction address bus and control 

line(s) for 5 different designs. Figure 3.5 shows percentage of bit transitions on 

instruction address bus and control lines S-Indicate, P-Taken for proposed iAIM designs. 

 

Figure 3.4 Percentage of bit transitions on address bus and control line(s) 
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Figure 3.5 Percentage of bit transitions on address bus and control lines S-Indicate, P-Taken 

 

 

 

3.6  Discussion 
        3.6.1 Experimental Results for Five Evaluation Metrics 

Simulation results for five evaluation metrics are summarized as below :  

 Total execution cycles in conventional architecture, conventional architecture with 

T0 encoded instruction address bus, proposed design I and II of iAIM are exactly 

the same. Total execution cycles in proposed design III of iAIM is slightly less than 

in all other designs because return stack reduces penalty for procedure return 

instructions. 

 BTB accuracy for the same BTB configuration in conventional architecture, 

conventional architecture with T0 encoded instruction address bus, proposed design 

I and III of iAIM are exactly the same. Although iAIMs update BTB one cycle later 

than conventional architecture does, such one cycle delay does not harm BTB 

accuracy. 

 T0 encoded instruction address bus reduces 91.43 % of instruction address bus 

active cycles and 73.14 % of bit transitions on instruction address bus and one 

control line (“INC” [7]) on average. 

 61



    Bit transitions on control line occupy about 33 % of total bit transitions. 

 T0 DAT with 128 entries encoded instruction address bus reduces 96.41 % of 

instruction address bus active cycles and 90.89 % of bit transitions on instruction 

address bus and one control line (“INC” [8]) on average. 

Bit transitions on control line occupy about 29 % of total bit transitions. 

 iAIM proposed in section 2.3 reduces 97.59 % of instruction address bus active 

cycles and 84.75 % of bit transitions on instruction address bus and three control 

lines (“P-Taken” and “S-Indicate”) on average. 

    Bit transitions on control lines occupy about 71 % of total bit transitions. 

 iAIM with partial decoder proposed in section 2.4 reduces 98.50 % of instruction 

address bus active cycles and 86.55 % of bit transitions on instruction address bus 

and three control lines (“P-Taken” and “S-Indicate”) on average. 

    Bit transitions on control lines occupy about 79 % of total bit transitions. 

 iAIM with partial decoder and return stack proposed in section 2.5 reduces 99.99 % 

of instruction address bus active cycles and 92.02 % of bit transitions on instruction 

address bus and three control lines (“P-Taken” and “S-Indicate”) on average. 

    Bit transitions on control lines occupy about 99 % of total bit transitions. 

 

        3.6.2 Comparisons among Bus Encoding Techniques and 3 iAIM Designs 

Although basic design philosophies are different, bus encoding techniques (like T0 

encoding) and iAIM have the same purpose – reducing bus traffic on instruction address 

bus. The cause that iAIM can reduce much more bus traffic is it equips instruction 

memory with program flow tracing capability. With program flow tracing capability, 

iAIM is capable of eliminating the need for bus to transfer instruction addresses most of 

the time. Such capability makes iAIM more intelligent and autonomous than bus 

encoding techniques. 

T0 DAT encoding is a special bus encoding technique that makes use of not only 

the characteristic of program sequential execution but also the characteristic of taken 

branch execution. Only the third proposed iAIM design can outperform it slightly in all 2 

metrics of bus traffic reduction. Since Content-Addressable-Memory (CAM) is required 

in both encoder and decoder in T0 DAT, it adds additional time to the existing delay 

time due to CPU to memory latency. Such an increase affects the clock rate and then 
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harms the performance of processor accordingly. 

As the constituents of bit transitions are considered, bit transitions on instruction 

address bus hold the greater part in both T0 and T0 DAT encoding technique while bit 

transitions on control lines occupy the most majority in iAIM designs. This fact reveals 

the proportion of bit transitions on instruction address bus in iAIM is insignificant. In 

other words, the true overhead for iAIM is bit transitions on control lines. Therefore, a 

communication protocol that uses least control lines to convey minimum control signals 

between CPU and iAIM is necessary. 

Among 3 proposed iAIM designs, performances of Proposed II and Proposed III are 

more insensitive to BTB prediction accuracy than Proposed I. The cause of this 

phenomenon is Proposed II/III record information of recently resolved branch instruction 

so that branch recovery becomes easy. 

 

3.6.3 Benefits and Drawbacks in iAIM Designs 

    The benefits in iAIM are listed as below : 

1. Reduction in bus traffic to spare bandwidth : 

This can be proved from the above experiment results. 

2. Reduction in power consumption : 

For off-chip application, it can be deduced indirectly from experiment results 

since most traffic on instruction is reduced. 

3. Reduction in delay time due to possible high CPU to memory latency 

Since iAIM can reduce delay time when instruction address is self-generated, 

total instruction fetch time can be shortened if two address generation 

mechanisms (from bus or iAIM internal) can take different cycles.  

The drawbacks in iAIM are listed as below : 

1. Although BTB is merely removed from CPU to instruction memory side and 

only some simple logic like partial decoder is added into instruction memory, it 

does incur addition overhead in conventional computer architecture. 

2. Although iAIM reduces almost all traffic on instruction address bus, there are 

more additional bus traffic appearing on the additional internal buses needed in 

iAIM. These additional internal buses make on-chip iAIM application less 
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useful. 

 

3.6.4 iAIM Application in Real Computer System Environments 

        The effects of applying iAIM concept to real computer system environments are 

discussed as follows : 

 CPU and top-level Instruction Memory reside on different Chips 

Under this environment, instruction address bus between CPU and top-level 

instruction memory is external bus. 

As mentioned in section 1.1.1, power consumed on external bus due to relatively 

high self-capacitance is several order larger than energy than internal bus insides 

CPU or instruction memory. Though BTB power in different chip is different due to 

different process and iAIM incurs more internal buses and additional logics, it still 

conserves more power than conventional architecture does. 

 CPU and top-level Instruction Memory reside on the same Chip 

    Under this environment, Instruction address bus between CPU and top-level 

instruction memory is internal bus. 

    Power consumed on internal bus is dominant by coupling capacitance. iAIM can 

greatly reduce power of coupling capacitance on instruction address bus since it 

freezes bus most of the time. 

    If internal buses added by iAIM are not dedicate buses, iAIM also gains benefit in 

this environment. Otherwise, iAIM is useless. 
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Chapter 4  Conclusion and Future Works 
 

4.1  Conclusion 
        The meaning that BTB is placed inside CPU in conventional architecture needs to 

be rethought because it incurs too much unnecessary traffic on instruction address bus. 

Proposed designs in Chapter 2 prove iAIM concept not only feasible but also effective. 

Some functions in CPU costs little and can be duplicated in iAIM by using extremely 

few logics (e.g., partial decoder). The mechanism that how dynamic branch predictor 

like BTB predicts branch instruction has already been mature for a long time and is not 

invented by us. What we do is only to move dynamic branch predictor to instruction 

memory side. The choice of depth of return stack proposed in section 2.4 can be based 

on simulate application programs on simulator to define a proper value. 

        The underlying design philosophy for three iAIM designs proposed in this thesis is 

to equip top-level instruction memory with program flow tracing capability. Such design 

philosophy is an innovation in computer architecture. Such computer architecture change 

looks promising in simulation results. And the increase on additional circuit cost seems a 

small amount since most function blocks are merely moved from CPU to instruction 

memory. 

 

4.2  Future Works 
        In this thesis, BTB, partial decoder and return stack are incorporated into instruction 

memory one after another to form iAIM designs of Proposed I, II and III respectively. 

There are still several works in such design philosophy. 

 Does there exist a similar design philosophy that is also applicable to data memory? 

That means an intelligent autonomous data memory design may be another 

practicable research direction. 

 iAIM design does require additional internal buses inside instruction memory 

module. For application environments with off-chip instruction memory system, 

power consumption due to additional internal buses inside iAIM is negligible 

compared with power saved on external instruction address bus. Nonetheless, for 

application environments with on-chip instruction memory system, if additional 
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internal buses inside iAIM are dedicated to iAIM, power consumed on additional 

internal buses inside iAIM may cancel out power saved on external instruction 

address bus. Because iAIM can relieve address traffic on instruction address bus 

greatly, many systems that use unified instruction and data memory (see Figure 3.6) 

may benefit by iAIM concept. When iAIM design is applied to the mixed 

instruction/data address bus in unified memory system, one additional control line 

to distinguish instruction address stream and data address stream is enough. When 

this control line indicates data address stream occupies the address bus at current 

clock cycle, iAIM’s instruction address handling mechanism inside unified memory 

may treat it as “Pipeline Stall” situation while CPU can make use of “S-Indicate” 

control lines to apply one of data address bus encoding techniques (like BI [12], 

T0_BI [13], T0_BI_1 [14], …) to reduce bus power. This future work is practicable 

and deserves elaborate design and extensive evaluation. 

 

 

Figure 4.1 Unified instruction and data memory system 

 

 

 

 

 

 

 

 66



References 
 

[1]  J. L. Hennessy and D. A. Patterson, “Computer Architecture - A Quantitative Approach”, 
3rd ed. Morgan Kaufmann Publishers, 2003. 

[2] P. Petrov, A. Orailoglu, “Low-power Instruction Bus Encoding for Embedded 
Processors,” in IEEE Transactions on VLSI (TVLSI), July, 2004. 

[3]  H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI, Addison-Wesley, 
1990. 

[4]  K. Basu, A. Choudhary, and M. Kandemir, “Power protocol : reducing power 
dissipation on off-chip data buses”, In Proc. the 35th Annual International Symposium 
on Microarchitecture, Istanbul, Turkey, November 2002. 

[5]  Edwin Naroska, Shanq-Jang Ruan, and Feipei Lai, “On Optimizing Power and Crosstalk 
for Bus Coupling Capacitance Using Genetic Algorithm”, IEEE International 
Symposium on Circuits and Systems, Bangkok, Thailand, May 2003 

[6]  C. H. Perleberg and A. J. Smith, “Branch target buffer design and optimization,” IEEE  
Transactions on Computers, 42(4), 1993. 

[7]  L. Benini, G. De Micheli, E. Marcii, D. Sciuto and C. Silvano. “Asymptotic 
Zero-Transition Activity Encoding for Address Busses in Low-Power 
Microprocessor-Based Systems,” GLS-VLSI-97 : IEEE 7th Great Lakes Symposium on 
VLSI, pp. 77-82, Urbanana-Champaign, IL, March 1997. 

[8]  Tsung-His Weng, “Low-Power Address Bus Encoding,” Master’s Thesis, Department of 
Computer Science and Information Engineering, Nation Chiao Tung University, Taiwan, 
R.O.C., June 2005. 

[9]  Y. Park and Gyungho Lee, “Return Address Stack Management for Protection from 
Buffer Overflow Attacks,” Proc. the ACM Frontiers of Computing, Ischia, Italy, Apr. 
2004. 

[10]  M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown, “MiBench: 
A Free, Commercially Representative Embedded Benchmark Suite,” Proceedings of the 
4th International Workshop on Workload Characterization, 2001, pp. 3–14. 

[11]  MIPS Technologies, Inc., “MIPS SDE / MIPS FGT 5.02.02 Programmers’Guide,” 
February 17, 2003. 

[12]  M.R Stan and W.P Burleson, “Bus Invert Coding for Low Power I/O,” IEEE 
Transactions VLSI systems, pp 49-58, March 1995. 

[13]  L. Benini, G. DeMicheli, E. Macii, D. Sciuto, and C. Silvano, “Address bus encoding 
techniques for system-level power optimization,” DATE-98: IEEE Design Automation 
and Test in Europe. Paris, France, February 1998, pages 861-866. 

[14]  Tsung-Hsi Weng, Wei-Hao Chiao, Jean Jyh-Jiun Shann, and Chung-Ping Chung, 
Jimmy Lu, “Low-Power Data Address Bus Encoding Method,” 2005 International 
Conference on Computer Design (CDES’05). 

 67



Vita 
 

Li-Ming Wang (王立銘) 
 
A. Personal History 

Birth place :  Kaohsiung City, Taiwan        Birth date :  April 4, 1973 
Residence :  Hsinchu or Kaohsiung City, Taiwan 
E-mail address :  livius@ms56.hinet.net 

 
B.  Educational History 
    1.  Kaohsiung Senior High School, Kaohsiung, Taiwan, 1991 (高雄中學) 
    2.  National Cheng Kung University, Tainan, Taiwan 

Degree: Bachelor of Electrical Engineering, 1995 (成功大學電機系 84 級) 
3.  National Chiao Tung University, Hsinchu, Taiwan 

Degree: Degree Program of Electrical Engineering and Computer Science College of Computer Science 
in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science, 

2006 (交通大學電資學院在職專班資訊學程碩士 2006) 

 
C.  Professional Positions 
    1.  Associate Engineer in Process Control Computer Section of China Steel Aluminum 

Corp. (中鋼鋁業) from Sep 1997 to Jun 2002 
    2.  Engineer, Senior Engineer, Associate Project Manager in System Development Div. 

of D-Link Corp. (友訊科技) and Alpha Networks Inc. (明泰科技) from Jun 2002 
 
 
 

 68


